
 
 

Delft University of Technology

How does an organism extract relevant information from transcription factor
concentrations?

Bauer, M.S.

DOI
10.1042/BST20220333
Publication date
2022
Document Version
Final published version
Published in
Biochemical Society Transactions

Citation (APA)
Bauer, M. S. (2022). How does an organism extract relevant information from transcription factor
concentrations? Biochemical Society Transactions, 50(5), 1365-1376. Article BST20220333.
https://doi.org/10.1042/BST20220333

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1042/BST20220333
https://doi.org/10.1042/BST20220333


Review Article
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How does an organism regulate its genes? The involved regulation typically occurs in
terms of a signal processing chain: an externally applied stimulus or a maternally supplied
transcription factor leads to the expression of some downstream genes, which, in turn,
are transcription factors for further genes. Especially during development, these tran-
scription factors are frequently expressed in amounts where noise is still important; yet,
the signals that they provide must not be lost in the noise. Thus, the organism needs to
extract exactly relevant information in the signal. New experimental approaches involving
single-molecule measurements at high temporal precision as well as increased precision
in manipulations directly on the genome are allowing us to tackle this question anew.
These new experimental advances mean that also from the theoretical side, theoretical
advances should be possible. In this review, I will describe, specifically on the example of
fly embryo gene regulation, how theoretical approaches, especially from inference and
information theory, can help in understanding gene regulation. To do so, I will first review
some more traditional theoretical models for gene regulation, followed by a brief discus-
sion of information-theoretical approaches and when they can be applied. I will then
introduce early fly development as an exemplary system where such information-
theoretical approaches have traditionally been applied and can be applied; I will specific-
ally focus on how one such method, namely the information bottleneck approach, has
recently been used to infer structural features of enhancer architecture.

Theoretical approaches for gene regulation
The discovery that Escherichia coli could switch from growing on glucose to lactose depending on lac-
tose’s presence in the environment showed that cells can respond to environmental stimuli by gene
regulation [1]. As the lac-operon was one of the most impressive early discoveries in gene regulation,
many early models for gene regulation, also in the context of development, were based on it [2]: the
lac gene is regulated by transcription factors whose binding sites are in direct proximity to the gene’s
promoter (see Figure 1). The area around the promoter contains binding sites for transcription factor
molecules that can facilitate or block binding of the polymerase and, therefore, activate or repress the
expression of the gene [3, 4]. A model for this assumes that h transcription factors of concentration s
bind to the binding sites (cooperatively, i.e. at the same time), and that the mean concentration of
expressed output (assuming ergodicity) corresponds to the averaged probability of the bound state.
The chemical master equation for this process reads,

dPð0; tÞ
dt

¼ koff � ðkoff þ kons
hÞPð0; tÞ; (1)

where kon and koff are the rate constants for binding and unbinding and Pð0; tÞ the probability that
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the site is free at time t. Then, in steady state, the mean presence of the bound state is

�c ¼ lim
T!1

1
T

ðT
0
ð1� Pð0; tÞÞ dt ¼ sh

koff =kon þ sh
: (2)

This is a Hill-function (see Figure 1) [5, 6]: gene expression increases sigmoidally with transcription factor con-
centration and the steepness of the increase is given by h.
Another canonical model for gene regulation is based on sharp thresholds: this idea originated from Wolpert

[7] concerning the question of how cells can express different genes given different transcription factor concen-
trations. Here, a gene is expressed (at maximal level) when the concentration of a particular input transcription
factor is higher than a certain value, and not expressed (g ¼ 0) when the transcription factor concentration is
lower than this value; for a transcription factor gradient in development, for multiple genes, this corresponds to
the so-called ‘French flag model’, see Figure 2 [8, 9]. This response to gene expression based on a sharp thresh-
old value of concentration can be phrased mathematically as

C ¼ Hðs� u1Þ; (3)

where H is the Heaviside stepfunction, defines as HðxÞ ¼ 0 if x < 0 and HðxÞ ¼ 1 if 0�� >; for multiple thresh-
olds, this works analogously, i.e. the amount of expressed genes varies in discrete units or states shown in

Figure 1. Gene regulation as a continuous function of number of bound transcription factors.

