

Delft University of Technology

Repetitive, Oblivious, and Unlinkable SkNN Over Encrypted-and-Updated Data on Cloud

Li, Meng; Zhang, Mingwei; Gao, Jianbo; Lal, Chhagan; Conti, Mauro; Alazab, Mamoun

DOI
10.1007/978-3-031-15777-6_15
Publication date
2022
Document Version
Final published version
Published in
Information and Communications Security - 24th International Conference, ICICS 2022, Proceedings

Citation (APA)
Li, M., Zhang, M., Gao, J., Lal, C., Conti, M., & Alazab, M. (2022). Repetitive, Oblivious, and Unlinkable
SkNN Over Encrypted-and-Updated Data on Cloud. In C. Alcaraz, L. Chen, S. Li, & P. Samarati (Eds.),
Information and Communications Security - 24th International Conference, ICICS 2022, Proceedings (pp.
261-280). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics); Vol. 13407 LNCS). Springer. https://doi.org/10.1007/978-3-031-
15777-6_15
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/978-3-031-15777-6_15
https://doi.org/10.1007/978-3-031-15777-6_15
https://doi.org/10.1007/978-3-031-15777-6_15

Repetitive, Oblivious, and Unlinkable
SkNN Over Encrypted-and-Updated

Data on Cloud

Meng Li1(B), Mingwei Zhang1, Jianbo Gao1, Chhagan Lal2, Mauro Conti2,3,
and Mamoun Alazab4

1 Key Laboratory of Knowledge Engineering with Big Data
(Hefei University of Technology), Ministry of Education; School of Computer Science
and Information Engineering, Hefei University of Technology; Anhui Province Key

Laboratory of Industry Safety and Emergency Technology; and Intelligent
Interconnected Systems Laboratory of Anhui Province

(Hefei University of Technology), Hefei, China
mengli@hfut.edu.cn, {mwzhang,jianbogao}@mail.hfut.edu.cn

2 Department of Intelligent Systems, CyberSecurity Group, Delft University of
Technology, Delft, The Netherlands

c.lal@tudelft.nl
3 Department of Mathematics and HIT Center, University of Padua, Padua, Italy

conti@math.unipd.it
4 College of Engineering, IT and Environment, Charles Darwin University,

Darwin City, Australia
alazab.m@ieee.org

Abstract. Location-Based Services (LBSs) depend on a Service
Provider (SP) to store data owners’ geospatial data and to process data
users’ queries. For example, a Yelp user queries the SP to retrieve the
k nearest Starbucks by submitting her/his current location. It is well-
acknowledged that location privacy is vital to users and several promi-
nent Secure k Nearest Neighbor (SkNN) query processing schemes are
proposed. We observe that no prior work addresses the requirement of
repetitive query after index update and its privacy issue, i.e., how to
match a data item from the cloud repetitively in an oblivious and unlink-
able manner. Meanwhile, a malicious SP may skip some data items and
recommend others due to unfair competition.

In this work, we formally define the repetitive query and its privacy
objectives and present an Repetitive, Oblivious, and Unlinkable SkNN
scheme ROU. Specifically, we design a multi-level structure to organize
locations to further improve search efficiency. Second, we integrate data
item identity into the framework of existing SkNN query processing.
Data owners encrypt their data item identity and location information
into a secure index, and data users encrypt a customized identity range
of a previously retrieved data item and location information into a token.
Next, the SP uses the token to query the secure index to find the spe-
cific data item via privacy-preserving range querying. We formally prove
the privacy of ROU in the random oracle model. We build a prototype
based on a server to evaluate the performance with a real-world dataset.

c© Springer Nature Switzerland AG 2022
C. Alcaraz et al. (Eds.): ICICS 2022, LNCS 13407, pp. 261–280, 2022.
https://doi.org/10.1007/978-3-031-15777-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15777-6_15&domain=pdf
https://doi.org/10.1007/978-3-031-15777-6_15

262 M. Li et al.

Experimental results show that ROU is efficient and practical in terms
of computational cost, communication overhead, and result verification.

Keywords: Cloud computing · SkNN · Repetitive query · Privacy

1 Introduction

1.1 Background

Smartphones are now equipped with a Global Positioning System (GPS) mod-
ule and various applications that support location-based service (LBS) [1–4].
It works by sending a data user’s current location query to a Service Provider
(SP). The SP matches the query with data items from data owners and retrieves
corresponding results to the data user. For instance, Google Maps enable data
users to find Starbucks, bars, and restaurants near their current location.

While LBSs provide practical benefits, the privacy concerns rooted in location
revelation and untrusted SP [5,6] are a major hindrance towards the broad
adoption of LBSs. First, the submitted locations may include data users’ sensitive
locations. Second, locations are tightly correlated to human activities, such as
visiting a cancer hospital and meeting a friend in a hotel. Besides, there are
many reports on the data leakage incidents caused by cyber attacks, hardware
malfunction, or misoperation for the past decade [7,8]. Therefore, it is highly
important to protect data stored on SPs. To protect data stored on SPs, Secure
k Nearest Neighbor (SkNN) query processing has been proposed [9–12].

1.2 Motivations

Motivation I (Blurry Memory): Our motivation arises from real-world appli-
cations. For example, say a data user Bob submitted a S4NN query (location X,
“pizza shop”, 4) to the SP and obtained 4 results, namely Papa Johns, Mr.
Pizza, Domino’s Pizza, and Big Pizza. Among the results he went to, he was
quite satisfied with the Domino’s Pizza. Days later, when Bob is near the same
query location and wants to dine at the previous Domino’s Pizza. Unfortunately,
Bob’s memory of this shop somehow blurs and he submits a repetitive query to
the SP to find the preferred pizza shop. Motivation II (Index Update): Fol-
lowing the example above, even if Bob remembers the name of the shop, the SP
may happen to update the index tree as depicted in Fig. 1 such that the pre-
ferred location will not be included in the query results. In the previous query,
the SP found the Domino’s Pizza at di5, i.e., data item 5, among the first 4
matched data items {di2, di4, di5, di6}. After the index update, di5 will not be
returned to Bob who submits the same S4NN query because the data items are
reordered and di5 is not among the top 4 matched data items. Motivation III
(Malicious SP): The SP could be malicious in the sense that it has a secret
agreement with some data owners to deliberately order data items, which is
similar to unfair ranking where some search engines treat websites unfairly [17].
In this case, the user-preferred data item, which is not “favored” by the SP,

Repetitive, Oblivious, and Unlinkable SkNN 263

di2di1 di3 di4 di6di5 di7 di8

Index
update

Previous query
paths when k=4

di2di7 di6 di4 di3di5 di8 di1

New query
paths when k=4

Preferred
item

found
Item
lost

Fig. 1. Query paths before/after index update. (Data items marked in yellow are
matched data items. The data item marked in red is matched and user-preferred data
item. After index update, the preferred data item di5 is moved back on the leaf level
such that the search paths change. The user will not receive such an item by using the
same S4NN query because the SP finds 4 matched data items before di5.) (Color figure
online)

may be put way back in the data item queue. Motivation IV (Improving
Efficiency): There are many methods of processing locations in SkNN, such as
Voronoi diagram [9], Paillier cryptosystem [10,18], and projection functions [11].
Improving search efficiency is always an ongoing goal.

