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SUMMARY

This thesis develops new statistical methodologies that are applied in the context of
statistical post-processing. Statistical post-processing is the practice that improves the
physics based weather forecast, coming from numerical prediction (NWP) models, by
investigating the relationship between historical forecasts and observations. Through
this process the inherent biases in the NWP forecast can be calibrated and corrected.
The uncertainty within these NWP model forecast can also be quantified.

Within this thesis we address two different problems in the domain of statistical
post-processing. First we consider post-processing for extreme events. Extreme weather
events are by definition rare events and there forecasts are subject to high uncertain-
ties. We develop, in the first two chapters, methods to quantify these uncertainties by
predicting the tail of the forecast distribution. Secondly, we explore the problem of vari-
able selection in post-processing. The large number of potential predictors coming from
NWP models is extremely large and (strongly) correlated with each other. Reducing the
number of predictors adds to the interpretability of the statistical model. Within our pro-
posed method we take into account the high uncertainties within weather forecasts by
specifically selecting features that help improve the uncertainty quantification.

In Chapter 2 we propose a method to estimate the high conditional quantiles. The
method fits an intermediate quantile using local linear quantile regression. The ex-
ceedances of this intermediate quantile are then used to extrapolate to the high con-
ditional quantiles by fitting a generalized pareto distribution to them using a adjusted
Hill estimator. The post-processing technique is applied to a precipitation dataset for
the warm half of the year and is shown to improve predictive performance compared to
the upper ensemble member of the ECMWF ensemble.

In Chapter 3 we propose a different method for estimating the high conditional quan-
tiles. This method fits an intermediate quantile using quantile regression forests. Then
we use gradient boosting to fit a generalized Pareto distribution to the exceedances of
this intermediate quantile. The gradient boosting approach fits two sequences of trees
for both the scale and the shape parameter of the generalized Pareto distribution allow-
ing them both the depend on predictors. The tree based methods for both the threshold
and the extrapolation step allow us to include several predictors within the model with-
out it quickly over fitting. The entire method is the first that estimates both the shape
and scale parameter of the generalized Pareto distribution within a high dimensional
predictor space.

The final Chapter 4 is concerned with variables selection. We propose a stepwise
method for selecting predictors that improve the accuracy as well as the uncertainty
quantification of the weather forecast. The selection procedure is build on quantile
random forests which allow interaction between the predictors to be represented in the
model. For the stepwise methodology we develop an early stopping strategy that allows

vii
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the algorithm to stop as soon as predictive performance is not further improved. The
method is shown to behave well, even in situations where predictors are correlated.



SAMENVATTING

Dit proefschrift ontwikkelt nieuwe statistische methoden die worden toegepast in de
context van statistische nabewerking. Met statistische nabewerking worden op fysica
gebaseerde weersvoorspelling verbeterd, afkomstig van numerieke voorspellingsmodel-
len (NWP), door de relatie tussen historische voorspellingen en waarnemingen te on-
derzoeken en gebruiken. Door dit proces kunnen de inherente onzuiverheden in de
NWP voorspelling worden gekalibreerd en gecorrigeerd. Ook de onzekerheid binnen
deze NWP-model voorspelling kan worden gekwantificeerd.

In dit proefschrift behandelen we twee verschillende problemen op het gebied van
statistische nabewerking. Ten eerste beschouwen we nabewerking voor extreme gebeur-
tenissen. Extreme weersomstandigheden zijn per definitie zeldzame gebeurtenissen en
hun voorspellingen zijn in hoge mate onzeker. In de eerste twee hoofdstukken ont-
wikkelen we methoden om deze onzekerheden te kwantificeren door de staart van de
voorspellingsverdeling te voorspellen. Ten tweede onderzoeken we het probleem van
variabeleselectie in nabewerking. Het aantal potentiële covariaten afkomstig van NWP-
modellen is extreem groot en deze covariaten zijn (sterk) met elkaar gecorreleerd. Het
verminderen van het aantal covariaten draagt bij aan de interpreteerbaarheid van het
statistische model. Binnen onze voorgestelde methode houden we rekening met de hoge
onzekerheden binnen weersvoorspellingen door specifiek covariaten te selecteren die
de onzekerheidskwantificering helpen verbeteren.

In Hoofdstuk 2 stellen we een methode voor om de extreme conditionele kwantie-
len te schatten. De methode schat eerst een hoog kwantiel met behulp van lokale li-
neaire kwantielregressie. De overschrijdingen van dit hoge kwantiel worden vervolgens
gebruikt om te extrapoleren naar extreme contionele kwantielen. De parameter van de
staartverdeling, een generaliseerde Pareto verdeling, schatten we met een aangepaste
Hill-schatter. De nabewerkingstechniek wordt toegepast op een neerslag dataset voor de
warme helft van het jaar. We tonen aan dat de methode de voorspellende kwaliteit verbe-
tert in vergelijking met het bovenste ensemble member van het ECMWF-ensemble, een
globaal probabilistisch weersvoorspellings model van de (European Centre for Medium
range Weather Forecasts).

In Hoofdstuk 3 stellen we een andere methode voor om de extreme conditionele
kwantielen te schatten. Deze methode schat eerst een hoog kwantiel met behulp van
kwantiel random forests. De overschrijdingen van het hoge kwantiel worden dan te-
vens gebruikt om de parameters van een gegeneraliseerde Pareto verdeling the schatten.
Hiervoor gebruiken we een gradient boosting methode. De gradient boosting methode
schat aparte regressiebomen voor zowel de schaal- als de vorm parameter van de gege-
neraliseerde Pareto-verdeling. Hierdoor kunnen beide parameters afhangen van covari-
aten. Doordat beide stappen in deze methode gebaseerd zijn op regressiebomen is het
mogelijk om een hoog aantal covariaten mee te nemen zonder dat het model overfit. De
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hele methode is de eerste die zowel de vorm- als de schaalparameter van de gegenerali-
seerde Pareto-verdeling schat binnen een hoogdimensionale voorspellerruimte.

In het laatste hoofdstuk 4 presenteren we een methode voor het selecteren van vari-
abelen. We stellen een stapsgewijze methode voor om variabelen te selecteren die zowel
de nauwkeurigheid als de onzekerheidskwantificering van de weersvoorspelling verbe-
tert. De selectieprocedure is gebaseerd op kwantiel random forests, waardoor interactie
effecten ook worden meegenomen in het model. Voor de stapsgewijze methode ont-
wikkelen we een techniek om het algoritme vroeg te stoppen, op het moment dat de
voorspellende prestaties niet verder worden verbeterd. We tonen aan dat de methode
zich goed gedraagt, zelfs in situaties waarin variabelen gecorreleerd zijn.



1
INTRODUCTION

Extreme weather events can have catastrophic impacts on both the economy and soci-
ety. In warming climates, heat waves are expected to be warmer and more frequent. In
The Netherlands, for example, we observed record breaking temperatures exceeding 40
degrees Celcius in July of 2019. Extremes as consequence of changes to the climate are
not only visible in the occurrence of more heat waves. Also extreme precipitation events
are expected to become more frequent. A good example of such extreme precipitation
happened over Germany on July 13 and 14, 2021. This caused massive flooding events in
Germany, Belgium and The Netherlands as water discharge made its way through rivers
towards the sea.

As occurrence and magnitude of these extreme weather events start to change, there
is a strong need to be better able to understand and predict these events. This thesis ad-
dresses problems in statistical post-processing for (extreme) weather forecasting, in par-
ticular, post-processing for extreme events and variable selection for post-processing.

In this chapter we will provide the necessary background in statistical post-processing
of weather forecasts. We will start by describing the definition and importance of statis-
tical post-processing for weather forecast. The subsequent sections will be devoted to
further discussing the two challenging topics, forecast for extreme events and variable
selection. The chapter ends with an overview of the structure of the whole thesis.

1.1. STATISTICAL POST-PROCESSING FOR WEATHER FORECAST
The idea behind statistical post-processing is simple. Given a model that generates
weather forecasts, statistical post-processing is the process of improving this weather
forecast by correcting the systematic biases therein. By comparing the historical weather
forecasts and the corresponding observations, systematic biases can be estimated. In fu-
ture forecasts, the correction of these systematic biases can be applied as an additional
second step following the forecast generation of the weather model.

In order to understand why such a two step approach is necessary, it is helpful to
understand the mechanism of a weather forecasting model. Below we describe how
weather forecasts are created and where potential biases might appear.

1



1

2 1. INTRODUCTION

1.1.1. NUMERICAL WEATHER PREDICTION MODELS

From here on we refer to numerical weather prediction models as weather prediction
models or NWP models. An NWP model generates forecasts based on non-linear differ-
ential equations that physically describe the flow and the heat transfer within the atmo-
sphere. The solution to these differential equations is approximated by the NWP model
on a four dimensional grid, i.e., latitude, longitude, height and time. Within the NWP
model there are two main sources that contribute to the uncertainty of the forecast.

The first source is the estimated initial state of the atmosphere, commonly referred
to as the analysis. The analysis is obtained by calibrating the most recent forecast of
the NWP-model with an extensive world wide weather observations network, which in-
cludes station observations, weather balloons, radar and satellites. An accurate analysis
is essential for accurate weather forecasts. As processes in the atmosphere are highly
non-linear, the atmosphere is generally described as a chaotic system. This is com-
monly illustrated with the butterfly effect, where a small action (a butterfly flapping its
wings) can cause enormous ripple effects (for example a hurricane on the other side of
the ocean). What this essentially means, in the context of weather prediction, is that
slight changes in the analysis can lead to completely different weather forecasts for a few
days later.

Another source of uncertainty appears in the forecast for parameters such as pre-
cipitation, wind gust and cloud cover. These parameters cannot be explicitly computed
from the solutions to the physical model as they depend on additional physical pro-
cesses that happen on a sub grid scale. Instead, they are inferred using formulas known
as parametrizations. The parametrizations are generally oversimplified and are suscep-
tible to uncertainty. A potential reduction of the uncertainty can be achieved by com-
puting the entire NWP model on a higher resolution grid. This comes at a high compu-
tational cost and therefore is infeasible to compute for the entire globe. Instead, these
higher resolution models are computed in smaller regions and use the lower resolution
global model as boundary conditions.

1.1.2. ENSEMBLE PREDICTION SYSTEMS

Given a weather prediction model, the uncertainty that the model contributes to the
forecasts is quantified by the Ensemble Prediction System (EPS). An EPS contains an en-
semble of forecasts using the same NWP forecasting system, but where the input of the
analysis and/or the parametrizations are "randomized" in the directions where the anal-
ysis and/or parametrizations have the highest uncertainty. These are known as ensem-
ble forecasts. Simply put, an EPS attempts to capture the uncertainty in the forecasts that
comes from the propagated uncertainty within the analysis and the parametrizations.

Note that while such a quantification is highly desirable, an EPS clearly requires
much more computation compared to a single NWP forecast. In practice, an EPS model
generally is run on a coarser grid compared to the sitution where only a single determin-
istic NWP forecast is required. This means that although an EPS is a very good initial
approach in order to quantify the uncertainty within a forecast, there are different types
of uncertainty that are not accounted for in an EPS.
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1.1.3. STATISTICAL POST PROCESSING

Let us first consider two classical examples of post-processing. Suppose that we are in-
terested in the forecast for the temperature at 2 metres above the surface in Delft, to
be predicted 36 hours ahead of time. Given corresponding observations, either a single
NWP forecast or an ensemble of NWP forecasts are available to us. Our goal is to improve
the forecast based on the historical forecasts and their corresponding observations. The
standard and widely accepted method for post-processing NWP deterministic forecasts
is called Model Output Statistics (MOS). The adaptation to EPS forecast is called Ensem-
ble Model Output Statistics (EMOS).

EXAMPLE: MODEL OUTPUT STATISTICS

Let (X1,Y1), . . . , (Xn ,Yn) denote pairs of deterministic forecasts and corresponding ob-
servations for temperatures, where Xi ,Yi ∈ R for i = 1, . . . ,n.

Model Output Statistics relates the observed temperature with the forecast tempera-
ture via a linear relation, [36], [29].

Yi =α+βXi +εi for i = 1, . . . ,n. (1.1)

Here α can be seen as correcting for systematic biases that appear within the forecast.
The parameters are then estimated by least squares estimation.

EXAMPLE : ENSEMBLE MODEL OUTPUT STATISTICS

Let (X1,Y1), . . . , (Xn ,Yn) denote pairs of ensemble forecasts and observations for temper-
ature, where Xi = (Xi 1, . . . Xi M )T and Yi , Xi j ∈ R for i = 1, . . . ,n and j = 1, . . . , M . De-

fine the ensemble mean by Xi = 1
M

∑M
j=1 Xi j and the ensemble variance by σ2(Xi ) =

1
M

∑M
j=1(Xi j −Xi )2.

The Ensemble Model Output Statistics, [31], provide a forecast distribution whose
moments are related to those of the ensemble forecasts. For example, we may forecast
Yi to follow a normal distribution,

Yi |X = Xi ∼ N (µ̂i , σ̂i
2) (1.2)

where µ̂i =α1+β1Xi and σ̂2
i =α2+β2σ

2(Xi ). The parametersα1 andβ1 have a similar in-
terpretation as for the Model Output Statistics. The parameterα2 and β2 correct system-
atic over- and under-dispersion errors. The parameters can be estimated by maximum
likelihood, assuming observations are conditionally independent given the forecast.

The MOS and EMOS are two standards for post-processing that are widely applied.
Their extensions are much explored in the literature. We will now discuss a few of these
extensions to set the stage for the research done in this thesis. The possible extensions
include: relaxing the normality assumption, expanding the predictor space to contain
more than just the forecast, and relaxing the strict linearity assumption to improve the
predictive performance.
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POST-PROCESSING BEYOND THE NORMAL DISTRIBUTION

The normal distribution has been shown to work well for post-processing mean tem-
perature, but not for many other weather phenomena such as wind speed. The initially
proposed distribution for wind speeds was a normal distribution truncated at zero [57].
This works only for low wind speed data since it was observed that high wind speeds
conditional on the forecast do not follow a normal distribution. Therefore [42] proposes
to post-process low wind speeds with a truncated normal and high wind speeds with an
extreme value distribution. In [3] a log normal distribution was proposed for the higher
wind speed events.

Other weather variables, such as precipitation, are better modelled with a mixutre
discrete-continuous distribution to model dry and wet days accurately. As a result, these
events are generally modelled using a continuous distribution with an additional point
mass at zero. The choices for such continuous distributions include gamma distribu-
tions [64] and generalized extreme value distributions [51]. More recently an extended
Pareto distribution was proposed [55], which behaves as a gamma distribution for low
values and as a Pareto distribution for high values.

MACHINE LEARNING WITH POST-PROCESSING

All above models focus on proposing parametric models for both the distribution of the
forecast and the linear dependence between forecast and observations. However, these
parametric assumptions are often too rigid.

For example, separate EPS members can forecast the position of large scale atmo-
spheric patterns in a different way. As a result, some EPS members will forecast a storm
at location A, where the others forecast the storm to be at location B. The ensemble fore-
cast at location A then forms a bimodal distribution with mass for both high and low
wind speeds. In these cases, unimodal distributions are not sufficient any more and a
more flexible way of quantifying the uncertainty is necessary.

In post-processing of the mean temperature it can be shown that a simple linear re-
gression performs rather well. The reason is simple, mean temperature forecast is rather
easy to forecast and therefore the relation between observations and forecasts is approx-
imately linear. But in many cases this is not necessarily the case. Especially when in-
cluding additional predictors, on top of the ensemble forecast, to provide the statistical
model with more information about the state of the atmosphere.

In [64] additional covariates of atmospheric instability are used to improve precipi-
tation forecasts for extreme precipitation amounts. Though it can be observed by means
of scatter plots that the relation is not linear at all.

The two above examples motivate the use of machine learning methods to relax the
parametric assumptions made in MOS and EMOS. An additional motivation of choosing
machine learning approaches over classical non-parametric statistical methods is their
stability in the presence of high dimensional predictor spaces.

For these reasons, recent expansions of the EMOS methodology have focused on
combining post-processing with machine learning. An example of a method that re-
quires little tuning and has strong predictive power is Random Forest [56], [55], [64].
Also approaches using neural networks are gaining traction [48], [58].
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1.2. CONTRIBUTION OF THIS THESIS
In this thesis we focus on expanding machine learning methodology for post-processing
in two directions: post-processing with a special focus on extreme events, and variable
selection in case of large predictor spaces.

1.2.1. FORECASTING EXTREME EVENTS

Extreme weather events, such as extreme precipitation and extreme wind storms, have
high impacts on agriculture, infrastructure and our daily lives. The heat waves of 2018
and 2019 in the Netherlands, for example, caused severe draught with large impacts on
water management and agriculture. The heavy precipitation of July 2021 across Europe,
as mentioned in the beginning of this introduction, caused severe flooding in the south
east of The Netherlands.

Therefore it is of particular interest to forecast these events accurately. A way of im-
proving forecast quality can be achieved through statistical post-processing. In prac-
tice, however, forecast of extremes poses additional challenges. First, the estimation effi-
ciency of a statistical model increases with the number of data points available. Since the
extreme events are infrequent, the performance of standard statistical post-processing is
often unsatisfactory for extreme forecasts. Secondly, extreme events are subject to much
higher intrinsic uncertainty. For example, extreme precipitation is generally localized
and therefore especially hard to forecast.

Few models in the current statistical post-processing literature are able to accommo-
date the forecasting of extreme events. This is because most statistical models used in
statistical post-processing deal explicitly with the tail of the distribution. Additionally, an
ensemble forecast is constructed from a limited number of members and therefore has
a harder time capturing low probability events. EMOS methods, for example, assume a
parametric model for the entire predictive distribution, which often has similar tail char-
acteristics that do not allow flexible modelling of the extremes. Finally, non-parametric
methods and machine learning methods focus on fitting the bulk of the data therefore
extreme events are not modelled effectively.

With these challenges in mind, we are motivated to move beyond the current ma-
chine learning and non-parametric statistical post-processing methodology and incor-
porate extreme value theory to improve the forecasts for the extremes. Extreme value
theory is the field of statistics that concerns modelling large values, i.e., the tail of the
distribution, especially beyond the range of observations.

Classical extreme value theory starts by inspecting the sample maximum Mn , i.e. the
maximum number within a sample {Xi }n

i=1. The foundational theorem within extreme
value theory shows that the suitably normalized sample maximum (Mn − an)/bn con-
verges to a limiting distribution called the generalized extreme value distribution, which
is parametrized by a parameter γ known as the extreme value index. In order to estimate
the γ, the block maxima method is applied by taking the maximum of coherent blocks.
In environmental science, such a block generally consists of a year, which means the γ
can be estimated by the yearly maxima.

Another possibility for modelling extremes is to look at the exceedances above a high
threshold. The peaks-over-threshold theorem shows that these exceedances converge to
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a different limiting distribution, called the generalized Pareto distribution,

Gγ,σ(x) = 1−
(
1+ xγ

σ

)−1/γ
. (1.3)

Similar to the generalized extreme value distribution, the generalized Pareto distribution
is parametrized by the extreme value index γ and an additional scale parameter σ. Es-
timation is done by choosing a high enough threshold and fitting the parameters to the
exceedances of this threshold.

The extreme value index γ plays an important role in extreme value theory and de-
pending on its value, tail behaviour can be categorized in three different categories. A
negative γ indicates short tail behaviour, i.e. the probability of observing anything be-
yond a finite point x∗ < ∞ is zero. A zero γ indicates that the tails have exponential
decaying behaviour. This means that the probability of an observation above a thresh-
old decays exponentially in the threshold. Finally, a positive γ indicates the power law
decay of the probability of exceedance.

Within post-processing and this thesis, it is natural to define extremes as the ex-
ceedances above a high threshold. In the rest of this thesis we will therefore use the
generalized Pareto distribution to model extremal behaviour.

The methods that we develop fall within the area of extreme quantile regression,
where extreme quantiles are estimated as a function of covariates. These methodolo-
gies have a two step estimation approach. First, an intermediate quantile is estimated
using the existing data points. Second, the generalized Pareto distribution is used to ex-
trapolate to the extreme tail. These two steps enable us to extract enough information
from the data, and enough flexibility is given to modelling the tail.

In this thesis, we propose two methods for extreme quantile regression to be used in
statistical post-processing. In Chapter 2, we propose a simple model that combines the
estimation of threshold estimated by local linear quantile regression with an estimator
for the extreme value index to estimate the extreme quantiles. We prove the uniform
consistency of the non-parametric estimated threshold. This is a necessary condition
such that the estimation error of the threshold does not influence the estimated extremal
behaviour asymptotically.

However, local linear quantile regression does not work in high dimensional covari-
ate spaces due to the curse of dimensionality. Therefore in Chapter 3, we extend the
methodology of the common shaped tail estimator. We propose the GBEX method, gra-
dient boosting for extremes. In GBEX we incorporate machine learning methodologies
that rely on decision trees. These are constructed by recursively making splitting the data
on the covariates. This means that there is inherent variable selection in these methods,
which make them applicable for high dimensional covariate spaces.

Within GBEX, quantile random forests are used to fit the intermediate threshold. The
reason for this is that it is a very robust method, which needs very little tuning. On the
exceedances of this threshold we construct a gradient boosting procedure connecting
two parallel sequences of trees to estimate both parameters γ and σ of the generalized
Pareto distribution as functions on a high dimensional covariate space. In Chapter 3 we
show in an example how our estimator can be used for post-processing extreme pre-
cipitation. We use the GBEX method to post-process extreme precipitation, taking into
account both seasonality and spatial dependence.
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1.2.2. VARIABLE SELECTION FOR STATISTICAL POST PROCESSING
For the statistical post-processing of the forecast of a weather event, the most straight-
forward choice of potential predictors comes from the other variables that are being
forecast by the same NWP model, the number of which can be extremely large. This
provides a large pool of predictors to choose from for statistical post-processing. In or-
der to make accurate decisions on the weather forecasts and its uncertainty, they need
to be interpretable. This make it crucial to address the variable selection problem here
as the predictive powers of each predictor differs in various circumstances. For example,
when forecasting precipitation, forecasts with lead times of more than a few days gen-
erally have no predictive skill any more. Temperature forecasts, on the other hand, keep
having predictive skill for more than a week.

In general, the challenges in variable selection within statistical post-processing are
quite specific and can be divided in three distinct aspects. First, there exists high cor-
relation between predictors. For example a forecast for the maximum temperature is
highly correlated with the forecast for minimum temperature. This does not mean that
one should always be selected in favour of the other. Second, the model should remain
interpretable. This means it should be clear to understand how each predictor occurs
in the final statistical post-processing model. Finally, due to high uncertainties it is im-
portant to have accurate uncertainty quantification. Therefore the predictors should be
selected in order to improve the entire forecast distribution instead of the expectation of
the forecast distribution as in the mean regression model.

