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Boosted robustness of semi-implicit subgrid methods for shallow water 
flash floods in hills 
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A B S T R A C T   

The widespread availability of high-resolution Digital Elevation Models (DEM), has led to the development of 
subgrid numerical modeling techniques, based on Shallow Water Equations (SWE). Detailed DEM data is clus
tered as much as possible within a coarse grid cell that is preferably much larger than a raster pixel. This has 
considerable advantages for model efficiency, in particular for flood mapping. But overland flow on hills, key to 
rainfall-runoff, may have several problems with accuracy and stability. These issues arise especially during 
downhill flooding and with surface runoff on inclined planes. It is the focus of this paper. As robust solutions we 
propose: (1) a special volume correction equation with intrinsic wetting and drying but without stability con
straints and, (2) a simple thin layer calculation that is accurate for runoff on coarse grids with sloping subgrids. 
Especially the combination (1) and (2) makes the subgrid method highly efficient on slopes, as is demonstrated 
by a few examples.   

1. Introduction 

Floods are considered as one of the most common and most 
damaging disasters caused by nature. Accurate flood predictions are 
crucial for the design and operation of flood protection systems [27]. 
Floods have a variety of causes, such as storm surge, dam failure, tsu
namis, extreme rainstorms, etc. They are often due to a mix of factors. 
This paper focuses on the efficiency of rain flood simulations in hilly 
terrain. 

The accessibility of high-resolution digital elevation models has 
triggered the development of sub-grid methods. We confine ourselves to 
semi-implicit subgrid methods with staggered grids [4,5,6,11,18]. 
Currently, there are numerous applications for different flood types [1, 
17,24]. However, like any method, also this method has pitfalls that may 
restrict the accuracy, in particular for relative coarse grids. One example 
is that flow blocking obstacles, like thin floodwalls, may be overlooked 
[11]. A number of methods are published to repair all sorts of unwanted 
subgrid effects [12,22]. In particular grid cloning deserves attention [4, 
7]. All these methods are essentially compensations for lack of resolu
tion. This is a classical modeling problem, like the closure problem of 
turbulence. In [12] subgrids are studied from that perspective. There is 
no general solution for lack of resolution, but in each case there may be a 

special remedy. From this point of view, subgrid methods are no 
exception. 

This paper is about remedies for flash flood computations in hilly 
areas. These areas have slopes with storm water flowing downward, 
while inundating lower laying areas. On shallow slopes, the elegant 
wetting and drying procedure from [5], sometimes requires extremely 
small time steps for stability. This is due to semi-implicit time inte
gration of super critical thin layer flow, with explicit wet cross sections. 
It will be argued that flooding on slopes, with detailed subgrids, is a stiff 
problem, requiring implicit time integration [14]. We propose a 
non-iterative and non-conservative semi-implicit predictor, followed by 
a mass-conservative corrector without time step restrictions. This 
corrector will guarantee positive volumes, in such a way that special 
wetting and drying procedures are not required. Another problem of 
concern is the accuracy of overland flow on hills, where subgrids may 
have an adverse impact. For real-life applications however, other ele
ments, such as ponding, channel flow, etc., are equally important. Here 
subgrids have great advantages. Thus, we propose a method to keep 
these advantages, but without accuracy loss on slopes. 

This paper has the following sections: Section 2 is a summary of the 
semi-implicit subgrid method. Section 3 shows the time step limitation 
on slopes with thin layers of water, based on a simple example. This 
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example is also used to demonstrate accuracy issues. Section 4 outlines a 
predictor-corrector method, with a stable, positive and conservative 
corrector named Volume Correction Equation or VCE. Section 5 explains 
Thin Layer Calculation or TLC, for accurate overland flow on hills. Sec
tion 6 describes numerical examples. Section 7 contains conclusions. 
The appendix calculates the time step limitation of the semi-implicit 
method, based on Von Neumann stability analysis of the frozen coeffi
cient equation. 

