
 
 

Delft University of Technology

Single-Leg Forward Hopping via Nonlinear Modes

Calzolari, Davide; Della Santina, C.; Giordano, Alessandro Massimo; Albu-Schaffer, Alin

DOI
10.23919/ACC53348.2022.9867538
Publication date
2022
Document Version
Final published version
Published in
Proceedings of the American Control Conference (ACC 2022)

Citation (APA)
Calzolari, D., Della Santina, C., Giordano, A. M., & Albu-Schaffer, A. (2022). Single-Leg Forward Hopping
via Nonlinear Modes. In Proceedings of the American Control Conference (ACC 2022) (pp. 506-513). IEEE.
https://doi.org/10.23919/ACC53348.2022.9867538

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.23919/ACC53348.2022.9867538
https://doi.org/10.23919/ACC53348.2022.9867538


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



Single-Leg Forward Hopping via Nonlinear Modes

Davide Calzolari1, Cosimo Della Santina1,2, Alessandro M. Giordano1, Alin Albu-Schäffer1

Abstract— Implementing dynamic legged locomotion entails
stabilizing oscillatory behaviors in complex mechanical systems.
Whenever possible, locomotion algorithms should also exploit
the improved capabilities of elastic elements added to the
structure to improve efficiency and robustness. This work aims
to shed some light on implementing generic dynamic locomotion
by stabilizing nonlinear modes. The nonlinear modal analysis
extends the linear modal theory to nonlinear systems and
thus characterizes the oscillations that a robot can execute as
autonomous evolutions. We execute forward hopping motions
with a single segmented elastic leg as the first step towards
generic modal locomotion. We propose a locomotion algorithm
that exploits the modes of an extension of the SLIP model.
We develop this strategy to generalize to other robotic systems,
and we extensively validate it with experiments on an elastically
actuated segmented leg.

I. INTRODUCTION

Introducing elasticity into the mechanical structure of

robotic systems should allow them to implement efficient

oscillatory behavior. Well-known results in linear modal anal-

ysis drive this intuition [1, Sec. 2]. Furthermore, vertebrate

animals - with their elastic tendons and muscles - provide

plenty of examples of using elasticity in periodic tasks [2].

These ideas led to introducing elastic elements to the robot’s

mechanical structure and thus to the fields of continuum and

articulated soft robotics [3]. The question of unraveling the

potential of robots built according to these principles has

seen increasing attention in the last decade [4].

Among oscillatory tasks, the most relevant is probably

locomotion [5], within which exploitation of compliance

has been thoroughly investigated [6], [7]. Many of these

works focus on the spring-loaded inverted pendulum (SLIP)

model [8], [9], for which robotic implementations also exist

[10], [11]. Simple reset policies are already sufficient for

generating stable gates in the SLIP [12]. More complex

strategies, intrinsically robust to terrain uncertainties, have

been investigated as well [13], [14]. It is well-known that

largely passive locomotion patterns can arise in walkers that

are more complex than a SLIP [15]–[17]. However, these

systems have never been extended beyond the proof-of-

concept to full-fledged robots. Instead, the vastly more pop-

ular approach is to match the high dimensional dynamics to

the SLIP model via feedback model matching [18]–[21]. This

approach effectively deals with highly articulated systems.
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novation programme (grant agreement No 835284). 1 The authors are
with the Department of Informatics, Technical University of Munich
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and Mechatronics, German Aerospace Center (DLR), 82234 Weßling,
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2 Cosimo Della Santina is with the Cognitive Robotics Department,
Delft University of Technology (TU Delft), Delft, The Netherlands
c.dellasantina@tudelft.nl.
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Fig. 1. Connecting nonlinear modes of consecutive stance phases (ST)
using geometric properties of the mode and leg control during the flight
phase (FL). The touch down and take off transition events are denoted TD
and TO, respectively.

However, it relies on model cancellations and therefore only

partially exploits the robot’s natural dynamics.

In this work, we take an alternative route grounded in

control of periodic orbits [22]–[24] that may eventually lead

to full exploitation of the natural dynamics of generic elastic-

legged systems. In this context, nonlinear modal theory [1],

[25] allows to identify families of oscillations that the robot

can execute naturally. For example, authors of [26] have

proven that modal gaits exist embedded in a soft quadruped,

but proposed no controller for regulating them. In our recent

work, we have proposed feedback controllers that can excite

these oscillations - called nonlinear modes - in fixed based

robots [27], [28]. The goal is to help the robot expressing

its natural capabilities, rather than being forced to perform

generic motions. Modal periodic pick-and-place is analyzed

in [29], and preliminary execution locomotion patterns in

[30]. Both rely on excitation of line-shaped modes. Nonlinear

modes are instead used in [31] and [32] to swing and to jump

with a single leg, both in place.

In summary, nowadays, no algorithm can leverage fully

nonlinear modes to construct locomotion patterns and imple-

ment dynamic locomotion. As the first step in this direction,

this paper introduces an algorithm for forward-jumping and

reports its experimental validation. This preliminary investi-

gation focuses on the p-SLIP, an extension of the SLIP model

featuring nonlinear polar and radial springs. Nonetheless,

we develop the strategy to be readily generalizable to other

articulated-legged systems by using only ingredients that are

robot-agnostic.

II. DESIGN PRINCIPLES USING NONLINEAR MODES

A. Dynamics of the p-SLIP template

We focus on the template model in Fig. 2, which extends

the SLIP model by adding a polar spring. Also, we consider

generic nonlinear springs, and a force and a torque acting

in parallel to them. We refer to this model as p-SLIP in the
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Fig. 2. The two phases in which the p-SLIP can find itself: stance - foot
is on the ground; and flight - no ground contact. We assume that the foot
is the only possible point of contact.

following. The polar spring may represent the stiffness of the

ankle, or it can arise from a constraint on the total rotation

of the body. We will show that the latter is embedded on

the physical device on which we will perform experiments.

