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This study aims to develop a Multi-Attribute Decision-Making (MADM) method, the Best-
Worst Tradeoff method, which draws on the underlying principles of two popular MADM
methods (the Best-Worst Method (BWM) and the Tradeoff). The traditional Tradeoff proce-
dure, which is based on the axiomatic foundation of multi-attribute value theory, considers
the ranges of the attributes, but decision-makers/analysts find it hard to check the consis-
tency of the paired comparisons when using this method. The traditional BWM, on the
other hand, uses two opposite references (best and worst) in a single optimization, which
not only frames the elicitation process in a more structured way, but helps decision-
makers/analysts check the consistency. However, the BWM does not explicitly considers
the attributes ranges in the pairwise comparisons. The method proposed in this study uses
the ‘‘consider-the-opposite-strategy” and accounts for the range effect simultaneously.
Specifically, the decision-maker considers the ranges of the attributes and provide two
pairwise comparison vectors, then an optimization model is designed to determine the
optimal weights of the attributes based on these two vectors. After that, consistency
thresholds are constructed to check the consistency of the judgements. Finally, a case study
is used to examine the feasibility of the proposed method.
� 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Nowadays, an increasing number of decisions are made in complex contexts in a host of different application domains.
This ought to be supported by mathematically sound decision analysis methodologies. A number of these methodologies
can be classified as multi-attribute decision-making (MADM), thanks to their capacity to handle problems where a multitude
of, often conflicting, objectives arise [2]. The common thread of these methods is the representation of the final value of each
alternative, as a function of the degrees to which the same alternative satisfies a number of attributes, where each attribute
level approximates the level of achievement of one of the objectives. In this context, it is often important to quantify the
contribution of different attributes by means of weights (scaling constants) to aggregate the performances of alternatives
with respect to the attributes into single values.

Various methods have been proposed to elicit the weights of attributes [3,4] on the ground of the subjective preferences
of experts. Some of the most popular methods are: the Analytic Hierarchy Process (AHP) [5], Simple Multi-Attribute Rating
Technique using Swings (SMARTS) [6], Direct Rating method [7], Swing [8], the Best-Worst Method (BWM) [9,10], and the
Tradeoff procedure [11]. In this study, we focus on the Tradeoff and BWM methods.
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One of the obvious shortcomings of somemethods is that the weight elicitation phase is developed a priori, on the basis of
the perceived importance of the attributes alone. Conversely, in decision analysis, the weights of the attributes (or scaling
constants) should be sensitive to the range of each attribute, i.e., if alternatives are very close to each other with respect
to a particular attribute, that attribute would play a small role in discriminating between alternatives [12,13]. Methods that
cannot account for the range of attributes values may lead to errors in the estimation of weights [13–15]. According to pre-
vious studies [12,13], even if the range of the attribute is mentioned, DMs often do not adjust their judgements on the
weights properly, which means that methods that do not consider the ranges, like simple ranking or direct rating methods,
should only be used with great care [12,13]. Although BWM encourages DMs to consider the range of attributes in advance,
in practice, this is not done systematically. In this sense, methods like Swing [8] and Tradeoff procedure [11] which require
DMs to provide their preference based on the range of attributes could handle this problem better than BWM could. How to
take the range of attributes into consideration in BWM in an explicit and systematic way to avoid distortion or biases, is an
important issue that requires further investigation.

The idea of taking the range effect into account, like the Tradeoff procedure and Swing do, can be incorporated into the
BWM to remedy the potential distortion and biases. Compared to the Tradeoff procedure, Swing cannot make the consis-
tency check, which is a serious shortcoming. As such, the Tradeoff procedure could be a better choice compared with Swing
when considering external validity (the evaluation of consistency of the given preferences) [3]. However, the consistency
check in the Tradeoff procedure may also be problematic. Keeney and Raiffa [11] encouraged analysts to use the Tradeoff
procedure to ask additional questions to increase the robustness of the results and identify possible inconsistencies. But
howmany and what additional questions should be asked remains unclear. In addition, analysts frequently fail to apply con-
sistency checks when assessing value tradeoffs [16]. Although some researchers have tried to improve the Tradeoff proce-
dure - one of the latest studies uses a flexible and interactive way to collect trade-off information from the DM [17] - the
consistency estimation problem has not attracted enough attention.

By incorporating the philosophy of BWM, using two vectors of pairwise comparisons based on two opposite references
(best and worst) within a single optimization model, our goal is to help mitigate the anchoring bias. This strategy, named
‘‘consider-the-opposite strategy”, was initially developed by Bacon [18] and has since been used in many psychological stud-
ies. Developing a parsimonious MADMmethod that incorporates the ‘‘consider-the-opposite strategy that can check the con-
sistency systematically as well as consider the range effect based on the axiomatic foundation of Multi-Attribute Value
Theory (MAVT) is the main objective and contribution of this study. To achieve this, the underlying principles of the Tradeoff
procedure [11] and the BWM [9,10] are adopted. More specifically, firstly, MAVT is used as a foundation to establish a trade-
off for the objectives based on the range of the attributes. Secondly, two vectors of pairwise comparisons, Best-to-Others (BO)
and Others-to-Worst (OW), are constructed to avoid that the DM is only anchoring on a fixed value or reference point, the
way it is done in SMARTS and Swing. Thirdly, based on the BO and OW obtained from the DM, an optimization model is pro-
posed to derive the weights of attributes. In addition, a cardinal consistency index and an ordinal consistency index are pro-
posed to estimate the extent to which the preferences of a DM deviate from the perfect consistency, and thresholds will be
proposed to decide whether or not the deviation is acceptable.

The remainder of the paper is organized as follows: In Section 2, the basic knowledge of MAVT and the procedure of the
classical Tradeoff procedure are reviewed, while, in Section 3, the procedure of the Best–Worst Tradeoff (BWT) method is
illustrated. Section 4 focuses on the consistency-checking, which includes the proposed consistency ratios and the thresholds
for the BWT. A case study is used to illustrate the proposed method in Section 5, while the features of BWM are discussed in
Section 6 and some conclusions are presented in Section 7.
2. Preliminaries

Of the many methods and theories developed to support MADM processes, MAVT is one of the most widely used, as well
as the one for which Keeney and Raiffa [11] proposed the well-known Tradeoff procedure. In the following sub-sections,
MAVT and the classical Tradeoff procedure are discussed, after which the recently developed BWM method is introduced.

2.1. Multi-attribute value theory and the additive value function

A typical MADM problem consists of a non-empty finite set of m alternatives A ¼ A1;A2; � � � ;Amf g and a set of objectives
that represent the goals of the DM. The satisfaction of the objectives is assumed to depend on a finite set of n attributes (also
known as criteria) C ¼ C1;C2; � � � ;Cnf g. The set of possible levels that can be achieved by a generic alternative with respect to
the j th attribute is denoted by Xj. Assuming that all the relevant attributes have been considered, each alternative can be
associated with a consequence x ¼ x1; x2; � � � ; xnð Þ 2 X1 � X2 � � � � � Xn, such that xj indicates the level of the j th attribute
achieved by the alternative.

Given the fact that, to our scope, an alternative can be fully described by its consequence, for the sake of simplicity, in the
following section, we will consider consequences, x, instead of alternatives. Moreover, according to MAVT, each attribute is
rescaled and normalized into the interval 0;1½ � thanks to a function v j : Xj ! 0;1½ �. In fact, it is customary to assign values 0
and 1 to the least xj

� �
and most �xj

� �
desirable attribute levels, respectively. Hence, v j xj

� � 2 0;1½ � can be interpreted as the
value of the consequence evaluated with respect to the j th attribute. At this point, taking into account that the value of a
958
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consequence is a function of its attribute values, the main problem in MAVT is to find a function V : 0;1½ �n ! 0;1½ �, which can
correctly aggregate the n values v j xj

� �
and represent the preferences of a DM.