2. Summary of the subgrid method 

SWE, as applied in this paper, are given by: 

momentum eqs:

⎧
⎪⎨

⎪⎩

ut + uux + vuy + gζx +
cf

h
u‖ u ‖ = 0

vt + uvx + vvy + gζy +
cf

h
v‖ u ‖ = 0

(1)  

continuity eq: ht + (uh)x + (vh)y = P (2) 

u(x,y,t), v(x,y,t) are depth-averaged velocities, g gravity, ζ(x,y,t) is 
water level above the reference plane, cf is dimensionless bottom fric
tion, h(x, y, t) = ζ(x, y, t) − e(x, y) is water depth, e(x, y) is the bottom 
elevation above the reference plane, and P is precipitation. Note that ht 

= ζt. These equations are to be completed with boundary/initial con
ditions to get a well-posed problem [10,21]. 

The momentum and the continuity equation are discretized by a 
conservative Finite Volume Method (FVM). The grid is a quadtree [18], 
with clustered DEM pixels as subgrid, Fig. 1. The variable grid size Δx is 
always a multiple of the pixel size δ. The continuity equation is mildly 
non-linear. Flooding and drying are an intrinsic part of this equation [5]. 
For the semi-implicit (or IMEX, IMplicit EXplicit) time integration, the 
θ− method is applied combined with explicit wet cross sections. Mo
mentum advection may be locally implicit, utilizing Carlson’s method 
[13,16]. Based on this, the following numerical approximations are 
defined: 

uk+1 − uk

Δt
+ adv

(
uk+max(0,1− 1/cu)

)
+ gDxζk+θ +

uk+1

Vk f k = 0

vk+1 − vk

Δt
+ adv

(
vk+max(0,1− 1/cv)

)
+ gDyζk+θ +

vk+1

Vk f k = 0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(3)  

V(ζk+1) − V(ζk)

Δt
+
∑

∀A∈V
Akuk+θ

A n→A = Qp , uk+θ = (1 − θ)uk + θuk+1 (4)  

adv(uk+max(0,1/cu), vk+max(0,1/cv)) are advection approximations, 
Dx,yζ denote numerical surface gradients, f is a bed friction function, A 
is a wet cross section, n→A is the outward normal of A, V(ζ) is a piece
wise linear volume function, QP = SV⋅P denotes precipitation, 
and SV =

∑
∀δ∈Vδ2 is the maximum surface of a grid cell when all pixels 

are wet. After elimination of uk+1 from (4), by substitution of (3) into 
(4), (4) is solved by preconditioned CG and Newton iteration. 

The method is robust and capable of dealing with many different 
flow conditions, including rapidly varied flows [9,19,26]. 

3. Stability and accuracy problems of subgrids with thin water 
layers 

This section starts with a heuristic explanation that flow in thin 
layers on slopes, imposes time step restrictions that are proportional to 
the pixel size due to the explicit implementation of cross sections in (4). 
Our argumentation is based on a simple example, example 0, see Fig. 2, 
where we consider flow per unit width. 

The 1D steady state solution of (1, 2), for the boundary conditions as 
depicted by Fig. 2, is uniform flow with a uniform depth. The uniform 
depth is equal to the normal depth, e.g. [3], and is given by h =

(cf q2/(g|ex|))
1/3. The uniform velocity u =

̅̅̅̅̅̅̅̅̅̅̅̅̅
|ex|/cf

√ ̅̅̅̅̅
gh

√
, where cf is a 

constant bottom friction coefficient and |ex| the bottom slope. For |ex| =

cf = 0.1, we get h(x, ∞) = h = 0.0634m and u(x, ∞) = 0.7886 m/s. 
This is a critical slope with critical uniform flow [3]. Initially the bed is 
dry, when at x = 0, t = 0 the inflow starts. So the transient is a downhill 
flood wave. This transient solution can be derived, by approximation, 
from the kinematic wave equation [3,23]: 

∂h
∂t

+ U′ ∂h
∂x

= 0, h(x, t) = h0(x − U ′ t) (5) 

Obviously (5) is a transport equation with a general solution h(x, t)
= h0(x − U′ t). Initially h(x,0) = 0. h(x, t) = h0(x − U′ t) implies that h(x,
t) = 0, t < x/U′ . From h(x,∞) = h it follows that h(x,t) = h, t ≥ x/U′ . 
The remaining question is the value of U′ . For T = L/U′ the volume in 
the domain is Lh. We also have T = Lh/q, q = uh→U′

= u 
That is different from the river flow cases in [3,23] without dry bed. 

