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ABSTRACT: Two-dimensional (2D) Ruddlesden−Popper (RP) CsPbI3 exhibits
enhanced phase stability compared with 3D CsPbI3. However, the issue of the
uncontrollable crystallization process limits its photovoltaic performance. Here, the
influence of a binary mixed solvent on the film quality and photovoltaic properties of
(PEA)2Cs4Pb5I16 (n = 5) is studied in detail. It is demonstrated that the crystallization
rate and crystal growth can be controlled by adjusting the amount of dimethyl
sulfoxide (DMSO). Optimizing the solvent composition with adding 10% DMSO in
pure dimethyl formamide (DMF) leads to perfect coverage, larger flaky 2D grains,
reduced grain boundaries, and a better vertical orientation to the substrate due to the
formation of a more stable intermediate phase. This can form good interface contact,
which is beneficial to charge transport/extraction between TiO2 (electron transport
layer, ETL) and perovskite, finally resulting in improved device performance. The
enhancement of the power conversion efficiency of the optimized device based on
DMF/DMSO (9:1) is 3.57% compared with the reference device based on pure DMF.
This work illustrates the role of crystallization kinetics in the RP CsPbI3 film and offers a simple and effective method for high-
performance 2D CsPbI3 solar cells.
KEYWORDS: 2D inorganic perovskites, Ruddlesden−Popper phase, solvent engineering, crystallization kinetics, intermediate phase

■ INTRODUCTION
Cesium lead halide perovskites without volatile organic
compositions, whose general chemical formula is CsPbX3 (X
is halides or their mixture), have attracted wide attention due
to excellent thermal stability and high formation energy.1−5

Among them, CsPbI3 with a desirable band gap (<1.73 eV)
and good stability shows great potential in the photovoltaic
field.6−9 So far, the power conversion efficiency (PCE) of
CsPbI3-based perovskite solar cells (PSCs) improved to 21.0%
from the first reported 2.9% in 2015.10,11 However, the poor
phase stability is a huge obstacle to further commercial
application.12 Desirable photoactive black-phase perovskite (γ-
CsPbI3) can spontaneously transform to undesirable yellow-
phase nonperovskite (δ-CsPbI3) caused by a low limit of
tolerance factor of 0.81 (0.8 < τ < 1.0) at room temperature
(RT).13,14 Many strategies have been used to enhance the
phase stability of black-phase CsPbI3 perovskite, for example,
ionic incorporation, organic cation surface termination,
reduced dimensions (quantum dot, quasi two-dimensional
(2D)), and so on.15−20 Among these strategies, 2D or quasi-
2D CsPbI3 is an extremely effective and promising one.
2D perovskites can be classified into three types, namely, the

⟨100⟩-, ⟨110⟩-, and ⟨111⟩-oriented perovskites with different
connection modes (corner-sharing, edge-sharing, and face-
sharing) of [PbI6]4− octahedrons.

21 Among them, the ⟨100⟩-

oriented 2D perovskites have attracted wide attention. It can
be divided into four types according to different kinds of
organic spacer cations at A sites, namely, the Ruddlesden−
Popper (RP) phase, the Dion−Jacobson (DJ) phase, the
alternating cation (ACI) phase, and the Aurivillius phase.22−27

The Aurivillius phase and the ACI phase adopt the general
formulas (Bi2O2)(An−1BnX3n+1) and (GA)AnBnX3n+1 (GA+ =
guanidinium), respectively. The RP phase and DJ phase
perovskites have the chemical formula A′mAn−1BnX3n+1, for the
RP phase, where A′ represents a large monovalent organic
cation (m = 2), such as butylammonium(BA+) or phenyl-
ethylammonium (PEA+), while for the DJ phase, A′ represents
a divalent organic cation (m = 1), such as 3-(aminomethyl)-
p i p e r i d i n i um (3AMP2 + ) o r 1 , 4 - bu t aned i am ine
(BDA2+).22,28−30 Moreover, n denotes the number of inorganic
[PbI6]4− octahedral layers.