Based on the first three motivations, no previous studies [9–16] have con-
sidered the requirement of repetitive query and its potential privacy problems,
which lead to the following new requirements for SkNN.

– Repetitive query after index update: A data user queries the same data
item that is returned in the previous query especially after the SP has updated
the index.

– Obliviousness: We need to prevent the SP from knowing the data user’s
requirement to retrieve a previously matched data item.

– Unlinkability: Prevent the service provider from knowing that the specific
data item has been previously matched to the data user.

– Exclusiveness: Prevent the SP from abandoning the preferred data item in
case the SP gives priority to other data items.

1.3 Possible Solutions and Technical Challenges

A simple way of finding a preferred data item in an oblivious and unlinkable
manner is to query all the locations with the same type as the preferred data
item. However, this brings too many computational costs in result searching and
communication overhead. Assume that the data user needs the data item di with
a sequence number ∗. Intuitively, there are three approaches to finding ∗ in SP’s
index tree: (1) Start from ∗ and continue to find the other k − 1 data items.
(2) End at ∗ and return the obtained data items. (3) Randomly choose r data
items before ∗ and find k − r − 1 data items after ∗. These three approaches
require special treatment on locating ∗ which makes it difficult for the SP not
to notice this difference. This first one may traverse the whole index and the

264 M. Li et al.

second one may return all the matched data items if di∗ is in the last leaf node.
The last one is faced with an uncertain choice of r. Therefore, the technical
challenge I is solving the contradiction between locating the preferred data
item and treating all data items equally. To enable repetitive query, we can
introduce an identity to each data item. Before uploading the index to the SP,
the data owner has to append the identity to the location for each data item.
When the data user queries the SP about a previous data item, the SP uses the
identity as the extra query condition. While matching the previous data item
precisely, this approach, however, excludes other location-matched data items
which may expose the data user’s requirement of repetitive matching. To match
other data items, we cannot use the identity directly. Therefore, the technical
challenge II lies in the contradiction between using a preferred identity and
matching other data items.

To address the above challenges, we propose ROU: a Repetitive, Oblivious,
and Unlinkable query processing scheme. Specifically, we first divide the location
map into a l-leveled pyramid and each level consists of a number of grids. For each
level, we use the similar space encoding technique to save computational cost for
both data users and the SP. The data owner (data user) encodes the data items’
locations (current location) and obtains a set of leveled location codes. At the lth
level, we assign an identity to each data item. The data owner computes a prefix
family of the data item identity and integrates it with location codes at the l-th
level. Next, the data owner inserts the integrated codes into an Indistinguishable
Bloom Filter (IBF) as a secure index. The data user who is about to submit a
repetitive query generates a customized identity range to compute a minimum
set of prefixes. Next, the data user also integrates the prefixes with the location
codes similarly and computes a query token. Finally, the SP searches the secure
index by querying the token on it and returns matched data items to the data
user. Our contributions are summarized as follows.

– To the best of our knowledge, we are the first to focus on the repetitive
query in SkNN and we propose a repetitive, oblivious, and unlinkable query
processing scheme.

– We achieve the three above-mentioned new requirements via customized iden-
tity transformation and privacy-preserving range querying. We design a multi-
level structure to encode locations to accelerate the search efficiency.

– We formally define privacy and then prove it in the random oracle model.
We build a prototype of ROU based on a server and a real-world dataset.
Experimental results demonstrate its efficiency and practicability.

1.4 Paper Organization

The remaining of this paper is organized as follows. We discuss related work in
Sect. 2. We elaborate on the system model, threat model, and design objectives
in Sect. 3. In Sect. 4, we introduce the proposed space encoding. In Sect. 5, we
present the ROU scheme. We formally analyze the privacy of the ROU in Sect. 6.
We implement the ROU scheme and analyze its performance in Sect. 7. Lastly,
we draw conclusions in Sect. 8.

Repetitive, Oblivious, and Unlinkable SkNN 265

2 Related Work

2.1 SkNN

Yao et al. [9] proposed SNN methods by asking the SP, given only an encrypted
query point E(p) and an encrypted database E(D), to return a corresponding
(encrypted) partition E(G) satisfying that E(G) contains SNN query answer.
They name their method the secure Voronoi diagram (SVD) method that is
based on special partitions over D and the Voronoi diagram of D. They partition
the database D into small groups and then store the encrypted groups on the
SP. Instead of returning the whole encrypted database, the SP retrieves one
encrypted group for any SNN query. The SVD method does not require any new
encryption schemes, but only depends on any standard encryption scheme E
(e.g., RSA and AES) which means its security is the same as E.

Elmehdwi et al. [10] proposed an k-nearest neighbor search protocol based
on two non-colluding semi-honest SPs that preserves both the data privacy and
query privacy. They first design a basic protocol and show why it is not secure
and present a fully secure kNN protocol. The basic protocol allows the data
user to retrieve k records that are closest to his query by using Paillier cryp-
tosystem [18] and secure squared Euclidean distance. The advanced protocol,
however, utilizes secure bit-decomposition, secure minimum out of n numbers,
secure bit-OR to avoid exposing the data access patterns in the basic protocol.

Lei et al. [11] proposed a secure and efficient query processing protocol
SecEQP. They leveraged some primitive projection functions to convert the
neighbor regions of a given location. Given the codes of two converted loca-
tions, the service provider computes the proximity of the two locations by
judging whether the two codes are the same. This is an improvement over
their previous work [14] since the two-dimensional location data is projected
to high-dimensional data which expands the location space to make the con-
verted location more secure. The data owner further embeds the codes into a
similar IBFTree in order to build a secure index. The data user computes similar
trapdoors by a keyed hash message authentication code. The final secure query
processing is the same as [14].