In Chapter 4, we introduce a stepwise variable selection process for random forests
that deals with all three challenges. By incrementally computing the predictive perfor-
mance of the model, a predictor is only added if the predictive performance is strictly
increasing. The predictive performance is measured by the continuous ranked proba-
bility score, a score to measure the accuracy of a predictive distribution.

In an extensive simulation study, it is shown that in the presence of high correla-
tions between predictor variables, the model is able to distinguish the variables from the
simulated model much more reliably than competing methods, while at the same time
not selecting additional predictors. In an application of post-processing the maximum
temperature forecast, it can be observed that the proposed method selects much fewer
features than competing methods, while keeping the same predictive power. Addition-
ally, the method is selects predictors more consistently within a cross validation set-up

1.2.3. OUTLINE
The rest of the thesis is organized as follows. Chapter 2 introduces the extreme quan-
tile regression with the common shape tail estimator. In Chapter 3 this methodology is
extended using random forest and gradient boosting. The variable selection methodol-
ogy for statistical post-processing is discussed in Chapter 4. This thesis concludes with
a discussion in Chapter 5.





2
IMPROVING EXTREME

PRECIPITATION FORECAST USING

EXTREME QUANTILE REGRESSION

Aiming to estimate extreme precipitation forecast quantiles, we propose a nonparametric
regression model that features a constant extreme value index. Using local linear quan-
tile regression and an extrapolation technique from extreme value theory, we develop an
estimator for conditional quantiles corresponding to extreme high probability levels. We
establish uniform consistency and asymptotic normality of the estimators. In a simula-
tion study, we examine the performance of our estimator on finite samples in comparison
with a method assuming linear quantiles. On a precipitation data set in the Netherlands,
these estimators have greater predictive skill compared to the upper member of ensemble
forecasts provided by a numerical weather prediction model.

2.1. INTRODUCTION
Extreme precipitation events can cause large economic losses, when large amounts of
water cannot be properly drained. For example, water boards in the Netherlands, re-
sponsible for water management, need to take preventive action in the case of large
amounts of precipitation to prevent flooding. Accurate predictions are therefore vital
for taking preventive measures such as pumping the water out of the system.

Weather forecasting relies on deterministic forecasts obtained by numerical weather
prediction (NWP) models [35]. These models are based on non-linear differential equa-
tions from physics describing the flow in the atmosphere. Starting from an initial condi-
tion of the atmosphere and using so-called physical parametrizations to account for un-
resolved physical processes, the NWP models are used to forecast precipitation, among
other weather quantities.

Parts of this chapter have been published in Extremes 22, 599 (2019).

9
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The uncertainty in these types of forecasts is attributed to uncertainty in the initial
condition and in the physical parametrizations in the model itself. An ensemble predic-
tion system quantifies the uncertainty due to these two factors by applying small per-
turbations to the original quantities and running the NWP model multiple times subse-
quently. An ensemble forecast is to be viewed as a sample from the distribution of the
predicted variable, where uncertainties in initial condition and model parametrizations
are taken into account. Therefore, it is natural to consider the empirical distribution
function of the ensemble forecast as an estimator of the distribution of the predicted
variable, in this chapter precipitation.

While the NWP ensemble prediction systems are rather skilful in forecasting precipi-
tation for relatively short lead times, skill quickly decreases as lead time increases. Using
upper ensemble members for forecasting extreme precipitation appears to be most chal-
lenging, due to the large spatial and temporal uncertainties of precipitation forecasts.
Most methods that have been proposed to post-process forecasts are instead focussed
on the bulk of the conditional distribution, see [65].

For the upper ensemble members there are two serious problems. First, the upper
ensemble members tend to be not well calibrated, i.e. not reliable [6], especially for large
amounts of precipitation, this is shown in [5]. Second, the highest probability level of the
extreme precipitation forecast is limited by the number of ensemble members, which is
typically not large due to computational costs. In the ensemble prediction system of the
European Centre for Medium-Range Weather Forecasts (ECMWF), which we consider in
our case study, the system generates 51 ensemble members. Thus, the largest probability
level is given by 51

52 .

In this chapter, we aim to develop a post-processing approach for predicting extreme
precipitation quantiles. More precisely, we focus on the problem of estimating the tail of
the conditional distribution FY |X , with X a precipitation forecast by the NWP model and
Y the observed precipitation. We are interested in the function x 7→QY |X (τ|x) for τ close
to one, where QY |X denotes the conditional quantile function.

Several estimators have already been proposed to estimate extreme conditional quan-
tiles. All these estimators have a similar structure consisting of two steps. First, the quan-
tile function QY |X is estimated for moderately high probability levels τ. In the second
step, these estimated quantiles are used to extrapolate to obtain estimators of extreme
conditional quantiles.

For the first step, general quantile estimation techniques are used. Examples are lin-
ear quantile regression in [63] and [62], a local polynomial approximation to the quantile
function [4], a k-nearest neightbour approach in [25] and inverse of empirical condi-
tional distribution functions smoothed in the covariates in [14], and [13]. For the second
step two ‘types’ of approaches can be distinguished. First, a local approach, where an ex-
treme quantile estimator is applied to a sequence of estimated quantiles for moderately
high probability levels attained from the first step. This method is used in [63], [62], [14],
[13], [25], [32] and [27]. The second type, where the exceedances above a threshold es-
timated in the first step are used to fit a generalized Pareto distribution, was introduced
in [16]. An application of the result of [16] to precipitation data is discussed in [5], where
a generalized Pareto distribution is fitted to the exceedances above an estimated linear
quantile. They showed skilful short-range forecasts of extreme quantiles.
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Most methods allow for a varying extreme value index depending on the covariates.
The estimators of extreme value indices in such models are generally subject to high
variability. In the context of weather forecasting, this may lead to inconsistent forecasts
over the covariates. After carefully considering the trade-off between the generality of
the model and the efficiency of the estimation, we propose an additive model with a
constant extreme value index for all covariates cf. (2.1) and (2.2). Moreover, we assume
that the extreme value index is positive. This assumption is supported by the result of
our empirical study on summer rainfall in the Netherlands as well as the existing liter-
ature on precipitation data including [12], [9] and [24]. Apart from this, our model as-
sumes that the conditional quantile of Y is a non-parametric function of the covariate,
thus no parametric structure is required. In our two step procedure, we first estimate a
non-stationary threshold, namely the non-parametric quantile function by local linear
quantile regression and then extrapolate to extreme quantiles based on the exceedances
of this threshold.

The scientific contribution of this chapter is fourfold. First, we propose a model that
achieves a good balance between generality and estimation efficiency and it fits the fea-
ture of post-processing data sets. Second, we derive asymptotic properties of the estima-
tors, by first showing uniform consistency of local linear quantile regression, using a uni-
form Bahadur representation for the quantile estimator. Moreover, we establish asymp-
totic normality of the estimators of the extreme value index as well as the extreme con-
ditional quantiles. Third, we address the issues such as selection of the bandwidth and
tuning parameters, which is highly relevant from the application point of view. Fourth,
our procedure yields skilful prediction outperforming the upper ensemble member and
showing similar skill to the linear estimator [63] based on cross-validation. Besides, our
procedure can extrapolate to an extreme probability level that goes beyond the empirical
quantile associated with the upper ensemble member.

The outline of the chapter is as follows: Section 2.2 we present our proposed model
and develop the estimating procedures. The asymptotic properties of the estimator are
studied in Section 2.3. In Section 2.4 we propose a data driven approach for bandwidth
selection. We show with a detailed simulation study in Section 2.5 the finite sample per-
formance of our estimator and compare it with an existing method. In Section 2.6 we
apply our estimator to a dataset of precipitation observations and ensemble forecasts in
the Netherlands. Finally, in Section 2.7 we discuss future research directions. The proofs
of the theoretical results are provided in the appendix.

2.2. MODEL AND ESTIMATION

We aim to estimate the conditional tail quantiles of Y given X , namely QY |X (τ|·) for τ
close to one. To this end, we assume that there exists a τc ∈ (0,1) such that

QY |X (τ|x) = r (x)+Qε(τ) if τ≥ τc , (2.1)

where r is a smooth continuous function and Qε denotes the quantile function of an
error variable ε, which is independent of X . In order to make the model identifiable, it
is assumed that Qε(τc ) = 0. As a result, QY |X (τc |x) = r (x). Moreover, we assume that the
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distribution of ε has a heavy right tail, that is there exists γ> 0 such that,

lim
t→∞

Qε

(
1− 1

t x

)
Qε

(
1− 1

t

) = xγ , x > 0, (2.2)

where γ is the extreme value index of ε. Note that (2.2) implies that the conditional dis-
tribution of Y given that X = x also has a heavy right tail with the same extreme value
index γ.

It is important to note that this additive structure is only assumed for probability
levels τ exceeding τc , which allows us to model the tail of the conditional distribution
without assuming structure for τ < τc . On one hand, the quantile curve x → QY |X (τ|x)
for any τ≥ τc has the same shape as r . On the other hand, the distance between the two
quantile curves, that is QY |X (τ1|x)−QY |X (τ2|x) for any τ1 > τ2 ≥ τc , is determined by Qε

only and thus does not depend on x. We will refer to our model as the Common Shape
Tail (CST) model.

We remark that various types of additive structures have been proposed in recent
studies on modeling extremes with covariates. In [63], a linear structure is assumed for
r , where two scenarios are considered: the slope of the linear function is a nonparamet-
ric function of τ or it is constant. The latter scenario is a special case of our model. In
[62], a linear structure is assumed for the conditional quantile function after the power
transformation. In both papers, r is estimated by linear quantile regression. In [44], a
nonparametric location-scale representation is assumed and local linear mean regres-
sion is used to estimate the conditional quantile called α-CVaR in that paper, where the
existence of the fourth moment of the error variable is required. This requirement im-
plies an upper bound on the extreme value index: γ< 1

4 .
Let (X1,Y1), . . . , (Xn ,Yn) denote i.i.d. paired observations satisfying (2.1). Based on

this random sample, we construct a two step estimation procedure for QY |X (τn |·), where
for asymptotics, τn → 1 as n →∞. We shall estimate r and Qε(τn) respectively in each of
the two steps.

First, for the estimation of r we choose to follow the local linear quantile regression
approach studied in [67]. An obvious advantage of the quantile regression approach is
that it does not impose a constraint on the moments of the conditional distribution.
Let h = hn denote the bandwidth. In a window of size 2h around a fixed point x, we
approximate the function linearly:

r (x̃) ≈ r (x)+ r ′(x)(x̃ −x) =:α+β(x̃ −x), x̃ ∈ [x −h, x +h].

The function r and its derivative are estimated by the solution of the following minimiza-
tion problem:

(r̂n(x), r̂ ′
n(x)) = argmin

(α,β)

n∑
i=1

ρτc (Yi −α−β(Xi −x))K

(
Xi −x

h

)
, (2.3)

where ρτ(u) = u(τ− I (u < 0)) is the quantile check function, cf. [37] and K a symmetric
probability density function with [−1,1] as support.

Second, for the estimation of Qε(τn), we consider the residuals defined by ei = Yi −
r̂n(Xi ), i = 1, . . . ,n. Using the representation of Yi = QY |X (Ui |Xi ), with {Ui , i = 1, . . . ,n}
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i.i.d. uniform random variables, and the model assumption (2.1), the residuals permit a
more practical expression as below.

ei =
{

Qε(Ui )+ (r (Xi )− r̂ (Xi )) if Ui ≥ τc

QY |X (Ui |Xi )− r̂ (Xi ) otherwise .
(2.4)

Denote the order statistics of the residuals by e1,n ≤ . . . ≤ en,n . Let kn be an interme-
diate sequence depending on n such that kn →∞ and kn/n → 0 as n →∞. Then a Hill
estimator of the extreme value index is given by

γ̂n = 1

kn

kn∑
i=1

log
en−i+1,n

en−kn ,n
.

The intuitive argument behind this estimator is that {en−i ,n , i = 0, . . . ,kn} are asymp-
totically equivalent to the upper order statistics of a random sample from the distribu-
tion of ε, i.e. for some δ> 0,

max
i=0,...,kn

|en−i ,n −Qε(Un−i ,n)| = op (n−δ);

see the proof of Theorem 2 in the Appendix. For the same reason, we use the well known
Weissman estimator of Qε(τn) based on the upper residuals:

Q̂ε(τn) = en−kn ,n

(
kn

n(1−τn)

)γ̂n

. (2.5)

Combining the estimator of r (x) given by (2.3) and the estimator of Qε(τn) given by
(2.5), we obtain the estimator of the conditional tail quantile:

Q̂Y |X (τn |x) = r̂ (x)+Q̂ε(τn). (2.6)

By construction, this estimator of the conditional tail quantile is continuous in x. We
shall refer to our estimator as CST-estimator.

2.3. ASYMPTOTIC PROPERTIES
In this section, we present the asymptotic properties of the estimators obtained in Sec-
tion 2.2. We begin with uniform consistency of r̂n in (2.3). We first state the assumptions
with respect to our model (2.1). Let g denote the density of X , fY |X (·|x) denote the con-
ditional density of Y given X = x and c denote an arbitrary finite constant.

A1 The support of g is given by [a,b] and supx∈[a,b] |g ′(x)| ≤ c.

A2 The third derivative of r is bounded, i.e. supx∈[a,b] |r ′′′(x)| ≤ c.

A3 The function x → fY |X (r (x)|x) is Lipschitz continuous and fY |X (r (x)|x) > 0 for all
x ∈ [a,b].
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Theorem 1. Let r̂n be the estimator defined in (2.3). Choose K a symmetric Lipschitz
continuous probability density function supported on [−1,1] and hn =O(n−δh ), with δh ∈( 1

5 , 1
2

)
. Under Assumptions A1-A3, there exists a δ ∈ (0, 1

2 −δh) such that as n →∞,

sup
x∈[a,b]

|r̂n(x)− r (x)| = op (n−δ).

This theorem quantifies the direct estimation error made in the first step of our pro-
cedure. Note that the “error" made in the first step is transmitted to the second step by
the definition of the residuals. Thus, the uniform consistency of r̂ is important for de-
riving the asymptotic property of Q̂Y |X (τn |·) not only because r̂ is a constructing part of
Q̂Y |X (τn |·), but it also influences the asymptotic behavior of Q̂ε(τn).

Remark 1. Although many studies have been devoted to the non-parametric quantile re-
gression, to the best of our knowledge, there is no existing result on the uniform consistency
for r̂n for an additive model. In [39], a general uniform Bahadur representation is ob-
tained for local polynomial estimators of M-regression for a multivariate additive model.
A local linear quantile regression is one of the M-regression and thus is included in the
estimators considered in that paper. Corollary 1 in [39] is our starting point for deriving
the uniform consistency of r̂n .

For the asymptotic normality of γ̂n , we assume that Qε satisfies the following condi-
tion, which is a second order strengthening of (2.2).

A4 There exist γ > 0, % < 0 and an eventually positive or negative function A(t ) with
limt→∞ A(t ) = 0 such that for all x > 0,

lim
t→∞

Qε

(
1− 1

xt

)
Qε

(
1− 1

t

) −xγ

A(t )
= xγ

x%−1

%
. (2.7)

As a consequence, |A(t )| is regularly varying with index %.

Theorem 2. Let the conditions of Theorem 1 and A4 be satisfied. Let kn →∞ and kn/n →
0,

√
kn A(n/kn) →λ ∈ R and kγ+1

n n−(δ+γ) → 0 as n →∞, with δ from Theorem 1. Then√
kn(γ̂n −γ)

d−→ N

(
λ

1−% ,γ2
)

as n →∞.

Remark 2. When deriving asymptotic properties for extreme statistics, it typically requires
some regular conditions on kn , the number of tail observations used in the estimation
when the sample size is n. For the original Hill estimator, which is based on i.i.d. observa-
tions, the asymptotic normality is proved under Assumption A4 and

√
kn A(n/kn) → λ ∈

R. The assumption of % < 0 is a technical condition, which is common for heavy tailed
data and it allows us to choose kn = nα for α> 0.

The condition limn→∞ kγ+1
n n−(δ+γ) = 0 is used to make sure that the upper order resid-

uals behave similarly to the upper order statistics of a random sample from the distri-

bution of ε. Suppose one chooses kn = nα for 0 < α < min
(

2%
2%−1 , δ+γγ+1

)
, it satisfies all the

conditions on kn . So in theory, there exists a wide range of choices for a proper kn . In
practice, it is challenging to choose a kn . In Section 2.5 we propose to use a fixed choice of
kn that worked well in several simulation studies.
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The asymptotic normality of Q̂Y |X (τn |x) defined in (2.6) is now given below. To sim-
plify notation, we denote with pn = 1−τn .

Theorem 3. Let the conditions of Theorem 2 be satisfied. Assume npn = o(kn), | log(npn)| =
o(

√
kn) and

√
kn p

γ
n

nδ log
(

kn
npn

) → 0, then as n →∞,

√
kn

log
(

kn
npn

) (
Q̂Y |X (τn |x)

QY |X (τn |x)
−1

)
d−→ N

(
λ

1−% ,γ2
)

.

Remark 3. The condition npn = o(kn) guarantees that the conditional quantile is an ex-
treme one. It gives the upper bound for pn . And the condition | log(npn)| = o(

√
kn) gives

the lower bound on pn , which limits the range of extrapolation. Clearly pn =O(n−1) satis-
fies both conditions. The asymptotic normality holds even for some pn < 1

n , which means
it is beyond the range of the available data. In the weather forecast context, predicting
the amount of precipitation so extreme that it never occurred during the observed period

is also feasible. The assumption limn→∞

√
kn p

γ
n

nδ log
(

kn
npn

) = 0 is a technical condition we use to

guarantee that the error made in the first step does not contribute to the limit distribution.

The proofs for Theorems 1, 2 and 3 are provided in the Appendix.

2.4. BANDWIDTH SELECTION
The selection of the bandwidth is a crucial step in local linear quantile regression cf.
(2.3). The bandwidth controls the trade-off between the bias and variance of the estima-
tor. Increasing the bandwidth h decreases the variance, but tends to increase the bias
due to larger approximation errors in the local linear expansion.

In [67], the authors propose to estimate the optimal bandwidth for quantile regres-
sion by rescaling the optimal bandwidth for mean regression. There is a rich literature
on bandwidth selection for mean regression. However, in our setting this approach is
not satisfactory because the scaling factor is difficult to estimate and it also assumes the
existence of the first moment, i.e. it limits us to the case γ< 1.

Instead we adopt a bootstrap approach, similar to the one proposed in [4] to estimate
the global optimal bandwidth with respect to the mean integrated squared error (MISE),
i.e.,

hopt = argmin
h

E

[∫ b

a

(
QY |X (τc |x)−Q̂h

Y |X (τc |x)
)2

dx

]
=: argmin

h
S(h),

where Q̂h
Y |X (τc |x) denotes the τc quantile estimated by (2.3) with bandwidth h.

Let B denote the number of bootstrap samples. The bootstrap samples

(X j
1 ,Y j

1 ), . . . , (X j
n ,Y j

n ) for j = 1, . . . ,B are sampled with replacement from the original n
data pairs. The optimal bandwidth is estimated by minimizing the bootstrap estimator
Ŝ(h) of S(h), which is given by the objective function in (2.8).

ĥ = argmin
h

1

B

B∑
j=1

∫ b

a

(
Q̂h0

Y |X (τc |x)−Q̂h, j
Y |X (τc |x)

)2
dx, (2.8)
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where h0 is an initial bandwidth chosen by visual inspection and Q̂h, j
Y |X (τc |x) denotes the

estimate of the conditional quantile function based on the j -th bootstrap sample. In
practice, the integral is approximated using numerical integration.

Two alternative approaches were attempted. First, a bootstrap approach, fixing the
covariates X and sampling for each covariate level an uniform random variable U . For
values of U ≥ τc a positive residual e is sampled and the bootstrap sample is
Y b = Q̂h0

Y |X (X )+ e. In the case U < τc a local linear quantile estimate is obtained at the
covariate level X with bandwidth h0 at probability level U . The bandwidth is then esti-
mated by the solution of the minimization in (2.8). Second, a leave-one-out cross valida-
tion approach that minimizes the quantile loss function is used to obtain the estimator
of the optimal bandwidth:

ĥ = argmin
h

Ŝ(h) = argmin
h

n∑
i=1

ρτc (Yi −Q̂h,−i
Y |X (τc |Xi )),

where Q̂h,−i
Y |X denotes the conditional quantile estimate with bandwidth h and leaving out

the i th observation. Intuitively, the cross validation approach is attractive as it is much
faster compared to the bootstrap approach and it is based on the idea of scoring the
quantile curve with the same scoring function used for estimation. Yet, based on a sim-
ulation study, the direct bootstrap procedure performed significantly better compared
to these alternative approaches. This is in accordance with the conclusions drawn in [4].

2.5. SIMULATION
In this section, the finite sample performance of the CST-estimator is assessed using a
detailed simulation study. A comparison is made with the estimator proposed in [63],
where also a two step procedure is used. The first step consists of estimating a sequence
of linear quantile curves for moderately high probability levels, using quantile regres-
sion. And the second step then uses a Hill estimator for the extreme value index based
on the estimated quantiles. Extrapolation to the extreme quantiles is done by a Weiss-
man type estimator, similar to the one in (2.5).

Define the simulation model from which the data is drawn by,

Y = r (X )+σ(X )ε. (2.9)

We choose X uniformly distributed in [−1,1] and independently, ε follows from a gen-
eralized Pareto distribution with γ = 0.25, or a Student t1 distribution. For the function
σ, we consider two cases: σ(x) = 1 and σ(x) = 4+x

4 . Note that for σ(x) = 1, our model
assumption (2.1) is satisfied with τc = 0. For σ(x) = 4+x

4 , our model assumption is not
satisfied since the distribution of the additive noise depends on x, which allows us to
study the robustness of the model assumptions.

We consider three choices for the function r : linear, nonlinear monotone and a more
wiggly function,

r1(x) = x, r2(x) = exp(x), r3(x) = sin(2πx)(1−exp(x))

Performance is compared for two sample sizes : n = 500 and n = 2500.