The search for a simple and easily interpretable form for the function V is simplified by some known results stating that,
under mild assumptions (i.e., mutual preference independence and measurability), the function V is additive. Namely,
V v xð Þð Þ ¼ V v1 x1ð Þ; � � � ;vn xnð Þð Þ ¼
Xn
j¼1

wjv j xj
� � ð1Þ
with wj � 0;8j and w1 þw2 þ � � � þwn ¼ 1.
At this point, what is left to do is find suitable values for the weights wj. Among the various methods used to elicit

weights, the Tradeoff procedure has a strong axiomatic foundation [19].

2.2. The classical Tradeoff procedure

The original Tradeoff procedure essentially consists of three parts. The goal of the first part is to obtain the preference
relation of the attributes. Attributes are considered in pairs, and in each pair two hypothetical consequences are constructed
and presented to DM for tradeoffs. These two consequences are only different with regard to the performance of the two
attributes under consideration, and the performance of the other attributes is set to the worst level. In the first hypothetical
consequence, the performance of the two attributes is set to their worst and best levels, respectively, and in the second con-
sequence, they are set the other way around. The DM is asked to indicate which consequence is preferred. After having
applied these pairwise comparisons to all the attributes, the relation of order on the set of weights can be obtained.

The second part is designed to obtain indifference relations. The DM still uses the hypothetical consequences created in
the first part, but now, the DM is asked to manipulate the level of the more important attribute until indifference is reached.
By iterating this procedure for a properly chosen set of n� 1ð Þ comparisons between pairs of artificially constructed payoffs,
indifference relations on these hypothetical paired consequences can be obtained.

The third part is intended to determine the weights. On the basis of the indifference relations obtained in the second part,
together with the constraint w1 þw2 þ � � � þwn ¼ 1, the analyst can form a system of linear equations for which a unique set
of weights exists and can be identified.

Despite the simplicity of the original Tradeoff procedure, Keeney and Raiffa [11] questioned its robustness and consis-
tency, by saying that ‘‘it may be desirable to ask additional questions thereby getting an over-determined system of equa-
tions”. The same was argued by Eisenführ et al. [20], who wrote that ‘‘it is sensible not to limit ourselves to the determination
of n� 1ð Þ tradeoffs”. At this point, we face significant questions like: ‘‘howmany additional tradeoffs should we assess?”, and
‘‘which pairs should we choose to compare?” As such, it makes sense to propose a more structured and justified methods to
deal with redundancy of preferences and their inconsistencies, which is the aim of this study.

2.3. The original Best-Worst method

The original BWM uses ratios of the relative importance of attributes in pairs estimated by a DM, from the two opposite

anchored vectors, ABO and AOW . The basic steps of the original BWM can be summarized as follows [9,10]:
Step 1. The set of attributes C1;C2; � � � ;Cnf g is determined by the DM.
Step 2. The best (e.g. the most influential or important) and worst (e.g. the least influential or important) attributes are

determined by the DM. The two attributes are shown by CB and CW , respectively.
Step 3. The preference of the best over all the other attributes is determined by the DM using a number from 1;2; � � � ;9f g.

The obtained Best-to-Others vector is: ABO ¼ aB1; aB2; � � � ; aBnð Þ, where aBj represents the preference of the best attribute CB

over attribute Cj, j ¼ 1;2; � � � ;n.
Step 4. The preferences of all the attributes over the worst attribute are determined by the DM using a number from

1;2; � � � ;9f g. The obtained Others-to-Worst vector is: AOW ¼ a1W ; a2W ; � � � ; anWð Þ, where ajW represents the preference of attri-
bute Cj over the worst attribute CW , j ¼ 1;2; � � � ;n.

Step 5. The weights w�
1;w

�
2; � � � ;w�

n

� �
can be calculated in this step. The optimal weights for the attributes are determined

by setting the conditions where, for each pair of wB=wj and wj=wW , wB=wj ¼ aBj and wj=wW ¼ ajW . To find a good approxima-

tion for all j, a solution in which the maximum absolute differences wB
wj

� aBj
��� ��� and wj

wW
� ajW

��� ��� for all j are minimized is formu-

lated in the following model:
minimize max
j

wB
wj

� aBj
��� ���; wj

wW
� ajW

��� ���n o
subject to w1 þw2 þ � � � þwn ¼ 1

wj > 0; j ¼ 1;2; � � � ; n
ð2Þ
In words, the goal of this optimization problem is to find the weight vector that minimizes the maximum discrepancy
between the judgements and their theoretical valued obtained as ratios between their corresponding weights.
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The classical Tradeoff procedure has the strong axiomatic foundation of MAVT, and explicitly takes the ranges of the attri-
butes into consideration, but it is difficult to check the consistency of the given preferences when the DMs/analysts using this
method. Contrarily, the inherent property of the original BWM enables DMs/analysts check the consistency, but it does not
explicitly consider the ranges of the attributes in the pairwise comparisons. Therefore, a proposal that combines the two
merits, consistency check and range sensitivity, is requested.

3. Best-Worst Tradeoff method (BWT)

Based on the concepts of the traditional Tradeoff procedure and of the Best-Worst Method, a structured method, called
Best-Worst Tradeoff method (BWT), is proposed in this section to obtain the weights of attributes and help check the con-
sistency via a structured framework.

Step 1. Determine alternatives and attributes.
We assume that m alternatives A ¼ A1;A2; � � � ;Amf g, and n attributes C ¼ C1;C2; � � � ;Cnf g have been determined by DM.

Moreover, a different consequence vector x ¼ x1; x2; � � � ; xnð Þ is assigned to each alternative.
Step 2. Determine value function for each attribute.
There are many alternative methods to elicit the attribute value functions v j [2,11,21,22]. One of the most widely used

methods is the mid-value splitting technique proposed by Keeney and Raiffa [11].
Step 3. Identify Best and Worst attributes.
Firstly, the DM needs to identify the ‘‘best” attribute CB and the ‘‘worst” CW . Hereafter, we will use the terms ‘‘best” and

‘‘worst”, borrowed from the classical BWM, to indicate the attributes with the greatest and smallest weights, respectively.
These two attributes will serve as the two yardsticks against which the other attributes will be compared, with the ultimate
goal of avoiding the anchoring bias. According to the first part of the original Tradeoff procedure in Section 2.2, we need to
create n hypothetical consequences xj (j ¼ 1;2; � � � ;nÞ to represent the best performance of the j th attribute and the
simultaneous worst performance of the other attributes (see Fig. 1). The DM is asked to compare and rank the hypothetical
consequences x1, � � �,xj, � � �,xn, so that CB and CW can be identified.

Step 4. Compare Best to others tradeoff.
Assume that we are interested in comparing the best attribute to all the other attributes. Let us consider the instance of

the comparison of the best attribute CB and the k th one Ck. For this scope we will need two auxiliary consequences: xB;k and
xk. The first consequence is defined such that all attributes, except attribute CB, achieve the lowest levels (v j xj

� � ¼ 0), and the
level of the best attribute is left to be determined. Assuming that Ck is the ‘‘other” attribute to be compared to the best, then
the second consequence xk has all the components at the lowest level of satisfaction (v j xj

� � ¼ 0), except for the k th, which,

instead, has the highest (v j �xkð Þ ¼ 1). Now, we wonder what degree of satisfaction of the best attribute in xB;k would make the

two consequences equally desirable, i.e., the value of xB;kB for which,
x1; � � � ; xB;kB ; � � � ; xn
� �

� x1; � � � ; �xk; � � � ; xnð Þ () xB;k � xk () V v xB;k
� �� � ¼ V v xk

� �� �
; ð3Þ
where ‘�’ indicates a relation of indifference between the two consequences.
Fig. 1. Hypothetical consequence xj.
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Formally, assuming that we can use the additive representation, this corresponds to.
V v xB;k
� �� � ¼ wBvB xB;kB