Left: Sketch for binding sites for transcription factors (blue) of concentration S close to a gene’s promoter; right: expression as

depending on S can be modeled by a Hill-function.

Figure 2. Gene regulation as a threshold-like response to varying transcription factor concentrations S.

Left: French flag model where regulatory response is sharply different if S exceeds a particular threshold (here for thresholds u1

and u2; right: gene expression of a single gene as a function of S for these two thresholds.
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Figure 2 (right). Mechanistically, one could assume that such thresholds can be implemented in terms of a very
steep Hill’s function, with h ! 1.
The advantage of these models is their simplicity, or their usefulness as a ‘limiting case’: for example, the

analysis of the graph-theoretical models has shown that the Hill function from equation (2) gives the steepest
possible slope (or threshold) of all various individual combinations of transcription factor binding [10, 11].
Thus, both of these models are still frequently used for understanding gene expression [12–14].
Yet, one important change in thinking about gene regulation around the early 2000s was the focus on noise

and stochasticity of gene expression [15]. This stochasticity is a consequence of both stochastic promoter burst-
ing and the limited number of transcription molecules which bind to the binding site region in a limited
amount of time.
On the theoretical side, calculations for noise originate from work in 1977 on chemotaxis (which involves

the sensing of a molecular gradient by receptors) [16]: Berg and Purcell argued that the signal-to-noise ratio
dc=c with which a 1D receptor of size A which measures for time t can infer the concentration s of a freely dif-
fusing signal molecule (diffusion constant D):

dc
c

� �2

¼ 2
Dastð1� pÞ ; (4)

where p describes the occupation at the binding site region (the term thus implies that binding can not occur
when the binding site is already fully occupied). Here, we use c in order to make explicit that this denotes the
cell’s estimate of the signal s.
Remarkably, this limit presents still a lower bound for noise in binding in equilibrium. More general work in

the early 2000s [17], which included account the noise of binding and unbinding of the molecules, showed that
the signal-to-noise ratio of inferring c changes to [17, 18]

dc
c

� �2

¼ 2
Dastð1� pÞ þ

2
konsð1� pÞt ; (5)

the first term corresponds to the diffusion-limited contribution (c.f. 4), and the second term to noise from
binding events. This signal-to-noise ratio is higher than equation (4). Similarly, extensions towards cooperative
binding [19] did not yield a lower bound. Clever readout [20] or spending energy (likely during gene regula-
tion) [21] can lower this bound. Nevertheless, from a modeling perspective, the equilibrium case is frequently
preferred as it depends less on the details of the model.
While the Berg–Purcell bound can be applied to the Hill-function model with a single binding site, general-

ization to more binding sites or more complicated mechanisms is difficult. The thresholded model does not
incorporate noise at all: this is a key shortcoming of this intuitive model, especially as it has been suggested
that increased cooperativity (i.e. a more threshold-like mechanism) may raise the noise by increasing the correl-
ation time of the input noise, impeding noise averaging [19, 22].
The above discussion already shows that it is difficult to calculate both the mean and noise of gene expres-

sion in a model bottom-up. In addition, there are a series of experimental insights since the early work on gene
regulation, which make the situation even more complex.