2.5. SIMULATION

2

17

The estimation of the quantile curves x 7→ QY |X (τ|x) with τ = 0.99 and τ = 0.995 is
assessed with an empirical estimator of the mean integrated squared error:
1
m

∑m
i=1

∫ 1
−1(Q̂(i )

Y |X (τ|x)−QY |X (τ|x))2d x, where m = 500 and Q̂(i )
Y |X (τ|x) denotes the esti-

mate based on the i -th sample. The integral is approximated by numerical integration.
Tables 2.1 and 2.2 report the estimated MISE for different models and different methods.

For the CST estimator, we choose τc = 0.5 while the model holds for any τc ≥ 0. Sim-
ulations show that the results are not sensitive to the level of τc that is chosen. The value
of k is typically chosen by inspection at the point where the Hill plot, i.e (k, γ̂(k)), be-
comes stable. In the simulation study it is not possible to choose the stable point for
every simulation. Therefore, we choose a fixed k = [4n1/4], where [.] denotes the integer
part. From simulations we see that the estimate becomes stable around this value of k.

For the estimator in [63], it is proposed to choose k = [4.5n1/3]. Additionally, the
probability sequence for which the linear quantile curves are estimated is given by,
n−k

n , . . . , n−3
n , trimming of the most extreme quantiles, n−2

n , . . . , n
n . This is needed in order

to obtain a Bahadur expression for the regression quantiles. In [63] it is suggested to
trim off [nη] observations, with η ∈ (0,0.2). In our simulation trimming off the three
most extreme probabilities gave the best performance. The estimator allows for varying
extreme value indices as well as a constant extreme value index. A constant extreme
value index is used as this is assumed in our setting. We refer to this estimator as the
linear estimator. The model assumption for this method is satisfied only when r = r1,
the linear case.

For generalized Pareto errors, the mean integrated squared errors are shown in Table
2.1. For the case σ(x) = 1, the CST estimator performs best, as expected, since the data
follow the model assumption (2.1). For the case σ(x) = 4+x

4 a similar conclusion can be
drawn for n = 500. Though, for a sample size of 2500 the linear estimator does slightly
better. The deviation from the model assumption clearly affects the behaviour of the CST
estimator, but not the linear estimator. The difference between the methods becomes
visible for larger sample sizes as the bias for the CST estimator starts to play a bigger role
in the MISE.

For Student t1 errors, the results are shown in Table 2.2. For sample size n = 500,
the CST estimator has smaller MISE for τ = 0.99 and larger MISE for τ = 0.995, in com-
parison with the linear estimator. For a larger sample size n = 2500, the CST estimator
outperforms the linear method. For small sample size the r is subject to high variance
locally, this leads to errors in the residuals and as a result in the extreme value index.
This is shown in the extrapolation to the 0.995 quantile. When the sample size is larger
this is not an issue, which leads to better performance of the CST estimator. The relative
effect of the deviation from the model by choosing σ(x) = 4+x

x is lower now for a large
γ= 1. As a result the CST estimator performs better sometimes for large sample size and
σ(x) = 4+x

x .

Remark 4. The estimator that is proposed in [14] was also compared to the CST estimator
and the linear estimator and was outperformed clearly in all instances by these methods,
although it is the only method for which the model assumptions are satisfied for all set-
tings. The procedure does not assume any structure in the data and it allows for varying
extreme value indices, which requires to estimate the extreme value index locally by us-
ing a very limited amount of observations. As a consequence, the function γ̂(x) fluctuates
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Table 2.1: Mean integrated squared errors based on samples from (2.9), with errors GPD(γ= 0.25).

σ(x) = 1 σ(x) = 4+x
4

r method 0.99 0.995 0.99 0.995
n = 500

r1 CST 2.62 9.16 5.28 14.42
r1 linear 9.04 18.53 7.75 15.66
r2 CST 2.78 9.51 5.64 15.04
r2 linear 8.69 18.92 8.57 18.47
r3 CST 2.66 8.01 5.27 13.95
r3 linear 9.05 18.83 8.98 18.55

n = 2500
r1 CST 0.64 1.59 3.23 5.91
r1 linear 2.04 6.14 1.88 5.53
r2 CST 0.71 1.70 3.24 5.85
r2 linear 1.95 6.09 1.86 5.64
r3 CST 0.75 1.56 3.42 6.04
r3 linear 2.15 5.98 2.12 5.91

heavily and it further creates large inaccuracies in the quantile extrapolation. From the
simulation result, it is clear that this method suffers severely from lack of efficiency for the
sample sizes considered here. Therefore, the results were left out to focus on the comparison
between the CST and the linear method.

2.6. POST-PROCESSING EXTREME PRECIPITATION
Our dataset consists of observations and ECMWF ensemble forecasts of daily accumu-
lated precipitation at eight meteorological stations spread across the Netherlands (de
Bilt, De Kooy, Twente, Eelde, Leeuwarden, Beek, Schiphol and Vlissingen). The data in
this study is for the warm half year, namely 15th of April until 15th of October, in the
years 2011 till 2017. The lead time is defined as the time between initialization of the en-
semble run and the end of the day at 00 UTC for which the forecast is valid. We consider
lead times from 24 hours up till 240 hours with 12 hour increments. For each lead time
and location the number of observations is about 1287.

For fixed lead time and location, an ensemble forecast consists of 51 exchangeable
members, which can be seen as a sample from the distribution of precipitation, where
the uncertainty in the initial condition and model parametrizations are accounted for.
As a result, quantile estimates for probability levels i

52 , for 1 ≤ i ≤ 51, are given by the
order statistics of the ensemble forecast. Note that the precipitation observations are
not used by the ensemble forecast as standard the amount of precipitation is set to zero
at initialization of the NWP model.

In practice, it is known that the upper ensemble member is not well calibrated in the
sense that it leads to underestimation of the extremes, see [5]. This is partly caused by
a representatively error, because the forecast is a grid-cell average and the observation
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Table 2.2: Mean integrated squared errors ×10−2 based on samples from (2.9), with errors from Student t1.

σ(x) = 1 σ(x) = 4+x
4

r method 0.99 0.995 0.99 0.995
n = 500

r1 CST 3.41 31.69 3.33 28.83
r1 linear 4.69 26.66 4.74 26.82
r2 CST 3.83 38.35 4.40 43.25
r2 linear 5.19 30.44 5.01 29.81
r3 CST 3.97 40.56 3.44 29.47
r3 linear 4.78 27.62 5.32 30.30

n = 2500
r1 CST 0.69 5.14 1.20 6.49
r1 linear 1.30 10.68 1.35 10.94
r2 CST 0.82 5.98 1.26 7.31
r2 linear 1.27 10.70 1.24 10.31
r3 CST 0.83 6.03 1.17 7.10
r3 linear 1.38 11.30 1.32 10.90

is a station point value. Statistical post-processing can correct this and other systematic
errors [65]. For long lead times, a forecast, especially the upper ensemble member loses
all predictive skill, [5]. We show that, by applying the CST estimator, we can calibrate the
upper ensemble member and obtain more skilful forecasts for short and long lead times.
To relate to the notation of Section 2.2, we denote the daily accumulated precipitation
by Y and the upper ensemble member by X .

For each lead time we pool data from all eight locations. These locations are spread
over the Netherlands and as most extreme events are caused by local deep convective
showers, the observations can be considered approximately independent. We compare
the performance of the ensemble method with the CST estimator as in (2.6) and the
linear estimator as explained in Section 2.5.

As precipitation is often modelled using a point mass on 0 for the dry days, we model
the point mass using a logistic regression with as covariate the number of ensemble
members equal to zero. The distribution function is then given by:

FY |X (y |x) = p0(x)+ (1−p0(x))FY |X ,Y >0(y |x) (2.10)

Where the quantiles are given by:

QY |X (τ|x) =
{

0 if τ≤ p0(x)

QY |X ,Y >0

(
τ−p0(x)
1−p0(x)

)
if τ> p0(x)

(2.11)

We then apply the CST estimator to estimate QY |X ,Y >0, where we choose τc = 0.95.
This choice is based on best validation score, as explained below, based on one year of
data. The bandwidth h is determined using the bandwidth selection method described
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in Section 2.4 and k = [4n1/4], the same as in the simulation study. Alternative to choos-
ing X as the upper ensemble member we have also considered other ensemble members
and trimmed means of the ensemble members. Among these choices the upper ensem-
ble member showed best performance.

For the linear method we do not incorporate the point mass as the method already
takes this into account as all quantiles are estimated globally instead of the CST estima-
tor, which estimates the quantiles in a local manner. Incorporating the point mass led to
severely worse results for the linear method. The same hyper parameters were chosen
as in Section 2.5; changing these did not influence the results.

Note that for days that have a large point mass on 0 and the rescaled probability is
not extreme, in these cases we just use a local linear quantile estimator as described in

Equation 2.3 as the estimator of QY |X ,Y >0

(
τ−p0(x)
1−p0(x)

)
.

The predictive performance of a quantile estimator Q̂i (τ) can be quantified by the
quantile verification score and visualized by the quantile reliability diagram, which are
discussed in detail in [6]. The quantile verification score is defined as,
QVSτ(Q̂) = ∑n

i=1ρτ(Yi − Q̂i (τ)), where ρτ is the quantile check function. The score is
always positive, where low scores represent good performance and high scores bad per-
formance. In [6] it is shown that the score can be decomposed in three components:
uncertainty, reliability and resolution, where only the last two depend on the estimator
itself. A reliable or calibrated forecast has the same distribution as the underlying distri-
bution that is estimated.

The quantile reliability diagram visualizes the reliability of the forecast quantile by
creating equally sized bins with respect to the forecast quantile and then graphing the
empirical quantile of the corresponding observations in the bin against the mean fore-
cast quantile in the bin. For the forecast to be reliable these points should lie on the line
y = x.

It is natural to compare the predictive performance of a quantile estimator to some
reference quantile estimator Q̂ref. For this we take the climatological empirical quan-
tiles as the reference method, i.e. the empirical quantiles of the sample Yi , 1 ≤ i ≤ n.
Note that this is the simplest estimate we can obtain without making use of a numeri-
cal weather prediction model. The quantile verification skill score, given by QVSSτ(Q̂) =
1− QVSτ(Q̂)

QVSτ

(
Q̂ref

) , is a relative measure of performance compared to the reference method,

taking values in (0,1] when Q̂ improves on Q̂ref and values below zero when the opposite
is true.

The validation is carried out using a seven-fold cross validation, where, in every it-
eration, one year is left out of the model estimation and used as the independent vali-
dation sample. In Figure 2.1 the QVSS is shown as a function of lead time. The bands
are obtained by calculating the QVSS for each location separately. The graph on the left
shows the performance of the CST estimator in red, the linear estimator in green and the
ensemble in blue for τ = 51

52 . It can be observed that the CST and the linear estimator
improve upon the ensemble especially for short lead times and for very long lead times.
On the right side of the figure the performance of the τ= 0.995 quantile is shown for the
CST and the linear estimators, showing that skilful quantile estimates are obtained up
till 144 hours. The CST estimator seems to have slightly less spread in the scores than the
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Figure 2.1: QVSS as a function of lead time for CST estimator in red, the ensemble in blue and the linear
estimator in green, on the left for the 51

52 quantile and on the right for the 0.995 quantile. The bands are obtained
by validating for each location separately.

Figure 2.2: QVSS as a function of lead time conditioned on X > 5, for CST estimator in red, the ensemble in
blue and the linear estimator in green, on the left for the 51

52 quantile and on the right for the 0.995 quantile.
The bands are obtained by validating for each location separately.
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Figure 2.3: Quantile reliability diagrams for the CST estimator in red, the ensemble in blue and the linear
estimator in green for the 51

52 quantile; on the left side for 24 hours lead time and on the right side 192 hours
lead time.

linear method.

In practice the quantile estimates are of interest when the ensemble is already high,
i.e. X > t for t large. In Figure 2.2 similar plots are shown as in Figure 2.1, but now the
verification is done based on a subset of the data where we condition on X > 5, which
is the 60 percent quantile for a lead time of 24 hours. Note that this means that also the
reference climatological quantile has this conditioning. It can be seen in the left panel
of Figure 2.2 that the ensemble method is outperformed by the CST and the linear es-
timator for shorter lead times. For the extrapolation to τ = 0.995 in the right panel of
Figure 2.2, the spread in skill of the different stations is much larger, but still showing
skilful forecasts for most stations for short lead times. Also here the CST appears to have
less spread than the linear estimator. In Figure 2.3 two quantile reliability diagrams are
shown, for 24 hours lead time on the left and 192 hours lead time on the right, using
all data without conditioning. The ensemble clearly underestimates the extremes gen-
erally for both lead times. The CST and the linear estimators improve calibration for 24
hour lead time. For a lead time of 192 hours the CST estimator looks a bit more unsta-
ble, though it remains close the the calibration line, where the ensemble is consistently
underestimating the upper quantile.

From all plots it can be concluded that the CST and the linear estimator are very
comparable, an assumption of linear quantiles is in this context also not strange. Even
though the CST estimator has a more flexible assumption on the quantile curves, it does
not influence the results.

To conclude, we have shown that the CST estimator is comparable to the linear es-
timator and has more skill than the upper ensemble member for both short and long
lead times. Additionally, it is able to extrapolate further into the tail and obtains skilful
estimates for higher quantiles than are available from the ensemble.
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2.7. DISCUSSION
We have estimated the conditional tail quantile curves, x 7→QY |X , using a two step pro-
cedure. First we use local linear quantile regression to estimate a non-stationary thresh-
old and secondly, extrapolate to the tail using the exceedances of this threshold. The as-
sumption that γ > 0 fits to the application of summer precipitation in the Netherlands,
which is heavy tailed. There is a clear motivation for extending the model to the cases
of light tailed, γ= 0 and short tailed data, γ< 0. This would enable also post-processing
of extreme precipitation in winter periods, but also temperature, wind speed and gusts
and other weather phenomena.

It is clear from the simulation that the linear method from [63] is better able to deal
with heteroskedastic data. Extending the model to allow for non-homoskedastic errors
would be a valuable addition, allowing it to model data from a wider range of classes.

Finally, in the application we now calibrate tail quantiles of the ensemble, using the
statistical relation between the upper ensemble member and the observations. It would
be of interest though, to consider a wider range of covariates from the NWP model. It
would therefore be of value to extend the method to a multivariate covariates setting.

2.A. PROOFS
This section contains the proofs of Theorems 1-3 in Section 2.3. Throughout this sec-
tion, c,c1,c2, . . . denote positive constants, which are not necessarily the same at each
occurrence.

2.A.1. PROOF OF THEOREM 1
The uniform consistency of r̂ relies heavily on the uniform Bahadur representation for
r̂ . We make use of the Bahadur representation obtained in [39].

Let ψτ(u) = τ− I (u < 0), that is the right derivative of ρτ at u. Then by Corollary 3.3
and Proposition 1 in [39], we have

sup
x∈[a,b]

∣∣∣∣∣r̂ (x)− r (x)+h2
ncr ′′(x)− 1

nhn

n∑
i=1

ψτc (εi )Cn,i (x)K

(
Xi −x

hn

)∣∣∣∣∣
=Op

({
logn

nhn

}3/4
)
=Op

({
logn

n1−δh

}3/4
)

,

where Cn,i (x) is a Lipschitz continuous function and thus absolutely bounded in [a,b].
Define

∆n(x) = 1

nhn

n∑
i=1

ψτc (εi )Cn,i (x)K

(
Xi −x

hn

)
.

Then, the triangle inequality leads to

sup
x∈[a,b]

|r̂ (x)− r (x)| ≤ sup
x∈[a,b]

∣∣h2
ncr ′′(x)

∣∣+ sup
x∈[a,b]

|∆n(x)|+Op

({
logn

n1−δh

}3/4
)

=O(n−2δh )+ sup
x∈[a,b]

|∆n(x)|+Op

({
logn

n1−δh

}3/4
)

. (2.12)
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The last equality follows from the fact that r ′′ is uniformly bounded by Assumption A1.
Next, we show that, there exists a δC ∈ (0, 1

2 −δh) such that

sup
x∈[a,b]

|∆n(x)| = op (n−δC ). (2.13)

Define Ti (x) := hnK
(

Xi−x
hn

)
Cn,i (x). Then for any x, y ∈ [a,b], by the triangle inequality

and the Lipschitz continuity of K , we have∣∣Ti (x)−Ti (y)
∣∣= hn

∣∣∣∣K (
Xi −x

hn

)
Cn,i (x)−K

(
Xi − y

hn

)
Cn,i (y)

∣∣∣∣
≤hn |Cn,i (x)|

∣∣∣∣K (
Xi −x

hn

)
−K

(
Xi − y

hn

)∣∣∣∣+hnK

(
Xi − y

hn

)
|Cn,i (x)−Cn,i (y)|

≤c1
∣∣x − y

∣∣+ c2hn |x − y | sup
u∈[−1,1]

K (u)

≤c|x − y |.
Note that the constant c does not depend on i , that is, the Lipschitz continuity is uniform
in i for all Ti ’s. Consequently, it follows from that

∣∣ψτ(u)
∣∣≤ 1 that,

|∆n(x)−∆n(y)| = 1

nh2
n

∣∣∣∣∣ n∑
i=1

ψτc (εi )(Ti (x)−Ti (y))

∣∣∣∣∣≤ c
|x − y |

h2
n

.

Let Mn = nδC+2δh logn and {Ii = (ti , ti+1], i = 1, . . . , Mn} be a partition of (a,b], where ti+1−
ti = b−a

Mn
. Then for t ∈ Ii ,

|∆n(t )−∆n(ti )| ≤ c(b −a)

Mnh2
n

,

or equivalently,

∆n(ti )− c(b −a)

Mnh2
n

≤∆n(t ) ≤∆n(ti )+ c(b −a)

Mnh2
n

.

Therefore, for n sufficiently large,

P

(
sup

x∈[a,b]
|∆n(x)| > n−δC

)
=P

(
max

1≤i≤Mn
sup
t∈Ii

|∆n(t )| > n−δC

)

≤
Mn∑
i=1

P

(
sup
t∈Ii

|∆n(t )| > n−δC

)
≤

Mn∑
i=1

P

(
|∆n(ti )| > n−δC − c(b −a)

Mnh2
n

)

≤
Mn∑
i=1

P

(
|∆n(ti )| > 1

2
n−δC

)
=

Mn∑
i=1

P

(∣∣∣∣∣ n∑
j=1

T j (ti )ψτc (ε j )

hn

∣∣∣∣∣> 1

2
hnn1−δC

)
=:

Mn∑
i=1

Pi ,

where the third inequality is due to that c(b−a)
Mn h2

n
< 1

2 n−δC for n sufficiently large. Next, we

apply Hoeffding’s inequality to bound Pi . Define

Wn,i , j := T j (ti )ψτc (ε j )

hn
= K

(
X j − ti

hn

)
Cn, j (ti )ψτc (ε j ).
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For each i and n, {Wn,i , j ,1 ≤ j ≤ n} is a sequence of i.i.d. random variables. And with
probability one, |Wn, j ,i | ≤ sup−1≤u≤1 K (u)supa≤x≤b Cn,i (x) =: c3. Moreover, E

(
Wn, j ,i

)= 0
because E(ψτc (ε j )) = 0 and X j and ε j are independent. Thus, by Hoeffding’s inequality,

Pi = P

(∣∣∣∣∣ n∑
j=1

Wn,i , j

∣∣∣∣∣≥ 1

2
hnn1−δC

)
≤ 2exp

(
−n1−2δC h2

n

8c2
3

)
= 2exp

(
−cn1−2δh−2δC

)
.

Note that 1−2δh −2δC > 0 by the choice of δC . Thus, for n →∞,

P

(
sup

x∈[a,b]
|∆n(x)| > n−δC

)
≤ 2Mn exp

(
−cn1−2δh−2δC

)
→ 0.

Hence, (2.13) is proved. Now by choosing δ= δC , we obtain via (2.12) that,

nδ sup
x∈[a,b]

|r̂n(x)− r (x)| =O(nδC−2δh )+op (1)+Op

(
n− 3

4 + 3
4δh+δC (logn)

3
4

)
= op (1),

due to that δh ∈ ( 1
5 , 1

2 ) and δC < 1
2 −δh .

2.A.2. PROOF OF THEOREM 2

The proof follows a similar line of reasoning as that of Theorem 2.1 in [63]. The uni-
form consistency of r̂n given in Theorem 1 plays a crucial role. Define Vn := ||r̂n − r ||∞ =
op

(
n−δ).

Let Ui = FY |X (Yi |Xi ) for all 1 ≤ i ≤ n. Then {Ui , i = 1, . . . ,n} constitute i.i.d. random
variables from a standard uniform distribution. Recall the definition of ei :

ei = Yi − r̂n(Xi ) =QY |X (Ui |Xi )− r̂n(Xi ).

Thus, the ordering of {ei , i = 1, . . . ,n} is not necessarily the same as the ordering of {Ui , i =
1, . . . ,n}. The main task of this proof is to show that the kn largest ei ’s correspond to the
kn largest Ui ’s; see (2.15). To this aim, we first prove that with probability tending to one,
en− j ,n for j = 0, . . . ,kn can be decomposed as follows,

en− j ,n =Qε(Ui ( j ))+ r (Xi ( j ))− r̂n(Xi ( j )) for j = 0, . . .kn , (2.14)

where i ( j ) is the index function defined as ei ( j ) = en− j ,n . In view of (2.4), it is sufficient
to prove that with probability tending to one, Ui ( j ) > τc jointly for all j = 0, . . . ,kn . Define
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another index function, ĩ ( j ) by Uĩ ( j ) =Un− j ,n . Then it follows for n large enough,

P
(
∪kn

j=0{Ui ( j ) < τc }
)
= P

(
∪kn

j=0{Yi ( j ) <QY |X (τc |Xi ( j ))}
)

= P

(
min

0≤ j≤kn

(
Yi ( j ) − r (Xi ( j ))

)< 0

)
= P

(
min

0≤ j≤kn

(
Yi ( j ) − r̂n(Xi ( j ))− r (Xi ( j ))+ r̂n(Xi ( j ))

)< 0

)

≤ P

(
min

0≤ j≤kn

en− j ,n − sup
x∈[a,b]

|r̂n(x)− r (x)| < 0

)
= P

(
en−kn ,n <Vn

)= 1−P(en−kn ,n ≥Vn)

≤ 1−P
(
∩kn

j=0{e ĩ ( j ) ≥Vn}
)

= 1−P
(
∩kn

j=0

{
Qε(Un− j ,n)+ r (X ĩ ( j ))− r̂n(X ĩ ( j )) ≥Vn

})
≤ 1−P

(
Qε(Un−kn ,n) ≥ 2Vn

)
,

where the second equality follows from that QY |X (τc |Xi ( j )) = r (Xi ( j )) and the last equality
follows from (2.4) and the fact that Un−kn ,n > τc for n large enough. Then,

limn→∞ P
(
∪kn

j=0{Ui ( j ) < τc }
)
= 0 follows from Qε(Un−kn ,n) →∞ and Vn = op (1) as n →∞.