� �
þ
Xn
j¼1
j–B

wj v j xj
� �|fflffl{zfflffl}
¼0

¼ wk vk �xkð Þ|fflfflffl{zfflfflffl}
¼1

þ
Xn
j¼1
j–k

wj v j xj
� �|fflffl{zfflffl}
¼0

¼ V v xk
� �� �
which collapses into:
wBvB xB;kB

� �
¼ wk ð4Þ
At this point, asking for which value of xB;kB 2 XB, we obtain xB;k � xk is equivalent to asking which xB;kB 2 XB satisfies equa-

tion (4). The value vB xB;kB

� �
, which we denote as akB, is thus the DM’s estimation of the ratio wk=wB. Now, we use the vector

a1B; a2B; � � � ; anBð Þ to collect the pairwise comparison values of xB;k to xk for all the k. Of course, its reciprocal aBk ¼ 1=akB cor-

responds to the DM’s estimate of the ratio wB=wk. We use ABO ¼ aB1; aB2; � � � ; aBnð Þ to indicate the Best-to-Others vector. The
value aBk has a double interpretation as both the following conditions are equivalent and should, in theory, hold:
wkaBk ¼ wB ð5Þ

aBk ¼ wB

wk
ð6Þ
According to Equation (5), aBk is the scalar to which one needs to multiply wk to get wB, while Equation (6) stipulates that
aBk is the ratio between the two weights wB and wk.

By considering the interpretation (5), if we consider all the k–B, we obtain the system of n� 1ð Þ linear equations
wB ¼ aBkwk;8k–B. Similarly, we can obtain an equivalent system of equations (this time non-linear) if we consider the inter-
pretation suggested by (6).

Example 1. Suppose a DM, who is going to buy a car, considers four attributes (C1 : price; C2 : quality; C3 : safety; C4 : style) to
evaluate the alternatives. We further assume that C1 is identified by the DM as the best attribute. In order to make the tradeoffs for

the attributes (C1 to C2; C1 to C3; C1 to C4),we need six hypothetical consequences: x1;2 ¼ x1;21 ; x2; x3; x4
� �

, x1;3 ¼ x1;31 ; x2; x3; x4
� �

,

x1;4 ¼ x1;41 ; x2; x3; x4
� �

, x2 ¼ x1; �x2; x3; x4ð Þ, x3 ¼ x1; x2; �x3; x4ð Þ, x4 ¼ x1; x2; x3; �x4ð Þ, where xj and �xj represent the least and most

desirable attribute levels, respectively. Then, the decision maker is asked to find the values of x1;21 , x1;31 , and x1;41 such that the
following three indifference relations hold:
x1;2 � x2 () x1;21 ; x2; x3; x4
� �

� x1; �x2; x3; x4ð Þ

x1;3 � x3 () x1;31 ; x2; x3; x4
� �

� x1; x2; �x3; x4ð Þ

x1;4 � x4 () x1;41 ; x2; x3; x4
� �

� x1; x2; x3; �x4ð Þ
These relations can be illustrated in Fig. 2 (x1;2 � x2), Fig. 3 (x1;3 � x3) and Fig. 4 (x1;4 � x4).
After having determined the value functions and x1;21 , x1;31 , x1;41 , we can obtain the relations:

w1v1 x1;21

� �
¼ w2, w1v1 x1;31

� �
¼ w3, w1v1 x1;41

� �
¼ w4.

As we know that the first criterion is the best, with the convention, aB2 ¼ 1=v1 x1;21

� �
, aB3 ¼ 1=v1 x1;31

� �
, aB4 ¼ 1=v1 x1;41

� �
, one

obtains:
w1 ¼ w2aB2 ¼ w3aB3 ¼ w4aB4
Step 5. Compare Others to Worst tradeoff.
Similarly, the entire procedure can be repeated the other way round, this time to compare each attribute Ck (Ck–CW ) to

CW , the worst attribute. In this case, we continue to use two auxiliary consequences, xW , and xk;W , but with different com-
ponents. Now, xW has all components at the lowest level, i.e., v j xj

� � ¼ 0, except for the worst attribute that reaches the high-

est level (vW �xWð Þ ¼ 1). Consequence xk;W , instead, has all the components at the lowest level, i.e., v j xj
� � ¼ 0, except for the k

th attribute that is left undetermined. When we assume xW � xk;W , i.e.,:
V v1 x1ð Þ; � � � ;vW �xWð Þ; � � � ;vn xnð Þð Þ ¼ V v1 x1ð Þ; � � � ;vk xkð Þ; � � � ;vn xnð Þð Þ ð7Þ
961



Fig. 2. The DM states the level of the attribute C1 which makes the consequences x1;2 and x2 indifferent one to another.

Fig. 3. The DM states the level of the attribute C1 which makes the consequences x1;3 and x3 indifferent one to another.

Fig. 4. The DM states the level of the attribute C1 which makes the consequences x1;4 and x4 indifferent one to another.
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and use the additive value function, we obtain:
wW vW �xWð Þ|fflfflfflffl{zfflfflfflffl}
¼1

þ
Xn

j¼1
j–W

wj v j xj
� �|fflffl{zfflffl}
¼0

¼ wkvk xkð Þ þ
Xn

j¼1
j–k

wj v j xj
� �|fflffl{zfflffl}
¼0
962
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which can be simplified into:
wW ¼ wkvk xkð Þ ð8Þ

By asking the DMwhat value of xk makes the two consequences indifferent, we obtain vk xkð Þ, which we will call aWk. From

this, thanks to reciprocity, i.e., akW ¼ 1=aWk, all the values of the comparisons form the Others-to-Worst vector AOW ¼ akWð Þ,
where k ¼ 1;2; � � � ;n. We recover the following two interpretations for the value akW ,
wWakW ¼ wk ð9Þ

akW ¼ wk=wW ð10Þ

Implementing this procedure for all the paired comparison values akW of xW to xk, we obtain the system of n� 1ð Þ linear

equations wk ¼ akWwW , 8k–W . Similarly, we can obtain an equivalent system of equations (this time non-linear) if we con-
sider the interpretation suggested by (10).

Example 2. We continue with Example 1, and suppose C4 is identified by the DM as the worst attribute. To make the tradeoffs
between the attributes (C1 to C4; C2 to C4; C3 to C4), we need to have 4 hypothetical consequences: x1;4 ¼ x1; x2; x3; x4ð Þ,
x2;4 ¼ x1; x2; x3; x4ð Þ, x3;4 ¼ x1; x2; x3; x4ð Þ, x4 ¼ x1; x2; x3; �x4ð Þ, where xj and �xj represent the least and most desirable attribute
levels, respectively. At this point the decision maker is asked to find the values of x1, x2, and x3 such that the following indifference
relations hold:
x1;4 � x4 () x1; x2; x3; x4ð Þ � x1; x2; x3; �x4ð Þ

x2;4 � x4 () x1; x2; x3; x4ð Þ � x1; x2; x3; �x4ð Þ

x3;4 � x4 () x1; x2; x3; x4ð Þ � x1; x2; x3; �x4ð Þ

These relations can be simplified as x1;4 � x2;4 � x3;4 � x4, and represented in Fig. 5.
After having determined the values of x1, x2, x3, we can obtain the relations:
w1v1 x1ð Þ ¼ w2v2 x2ð Þ ¼ w3v3 x3ð Þ ¼ w4 v4 �x4ð Þ|fflfflffl{zfflfflffl}
¼1
Remark. In our examples, the tradeoffs were made between fictitious alternatives where some attributes were set to their
minimum levels. See, for instance, Fig. 5. This suits the results obtained by Vetschera et al. [23] according to which alterna-
tives with extreme values may improve the consistency of results. However, this should not be interpreted as binding. Values
of irrelevant attributes in tradeoffs can be set to values other than their minimums, as long as the same values are present in
both consequences and can therefore be canceled out.