31 In addition to the hydrophobicity
of bulky organic cations and improved stability due to stronger
van der Waals forces between capping organic cations and
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[PbI6]4− octahedrons, 2D perovskites also show tunability of
optoelectronic properties.32,33 However, in contrast to their 3D
counterparts, 2D-based PSCs are relatively inferior, which is
caused by many factors, such as their huge exciton binding
energy, low absorption coefficient, and inferior charge
transporting capability.34 Among these factors, the charge
transporting capability is closely related to the surface/
interface morphology.
Plenty of efforts, including controlling the crystallization

process, altering the phase orientation, etc., are dedicated to
improve the PCE of 2D PSCs.32 Solvent composition
adjustment has been successfully used to modulate the
crystallization process and enhance device performance. For
example, Qiu et al. showed how the processing solvents affect
the crystallization kinetics, phase distribution, and crystal
growth orientation of the BA2MA3Pb4I13-based perovskite film
fabricated by hot-casting and found that dimethylacetamide
(DMAC) can effectively facilitate rapid crystallization of 2D
RP perovskite, resulting in a high-quality BA2MA3Pb4I13 film
with an increased photoluminescence (PL) intensity and
carrier lifetime. Finally, DMAC-based devices exhibit the best
PCE of 12.15%.35 Gao et al. observed that (PEA)2MA4Pb5I16-
based RP perovskite films grow along with a vertical
orientation to the substrate surface and exhibit much improved
optoelectronic properties by optimizing the solvent composi-
tion, and finally, the PCE of the device significantly increased
from 6.78 to 12.29%.34 After adding a proper amount of
DMSO to DMF, the morphology and crystallinity of the
(GA)MA5Pb5I16 perovskite film are improved with more
distributed preferential quantum wells. Finally, the device
realized a high PCE of 19.18%.36 Although solvent engineering
has been successfully used to manipulate the crystallization
process of low-dimensional organic−inorganic hybrid perov-
skite films, the effect of solvent engineering on film quality and
device performance of 2D CsPbI3 remains ambiguous.
Herein, the solvent effects on the 2D RP CsPbI3 film quality

and photovoltaic properties are studied in detail. It exhibits
that the different coordination ability between diverse solvent
systems and the 2D CsPbI3 precursor can significantly affect
the evolution of the intermediate phase and the perovskite
phase. The more stable intermediate phase and the retarded
crystallization process are observed in the binary solvent
system. Finally, a high-quality 2D RP CsPbI3 film is obtained
with the binary mixed solvent of DMF/DMSO (9:1), and the
corresponding PSCs show significant efficiency improvement
from 10.11 to 13.68%.

■ RESULTS AND DISCUSSION
To study the effect of solvent engineering on crystallization
kinetics, film quality, and device photovoltaic properties, the
different solvents containing pure DMF (0% DMSO) and
DMF/DMSO mixed solvents with different amounts of
DMSO (5, 10, and 20% DMSO) are used to prepare 2D RP
(PEA)2(Cs)4Pb5I16 films. The surface morphologies of the
films are measured using scanning electron microscopy (SEM),
as shown in Figure 1. For the reference film (0% DMSO),
incomplete coverage with oversized pinholes (≈1 μm) and an
underlying TiO2 layer are obviously observed, indicating a
poor morphology. After adding 5% DMSO to the pure DMF
solvent, the film exhibits smaller pinholes and density-
enhanced grains. However, simultaneously, grain boundaries
are also obvious. Further increasing the amount of DMSO to
10%, smooth and compact films with larger, more homoge-

neous 2D flaky grains and fine coverage are observed.
However, pinholes in the film will deteriorate again when
the amount of DMSO is increased to 20%. Therefore, the
optimal film is obtained with 10% DMSO in the solvent.
The incomplete coverage and grain boundaries will result in

inferior charge transport pathways and facile charge carrier
recombination.37 Hence, improving the film surface coverage
with larger and more compact 2D flaky grains is beneficial to
enhancing device performance.38−41 Atomic force microscopy
(AFM) images further exhibit the improved surface morphol-
ogy of the (PEA)2(Cs)4Pb5I16 film after dealing with 10%
DMSO, as shown in Figure S1a. The root-mean-square
roughness (RMS) value of the reference film is 268 nm;
however, the optimized film with 10% DMSO only has the
value of 198 nm. AFM results further suggest the improved
uniformity after adding 10% DMSO, which is consistent with
the above SEM results. Contact angle measurements were
conducted to investigate the hydrophobicity of thin films, as
shown in Figure S1b. The optimized film shows a larger value
of 74.17° compared with the reference film (69.31°), implying
better hydrophobicity, which is probably due to the compact
connection of grains and reduced grain boundaries.
X-ray diffraction (XRD) patterns were used to investigate