Here U′

= αu and α depends on the bed friction formulation [3, 
page 147]. 

We compare computations for 3 different values of Δx: Δx1 = δ,
Δx2 = 2δ, Δx3 = 4δ, δ = 1 m, Fig. 3. We established the maximum 
time step empirically. In all three cases, both the normal depth and the 
uniform velocity were computed without errors. In all cases the 
maximum time steps were Δt = 1 s. Larger time steps were either 
oscillating or eventually unstable. For Δx = 1 that was slightly larger 
than the zero-stability condition of the appendix. But increasing Δx did 

Fig. 1. Staggered quadtree grid with subgrid.  

Fig. 2. Test case with a slope 1:10.  
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not change the stability constraints, while the transients were quite 
different, Fig. 4. 

Fig. 4 shows the water depth h(L,t) at x = L = 64 m, the end of the 
slope. It takes a while until the water has reached the end point and the 
complete domain is at normal depth. But the larger the grid size, the 
earlier the entire domain is filled with water at normal depth. Fig. 3 
explains this. There is simply less water in the domain 0 ≤ x ≤ L for a 
coarser grid with the same water depth, so the filling time is less. The 
height difference between pixels is 0.1 m, this is more than the normal 
depth of 0.0634 m. Because the water level in a grid cell is horizontal, 
only one pixel per grid cell is wet, regardless the grid size, Fig. 3. 

The stability correlation with the pixel size δ rather than Δx is 
explained by the numerical approximation (4) applied to our simple 
problem. If we consider the equations per unit width, with thin layers, 
such that for each cell only the lowest pixels are wet, Fig. 3, then V′

(h) =

δh, (V′ denotes volume per unit width) and (4) becomes: 

δ
hk+1

n − hk
n

Δt
+ uk+1

n+1/2hk
n − uk+1

n− 1/2hk
n− 1 = 0

→
hk+1

n − hk
n

Δt
+

uk+1
n+1/2hk

n − uk+1
n− 1/2hk

n− 1

δ
= 0

(6) 

We rewrite (6) as follows: 

hk+1
n − hk

n

Δt
+

Δx
δ uk+1

n+1/2hk
n −

Δx
δ uk+1

n− 1/2hk
n− 1

Δx
= 0 (7) 

This is a consistent approximation of ∂h /∂t+ ∂((Δx /δ)uh) /∂x = 0. 
This implies that if Δx = 4δ the numerical propagation speed is four 

times the real one as is confirmed by Fig. 4. This also implies critical flow 
at an earlier stage and consequently instabilities pop up earlier. 

In conclusion: The example of this section shows that thin layers with 
subgrids have issues with stability and accuracy. In the next two sections 
these problems will be tackled. 

4. The volume correction equation 

The basic idea of our Volume Correction Equation, VCE, is as follows: 
consider the following equation: 

dV(h)
dt

+ Q(h) = 0, Q(h) = A(h)u(h) (8) 

Eq. (8) describes outflow from a volume V(h) by a discharge Q(h) =

A(h)u(h). V(h) and the cross section A(h), are nonlinear functions of the 
water depth h(t). The velocity u(h) is linear. Note that Vt = Vhht. To 
integrate (8) we apply the following predictor-corrector procedure: 

Predictor : Vh
(
hk) h∗ − hk

Δt
+ u(h∗)A

(
hk) = 0 (9a) 

Eq. (9a) is linear and consistent with (8). It does not ensure positivity, 
nor conservation (i.e. the volume change is not equal to Δt × outflow). 
(9a) is followed by a corrector: 

Corrector:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uk+1 = u(h∗),
Vk+1 − Vk

Δt
+ Qk+1 = 0,

Qk+1 = uk+1

⎛

⎜
⎝ Ak Vk+1

max
(
Vk, ε

)

corrected cross section
⎞

⎟
⎠

→Vk+1 = Vk

/(

1 + Δt
uk+1Ak

max
(
Vk, ε

)

)〉

0∀Δt > 0,

V
(
hk+1) = Vk+1

(9b) 

The corrector (9b) is called VCE. Both conservation and positivity are 
secured. The value for uk+1 is from the predictor only. The nonlinear 
equation V(hk+1) = Vk+1 is a single equation that can be solved with any 
iterative method. This approach is comparable with a treatment to 
ensure positive variables by [15, page 145]. In a trivial linear case, e.g. 
V = h m3, A = h m2, u = 1 m/s, (9a) is overruled by (9b) and (9) be
comes overall: (hk+1 − hk) /Δt + hk+1 = 0, i.e. the implicit Euler rule 
[14]. 