Step 6. Find the optimal weights.
After having obtained the pairwise comparison system, which we refer to as the set of judgements contained in vectors

ABO and AOW , we can estimate the weights of the attributes. If we choose interpretations (6) and (10), we end up with the
following system of linear equations in n variables:
wkaBk ¼ wB; 8k–B

wk ¼ akWwW ; 8k–W

w1 þw2 þ � � � þwn ¼ 1

8><>: ð11Þ
Fig. 5. The DM states the levels of the attributes C1, C2, C3, such that x1;4 � x2;4 � x3;4 � x4.
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Unless the judgements elicited from the DM are fully rational, such an equation system does not have a solution. Since
subjective judgements are seldom rational, it is necessary to use some methods to determine good estimates for the weights.

Following the formulation of the BWM [9,10] we want to identify the weight vector that minimizes the greatest absolute
violation of the equations. Considering the non-negativity and normality conditions for the weights, this corresponds to solv-
ing the following optimization problem:
minimize max
j

wjaBj �wB

�� ��; wWajW �wj

�� ��� 	
subject to w1 þw2 þ � � � þwn ¼ 1

wj � 0; j ¼ 1;2; � � � ;n
ð12Þ
The optimization problem (12) can be equivalently rewritten as.
minimize n

subject to wjaBj �wB

�� �� 	 n; 8j–B

wWajW �wj

�� �� 	 n; 8j–W

w1 þw2 þ � � � þwn ¼ 1
wj � 0; j ¼ 1;2; � � � ; n

ð13Þ
This last formulation can be easily linearized and its solution yields the optimal weights.
If, conversely, one wants to privilege the interpretations (6) and (10) of the judgements aBk and akW , the system of (non-

linear) equations becomes.
aBk ¼ wB=wk; 8k–B

akW ¼ wk=wW ; 8k–W

w1 þw2 þ � � � þwn ¼ 1

8><>: ð14Þ
the optimization problem to minimize the maximum absolute discrepancy becomes,
minimize max aBj �wB=wj

�� ��; ajW �wj=wW

�� ��� 	
subject to w1 þw2 þ � � � þwn ¼ 1

wj > 0; j ¼ 1;2; � � � ;n
ð15Þ
which is equivalent to.
minimize n

subject to aBj �wB=wj

�� �� 	 n; j–B;

ajW �wj=wW

�� �� 	 n; j–W

w1 þw2 þ � � � þwn ¼ 1
wj > 0; j ¼ 1;2; � � � ;n

ð16Þ
4. Consistency measurement

As also indicated by Keeney and Raiffa [11], it is important to keep inconsistencies at a ‘‘nominal” level. Keeney [16] men-
tioned inconsistency as one of the causes that can lead to errors in measuring the scaling constants, so it is important to
quantify and localize the degree of inconsistency of sets of preferences.

There are two kinds of consistency, ordinal consistency and cardinal consistency, and one common desideratum in
decision-making analysis is that the judgements of the DM be as ordinally consistent and cardinally consistent as possible.
To measure how DMs deviate from these consistency conditions, we propose two indices: the ordinal consistency ratio and
cardinal consistency ratio for the BWT, inspired by Liang et al. [24], Escobar et al. [25] and Cavallo et al. [26].

4.1. Ordinal consistency ratio

Definition 1. (Ordinal consistency): In the BWT, a pairwise comparison system is said to be ordinal-consistent if the order

relations of the two paired comparison vectors (ABO and AOW ) are the same. In formal terms [27]:
aBk � aBj
� �� ajW � akW

� �
> 0 or aBk ¼ aBj and ajW ¼ akW

� �
; 8 k and j ð17Þ
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Checking the violation of ordinal consistency is very important because it has a vital impact on the ranking of the attri-
butes. In order to measure to what extent DMs violate the ordinal consistency, we need to define an Ordinal Consistency
Ratio.

Definition 2. (Ordinal Consistency Ratio): The Ordinal Consistency Ratio OR of a pairwise comparison system is defined as:
1 We
sufficie
revision
aggrega
OR ¼ max
j

ORj ð18Þ
where
ORj ¼ 1
n� 1

Xn
k¼1

F aBk � aBj
� �� ajW � akW

� �� � ð19Þ
where F c; dð Þ is a step function, where c ¼ aBk � aBj, d ¼ ajW � akW , it is defined as:
F c; dð Þ ¼
1; if c� d < 0;
0:5; if c� d ¼ 0 and c–0 or d–0ð Þ
0; otherwise:

8><>: ; ð20Þ
ORj is called local ordinal consistency ratio,1 indicating the degree of consistency with respect to the j th attribute. With this
ordinal consistency ratio (ORj 2 0;1½ �), we can determine if the j th attribute has different rank (and to what extent) in the two
vectors.

OR is called global ordinal consistency ratio and reflects the ordinal consistency of the pairwise comparison system pro-
vided by the DM.

The rationale of ORj formulation is that if attribute Cj overweighs attribute Ck, then the ordinal consistency should satisfy
aBk > aBj and ajW > akW , i.e., aBk � aBj

� �� ajW � akW
� �

> 0. If only one of aBk � aBj
� �

and ajW � akW

� �
is equal to 0, we say that, in

this situation, it violates weak ordinal relation, but if both are equal to 0, it is ordinal-consistent [25,26]. Overall, this
approach is similar, but not identical, to Kendall’s tau [27].

4.2. Cardinal consistency ratio

Definition 3. (Cardinal consistency): The preferences aBj, ajW and aBW elicited as in Section 3 are consistent if and only if:
aBjajW ¼ aBW ; 8j: ð21Þ

To measure the deviation from the perfect cardinal consistency, Liang et al. [24] defined the following index:

Definition 4. (Cardinal Consistency Ratio): The Cardinal Consistency Ratio is formulated as follows:
CR ¼ max
j

CRj ð22Þ
where,
CRj ¼
aBjajW�aBWj j
aBWaBW�aBW

; aBW > 1

0; aBW ¼ 1

(
ð23Þ
CR is the global consistency ratio for all attributes and represents the overall consistency of the preferences; CRj represents
the local consistency level associated with attribute Cj, with which we can locate the most inconsistent attribute.

4.3. Thresholds

Identifying inconsistent judgements and knowing how much they deviate from a fully consistent status is not enough.
Instead, we need to know under what threshold the inconsistency is acceptable, which is why, drawing from the study
by Liang et al. [24], we propose a method to determine the thresholds of BWT based on the cardinal and ordinal consistency
ratios.
opt for max instead of sum, because max could label a pairwise comparison system inconsistent when there is at least one element that is not
ntly consistent (for sufficiency, we use thresholds), which helps the analyst and the decision-maker locate the source of inconsistency for possible
. The sum, on the other hand, looks at the whole system and not the individual pairwise comparisons. However, both max and sum can be used to
te the local measures of inconsistency [1].
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If a DM is ordinally consistent, the rankings of the preferences obtained from the two judgement vectors (ABO and AOW ) are
the same, and only the intensities of preference may vary [28]. Therefore, in an ordinal sense, we can rely on the preferences
provided by DM in this situation. Based on this idea, we can design a mechanism to find a suitable threshold.

Firstly, we use the Monte-Carlo method to estimate the probability distribution of CR s. We consider a number of
attributes,n, ranging from 4 to 9 (n ¼ 2 and n ¼ 3 are excluded2). As aBW 2 1;1½ Þ, which is a continuous set, in this study
we consider only a subset of values, i.e., aBW 2 2;3;4;5;6;7;8;9f g. The choice of a discrete scale, with integers up to 9, is nec-
essary to keep the Monte Carlo analysis computable, and is coherent with the standard approach used in the field of Design of
Experiments (DoE) [29]. We will then carry out a full factorial analysis on the 6� 8 ¼ 48 combinations (6 is the number of attri-

butes and 8 the number of different values of aBW ). For each combination, 10,000 pairs of ordinal-consistent vectors (ABO and AOW )
will be generated randomly and will be labeled as acceptable comparisons. Also, we generate 10,000 pairs of ordinal-inconsistent
vectors, which will be categorized as the unacceptable group.