Gene regulation now
In eukaryotic organisms, the regulatory architecture is different from the lac-operon: genes can be regulated by
one or more promoters, as well as several regions with binding sites for transcription factors (the so-called
enhancers) which can be several kilobasepairs away from the promoter or the gene [23] (sketch in Figure 3).
These enhancers frequently have binding sites for a larger number of different transcription factors, some of
which have pioneering activities that make the chromatin accessible.
Modifications of these models to incorporate the more complex regulatory landscape of individual transcrip-

tion factor binding have, for example, been made by the so-called ‘thermodynamic models’ for transcription
[24, 25]. Here, the probability of the downstream gene to turn on and off depends on a partition function,
which takes into account the probability of various combinations of bound states of transcription factors to
binding site regions close to the DNA given the binding energies; different such combinations can lead to

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY). 3
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different levels of gene expression. Recently, how the binding of transcription factors is affected when other
transcription factors are already bound has been investigated by graph-theoretical models for transcription
factor binding [11]. Finally, ‘kinetic’ models for gene regulation have taken seriously the possibility that not the
thermodynamic steady state, but a series of non-equilibrium reactions are responsible for gene regulation [26–
28]; these kinetic models are particularly important with the recent trend to investigate the importance of
pioneer transcription factors which make chromatin accessible in the first place [29–34]. While these models
present a significant progress, incorporating the effects of the joint activity of several enhancer elements is diffi-
cult. In addition, the calculation of noise outside a strict thermodynamic framework is difficult and highly par-
ameter specific.
The situation is further complicated by the idea that transcription may involve a topological change in the

genome that changes enhancer-promoter distances [34–37]. One additional complication is derived from the
recent research focus on cellular compartmentalization, which means that the concentrations of transcription
factors may vary across the cell [38, 39]. This is especially topical now as liquid–liquid phase separation (LLPS)
has recently been implied to also affect transcription [40–43]. While LLPS is being established as a mechanism
for cellular compartmentalization when the numbers of involved proteins are large, to what extent it affects
gene regulation is still intensely debated [44]: especially in development, concentrations of some transcription
factor peak of order 10 000 molecules per cell [30, 45–47]; thus, even if only ca 50 inhomogeneities or droplets
are observed, they would need to contain less than the LLPS-typical numbers of 100s of molecules per droplet
if only these transcription factors make up the droplet; this makes the applicability of the mechanism difficult.
Nevertheless, the fact that transcription factors are likely inhomogeneously distributed is gaining prominence in
the field [29, 48, 49].
These heterogeneous transcription factor distributions matter from the modeling perspective: frequently,

transcription factor concentrations are only available averaged across the entire cell, but the local concentration
of the transcription factor close to its binding site is required for the model (see equation 2). If these concentra-
tions are unknown, estimating parameters for more specific models might lead to flawed conclusions. Similarly,
calculating the noise of binding at the binding site regions is almost impossible when neither the number of
transcription factors nor the mechanism for their accumulation around the binding site is known.
Overall, the added experimental complexities mean that although many advances have been made regarding

modeling the regulation of individual genes in specific developmental time periods, an overall conceptual
picture is still lacking. Such a conceptual picture is nevertheless important: conceptual understanding can help
predict whether a particular gene may have many enhancers, where they might be located, or what binding site
arrangements can detrimentally change expression.
Thus, in the following section, I will introduce a ‘top-down’ approach to complement to the ‘bottom-up’

mechanistic models; this approach is based on data and attempts to infer structural features necessary for
precise gene regulation from these data.

Figure 3. Sketch of gene regulatory environment: several enhancers (dark red) can regulate a gene (dark black); protein

concentrations can be inhomogeneous.
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Sensing approach to gene regulation
A complex system where it has been similarly complicated to draw up simple models due to the large number
of functional elements involved is a net of neurons, such as the brain. One can think of the Hill functions, or
more specific molecular schemes, as being like the Hodgkin–Huxley model for the electrical dynamics of
neurons [50]. An alternative is to take the result that these dynamics generate action potentials or ‘spikes’, and
ask how these spikes represent information of relevance to the organism [51]. The hope is that there are princi-
ples governing this representation without reference to molecular details. This question of ‘reading the code’
thus makes use of ideas from statistical physics or network theory and also from signal processing [52–55].
This approach has had considerable success in the neural context, and we can hope that something similar will
help us think about information flow through transcriptional regulation.
One particularly exciting approach here is to treat the interpretation of the transcription factor concentration