2.2 Privacy-Preserving Range Querying

Li et al. [13] presented the first range query processing protocol which achieved
index indistinguishability under the indistinguishability against chosen keyword
attack (IND-CKA). A data owner converts each data item dti by prefix encod-
ing [19] and organizes each prefix family of encoded item F (dii) into a PBTree.
Then the data owner makes the PBtree privacy-preserving by a keyed hash
message authentication code HMAC and Bloom filters. For each prefix pri, the
data owner computes several hashes HMAC(Kj , pri) and inserts a randomized
version HMAC(r,HMAC(Kj , pri)) into a Bloom filter. Each r corresponds to a
node and each node relates to a prefix family, i.e., data item. Next, a data user
converts a range into a minimum set of prefixes and computes several hashes

266 M. Li et al.

HMAC(Kj , pri) for each pri as a trapdoor. The service provider searches in the
PBtree to find a match by using the trapdoor.

Li et al. [14] concerned processing conjunctive queries including keyword
conditions and range conditions in a privacy-preserving way and presented a
privacy-preserving conjunctive query processing protocol supporting adaptive
security, efficient query processing, and scalable index size at the same time.
Specifically, they adopt prefix encoding as in their earlier work [13] and design
an indistinguishable Bloom filter (IBF), i.e., twin Bloom filter to replace the
previous structure. A pseudo-random hash function H to determine a cell loca-
tion H(hk+1(hj(pri)) ⊕ r), i.e., which twin cell stores ‘1’. Instead of building a
PBTree, they construct an IBTree as the secure index.

Different from the previous works, ROU scheme can support the three new
features in SkNN, namely repetitive, oblivious, and unlinkable. The novelty of
ROU is in realizing the function of repetitive query by mixing customized identity
range query with existing SkNN query without sacrificing privacy.

3 Problem Formulation

Before we dive into the details of ROU, we elaborate on its system model, threat
model, and design objectives. Specifically, we formally define the repetitive query
and its privacy objectives.

3.1 System Model

The system model, as drawn in Fig. 2, consists of a data owner O, a data user U ,
and SP. We define DI = {di1, di2, · · ·, din} as the set of n data items. A location
loc as a pair of coordinates.

Data
owner

Data user

Service provider

Shared secret keys

SkNN
query

Results
and

proofs

Secure index

Pointers
Outsource

Mul�-level
structured loca�on

Iden�ty

Data item Encrypted data

Mul�-level
structured loca�on

Customized
iden�ty range

Fig. 2. ROU system model.

Data Owner: A data owner has some data items to be shared with data users.
Each data item has type, location, and identity. The data owner extracts the

Repetitive, Oblivious, and Unlinkable SkNN 267

information of each data item and calculates a secure index by using secret keys.
Next, he encrypts his data item by using another secret key and a standard
encryption algorithm. Each secure index has a pointer to link to the ciphertext.
Finally, the data owner uploads the index and the ciphertext to the SP. The
secret keys are shared with data users. We assume that ROU has only one data
owner for simplicity, but also supports the multi-owner setting.

Data User: A data user generates a query token by using the type, current
location, and shared secret keys, and an identity range. If the data user does not
have a specific preference on a data item, the identity range is set by default.
Otherwise, the identity range is computed based on the identity of the preferred
data item. Next, the data user submits the query token to the SP, which retrieves
corresponding results and proofs to the data user. The data user decrypts and
verifies the received results. We formally define the repetitive query as follows.

Definition 1 (Repetitive Query). A repetitive query is a single location-time
predicate or a combination of location-time predicates linked by the Boolean oper-
ators [20]. Let Q = (pid, T (t, loc, id,R)) be a SkNN query submitted by a data
user and it is a pair of pseudo-identity pid and a query token T . T is composed of
type t, location loc, identity of a previously matched data item id, and an identity
range R. Let Qi = (pidi, Ti(ti, loci, idi, Ri)) be the ith query of data owner O. A
repetitive query event, denoted by ReQuery, is expressed as (pidi �= pidj)∧ (Ti �=
Tj) ∧ (ti = tj) ∧ (loci = locj) ∧ (idi = idj) ∧ (Ri �= Rj) ∧ (time.j > time.i) for
two queries Qi and Qj.

SP: The SP helps the data owner to authorize the query service to a set of data
users. The SP stores the secure indexes and ciphertexts uploaded from the data
owners. It responds to data users’ query tokens by searching over the secure
indexes and returning corresponding results and proofs to data users.

3.2 Threat Model

The threats mainly arise from the behaviors of the internal entities, including the
semi-honest (honest-but-curious) data owner and data users. This assumption is
proposed by [21] and has been well acknowledged by existing work [11,13,14,22–
24]. The SP is malicious [12,15]. Although it acts as a bridge between the data
owner and data users to offer query services, it may also behave maliciously, i.e.,
it ignores some data items when searching the index in its database.

3.3 Design Objectives

There are four design objectives in this work: functionality, privacy, security, and
efficiency.

Functionality, i.e., repetitive query after index update. ROU allows data users
to query a previously matched data item even if the SP has updated the index.

268 M. Li et al.

Privacy. (1) Data/Index/Token Privacy. From the encrypted data item, index,
and token, the adversary cannot learn any useful information about the data,
data item’s location, query location, and type [25–29]. (2) Obliviousness. ROU
prevents the SP from knowing that the data user submitted a repetitive query.
(3) Unlinkability. ROU prevents the SP from knowing that the data item referred
to in the repetitive query was a retrieved data item of the data user. We define
two experiments PrivKobl

A,Π and PrivKunl
A,Π, based on a Probabilistic Polynomial-

Time (PPT) adversary A and the ROU scheme Π = (Setup, Index,Token,Query),
and a function S computing the minimum set of prefixes. The formal definitions
are as follows.

The Adversarial Obliviousness Experiment PrivKobl
A,Π:

1. A is given the size m of IBF and number of pseudo-random hash functions p,
and outputs a pair of quintuples q0 = (t0, loc0, id′

0, R0), q1 = (t1, loc1, id′
1, R1)

satisfying t0 = t1, loc0 = loc1, id′
0 = 0, id′

1 ∈ {1, n}, and | S(R0)| = |S(R1) |.
2. Secret keys are generated by using Setup, and a uniform bit b ∈ {0, 1} is

chosen. A query token Tb ← Token(qb) is computed and given to A. We refer
to Tb as the challenge token.

3. A outputs a bit b′.
4. The output of the experiment is defined to be 1, i.e., PrivKobl

A,Π = 1 and A
succeeds, if b′ = b, and 0 otherwise.

The Adversarial Unlinkability Experiment PrivKunl
A,Π:

1. A is given the size m of IBF and number of pseudo-random hash functions p,
and outputs a pair of quintuples q0 = (t0, loc0, id′

0, R0), q1 = (t1, loc1, id′
1, R1)

satisfying t0 = t1, loc0 = loc1, diid′
1

∈ Query(q0, I), and | S(R0) |=| S(R1) |,
where I is the index tree.

2. Secret keys are generated by using Setup, and a uniform bit b ∈ {0, 1} is
chosen. A query token Tb ← Token(qb) is computed and given to A. We refer
to Tb as the challenge token.