In light of the distributions of the CR s of the two groups, there are significant overlaps, which means that there is no value
of CR that can split the sets of acceptable and unacceptable preferences. In probabilistic terms, we expect that there is a
threshold below which the CR s can be part of the acceptable group as much as possible, and above which the CR s can
be part of the unacceptable group as much as possible (for example, see Fig. 6).

To achieve this, we can use the empirical cumulative distribution function, which can be defined as:
2 Cas
3 By

b2 ¼ 0:0
4 It is

simplic
bFN CRið Þ ¼ 1
N

XN

i¼1
I CRi 	 CRTf g ð24Þ
where I :f g is the indicator function:
I CRi 	 CRTf g ¼ 1; if CRi 	 CRT

0; otherwise



ð25Þ
where N is the number of sampled vectors ABO and AOW , CRi is the consistency ratio of the i th (i 2 1;2; � � � ;Nf g) pair of vectors,
CRT 2 0;1½ � is the possible threshold.

We denote the cumulative distribution of CR s in ordinal-consistent vectors (the Acceptable group) as bFA CRTð Þ, and the

cumulative distribution of CR s from the Unacceptable group is denoted as bFU CRTð Þ. We accept the CR0 s within the threshold

(which is bFU CRTð Þ), and reject the CR0 s beyond the threshold (which is 1� bFA CRTð Þ). In order to make the proportion of
ordinal-inconsistent CR0 s that we accept as small as possible, and also make the proportion of ordinal-consistent CR s that

we reject as small as possible, we need to calculate the threshold, CRT , so that bFU CRTð Þ ¼ 1� bFA CRTð Þ. Fig. 7 sketches the sim-
ulation algorithm used to calculate the thresholds.

Table 1 shows the thresholds for combinations of attributes range n ¼ 4; � � � ;9f g and integer values of aBW from 2 to 9.
It is worth to mention that, unlike the original BWM, where the scale of values of aBW is a discrete set {1,2,� � �,9}, the BWT

relies on a continuous scale, so that, in principle, aBW can take any value greater than 1. For this reason, the proposal by Liang
et al. [24] must be readapted to this framework, but with two differences:

Firstly, in the calculation of the thresholds, all the real numbers in the interval 1; aBW½ � can be sampled, and not only the
integers. The results of sampling from a continuous set substantially differs from the study by Liang et al. [24], where entries
were sampled from the discrete set {1,2,� � �,aBW}.

Secondly, to acknowledge the continuous nature of aBW we seek for a continuous function (a response surface in the DoE
terminology) to approximate the values in Table 1, and help find the thresholds also for non-integer values of aBW . Formally,
we consider the variables x and y to represent n and aBW , respectively, and use the following quadratic fit,
Q x; yð Þ ¼ x� x0
y� y0

� �T a11 a12
a12 a22

� �
x� x0
y� y0

� �
þ b1

b2

� �T x� x0
y� y0

� �
þ c ð26Þ
where x0; y0; a11; a12; a22; b1; b2; c are the parameters. By using a least squares minimization approach, the optimal parame-
ters3 yield a good fit. See Fig. 8 for a graphical representation of the results.4

The adapted algorithm in this study considers aBW as continuous space, which is closer to the reality. With these thresh-
olds, we can now determine whether the consistency level (consistency ratio) of a DM is acceptable or not. Since aBW could
be a number with decimal digits, one may either use the threshold obtained through (26) or the threshold of the approxi-
mate integer in Table 1.
es with n ¼ 2 and n ¼ 3 are excluded from the analysis, because in such cases, the ordinal-inconsistent situation does not appear.
minimizing the Euclidean norm, the optimal parameters are: x0 ¼ 9:8584, y0 ¼ 7:8288, a11 ¼ �0:0017, a12 ¼ �0:0003; a22 ¼ �0:0003, b1 ¼ 0:0058,
055, c ¼ �0:4187.
worth mentioning that our decision to use a single quadratic function to identify thresholds for n 2 4; � � � ;9f g and aBW 2 2;9½ � was made for reasons of
ity. In theory, we could have proposed different univariate quadratic fits for each single value of n.
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Fig. 6. The distribution of CR s in the two groups (in case n ¼ 9, aBW ¼ 9).

Fig. 7. The simulation algorithm used to calculate the thresholds (adapted from Liang et al. [24]). The code for the simulation algorithm can be seen in:
https://github.com/fuqi15/BWT.
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Table 1
The thresholds of the consistency ratios in different combinations.

aBW n

4 5 6 7 8 9

2 0.34 0.35 0.36 0.38 0.39 0.39
3 0.31 0.33 0.35 0.37 0.38 0.39
4 0.32 0.34 0.36 0.37 0.39 0.4
5 0.31 0.35 0.37 0.38 0.4 0.4
6 0.32 0.35 0.37 0.38 0.4 0.41
7 0.33 0.35 0.37 0.39 0.4 0.41
8 0.32 0.35 0.37 0.39 0.4 0.41
9 0.33 0.36 0.37 0.39 0.4 0.41

Fig. 8. The graphical representation of the thresholds.
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4.4. Improving consistency

When DMs provide their preferences, we need to firstly check their consistency. If their cardinal consistency level is not
acceptable, or if they violate the ordinal consistency, we suggest the DMs to revise their judgments.

Usually, the consistency improving process is guided by a moderator, who helps the DMs to revise their preferences. The
following steps describe the procedure of the consistency improving process, which is also sketched in Fig. 9.

Step 1. Let ABO tð Þ ¼ a tð Þ
Bj

� �
and AOW tð Þ ¼ a tð Þ

jW

� �
, j ¼ 1;2; � � � ;n be the original preferences provided by the DM. Let t indicate

the iteration number.
Step 2. Compute the ordinal consistency ratio OR tð Þ and the cardinal consistency ratio CR tð Þ by using equations (17)-(23).

Based on aBW (if aBW is not an integer, round it up to the nearest whole number) and n, check the corresponding consistency
threshold CRT in Table 1.

Step 3. Check the cardinal consistency. If CR tð Þ > CRT , the consistency level is not acceptable, go to Step 4 to revise the

preferences. If CR tð Þ 	 CRT , go to Step 5 to check the ordinal consistency.
Step 4. Revise preferences and improve the consistency. The inconsistent preferences should be adjusted to cardinal-

consistent, which should satisfy:
5 Wh
consiste
Howeve
a tð Þ
Bj a

tð Þ
jW � aBW

��� ���
aBWaBW � aBW

	 CRT ð27Þ
Therefore, the DM should revise a tð Þ
Bj or a tð Þ

jW or both in the admissible ranges:
aBW � CRT aBWaBW � aBWð Þð Þ=a tð Þ
jW 	 a tð Þ

Bj 	 aBW þ CRT aBWaBW � aBWð Þð Þ=a tð Þ
jW ð28Þ

aBW � CRT aBWaBW � aBWð Þð Þ=a tð Þ
Bj 	 a tð Þ

jW 	 aBW þ CRT aBWaBW � aBWð Þð Þ=a tð Þ
Bj ð29Þ
and a tð Þ
Bj ; a

tð Þ
jW 2 1; aBW½ �.

If the DM wants to revise his/her preferences in an acceptable range and also improve his/her consistency level,5 then the

ranges of a tð Þ
Bj or a tð Þ

jW for adjustment are:
en the consistency level is not acceptable, the DM should revise his/her preferences. But if his/her preferences are ordinal-consistent and cardinal-
nt (acceptable consistency), then adjustments are not required, because the objective of elicitation is not achieving the optimal consistency level.
r, if the DM tries to improve his/her consistency level, then the admissible ranges provide a way to reach that goal.
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Fig. 9. Consistency improving process.