Hence, (2.14) is proved.
Next, we show that

lim
n→∞P

(
∩kn

j=0{en− j ,n =Qε(Un− j ,n)+ r (Xi ( j ))− r̂n(Xi ( j ))}
)
= 1, (2.15)

that is the ordering of k largest residuals is determined by the ordering of Ui ’s. In view of
(2.14), it is sufficient to show that with probability tending to one,

min
1≤i≤kn

(Qε(Un−i+1,n)−Qε(Un−i ,n)) ≥ 2 max
1≤i≤kn

|r (Xi ( j ))− r̂n(Xi ( j )|. (2.16)

By the second order condition given in (2.7) and Theorem 2.3.9 in [17], for any small
δ1,δ2 > 0, and n large enough,

Qε(Un−i+1,n)

Qε(Un−i ,n)
≥W γ

i + A0

(
1

1−Un−i ,n

)
W γ

i

W ρ

i −1

%
−δ1

∣∣∣∣A0

(
1

1−Un−i ,n

)∣∣∣∣W γ+%+δ2
i , (2.17)

for i = 1, . . . ,kn , where Wi = 1−Un−i ,n
1−Un−i+1,n

and limt→∞ A0(t )/A(t ) = 1. Observe that logWi =
log 1

1−Un−i+1,n
− log 1

1−Un−i ,n

d= En−i+1,n −En−i ,n with Ei ’s i.i.d. standard exponential vari-

ables. Thus, by Rènyi’s representation [49], we have

{Wi ,1 ≤ i ≤ kn}
d=

{
exp

(
Ei

i

)
,1 ≤ i ≤ kn

}
.
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From Proposition 2.4.9 in [17], we have
Un−kn ,n

1− kn
n

P→ 1, which implies that A0

(
1

1−Un−kn ,n

)
=

Op

(
A0

(
n

kn

))
. Using the fact that A0 is regularly varying with index %, hence |A0| is ulti-

mately decreasing, we obtain for n sufficiently large and any i = 1, . . . ,kn ,∣∣∣∣A0

(
1

1−Un−i ,n

)∣∣∣∣≤ ∣∣∣∣A0

(
1

1−Un−kn ,n

)∣∣∣∣
=

∣∣∣∣Op

(
A0

(
n

kn

))∣∣∣∣= ∣∣∣∣Op

(
A

(
n

kn

))∣∣∣∣=
∣∣∣∣∣Op

(
1√
kn

)∣∣∣∣∣ , (2.18)

by the assumption
√

kn A
(

n
kn

)
→λ.

For a sufficiently large u and any kn ≥ 1,

P

(
max

1≤i≤kn

Ei

i
≤ u

)
=

kn∏
i=1

(
1−e−i u

)
= exp

(
kn∑

i=1
log

(
1−e−i u

))

=exp

(
−

kn∑
i=1

∞∑
j=1

j−1e−i u j

)
≥ exp

(
−

kn∑
i=1

e−i u

)
= exp

(
1−e−ku

1−eu

)
,

which tends to one as u →∞. This implies that

min
1≤i≤kn

W %

i
d= exp

(
% max

1≤i≤kn

Ei

i

)
=Op (1). (2.19)

Thus, combining (2.17), (2.18) and (2.19), we have

min
1≤i≤kn

Qε(Un−i+1,n)

Qε(Un−i ,n)
−1

≥ min
1≤i≤kn

W γ

i

(
1−

∣∣∣∣∣Op

(
1√
kn

)∣∣∣∣∣
(

W %

i −1

%
+δ1W %+δ2

i

))
−1

= min
1≤i≤kn

W γ

i

(
1−

∣∣∣∣∣Op

(
1√
kn

)∣∣∣∣∣
)
−1

d= exp

(
γ

E1

kn

)(
1−

∣∣∣∣∣Op

(
1√
kn

)∣∣∣∣∣
)
−1

=γE1

kn

(
1−

∣∣∣∣∣Op

(
1√
kn

)∣∣∣∣∣
)

,

where the third equality follows from that min1≤i≤kn
Ei
i

d= E1,k
d= E1

k by Rènyi’s represen-
tation. Thus, we obtain that

min
1≤i≤kn

(Qε(Un−i+1,n)−Qε(Un−i ,n)) ≥
(
Qε(Un−kn ,n)

γE1

kn

)(
1−

∣∣∣∣∣Op

(
1√
kn

)∣∣∣∣∣
)

=
(

n

kn

)γ
k−1

n |Op (1)|.

Thus, (2.16) is proved by the assumption k−1
n

(
n

kn

)γ >> n−δ and max1≤i≤kn |r (Xi ( j )) −
r̂n(Xi ( j )| ≤ 2Vn = op

(
n−δ). Intuitively, (2.16) means that the difference between two suc-

cessive upper order statistics of ε is larger than the error made in the estimation of r (x).
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As aforementioned, (2.14) and (2.16) together lead to (2.15), which further implies
that with probability tending to one,

max
0≤ j≤kn

∣∣∣∣ en− j ,n

Qε(Un− j ,n)
−1

∣∣∣∣≤ Vn

Qε(Un−kn ,n)
= op

(
n−δ

(
kn

n

)γ)
. (2.20)

By the definition of γ̂n and (2.20), we can write the estimator as follows,

γ̂n = 1

kn

kn−1∑
i=0

log
en−i ,n

en−kn ,n

= 1

kn

kn−1∑
i=0

log
Qε(Un−i ,n)

Qε(Un−kn ,n)
+

(
1

kn

kn−1∑
i=0

log
en−i ,n

Qε(Un−i ,n)
− log

en−kn ,n

Qε(Un−kn ,n)

)

=: γ̂H +op

(
n−δ

(
kn

n

)γ)
.

The first part is the well known Hill estimator and we have by Theorem 3.2.5 in [17],

√
kn(γ̂H −γ))

d−→ N

(
λ

1−% ,γ2
)

.

Therefore we can conclude,

√
kn(γ̂n −γ) =

√
kn(γ̂H −γ)+op

(√
knn−δ

(
kn

n

)γ)
d−→ N

(
λ

1−% ,γ2
)

,

by the assumption that kγ+1
n n−γ−δ→ 0.

We remark that the proof for Theorem 2.1 in [63] isn’t completely rigorous, namely,
the proof for (S.1) in the supplementary material of that paper is not right. We fix the
problem while proving (2.20), which is an analogue to (S.1).

2.A.3. PROOF OF THEOREM 4
Before we proceed with the proof of Theorem 3, we state the asymptotic normality of
Q̂ε(τn) defined in (2.5) in the theorem below.

Theorem 4. Let the conditions of Theorem 2 be satisfied. Assume npn = o(kn) and log(npn) =
o(

√
kn), then, as n →∞, √

kn

log(kn/(npn))

(
Q̂ε(τn)

Qε(τn)
−1

)
d−→ N

(
λ

1−% ,γ2
)

. (2.21)

Theorem 4 can be proved in the same way as that for Theorem 2 in [63]. For the sake
of completeness, we present the proof in this section.

Recall that Q̂ε(τn) =
(

kn
npn

)γ̂n
en−kn ,n =: d γ̂n

n en−kn ,n . First, note that from Theorem 2,

we have
√

kn(γ̂n −γ) = Γ+op (1), where Γ is a random variable from N
(

λ
1−% ,γ2

)
. There-
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fore,

d γ̂n−γ
n =exp

(
(γ̂n −γ) logdn

)= exp

(
logdn√

kn

(Γ+op (1))

)

=1+ logdn√
kn

Γ+op (
logdn√

kn

), (2.22)

where the last step follows from the assumption that logdnp
kn

→ 0. Second, by Theorem

2.4.1,

p
k

(
Qε(Un−kn ,n)

Qε(1−kn/n)
−1

)
d−→ N (0,γ2).

In combination with (2.20), we have

en−kn ,n

Qε(1−kn/n)
= en−kn ,n

Qε(Un−kn ,n)
· Qε(Un−kn ,n)

Qε(1−kn/n)
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(
kn

n

)γ))(
1+Op

(
1√
kn

))

=1+Op

(
1√
kn

)
, (2.23)

by the assumption that kγ+1
n n−γ−δ→ 0. Last, by the second order condition given in (2.7)

and Theorem 2.3.9 in [17],

Qε(1−pn)

Qε(1−kn/n)dγ
n

= 1+O(A(n/kn)) = 1+O

(
1√
kn

)
. (2.24)

Finally, combing (2.22), (2.23) and (2.24), we have

Q̂ε(τn)

Qε(τn)
= d γ̂

n en−kn ,n

Qε(1−pn)
= d γ̂n−γ

n
en−kn ,n

Qε(1−kn/n)
· Qε(1−kn/n)dγ
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Qε(1−pn)

=
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1+ logdn√
kn

Γ+op

(
logdn√
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(
1√
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))(
1+O

(
1√
kn

))

=1+ logdn√
kn

Γ+op

(
logdn√

kn

)
,

by the assumption that dn →∞. Thus, (2.21) follows immediately.
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2.A.4. PROOF OF THEOREM 3
By definition of QY |X (τn |x), Q̂Y |X (τn |x) and Theorem 1, we have,√
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Thus it follows from Theorem 4 and the assumption
p
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) → 0 that
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.



3
GRADIENT BOOSTING EXTREMES

Extreme quantile regression provides estimates of conditional quantiles outside the range
of the data. Classical methods such as quantile random forests perform poorly in such
cases since data in the tail region are too scarce. Extreme value theory motivates to ap-
proximate the conditional distribution above a high threshold by a generalized Pareto
distribution with covariate dependent parameters. This model allows for extrapolation
beyond the range of observed values and estimation of conditional extreme quantiles. We
propose a gradient boosting procedure to estimate a conditional generalized Pareto dis-
tribution by minimizing its deviance. Cross-validation is used for the choice of tuning
parameters such as the number of trees and the tree depths. We discuss diagnostic plots
such as variable importance and partial dependence plots, which help to interpret the
fitted models. In simulation studies we show that our gradient boosting procedure out-
performs classical methods from quantile regression and extreme value theory, especially
for high-dimensional predictor spaces and complex parameter response surfaces. An ap-
plication to statistical post-processing of weather forecasts with precipitation data in the
Netherlands is proposed.

3.1. INTRODUCTION
In a regression setup the distribution of a quantitative response Y depends on a set of
covariates (or predictors) X ∈ Rd . These predictors are typically easily available and can
be used to predict conditional properties of the response variable Y . Machine learning
offers a continuously growing set of tools to perform prediction tasks based on a sample
(X1,Y1), . . . , (Xn ,Yn) of independent copies of a random vector (X,Y ). The main objective
is usually to predict the conditional mean E(Y | X = x), which corresponds to minimizing
the squared error prediction loss. While the mean summarizes the behavior of Y in the
center of its distribution, applications in the field of risk assessment require knowledge
of the distributional tail. For a probability level τ ∈ (0,1), an important quantity is the

Parts of this chapter have been submitted to Extremes.
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conditional quantile

Qx(τ) = F−1
Y (τ | X = x), (3.1)

where F−1
Y (· | X = x) is the generalized inverse of the conditional distribution function of

Y given X = x. There has been extensive research in statistics and machine learning to
adapt mean prediction methods to other loss functions than squared error. For instance,
quantile regression relies on minimizing the conditional quantile loss, which is based on
the quantile check function [38]. This has been extended to more flexible regression
functions such as the quantile regression forest [45] and the gradient forest [1], which
both build on the original random forest [8]. Another popular tree-based method in
machine learning is gradient boosting by [22]. This versatile method aims at optimizing
an objective function with a recursive procedure akin to gradient descent.

Let n denote the sample size and τ= τn the quantile level. The existing quantile re-
gression methodology works well in the case of a fixed quantile level, or in the case of a
quantile that is only moderately high, that is, τn → 1 and n(1−τn) →∞ as n →∞, mean-
ing that there are sufficient observations above the τn level. For more extreme quantiles
with n(1−τn) → 0, the quantile loss function is no longer useful because observations
become scarce at that level and extrapolation beyond the range of observed values is
needed. Extreme value theory provides the statistical tools for a sensible extrapolation
into the tail of the variable of interest Y . For a large threshold u close to the upper end-
point of the distribution of Y , the distribution of the threshold exceedance Y −u | Y > u
can be approximated by the generalized Pareto distribution (GPD)

Hγ,σ(y) = 1− (
1+γy/σ

)−1/γ
+ , y ≥ 0, (3.2)

where for a ∈R, a+ = max(0, a), and γ ∈R and σ> 0 are the shape and scale parameters,
respectively.

There are two main streams in the literature focusing on the estimation of covariate-
dependent extreme quantiles. First, [11] and [63] assume a linear form for the condi-
tional quantile function in (3.1) and derive estimators for extreme quantiles and asymp-
totic properties of the estimators. The second stream first estimates the conditional
quantiles at moderately high levels and then uses the GPD to model threshold exceedances
with parameters σ and γ in (3.2) depending on the covariates in order to extrapolate to
the extreme level. The covariate dependence is either modeled via parametric or semi-
parametric structures such as linear models [15, 61] and generalized additive models
[10, 66], or via local smoothing methods [e.g., 13, 26, 59]. While linear or additive models
are restricted in their modelling flexibility, local smoothing methods on the other hand
are known to be sensitive to the curse of dimensionality and work well only for a low-
dimensional predictor space. To account for these issues for modern applications with
complex data, tree-based methods are attractive due to their modelling flexibility and
robustness in higher dimensions. A first attempt to use tree-based models in extreme
value theory is the generalized Pareto regression tree by [20], but the model reduces to a
single tree and suffers from limited performance.

Our goal is to estimate the extreme conditional quantile Qx(τ) in (3.1), where the di-
mension of covariates d is large and the response surface allows for complex non-linear



3.2. EXTREME QUANTILE REGRESSION WITH GRADIENT BOOSTING

3

33

effects. To this end, we build a bridge between the predictive power of tree-based en-
semble methods from machine learning and the theory of extrapolation from extreme
value theory. Following the second stream of research mentioned above, we model the
tail of the conditional distribution of Y given X = x using a GPD distribution in (3.2) with
covariate-dependent parameters γ(x) and σ(x). The main contribution of this chapter
is that in order to estimate γ(x) and σ(x), we propose a gradient boosting algorithm to
optimize the deviance (negative log-likelihood) of the GPD model. In each boosting iter-
ation, these parameters are updated based on an approximation of the deviance gradi-
ent by regression trees. The boosting algorithm has several tuning parameters, the most
important ones being the number of trees and the tree depth. We show how they can
be chosen effectively using cross-validation. The resulting model includes many trees
and is flexible enough to account for a complex non-linear response surface. In two
numerical experiments we illustrate that, for the task of extremal quantile estimation,
our methodology outperforms quantile regression approaches that do not use tail ex-
trapolation [1, 45] and methods from extreme value theory that assume simple forms
for γ(x) and σ(x) such as generalized additive models [66]. As a result, to the best of
our knowledge, our gradient boosting is the first method that reliably estimates extreme
quantiles in the case of complex predictor spaces and in the presence of possibly high-
dimensional noise variables.

We apply the developed method to forecast the extreme quantiles of daily precipi-
tation in the Netherlands using the output of numerical weather prediction models as
covariates. Our diagnostic tools, namely variable importance score and partial depen-
dence plots, are able to identify changes in the tail heaviness of precipitation as season-
ality patterns in the shape parameter estimates γ(x). We further investigate the contri-
bution of weather prediction model outputs of neighbouring stations to forecasting the
extreme precipitation of a specific location.

The chapter is organized as follows. Section 3.2 introduces our methodology and al-
gorithms for extreme quantile regression based on GPD modeling with gradient boost-
ing. Practical questions such as parameter tuning and model interpretation are dis-
cussed in Section 3.3, while Section 3.4 is devoted to assessing the performance of our
method in two simulation studies. The application to statistical post-processing of weather
forecasts with precipitation data in the Netherlands is given in Section 3.5. We conclude
the chapter with a summary and discussion section.

The gradient boosting method is implemented in an R package and can be down-
loaded from GitHub at https://github.com/JVelthoen/gbex/

3.2. EXTREME QUANTILE REGRESSION WITH GRADIENT BOOST-
ING

3.2.1. BACKGROUND ON EXTREME QUANTILE ESTIMATION
Extreme value theory provides the asymptotic results for extrapolating beyond the range
of the data and statistical methodology has been developed to accurately estimate high
quantiles. Most of these tools however do only apply in the case where Y1, . . . ,Yn are
independent copies of Y and do not dependent on covariates.

In this case, the Pickands–de Haan–Balkema theorem [2, 47] states that under mild

https://github.com/JVelthoen/gbex/
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regularity conditions on the tail of the distribution of Y , the rescaled distribution of ex-
ceedances over a high threshold converges to the generalized Pareto distribution. More
precisely, if y∗ denotes the upper endpoint of the distribution of Y then there exist a
normalizing function σ(u) > 0 such that

lim
u↑y∗P

(
Y −u

σ(u)
> y | Y > u

)
= 1−Hγ,1(y), y ≥ 0, (3.3)

where H is defined in (3.2), with the convention H0,σ(y) = 1− exp(−y/σ), y ≥ 0. The
shape parameter γ ∈ R indicates the heaviness of the upper tail of Y , where γ < 0, γ =
0 and γ > 0 correspond to distributions respectively with finite upper endpoint (e.g.,
uniform), light tails (e.g., Gaussian, exponential) and power tails (e.g., Student’s t ).

Moreover, the GPD is the only non-degenerate distribution that can arise as the limit
of threshold exceedances as in (3.3), and therefore it is an asymptotically motivated
model for tail extrapolation and high quantile estimation. By the limit relation in (3.3),
for a large threshold u, the conditional distribution of Y −u given Y > u can be approxi-
mated by Hγ,σ with σ=σ(u). The threshold u can be chosen as the quantile Q(τ0) of Y
for some moderately high probability level τ0 ∈ (0,1). Inverting the distribution function
in (3.2) provides an approximation of the quantile for probability level τ> τ0 by

Q(τ) ≈Q(τ0)+σ
(

1−τ
1−τ0

)−γ−1

γ
. (3.4)

3.2.2. SETUP FOR EXTREME QUANTILE REGRESSION

We consider here the setting where the response Yi ∈ R depends on covariates Xi ∈ Rd

and our goal is to develop an estimator for the conditional quantile Qx(τn) defined by
(3.1), where the probability level τn satisfies τn → 1 and n(1−τn) → 0 as n →∞. Such
a quantile is extreme in the sense that the expected number of observations that ex-
ceed Qx(τn) converges to 0 as n →∞. Therefore empirical estimation is not feasible and
extrapolation beyond observations is needed. Recall that (X1,Y1), . . . , (Xn ,Yn) denote in-
dependent copies of the random vector (X,Y ) with X ∈Rd and Y ∈R.

In this setup, the intermediate threshold Q(τ0), shape parameter γ and scale param-
eter σ in (3.4) may depend on covariates, and the extreme value approximation for the
extreme conditional quantile becomes

Qx(τ) ≈Qx(τ0)+σ(x)

(
1−τ

1−τ0

)−γ(x) −1

γ(x)
, τ> τ0. (3.5)

The triple (Qx(τ0),σ(x),γ(x)) provides a model for the tail (that is above the probabil-
ity level τ0) of the conditional law of Y given X = x. An estimator of conditional ex-
treme quantiles Q̂x(τ) is obtained by plugging in estimators (Q̂x(τ0), σ̂(x), γ̂(x)) in Equa-
tion (3.5).

In the following we propose estimators for these three quantities. Our main contri-
bution is a gradient boosting procedure for estimation of the GPD parameters (σ(x),γ(x))
that allows flexible regression functions with possibly many covariates. For estimation
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of the intermediate quantile Qx(τ0), any method for (non-extreme) quantile regression
can be used and we outline in Section 3.2.4 how the existing method of quantile random
forests can be applied.

3.2.3. GPD MODELING WITH GRADIENT BOOSTING

Based on the asymptotic result in (3.3), the peaks-over-threshold approach assumes
that, given X = x, the excess of Y above the threshold Qx(τ0) follows approximately a
GPD. In order to compute the sample of exceedances, we rely on a (non-extreme) quan-
tile regression method providing an estimation Q̂x(τ0) of the intermediate quantile. We
then define the exceedances of the data set (X1,Y1), . . . , (Xn ,Yn) above threshold as

Zi =
(
Yi −Q̂Xi (τ0)

)
+ , i = 1, . . . ,n, (3.6)

so that Zi = 0 whenever the value Yi is below threshold. We assume that the interme-
diate threshold is high enough so that the exceedances can be modeled by the gener-
alized Pareto distribution and the approximation of conditional quantiles (3.5) is good.
Our aim is to learn the conditional parameter θ(x) = (σ(x),γ(x)) based on the sample of
exceedances above the threshold. Following [22] and [23], we propose to use gradient
boosting with a suitable objective function.

In absence of covariates, a standard way of estimating the GPD parameters θ = (σ,γ)
is the maximum likelihood method, which provides asymptotically normal estimators in
the unconditional case with γ>−1/2 [52]. Likewise, we use the negative log-likelihood,
or equivalently the deviance of GPD distribution as the objective function of the gradient
boosting procedure. Precisely, the deviance for an exceedance Zi from a GPD distribu-
tion with parameters θ(Xi ) = (σ(Xi ),γ(Xi )) is given by

`Zi (θ(Xi )) =
[

(1+1/γ(Xi )) log

(
1+γ(Xi )

Zi

σ(Xi )

)
+ logσ(Xi )

]
IZi>0. (3.7)

Since the deviance depends on two parameters γ andσ, we need to build two sequences
of trees, one for each parameter; [22] proposes a similar strategy in multiclass classifica-
tion where several sequences of trees are trained to learn the different class probabilities.