3. A outputs a bit b′.
4. The output of the experiment is defined to be 1, i.e., PrivKobl

A,Π = 1 and A
succeeds, if b′ = b, and 0 otherwise.

Definition 2 (Obliviousness). Given a repetitive query event ReQuery, the
SkNN scheme Π is oblivious if for every A, it holds that Pr[PrivKobl

A,Π = 1] = 1
2 .

In other words, it is trivial for A to succeed with probability 1/2 by outputting a
random guess. Obliviousness requires that it is impossible for any A to do better.

Definition 3 (Unlinkability). Given a repetitive query event ReQuery, the
SkNN scheme Π is unlikable if for every A, it holds that Pr[PrivKunl

A,Π = 1] = 1
2 .

Security, i.e., exclusiveness. ROU prevents the SP from abandoning the pre-
ferred data item in case the SP gives priority to some locations. In other words,
the data users can verify the query results that should include the preferred data
item.

Repetitive, Oblivious, and Unlinkable SkNN 269

Efficiency. ROU should satisfy two types of efficiency requirements. (1) Low
computational cost: the data owner/data user/SP spends a reasonable amount
of time on computing index, token, and searching. (2) Low query latency. The
data user can get the result within a reasonable amount of time. (3) Low com-
munication overhead. It requires an acceptable amount of transmitted messages
between the data owner, data users, and the SP.

4 The Proposed Space Encoding

The proposed space encoding technique is constructed on a multi-level structure
to process data items. As shown in Fig. 3, there are four levels in the pyramid-
like structure, i.e., l1, l2, l3, and l4. All the levels refer to the whole service area,
but they are divided based on different granularity. From the second level L2,
the area is divided into more than one grid. There are 4, 16, and 64 grids in
L2, L3, L4, respectively. Each level encodes its grids from the number 1 prefixed
with the level number such that each grid has a unique number on each level.

l1

Dataset DI
ID LocType
id1 xxxCafe

id3 yyyBank

…...

idn zzzStore

id2 xxxCafe

l0

l2

l3

<id2,Cafe,xxx>

2 || HMAC(4)

3 || HMAC(11)

4 || 45
id2, Cafe

1 2
3 4

11

45

Data
owner

Data
user

q2=<Cafe,xxx,id2,R>

q1=<Cafe,xxx>

q3=<Bank,yyy>

q3=<Bank,yyy,id3,R>

To be integrated

1 2
3 4

11 12
13 14

53
45

37 38 39
46 47

54 55

2||HMAC(4)

3||HMAC(11)

4||[37,39],
4||[45,47],
4||[53,55]
R, Cafe
To be integrated

Level
indicator

Grid
indicator

Fig. 3. Space encoding.

For the data item < id2, Cafe, xxx>, the data owner encodes xxx from L2 to
L4 to obtain three strings: “2||HMAC(4)”, “3||HMAC(11)”, and “4||HMAC(45)”.
Here, the real numbers before || stand for different levels and HMAC is a keyed

270 M. Li et al.

hash message authentication code. At the last level L4, the data owner integrates
its identity id2 with “4||HMAC(45)” as a foundation for repetitive query, which
we will provide details in Sect. 5.2.

For the query q2=<Cafe, xxxid2, R >, the data user encodes her current
location from L1 to L3 similarly. When reaching L3, the data user computes a
bigger grid that covers the current grid and obtain three grid number ranges,
i.e., “[37,39]”, “[45,47]”, and “[53,55]”. The size of the bigger grid is flexible
and it is determined according to the data users. Next, the data user will also
integrate the identity id2 of the previously matched data item < id2, Cafe, xxx>
with “4|| [37, 39]”, “4|| [45, 47]”, and “4|| [53, 55]” similarly. The R is an identity
range that covers id2 that we will provide details in Sect. 5.3.

5 The Proposed Scheme ROU

5.1 Overview

As depicted in Fig. 4, we use the level-based space encoding to obtain location
codes. We adopt the privacy-preserving range querying to generate identity pre-
fixes for data items. Further, we integrate the repetitive query problem with the
location querying problem by mixing the location codes and identity prefixes.
Lastly, we leverage IBFs to build secure indexes and achieve SkNN querying via
membership checking. The data users decrypt and verify the received results.

For each data item, O converts its location into a set of leveled location codes
LC from level 2 to level l and computes a concatenated prefix family PF based
on l, grid number, identity, and type on level l. Next, O inserts LC and PF into
an IBF as a leaf node and encrypts the data item using symmetric encryption.
When processing all data items, O build an index tree from the bottom to up,
and submits the index tree and corresponding ciphertexts to SP. A data user U
computes LC similarly and computes a concatenated minimum set of prefixes
MP based on l, grid range, identity range, and type on level l. Next, U computes
a query token qt based on LC and MF and submits it to SP. The SP searches
the index tree by using the token and returns matched results and proofs to the
U . Finally, U decrypts and verifies the results.

5.2 Index Building

A data owner O is holding a set of data items DI. dii =< idi, ti, loci >. We
use dii as an example to show how to build an IBF in a leaf node. For each
dii, O chooses a secret key K0, converts dii’s location into a set of grid numbers
{gi2, · · ·, gil} and encodes them into a set of leveled location codes:

LCi = {lci2, lci3, · · ·, lcil} = {2 || HMACK0(gi2), · · ·,
l − 1 || HMACK0(gil−1), l || gil}.

(1)

For the first l−2 levels, O processes dii’s location codes {lci2, lci3, · · ·, lcil−1}
as follows. Given p+ 1 secret keys K1,K2, · · ·,Kp,Kp+1, p pseudo-random hash

Repetitive, Oblivious, and Unlinkable SkNN 271

Spa�al a�ributes

Privacy-preserving range query

Mixed codes and prefixes

Repe��ve queryingLoca�on querying

IBF-based index tree

Level-based space encoding

Check membership in IBFs to
find results and generate proofs

QuerySkNN problem

Token

Decrypt
and

verify
results

Fig. 4. ROU scheme overview.

functions h1, h2, ···, hp where hi = HMACKi
(·), and another hash function H(.) =

SHA256(.)%2, O creates an indistinguishable Bloom filter IBFO and embeds
each location code lciu and a randomly chosen number ri into IBFi by setting
for all u ∈ [2, l − 1] and v ∈ [1, p]:

IBFi[H(hKp+1(hv(lciu)) ⊕ ri)][hv(lciu)] = 1, (2)

IBFi[1 − H(hKp+1(hv(lciu)) ⊕ ri)][hv(lciu)] = 0. (3)

