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Periodic Load Estimation of a Wind Turbine Tower using a Model
Demodulation Transformation

Atindriyo Kusumo Pamososuryo1, Sebastiaan Paul Mulders1, Riccardo Ferrari1 and Jan-Willem van Wingerden1

Abstract— The ever-increasing power capacities of wind tur-
bines promote the use of tall and slender turbine towers.
This poses a challenge from a fatigue loading perspective by
the relocation of the first and lightly-damped tower side-side
natural frequency into the turbine operating regime, promoting
its excitation during nominal operation. The excitation of this
resonance can be aggravated by periodic loading in the presence
of rotor mass and/or aerodynamic imbalance. Earlier work
already presented a method to prevent the side-side excita-
tion using a combination of model demodulation and quasi-
linear parameter varying model predictive control techniques.
However, the method does not incorporate features for active
control for side-side load mitigations. Because the information
of the beforementioned periodic side-side loading is unknown
and unmeasurable in practical scenarios, this paper presents a
Kalman filtering method for its estimation in a demodulated
fashion. The Kalman filter employs an extended demodulated
wind turbine model augmented with random walk models
of the periodic load. The simulation result demonstrates the
effectiveness of the proposed method in estimating the periodic
load components along with unmeasurable tower states in their
demodulated form. These estimates pose an opportunity for use
in future advanced controller designs for active load reductions.

I. INTRODUCTION

A prevalent strategy to achieve cost-competitive wind energy
generation systems is to upscale wind turbine sizes. Having
taller tower and longer blade designs allow wind turbines
to, respectively, access higher wind speeds and have a
greater rotor swept area, such that more wind energy can
be harnessed [1].

Taller turbines towers are typically more flexible due to
decreased wall thickness, which could impose fatigue loading
challenges [2]. Such towers can be excited more easily and
severely as their first natural frequency may enter the rotor
operating regime. The risk of resonance by the once-per-
revolution (1P) frequency (i.e., the rotor rotational frequency)
is thus becoming more prominent, particularly in the side-
side direction as the aerodynamic damping is negligible [1].
Fig. 1 shows that a rotor mass and/or aerodynamic imbalance
can form a persistent periodic load/disturbance, possibly
exciting and exacerbating the side-side resonance [3].

To prevent prolonged operation at the tower resonant
frequency, a possible solution is to implement the so-called
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Fig. 1. A wind turbine excited at the side-side direction by a periodic load
due to the rotor imbalance Fsd(t) = au cos (ψ(t)) at the 1P frequency.
The tangential speed of the periodic load is indicated by vt, and x denotes
tower top displacement in the horizontal direction.

frequency skipping logic in the controller design by manip-
ulation of generator torque [3], [4]. However, implementing
such rotational speed exclusion method has no convenient
and inherent way of tuning and can therefore significantly
affect power production. This problem advocates the use of
an advanced control method which can cater for the power
maximization and fatigue load minimization trade-off.

Recently, such an advanced and novel quasi-linear parame-
ter varying (qLPV) control framework has been developed in-
corporating the aforementioned frequency skipping strategy
with the capability to address the power-fatigue trade-off [5].
In this framework, a model demodulation transformation,
brought from the field of precision mechatronics [6], is used
to extract a slow-varying content of a signal from its higher-
frequency carrier. In the previous work, the model demodu-
lation method is applied to transform the wind turbine tower
dynamics, so as to obtain an affine qLPV model scheduled
on the rotor rotational frequency. The result enabled the
use of a computationally attractive qLPV model predictive
control (MPC) algorithm [7] by virtue of the obtained convex
optimal control problem.

Frequency-skipping control prevents operation in a critical
rotational speed range for extended periods of time. Still,
load mitigation capabilities could be further enhanced by in-
corporating active damping features in the same qLPV-MPC
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framework, thus rejecting the periodic load. The estimation
of the periodic disturbance via demodulation would benefit
the realization of such an active load control framework.
The development of unknown input observer to estimate the
demodulated load is the main contribution of this paper.