the influence of solvent composition on crystallinity. In Figure
2a, there are two quite sharp dominant diffraction peaks at
14.50 and 29.05° for all thin films, corresponding to the (111)
and (202) lattice planes, respectively. Moreover, no additional
diffraction peaks (below 10°) are observed, suggesting a
vertical crystal orientation to the substrate surface, that is to say
that inorganic [PbI6]4− octahedral layers are perpendicular to
the substrate.42 The reference film exhibits weak diffraction
intensities, and the intensities gradually enhance with
increasing amounts of DMSO and reach a maximum value at
10% DMSO. However, the diffraction intensities will decrease
when the amount of DMSO exceeds 10%, which is consistent
with SEM and AFM results. The full-width at half-maximum
(FWHM) values of the (111) and (202) lattice planes for all
films as a function of different amounts of DMSO are plotted
in Figure S2. Obviously, the optimized film exhibits a
decreased FWHM value of 0.32 compared with the reference
film (0.35), also indicating the increase of film crystallinity,
which is beneficial to suppressing charge carrier recombination
and improving charge carrier transport.43 Meanwhile,
decreased FWHM values also indicate a more vertical
orientation.36 Note that the (202) lattice plane orientation
represents [PbI6]4− octahedral layer growth in complete

Figure 1. SEM images of the (PEA)2Cs4Pb5I16 films: (a) 0% DMSO,
(b) 5% DMSO, (c) 10% DMSO, and (d) 20% DMSO.
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orthogonal alignment to the substrate, while the (111) lattice
plane orientation can lead to a slanted vertical alignment.44 For
the reference and optimized films, two dominant diffraction
peak intensity ratios of I(202)/I(111) are summarized in Table S1.
The optimized film exhibits an increased value of 1.24
compared with the reference film (1.13), again indicating the
more vertical growth orientation for the optimized film.23 XRD
patterns for the reference and optimized (PEA)2Cs4Pb5I16
films under different annealing times are used to understand
the effect of solvent properties on crystallization kinetics and
structural evolution. Solvent properties of DMF and DMSO
are summarized in Table S2. In Figure S3, the intermediate
phases (diffraction peaks at 2θ of <10°) are observed in two
films at annealing times of 2 and 4 min. In contrast, continuing
annealing to 6 min, the intermediate phase can only be
observed in the optimized film, suggesting a more stable
intermediate phase due to the stronger polarity of DMSO.
Compared with the optimized film, the reference film shows
stronger diffraction peaks of perovskites at annealing times of 4
and 6 min.
The optical images of the reference and optimized

(PEA)2Cs4Pb5I16 films under different annealing times are
shown in Figure S4. Clearly, the reference film turns black
more quickly than the optimized film, suggesting rapid
crystallization of the reference film during the annealing
process, which is consistent with the evolution results of XRD.
The rapid crystallization of the reference film should be
ascribed to the weak coordination ability of DMF with Pb2+ in
precursor solution and a high evaporation rate. It is well-known
that fast crystal nucleation and growth will form a lot of small
grains and a large number of grain boundaries, leading to high

defect density.45 For the optimized film, the more stable
intermediate phase will retard nucleation and crystal growth,
thus needing a longer time to form the final perovskite
structure. From Figure S4, it can be observed that apparently,
when the annealing time reaches 11 min, the optimized film
still remains black, whereas the reference film has begun to
decompose. The low nucleation rate allows that the crystal
nuclei have enough time and space to grow into large grains,
which could reduce nonradiative recombination.46 Therefore, a
slower nucleation rate is beneficial to improving the film
quality.
The photophysical properties of (PEA)2(Cs)4Pb5I16 films

are investigated using various spectroscopy techniques. The
UV−vis absorption spectra of all films are shown in Figure 2b.
As the amount of DMSO increasing from 0 to 10%, films
exhibit a significantly enhanced absorption intensity between
400 and 750 nm, indicating the better light management ability
of perovskite films. Further increasing the amount of DMSO to
20%, too much amounts of DMSO lead to reduced absorption
intensity, which is highly consistent with SEM and XRD
results. Steady-state photoluminescence (PL) measurements of
the reference and optimized (PEA)2Cs4Pb5I16 films with the
architecture of glass/FTO/compact-TiO2/perovskite were
carried out, as shown in Figure 2c. The optimized film exhibits
the lower peak intensity, which suggests the more effective
charge transport/extraction between TiO2 and perovskite films
due to improved surface coverage and good interface contact
between TiO2 and perovskite films.
Figure 2d displays the time-resolved PL (TRPL) spectra of

the reference and optimized (PEA)2(Cs)4Pb5I16 films with the
above architecture. The data are fitted with a triple exponential