(s) as a (combinatorial) sensing problem. Such ‘efficient’ sensing approaches have been successful in neurosci-
ence, for example, concerning olfaction [56] or concerning photoreceptors [57]. A crucial starting point for
information optimization in neuronal systems was the work by Laughlin [51, 58]: he argued that photorecep-
tors are assigned such that they pick up on the most informative part of the signal, so that they can extract the
most possible information given a limited number of receptors. This structural knowledge is important also for
extracting information from transcription factor concentrations: given the typical statistics of the transcription
factor signal, the hope would be to infer how many sensors are necessary to provide a certain amount of infor-
mation and how they should optimally be distributed to extract this.
Before briefly introducing the information-theoretic optimization in the sensing problem introduced by

Laughlin as an example of a signal processing optimization, I want to emphasize one difference between elec-
tronic signal transfer and biological systems: In electronic signal transfer, one can consider how to best repre-
sent (source coding: optimizing entropy), and how to best transmit a message (channel coding: optimizing
error correction). In biological systems, it can be difficult to differentiate the signal from what the message
should be (for example, for signal processing of photoreceptors in the eye, the intuition could be that the set of
messages is the set of maximally distinct images; however, some animals may care less about specific features
of the images). In addition, in the processing of gene regulatory signals, the source (chemical concentration)
and the channel characteristics (noise profiles) can be modified biologically (i.e. have evolved evolutionarily).
Thus, it is not a priori helpful to think of coding categories as having been separately optimized in a joint
source-channel coding sense [59], but better to use one’s biological intuition to investigate a plausible optimiza-
tion goal, and see what one learns. In the spirit of not distinguishing signal-processing categories, I will, in the
following, introduce Laughlin’s sensing problem phrased in terms of an optimization of information (c.f. [51]),
rather than entropy.
Laughlin was wondering how a class of insect eye neurons, the so-called large monopolar cells (LMCs) can

sense light intensity from different natural landscapes. We can denote the light intensity or signal by J, which
can increase from 0 to a particular value Jmax; the distribution of different intensities is Pð. The information
provided in this signal needs to be transferred by the LMCs in terms of a graded potential, meaning that the
LMC integrates the signal intensity from a series of photoreceptors [60] and uses the value of this potential as
a proxy for the value of the intensity. We call this interpretation of the signal C (we will discuss this in more
detail later). We now want to optimize the mutual information

IðJ;CÞ ¼
ðð

dJ dCPðJ;CÞ log2
PðJ;CÞ
PðJÞPðCÞ ; (6)

where Pð is the joint probability distribution and PðCÞ the marginal distribution of the graded potential.
Optimizing the mutual information corresponds to essentially maximizing the correlations between J and C.
We note that the mutual expression can also be expressed as

IðJ;CÞ ¼ HðCÞ � HðC j JÞ; (7)

where

HðCÞ ¼ �
ð
dCPðCÞ log PðCÞ (8)

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY). 5
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and HðC j JÞ are the entropy and conditional entropy, respectively. The mutual information is at its maximal
value, the entropy of C, when J and C are maximally correlated. We want to find an encoding J ! C that max-
imizes this mutual information; this encoding can be written as a function that assigns one or many values of
potential C (depending on the noise in the encoding) to a value of light intensity J. It is important to note that
we will not be able to calculate what numerical value C should have for any particular J : from a decoding per-
spective, it is irrelevant if high light intensities should be encoded by a low potential or by a high potential, as
long as the mapping is clear.
To make the problem simple, we assume that the noise in the encoding J ! C is very low. Often, we can

assume that the encoding J ! C has a probabilistic encoding in which C has a Gaussian distribution around a
mean, �C ¼ f ð; this means that

PðC j JÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

p exp �ðC � �CÞ2
2s2

� �
: (9)