To aid the former mentioned estimation of demodulated
disturbance, a demodulated system description of the tower
side-side dynamics, extended from [5], is provided in this
work. Specifically, the extended model description now in-
cludes (i) both the slowly-varying periodic excitation am-
plitude and phase offset; (ii) the effect of the generator
torque to the tower motion; and (iii) the demodulated tower
acceleration in the output equation. Based on this model,
we propose a Kalman filter (KF) design, in which random
walk models of the unknown periodic load components are
augmented to the state equation. This allows their estimates
to be obtained alongside the unmeasurable tower states, such
as velocity and displacement, in a demodulated manner.
Future control methods may benefit from the estimates by
active load mitigations induced by the periodic disturbance,
e.g., in the predictive framework of [5].

The remainder of this paper is structured as follows.
Section II describes the nominal wind turbine dynamics,
comprising that of the tower side-side motion and the
drivetrain. Section III revisits the demodulated wind turbine
model derivation along with its extension. The proposed KF
design is elaborated upon in Section IV, the performance
of which is examined in several case studies in Section V
along with the validation of the extended model. Finally, in
Section VI, conclusions are drawn and future prospects for
active damping control purposes are given.

II. NOMINAL WIND TURBINE MODEL

The dynamics of a wind turbine tower are often described
as a second-order mass-spring-damper system with a forcing
term, and are given by the following state equation[
ẋ1(t)
ẋ2(t)

]
=

[
−d/m −k/m

1 0

] [
x1(t)
x2(t)

]
+

[
1/m
0

]
Fsd(t) , (1)

where m, d, and k, are the (first) modal mass, damping, and
stiffness of the tower in the side-side direction, respectively.
The tower top velocity and displacement are respectively rep-
resented by x1 and x2. The symbol t denotes the quantities
of the fast-varying time scale as explained in the next section,
and the ˙(·)-notation indicates the first time-derivative of the
specified signal.

The side-side force Fsd in (1) (and Fig. 1) is originally
considered to be purely affected by a centrifugal force in the
work of Mulders, et al. [5] and modeled as the following
periodic signal

Fsd(t) = au cos (ψ(t)) , (2)

with au as the (constant) magnitude of the excitation. The
rotor azimuth ψ is defined as the angular travel of the first
blade with respect to its vertically upward position. Note that
the relation ψ(t) =

∫
ωr(t) dt holds, with ωr as the angular

velocity of the rotor, which determines the frequency of the
periodic excitation.

Remark 1. Although Fsd in (2) only contains a periodic
load, this does not imply that other forcing effects, such as
those static in nature, cannot be accounted for. That is, Fsd

is considered as a generic force throughout this work.

Remark 2. The tower states x1 and x2, as well as their
time derivatives, can be decomposed into their slow- and
fast-varying components, as will be made clearer in the
next section. The former exhibits quasi-steady state behavior,
whereas this is not the case with the latter, especially if
persistent periodic loading affects the system.

The tower dynamics are augmented with the following
simplified representation of the complete drivetrain dynamics

ω̇r(t) =
Ta(t)−GTg(t)

Jr
, (3)

where Jr, G, and Tg are the low-speed-shaft (LSS) equivalent
inertia, gearbox ratio (≥ 1) and generator torque, respec-
tively. The aerodynamic torque is defined as

Ta(t) =
1

2
ρaπR

3Cq(ωr(t), v(t), β(t))v(t)
2 ,

with ρa, R, Cq, v, and β as the air density, rotor radius,
aerodynamic torque coefficient, wind speed, and pitch angle,
respectively.

Assumption 1. Throughout this study, the perfect knowledge
of the aerodynamic torque Ta and wind speed v is assumed
since this paper focuses on estimating the unknown periodic
disturbance; in realistic scenarios, these quantities can be
estimated by an observer [8].