For the general application of VCE to (3, 4) we consider the first 
iteration step for solving (3, 4), as the predictor. Then the generalized 
VCE formulation becomes: 

Fig. 3. Representation of a thin layer of water with a constant depth on a slope, for three grid sizes. For Δx1 all pixels are wet, for Δx2 50% of the pixels is wet and 
for Δx3 only 25% of the pixels is wet. 

Fig. 4. 3 different numerical propagation speeds for Δt = 0.8 s.  
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Vk+1
n − Vk

n

Δt
−
∑n− 1

j=1,j ↔ n
Qk+1

j,n +
∑N

l=n+1,n ↔ l
Qk+1

n,l = QP,n, n = 1, ...,N (10) 

The expression j ↔ n means that in a staggered grid Vj and Vn are 
adjacent nodes. Qk+1

j,n (j< n∀(j, n)) is a discharge positively directed from 
Vj to Vn and Qk+1

n,l (n < l∀n,l) is defined accordingly. They are given by: 

Qk+1
j,n =

max
(
Q̃j,n, 0

)

Vk
j

Vk+1
j +

min
(
Q̃j,n, 0

)

Vk
n

Vk+1
n , j ↔ n

Qk+1
n,l =

max
(
Q̃n,l, 0

)

Vk
n

Vk+1
n +

min
(
Q̃n,l, 0

)

Vk
l

Vk+1
l , n ↔ l

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(11)  

Q̃ = uk+1Ak. (11) Implies that the correction factors Vk+1 /Vk are from 
the upwind direction. Substitution of (11) into (10) gives the following 
linear equation: 

∑n− 1

j=1
an,jVk+1

n + an,nVk+1
n +

∑N

l=n+1
an,lVk+1

n = bn, n = 1, ...,N (12) 

The matrix coefficients an,j, j < n and an,l, l > n are given by: 

an,j = − max
(
Q̃j,n, 0

)/
Vk

j , j < n

an,l = min
(
Q̃n,l, 0

)/
Vk

l , l > n

⎫
⎬

⎭
(13) 

If a pair of volume nodes (n,m) is not adjacent then an,m = am,n = 0. 
If am,n < 0 then an,m = 0 →am,n ≤ 0, ∀(m, n), m ∕= n. The coef
ficients an,n, bn, are given by: 

an,n =
1

Δt
+

∑

m=1,N, m∕=n

⃒
⃒an,m

⃒
⃒, bn =

Vk
n

Δt
+ QP,n (14) 

The value of ζk+1 then follows directly from V(ζk+1) = Vk+1. This is 
a non-linear equation. But now, it is a collection of single mildly-non- 
linear equations, each with only one unknown. This excludes the use 
of matrix solvers in this final step. So matrix solvers are only applied for 
linear equations. The sparse matrix Eq. (12) will be solved by Gauss 
Seidel iterations [20]. From (14) it follows that (12) is a diagonally 
dominant (by column) equation which ensures convergence. Dominance 
by column or by row are each sufficient for convergence since a matrix 
and its transpose have the same eigenvalues. A Gauss Seidel iteration 
step to solve (12) is: 

Vk+1,i
n =

−
∑n− 1

j=1 an,jVk+1,i
n −

∑N
l=n+1an,lVk+1,i− 1

n + bn

an,n
, n = 1, ...,N, i ≥ 1

(15)  

Vk+1,0
n = Vk

n , (15) is repeated for i = 1,…until convergence. If Vk
n > 0,

∀n then an,n > 0, ∀n and am,n < 0,∀m ∕= n. From this it follows that Vk+1,i
n 

> 0,∀n,i and therefore also Vk+1
n > 0,∀n. So VCE will guarantee positive 

volumes. If we assume Q̃m,n ≥ 0, ∀(m, n) then an,m = 0, m > n. This 
implies for (15): 