Then, we can calculate the probability distribution PðCÞ analytically and relate it to the inverse of the derivative
of �C with respect to J , PðCÞ ¼ jdf =dJj�1

J0 Pð [51, 61]. Thus, optimizing the mutual information over all possible
encodings �C ¼ f ð for Gaussian distribution corresponds to, modulo normalization factors, optimizing over all
possible probability distributions PðCÞ.
If the noise s is lower than a reasonable discretization of C (i.e. if we think the graded voltages can only be

resolved to a certain value), we can assign a single value C to each value J . Then, the conditional entropy is
zero. Thus, in Laughlin’s case, maximizing the mutual information corresponds essentially to maximizing the
entropy in the encoding variable C. Maximizing the entropy is a simple information-theoretic problem, which
can be solved using the method of Lagrangian multipliers [59]: the distribution PðCÞ that maximizes the
entropy is the uniform distribution. Since we now know that PðCÞ ¼ const ¼ jdf =dJj�1

J0 Pð, we can see that
df =dJ ¼ Pð. This means that the best possible encoding for light intensities is one where the slope of the
encoding matches the distribution over typical light intensities that typical insects see. This
information-theoretic result is exactly what Laughlin found in his data [58].
In the next section, we will apply this sensing optimization to transcription factors.

Sensing applied to transcription factors
We note that similarly to the light intensity, we assume that the ‘intensity’ or concentration of the transcription
factor provides relevant information to cells. Especially in early fly development, the concentrations of certain
transcription factors, such as the maternal morphogen Bicoid, provide information about a particular cell’s fate
[62]: cells close to the head of the embryo at high bicoid concentration differentiate differently from cells close
to the tail end of the embryo. In fact, neighboring cells along the embryonal axis distinguish almost uniquely
into different cell fates (e.g. different body segments, such as thorax and abdomen, regulated by the hox genes,
and even within a segment, different pair-rule genes are expressed at different concentrations). Cells will need
to read the transcription factor concentration signal in a way that maximizes the information between the
signal and the future cell fate. For simplicity, we can label the cell fate by its position along the embryonal axis,
X. This idea goes back to Wolpert’s idea about ‘positional information’, as in the French flag model introduced
above, but was developed and made more precise in a series of papers by Bialek, Gregor, Wieschaus and collea-
gues [45, 61, 63, 64].
In the case for fly development, there is thus a clear variable we care about (cell fates along the embryonal

axis X). The signals that provide information about this cell fate are the four so-called gap genes (see Figure 4):
they are expressed just downstream of Bicoid and two other maternally supplied signals. They form a complete
set of inputs, because their expression profiles provide enough information about the downstream cell fates
[63], and this information can be used to predict the expression pattern of the downstream pair-rule genes
[64]. Thus, for the question of how to extract information from transcription factor signals, we have, in the fly
embryo, a clear set of candidate signals where we can investigate whether and how information can be
extracted, based on data.
The complication compared with Laughlin’s example in the previous section is that the signals and the vari-

able, we care about, are different. In Laughlin’s example, the intuition was that the different intensities J were
the signals that needed to be maximally distinguished. Here, the gap gene expression concentrations are signals