III. EXTENDED DEMODULATED MODEL

The concept of model demodulation transformation was orig-
inally formulated to overcome the challenges surrounding
the derivation of transient dynamic model of cantilevers
in tapping mode atomic force microscopy (TM-AFM) [6].
The transformation is able to separate the slow- and fast-
varying components of the states in a standard state-space
form, thereby facilitating (model-based) controller design.
The reader is referred to the work of Keyvani, et al. [6]
for an extensive explanation and derivation of the model
demodulation technique with an application to TM-AFM.

The technique was subsequently adopted by Mulders, et
al. [5] to model the wind turbine tower dynamics in a
demodulated fashion, enabling frequency skipping control
capabilities in a predictive control framework. This section
first revisits the model demodulation transformation, and
secondly proposes extensions by the inclusion of genera-
tor torque signal affecting the tower side-side motion, and
derives an output equation incorporating tower acceleration
components and rotor speed.

The following key assumption underlies model demodu-
lation [6].
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Assumption 2. The changes in the amplitude and phase
of the system’s response are much slower than a single
oscillation cycle Tr ≜ 2π/ωr. Accordingly, signals of slow
time-varying time scale are indicated with the notation τ ,
whereas its fast-varying counterpart with t.

As per the above assumption, variables belonging to the slow
time scale can be treated as constant over Tr such that∫ Tr

0

f(τ)g(t) dt = f(τ)

∫ Tr

0

g(t) dt ,

f and g being generic variables at different time scales.
Using Euler’s formula ejσ = cos(σ) + j sin(σ), the state

variables of the wind turbine can be written as
xi(t) = ai(τ) cos(ωr(τ)t+ ϕi(τ)) ,

⇔ xi(t) = ℜ{Xi(τ)e
jωr(τ)t} ,

(4)

with Xi(τ) = ai(τ)e
jϕi(τ) ∈ C, where the subscript i is an

index. The ℜ{·}-notation corresponds to the real component
of the considered variable, while the ℑ{·}-notation refers to
that of the imaginary part, as used later on in the derivation.
Note that to reconstruct the signal’s amplitude and phase
offset, the following relations are used respectively

ai(τ) =
√
ℜ{Xi(τ)}2 + ℑ{Xi(τ)}2 , (5)

ϕi(τ) = arctan (ℑ{Xi(τ)}/ℜ{Xi(τ)}) . (6)

The first time-derivative of (4) is given by

ẋi(t) = ℜ
{(
Ẋi(τ) + jωr(τ)Xi(τ)

)
ejωr(τ)t

}
. (7)

The side-side force in (2) is extended to include an
unknown slow time-varying phase offset of the periodic load
ϕu since, in reality, the load might not be in-phase with
the rotor azimuth. Moreover, au is now considered to be
slowly-varying rather than a constant; further generalizing
the periodic load characteristic. By adding the contribution of
Tg in the form of a static contribution to the tower dynamics,
the side-side force becomes

Fsd,ext(t) = au(τ) cos (ωr(τ) t+ ϕu(τ)) + c Tg(t) , (8)

thereby extending the side-side force as formulated in [5].
The scaling factor c = 3/2H represents the ratio between
angular and translational displacement of the tower motion,
here assumed as a prismatic beam [9], with H being the
tower height.

The demodulation of the side-side force is performed by
considering it as a semi-periodic signal, i.e., a harmonic
signal with slowly varying amplitude and phase. Broken
down into its semi-harmonic components in a similar fashion
as (4), (8) can be rewritten as follows

Fsd,ext(t) = ℜ

{
Au(τ)e

jωr(τ)t + c

∞∑
n=0

T(n)
g (τ)ejnωr(τ)t

}
,

(9)
with Au(τ) = au(τ)e

jϕu(τ) ∈ C representing the slow-
varying component of the periodic load signal. The amplitude
and phase of the n-th harmonic component of the generator
torque signal is denoted by T

(n)
g (τ) ∈ C.