For the lth level, O computes a prefix family PF i1 of gil by using prefix encod-
ing [13] and a prefix family PF i2 of idi’s identity idi. Then, O mixes PF i1 with
PF i2 by concatenating their prefixes to obtain a mixed code set MCi. Further,
O prefixes each mixed code with the level number and the type (converted into
a real number). In this way, we lay a foundation for the data user to meet the
requirement of repetitive query. Next, O inserts each code mcu in MCi into
IBFi by setting for all u ∈ [1, | MCi |] and v ∈ [1, p]:

IBFi[H(hKp+1(hv(mcu)) ⊕ ri)][hv(mcu)] = 1, (4)

IBFi[1 − H(hKp+1(hv(mcu)) ⊕ ri)][hv(mcu)] = 0. (5)

When processing all data items, O obtains n IBFs and builds an index tree
from the bottom to up. O sorts the n IBFs in a random order and organize them
into a binary tree structure to achieve sublinear search time [11]. An index tree
I is built as follows. Assume that IBF1 is the father IBF of two children IBFs:
IBF2 (left child) and IBF3 (right child), then for each i ∈ [1,m], the value of
IBF1’s ith twin is the logical OR of IBF2’s ith twin and IBF3’s ith twin.

IBF1[H(hKp+1(i) ⊕ r1)][i] =
IBF2[H(hKp+1(i) ⊕ r2)][i] ∨ IBF3[H(hKp+1(i) ⊕ r3)][i].

(6)

272 M. Li et al.

O encrypts the n data items by using AES encryption and a symmetric key
sk to obtain ciphertexts CT = {ct1, ct2, · · ·, ctn} and computes a root hash value
RT of IBFs from the hash value HV of all the tree nodes based on the Merkle
tree method [30]. Finally, O submits to the SP index tree I, a set of random
numbers, CT , and RT .

1. Index Tree

di2
1.2 Insert mixed
code for l-th level:

0 0 1 1 …... 0
1 1 0 0 …... 1

di1

di1,di2

di4

di1,di2,di3,di4

di5 di6 di7

di5,di6

di5,di6,di7,di8

di1,di2,di3,di4,
di5,di6,di7,di8

1.1 Insert loca on code
for first l-2 levels:

B[hj(lc)][H(hp+1(hj(lc))⊕r)]=1
B[hj(lc)][1−H(hp+1(hj(lc))⊕r)]=0

0
0

1.3 Compute hash values for tree nodes:

HV1=hash(IBF1)

hash(HV1+HV2)

lc

di3

di3,di4

di8

di7,di8

0 0 1 1 …... 0
1 1 0 0 …... 1

B[hj(lc)][H(hp+1(hj(lc))⊕r)]=1
B[hj(lc)][1−H(hp+1(hj(lc))⊕r)]=0

0
0

lc

di2di1

di1,di2

HV2=hash(IBF2)

2. Query Token

2.2 Compute pairs of twin loca ons and
hashes for l-th level:

2.1 Compute pairs of twin loca on and
hashes for first l-2 levels:
{(hKp+1(h1(lc)), h1(lc)), (hKp+1(h2(lc)), h2(lc)),
......,(hKp+1(hp(lc)), hp(lc))}

{(hKp+1(h1(mc)), h1(mc)), (hKp+1(h2(mc)), h2(mc))
…...,(hKp+1(hp(mc)), hp(mc))}

Fig. 5. Index tree and query token.

5.3 Token Generation

A data user U is standing at location loc and expecting to find the data item
idi. U converts loc into a set of leveled location codes:

LC = {lc2, · · ·, lcl} = {2 || HMACK0(g2), · · ·,
l − 1 || HMACK0(gl−1), l || Exp(gl)},

(7)

where Exp(gl) expands current grid to a bigger area which consists of the nearest
nine grids as shown in Fig. 3.

For each location code lcu, 2 ≤ u ≤ l − 1, U computes p hashes hj(lcu), 1 ≤
j ≤ p. For each hj(lcu), 1 ≤ j ≤ p, U computes hKp+1(hj(lcu)). The subtoken
for lcu is a p-pair of twin locations and hashes: {(hKp+1(h1(lcu)), h1(lcu)), · ·
·, (hKp+1(hp(lcu)), hp(lcu))}. Then, O obtains a ((l−2)×p)-pair of twin locations
and hashes. We denote the set by T1, i.e., the first part of the T .

For the lth level, U computes a minimum set of prefixes M1 for Exp(gil) and
a minimum set of prefixes M2 for Ri(idi). Here, we require that Ri(idi) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[idi, idi + 1] ∨ [idi + 2, idi + 3] ∨ · · ·∨
[idi + 2 | S(1, n) | −2, idi + 2 | S(1, n) | −1], if idi%2 = 0

[idi − 1, idi] ∨ [idi + 1, idi + 2] ∨ · · ·∨
[idi + 2 | S(1, n) | −3, idi + 2 | S(1, n) | −2], otherwise

Repetitive, Oblivious, and Unlinkable SkNN 273

By doing so, we have that | M2 |=| S(id1, idn) |. U mixes M1 with M2 by
concatenating their prefixes to obtain a mixed code set MC. Further, U prefixes
each mixed code with the level number and the type. We denote the set by T2,
i.e., the second part of the T . Finally, U submits the query token T = (T1, T2) to
the SP. We draw the process of tree construction and token generation in Fig. 5.

5.4 Query Processing

After receiving T , the SP searches I from up to the bottom to find leaf nodes
that match T . Specifically, the SP proceeds in two stpes. (1) SP performs query
processing by checking whether IBF [H(hKp+1(lc)) ⊕ r)][hj(lc)] = 1 for at least
one j ∈ [1, p] and (H(hKp+1(lc)), hj(lc)) is one pair in T1. If this match continues
until the leaf level, it means there is at least one data item matches the query
on the first l − 2 levels. (2) At a leaf node, the SP performs the similar query
processing by using T2. If there is a match, the SP continues to search other
matched leaf nodes. Finally, the SP returns the ciphertexts of match lead nodes
and the proofs (IBFs of the branch-but-unmatched nodes) to the U .

5.5 Result Verification

O decrypts the ciphertexts and checks whether the returned data items include
the preferred data item. Next, O verifies that her query does not match the
IBFs in the proofs. O also recomputes the value of the root from bottom to up
by using the leaf IBFs and proofs. If the computed value equals to RT , O is
convinced that that results are not tampered with.

6 Privacy Analysis

6.1 Data/Index/Token Privacy

Theorem 1. ROU is adaptive IND-CKA (L1,L2)-secure in the random oracle
model, achieving data/index/token privacy.

Due to the space limitation, please refer to our technical report for the detailed
proofs.