Table 2
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min a tð Þ
Bj ; a

tð Þ
Bj � a tð Þ

Bj a
tð Þ
jW � aBW

� �
=a tð Þ

jW

� �
	 a tð Þ

Bj 	 max a tð Þ
Bj ; a

tð Þ
Bj � a tð Þ

Bj a
tð Þ
jW � aBW

� �
=a tð Þ

jW

� �
ð30Þ
min a tð Þ
jW ; a tð Þ

jW � a tð Þ
Bj a

tð Þ
jW � aBW

� �
=a tð Þ

Bj

� �
	 a tð Þ

jW 	 max a tð Þ
jW ; a tð Þ

jW � a tð Þ
Bj a

tð Þ
jW � aBW

� �
=a tð Þ

Bj

� �
ð31Þ
Hint: If a tð Þ
Bj � a tð Þ

jW < aBW , then the DM needs to think about increasing a tð Þ
Bj or a tð Þ

jW or both, otherwise, decreasing the pair-

wise comparisons is recommended. In any case, the idea is to approach the condition a tð Þ
Bj � a tð Þ

jW 
 aBW .
After revision, set t ¼ t þ 1, and go back to Step 2.

Step 5. Check the ordinal consistency. If OR tð Þ ¼ 0, it means the given preferences are ordinal-consistent, go to next step. If

OR tð Þ > 0, it means the given preferences are ordinal-inconsistent, the DM should revise his/her judgments to reach full ordi-
nal consistency, the local ordinal consistency ratio obtained by Equation (19) can help the DM to identify the most incon-
sistent attribute, then go back to Step 4.

Step 6. Output ABO tð Þ, AOW tð Þ, OR tð Þ and CR tð Þ.
5. Case study

In this section, we illustrate the proposed BWT model by applying it to a port evaluation problem. The port performance
measurement research helps ports anticipate and respond to possible future changes in port choice by shippers, freight for-
warders and carriers. One of the studies on this problemwas conducted by Rezaei et al. [30], fromwhich we use the port leg-
related services and facilities data (attributes, alternatives and evaluation scores) recorded by that study to present the BWT
procedure.

To evaluate this study, we contacted a competent expert: a program manager at Digital Port Solutions of Vopak (in the
Netherlands). She is an expert in the port choice problem and is familiar with MADMmethods. The interview was conducted
online in three phases. In phase one, we introduced the problem to the expert; in phase two we identified the preferences of
the expert with regard to the BWT procedure; in phase three we collected the modified values after checking the consistency.
After the interview, we calculated the weights of attributes to produce the ranking of the alternatives. Below, we describe the
nine steps of the BWT we used in this case study.

Step 1. Determine alternatives and attributes.
Firstly, to evaluate the ports, the study by Rezaei et al. [30] included six attributes: terminal handling charges, Interna-

tional Ship and Port Facility Security Code (ISPS), customs service (rated on a 1-to-7 scale), port reputation (rated on a 1-to-7
scale), satisfaction with terminal operations (rated on a 1-to-7 scale), and number of container terminals. Terminal handling
charges and ISPS are cost attributes and all the others are benefit attributes. Seven ports were examined in the study. The
scores of the alternative ports with respect to the attributes are presented in Table 2.
orded scores for the seven ports [30].

rts Attributes

Terminal handling charges
(€/TEU)

ISPS (€/
unit)

Customs
service

Port
reputation

Satisfaction with terminal
operations

Number of container
terminals

aeus 106 11 4.2 3.8 3.4 3
per 145 11 5.12 5.24 5 1
noa 179 13 4.2 4.4 4.4 2
werp 179 12 5.44 5 5.11 4
erdam 202 13 5.5 5.93 5.29 6
burg 223 16 5.56 6.06 5.41 4
ansk 103 14 4.6 5 4.4 2
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Step 2. Determine value functions for attributes.
Next, we need to determine the value functions of each attribute as stated in Section 3, and in this study, we adopt the

mid-value splitting technique presented in the study of Keeney and Raiffa [11], where the readers can find the detailed def-
initions. Here we simplify the assessment procedure as follows:

(1) For the j th attribute, we let v xj
� � ¼ 0 and v �xj

� � ¼ 1.
(2) Determine the mid-value point (denoted as x:5) of x0; x1½ �, we let v x:5ð Þ ¼ 0:5.
(3) Determine the mid-value point, x:75, of x:5; x1½ �, and make v x:75ð Þ ¼ 0:75.
(4) Determine the mid-value point, x:25, of x0; x:5½ �, and let v x:25ð Þ ¼ 0:25.
(5) To check the consistency of the preferences, the DM needs to be certain that x:5 is the midvalue point of x:25; x:75½ �;

otherwise modification is necessary to guarantee the consistency.
(6) Use the points xk; kð Þ for k ¼ 0;0:25;0:5;0:75;1, to estimate the value function v j.

Subsequently, the mid-value points for the attributes of this study are obtained and shown in Table 3. These points can be
plotted in Fig. 10 and interpolated by the v1 - v6 curves for C1 to C6, respectively.

Step 3. Identify the best and worst attributes.
Following Section 3, the expert considered C1 as the best attribute and C3 as the worst.
Step 4. Determine the best to others tradeoffs.
To tradeoff the best attribute C1 to the other attributes, we generated the following hypothetical consequences based on

the method described in Section 3 and asked the expert to provide the undetermined values (x1;21 ; x1;31 ; x1;41 ; x1;51 ; x1;61 ) so that the
following paired consequences are indifferent one to another,
Table 3
The mid

x
x:25
x:5
x:75
�x
x1;2 � x2 () x1;21 ;16;4:2;3:8;3:4;1
� �

� 223;11;4:2;3:8;3:4;1ð Þ

x1;3 � x3 () x1;31 ;16;4:2;3:8;3:4;1
� �

� 223;16;5:56;3:8;3:4;1ð Þ

x1;4 � x4 () x1;41 ;16;4:2;3:8;3:4;1
� �

� 223;16;4:2;6:06;3:4;1ð Þ
-value points for each attribute.

C1 C2 C3 C4 C5 C6

223 16 4.2 3.8 3.4 1
194 14.8 4.6 4.5 4.2 2.25
163 13.5 4.9 5 4.8 3.5
127 12.25 5.3 5.7 5.2 4.75
103 11 5.65 6.06 5.41 6

Fig. 10. The assessed value functions for attributes C1 to C6 as second order interpolations of the values in Table 3.
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C5

C6
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x1;5 � x5 () x1;51 ;16;4:2;3:8;3:4;1
� �

� 223;16;4:2;3:8;5:41;1ð Þ

x1;6 � x6 () x1;61 ;16;4:2;3:8;3:4;1
� �

� 223;16;4:2;3:8;3:4;6ð Þ
After assessment, the expert determined the following values:
x1;11 ; x
1;2

1 ; x1;31 ; x1;41 ; x1;51 ; x1;61

� �
¼ 103;200;210;180;190;185ð Þ
Step 5. Determine the others to the worst tradeoff.
In addition, the expert was asked to determine the values x1; x2; x3; x4; x5; x6ð Þ according to Section 3, so that the following

indifference relations on the generated consequences can be satisfied:
x1;3 � x3 () x1;16;4:2;3:8;3:4;1ð Þ � 223;16;5:56;3:8;3:4;1ð Þ

x2;3 � x3 () 223; x2;4:2;3:8;3:4;1ð Þ � 223;16;5:56;3:8;3:4;1ð Þ

x4;3 � x3 () 223;16;4:2; x4;3:4;1ð Þ � 223;16;5:56;3:8;3:4;1ð Þ

x5;3 � x3 () 223;16;4:2;3:8; x5;1ð Þ � 223;16;5:56;3:8;3:4;1ð Þ

x6;3 � x3 () 223;16;4:2;3:8;3:4; x6ð Þ � 223;16;5:56;3:8;3:4;1ð Þ

We received the following judgements from the expert:
x1; x2; x3; x4; x5; x6ð Þ ¼ 210;15;5:56;5:2;4;3ð Þ

By using the value functions from Step 2, the revised vectors ABO and AOW are:
ABO ¼ 1;0:2;0:11;0:37; 0:28; 0:32ð Þ

AOW ¼ 0:11;0:21;1;0:54;0:18;0:4ð Þ

Step 6. Check the consistency of the preferences.