Substituting (4), (7), and (9) into (1) yields the relations

ℜ
{(

Ẋ1(τ) + jωr(τ)X1(τ) +
d

m
X1(τ) +

k

m
X2(τ)

− 1

m
Au(τ)

)
ejωr(τ)t − c

m

∞∑
n=0

T(n)
g (τ)ejnωr(τ)t

}
= 0 ,

(10)

and

ℜ
{(
Ẋ2(τ) + jωr(τ)X2(τ)−X1(τ)

)
ejωr(τ)t

}
= 0 . (11)

Multiplying both sides of (10) and (11) with ejωr(τ)t and
integrating over an oscillation period

∫ Tr

0
(·)ejωr(τ)t dt results

in the following projections into the space of the first
harmonic component∫ Tr

0

ℜ
{(

Ẋ1(τ) + jωr(τ)X1(τ) +
d

m
X1(τ) +

k

m
X2(τ)

− 1

m
Au(τ)−

c

m
T(1)

g (τ)

)
ejωr(τ)t

}
ejωr(τ)t dt = 0 , (12)

and∫ Tr

0

ℜ
{(
Ẋ2(τ) + jωrX2(τ)

− X1(τ)) e
jωr(τ)t

}
ejωr(τ)t dt = 0 . (13)

It is important to note that in (12), due to the following
orthogonality property of harmonic functions∫ 2π

0

ℜ{γejnθ}ejθdθ = 0, ∀ n ̸= 1 , (14)

only the first harmonic of T
(n)
g , that is T

(1)
g , is left in the

equation while those corresponding to zeroth and higher
harmonics are cancelled.

Another orthogonality property of harmonic functions
which can be exploited is∫ 2π

0

ℜ{γejθ}ejθdθ = 0, iff γ ∈ C = 0 , (15)

by which the following state equation is obtained[
Ẋ1

Ẋ2

]
=

[
−jωr − d

m − k
m

1 −jωr

] [
X1

X2

]
+

[
1
m

c
m

0 0

] [
Au

T
(1)
g

]
,

(16)
with ωr as the scheduling variable. For the sake of simplicity,
the notation τ is dropped in the above equation and for the
remainder of this paper.

A. Extended Demodulated State Equation

As a step toward obtaining a qLPV representation of the
combined drivetrain and demodulated tower dynamics, (16)
is augmented with (3). However, it is important to realize
that this equation contains several complex terms, hindering
it from being directly usable for control system designs.
Therefore, the equation is rewritten by separating the real or
imaginary parts by defining the new states q1 = ℜ{X1} ∈ R,
q2 = ℑ{X1} ∈ R, q3 = ℜ{X2} ∈ R, and q4 = ℑ{X2} ∈ R,
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forming the following extension of the demodulated state
equation with respect to that of Mulders, et al. [5]

q̇1
q̇2
q̇3
q̇4
ω̇r


︸ ︷︷ ︸

ẋ

=


− d
m ωr − k

m 0 0
−ωr − d

m 0 − k
m 0

1 0 0 ωr 0
0 1 −ωr 0 0
0 0 0 0 0


︸ ︷︷ ︸

A(ρ)


q1
q2
q3
q4
ωr


︸ ︷︷ ︸

x

+


c
m 0 0
0 c

m 0
0 0 0
0 0 0
0 0 1

Jr


︸ ︷︷ ︸

Bu

 ℜ{T(1)
g }

ℑ{T(1)
g }

Ta −GTg


︸ ︷︷ ︸

u

+


1
m 0
0 1

m
0 0
0 0
0 0


︸ ︷︷ ︸

Bd

[
ℜ{Au}
ℑ{Au}

]
︸ ︷︷ ︸

d

,

(17)
with the symbols x, u, and d referring to the state, in-
put, and disturbance vectors. A(ρ), Bu, and Bd are the
(parameter-dependent) state, input, and disturbance matrices,
respectively, with the scheduling variable ρ = ωr.