Figure 2. Optical characterization of the (PEA)2Cs4Pb5I16 films: (a) XRD patterns, (b) UV−vis absorption spectra, and (c,d) PL spectra and TRPL
spectra of the reference and optimized (PEA)2Cs4Pb5I16 films on TiO2/FTO substrates.
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function, and corresponding fitting parameters are listed in
Table S3. The optimized film exhibits a shorter lifetime τave of
30.93 ns compared to the reference film (34.64 ns). Moreover,
τ2, representing a fast decay lifetime originated from the

quenching of carriers going through the interface, is also
reduced for the optimized film (from 5.94 to 5.70 ns).47 This
result indicates that, in the optimized film, the carrier transfer
and extraction are more effective due to the reduced trap-

Figure 3. Device performance of the (PEA)2(Cs)4Pb5I16-based PSCs: (a) schematic diagram of the device architecture, (b) J−V characteristics in
reverse scan with an area of 0.09 cm2, (c) EQE and integrated J of the EQE curves, and (d) stable-state photovoltage attenuation curves.

Figure 4. Electrical characteristics of the (PEA)2(Cs)4Pb5I16-based PSCs: (a) dark J−V curves, (b) JSC dependence on light intensity, (c) VOC
dependence on light intensity, (d) Mott−Schottky plots, (e) Nyquist plots, and (f) carrier mobility and trap density comparison of electron-only
devices.
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mediated nonradiative recombination loss at the interface,
which can lead to a positive influence on VOC.

48

The PSCs with the structure glass/FTO/compact-TiO2/
perovskite/Spiro-OMeTAD/MoO3/Ag are fabricated to fur-
ther investigate the impact of different solvent compositions in
the 2D perovskite precursor on photovoltaic performance, as
shown in Figure 3a. Figure 3b gives the photocurrent density−
voltage (J−V) characteristics measured under standard AM
1.5G illumination at 100 mW/cm2. The corresponding
performance parameters are summarized in Table S4. The
reference device shows a relatively inferior PCE of 10.11% with
an open-circuit voltage (VOC) of 0.99 V, a fill factor (FF) of
63.14%, and a short-circuit current density (JSC) of 16.08 mA/
cm2. All devices with a DMSO additive show improved key
parameters of PCE, VOC, FF, and JSC. The device with 10%
DMSO exhibits a significantly improved PCE of 13.68% with a
VOC of 1.03 V, an FF of 71.54%, and a JSC of 18.55 mA/cm2.
The increased VOC can be attributed to the reduced
nonradiative recombination loss, and the increased FF can
be attributed to reduced trap density in the perovskite film.37,48

The external quantum efficiency (EQE) and integrated J
obtained from the EQE curves are shown in Figure 3c, and the
optimized device exhibits an improved EQE between 360 and
700 nm compared with the reference device due to enhanced
photon absorption.49 A higher spectral response intensity
indicates the more effective charge extraction capacity, leading
to increased JSC.

36 Meanwhile, the integrated J values of the
reference and optimized devices are 17.85 and 16.40 mA/cm2,
respectively, which are well-consistent with the values obtained
from the J−V curves in Figure 3b. The stable-state photo-
voltage decay is measured, as shown in Figure 3d. The
optimized device exhibits slower decay compared with the
reference device, well indicating the reduced nonradiative
recombination and increased VOC.

50

The dark J−V curves of the reference and optimized devices
are recorded in Figure 4a. It is clearly observed that the
optimized device exhibits a lower dark current density
compared with the reference device, suggesting a lower leakage
current in the optimized device. The leakage current is mainly
attributed to charge recombination, thus further indicating
reduced charge recombination.51 The J−V characteristics were
again measured under different incident light intensities
ranging from 100 to 10 mW/cm2 to further probe the charge
carrier recombination kinetics. Figure 4b shows the relation-
ship between JSC and light intensity (I) on a double logarithmic
scale, which follows the following equation: JSC ∝ Iα. The slope
(α = 0.988) of the optimized device is closer to 1, while that of
the reference device is 0.943. The less deviation from α ≈ 1
indicates lower bimolecular recombination at short circuit.52

Thus, under short-circuit conditions, the optimized device
shows less bimolecular recombination during carrier extraction
and transport, leading to a higher JSC.