When we had the preferences ABO and AOW , we needed to check the consistency level and determine whether the pref-
erences need to be revised. We first checked the ordinal consistency by using the method described in Section 4. Applying
Equations (17)-(20), we found that OR ¼ 0:5, which means that the judgements violated the ordinal consistency. To identify
the locations of the violated values, we used the local ordinal consistency ratios, from Equation (19) , as shown in Table 4.

In Table 4, the value ‘‘100 indicates that the judgements in two corresponding attributes are ordinal-inconsistent, and ‘‘0”
means they are ordinal consistent. For example, the judgements in C2 are not ordinal-consistent with C4 and C6. Based on
Table 4 we could clearly identify which pairs of comparisons need to be modified.

Step 7. Modify the inconsistent preferences repeating Steps 4 and 5.
After we found and located inconsistency in the obtained preferences, we contacted the expert again to ask her to rethink

about the judgements. After careful consideration, the expert acknowledged some inconsistencies, and then modified the
preferences by applying the consistency improving process in Section 4.4. According to formulas (27)-(31) of this process,

we obtain the admissible ranges of ABO and AOW in Table 5.
Based on the acceptable ranges, the expert revised some values of the Others-to-Worst tradeoffs, and left the Best-to-

Others tradeoffs unchanged:
x1;11 ; x
1;2

1 ; x1;31 ; x1;41 ; x1;51 ; x1;61

� �
¼ 103;200;210;180;190;185ð Þ

x1; x2; x3; x4; x5; x6ð Þ ¼ 210;14;5:56;4:2;4;1:8ð Þ
inal consistency check table.

C1 C2 C3 C4 C5 C6 ORj

0 0 0 0 0 0 0
0 0 0 1 0 1 0.4
0 0 0 0 0 0 0
0 1 0 0 1 1 0.6
0 0 0 1 0 1 0.4
0 1 0 1 1 0 0.6
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Table 5
The admissible ranges for revision.

Attributes C1 C2 C3 C4 C5 C6

Original [103, 223] [11, 16] [4.2, 5.65] [3.8, 6.06] [3.4, 5.41] [1, 6]
Acceptable ranges ABO [103, 193.23] [11, 15.34] [4.4, 5.65] [4.16, 6.06] [3.96, 5.41] [1.57, 6]

AOW [103, 210] [11, 15.31] [4.61, 5.65] [4.16, 6.06] [3.80, 5.41] [1.57, 6]

Improving ranges ABO [103, 210] [13.28, 15.05] [5.65, 5.65] [4.41, 4.7] [4.31, 5.07] [2.43, 2.62]

AOW [103, 210] [12.87, 15] [5.65, 5.65] [4.52, 5.2] [4, 4.28] [2.71, 3]
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By using the value functions from Step 2, we obtained the new ABO and AOW :
Table 6
The nor

Ports

Pirae
Kope
Geno
Antw
Rott
Ham
Gdan
ABO ¼ 1;0:2;0:11;0:37; 0:28; 0:32ð Þ

AOW ¼ 0:11;0:41;1;0:13;0:18;0:16ð Þ

Then we checked the consistency of the modified preferences again using the ordinal and cardinal consistency indices

proposed in Section 4. Now the ordinal consistency ratio OR ¼ 0, which means that the judgements are fully ordinal-
consistent; the cardinal consistency ratio CR ¼ 0:18, which is less than the threshold 0:37 when we refer to Table 1 (in this
case we have 6 attributes and aBW ¼ 1

aWB
¼ 1

0:11 
 9), which means the judgements can be accepted.

Step 8. Calculate the optimal weights of attributes.
The new set of values finally satisfies the ordinal consistency, while the cardinal consistency ratios are below the consis-

tency threshold. Next, we can apply the BWT model in Section 3 to obtain the optimal weights for the attributes. In this
study, we adopted the linear model (13), and obtained the optimal weights as follows.
w ¼ 0:39;0:1;0:03;0:18; 0:14; 0:16ð Þ

Step 9. Rank the alternatives.
Finally, we use the additive value function (1) to aggregate the weights and the assessment values of alternatives (after

being normalized by the value functions presented in Fig. 10), and the aggregated values of alternatives are obtained as
Table 6.

Therefore, according to the ranking, the port of Rotterdam is the most favorable option.

6. Discussion

There are several advantages in the BWT proposed in this study. Combined with the case study, we try to discuss it and
compare it with other methods from the perspectives of anchoring bias, consistency check, computational complexity and
the completeness of information.

6.1. Anchoring bias analysis

The anchoring bias is a cognitive bias which explains people’s tendency towards the first piece of information they receive
when they are evaluating something [31]. Such bias is persistent in several MADM methods, especially those with a single
anchor like SMARTS, Swing, and Tradeoff (see, for instance, Buchanan and Corner [32], Montibeller and VonWinterfeldt [33],
Rezaei [34]). A recent study in this area, conducted by Rezaei [34], shows that respondents tend to provide larger scores than
their actual values to the other attributes when they are using a larger anchor (for example in the Swing method, where
respondents start with identifying the most important attribute assigning it a score equal to 100), whereas in methods with
a small anchor (like in the SMARTS method where respondents start with identifying the least important attribute assigning
it a 10) the respondents assign scores to attributes lower than their actual ones. The preferences used to obtain weights in
malized values, aggregated values and the final ranking.

Normalized value Aggregated value Ranking

C1 C2 C3 C4 C5 C6

us 0.97 1 0 0 0 0.4 0.54 6
r 0.61 1 0.65 0.55 0.59 0 0.74 3
a 0.37 0.6 0 0.21 0.32 0.2 0.32 7
erp 0.37 0.8 0.85 0.5 0.67 0.6 0.79 2

erdam 0.18 0.6 0.89 0.9 0.85 1 0.87 1
burg 0 0 0.93 1 1 0.6 0.73 4
sk 1 0.41 0.25 0.5 0.32 0.2 0.68 5
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the classical Tradeoff procedure could be equivalent to one of the two vectors that we used in BWT, Best-to-Others (ABO) or

Others-to-Worst(ABO). For the vector ABO, its anchor is the best attribute, which is similar to the Swing method; and for the

vector AOW , its anchor is the worst attribute, which is similar to the SMARTS method.

Taking the case study in Section 5 as an example, if we obtain the weights that are only based on the vector ABO or AOW , as

we can see in Fig. 11, the weight of the best attribute (C1) obtained from ABO is obviously larger than that from AOW , and the

weight of the worst attribute (C3) obtained from ABO is also larger than that from AOW . From this perspective, if we only con-
sider one vector to calculate weights, as the classical Tradeoff procedure does, then we would encounter the anchoring bias.

One of the advantages of BWT is to remedy this anchoring bias [35]. By combining the two opposite reference attributes
(best and worst), the potential anchoring bias is mitigated, as we can see from the BWT line, which is located between lines
BO and OW in Fig. 11.

6.2. Consistency check

Experimental studies have found that the classical Tradeoff procedure has higher inconsistency rate than Swing and Ratio
method, and 67 % of the subjects who applied Tradeoff elicitation procedure shown inconsistency [19,36]. Based on these
studies, the FITradeoff method proposed by de Almeida et al. [17,37] considers that the DM is not able to specify the tradeoff
values and this information cannot be obtained in a consistent way from the DM.