B. Output Equation Derivation

Following the derivation of the new state equation, the output
of the demodulated wind turbine model may now be defined.
In [5], the output was chosen as the displacement signal,
following [6]. However, in reality, this signal is unavailable
from the wind turbine measurements. In this work, a step
toward obtaining a more realistic model is taken by defining
the demodulated acceleration signal, which was not discussed
in [5], [6], as the new output.

The acceleration signal in the demodulated fashion is
calculated according to (7) for i = 1 as follows

qa + jqb = Ẋ1 + jωrX1 , (18)

with qa = ℜ{Ẋ1+jωrX1} ∈ R and qb = ℑ{Ẋ1+jωrX1} ∈
R. By substitution of Ẋ1 from the state equation (16) into
(18), the demodulated acceleration is obtained. Appending
ωr as another output, the final output equation is thus

qaqb
ωr


︸ ︷︷ ︸

y

=

− d
m 0 − k

m 0 0
0 − d

m 0 − k
m 0

0 0 0 0 1


︸ ︷︷ ︸

C


q1
q2
q3
q4
ωr


︸ ︷︷ ︸

x

+

 c
m 0 0
0 c

m 0
0 0 0


︸ ︷︷ ︸

Du

 ℜ{T(1)
g }

ℑ{T(1)
g }

Ta −GTg


︸ ︷︷ ︸

u

+

 1
m 0
0 1

m
0 0


︸ ︷︷ ︸

Dd

[
ℜ{Au}
ℑ{Au}

]
︸ ︷︷ ︸

d

.

(19)
The output vector and matrix are denoted by y and C and
the feedthrough matrices Du and Dd correspond to that of
the system’s inputs and disturbances, respectively.

C. Measurement Signal Demodulation

In the real wind turbine system, measurement signals (e.g.,
tower acceleration), as well as control inputs, (e.g., generator

torque), are not presented in their demodulated form. Hence,
these signals need to be processed by a measurement signal
demodulation (MSD) such that their 1P component can be
obtained and used with the extended demodulated model
derived in the preceding sections. Here, the method for de-
modulating measurement signal as presented by Bottasso, et
al. [10] is employed and briefly summarized in the following.
For further details, please consult [10].

The demodulation of a discrete signal ẑ(tk) with tk = k∆t
over NR revolutions is expressed as

ẑ(tk) = ẑ(ψ(tk)) ≈ z0K +

NB∑
n=1

(
z
(n)
c,K cos (nψ(tk))

+ z
(n)
s,K sin (nψ(tk))

)
,

with NB as harmonic bases, angular position ψ(tk) ∈ [ψK−
2πNR, ψK ], where ψK = K∆ψ and the coefficients are
calculated by the following integral operations

z
(n)
c,K =

1

πNR

∫ ψK

ψK−2πNR

ẑ(ψ) cos (nψ)dψ ,

z
(n)
s,K =

1

πNR

∫ ψK

ψK−2πNR

ẑ(ψ) sin (nψ)dψ .

(20)

which can be approximated, e.g., by using trapezoidal nu-
merical integration. The (̂·)-notation is used to represent
the estimate of the specified signal. The azimuthal sampling
(i.e., sampling at different azimuth positions) is represented
by ∆ψ, whose steps are indicated by K spatial steps.
Meanwhile, ∆t denotes sampling time whose temporal steps
are indicated by k. In this paper, note that only the first
harmonic components of (20), referring to the 1P frequency,
are used.