The gradient boosting algorithm starts with an initial estimate, which is given by the
unconditional maximum likelihood estimator, that is, by setting θ(Xi ) ≡ θ in (3.7):

θ0(x) ≡ argmin
θ

n∑
i=1

`Zi (θ). (3.8)

The two sequences of gradient trees (Tσ
b )1≤b≤B and (T γ

b )1≤b≤B are built recursively. We
use the superscript δ ∈ {σ,γ} and the convenient notation θ = (θσ,θγ) to treat the two
sequences simultaneously. Let s ∈ (0,1] denote a subsampling fraction. Sequentially for
b = 1, . . . ,B , we draw a random subset Sb ⊂ {1, . . . ,n} of size [sn] and fit a pair of regression
trees (Tσ

b ,T γ

b ) to learn the gradient of the deviance on subsample Sb given by

r δb,i =
∂`Zi

∂θδ
(θb−1(Xi )), i ∈ Sb ,δ ∈ {σ,γ}.
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The regression tree T δ
b is fitted on the sample (Xi ,r δb,i ), i ∈ Sb , by recursive binary split-

ting. Two further parameters are used to build the tree: the maximal depth Dδ gives the
maximum number of splits between the root and a leaf in the tree; the minimal leaf size
gives the minimum number of observations in each leaf. The leaves of the tree T δ

b are

denoted by Lδb, j , j = 1, . . . , Jδb , with Jδb the number of leaves.

Now that the tree T δ
b is built, we need to update the value of parameter δ for each leaf

such that the deviance is minimized. In theory this can be done by line search, that is,
for leaf Lδb, j , the updated value ξδb, j is obtained by minimizing the deviance, i.e.,

ξδb, j = argmin
ξ

∑
Xi∈Lδb, j

`Zi (θb−1(Xi )+ξeδ), j = 1, . . . , Jδb , (3.9)

where eσ = (1,0) and eγ = (0,1) give the directions of the line search corresponding to
parametersσ and γ, respectively. In practice the line search (3.9) can be computationally
expensive and ξδb, j is approximated by a Newton–Raphson step

ξ̃δb, j =−
∑

Xi∈Lδb, j

∂`Zi

∂θδ
(θb−1(Xi ))

∑
Xi∈Lδb, j

∂2`Zi

∂(θδ)2
(θb−1(Xi ))

.

The derivatives of the deviance are provided in Appendix 3.A. Due to the instability of the
derivatives of the GPD likelihood, we bound the absolute value of the Newton–Raphson
step by 1 in order to mitigate the strong influence of extreme observations. We observe
in practice that this results in better performance. This leads to the value

T δ
b (x) =

Jδb∑
j=1

sign(ξ̃δb, j )min(|ξ̃δb, j |,1)I{x∈Lδb, j }. (3.10)

for the gradient tree. The model θb−1(x) is then updated by

θδb (x) = θδb−1(x)+λδT δ
b (x), δ ∈ {σ,γ}, (3.11)

where the shrinkage parameters λσ,λγ ∈ (0,1) are called learning rates. They are used
to slow down the dynamic since a shrunken version of the trees is added to the current
model.

The final output for the estimated parameters is the gradient boosting model

θ̂δ(x) = θδ0 +λδ
B∑

b=1
T δ

b (x), δ ∈ {σ,γ}. (3.12)

Algorithm 1 summarizes the procedure for GPD modeling of exceedances. In practice,
the number of iterations B is an important parameter and its choice corresponds to a
trade-off between bias and variance. The procedure is prone to overfitting as B → ∞
and cross-validation is used to prevent this by early stopping; see Section 3.3.1 where
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we discuss the interpretation of the different tuning parameters and their selection in
practice.

Algorithm 1: gbex boosting algorithm for GPD modeling
Input:

• θ0: the initial values of the parameters with default value as in (3.8);

• (Xi , Zi )1≤i≤n : data sample of exceedances above threshold;

• B : number of gradient trees;

• Dσ, Dγ: maximum tree depth for the gradient trees;

• λσ,λγ: learning rates for the update of the GPD parameters σ and γ respectively;

• s: subsampling fraction;

• Lσmi n , L
γ
mi n : minimum leaf size of the nodes in the trees.

Algorithm: For b = 1, . . . ,B :

1. Draw a random subsample Sb ⊂ {1, . . . ,n} of size [sn].

2. Compute the deviance derivatives on the subsample Sb :

rσb,i =
∂`Zi

∂σ
(θb−1(Xi )) and r

γ

b,i =
∂`Zi

∂γ
(θb−1(Xi )), i ∈ Sb .

3. Fit regression trees Tσ
b , T

γ

b that predict the gradients rσb,i and r
γ

b,i as functions of the

covariates Xi on the sample i ∈ Sb ; the trees are built with maximal depth (Dσ,Dγ) and
minimal leaf size (Lσmi n ,L

γ
mi n ); for the tree values, use the truncated Newton–Raphson

rule (3.10).

4. Update the GPD parameters θb (x) = (σ̂b (x), γ̂b (x)) with learning rates (λσ,λγ), i.e.,

σ̂b (x) = σ̂b−1(x)+λσTσ
b (x) and γ̂b (x) = γ̂b−1(x)+λγT

γ

b (x).

Output: Conditional GPD parameters (σ̂(x), γ̂(x)) = (σ̂B (x), γ̂B (x)).

3.2.4. EXTREME QUANTILE REGRESSION

The input of Algorithm 1 are the exceedances Zi defined (3.6). The conditional inter-
mediate quantile Q̂Xi (τ0) used in this definition generally also depends on the covariate
vector Xi and needs to be modeled first. For this task, any method for (non-extreme)
quantile regression can be used, but we note that the quality of the approxmiation (3.5)
of the extreme quantile will also depend on the accuracy of the intermediate quantile
estimate. Together with the gradient boosting procedure for the GPD parameters in Sec-
tion 3.2.3, we obtain an algorithm for extreme quantile prediction. We refer to this al-
gorithm as the gbex method. It combines the flexibility of gradient boosting with the
extrapolation technique from extreme value theory.

While in principle any quantile regression method can be used for estimation of the
conditional intermediate quantiles Q̂Xi (τ0), we propose to use a quantile random for-
est. The reason for this is three-fold: first it requires no parametric assumptions on the
quantile functions; secondly it exhibits good performance for high dimensional predic-
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Algorithm 2: gbex algorithm for extreme quantile prediction
Input:

• (Xi ,Yi )1≤i≤n : data sample;

• τ0: probability level for the threshold;

• τ: probability level for the prediction such that τ> τ0;

• parameters of the gbex boosting algorithm for GPD modeling of exceedances
(Algorithm 1).

Algorithm:

1. Fit a quantile regression to the sample (Xi ,Yi )1≤i≤n that provides estimates Q̂x(τ0) of the
conditional quantiles of order τ0.

2. Compute the exceedances Zi = (Yi −Q̂Xi (τ0))+, 1 ≤ i ≤ n.

3. Let I = {i : Zi > 0} be the index set of positive exceedances and run Algorithm 1 on the data
set (Xi , Zi )i∈I to estimate the GPD parameters (σ̂(x), γ̂(x)).

Output: Estimation of the extreme conditional quantile

Q̂x(τ) = Q̂x(τ0)+ σ̂(x)

(
1−τ

1−τ0

)−γ̂(x) −1

γ̂(x)
.

tor spaces; finally it requires minimal tuning for good results. Quantile regression forests
were first proposed by [45] using the weights from a standard random forest [8]. The
drawback of this method is that the criterion used in recursive binary splitting to build
the trees of the random forest is not tailored to quantile regression. [60] therefore de-
fine a generalized random forest with splitting rule designed for that specific task, where
the splitting criterion is related to the quantile loss function. In our case, we require the
estimator of Qx(τ0) at the sample points x ∈ {X1, . . . ,Xn} and we recommend the use of
out-of-bag estimation Q̂Xi (τ0) = Q̂oob

Xi
(τ0). This means that only the trees for which the

i th observation is out-of-bag are kept for the quantile estimation at x = Xi , that is, trees
based on sub-samples not containing the i th observation. This is necessary to avoid
giving too much weight to the i th observation when predicting at x = Xi .

3.3. PARAMETER TUNING AND INTERPRETATION

3.3.1. PARAMETER TUNING

Our gradient boosting procedure for GPD modelling includes several parameters that
need to be tuned properly for good results. We discuss in this section the interpretation
of the different parameters and how to choose them. We introduce data driven choices
based on cross validation for the most sensitive parameters and suggest sensible default
values for the remaining parameters.
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TREE NUMBER B
The number of trees is the most important regularization parameter. The boosting pro-
cedure starts from a constant model, that is usually an underfit, and adds recursively
trees that adapt the model to the data, leading eventually to an overfit.

We recommend repeated K -fold cross-validation based on the deviance for a data
driven choice of B . Given a maximal tree number Bmax and a division of the data set into
K folds D1, . . . ,DK , we repeatedly run the algorithm with Bmax iterations on the data with
one fold left-out and then compute the deviance on the left-out fold as a function of B .
Adding up the deviances for the different folds, we obtain the cross-validation deviance.
More formally, we define

DEVCV (B) =
K∑

k=1

∑
i∈Dk

`Zi (θ̂−Dk
B (Xi )), B = 0, . . . ,Bmax , (3.13)

where θ̂−Dk
B denotes the model with B trees trained on the data sample with the kth fold

Dk held out. Due to large values of the deviance on extreme observations, the cross-
validation deviance is prone to fluctuations with respect to the partition into folds and
we therefore recommend repeated cross-validation. A typical choice is K = 5 or 10 with
5 repetitions. The choice of B is then the minimizer of the cross-validation deviance.

TREE DEPTH (Dσ,Dγ)
The gradient boosting algorithm outputs a sum of tree functions. The complexity of the
model is therefore determined by the depth parameters Dσ and Dγ, also called inter-
action depths [see 34, Section 10.11]. A zero depth tree corresponds to a constant tree
with no split, so that Dσ = 0 or Dγ = 0 yield models with constant scale or shape param-
eters, respectively. Since the extreme value index γ is notoriously difficult to estimate, it
is common in extreme value theory to assume a constant value γ(x) ≡ γ so that the case
Dγ = 0 is particularly important. A tree with depth 1, also called a stump, makes only
one single split on a single variable. As a result, Dσ = 1 (resp. Dγ = 1) corresponds to
an additive model in the predictors for σ(x) (resp. γ(x)). Trees with larger depth allow to
introduce interaction effects between the predictors of order equal to the depth parame-
ter. In practice, the depth parameter is quite hard to tune and we recommend to consider
depth no larger than 3, also because interactions of higher order are difficult to interpret.
Based on our experience, sensible default values are Dσ = 2 and Dγ = 1. But more inter-
estingly, cross-validation can be used to select the depth parameters. The left panel of
Figure 3.1 shows a typical cross-validation diagnostic in the context of the simulation
study detailed in Section 3.4. Here Bmax = 500 and depths parameter (Dσ,Dγ) = (1,0),
(1,1), (2,1) and (2,2) are considered. The plot shows that sensible choices are B ≈ 200
and (Dσ,Dγ) = (1,0) or (1,1) (more details given in Section 3.4). The histogram in the
right panel shows that, depending on the randomly simulated sample, B typically lies in
the range [100,250], where the deviance is relatively flat ((Dσ,Dγ) = (1,0) is fixed here).

LEARNING RATES (λσ,λγ)
As usual in gradient boosting, there is a balance between the learning rate and the num-
ber of trees. As noted in [50], multiplying the learning rate by 0.1 roughly requires 10
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Figure 3.1: Left panel: cross-validation deviance given by (3.13) against B for one random sample and depth
(Dσ,Dγ) = (1,0), (1,1), (2,1) and (2,2). Right panel: selected values of B for 1000 samples when (Dσ,Dγ) = (1,0)
is fixed. The design of the simulation study is Model 1 described in Section 3.4.

times more trees for a similar result. It is common to fix the learning rate to a small value,
typically 0.01 or 0.001, and to consider the tree number as the main parameter. Since in
our case we have two parallel gradient boosting procedures with different learning rates,
we reparameterize them as (λscale ,λr ati o) = (λσ,λσ/λγ). The balance described above
is expressed between B and λscale and we propose the default λscale = 0.01, leaving the
number of trees B as the primary parameter. The ratio of the learning rates is impor-
tant as γ generally requires stronger regularization than σ and ranges on smaller scales.
Therefore it is natural to choose λr ati o > 1. Often a sensible default for λr ati o falls in
between 5 and 10.

REMAINING TUNING PARAMETERS

The minimum leaf sizes Lσmi n ,Lγmi n and subsample fraction s play the role of regulariza-
tion parameters. The minimum leaf size makes sure that the splits do not try to isolate a
single high observation of the gradient and that the leaves contain enough observations
so that averaging provides a smoother gradient. Subsampling ensures that different trees
are fitted on different sub-samples, mitigating the correlation between trees; see [23] and
Section 10.12.2 of [34] for further discussion on the regularization effect of subsampling.
In practice, we do not recommend to optimize these parameters but rather to use the
sensible default parameters Lσmi n = Lγmi n = max(10,n/100) and s = 75%.

The parameter τ0 stands for the probability level of the intermediate quantile used
as threshold. Threshold selection is a long standing problem in extreme value theory
[e.g., 18, 19]. A higher threshold yields a better approximation by the GPD distribution
but fewer exceedances, leading to reduced bias and higher variance. Some guidelines
for threshold selection in practice are provided in Section 3.5, where we present an ap-
plication to precipitation forecast statistical post-processing.

3.3.2. TOOLS FOR MODEL INTERPRETATION
Contrary to a single tree, boosting models that aggregate hundreds or thousands of trees
are difficult to represent but diagnostic plots are available to ease the interpretation. We
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briefly discuss variable importance and partial dependence plots, which are straightfor-
ward modifications to our framework of the tools detailed in Section 10.13 of [34].

VARIABLE IMPORTANCE

Boosting is quite robust to the curse of dimensionality and often provides good results
even in the presence of high dimensional predictors and noise variables. Understanding
which predictors are the most important is crucial for model interpretation. Variable
importance is used for this purpose and we discuss here the permutation score and the
relative importance.

The permutation score helps to evaluate the impact of a predictor on the model de-
viance and is not specific to boosting. The relation between a predictor and the response
is disturbed by shuffling the values of this predictor and measuring the difference in the
deviance before and after shuffling. More precisely, for predictor X j , we define

I (X j ) =
n∑

i=1
`Zi

(
θ̂

(
X( j )

i

))
−

n∑
i=1

`Zi

(
θ̂ (Xi )

)
, (3.14)

where θ̂ is the estimator given in (3.12) and X( j )
1 , . . . ,X( j )

n denote the same input vectors
as X1, . . . ,Xn except that the j th components are randomly shuffled. A large permuta-
tion score I (X j ) indicates a strong effect of X j in the boosting model. Since the scores
are relative, it is customary to assign to the largest the value of 100 and scale the others
accordingly.

The relative importance is specific to tree based methods such as boosting or ran-
dom forests and uses the structure of the trees in the model. It is discussed for instance
in Section 10.13.1 of [34]. Recall that during the construction of the trees, the splits are
performed so as to minimize the residual sum of squares (RSS) of the gradient and each
split causes a decrease in the RSS. The more informative splits are those causing a large
decrease in the RSS. The relative importance of a given variable X j is obtained by consid-
ering all the splits due to this variable in the sequence of trees, and by summing up the
decrease in RSS due to those splits. Because we have two sequences of trees, we compute
relative importance of variable X j in the estimation ofσ and γ separately by considering
the sequence of trees (Tσ

b ) and (T γ

b ) respectively.

PARTIAL DEPENDENCE PLOT

Once the most relevant variables have been identified, the next attempt is to understand
the dependence between the predictors and the response. Partial dependence plots offer
a nice graphical diagnostic of the partial influence of a predictor X j on the outputs σ̂(x),
γ̂(x) or Q̂x(τ); see Section 10.13.2 of [34]. The partial dependence plot for σ̂ with respect

to X j is the graph of the function x 7→ 1
n

∑n
i=1 σ̂(X− j ,x

i ), where the vector X− j ,x
i is equal

to Xi except that the j th component has been replaced by x. Notice that dependence
between the predictors is not taken into account so that this is not an estimate of E[σ̂(X) |
X j = x], except if X j is independent of the other predictors. In the particular case when
an additive model is built, i.e., Dσ = 1, the partial dependence plot with respect to X j

is equal to the effect of the variable X j up to an additive constant. Partial dependence
plots with respect to several covariates can be defined and plotted similarly, at least in
dimension 2 or 3.
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3.4. SIMULATION STUDIES
To demonstrate the performance of our method, we conduct two numerical experi-
ments. We generate n independent samples with d covariates X = (X1, . . . , Xd ) distributed
from an independent uniform distribution on [−1,1]d , with (n,d) = (2000,40) or (5000,10),
depending on the complexity of the model. We aim to estimate the conditional quan-
tile function Qx(τ) corresponding to extreme probability levels τ ∈ {0.99,0.995,0.9995}.
We choose the level τ0 = 0.8 for the intermediate quantile and it is worthwhile to note
that the effective sample size n(1−τ0) for the gradient boosting step is then only 400 for
n = 2000.

The local smoothing based methods mentioned in the introduction [13, 26] become
cumbersome in our simulation setting because of the sparsity of data in high dimen-
sion. We compare our gbex method to two quantile regression approaches, the quan-
tile regression forest (qrf) from [45] and the generalized random forest (grf) from [1].
Moreover, we consider two existing methods from extreme value theory that use GPD
modeling of the exceedances. One is the classical estimator of extreme quantile without
using covariates, thus γ(x) ≡ γ and σ(x) ≡ σ, which we call the constant method. The
other one is the evgam method of [66] that assumes generalized additive models for γ(x)
and σ(x).

To evaluate the performance over the full predictor domain [−1,1]d we consider the
integrated squared error (ISE) defined for a fixed quantile level τ and the i th replication
of the data set by

ISEi =
∫

[−1,1]d

(
Q̂(i )

x (τ)−Qx(τ)
)2

dx, (3.15)

where Q̂(i )
x (τ) is the quantile estimated from the model. We use a Halton sequence, a low

discrepancy quasi-random sequence [e.g., 46, p. 29], in order to efficiently evaluate the
high dimensional integral in the ISE computation. Averaging over the R = 1000 replica-
tions, we obtain the mean integrated squared error (MISE).

Our first model is designed to check robustness of the methods against noise vari-
ables. This model is constructed in a similar way as the example studied in Section 5 of
[1] and it has a predictor dimension of d = 40, of which one covariate is signal and the
remaining are noise variables.

• Model 1: Given X = x ∈ R40, Y follows a Student’s t-distribution with 4 degrees of
freedom and scale

scale(x) = 1+ I(x1 > 0).

This is a heavy tailed model where the GPD approximation has a constant shape
parameter γ(x) ≡ 1/4 and the scale parameter is a step function in X1. More pre-
cisely,σ(x) =σ(τ0)(1+I(x1 > 0)) whereσ(τ0) is a multiplicative constant depending
on the threshold parameter τ0.

In our second model, we consider a more complex response surface where both the
scale and shape parameters depend on the covariates and interactions of order 2 are
introduced.
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• Model 2: Given X = x ∈ R10, Y follows a Student’s t-distribution with degree of
freedom df(x) depending on x1 through

df(x) = 7
(
1+exp(4x1 +1.2)

)−1 +3,

and scale parameter scale(x) depending on (x1, x2) through

scale(x) = 1+6ϕ(x1, x2),

whereϕ denotes the density function of a bivariate normal distribution with stan-
dard normal margins and correlation 0.9. The numerical constants are chosen so
that the GPD approximation of Y given X = x has parameters γ(x) = 1/df(x) in the
range [0.10,0.33] for x ∈ [−1,1]d , d = 10.

3.4.1. TUNING PARAMETERS AND CROSS VALIDATION

We generate samples of size n = 2000 and 5000, respectively from Model 1 and Model 2.
We set the following tuning parameters for gbex: the learning rate λscale = 0.01 and
the sample fraction s = 75% for both models; λr ati o = 15 for Model 1 and λr ati o = 7
for Model 2.

As discussed in Section 3.3.1, the number of trees B is the most important regular-
ization parameter and the depth parameters (Dσ,Dγ) determine the complexity of the
fitted model. Therefore, we investigate how these tuning parameters influence the per-
formance of our estimator in terms of MISE. Figure 3.2 shows the results for Model 1
(left panel) and for Model 2 (right panel). The curves represent the MISE of gbex as a
function of B for various depth parameters (Dσ,Dγ). The right panel clearly shows that
for Model 2 the choice (Dσ,Dγ) = (1,1) does not account for the model complexity ade-
quately, which leads to a high MISE. Indeed, boosting with depth one tries to fit an ad-
ditive model but the scale parameter of Model 2 depends on (X1, X2) in a non-additive
way. On the other hand, for Model 1, which is an additive model with the optimal depth
(Dσ,Dγ) = (1,0), the curves suggest that assuming unnecessary complexity of the model
might lead to suboptimal behavior of the estimator: the choice (2,1) yields higher MISE
than the other two choices and the MISE stays low for a shorter range of B . In general,
higher depths help the model to adapt the data faster but then overfitting is prone to oc-
cur more rapidly when B increases. The horizontal dashed lines in Figure 3.2 represent
the resulting MISE of our estimator when B is chosen via cross-validation with deviance
loss given in (3.13), with K = 5 folds and 10 replications. The plots confirm that the data
driven choice of B results in near optimal MISE for fixed depth parameters (with dashed
horizontal lines close to the minimum of the curve with the same color). We addition-
ally apply cross-validation to select both B and (Dσ,Dγ) simultaneously. The resulting
MISE is represented by the black dashed line, which is very close to the minimum of
all the dashed lines. Overall, the results confirm the good performance of the proposed
cross-validation procedure.

For the rest of the simulation study, we set (Dσ,Dγ) = (1,1) for Model 1 and (Dσ,Dγ) =
(3,1) for Model 2 and choose B with cross-validation.
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Figure 3.2: The MISE for Model 1 (left panel) and Model 2 (right panel) of the gbex extreme quantile estimator
with probability level τ= 0.995 as a function of B for various depth parameters (curves); the MISE of the gbex
estimator with adaptive choice of B for various depth parameters (horizontal dashed lines); the MISE of the
gbex estimator with both tree number and depth parameters selected by cross-validation (black dashed line).

3.4.2. COMPARISON WITH DIFFERENT METHODS

The comparison of our gbex method to the other three approaches qrf, grf and constant,
is presented in Figure 3.3. The results for Model 1 and Model 2 are given in the first and
second row, respectively. For the probability level τ = 0.99, 0.99 and 0.9995 in the left,
middle and right column, the figure shows the boxplots of ISE defined in (3.15) and the
MISE represented by the vertical black line. The MISE grows as the probability level in-
creases for all methods, however gbex clearly outperforms the other three approaches
with a much smaller MISE and a much lower variation of ISE. When the probability level
τ is close to or larger than (1−1/n) (right column), both grf and qrf lead to extremely
large ISE outliers so that the ISE mean is larger than the third quartile (black line out-
side the box). Some extreme outliers of ISE are left out of the boxplots to have a clear
comparison.