Vk+1,i
n =

−
∑n− 1

j=1 an,jVk+1,i
n + bn

an,n
, n = 1, ...,N, i ≥ 1 

This means that the exact solution of (12) is found in one sweep. If we 
reverse the sweep direction of (15) we get: 

Vk+1,i
n =

−
∑n− 1

j=1 an,jVk+1,i− 1
n −

∑N
l=n+1an,lVk+1,i

n + bn

an,n
, n = N, ..., 1, i ≥ 1

(16) 

Here the exact solution is found in one sweep if Q̃m,n ≤ 0, ∀(m, n). 
Normally Gauss Seidel proceeds with alternating sweep directions. 

VCE will stabilize the problem of Section 3. Much larger time steps 
than the empirically established limit of one second are feasible, but will 

not improve the accuracy as Fig. 5 illustrates. The steady state however 
is still exact only the transient has large errors for Δx = 2 m and Δx =

4 m. 

5. Thin layer calculation on slopes 

The basic assumption of the subgrid method is a horizontal water 
level within a grid cell, Fig. 6. For rainfall-runoff on slopes, this 
assumption is not practical and will lead to large errors, if the cells are 
not sufficiently small. Here accurate solutions may be obtained only if 
the cell size is just as large as a pixel, as our example 0 in Section 3 has 
shown. This is contrary to the general experience of accurate solutions 
with subgrid methods. An explanation is given in Fig. 6. Here the same 
amount of water is divided in two different ways: on the left side the 
water level is horizontal, on the right side the water depth is constant. If 
it concerns a slope with overland flow, then the horizontal assumption is 
wrong and will underestimate friction and overestimate cross-sections. 
However, when this is the edge of a pond, with almost still water or 
channel flow in a direction normal to the figure, then it is right. Both 
volumes are given by: 

V(ζ) = δ2
∑

∀i∈V
(ζ − ei)Λ(ζ − ei), Λ(h) =

{
1 ⇔ h > 0
0 ⇔ h ≤ 0 (17) 

For the right side of Fig. 6 we define the thin layer depth, hΓ: 

hΓ = V/SV (18) 

Eq. (18) prescribes the thin layer calculation, TLC. The depth hΓ is 
used both for cross-sections and bed friction. We compute the wet cross- 
section AΓ between two cells V− and V+ as follows: 

AΓ =

⎧
⎪⎪⎨

⎪⎪⎩

hΓ,− ⋅w− ∩+

max
(
hΓ,− , hΓ,+

)
⋅w− ∩+

hΓ,+⋅w− ∩+

u > 0

u = 0

u < 0

(19) 

Fig. 5. Stabilizing effect of VCE, Δt = 8 s, Δx = 1,2, 4 m.  

Fig. 6. Horizontal water level vs sloping water layer.  
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Here w− ∩+ is the maximum width of the mutual face between 
V− and V+, and u is the velocity at the interface. The “normal” cross- 
section, AH based on the horizontal water level assumption within a 
computational cell, is given by: 

AH =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

δ
∑

j∈face
Λ
(
ζ− − ej

)
, u > 0

δ
∑

j∈face
Λ
(
max(ζ− , ζ+) − ej

)
u = 0

δ
∑

j∈face
Λ
(
ζ+ − ej

)
, u < 0

(20) 

Both approximations are consistent. If a grid cell has the size of just 
one pixel then (19) and (20) are identical. I we apply (19) we get the 
phase speed right for all values of Δx, Fig. 7. The stability condition is 
now proportional to Δx rather than δ. Also example 1 in Section 6, 
shows remarkable improvement due to (19). 

In combination with VCE the time steps can be increased, Fig. 8. 
In practical applications the combinations VCE and TLC will allow 

much larger time steps. 
The actual cross section A is given by: 

A =

{
min(AH ,AΓ), hmin,+∩− ≤ 0

AH , hmin,+∩− > 0 (21)  

hmin,+∩− = min(ζ− , ζ+) − emin,− ∩+, emin,− ∩+ is the lowest pixel at the 
interface of V− and V+. Eq. (21) implies that if there is flow through the 
interface between two cells, while the downstream water level is below 
the lowest pixel at the interface, then TLC is applied. The combination of 
VCE and TLC is very effective as we will show in the next section. 