IV. KALMAN FILTER DESIGN

Kalman filtering is employed to retrieve information about
the unknown periodic load, as well as the wind turbine states
unavailable from the measurements. The KF is defined by the
following discretized state-space equation—augmented with
the random walk models of the disturbance [11][

xk+1

dk+1

]
︸ ︷︷ ︸

xaug,k+1

=

[
A(ρk) Bd

0 I

]
︸ ︷︷ ︸

Aaug(ρk)

[
xk
dk

]
︸ ︷︷ ︸
xaug,k

+

[
Bu

0

]
︸ ︷︷ ︸

Baug

uk +

[
wk

wd,k

]
︸ ︷︷ ︸

waug,k

,

(21)

yk =
[
C Dd

]︸ ︷︷ ︸
Caug

xaug,k +Duuk + vk , (22)

with A(ρk), Bu, and Bd as the discretized state, input,
and disturbance matrices, respectively. The quantities w,
wd, and v are the uncorrelated process, random walk, and
measurement white noise sequence, the covariance matrix of
which is defined as

E

[
waug,k
vk

] [
wT

aug,k vTk
]
= diag(Qaug,R) , (23)
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TABLE I
PARAMETERS OF THE (MODIFIED) NREL-5MW REFERENCE WIND

TURBINE.

Description Symbol Value Unit

Gearbox ratio G 97 -
LSS equivalent inertia Jr 4.0802×107 kg m2

Rotor radius R 63 m
Tower height H 90 m

Tower modal mass m 1000 kg
Tower modal damping d 100 kg s−1

Tower modal stiffness k 500 kg s−2

Tower natural frequency ωn 0.7071 rad s−1

where the state covariance matrix Qaug and the measurement
covariance matrix R act as tuning variables for the KF. The
operator E represents the expected value. The KF algorithm
includes two steps: a priori state and error covariance matrix
estimation, followed by a posteriori state and error covari-
ance matrix correction. For the detailed recursive algorithm,
the interested reader is referred to [11].

V. CASE STUDY

Prior to assessing the performance of the designed KF, it
is compelling to validate the derived extended demodulated
wind turbine model, as represented by the state equation (17)
and output equation (19). After that, the ability of the KF in
estimating the unknown periodic load components, as well
as the tower velocity and displacement, is illustrated.

As a demonstration, the reference NREL 5MW wind
turbine model [12] is considered. Its first tower modal
properties, specified in Table I, are tuned such that its natural
frequency ωn =

√
k/m lies in the below-rated operating

region; resembling slender, soft-soft towers [2]. In this case,
a conventional K − ω2 generator torque control law [1]
is employed. Since above-rated turbine operation is of no
interest in this study, a staircase uniform wind profile in
the v = 4 − 10 m/s range is considered with 1.5 m/s step
increases every 100 s, for 500 s of total simulation time.

A. Model Validation

In this section, the response of the demodulated accelera-
tion signal pair {qa, qb} is demonstrated. In addition, the
nominal model’s measurement is demodulated using MSD,
which yields the {q(1)c , q

(1)
s } signals, i.e. the cosine and

sine components of the first harmonic of the nominal tower
acceleration signal. As depicted in Fig. 2, the amplitude
of these signal pairs are calculated by taking their two-
norms to show whether they follow the nominal model’s
amplitude. This is shown to be the case for both {qa, qb} and
{q(1)c , q

(1)
s }, although the latter shows a delayed response due

to the integration in (20). Even though the phase information
calculated from these pairs are not included in the figure,
similar behavior is observed.

Hence, this result implies that the proposed extended de-
modulated model can be used in a more realistic situation as
opposed to [5], where a demodulated second-order model is
excited to provide tower displacement amplitude information.
Moreover, the MSD method enables measurements to be

Fig. 2. Comparison between the measured nominal wind turbine tower
acceleration and the amplitude of both the extended demodulated model
and MSD-demodulated signals, {qa, qb} and {q(1)c , q

(1)
s }, respectively. The

demodulated responses show accurate tracking of the periodic amplitude,
whereas those of the MSD-method exhibit a slight delay as a result of
integral operations of the measurements demodulation.

Nominal Wind
Turbine Model

Measurement 
Signal

Demodulation

Kalman Filter

Torque 
Controller

Fig. 3. Implementation the proposed KF based on the demodulated wind
turbine and tower model. The KF estimates the demodulated periodic load
components, as well as the unmeasurable tower states, and takes inputs from
the torque controller and the (MSD-demodulated) nominal wind turbine
model measurements.

demodulated and used together with the proposed model,
such as for Kalman filtering in the following section.