Because Model 2 does not satisfy the additive model assumption of evgam, the com-
parison between evgam and gbex is based on data generated from Model 1 only. Fig-
ure 3.4 presents the ISE and MISE of evgam and gbex for probability level τ = 0.995. To
have a fair comparison, we use the same forest based estimation of quantile Q̂x(τ0) for
the intermediate threshold. Because of the computational burden and numerical in-
stability of evgam in high dimensions, we have restricted the dimension to d ≤ 10 for
this method, while gbex is still considered with d = 40. For evgam, the boxplots show a
steady increase of the MISE with respect to the dimension and we can see that the MISE
of gbex with d = 40 is similar to the MISE of evgam with d = 4. This clearly demonstrates
the robustness of gbex against the curse of dimensionality and noise variables, which is
a prominent advantage of tree based methods.

3.4.3. DIAGNOSTIC PLOTS

We finally look at the model interpretation diagnostics. Figure 3.5 shows the permuta-
tion importance scores defined in (3.14) for both models, based on 1000 replications.
The boxplots clearly show that this score is able to identify the signal variable(s). Note
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Figure 3.3: Boxplot of ISE based on 1000 replications for the four quantile estimators (gbex, grf, qrf and
constant) at different probability levels τ= 0.99 (left), 0.995 (middle) and 0.9995 (right) for Model 1 (top) and
Model 2 (bottom). Some outliers of grf and qrf are left out for a clearer comparison. The black vertical lines
indicate the MISE.

Figure 3.4: Boxplots of ISE based on 1000 replications of Model 1 for evgam estimator in dimension d =
2,4,6,8,10 (blue) and gbex estimator in dimension d = 40 (red) at probability levels τ = 0.995. The vertical
black lines indicate the MISE. Note that many more noise variables are used for the experiment with gbex,
showing its robustness against the curse of dimensionality.

that there are 39 noise variables for Model 1 and 8 for Model 2. The scores of the noise
variables behave all similarly and only a limited number are displayed. For Model 2, the
permutation score is higher for X1 than for X2, due to the fact that X1 contributes to both
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shape and scale functions while X2 only contributes to the scale function.

Figure 3.5: Boxplots of permutation scores defined in (3.14) for X j , j = 1, . . . ,5, based on 1000 samples. Left
panel: Model 1, where only X1 contains signal. Right panel: Model 2, where only X1 and X2 contain signal.

The left panel of Figure 3.6 presents a typical partial dependence plot (Section 3.3.2)
for σ̂ based on one random sample from Model 1. This plot clearly suggests that σ̂ is a
step function of X1 and does not depend on the noise variables. The partial dependence
plot for γ̂ indicates that the shape does not change with respect to any of the covariates.
For this model, the partial dependence plots are in perfect agreement with the simula-
tion design. For Model 2, the left panel of Figure 3.7 shows the partial dependence plot
of the scale parameter with respect to X1 and X2. We see that the model detects the right
pattern of larger values on the diagonal and in the center. The right panel shows that the
model identifies the impact of X1 on the shape parameter while the partial dependence
plot of the other variables is fairly constant, again in agreement with the simulation de-
sign.

Figure 3.6: Partial dependence plots of σ̂ (left panel) and of γ̂ (right panel) with respect to X j , j = 1, . . . ,5, based
on one random sample of Model 1.
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Figure 3.7: Left panel: partial dependence plots of σ̂ with respect to (X1, X2). Right panel: partial dependence
plot of γ̂ with respect to X j , j = 1, . . . ,5. Both experiments corresponds to one random sample of Model 2.

3.5. APPLICATION TO PRECIPITATION FORECAST
Extreme precipitation events can have disruptive consequences on our society. Accurate
predictions are vital for taking preventive measures such as pumping water out of the
system to prevent flooding. We apply our gbex method to predict extreme quantiles of
daily precipitation using the output of numerical weather prediction (NWP) models.

Weather forecasts rely on NWP models that are based on non-linear differential equa-
tions from physics describing the atmospheric flow. The solutions to these equations
with respect to initial conditions and parametrizations of unresolved processes form
a forecast that is deterministic in nature. Introducing uncertainty in these initializa-
tions yields an ensemble forecast that consists of multiple members. In this application,
we use the ensemble forecast from the European Centre for Medium-Range Weather
Forecasts (ECMWF) as covariates in gbex to predict the daily precipitation. Using NWP
output for further statistical inference to improve forecasts is known as statistical post-
processing.

3.5.1. PRECIPITATION DATA
Our data set consists of ECMWF ensemble forecasts of daily accumulated precipitation
and the corresponding observations at seven meteorological stations spread across the
Netherlands (De Bilt, De Kooy, Eelde, Schiphol, Maastricht, Twente and Vlissingen)1. We
use about 9 years of data, from January 1st, 2011, until November 30th, 2019, with sample
size n = 3256. We fit separate models for each station with response variable Y equal to
the observed precipitation at the station between 00 UTC and 24 UTC.

As for the covariates, we use ECMWF ensemble forecasts of daily accumulated pre-
cipitation that is computed the day before at 12UTC. The ensemble forecast contains
51 members. For efficiency, we use two summary statistics, namely the standard de-
viation of the ensemble members and the upper order statistics (the maximum of the
ensemble members). Because most part of the Netherlands is flat and the distance be-

1Observed daily precipitation can be obtained from
http://projects.knmi.nl/klimatologie/daggegevens/selectie.cgi
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tween stations is not large, we include the ensemble summary statistics of all stations as
covariates for the model of each station. To account for seasonality, we additionally con-
sider the sine and cosine with a period of 365 for the day of the year. The total covariate
dimension is d = 7×2+2 = 16, for each model. We denote our data as (Y (l )

i ,Xi ), where
Xi ∈ R16, i = 1, . . . ,n = 3256 and l = 1, . . . ,7. For station l , we apply the gbex Algorithm 2
to {(Y (l )

i ,Xi ), i = 1, . . . ,n} to obtain estimates of Q(l )
X (τ).

3.5.2. MODEL FITTING

For model fitting, we have observed in a preliminary analysis that the output is sensitive
to the initial value of (γ,σ) and we propose a specific strategy that provides better results
than the default initialization. We consider a common initial value for the shape γ for
all the stations and different initial values of σ for the different stations, which leads to
θ0 = (γ,σ1, . . . ,σ7). More precisely, we obtain the initial values by optimizing the log-
likelihood function

L(θ0) =
7∑

l=1

n∑
i=1

[
(1+1/γ) log

(
1+γY (l )

i − c

σl

)
+ logσl

]
I{Y (l )

i −c>0},

where c is a large threshold chosen such that the estimate of γ becomes stable.

We apply gbex as detailed in Algorithm 2 with τ0 = 0.8 for each model. We choose
all tuning parameters except for B to be the same for the seven models, in such a way to
achieve the overall best combined deviance score for all stations. This prevents overfit-
ting for a specific station and it results in the following choices:
(Dσ,Dγ) = (2,1), (λscale ,λr ati o) = (0.01,12), s = 50%,and (Lσmi n ,Lγmi n) = (15,45). Figure
3.8 shows the cross-validated deviance as a function of the number of trees B for differ-
ent depth levels at two stations. The deviance behaves quite similar for the two stations
and we choose (Dσ,Dγ) = (2,1) for all stations. The optimal B for each station is then
chosen as the minimizer of the cross-validated deviance.

Figure 3.8: Cross-validation deviance given by (3.13) against B for the data at stations Eelde (left) and Schiphol
(right) in the application in Section 3.5.
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3.5.3. RESULTS
We first look into the variable importance scores for the fitted models and focus on the
relative importance to understand which variables affect the scale and shape parame-
ters, respectively. Figure 3.9 shows the relative importance for γ andσ. It is interesting to
note that for the shape γ, the day of year is the most important variable in six out of
seven models. This motivates to investigate the seasonality pattern in the extreme pre-
cipitation. The partial dependence plots of γ̂(l ) (left panel) and Q̂(l )

X (0.995) (right panel)
with respect to the day of year are presented in Figure 3.10 for all stations. They in-
dicate that the tail of the precipitation is heavier in summer and autumn than in winter
and spring. The curves in the left panel resemble step functions and higher values of γ̂
correspond to June, July and August for five stations. For the other two stations Twente
and Vlissingen, it is shifted towards autumn.

Figure 3.9: Relative variable importance score for γ (left) and σ (right). For each model, the scores are normal-
ized such that the maximum score is 100.

Figure 3.10: Partial dependence plots of γ̂(l ) (left panel) and Q̂(l )
X (0.995) (right panel, in mm) with respect to

day of year.

Another relevant question concerns the contribution of ensemble statistics of other
stations in forecasting the extreme precipitation of a specific location. To this end, we



3

50 3. GRADIENT BOOSTING EXTREMES

Figure 3.11: Normalized permutation scores of ensemble statistics per location for three models: Schiphol
(left), De Bilt (middle), Eelde (right). The black circle indicates the station for which the model is fitted. From
North to South, the stations are: Eelde, De Kooy, Twente, Schiphol, De Bilt, Vlissingen, Maastricht.

add the permutation scores of ensemble standard deviation and ensemble upper order
statistics per station, resulting in seven scores for each model. We then normalize these
scores such that the maximum score is 100. The results for three stations are visualized
in Figure 3.11. First, quite surprisingly, when forecasting the extreme precipitation at
Schiphol (left plot), the ensemble forecast relies on the information from Vlissingen and
De Kooy even more than the information at Schiphol, which might be explained by a
coastal effect. Similarly, the model at De Bilt (middle plot) uses the information from
Schiphol and Vlissingen. For other stations like Eelde (right plot), the own information
of the station is the most important. The maps of the other four stations (De Kooy, Maas-
tricht, Vlissingen and Twente) are very similar to that of Eelde.

We finally assess the goodness of fit of our GPD model and produce QQ-plots com-
paring the empirical and theoretical quantiles of exceedances above threshold. We use a
transformation to the exponential distribution to compare observations stemming from
different stations with different covariate values. More precisely, denoting by Z (l )

i the

i th exceedance above threshold at station l , then if our model is well-specified Z (l )
i ∼

GPD
(
σ̂(l )(Xi ), γ̂(l )(Xi )

)
, and therefore

1

γ̂(l )(Xi )
log

(
1+ γ̂(l )(Xi )Z (l )

i

σ̂(l )(Xi )

)
∼ Exp(1). (3.16)

The corresponding QQ-plots graphically assess the goodness of fit and we can see in Fig-
ure 3.12 that the gbex model (left panel) fits the data well at all stations, outperforming
the constant model (right panel).

3.6. SUMMARY AND DISCUSSION
In this chapter, we have developed a gradient boosting procedure for extreme quan-
tile regression that can handle non-linear complex problems and relatively high dimen-
sional feature space. The tail distribution of the response Y is modelled with a Gen-
eralized Pareto Distibution (GPD), the parameters of which depend on the covariate X.
Based on exceedances over high threshold, gradient boosting produces a tree ensemble
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Figure 3.12: QQ-plots based on (3.16) for the estimated models at seven stations via gbex (left panel) and via
the constant method (right panel).

estimating the GPD parameters using the deviance (negative log-likelihood) as the ob-
jective function to minimize. The whole procedure requires several tuning parameters
and we have proposed cross-validation for tuning the key parameters and suggested de-
fault for others. Our method borrows strengths from two fields: machine learning and
extreme value theory. The performance and advantages of our method is demonstrated
on several numerical experiments. First, the robustness against the curse of dimension
and noise variables is evidenced and the diagnostic tools are able to identify the signal
variables. Second, the tree ensemble is able estimate non-linear and non-monotonic re-
sponse surfaces. Third, it outperforms two machine learning methods and two classic
extreme value theory methods, showing the advantage of combining both approaches.
The method can be applied to complex real-worl data sets and we shown its interest for
the post-processing of extreme precipitation forecast in the Netherlands.

The literature about extreme quantile regression with high dimensional covariates
is rather limited and our methodological contribution fills in a gap in this area. A very
natural yet challenging direction for future research is the theoretical property of our
gradient boosting procedure. A consistency result for large samples is desirable but we
note that all results in this direction in the existing literature on gradient boosting asume
the convexity of objective function, see e.g. [7]. In our approach, the GPD deviance
used as objective function is not convex in the shape parameter γ, making the theorical
properties of gradient boosting very hard to address. Substantial research work would
be needed to address this issue which remains outside the scope of the present chapter.

3.A. LIKELIHOOD DERIVATIVES

The gradient boosting algorithm for GPD modeling makes use of the first and second
order derivatives of the negative log likelihood `z (θ), θ = (σ,γ) and z > 0. They are re-
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spectively given by

∂`z

∂σ
(θ) = 1

σ

(
1− (1+γ)z

σ+γz

)
,

∂`z

∂γ
(θ) =− 1

γ2 log
(
1+γ z

σ

)
+ (1+1/γ)z

σ+γz
,

and

∂2`z

∂σ2 (θ) = 1

σ(σ+γz)

( z

σ
+ z −σ
σ+γz

)
,

∂2`z

∂γ2 (θ) = 2

γ3 log
(
γ

z

σ
+1

)
− 2z

γ2(σ+γz)
− (1+1/γ)z2

(σ+γz)2 .
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INTERPRETABLE RANDOM FOREST

MODELS THROUGH FORWARD

VARIABLE SELECTION

Random forest is a popular prediction approach for handling high dimensional covari-
ates. However, it often becomes infeasible to interpret the obtained high dimensional and
non-parametric model. Aiming for obtaining an interpretable predictive model, we de-
velop a forward variable selection method using the continuous ranked probability score
(CRPS) as the loss function. Our stepwise procedure leads to a smallest set of variables
that optimizes the CRPS risk by performing at each step a hypothesis test on a significant
decrease in CRPS risk. We provide mathematical motivation for our method by proving
that in population sense the method attains the optimal set. Additionally, we show that
the test is consistent provided that the random forest estimator of a quantile function is
consistent.

In a simulation study, we compare the performance of our method with an existing vari-
able selection method, for different sample sizes and different correlation strength of co-
variates. Our method is observed to have a much lower false positive rate. We also demon-
strate an application of our method to statistical post-processing of daily maximum tem-
perature forecasts in the Netherlands. Our method selects about 10% covariates while re-
taining the same predictive power.

4.1. INTRODUCTION
In the past decades, random forests [8] have gained traction in many areas of applica-
tion simply because random forests provide good predictive power. A random forest
combines several trees, each obtained by recursively making axis-aligned splits in the
covariate space until a stopping criterion is reached. The initial algorithm for random

Parts of this chapter have been submitted to the Journal of Applied statistics.
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forests in [8] provides a good approach for conditional mean regression and classifica-
tion. Later on, the approach was extended to estimate quantiles by [45] and further im-
provements were made in [1], which introduced a quantile based splitting criterion. Due
to the results in [45] and [1], random forests are also used for estimating the conditional
quantile function.

These quantile forests have been used in statistical post-processing to obtain prob-
abilistic forecasts, e.g. [56], [55] and [64]. Post-processing is used as a second step in
weather forecasting following a first step of physical modelling, see [35]. This first step
entails a numerical weather prediction (NWP) model that uses non-linear partial dif-
ferential equations of atmospheric flow on a spatial and temporal grid. Together with
parametrizations of unresolved physical processes within the grid cells and an estimated
initial condition, which is obtained from observational data and a so called first guess
(i.e. a forecast for that time based on a previous NWP model run), the NWP model ap-
proximates the solution to the partial differential equations. An ensemble prediction
system (EPS) adds uncertainty quantification to the NWP model by computing an en-
semble of forecasts for perturbed initial conditions and/or the parametrization schemes
[35].

Generally there is still a need for bias correction and calibration of numerical weather
forecasts, which motivates the second step: statistical post-processing. Historical fore-
casts together with the corresponding observations are used in post-processing to esti-
mate their statistical relationship. This relationship can then be used in order to calibrate
future forecasts.

When post-processing forecasts of a weather phenomenon, a better performance is
often attained by adding more information from the NWP models as predictors. For
example, [64] showed that the post-processed precipitation forecasts perform substan-
tially better when indices of atmospheric instability from the NWP models are used in
modelling the statistical relation. The improvement is due to the fact that the indices
of atmospheric instability help to distinguish between different types of precipitation. A
full day of drizzle might accumulate to the same amount as a quick shower. However,
the distributions of precipitation under these two different weather conditions are very
different. Incorporating NWP forecasts of other weather phenomena enables the model
to capture such differences.

A natural question is now: “ Which additional forecasts contain useful information
on the phenomenon that one is post-processing?" The set of potential forecasts to in-
clude in the statistical model is generally very large and furthermore they exhibit large
correlations. In practice, including too many variables often leads to a decrease in sta-
tistical efficiency, and more importantly the model becomes hard to interpret. For a
practitioner, it is important to understand which variables play key roles in the statis-
tical model and how they calibrate the EPS forecast. This motivates variable selection
procedures in statistical post-processing.

A random forest is generally seen as a method that deals rather well with high dimen-
sional covariates. This property comes from the fact that in the tree fitting algorithm, a
random forest chooses, the split variables and split points, in a greedy way based on a
certain criterion, e.g. the variance. This is often rather effective in the beginning of the
tree fitting as many observations are split, but deep down in the tree there are fewer
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observations which makes the splitting criterion subject to higher variances. Therefore
global variable selection methods are considered in the literature to improve statistical
efficiency and interpretation of the random forest model.

Variable selection in random forests is mainly done in terms of two types of impor-
tance measures. The first type calculates the decrease in impurity of a split made in a
tree. In [43] consistency of these measures is shown on fully randomized trees. But in
practice in a random forest setting these impurity measures are shown to exhibit biases
([54]). The second type is the permutation measure introduced in [8]. This measure
computes how much the predictive performance decreases by randomly permuting one
single predictor, which breaks the relation between response and the predictor. A pop-
ular approach is to perform a backward selection based on the permutation measures,
where the model with the best predictive performance is chosen, see e.g. [28], [21] and
[33].

Correlation between predictors has a large effect on the permutation importance
scores. An initial approach of dealing with this is to consider conditional importance
scores, [53]. This has the downside that in some way the conditioning variable has to
be chosen. A more precise analysis of the effect of correlation on permutation measures
is done in [33], where they conclude that a backward selection is better able to handle
correlation between predictors than other strategies incorporating variable importance
measures. We show in our simulation study that although the correct variables are of-
ten selected by the backward selection, there is no control on the rate of selected noise
variables, i.e. the false positives.

In this chapter, we propose a new method of selecting variables with random forests.
By using the so-called continuous ranked probability score as the loss function (cf. (4.5)),
we are able to select variables that are informative for the entire conditional distribu-
tion instead of just for the conditional mean. The procedure estimates the predictive
risk based on the so-called out-of-bag samples (cf. Section 4.3.2), which is similar to
leave-one-out cross validation. Finally, we introduce a hypothesis test for each selection
step to test whether a variable significantly decreases the predictive risk. We show by a
detailed simulation study that our method controls the false positive rate much better
than the backward selection method introduced in [33], even in the presence of high
correlations.

The outline of the chapter is as follows. In Section 4.2, we give a detailed description
of the mathematical set-up of the variable selection procedure. Then in Section 4.3, we
give a small introduction to random forests and show how the variable selection can be
applied to the random forest set-up. A comparison with backward selection based on
permutation measures is made in Section 4.4. In Section 4.5, we apply the method to a
practical example of post-processing maximum temperature forecasts and compare it to
a standard method in post-processing. Finally, we end with a discussion in Section 4.6.

4.2. FORWARD SELECTION
In this section, we describe the mathematical set-up of our forward variable selection
method. We provide the intuition of the procedure together with some theoretical mo-
tivation. For now, we consider a pair of random observations (X,Y ), where X ∈ Rp and
Y ∈R. Let J ⊂ {1, . . . ,d} denote a set of indices corresponding to the entries of the covari-
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ate vector X and XJ denote the vector with the entries from X corresponding to J .
Let FY |XJ denote the conditional distribution function of Y given XJ . And, let

L(Y ,XJ ,FY |XJ ) denote a loss functional measuring the loss between the observation Y ,

the quantity that we want to predict, and FY |XJ , e.g. the squared error loss (Y −∫
zdFY |XJ (z|XJ ))2.

In this section, we work from the population perspective and use exact distribution func-
tions. The next section will be concerned with the estimation of the conditional distri-
butions using random forests.

Corresponding to the loss functional, we can now define a risk functional for the
subset of variables corresponding to J ,

R(J ) = EY ,X[L(Y ,XJ ,FY |XJ )]. (4.1)

In our approach an ideal variable selection procedure selects the set of variables cor-
responding to J that minimize this risk functional. Define mR = minJ⊂{1,...,d} R(J ). Then,
the optimal set of variables denoted by XJ∗ is such that

R(J∗) = mR and |J∗| = min{|J | : R(J ) = mR } (4.2)

where |J | denotes the cardinality of J . The goal is to identify the smallest model that
reaches an optimal risk. This is desirable when it comes to estimating the conditional
distribution of Y . It is important to note that J∗ is not necessarily unique. For exam-
ple two collinear covariates X1 and X2 both contain the same information of Y , then
including any of the two covariates would result in the same expected loss.

In order to obtain J∗, one could evaluate R(J ) for all 2d possible sets, which is often
computationally infeasible. Instead we propose a forward variable selection approach
as follows. We construct a sequence of length d +1 of nested sets J j for j = 0, . . . ,d where
J0 =; and

J j = J j−1 ∪
{

argmin
q∉J j−1

R
(

J j−1 ∪ {q}
)}

. (4.3)

Our proposed forward selection procedure selects an optimal set J o such that it is the
smallest set attaining the minimum risk among J j , j = 0, . . .d . More precisely,

J o = Jmin{ j :R(J j )=min0≤i≤d R(Ji )}. (4.4)

From this point on in the chapter, we will choose the loss function equal to the Con-
tinuous Rank Probability Score (CRPS), see [30], defined by,

L(Y ,XJ ,FY |XJ ) =
∫ ∞

−∞
(
I (Y ≤ z)−FY |XJ (z|XJ )

)2
dz. (4.5)

The CRPS compares the distribution FY |XJ with the ideal deterministic forecast, of which
the distribution function equals the step function at the observation Y . The CRPS is a
proper scoring rule for a large class of distribution functions; see Section 4.2 in [30].