6. Examples 

In this section we describe two examples. For all these examples the 
bed friction is based on Manning’s N: 

cf = gN2 / h1/3 (22)  

6.1. Example 1 

The first example is based on a well-known analytical solution [2] for 
the kinematic wave equation that is often applied [8]. Fig. 9 shows the 
bathymetry. 

The slope of 5% has a length of 800 m and a width of 32 m. This 
bathymetry is represented by a raster of 800× 32 pixels of 1× 1 m2. 
Manning’s N = 0.015. The precipitation is 10.8 mm/hr for 90 min. The 
analytical hydrograph is given by Fig. 10. Time is given in minutes. 

Fig. 11 shows results without TLC, for a coarse grid cell size of 32×

32, 8× 8 and 2× 2 pixels. The runoff results of 32× 32 and even of 8×

Fig. 7. TLC for 3 different values of Δtand Δx.  

Fig. 8. VCE and TLC, Δt = 8 s, Δx = 1, 2, 4 m.  

Fig. 9. bottom slope example 1.  

Fig. 10. analytical hydrograph.  

Fig. 11. numerical runoff without TLC.  
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8 pixels are way too fast, while the 2× 2 case is perfect. So, without TLC 
the subgrid method is far from accurate for runoff on a simple flat slope. 
Computations without subgrid will even be better. Fig. 12 shows results 
for the same grids but now with TLC. The improvement is remarkable. A 
coarse grid cell size of 32× 32 pixels is already fairly precise. 

6.2. Example 2 

To demonstrate the effect of VCE/TLC for practical applications, we 
have constructed a second example. We have composed a bathymetry 
derived from a real DEM with realistic slopes, Fig. 13. This example has 
overland flow, ponding and channel flow. The method will switch be
tween TLC and the normal subgrid approach, based on (21). This is 

where the combination of VCE and TLC shows not only to be accurate 
but also to be robust and very stable. 

The bathymetry on Fig. 13, of 7×6 km, represents a small village, 
nearby hills that range from 60 m to 200 m above chart datum. 
(Amsterdam Ordnance Datum, NAP). The DEM’s pixel size is 1 × 1 m2. 
The evenly colored gray area is outside the computational domain. The 
subgrid domain contains 23.2 million pixels. A constant Manning value 
of N = 0.04 has been applied. This area will receive a tropical rainstorm 
with a peak of 17.7 cm/hr. See Fig. 14 for a hydrograph of 6 h. In fact 
such a heavy rainstorm of short duration is not (yet?) realistic in this 
area. The rainstorm causes a flash flood, with inundated areas, Figs. 15 
and 16. In the 2× 2 case, the effect of TLC is negligible as we have 
shown in example 1. We conclude from Fig. 17 that for a grid cell of 16×

Fig. 12. numerical runoff with TLC.  

Fig. 13. Bathymetry example 2.  

Fig. 14. Hydrograph example 2, time in minutes, rain and runoff in m3/s(left) 
or cm/hr (right). 
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Fig. 15. inundation depths after 35 min, shallow streams of water are all over in the folds of the hills, no serious ponding yet.  

Fig. 16. inundation depths after 91 min, the rain storm is almost over, some small streams are still present, ponding occurred even with depths > 2 m.  
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16 pixels, the differences are prominent. In Fig. 18 we explore the effect 
of refining grid cells. This may have a significant effect [25]. Here we 
give results for grid cells of 16× 16, 8× 8, 4 × 4 and 2 × 2 pixels. 
The results of 8× 8, 4 × 4 and 2× 2 pixels are close. 

For each of the hydrographs in Fig. 18, the table below contains the 
following data: grid size, number of grid points, Δt, wall time, per
centage of wall time due to the CG matrix solver, percentage of wall time 
by the Gauss Seidel solver of the VCE and the accumulated mass balance 
error (MBE). TLC is always applied. If %VCE=0 then VCE is not applied. 