B. Kalman Filter Performance Assessment

In the performance assessment of the proposed periodic
load estimation method, the extended demodulated model is
employed as the internal model of the KF after discretized
with fourth-order Runge-Kutta method at 0.01 s of sampling
time. The observer takes the tower acceleration and the
generator torque input in their MSD-demodulated forms,
whereas the rotor measurement is fed directly from the
turbine, as illustrated in Fig. 3.

The periodic load au cos (ωrt+ ϕu) with slowly-varying
au and ϕu is simulated by generating sinusoidal ℜ{Au}
and ℑ{Au}, with an amplitude of 75

√
2 ± 15 N and a

frequency of 0.025 rad/s. Imposing a phase offset of π/2 rad
for ℑ{Au} generates a varying ϕu. The parameters of the
resulting periodic signal can thus be characterized as au ∈
[135, 165] N and ϕu ∈ [39.25, 50.75] deg. For the specified
simulation settings, the covariance matrices are selected to
be Qaug = diag(10−6, . . . , 10−6, 5 · 10−2, 5 · 10−2) and
R = diag(10−5, 10−5, 10−5).
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Fig. 4. Kalman filtering result. Good tracking of the estimates with respect
to the reference periodic load components and tower states is observed
despite slightly delayed response, bias, and transient discrepancies after each
wind step.

The simulation results are shown in Fig. 4, demonstrating
that the unknown wind turbine tower states q̂1, . . . , q̂4 are
reconstructed with minimal discrepancies from the refer-
ence. Moreover, the periodic disturbance elements ℜ{Au}
and ℑ{Au} are estimated, from which the slowly-varied
amplitude and phase offset can be calculated. They show
good tracking behavior with respect to the original signal.
In Fig. 5, the capability of the load amplitude estimate is
compared with the original signal; demonstrating that the
former is able to closely follow the latter’s amplitude.

Discrepancies are seen after every step in wind speed
before the estimates converge back to the actual signal.
The MSD-demodulated signals experience some delay due
to the integral operations in (20), which are shown to be
more sensitive toward large, abrupt changes in the tower
acceleration. This appeared to be the case particularly during
the transients near the critical tower excitation at t = 200 s
and t = 300 s (see Fig. 2). It is also observed that the
steady state estimation error of ℜ{Au} varies for different
wind speeds within [0.5, 4.5]% range whereas for ℑ{Au}
this value ranges between [0.3, 5]%. Such performance limi-
tations might suggest that a delay-proof mechanism needs to
be incorporated for future KF design. Regardless, it has been
shown that using the MSD-demodulated acceleration signals
as the KF inputs, the unknown periodic disturbance and the
remaining demodulated tower states could be reconstructed
to a large extent. This allows strategies, such as feedforward
control [9], to be employed together with the state-of-the-
art qLPV-MPC algorithm [5] in future work for further load
reductions.

VI. CONCLUSIONS

In this work, the extended demodulated wind turbine model
has been derived, which incorporates slowly-varying periodic
excitation’s amplitude and phase offset, generator torque
contribution to the tower motion, and a new output equation
containing demodulated acceleration signal. The extended

Fig. 5. Reconstruction of the periodic load amplitude from the KF
estimation compared with the original signal.

model’s output has been evaluated against that of the nominal
signal, in which the former has been shown to closely
track the amplitude of the latter. Furthermore, a Kalman
filter augmented with random walk models has been de-
signed using the new model and assessed at the below-
rated regime. It proved capable of estimating the periodic
disturbance components and the unknown tower states, in
good agreement with the respective disturbance and tower
states references. Future work will comprise improvements
on the delay tolerance aspect of the unknown input observer,
as well as active tower damping control by qLPV-MPC, by
means of the extended model.
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