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).6
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i [ fHb;Gt;Kr;Knig for i [ fHb;Gt;Kr;Knig to represent the four genes Hunchback, Giant, Krupel and
Knirps, and the cell fates of the set of possible positions along the axis, X. We are not interested in optimizing
IðS;XÞ (which would correspond to designing a set of signals, fSg, which maximize the different responses or
cell fate decisions along X). Instead, we take for granted the shape of the signals or gap expression profiles, and
we are interested in how this biological signal can be interpreted by the cell in order to learn about the future
cell’s fate. Thus, what we need to optimize is the cell’s reading of the signal (see Figure 4B); we denote this
measurement or interpretation by C, which stands for compression, as a compression can be seen as an effi-
cient measurement of the signal. In other words, we want to maximize the information that cells have, after
their measurement of the signal, about their future cell fate decisions, i.e. IðC;XÞ. We know that this reading
or measurement is noisy, because of the stochastic noise with transcription factor arrival and binding discussed
above. If we knew the mechanism for binding and arrival, we could calculate the probability distribution
PðC j SÞ, i.e. the cell’s internal measurement for every value of the signal, and then we could calculate IðC; SÞ.
However, we do not want to make an assumption about this mechanism; instead, we want to capture the
essence but not the details of the limitations in any mechanism. Thus, we maximize IðC;XÞ for various values
of IðC; SÞ, or for various values of noisy measurements. For each value of IðC; SÞ, we want to infer the encoding
PðC j SÞ that extracts the most information about X; we can then compare this to calculations of IðC; SÞ and
IðC;XÞ from various mechanisms. This inference will allow us to see how the cell would optimally set up the
measurement if it had to be noisy.
This optimization procedure can be phrased as the optimization goal

max
PðC j SÞ

IðC;XÞ � lIðC; SÞ: (10)

This optimization goal corresponds to the information bottleneck optimization goal [65]; for this optimization
goal, an analytic expression for PðC j SÞ exists that allows one to calculate PðC j SÞ self-consistently for each
value of l, and, due to the numerical discretization, for each value of discrete levels of C. According to this self-
consistent equation, PðC j SÞ reads.
This information bottleneck algorithm is a compression algorithm that has recently enjoyed an increase in

popularity, due to interest from machine learning [66, 67]: in image recognition, one is also interested in com-
pressing away aspects of an image that do not contribute to our recognition of it. Similarly, the question when
extracting transcription factor signals is which aspects of the signal are most informative, so that the organism
can concentrate on sensing them more precisely. To go towards continuous C, we can simply ensure that the
number of discrete levels of C is large.
We performed this calculation in [68], and I briefly summarize the key results here. For example, we can

look at how much IðC;XÞ we can obtain at best for each value of IðC; SÞ. We show this optimal trace in the
information plane (where we plot IðC; SÞ on the x and IðC;XÞ on the y-axis) in Figure 5. We note that all pos-
sible values on the information plane are below the diagonal (where IðC;XÞIðC; SÞ) and below the top dashed
line (where IðC;XÞIðS;XÞ). This top line is at IðS;XÞ � 4:1bit, which is the amount of information that the
gap genes provide about cell fates [63]. This upper bound is due to the data processing inequality: effectively, it
means that the cell can never obtain more information by its measurement than the signal provides. The
optimal sensing bound calculated by the bottleneck algorithm is close to the best possible bounds, in that it

Figure 4. Sketch for signal processing in the fly embryo. (A) Expression patterns of the maternal Bicoid gradient, which regulates the four gap

genes, which, in turn, regulate the seven pair-rule genes (three shown). The pair-rule genes, together with the hox genes, determine the fly’s

segmentation along the embryonal axis, X, or its cell fates. Data from [45, 64]. (B) Gap gene expression patterns present signals that need to be

interpreted by the gene regulatory apparatus for the correct cell fates differentiation.
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increases quite steeply along the diagonal initially. This is not necessarily the case when one tries to find the
best possible signal processing from a set of neurons [69], and suggests that the gap transcription factors here
really provide a complete signal that can be sensed well.