The elicitation of indifference relations may not be as easy as for Swing or Ratio methods, but according to the successful
applications of the Tradeoff procedure and our experiments, not only the elicitation is possible, but often also not difficult.
Since the classical Swing and Ratio method are not able to check consistency of preferences (neither ordinal nor cardinal),
then, from the perspective of validation [3], it may be preferable to use the Tradeoff procedure. Although an extension of the
FITradeoff method has considered the consistency checking and revision, it is for ordinal inconsistency and it still lacks
detailed procedures for the revision of preferences [37]. Therefore, solving the consistency problem is necessary for the clas-
sical Tradeoff procedure.

The BWT method proposed in this study assumes that a DM can specify his/her preferences and these preferences can be
adjusted to an acceptable level. Based on these assumptions, we have developed a systematic consistency check and
improvement process. With this process, a DM can locate the inconsistencies and visualize the acceptable adjustment
and improvement ranges. It makes the consistency revision process, which is absent in the classical BWM and Tradeoff pro-
cedure, possible and easy.

For example, in the case study of Section 5, the consistency checking and improving process helped the expert identify her
inconsistencies by using the local ordinal inconsistency ratios in Table 4, and showing the admissible ranges for adjustment
in Table 5. Although the original preferences were ordinal-inconsistent, and the cardinal consistency ratios were in the
acceptable range, it was still suggested to revise the preferences to be fully ordinal consistent. The expert only revised some

of her AOW judgments within the acceptable ranges. After this revision, the ordinal and cardinal consistency were acceptable,
with no need for further adjustments.

6.3. Computational complexity

In its basic form, the original Tradeoff procedure requires a minimum of n� 1ð Þ pairs of comparisons and, with this num-
ber of comparisons, it does not allow to check the consistency. To that end, on the other extreme, it could consider all the
possible combinations of comparisons, which would result in n n� 1ð Þ pairs (bidirectional), or n n� 1ð Þ=2 pairs (unidirec-
tional) [38]. The proposed BWT method requires 2n� 3ð Þ comparisons, which is linear with respect to the number of attri-
butes, and, when a large number of attributes is used, the number of comparisons remains tractable. Fig. 12 represents the
number of comparisons required by various methods. In this sense, the BWT appears to strike a fair balance between having
Fig. 11. The weights obtained separately by vectors ABO , AOW and BWT.
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Fig. 12. Relation between number of attributes and number of comparisons required by questioning techniques.
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an acceptable level of redundancy in the questioning process, necessary for the evaluation of inconsistency, and the cognitive
burden required from the DM, and presents a good scalability for larger problems. In addition, although we know inconsis-
tent preferences are practically unavoidable, it is still difficult to identify which (and how much) judgements contribute to
that inconsistency. Therefore, it is important to have a module within in BWTwhich enables the DM to check the consistency
in a systematic way.
6.4. Methods with complete information V.S. methods with incomplete information

This section discusses the BWT with respect to information availability. In real decision contexts, it may be difficult, for a
DM, to provide indifference tradeoff information. Therefore, to ease the preference elicitation process, a number of
researches proposed methods requiring partial and/or incomplete information as input [17,37,39,40]. Often, the incomplete
information takes the form of weak order relations and inequalities instead of indifference relations and equalities. When we
compare methods using incomplete information and methods using complete information, we shall consider three aspects:
the availability of the complete information, the cost of eliciting preferences, and the consistency check of the comparisons.

The availability of the complete information. As the applications of classical Tradeoff procedure have proved that indif-
ference relations can be elicited [41], so, similarly, complete information can also be obtained in BWT. Of course, some DMs
cannot, or may not be willing to, provide complete or certain information, but there are also DMs who are familiar with the
situation and can provide certain/complete information. If a DM can only provide incomplete information, then methods like
FITradeoff [37] could be a good option. On the contrary, if complete information is available, using the BWT method has the
advantage of helping mitigate DMs’ anchoring bias and measure (and improve) the inconsistency of preferences.

The cost of eliciting preferences. One major argument in favor of using incomplete information is that eliciting complete
information demands higher cognitive effort. As observed in the literature [19], using inequalities seems easier, with respect
to the required cognitive effort, but it remains difficult to compare the cognitive effort of methods employing different tech-
niques. Moreover, some methods have slightly different scopes. Consider, for example, the FITradeoff method [37], where the
number of required comparisons is not fixed and depends on many factors, such as the values of the consequences and the
order relation on the weights of the attributes. Last but not least, the FITradeoff aims at finding the optimal alternative with a
reduced cognitive effort, while the BWT is a structured, and in this sense less flexible, used to elicit a unique weight vector. It
is therefore difficult to compare methods on the ground of the demanded cognitive effort as (i) the cognitive effort associated
with different types of questions is hard to assess, (ii) the number of questions is not always predetermined, and (iii) some
methods are intrinsically different.

The consistency check of the comparisons. As Albert Einstein allegedly said, everything should be made as simple as pos-
sible, but not simpler. We try to make the elicitation procedure as simple as possible, but the minimum condition is that the
consistency of these elicited preferences can be examined. The existing methods either lack a phase of consistency check, or
they can only check ordinal consistency and seldom they are of any help in guiding the analyst and the DM through a con-
sistency improvement process [37]. One of the advantages of BWT is that it can check both ordinal and cardinal consistency.
Moreover, it can help DMs to improve their consistency level with acceptable ranges and improving ranges for references
which can reduce the cognitive effort required from DMs.

DMs could choose to provide complete or partial/incomplete information, and use different methods to deal with these
two types of information, and there is no right or wrong choosing one way or the other. To us, methods using incomplete
information are complements to methods using complete information, especially when the cost of obtaining complete infor-
mation is too high, if not even impossible.
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7. Conclusion and future research

In this study, we developed a multi-attribute decision-making method called BWT that can be viewed as an attempt to
combine the merits of the traditional BWM and the Tradeoff procedure, without losing the characteristics that have made
the two methods popular. More specifically, with the BWT, we can elicit weights in a more structured way using the pre-
scriptive MAVT approach, which considers the attribute range effect, and at the same time have a guided choice of the attri-
butes to be compared with a check of the consistency of the preferences.

From the point of view of the original BWM, the BWT is better at eliciting preferences, obtaining weights, and complies
with the theory of MAVT. From the point of view of MAVT, the BWT, represents a scheme for questioning (and testing the
consistency of) DMs in the elicitation process. We want to emphasize that our proposal to include thresholds should not be
interpreted as a strict acceptance/rejection rule, but as an effort to increase the intelligibility of the inconsistency index CR.
Besides, BWT does not use ratio scale (from 1 to 9) for pairwise comparisons, which could avoid personal interpretations
[42].

In addition, the BWTmodel may make another potential contribution. The traditional Tradeoff procedure may suffer from
anchoring bias (or scale compatibility bias) and loss aversion bias, if the preferences obtained from DMs depend on a mea-
suring stick (anchor) [31,43,44,45]. By introducing the consider-the-opposite-strategy, the use of two opposite reference
attributes (best and worst) could reconcile the possible anchoring bias when eliciting judgements from the DMs [46].

While the method has been devised for situations where a decision-maker/analyst has full information about the alter-
natives including the ranges of attributes, in situations where a decision-maker has no full information about the alterna-
tives, considering a nominal range [15] could help applying the method, however in those situations the findings should
be interpreted more carefully.

We leave it to future studies to examine whether the anchoring bias affects the ultimate decisions resulting from using
the Tradeoff procedure and how BWT helps remedy the bias (if it is able to). Besides, while conducting the surveys, the
experts, sometimes, were hesitant with regard to providing the precise judgements when we asked the tradeoff questions,
so future studies could examine how incomplete and partial information can be considered within the BWT method (and
BWM as well). Moreover, it is helpful to develop a decision support system to facilitate DMs to operationalize BWT in the
future.
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