6.2 Obliviousness

In the adversarial obliviousness experiment PrivKobl
A,Π, a challenge query token

Tb is returned to the adversary A. Specifically, Tb consists of two parts Tb1, Tb2.
Given that loc0 = loc1, we have T01 = T11. For the second part, we require that
R(id′

1) is a customized range satisfying | S(R(id1)) |= S([id1, idn]). By doing
so, we have | T02 |=| T12 | and they are indistinguishable for using secret keys
and the one-way hash functions. Therefore, T0 and T1 are indistinguishable, i.e.,
Pr[PrivKobl

A,Π = 1] = 1
2 .�

274 M. Li et al.

6.3 Unlinkability

In the adversarial unlinkability experiment PrivKunl
A,Π, a challenge query token Tb

is returned to the A. Similarly, we have T01 = T11. Although diid′
1

∈ Query(q0, I),
i.e., the data item diid′

1
belongs to the previously received data items, we have

also randomized T12 to make it indistinguishable from T02. Therefore, we have
Pr[PrivKunl

A,Π = 1] = 1
2 .�

6.4 Exclusiveness

To prevent the SP from abandoning the preferred data item, we ask the data
users to explicitly integrate a customized identity range in the query token. In
this way, the SP can only return matched data items. Further, the SP has to
generate proofs to prove that the claimed unmatched nodes do not match the
query. In this way, the data users are convinced that the preferred data item is
not abandoned.

7 Performance Analysis

7.1 Experiment Settings

Dataset. We use the locations of three cities, i.e., Orlando, Portland, and
Atlanta, from the Yelp dataset [31]. Each location has a type and two loca-
tion coordinates. After preprocessing the dataset, we obtain 10, 000 data items
from each of the three cities and each item is in the form of (id, t, loc).

Parameters. We vary n from 2, 000 to 10, 000, and k from 1 to 5. The false
positive rate is set to 1%. The number of pseudo-random hash functions p is 5.
According to the false positive rate equation [13], the IBF size m ranges from
1.2 to 12 KB. The lengths of secret keys, random numbers, and the symmetric
key are 1024 bits, 1024 bits, and 256 bits, respectively.

Metrics. We evaluate the time of tree construction, token generation, query
processing, and result verification. We evaluate the communication overhead of
index tree, query token, results and proofs. We conduct each set of experiment
over twenty times and compute the average time. Communication overhead is
calculated by measuring the size of the transmitted messages. Since AES is
applicable to the symmetric encryption of all schemes, we remove this part in
comparison, but focus on the index, token, query, and verification.

Setup. We instantiate ROU on a PC server running Windows Server 2021 R2
Datacenter with a 3.7-GHz Intel(R) Core(TM) i7-8770K processor, and 32 GB
RAM. We use HMAC-SHA256 as the pseudo-random function to implement the
hash functions of IBF. We use AES as the symmetric encryption. We have
uploaded all source codes of ROU on Github: https://github.com/UbiPLab/
ROU.

https://github.com/UbiPLab/ROU.
https://github.com/UbiPLab/ROU.

Repetitive, Oblivious, and Unlinkable SkNN 275

2000 4000 6000 8000 10000
0

5

10

15

20

25
Orlando
Portland
Atlanta

C
on

st
ru

ct
io

n
tim

e
(m

in
)

Number of data items n

(a) Construction time by varying n

2000 4000 6000 8000 10000
0

1

2

3

4

5
Orlando
Portland
Atlanta

In
de

x
si

ze
 (G

B
)

Number of data items n

(b) Index size by varying n

Fig. 6. Performance of tree construction.

7.2 Index Building

The computational cost of building an index tree as a function of n is shown in
Fig. 6(a). The communication overhead of uploading the index tree to the SP
as shown in Fig. 6(b). It can be observed that construction time and index size
grow linearly with n. When n = 10, 000, it costs the data owner less than 23 ms
in computing an index tree of 4.6 GB.

7.3 Token Generation

We assume that the data user only want to find one specific data item that was
returned in her previous query. The token size is independent of k, but not n
because the size of M2 increases with n. There are two types of queries: ordinary
query and repetitive query. Since the total number of prefixes in the two cases
are the same, there will be no difference for their computational cost (35.1 ms)
and communication overhead (77.1 KB) when n = 2000.

7.4 Query Processing

The query processing time of ROU is a function of n and k. Figure 7(a) shows
that the query processing time is in the millisecond scale. When k = 1 and
n = 10000, the average query processing time for Orlando is 28 ms. The difference
among the three cities are caused by the different distribution of matched data
items. However, Fig. 7(b) shows that when n = 2000, with the k increasing from
1 to 5, the query processing time does not grow much with k on each of the
three lines, because we have designed a customized identity range for the data
owner, which may lead to less matched results. In other words, the repetitive
SkNN query does not have to return k results. In Fig. 7(c) and Fig. 7(d), the
communication overhead of the SP increases with n and k because the IBF size
increases with n and the number of returned nodes increases, respectively.

276 M. Li et al.

2000 4000 6000 8000 10000
0

10

20

30

40

50

60

70

80 Orlando
Portland
Atlanta

A
ve

ra
ge

 q
ue

ry
 ti

m
e

(m
s)

Number of data items n

(a) Query time by varying n (k = 5)

1 2 3 4 5
0

10

20

30

40

50

60

70

80
Orlando
Portland
Atlanta

A
ve

ra
ge

 q
ue

ry
 ti

m
e

(m
s)

Query parameter k

(b) Query time by varying k (n = 2000)

2000 4000 6000 8000 10000
5.0

5.2

5.4

5.6

5.8

6.0
Orlando
Portland
Atlanta

C
om

m
un

ic
at

io
n

ov
er

he
ad

 (K
B

)

Number of data items n

(c) Communication overhead by varying n
(k = 5)

1 2 3 4 5
1

2

3

4

5
Orlando
Portland
Atlanta

C
om

m
un

ic
at

io
n

ov
er

he
ad

 (K
B

)

Query parameter k

(d) Communication overhead by varying k
(n = 2000)

Fig. 7. Performance of query processing.

7.5 Result Verification

After the SP returns the results and proofs to the data user, the data user verifies
the results by recomputing the root’s hash value from the received hash values.
The result verification time, as shown in Fig. 8, corresponds to the results and
proofs returned by the CS. It costs the data user (in Orlando) 0.08 ms and 0.1
ms when k = 1, n = 2000 and k = 1, n = 10000, respectively. We attribute this
advantage to the exclusiveness of the repetitive query.