Table of computational effort with a 12 core CPU (AMD ryzen-9 5900X). The 
FORTRAN code was parallelized with openMP directives.  

grid size grid points Δt wall time % 
CG 

% 
VCE 

MBE 

16×16 
pixels 

91,461 5 s 93 s 66% 0 1× 10− 6m3 

16×16 
pixels 

91,461 5 s 77 s 35% 27% 7× 10− 8m3 

16×16 
pixels 

91,461 30 s 24 s 58% 23% 6× 10− 8m3 

8 × 8 pixels 363,706 2.5 
s 

16.6 min 71% 0 6× 10− 7m3 

8 × 8 pixels 363,706 2.5 
s 

10.7 min 32% 24% 1.5×

10− 7m3 

8 × 8 pixels 363,706 30 s 2.5 min 64% 20% 1× 10− 7m3 

4 × 4 pixels 1,450,560 2.5 
s 

4 hrs. 8 
min. 

92% 0 1.5×

10− 7m3 

4 × 4 pixels 1,450,560 2.5 
s 

1 hr 25 
min. 

65% 18% 1.5×

10− 7m3 

4 × 4 pixels 1,450,560 30 s 50 min 86% 11% 5× 10− 7m3 

2 × 2 pixels 5,794,459 15 s 9 hrs. 54 
min. 

86% 12% 1× 10− 6m3  

A pre-conditioned CG algorithm solves the semi-implicit predictor. 
The VCE is solved by Gauss-Seidel. CG consumes the major part of the 
computation time in particular for large applications. The time steps in 
the table with VCE only, were unstable without VCE. This proves the 
important benefit of VCE, with only 11% to 27% of computational 
overhead. The table also shows that for the same time steps, the com
putations with VCE are always faster. Comparison is only possible for 
small time steps due to instability without VCE. For 4×4 pixels the 
difference is a factor 3. All the mass balance errors are negligible, 
compared to an overall mass of O(2× 106) m3. With VCE local Courant 
numbers may rise above 50. The results of the small and large time steps 
did not show significant differences for the hydrograph for equal values 
of the grid size. The overall CPU time does not decrease linearly with an 
increasing time step. This is due to the CG solver that requires more 
iterations per time step. There is an optimum, where above further in

crease of the time step will also increase the overall computational 
effort. 

From a practical point of view, the differences of the results between 
8×8, 4×4 and 2×2 pixels are small. The results of 16×16 could still be 
useful for rapid assessment applications. The computation times how
ever, are extremely different, ranging from 24 s to almost 10 h. Com
bined with adaptive quadtrees, very efficient flood mapping is possible 
for large catchments, even with the modest hardware used for this 
paper. 

7. Concluding remarks 

The quest for ever more efficient and accurate SWE-solvers is a never 
ending story. The subgrid method [5] has contributed a lot. But, as this 
paper shows, there are drawbacks on steep slopes with friction domi
nated flow. Here the explicit implementation of the cross sections yields 
time step restrictions proportional to the pixel size as this paper shows. 
Due to an erroneous phase speed proportional to uΔx/δ, time steps were 
required to be impossibly small, because of artificially large Froude 
number. In particular during the spin-up of a simulation this will occur. 
This is a classic example of a stiff problem, the time steps required for 
stability are much smaller than the time steps required for accuracy 
[14]. Euler implicit time integration is the most robust approach to deal 
with stiffness, but to solve this in one step with only implicit approxi
mations of each term of (1,2) will be an extremely demanding compu
tational effort. So, there will always be the need for an efficient 
compromise between explicit and implicit terms. This may differ, 
depending on the particular application. VCE combined with TLC seems 
to be such a proper balance for rainfall runoff on slopes. The maximum 
grid size for accurate solutions of example 2 is 8 pixels, although 16 was 
still reasonable. That is a bit disappointing. This is probably due to 
ignoring important obstacles for large values of Δx. This may be 
improved by methods, as mentioned in [4,7,11], or by adaptive quad
trees. Finally we arrive at the following conclusions:  

- The strictly conservative VCE improves robustness and efficiency, 
due to improved stability and because of bypassing the repetitive 
application of matrix solvers as part of Newton iteration.  