51

The relationship between VOC and light intensity on a
seminatural logarithmic scale is drawn in Figure 4c. Moreover,
the dependence of VOC on I is in accordance with the following
equation: VOC = nKT/q(ln(I)), where n is an ideal factor
related to recombination, K is the Boltzmann constant, T is
temperature, and q is the electron charge.53 The slopes of the
reference and optimized devices are 1.695KT/q and 1.344KT/
q, respectively. The closer to 1kT/q the slope is, the lower the
trap-assisted Shockley−Read−Hall recombination becomes,
under open-circuit conditions.51 Therefore, the optimized

device shows less trap-assisted Shockley−Read−Hall recombi-
nation under open-circuit conditions, leading to a higher VOC.
Capacitance−voltage (C−V) measurements are performed

to further investigate the influence of solvent composition on
built-in potential (Vbi). Figure 4d shows (1/C2)−V curves of
the reference and optimized devices, and the curves follow the
Mott−Schottky equation: 1/C2 = 2(Vbi − V)/A2eε0εNA, where
Vbi represents the built-in potential, V represents the applied
voltage, A represents the device area, NA represents the carrier
concentration, ε represents relative permittivity, and ε0
represents vacuum permittivity.54 The Vbi (Vbi = 0.905 V) of
the optimized device is larger than that of the reference device
(Vbi = 0.850 V). The relatively larger Vbi implies a stronger
driving force for photogenerated carrier separation and an
extended depletion region for suppressing carrier recombina-
tion.54 Furthermore, electrochemical impedance spectroscopy
(EIS) is employed to investigate the interfacial carrier
recombination. The Nyquist plots and the equivalent circuit
model are shown in Figure 4e. Compared with the reference
device, the recombination resistance (Rrec) of the optimized
device is significantly increased, while the series resistance (Rs)
is reduced, indicating a reduced recombination loss, which can
result in an improved VOC and FF.

50,55

The dark J−V responses of electron-only devices (for the
reference and optimized devices) are measured, as shown in
Figure S5. The trap-state density (ntrap) can be obtained
according to the following equation: ntrap = 2ε0εrVTFL/eL2, and
the electron mobilities (μ) can be obtained from the Mott−
Gurney law: μ = 8JDL3/9ε0εrV2, where ε0 is the vacuum
permittivity, εr is the relative dielectric constant, e is the
elementary charge, L is the thickness of the perovskite film, and
JD is the dark current density.

36 The corresponding results are
summarized in Figure 4f. The trap densities of the reference
and optimized devices are 1.11 × 1015 and 6.55 × 1014 cm−3,
respectively. The calculated electron mobilities of the reference
and optimized devices are 7.45 × 10−2 and 2.23 × 10−1 cm2
V−1 s−1, respectively. Obviously, the optimized device exhibits
a relatively lower trap density and higher electron mobility,
which is well supportive to improve the photovoltaic
performance. To determine device reproducibility, photo-
voltaic parameters obtained from 20 cells are compared in
Figure S6. Parameters of the optimized devices exhibit
narrower distribution, which indicates good reproducibility.
Lastly, the thermal stability of the device stored at 80 °C in N2
and humidity stability with exposure to air with a humidity of
30−35% (for the reference and optimized devices) are tested,
as shown in Figure S7. The optimized devices stored at 80 °C
in N2 maintain their initial PCE of approximately 74.58% after
storage for 40 h, exhibiting better thermal stability compared
to the reference devices (34.22%). Similarly, the optimized
devices exposed to air with a humidity of 30−35% maintain
their initial PCE of approximately 81.33% after storage for 40
h, exhibiting better humidity stability compared to the
reference devices (52.56%). These results indicate that solvent
engineering not only can improve efficiency but also improve
stability.

■ CONCLUSIONS
In summary, the crystallization rate and crystal growth are
demonstrated to be controllable via solvent engineering. The
formation of a more stable intermediate phase will retard the
crystallization rate, resulting in a longer time to form the final
perovskite structure. Optimizing the solvent composition with
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adding 10% DMSO in pure DMF leads to a high-quality
(PEA)2(Cs)4Pb5I16 film with perfect coverage, increased film
crystallinity, and a better vertical orientation to the substrate
compared with the reference film. These improvements of film
quality can optimize interface contact and reduce the
nonradiative recombination loss, which is beneficial to charge
transport/extraction between the ETL and perovskite. Hence,
the optimized PSCs obtained a champion PCE of 13.68%.
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