Repetitive, Oblivious, and Unlinkable SkNN 277

2000 4000 6000 8000 10000
0.08

0.09

0.10

0.11

0.12

0.13
Orlando
Portland
Atlanta

A
ve

ra
ge

 v
er

ifi
ca

tio
n

tim
e

(m
s)

Number of data items n

(a) n

1 2 3 4 5
0.00

0.02

0.04

0.06

0.08

0.10
Orlando
Portland
Atlanta

A
ve

ra
ge

 v
er

ifi
ca

tio
n

tim
e

(m
s)

Query parameter k

(b) k

Fig. 8. Performance of result verification.

Table 1. Comparison of computational costs and communication overhead.

Computational costs

Scheme Index building (min) Token generation Query processing (ms)

(ms) n = 2000 n = 10000

n = 2000 n = 10000 n = 2000 n = 10000 k = 1 k = 5 k = 1 k = 5

SecEQP [11] 1.82 22.5 33.08 512.37 16.06 28.07 17.06 30.08

ServeDB [15] 0.34 2.02 32.02 511.38 21.06 73.19 26.07 88.23

ROU 1.87 22.8 35.1 516.37 14.04 25.04 16.04 28.08

Communication overhead

Scheme Index building (GB) Token generation Query processing (KB)1

(KB) n = 2000 n = 10000

n = 2000 n = 10000 n = 2000 n = 10000 k = 1 k = 5 k = 1 k = 5

SecEQP [11] 0.37 4.60 41.25 43.12 n/a

ServeDB [15] 0.31 1.86 20.14 21.18 17.99 84.56 18.35 88.49

ROU 0.37 4.60 77.10 116.19 1.75 5.31 2.03 5.86

1: messages for result verification

7.6 Comparison

We compare ROU with existing work, i.e., SecEQP [11] and ServeDB [15], which
are constructed upon the same techniques. We add the type and data item
identity into their schems by using privacy-preserving range query. We record
the comparison results in Table 1. In index building, SecEQP and ServeDB
also build an index tree. The cost of SecEQP is similar to ours for using multiple
coordinate systems. The cost of ServeDB is lower only uses a Bloom filter as an
index, thereby involving less computation time and communication overhead. In

278 M. Li et al.

token generation, the two comparison schemes have a slightly smaller cost for
not mixing the location codes and identity prefixes. ROU’s token size is large for
using mix indexes. In query processing, ROU’s average query time is smaller
because the data user has a specific requirement on data item, thus cutting off
many search paths when the CS is searching on the index tree. Comparison
results show that ROU exhibits practical efficiency.

8 Conclusions

In this work, we have located the repetitive query in SkNN and have proposed
a repetitive, oblivious, and unlinkable query processing scheme over encrypted
data on cloud. The novelty of ROU is in realizing repetitive query by mixing
customized privacy-preserving range querying with SkNN query. We formally
define and prove the privacy of ROU. By carefully designing the index building
and token generation, we achieve repetitive query in an oblivious and unlinkable
manner. We implement ROU and evaluate its performance on a desktop server
and a real-world dataset. The experimental results show that ROU achieves
practical efficiency.

Acknowledgment. The work described in this paper is supported by National Nat-
ural Science Foundation of China (NSFC) under the grant No. 62002094 and Anhui
Provincial Natural Science Foundation under the grant No. 2008085MF196. It is par-
tially supported by EU LOCARD Project under Grant H2020-SU-SEC-2018-832735.

References

1. Liu, X., He, K., Yang, G., Susilo, W., Tonien, J., Huang, Q.: Broadcast authen-
ticated encryption with keyword search. In: Baek, J., Ruj, S. (eds.) ACISP 2021.
LNCS, vol. 13083, pp. 193–213. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-90567-5 10

2. Luo, Y., Jia, X., Fu, S., Xu, M.: pRide: privacy-preserving ride matching over road
networks for online ride-hailing service. IEEE Trans. Inf. Forensics Secur. (TIFS)
14(7), 1791–1802 (2019)

3. Zhu, L., Li, M., Zhang, Z., Qin, Z.: ASAP: an anonymous smart-parking and
payment scheme in vehicular networks. IEEE Trans. Dependable Secure Comput.
(TDSC) 17(4), 703–715 (2020). https://doi.org/10.1109/TDSC.2018.2850780

4. Zhu, X., Ayday, E., Vitenberg, R.: A privacy-preserving framework for outsourcing
location-based services to the cloud. IEEE Trans. Dependable Secure Comput.
(TDSC) 18(1), 384–399 (2021)

5. Damodaran, A., Rial, A.: Unlinkable updatable databases and oblivious transfer
with access control. In: Liu, J.K., Cui, H. (eds.) ACISP 2020. LNCS, vol. 12248, pp.
584–604. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55304-3 30

6. Li, M., Chen, Y., Zheng, S., Hu, D., Lal, C., Conti, M.: Privacy-preserving nav-
igation supporting similar queries in vehicular networks. IEEE Trans. Depend-
able Secure Comput. (TDSC), 99(2), 1–11. https://doi.org/10.1109/TDSC.2020.
3017534

https://doi.org/10.1007/978-3-030-90567-5_10
https://doi.org/10.1007/978-3-030-90567-5_10
https://doi.org/10.1109/TDSC.2018.2850780
https://doi.org/10.1007/978-3-030-55304-3_30
https://doi.org/10.1109/TDSC.2020.3017534
https://doi.org/10.1109/TDSC.2020.3017534

Repetitive, Oblivious, and Unlinkable SkNN 279

7. Danger within: defending cloud environments against insider threats (2018).
https://www.cloudcomputing-news.net/news/2018/may/01/danger-within-
defending-cloud-environments-against-insider-threats

8. 7 Most Infamous Cloud Security Breaches (2017). https://blog.storagecraft.com/
7-infamous-cloud-security-breaches

9. Yao, B., Li, F., Xiao, X.: Secure nearest neighbor revisited. In: Proceeding 29th
IEEE International Conference on Data Engineering (ICDE), April, pp. 733–744,
Brisbane, Australia (2013)

10. Elmehdwi, Y., Samanthula, B.K., Jiang, W.: Secure k-nearest neighbor query over
encrypted data in outsourced environments. In: Proceeding IEEE 30th Interna-
tional Conference on Data Engineering (ICDE), pp. 664–675, Chicago, USA (2014)

11. Lei, X., Liu, A. X., Li, R., Tu, G.-H.: SecEQP: a secure and efficient scheme for
SkNN query problem over encrypted geodata on cloud. In: Proceeding 35th IEEE
International Conference on Data Engineering (ICDE), April, pp. 662–673, Macao,
China (2019)

12. Cui, N., Yang, X., Wang, B., Li, J., Wang, G.: SVkNN: efficient secure and veri-
fiable k-nearest neighbor query on the cloud platform. In: Proceeding 36th IEEE
International Conference on Data Engineering (ICDE), April, pp. 253–264, Dallas,
USA (2020)