In the theorem below we show that under the assumption of independent covariates,
the set J o and J∗ coincide.
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Theorem 5. Let X1, . . . , Xd and ε be independent random variables. Let h :R|J∗|+1 →R be
a real valued measurable function and define Y = h(XJ∗ ,ε), where J∗ ⊆ {1, . . . ,d}. Assume
that E[Y 2] < ∞, and for any I ( J ⊆ J∗, there exists a set S ⊆ R with positive Lebesgue
measure such that E[I (Y ≤ z)|XJ ] is not σ(XI ) measurable for all z ∈ S. Then J∗ is the
unique subset of {1, . . . ,d} satisfying (4.2), and J 0 = J∗.

Proof. Let (Ω,A ,µ) denote the probability space supporting X1, . . . , Xp and ε. Define the
standard inner product on L2(Ω,A ,µ) by (Z1, Z2) = E(Z1Z2), for any random variables Z1

and Z2 on (Ω,A ,µ). Then L2(Ω,σ(X1, . . . , Xp ,ε),µ) becomes a Hilbert space, where the
conditional expectation E(Z |XJ ) is the orthogonal projection of Z onto the closed linear
subspace L2(Ω,σ(XJ ),µ). Now we have

R(J ) =
∫ ∞

−∞
E
[(

I (Y ≤ z)−FY |XJ (z|XJ )
)2

]
dz

=
∫ ∞

−∞
E
[(

I (Y ≤ z)−E[I (Y ≤ z)|XJ ]
)2

]
dz

=:
∫ ∞

−∞
g J (z)dz.

As the conditional expectation equals the orthogonal projection, for any z ∈R,

g J (z) = min
G∈σ(X J )

E[(I (Y ≤ z)−G)2]. (4.6)

Therefore, for any z ∈R, if J1 ⊂ J2, we have

g J1 (z) ≥ g J2 (z). (4.7)

This implies that R(J1) ≥ R(J2).
Next, note that if J2 = J1 ∪ { j } and j ∉ J∗, then for any z ∈R,

g J1 (z) = g J2 (z). (4.8)

This is because E[I (Y ≤ z)|XJ2 ] = E
[
E[I (Y ≤ z)|XJ1 ]

∣∣XJ2
] = E[I (Y ≤ z)|XJ1 ] by the in-

dependence of Y and X j and the independence between X j and the other covariates. In
this case R(J1) = R(J2).

Finally, we show that if J2 = J1 ∪ { j }, where j ∈ J∗ then R(J1) > R(J2). We prove by
contradiction. If not, then R(J1) = R(J2), which means in view of (4.7) that g J1 (z) = g J2 (z),
for all z ∈R\C , where C has zero Lebesgue measure.

From here we denote I (Y ≤ z) by Iz to simplify notation. Expanding the squares and
using the tower property of conditional expectation we see that

g J1 (z)− g J2 (z) = E
[(

Iz −E[Iz |XJ1 ]
)2 − (

Iz −E[Iz |XJ2 ]
)2

]
= E[−2IzE[Iz |XJ1 ]+E[Iz |XJ1 ]2 +2IzE[Iz |XJ2 ]−E[Iz |XJ2 ]2]
= E[

E
[−2IzE[Iz |XJ1 ]+E[Iz |XJ1 ]2 +2IzE[Iz |XJ2 ]−E[Iz |XJ2 ]2∣∣ XJ2

]]
= E[

(E[Iz |XJ1 ]−E[Iz |XJ2 ])2]= 0.
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From this we conclude that E[Iz |XJ1 ] = E[Iz |XJ2 ] for all z ∈ R \ C . This implies that
E[Iz |XJ2 ] is σ(X J1 ) measurable which contradicts our assumption, hence R(J1) > R(J2).

We can now observe that the forward sets are built by adding variables from J∗ until
all variables of J∗ have been added, therefore J 0 = J∗.

Remark 5. The assumption : E[I (Y ≤ z)|XJ ] is not σ(XI )-measurable for any I ( J ⊆ J∗,
is used to prove the uniqueness of J∗. As we know that R(J∗) = R(J∗∪ { j }) for j ∉ J∗, there
are many sets, which have minimal risk in population sense. The assumption essentially
ensures that J∗ does contain only indices j such that the function h is not constant for x j

almost everywhere with respect of the distribution of X .

Remark 6. The choice of the CRPS loss function is motivated by our application. Though
for different loss functions L that focus on a specific part of the conditional distribution,
the procedure explained in this section could still be applied.

4.3. FORWARD SELECTION USING RANDOM FORESTS
We use a random forest to estimate the conditional distribution function FY |XJ and the
risk. Now, we make a little excursion to explain the random forest algorithm. We follow
the tree construction algorithm proposed in [60] and the extension for quantile estima-
tion from [1]. We choose this approach because it is the only approach that makes splits
based on a quantile criterion, additionally in [1] asymptotic normality for the quantile
estimates is established.

4.3.1. INTERMEZZO: RANDOM FORESTS
Denote the data set by (X1,Y1), . . . , (Xn ,Yn). A random forest is defined as a collection of
trees. Each tree T is obtained by recursively splitting a set of observations by making
axis-aligned splits in the covariate space, meaning a split is made on a single covari-
ate value at a time. As a result, every tree induces a partitioning of the covariate space
in possibly semi-infinite hyper rectangles. Denote the conditional quantile function by
QY |X(τ|·), where τ ∈ (0,1) denotes a probability level. In this section we focus on fit-
ting a forest in order to estimate the function QY |X(τ|·). The estimation procedure for
QY |XJ (τ|XJ ) works exactly the same by fitting a forest based on {(XJ

1,Y1), . . . , (XJ
n ,Yn)}.

Recurrent splits are made starting with parent node P , a node in the current partition,
creating two child nodes C1 and C2, such that P = C1 ∪C2 and C1 ∩C2 = ;. This split
should be informative with respect to QY |X(τ|·) and is chosen to maximize,

e(C1,C2) = nC1 nC2

nP
(QY |X(τ|X ∈C1)−QY |X(τ|X ∈C2))2, (4.9)

where nP , nC1 , nC2 are the number of observations Xi in each node. In practice this
makes the the algorithm very slow as it requires the computation of two quantiles for
each possible split. Instead in [1] a relabelling step is proposed and defined as I(Yi >
QY |X(τ|X ∈ P )) for the τ quantile. Now a standard regression split, as used in a standard
random forest [8], is made on the labels. This means to maximize the squared difference
between the average label in both child nodes.

The trees fitted in [60] and [1] are called honest trees and are slightly different from
the standard structure of tree fitting. A tree is fit by first sub-sampling a set of indices
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from {1, . . . ,n} of size s << n and then randomly splitting this sub-sample in two sets K

and J both of size s/2 each. Recursive splits of Rd are then made based on criterion
(4.9), with data points (Yi ,Xi ) : i ∈K . The tree becomes honest by removing all the data
points indexed by set K and using only the data points indexed by set J for estimation
of QY |X(τ|x) for a new observations X.

A random forest is then obtained by fitting B trees. Denote by lb(X) the leaf node of
tree b in which X falls. Then for 1 ≤ i ≤ n, the weight for (Xi ,Yi ) induced by the bth tree
is given by,

wi ,b(X) = I(i ∈J & Xi ∈ lb(X))∑
j∈J I(X j ∈ lb(X))

, (4.10)

where 0
0 = 0. The forest weights are obtained by averaging the tree weights over the B

trees, wi (x) = 1
B

∑B
b=1 wi ,b(X). An estimate of Q̂Y |X is then given by the locally weighted

estimated quantile,

Q̂Y |X(τ|x) = argmin
θ

n∑
i=1

wi (x)ρτ(Yi −θ), (4.11)

with ρτ(u) = u(τ−I(u < 0)) the quantile check function. Note that the structure is similar
to kernel regression, but instead of a deterministic kernel with bandwidth h the weights
are determined by the data via the forest. Random forests are sometimes called adaptive
nearest neighbour estimators for this reason.

In the variable selection procedure we aim to select variables that are predictive for
the conditional distribution. Therefore, instead of building random forests with respect
to a single τ quantile, consider a sequence of quantiles 0 < τ1, . . . ,τK < 1. This needs a
different type of relabelling than for a single quantile as explained above. They define
the relabelling then by,

Zi =
K∑

k=1
I (Yi ≤ Q̂Y |X(τk |X ∈ P )).

The best split is then chosen to maximize the following multi class classification rule:

ê(C1,C2) =
∑K

k=1

[∑
Xi∈C1 I (Zi = k)

]2

nC1

+
∑K

k=1

[∑
Xi∈C2 I (Zi = k)

]2

nC2

.

4.3.2. ESTIMATION OF PREDICTIVE LOSS
The main quantity in the theoretical framework from Section 4.2 is the CRPS risk.To
make use of the random forest quantile estimator, we use an equivalent expression of the

CRPS loss (4.5), given that the second moment of FY |XJ exists,
∫ ∞
−∞

(
I (Y ≤ z)−FY |XJ (z|XJ )

)2
dz =

2
∫ 1

0 ρτ(Y −QY |XJ (τ|XJ ))dτ. The equivalence of these two definitions is shown in the ap-
pendix. Plugging in the estimated quantile function, we obtain the following targeted
loss in the estimation context:

L(Y ,XJ ,Q̂Y |XJ ) = 2
∫ 1

0
ρτ(Y −Q̂Y |XJ (τ|XJ ))dτ. (4.12)
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Here we denote Q̂Y |XJ as the random forest estimator of the conditional quantile func-

tion with respect to the dataset {(XJ
1,Y1), . . . , (XJ

n ,Yn)} and with two arguments, a proba-
bility level τ and the covariate vector XJ .

A naive way to estimate the expected loss (that is the expectation of (4.12)), would be
considering

2

n

n∑
i=1

∫ 1

0
ρτ(Yi −Q̂Y |XJ (τ|XJ

i ))dτ.

However, this would lead to over-fitting because the training set (data for estimating
QY |XJ ) are the same as the testing set (data for estimating the expectation). This problem
can be circumvented by using so called out-of-bag samples as test set.

The out-of-bag samples for the bth tree are defined as the samples that are not used
for generating the tree. For each observation (XJ

i ,Yi ), a sub forest Fi is defined by Fi =
{Tb : i ∉ (Kb ∪Jb)}. Namely, this sub forest consists of trees for which (XJ

i ,Yi ) is out-of-
bag. Observe that the number of trees in Fi is random and hence not necessarily the
same for all i . The expected number of trees for each sub forest is B

(
1− s

n

)
.

We use the sub forest Fi to estimate the conditional quantile function and denote it
with Q̂Fi

Y |X(τ|XJ ). Since the trees in sub forest Fi do not use observation (XJ
i ,Yi ), we use

this quantile estimator to evaluate the CRPS loss for (XJ
i ,Yi ). Doing this for all observa-

tions, we obtain the estimated CRPS risk given by,

R̂(J ) := 2

n

n∑
i=1

∫ 1

0
ρτ(Yi −Q̂Fi

Y |XJ (τ|XJ
i ))dτ. (4.13)

In the sequel, we write Q̂Fi

Y |XJ (τ|XJ
i ) = Q̂Fi (τ|XJ

i ) for simplicity.

This out-of-bag procedure for estimating risk has similarities to leave-one-out cross
validation. For validating the i th observations we use all trees which do not use the
i th observation. The difference is that sub forests have in expectation the same size,
but not exactly. Computationally the out-of-bag sample approach is also much faster
compared to leave-one-out cross validation. Note that a tree has n−s out-of-bag samples
and hence the tree is used is used in n − s sub-forests. On the other hand leave one out
cross validation does not reuse trees and estimates a new forest for each element in the
summation of (4.13).

4.3.3. ONE STEP FORWARD

The forward variable selection sequentially adds variables such that the predictive loss
is minimized. We here explain how each step is performed. Recall that for a index set
J , the estimated risk R̂(J ) is given by (4.13). Suppose that we have selected the first j −1
variables with indices in Ĵ j−1. Then the j th variable X î j

is selected based on

î j = argmin
q∉ Ĵ j−1

R̂( Ĵ j−1 ∪ {q}). (4.14)

and Ĵ j = Ĵ j−1 ∪ {î j }. The procedure of a single step forward is detailed in Algorithm 3.
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Algorithm 3: A forward step

Result: î , R̂(J ∪ {q}) : q ∉ J
Define data (Y1,X1), . . . (Yn ,Xn);
Define set J ⊂ {1, . . . p};
for q ∉ J do

construct a forest with (Y ,XJ∪{q});

Calculate R̂(J ∪ {q});
end
î = argminq R̂(J ∪ {q})

4.3.4. STOPPING ON TIME
Motivated by the result in Theorem 5, we stop selecting variables when there is no fur-
ther decrease in CRPS risk. From the proof of Theorem 5, adding variables that are not in
J∗ does not have an effect on the CRPS risk. In practice, where we are working with finite
samples, additional covariates decrease in fact the statistical efficiency of the random
forest which leads to higher CRPS values. Because of the random component in the for-
est procedure, different forests will have different risk. In general this can be avoided by
fitting an enormous number of trees to reduce the random component, but in practice
this is infeasible. Instead we use the randomness to test the following hypothesis at each
step,

H0 : R( Ĵ j−1)−R( Ĵ j ) = 0

HA : R( Ĵ j−1)−R( Ĵ j ) > 0.

The fitted forests at j -th and ( j +1)-th steps are used to obtain several estimates of
R( Ĵ j−1)−R( Ĵ j ). More precisely, we estimate this difference by R̂( Ĵ j−1 ∪ {q})− R̂( Ĵ j ∪ {q}),
where q ∉ Ĵ j . Note that R̂( Ĵ j−1 ∪ {q}) is computed at the j -th step for identifying î j and
R̂( Ĵ j ∪ {q}) at the ( j +1)-th step for identifying î j+1. So, the testing procedure does not
require any extra forest fitting. We propose the following test statistics:

Wq = ∑
q∉ Ĵ j

I(R̂( Ĵ j−1 ∪ {q})− R̂( Ĵ j ∪ {q}) > 0). (4.15)

Under the null hypothesis, the variable added on the j th step does not contribute to the
predictive performance of the model. As a result both risks are asymptotically equal (see
the proof for Theorem 6), meaning that the test-statistic approximately has a binomial

distribution, Bin(M j ,0.5), where M j = d − | Ĵ j |. We reject H0 if W > C j
1−α, where C j

1−α
is the 1−α quantile of Bin(M j ,0.5). The consistency of this test is established in the
theorem below.

Theorem 6. Assume that for any τ ∈ (0,1), as n →∞,

1

n

n∑
i=1

∣∣∣Q̂Fi (τ|XJ
i )−Q(τ|XJ

i )
∣∣∣ p→ 0, (4.16)
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where J = Ĵ j ∪ {q} or J = Ĵ j−1 ∪ {q}, q ∉ Ĵ j . Then, under the assumptions of Theorem 5,

P(W >C j
1−α) → 1 Under hypothesis HA , (4.17)

as n →∞.

Proof. It suffices to prove that under HA , as n →∞
E[W ] →ω0,

where ω0 >C j
1−α.

Denote Iq := Ĵ j−1 ∪ {q} and Kq := Ĵ j ∪ {q}. Then, we have

R̂(Iq )− R̂(Kq )

= 2

n

n∑
i=1

(∫ 1

0
ρτ(Yi −Q̂Fi (τ|XIq

i ))dτ−
∫ 1

0
ρτ(Yi −Q̂Fi (τ|XKq

i ))dτ

)
= 2

n

n∑
i=1

(∫ 1

0
ρτ(Yi −Q̂Fi (τ|XIq

i ))dτ−
∫ 1

0
ρτ(Yi −Q(τ|XIq

i ))dτ

)
+ 2

n

n∑
i=1

(∫ 1

0
ρτ(Yi −Q(τ|XKq

i ))dτ−
∫ 1

0
ρτ(Yi −Q̂Fi (τ|XKq

i ))dτ

)
+ 2

n

n∑
i=1

(∫ 1

0
ρτ(Yi −Q(τ|XIq

i ))dτ−
∫ 1

0
ρτ(Yi −Q(τ|XKq

i ))dτ

)
=:S1 +S2 +S3.

Applying the Knight’s identity, ρτ(u − v)−ρτ(u) = −v(τ− I (u < 0))+ ∫ v
0 (I (u ≤ s)− I (u ≤

0))ds, which implies that |ρτ(u − v)−ρτ(u)| ≤ 2|v |, we have

|S1| ≤ 4

n

n∑
i=1

∫ 1

0

∣∣∣Q̂Fi (τ|XIq

i )−QFi (τ|XIq

i )
∣∣∣dτ

p→ 0,

by (4.16). The same result holds for S2.
Observe that S3 is the sample mean of I.I.D. random variables with expectation R(Iq )−
R(Kq ). Applying law of large number, S3

p→ R(Iq )−R(Kq ). Combing with the results for
S1 and S2, we have

R̂(Iq )− R̂(Kq )
p→ R(Iq )−R(Kq ).

Under Ha , î j ∈ J∗, thus, by the proof for Theorem 5, for all q ∉ Ĵ j ,

R(Iq )−R(Kq ) > 0.1

This implies that

E[W ] = ∑
q∉ Ĵ j

P
(
R̂(Iq )− R̂(Kq ) > 0

) p→ M j > B1−α.

1 Obviously under H0, R(Iq )−R(Kq ) = 0.
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Remark 7. The expression in condition (4.16) ensures that the average out-of-bag estima-
tion errors of the quantile random forest converge to zero. This is comparable to a leave-
one-out cross validation setting, but instead of n different random forests, n sub-forests
are used for estimation.

In practice, the integration in (4.13) is numerically approximated. Let τt = t
k+1 , t =

1, . . . ,k, where k is a pre-specified integer. The estimated risk R̂(J ) in (4.13) is approxi-
mated by

R̂(J ) = 2

k

k∑
t=1

ρτt (Yi −Q̂Y |X(τt |X)). (4.18)

The complete procedure is given in Algorithm 4.

Algorithm 4: Forward variable selection

Result: J o

Set data (Y1,X1), . . . (Yn ,Xn);
Set j = 1, J0 =;, α;
Calculate J1 with Algorithm 3 using J = J0;
repeat

j = j +1;
Calculate J j with Algorithm 3 using J = J j−1;
Calculate W j from equation 4.15;

until W j ≤C j
1−α | j == p;

J o = J j−1;

4.4. COMPARISON BASED ON SIMULATION
In this section we compare the performance of our variable selection procedure with the
backward selection based on a permutation measure with a mean squared error crite-
rion proposed in [33]; details of the method are stated later in this section. We compare
with this method as it is currently the only method that deals with correlated predictors
for random forests and we will refer to it as the backMSE method. For the comparison
we simulate data from the following model,

Y =µ(X)+σ(X)ε, (4.19)

where ε follows a standard normal distribution and independent of this, X ∈ R25 follows
a multivariate normal distribution. For the covariance structure of X we split up the
covariates into blocks Il = {(l −1)∗5+1, . . . , (l −1)∗5+5} for l = 1, . . . ,5. The covariance
function of X is then given by,

Cov(X j , Xi ) =


1, if i = j ;

ρ, if i , j ∈ Il for the same l ;

0, otherwise.

(4.20)
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The two selection methods are compared for ρ ∈ {0,0.4,0.8}. For the functions µ and
σ three different models are considered:

µ1(X) = X1 + X6

2
+ X11

4
, σ1(X) = 1;

µ2(X) = X1, σ2(X) = exp

(
X6

2
+ X11

3

)
;

and µ3(X) =
{

X 2
6 , if X1 ≥ 0,

−X6, if X1 < 0,
σ3(X) =

{
2, if X11 ≥ 0,

1, if X11 < 0.

The first model is a model where the covariates only influence the mean, in the second
model the influence is mainly on the variance. The third model considers discontinuous
covariate dependence in both mean and variance. Finally, we choose sample sizes n ∈
{500,1000,2500}.

The backMSE method evaluates the relevance of a covariate by its permutation im-
portance measure, which is defined as

I (X j ) = E[
(Y −E(Y |X( j )))2]−E[

(Y −E(Y |X))2] ,

where X( j ) = (X1, . . . , X ′
j , . . . , Xd ) such that X ′

j =d X j and X ′
j is independent of Y and of

the other covariates. A large score of I (X j ) indicates that covariate X j is important. The
method randomly permutes the values of X j to mimic a random sample of X ′

j . An esti-

mator of I (X j ) using out of bag samples is given in (2.1) in [33].
In [33] it is shown that the order of the permutation importance measures can not be

naturally interpreted in the presence of correlation between the covariates, as variables
that are correlated share their importance. As a result, the importance of the important
variables is lower than it should be. The backMSE deals with this problem by iteratively
removing the least important variable and refitting the model and calculating the impor-
tance scores. This process is repeated until no variables are left. The optimal model is
then chosen as the model that minimizes the out-of-bag mean squared error. Why this
works is easily seen with two highly correlated informative variables. Initially they do not
seem important because they share their importance, but by removing one the impor-
tance is not shared any more. The left over variable shows the true importance and will
therefore be in the selected set.

It is recommended in [33] to compute several forests and take averages to stabilize
the variable importance scores and the error estimates. We compute for each step 20
forests where each forest contains 2000 trees. For this method, we follow the standard
forest algorithm from [8], fitting trees based on bootstrap samples of size n, mtr y is set
to the default value for regression p/3 and taking a minimum leaf size of 5.

For our method we also take fixed parameters with sub sampling fraction s = 0.5,
a minimum node size of 1, mtr y = p and 1000 trees. We have tested the influence of
these tuning parameters on several simulation models and the results are rather robust
to different choices. Our selection model adds variables one at a time and stops when
additional variables do not increase performance. As the model is therefore often small
it makes sense to not over randomize by setting mtr y to smaller than p. We advise to
choose a small s for large datasets in order to reduce computation time.
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For each model we simulate 100 data sets. The results are summarized in Figure
4.1. For the first model we see that the backMSE method retrieves more signal variables
than the forward selection for low sample sizes and that as the sample size grows the
forward variable selection also recovers all signal variables. A large difference is seen in
the number of noise variables that are selected. The forward selection performs much
better in this than the backMSE, which systematically selects noise variables and tends
to even select more as the sample size increases. This phenomenon is also visible for
Models 2 and 3 as seen in Figures 4.1b and 4.1c. For these two models where the variance
is dependent on covariates, the CRPS criterion clearly has an edge over the backMSE that
selects variables based on the mean squared error and therefore has a hard time selecting
these variables.