What do enhancers need to do if they extract signals
optimally?
What can one infer mechanistically about how enhancers need to sense these gap transcription factors, if they
sensed optimally? To do this, one can either compare the optimal information bottleneck curve to calculations
from various mechanisms, or calculate where on the optimal curve various sensors would be. To simplify the
question about mechanism, we can use a single gap transcription factor Hb: we imagine that cells need to infer
theire fate (or position) from the concentration of Hb, and ask how much information an optimal sensor C
can infer given a limit on its capacity IðC; SÞ. Figure 6 shows the optimal bottleneck curve for Hb (with a lower
maximum, at IðHb;XÞ ¼ 2:1 bits, as it is this time only a single transcription factor that is analyzed for cell fate
decision making). We compare this optimal curve to the threshold model by optimizing the position of one,
two and several thresholds to maximize the information Iðu;XÞ, where u is a thresholded variable. These
thresholds lie exactly on the bottleneck curve. This is important because it means that thresholded measure-
ments of transcription factors, which only trigger when transcription factors concentrations are above or below
values, while not mechanistically feasible, are information-theoretically optimal. Thus, the biological intuition
that led to the suggestion that the important features of the gap genes were their boundaries is
information-theoretic intuition; we can thus make mathematically precise intuition that biologists had for
several decades, and expand on it.
Further analysis of these thresholded measurements showed that the threshold positions did not need to be

fine tuned: specifically, thresholds at higher transcription factor concentrations could be placed more loosely.
Intuitively, this means that in concentration regimes where Hb is expressed noisily, the precise levels are not as
important. Biologically, transcription factor concentrations at high concentrations are often measured with
weak binding sites. We deduced that this suggests that how many weak binding sites an enhancer has does not
matter as much; this, again, is known in biology.
Second, we see that about 10 thresholds are required to sense hunchback correctly. When we use realistic

estimates for how well a single enhancer can sense in a Hill-function model with the Berg–Purcell noise (equa-
tion 4), we obtained 1–3 bits. While this may just be enough information to sense Hunchback correctly, it is
not enough when we want to obtain information about all four gap transcription factors together: there, we
needed about 3.8 bits or ca 50 thresholds to get to an accuracy that gets to about 10% of the information pro-
vided. This shows that many enhancers are required to read the gap transcription factor signals.

Figure 5. The optimal bottleneck curve for a single sensor for all genes (black) and with four sensors optimized for all

genes separately (blue). The x-axis shows the information capacity of the sensor and the y-axis the information that the

sensor has cell fates, which we want to maximize. Data replotted from [68].
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Finally, in order to determine what enhancer architectures should look like if they sensed optimally, one can
perform a comparative calculation. We optimized four separate sensors with the constraint that each sensor
should only sense one gap transcription factor each. We found that this was always worse than having a single
sensor that sensed them together (see blue line in Figure 5). This means that having four enhancers, one of
which would sense a single transcription factor, would not be information-theoretically optimal. Indeed, we
know that the enhancers that sense the gap transcription factors do have binding sites for many of them at the
same time; for example, the Eve stripe 2 enhancer has binding sites for the gap proteins Hb, Kr and Gt [70].

Perspectives

• We were able to apply a sensing approach to transcription data and found that this captured
several aspects of the transcriptional architecture for this network: multiple enhancers which
measure gap proteins together (in combinations of expression levels that cannot easily be
separated) and with degeneracies for weak binding sites allow the fly to extract most of the
protein signal that is provided in the gap transcription factors, and this, in turn, allows the fly
to make the correct cell fate decisions.

• The hope is that sensing or inference approaches can, together with mechanistic approaches,
help us understand faster why certain regulatory features are there; this could be important
not only for a better in vivo applications, but also for an appreciation of the regulatory
complexity.

• Future directions: Especially for synthetic gene regulation, where one hopes to engineer gene
regulatory systems [71–73], often unforeseen bottlenecks arise (see e.g. [74]). A conceptual
framework that can identify how important various transcription factor signals are and how
they might be sensed in natural systems could help to transfer ideas to the synthetic systems,
or help identify what is different.
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Figure 6. The bottleneck curve for an optimal sensor for the single protein Hb. The dashed lines correspond to the data

processing inequality, and separate inaccessible from accessible regions of the information plane. An abstract sensor that

measures with one (blue), two (orange), three (green) and more (red) thresholds is also on this curve and thus also

information-theoretically optimal. Data replotted from [68].
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