13. Li, R., Liu, A., Wang, A. L., Bruhadeshwar, B.: Fast range query processing
with strong privacy protection for cloud computing. In: Proceeding 40th Interna-
tional Conference on Very Large Data Bases (VLDB), September, pp. 1953–1964,
Hangzhou, China (2014)

14. Li, R., Liu, A.X.: Adaptively secure conjunctive query processing over encrypted
data for cloud computing. In: Proceeding IEEE 33rd International Conference on
Data Engineering (ICDE), April, pp. 697–708, San Diego, USA (2017)

15. Wu, S., Li, Q., Li, G., Yuan, D., Yuan, X., Wang, C.: ServeDB: secure, verifi-
able, and efficient range queries on outsourced database. In: Proceeding IEEE
35th International Conference on Data Engineering (ICDE), April, pp. 626–637,
Macao, China (2019)

16. Chen, Y., Li, M., Zheng, S., Hu, D., Lal, C., Conti, M.: One-time, oblivious, and
unlinkable query processing over encrypted data on cloud. In: Meng, W., Gollmann,
D., Jensen, C.D., Zhou, J. (eds.) ICICS 2020. LNCS, vol. 12282, pp. 350–365.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61078-4 20

17. Poutinsev, F.: Unfair search engine ranking results (2021). https://honestproscons.
com/unfair-search-engine-ranking-results. Honest Pros and Cons (HPC)

18. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

19. Liu, A.X., Chen, F.: Collaborative enforcement of firewall policies in virtual pri-
vate networks. In: Proceeding 27th ACM Symposium on Principles of Distributed
Computing (PODC), August, pp. 95-104, Toronto, Canada (2008)

20. Cao, Y., Xiao, Y., Xiong, L., Bai, L., Yoshikawa, M.: Protecting spatiotemporal
event privacy in continuous location-based services. IEEE Trans. Knowl. Data Eng.
(TKDE) 33(8), 3141–3154 (2021)

21. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party com-
putation. In: Proceeding 28th ACM Symposium on Theory of Computing (STOC),
May, pp. 639–648, Philadelphia, USA (1996)

https://www.cloudcomputing-news.net/news/2018/may/01/danger-within-defending-cloud-environments-against-insider-threats
https://www.cloudcomputing-news.net/news/2018/may/01/danger-within-defending-cloud-environments-against-insider-threats
https://blog.storagecraft.com/7-infamous-cloud-security-breaches
https://blog.storagecraft.com/7-infamous-cloud-security-breaches
https://doi.org/10.1007/978-3-030-61078-4_20
https://honestproscons.com/unfair-search-engine-ranking-results
https://honestproscons.com/unfair-search-engine-ranking-results
https://doi.org/10.1007/3-540-48910-X_16

280 M. Li et al.

22. Boldyreva, A., Chenette, N., O’Neill, A.: Order-preserving encryption revis-
ited: improved security analysis and alternative solutions. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 578–595. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22792-9 33

23. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion. In: Proceeding 19th ACM Conference on Computer and Communications
Security (CCS), October, pp. 965–976, Raleigh, USA (2012)

24. Cash, D., et al.: Dynamic searchable encryption in very-large databases: data struc-
tures and implementation. In: Proceeding 21st Annual Network and Distributed
System Security Symposium (NDSS), February, pp. 1-16, San Diego, USA (2014)

25. Li, M., Chen, Y., Lal, C., Conti, M., Alazab, M., Hu, D.: Eunomia: anonymous
and secure vehicular digital forensics based on blockchain. IEEE Trans. Dependable
Secure Comput. (TDSC), 1 (2021). https://doi.org/10.1109/TDSC.2021.3130583

26. Li, M., Zhu, L., Zhang, Z., Lal, C., Conti, M., Alazab, M. : User-defined privacy-
preserving traffic monitoring against n-by-1 jamming attack. IEEE/ACM Trans.
Networking (TON), p. 1 (2022). https://doi.org/10.1109/TNET.2022.3157654

27. Li, M., Zhu, L., Zhang, Z., Lal, C., Conti, M., Alazab, M.: Anonymous and verifiable
reputation system for E-commerce platforms based on blockchain. IEEE Trans.
Network Serv. Manag. (TNSM) 18(4), 4434–4449 (2021). https://doi.org/10.1109/
TNSM.2021.3098439

28. Li, M., Hu, D., Lal, C., Conti, M., Zhang, Z.: Blockchain-enabled secure energy
trading with verifiable fairness in industrial internet of things. IEEE Trans. Ind.
Inf. (TII) 16(10), 6564–6574 (2020). https://doi.org/10.1109/TII.2020.2974537

29. Li, M., Zhu, L., Zhang, Z., Lal, C., Conti, M., Martinelli, F.: Privacy for 5G-
supported vehicular networks. IEEE Open J. Commun. Soc. (OJ-COMS), 2, 1935–
1956 (2021). https://doi.org/10.1109/OJCOMS.2021.3103445

30. Szydlo, M.: Merkle tree traversal in log space and time. In: Proceeding 10th Inter-
national Conference on the Theory and Applications of Cryptographic Techniques
(Eurocrypt), May, pp. 541–554, Interlaken, Switzerland (2004)

31. Yelp Open Dataset. https://www.yelp.com/dataset

https://doi.org/10.1007/978-3-642-22792-9_33
https://doi.org/10.1109/TDSC.2021.3130583
https://doi.org/10.1109/TNET.2022.3157654
https://doi.org/10.1109/TNSM.2021.3098439
https://doi.org/10.1109/TNSM.2021.3098439
https://doi.org/10.1109/TII.2020.2974537
https://doi.org/10.1109/OJCOMS.2021.3103445
https://www.yelp.com/dataset

	Repetitive, Oblivious, and Unlinkable SkNN Over Encrypted-and-Updated Data on Cloud
	1 Introduction
	1.1 Background
	1.2 Motivations
	1.3 Possible Solutions and Technical Challenges
	1.4 Paper Organization

	2 Related Work
	2.1 SkNN
	2.2 Privacy-Preserving Range Querying

	3 Problem Formulation
	3.1 System Model
	3.2 Threat Model
	3.3 Design Objectives

	4 The Proposed Space Encoding
	5 The Proposed Scheme ROU
	5.1 Overview
	5.2 Index Building
	5.3 Token Generation
	5.4 Query Processing
	5.5 Result Verification

	6 Privacy Analysis
	6.1 Data/Index/Token Privacy
	6.2 Obliviousness
	6.3 Unlinkability
	6.4 Exclusiveness

	7 Performance Analysis
	7.1 Experiment Settings
	7.2 Index Building
	7.3 Token Generation
	7.4 Query Processing
	7.5 Result Verification
	7.6 Comparison

	8 Conclusions
	References