The reason why the backMSE selects many noise variables is two-fold. First the
backMSE method selects the optimal set based on a predictive mean squared error cri-
terion. This approach does not account for the inherent variable selection within the
random forest, where at each node the split that reduces the variance the most is cho-
sen. As a result the random forest is able to ignore noise variables partially. In practice
this means that in an out-of-bag performance measure the addition of a single noise
variable cannot be detected. Therefore the variables that are selected will not be the
smallest set, but instead a set with maximum number of noise variables maintain the
lowest performance. Secondly, the backMSE does not adequately deal with the corre-
lation. For example in Model 1 with ρ = 0.8 all variables X1, . . . , X5 have higher variable
importance compared to X6, which means that if X6 is in the model, so are X2, . . . , X5.

Thanks to our testing approach, a small number of noise variables is selected with
the forward selection. Using the randomness induced by the random forest, our testing
procedure selects a variable that leads to a significant reduction of the predictive loss.
The significance level naturally controls the number of selected noise variables by the
nature of the testing procedure. We have set the significance level to 5% for all simula-
tions in the chapter.

4.5. POST-PROCESSING MAXIMUM TEMPERATURE FORECASTS
There are substantial risks related to extremely high temperatures. Consecutive days of
high temperatures, i.e. heat waves, lead to higher mortality, especially older people. Be-
sides high temperatures can cause train rails to expand and thereby potentially disrupt
the train system. Additionally, in the absence of rain they likely cause severe droughts
as seen in 2018 in The Netherlands, which has had large consequences for nature areas
and agriculture. The Royal Netherlands Meteorological Institute (KNMI) issues alarms
for persistent warm weather. To design a good alarm system it is essential to have good
quality weather forecasts. One of the most used ensemble models, the European Centre
for Medium-Range Weather Forecasts (ECMWF) ensemble model, has a negative bias in
the maximum temperature forecast. As an illustration, Figure 4.2 shows the forecast bias
for data observed at weather station de Bilt where KNMI is located. For accurate fore-
casts, this bias needs to be corrected for. This can be easily done by estimating the linear
relation between the forecasts and the observations. Although this quickly improves the
maximum temperature forecast, this leaves unused a vast amount of forecast data for
other weather types. We will show that using a wide range of potential covariates, the
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Figure 4.2: Scatter plot of error of the ECMWF high resolution deterministic run maximum temperature fore-
cast against that deterministic forecast in the warm half year for the years 2011-2019 at De Bilt. The black line
indicates a zero error and the red dashed line is the linear regression of the data points.

maximum temperature forecasts are improved further than by a simple bias correction.
By performing the variable selection we then also investigate in more detail what effect
different covariates have on the forecast distribution estimated using the random forest
model.

We use maximum temperature observed at seven stations spread across The Nether-
lands, namely Den Helder, Schiphol, De Bilt, Eelde, Twente, Vlissingen and Maastricht
(http://projects.knmi.nl/klimatologie/daggegevens/selectie.cgi). The fo-
cus is on high temperatures, hence we consider only observations from mid-April until
mid-October. In total, we look at 9 years of data ranging from 2011 to 2019.

As covariates we use the output of the ECMWF model, which contains a 51 member
ensemble and a higher resolution deterministic run. These forecasts are initiated two
times a day, at 00 UTC and at 12 UTC, but here we use only forecasts of the latter run. We
define the lead time of the forecast as the time difference between the start of the day for
which the forecast is valid and the initiation time of the forecast. For this analysis we will
consider forecasts with lead times equal to 36+24k hours for k = 0,1,2,3,4,5. The en-
semble contains 51 exchangeable members and in order to use them we compute a set
of summary statistics from the ensemble. These summary statistics are the mean, stan-
dard deviation, quantiles and number of ensemble members exceeding a pre-specified
threshold. For the quantiles in our application we choose the 25, 50 and 75 percent quan-
tiles. Thresholds are chosen as to extract different types of information from the ensem-
ble relative to the weather phenomenon itself. For cloud cover we use three thresholds,
20 percent, 50 percent and 80 percent of cloud cover to create variables measuring prob-
abilities of a few to no clouds, partly clouded weather and clouded weather.

Apart from the forecasts for maximum temperature and cloud cover, we consider
other covariates including forecasts for daily average temperature at 2m, dew point tem-

http://projects.knmi.nl/klimatologie/daggegevens/selectie.cgi


4

68
4. FORWARD VARIABLE SELECTION FOR RANDOM FORESTS ( TO APPEAR IN JOURNAL OF

APPLIED STATISTICS)

perature, minimum temperature, daily average wind speed and daily accumulated pre-
cipitation. For long lead times, predictability of these typical weather phenomena de-
creases, but the range of predictability of for example flow pattern at 500 hPa extends
much further. Therefore the first three principal components flow pattern at 500 hPa
over Europe are also used as predictors [40]. Note that these covariates are the same for
each station.

For the response variable we consider the forecast error, which we obtain by sub-
tracting the deterministic forecast run from the observed maximum temperature. By
doing so, the seasonality in the temperature is largely reduced. In Figure 4.2, the forecast
error is clearly visible as the distance between the red linear regression line and the x-
axis is rather large. Additionally it is clear that the spread of error changes as a function
of the deterministic forecast. A possible explanation is that there is still remain season-
ality effects that are not taken care of by a simple linear effect. Therefore, also the sine
and cosine of the day of the year with a period of one year and half a year are included as
two predictors. In total this gives us 71 covariates. For a given lead time an observation
on a given day is denoted by (Y ,X), with Y the error of the deterministic run and X the
71 dimensional covariate vector.

In this section, we will explore 3 methods, quantile random forests as in [1] with all
variables, quantile random forests with variables selected by our forward variable se-
lection and Non-homogeneous Gaussian Regression (NGR) [31]. This third method is
known in the meteorology literature as an EMOS (Ensemble Model Output Statistics)
method and is used as a standard approach in post-processing. The NGR method as-
sumes the data follow a Gaussian model,

Y |X = x ∼ N
(
xTβ,exp(xTγ)

)
.

The parameters β and γ are then estimated by maximum likelihood. For this model,
we select variables based on the Bayesian Information Criterion (BIC) by a forward and
backward stepwise approach.

For each station and lead time, we fit a separate model. The models are estimated
with a 9-fold cross validation, each time leaving out a single year. In Figure 4.3a the
CRPS risk is shown as a function of lead time, where the box-plots contain the CRPS risk
for all stations. Then in Figure 4.3b the number of selected variables is shown for our
method and NGR, where we leave out the random forest with all 71 variables.

Based on the CRPS, all methods perform comparably. This is also confirmed by
other verification measures such as reliability diagrams, quantile reliability diagrams
and probability integral transform histograms, which are not shown in this chapter. A
selection of these diagrams is shown in the appendix. The interesting part comes from
the number of selected variables. Our method selects a small portion (less than 10%) of
covariates, substantially less than NGR. We investigate this further by considering which
variables are selected. The result is visualized in Figure 4.4. For each lead time, the color
indicates the frequency of a covariate being selected by 63 estimated models (7 locations
and 9 cross-validation sets per location). An extremely important variable would be se-
lected all 63 times.

Yellow boxes correspond to a few variables that are always selected. But the num-
ber of light blue boxes is much smaller for our method compared to NGR. From this
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(a) CRPS (b) Selected variables

Figure 4.3: (Left panel) the CRPS risk against leadtime where the boxplots contain the CRPS risk for each sta-
tion. (Right panel) the number of selected variables against leadtime.

Figure 4.4: Selected variables for each lead time. All cross validations and all stations have been aggregated
where the maximum number of times a variable can be selected is 63.
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Figure 4.5: The conditonal distribution of the forecast error, based on estimated models for De Bilt with lead
time 36 hours. Different colors indicate different values of cloud cover while the values of other covariates are
fixed to be the same as that for 31-05-2018 at de Bilt. Top figure for the random forest model with all variables
and the bottom figure for the random forest model with the selection of variables.

we conclude that our method selects fewer variables and it also selects similar variables
for different stations. This suggests that our variable selection method is more robust
compared to the NGR method for short lead times, where a diverse set of variables is
selected.

The main variables that our method selects are the sine of the day of the year, the
standard deviation of the ensemble forecast and variables related to cloud cover. Since
our procedure typically selects a small set of variables, it is then feasible to interpret the
estimated model. For instance, to investigate how a selected covariate, say X j influences
the forecast distribution of Y , one can compare the conditional distribution of Y given
different values of X j while the other covariates denoted by X(− j ) are kept the same. We
consider Y , the forecast error at de Bilt with lead time 36 hours and X j the cloud cover,
which is the number of ensemble members with cloud cover exceeding 50%. The values
of other covariates are fixed the same as the data of 31-05-2018 at De Bilt, denoted by
X(− j ) = x∗(− j ). Figure 4.5 shows the conditional density of Y given (X j = c,X(− j ) = x∗(− j )),

where different colors indicate three different values of c. Note that all 51 ensemble
members exceed 50% cloud cover. As shown in the lower panel of Figure 4.5, cloud cover
clearly has an effect based on the estimation of our method: c = 51 yields a bimodal
distribution while c = 10 leads to a unimodal distribution. This suggests that in this con-
figuration, higher cloud cover implies a higher chance for a negative forecast error (left
mode in the plot). However, the distributions obtained by random forest (without vari-
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able selection) are very similar; see the upper panel of the figure. This is because that
there are other covariates correlated to cloud cover, and these covariates still indicate
that there is a high cloud cover even when the number of ensemble members exceed-
ing 50% could cover is set to 10. In other words, changing the value of a single variable
in a random forest with many correlated covariates is not interpretable. Such a random
forest model fails to capture the effect of a signal variable.

4.6. SUMMARY AND DISCUSSION

In this chapter, we have proposed a general framework for a forward variable selection
with respect to a loss function. We show in population sense that under an indepen-
dence assumption between covariates and by choosing the continuous ranked proba-
bility score as loss function that the forward selected variables form the correct set with
respect to the CRPS risk functional. Applying the method in a random forest set-up,
we show that the out-of-bag samples can be efficiently used to asses predictive perfor-
mance. The main difficulty in the procedure is determining the stopping time, that is
when selecting more variables does not add in predictive performance. Due to random-
ness and the inherent greedy variable selection procedure in the random forest algo-
rithm this can not be determined by the calculated predictive performance. Instead in a
single forward selection step we use the predictive performance of each possible set to
construct a test to detect increasing predictive performance. The procedure then stops a
null hypothesis of non increasing predictive performance can not be rejected. We show
that this test is consistent.

With a simple simulation study we show that our variable selection method, com-
pared to a backward selection based on a permutation importance measure, is more ca-
pable of discriminating between signal variables and noise variables. This improvement
is shown for various sample sizes and correlations between the covariates.

In an application on post-processing maximum temperature, our method shows con-
sistency in the number of selected variables and in the variables being selected over sev-
eral stations. Moreover, our method selects less than 10 percent of the covariates and
still attains the same predictive power as the quantile random forest with all covariates.
Further, it is easier to interpret our resulting model, due to the largely reduced number
of covariates. Without variable selection, it is hardly possible to analyse the effect of a
single covariate in a random forest model when it is heavily correlated to other covari-
ates. In our data example, in the presence of thick cloud cover, our random forest model
indicates that there is a higher risk of over forecasting (lower panel of Figure 4.5) instead
of under-forecasting which was indicated by Figure 4.2.

There are two interesting directions for future research. First, the theoretical results
in Sections 4.2 and 4.3 are derived under the assumption that the covariates are inde-
pendent. However, the ability of our method to select signal variables from a correlated
setting is evidenced by our simulation study and data application. It is interesting to in-
vestigate such a setting. Second, we focus in this chapter on how this forward method
behaves for the CRPS, but the mathematical set-up in Section 4.2 is much more general
and allows to select variables with respect to other loss functions. It would be interesting
to extend the current results to a more general set of loss functions.
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4.A. CRPS CALCULATIONS
Here we show for an observation y and a distribution function F that the CRPS calculated
from the quantile perspective as well as from the distribution function perspective are
equivalent as shown in [41], i.e we show that

2
∫ 1

0
ρτ(y −F−1(τ))dτ=

∫ ∞

−∞
(I (y ≤ z)−F (z))2dz. (4.21)

We first assume that the distribution with distribution function F has a finite second
moment, then we have,

2
∫ 1

0
ρτ(y −F−1(τ))dτ= 2

∫ 1

0
(I (y ≤ F−1(τ))−τ)(F−1(τ)− y)dτ

= 2
∫ ∞

−∞
(I (y ≤ z)−F (z))(z − y) f (z)dz

= −(I (y ≤ z)−F (z))2(z − y)
∣∣∞−∞+∫ ∞

−∞
(I (y ≤ z)−F (z))2dz

=
∫ ∞

−∞
(I (y ≤ z)−F (z))2dz

Here we use a substitution in the second line of τ = F (z) and in the third line we apply
integration by parts. The finite second moment is used in the fourth line such that the
first term converges to 0.

4.B. CALIBRATION OF FORECASTS FOR LEAD TIME 60 AND STA-
TION DE BILT

Figure 4.6 shows a histogram of the F̂ (Y ) where F̂ is the forecast distribution for observa-
tion Y . If F is calibrated the histogram should look like the histogram based on standard
uniform random variable.

Figure 4.7 shows reliability diagrams. Let t be a threshold and define p = F̂ (t ) and I =
I (Y ≤ t ) for each forecast. A reliability diagram bins the probabilities p in equally sized
bins. The average indicator I should be the same as the average p. Hence plotting these
averages they should be approximately on the identity line; for detailed explanation we
refer to [65].

Figure 4.8 shows quantile reliability diagrams. Let τ be a probability level and Q̂ the
forecast quantile function. Define q = Q̂(τ) for each forecast. A quantile reliability dia-
gram bins the quantiles q in equally sized bins. The τ quantile of observation Y should
be the same as the average q . Hence plotting these against each other should be approx-
imately on the identity line; for detailed explanation we refer to [6].
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Figure 4.6: Rank histograms for lead time 60 h and station De Bilt. For forward selection, NGR, random forest
and the raw ensemble forecast

Figure 4.7: Reliability diagrams with thresholds equal to the 0.25,0.5,0.75 and 0.9 observational quantiles for
lead time 60 and station De Bilt. Methods compared are: forward selection, NGR, random forest and the raw
ensemble forecast
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Figure 4.8: Quantile reliability diagrams for quantile levels equal to 0.25,0.5 and 0.75 for lead time 60 and
station De Bilt. Methods compared are: forward selection, NGR, random forest and the raw ensemble forecast
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CONCLUSION

In this thesis, we discuss two important aspects in the topic of statistical post-processing
for weather forecast. First, we address the problem of forecasting weather events by es-
timating the tail of the forecast distribution. Second, we investigate the problem of vari-
able selection within post-processing when a large set of potential predictors are avail-
able. In this conclusion section, we summarize the results and discuss possible direc-
tions for future research for both topics.

In order to forecast extreme weather events we estimate the quantiles for the forecast
distribution QY |X (τ) for probabilities τ close to 1. For Y , the weather phenomenon of in-
terest, and a covariate set X which can contain the uncalibrated forecast and additional
predictor variables.

In this thesis, we proposed two ways of estimating the extreme conditional quantile
curve x 7→ QY |X (τ|x). Both methods are fitted in a two-step procedure. In the first step,
an intermediate quantile is estimated using all the data. This serves as the ‘threshold’ for
classifying the extreme observations. In the second step, the extreme quantile is extrap-
olated from the intermediate quantile using the extreme observations.

Chapter 2 proposes the common shaped tail (CST) estimator. The underlying statis-
tical model assumes quantile curves for τ within close to 1 are equidistant, i.e. the dis-
tance between two curves at a point x is the same for all values x. Within the estimator
the intermediate conditional quantile is estimated using local linear quantile regression.
This allows a flexible nonparametric estimation of the threshold instead of the conven-
tionally fixed threshold. Subsequently, the extreme quantile is estimated by applying a
Weissman type estimator on the exceedances of the intermediate quantile.

Through proving uniform consistency for the local linear quantile curve we show that
the estimators for the extreme value index and the extreme quantile are asymptotically
consistent and normally distributed. An extensive simulation study shows that, given
the model assumptions, the estimator outperforms an extreme quantile method assum-
ing linear quantile curves. In the case of deviations from the model assumptions, the
performance is slightly worse.

In Chapter 3 we proposes a different method for extreme quantile regression which

75
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we call gradient boosting for extremes (GBEX). Here the intermediate conditional quan-
tile is estimated using quantile random forests, while the extreme conditional quantile is
estimated using a gradient boosting approach. This methodology is much more flexible
than the CST estimator due to its data-driven nature. Through the tree-like structure of
the boosting procedure, the GBEX estimator is also able to fit non-monotone quantile
curves, without assuming equidistant quantile curves, while at the same time retaining
good predictive power in relatively high dimensional predictor space.

The flexibility and efficiency of the GBEX methodology is confirmed in an exten-
sive simulation study where, in the presence of many noise variables, the estimator out
performs both conventional machine learning approaches as well as standard extreme
quantile estimation methods.

Both the CST and the GBEX methods are applied to a dataset of ECMWF precipi-
tation forecasts and observations at several stations throughout the Netherlands. The
CST is applied on only the summer data as they could be assumed to be heavy tailed.
It outperforms the linear extreme quantile estimator for the upper ensemble member
τ= 51/52 based on a quantile verification skill score.

The GBEX method is applied to data of the entire year and is able to capture the sea-
sonality in the data in terms of the tail parameters. This seasonality shows that summer
precipitation has a heavier tail compared to winter precipitation. This is due to the local
convective events that are observed in summer that are very uncertain, but could lead to
large shower events.

The estimation of tail quantiles are subject to high uncertainties, because the num-
ber of extreme observations is by definition small. Additionally, most information con-
cerning tail behaviour is captured in the very largest observations. This means that,
especially in situations where heavy-tailed distributions play a role, removing just the
single largest observation can change the tail estimation substantially.

As standard machine learning models are fully data driven they will quickly start over
fitting by focussing on the largest observation. In order to adapt these machine learning
methods to the problem of tail quantile estimation they need to be regularized heavily.

The GBEX method is one of the first approaches that adapts a machine learning
model, gradient boosting, to obtain robust and consistent estimations with less risk of
over fitting. By setting an upper bound on iterative updates of the algorithm, heavy reg-
ularization is applied such that no single iteration can have too high influence. At the
same time, rigorous sub sampling and additional regularization of the weak learners lead
to consistent results for the tail quantiles.

Gradient boosting is very suitable for this estimation problem by its ability to regular-
ize the estimation in many different ways. This strong regularization allows the model to
learn the structure in the data slowly without allowing single extreme events to dominate
all the estimates.

Future research in this method is required to get a better understanding in choosing
the tuning parameters. The current model is sensitive to the large number of tuning pa-
rameters. A reduction of these parameters or a clear strategy to choose them is needed
to make the method easily applicable in other domains of research. A specific tuning pa-
rameter that would be interesting for further investigation is the ratio between learning
rates for γ and σ. Although the tail quantiles do not strongly depend on this ratio, the
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specific fitted values of γ andσ do change. The main reason for this is that both parame-
ters influence each other in the estimation procedure. The optimal choice of this ratio is
problem dependent and is important for good consistent results. Finally, more theoreti-
cal theory is needed for general gradient boosting methods in order to better understand
how the method can be applied to the estimation of tail quantiles.

In Chapter 4 we discuss the problem of variable selection within a post-processing
framework. This problem is interesting for three reasons. First, there is an extremely
large number of potential features coming from the NWP models that can be used in the
post-processing models. The strong correlations between them make the interpretabil-
ity of the model difficult. Secondly, within post-processing the focus is on probabilistic
forecasts, which makes it important to select features that are informative for the entire
probabilistic forecast and not only the conditional mean. And thirdly, selected features
need to have predictive skill such that the resulting models have strong predictive skill.

We propose a methodology for random forest to select variables that provide predic-
tive skill for the entire forecast distribution. The methodology is a stepwise procedure
that selects in each step the feature that reduces the predictive performance of the model
most. The predictive performance is calculated using the continuous ranked probabil-
ity score, which allows us to include the entire forecast distribution in selecting the best
variable at each step.

In order to be able to estimate the predictive performance we use the randomly left
out samples that are not used in fitting trees in the random forest bootstrap procedure to
compute the performance. These out-of-bag samples allow us to approximate predictive
performance without a cross-validation set-up or by splitting data in train and test sets
beforehand.

As the number of features can become very large we developed an early stopping
method that checks iterative improvement of the predictive performance of adding an
additional variable to the model. At each step we test the null hypothesis of non-decreasing
predictive performance. When the predictive performance stagnates and we can not sig-
nificantly reject the null hypothesis of non decreasing predictive performance we stop
selecting variables. The resulting model is a model of minimal size but maximal predic-
tive performance.

We show in a population sense that under an independence assumption between
covariates that the selected variables are form an optimal set with respect to the contin-
uous ranked probability score. Also we show under regularity conditions that the testing
procedure is consistent.

In an extensive simulation study we show that our variable selection method, com-
pares favourably to a backward selection method based on a permutation importance
measure. Our proposed method is more capable of discriminating between signal vari-
ables and noise variables. We investigate in a simulation study many different models,
where we vary the signal strength and the correlation structure of the predictors. Addi-
tionally, we explore how sample size influences these results. In all cases our method-
ology outperforms the competing methods and provides even in the presence of high
correlations satisfactory results.

In an application on post-processing maximum temperature, our method shows con-
sistency in the number of selected variables and in the variables being selected over sev-



5

78 5. CONCLUSION

eral stations. Moreover, our method selects less than 10 percent of the covariates and
still attains similar predictive power as the quantile random forest with all covariates.
Further, it is easier to interpret how a single variable contributes to the estimated model.
This becomes much harder in the presence of many correlated predictors. Due to cor-
relation, the contribution of a single variable is split over several correlated variables. In
our data example, in the presence of thick cloud cover, the fitted random forest model
indicates that there is a higher risk of over forecasting (lower panel of Figure 4.5) instead
of under-forecasting which was indicated by Figure 4.2.

At this stage, two interesting directions for future research can be identified. First,
the theoretical results in Sections 4.2 and 4.3 are derived under the assumption that the
covariates are independent. However, the ability of our method to select signal variables
from a correlated setting is evidenced by our simulation study and data application. It is
interesting to investigate the theoretical properties of the method in the setting with de-
pendent covariates. Second, we focus in this paper on how this forward method behaves
for the continuous ranked probability score. Hereby, we are trying to select variables that
are predictive for the entire forecast distribution. The mathematical set-up in Chapter
4.2 is much more general and allows to select variables with respect to other loss func-
tions or even a general set of loss functions. For example the quantile loss function could
be used to select variables that are predictive for a specific forecast quantile. Weighted
loss functions that focus on extreme values could potentially help selecting variables that
are predictive for extreme events.
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