- TLC is imperative for accurate overland flow on slopes, with coarse 
grids and sloping subgrids.  

- The combination of VCE and TLC (and detailed DEM’s), enables 
efficient flash flood mapping, for large catchments with hills, pro
vided that flow blocking obstacles are not overlooked by the grid 
resolution. 

Fig. 17. runoff comparison without and with TLC, differences are significant.  Fig. 18. runoff convergence test with TLC.  
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Appendix, Stability of semi-implicit SWE time integration 

To show that the explicit part of the semi-implicit method will limit the time step, at least for critical flows, we apply Neumann stability analysis for 
1D SWE, given by: 

ut + uux + gζx +
cf

h
u|u| = 0 (A-1)  

ht + (uh)x = ζt + uζx − uex + hux = 0 (A-2) 

We apply, while disregarding subgrids, the semi-implicit method with a staggered grid to the frozen-coefficient formulation of (A-1, 2) with ϴ=1 
and U>0: 

uk+1
m+1/2 − uk

m+1/2

Δt
+ U

uk
m+1/2 − uk

m− 1/2

Δx
+ g

ζk+1
m+1 − ζk+1

m

Δx
+

cf U
H

uk+1 = 0

ζk+1
m − ζk

m

Δt
+ U

ζk
m − ζk

m− 1

Δx
+ H

uk+1
m+1/2 − uk+1

m− 1/2

Δx
− Uex = 0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(A-3) 

We rewrite (A-3): 

uk+1
m+1/2 + rg

(
ζk+1

m+1 − ζk+1
m

)
+ Δt

cf U
H

uk+1 = uk
m+1/2 − rU

(
uk

m+1/2 − uk
m− 1/2

)

ζk+1
m + rH

(
uk+1

m+1/2 − uk+1
m− 1/2

)
− ΔtUex = ζk

m − rU
(
ζk

m+1 − ζk
m

)

Here r=Δt/Δx. To study zero stability by Von Neumann’s analysis, that implies Δt→0, Δx→0 while r is constant, we get: 
⎡

⎢
⎢
⎢
⎣

1 r
̅̅̅̅̅̅̅
gH

√
2isin

(
1
2
φ
)

r
̅̅̅̅̅̅̅
gH

√
2isin

(
1
2
φ
)

1

⎤

⎥
⎥
⎥
⎦

[
ẑk+1

ûk+1

]

=

[
1 − rU(1 − cosφ + isinφ) 0
0 1 − rU(1 − cosφ + isinφ)

][
ẑk

ûk

]

(A-4)  

ẑ =
̅̅̅̅̅̅̅̅̅
g/H

√
ζ̂ and φ = iκΔx. 

For zero stability or convergence we study Δt→0 while r is kept constant. In that case all O(Δt) terms disappear [16]. We diagonalise (A-4) to get: 
(

1 + rC2isin
(

1
2
φ
))
(

ûk+1
+ ẑk+1)

= (1 − rU(1 − cosφ + isinφ))
(

ûk
+ ẑk)

(

1 − rC2isin
(

1
2
φ
))
(

ûk+1
− ẑk+1)

= (1 − rU(1 − cosφ + isinφ))
(

ûk
− ẑk)

rC = Δt
Δx

̅̅̅̅̅̅
gH

√
, rU = Δt

Δx U. The amplication factor A is given by: 

A =
1 − rU(1 − cosφ + isinφ)

1 ± rC2isin
(

1
2φ
)

|A| ≤ 1 is a necessary (but not sufficient!) condition for stability. This is satisfied iff: 
(
1 − Φ2)rU < 1 (A-5)  

Φ = rC /rU. Φ is the inverse of the Froude number. If Φ > 1, i.e. for sub-critical flows, then (A-5) bears no time step restrictions, but for Φ = 0, i.e.: 
for super critical flows or in case of small depths, we get rU < 1, i.e. the velocity Courant condition, regardless of slopes or drying. On slopes, thin 
water layers may have swift flows, such that (A-5) is a significant limitation. Bear in mind that for 2D SWE rU =

̅̅̅
2

√
UΔt /Δx. 
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