The polar spring can also be realized in a quadruped, for

example using the two support legs of each diagonal pair

during trotting.

The p-SLIP is a hybrid system, with two continuum

dynamics models (stance and flight phases) and transition

maps. During stance phase, the foot is considered connected

to the ground through a revolute joint (no slippage). Standard

Lagrangian derivations yield the following stance phase

dynamics

α̈ = −
2ṙα̇

r
+

g

r
sinα−

kα(α)

mr2
+

τα
mr2

,

r̈ = rα̇2 − g cosα−
kr(r)

m
+

τr
m

,

(1)

where (α, r) ∈ R
2 are the polar coordinates of the CoM,

m ∈ R
+ is the total mass, g is the gravitational acceleration,

(kα, kr) ∈ R
2 are the potential generalized elastic forces,

and (τα, τr) ∈ R
2 are the generalized actuation forces. We

assume that kα(α) = −kα(−α), which is generally non-

restrictive for elastic actuated legged system. For the rest of

the paper, let r0 denote the rest length of the radial spring,

i.e., kr(r0) = 0, and α0 the rest angle of the polar spring,

i.e., kα(α0) = 0.

When in flight, the body follows a ballistic dynamics

ẍc = 0, z̈c = −g, α = αd
TD, r = rdTD , (2)

where xc and zc are the horizontal and vertical Cartesian

configurations of the trunk CoM, respectively. As usual in

works about SLIP models, we assume that the angle of

attack α can be controlled during the flight phase. This is

interpreted as the leg inertia being negligible compared to

the main body. Thus, the inputs of system (2) are αd
TD and

rdTD, which are the desired angle of attack and leg extension.

The transition and guard conditions maps are reported in

Fig. 3, where Fz ∈ R is the vertical component of the force

generated by the springs while pushing into the ground, and

Jc(α, r) ∈ R
2×2 is the Jacobian associated with the Carte-

sian change of coordinates, i.e., (ẋc, żc) = Jc(α, r)(α̇, ṙ).
At touchdown, the CoM velocity ẋc,TD determines (α̇, ṙ)TD,

while the initial velocity of the CoM ballistic trajectory is

determined at the moment of take off.

Stance Flight

Take off: Fz ≤ 0

Touch down: Fz > 0

xcxc

Fz
Fz

[

α̇
ṙ

]stance

TD

= Jc(α, r)
−1ẋ

flight
c,TD

ẋ
flight
c,TO = Jc(α, r)

[

α̇
ṙ

]stance

TO

Fig. 3. The full hybrid dynamics, with transition guards and maps reported.
The TO and TD subscripts denote the velocities at take off and touch down,
respectively.

B. The nonlinear modes of the extended SLIP

We use nonlinear modal analysis to characterize the family

of natural oscillations that the p-SLIP1 can perform as

autonomous evolutions while in the stance phase. We focus

here on the stance phase only because the theory is still

restricted to non-hybrid systems. In the following subsection,

we will show how this information can be used in the hybrid

regime.

Within nonlinear modal theory [1], the flat invariant col-

lections of regular oscillations that we find in linear systems

(eigenspaces) are curved into 2-dimensional invariant sub-

manifolds embedded in the robot’s state space (eigenman-

ifolds). Still, these objects collect infinite self-similar and

hyper-efficient periodic orbits - one for each energy level.

An eigenmanifold M of the p-SLIP can be represented as

follows

M ≃
{

(α, r, α̇, ṙ) ∈ R
4 | ∃(xm, ẋm) ∈ R

2

s.t. (α, r) = X(xm, ẋm), (α̇, ṙ) = Ẋ(xm, ẋm)
}

,
(3)

where (X, Ẋ) : R
2 → R

2 × R
2 is a polynomial ap-

proximation of the coordinate expressions of the natural

embedding of M into R
4. The first argument of (X, Ẋ) is

called master variable xm. Usually, when evaluating X, Ẋ
a retraction is implicitly defined from (α, r) to xm. These

two functions encode all the necessary information about the

eigenmanifold geometry, and as such they play an important

role in our control framework. Solving in the Galerkin sense

the tangency constraints discussed in [27], yields a suitable

approximation of the embedding.

The p-SLIP has at least two eigenmanifolds, tangent to

eigenspaces of the linearized system. One is the eigenman-

ifold collecting hopping in place motions. In this special

case the tangency constraints can be solved without any

approximation, and the result is the following line-shaped

manifold

{(α, r, α̇, ṙ) ∈ R
4 | α ≡ 0, α̇ ≡ 0}.

These are vertical oscillations in the r direction, governed by

the modal dynamics r̈ = −g+kr(r)/m. This can be used to

1For the sake of space, we are presenting here the theory specialized
to p-SLIP. The interested reader is referred to [1] for more details on the
general case.
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Fig. 4. The manifold depicted in light gray is a polynomial approximation
of the Eigenmanifold associated with the mechanical system shown in
Figure 2(b), using the parameters discussed in the experimental section.
Trajectories on the modes with constant energy levels are displayed with
solid black lines. The figure shows the very clear nonlinear character of
the Eigenmanifold - in comparison, a linear mode would result in a planar
shape.

Fig. 5. Another Eigenmanifold of the p-SLIP obtained for the system
parameters considered in the simulation section, which are different with
respect to the ones for Fig 4. Trajectories on the modes with constant energy
levels are displayed with solid black lines.

implement in place hopping, but no forward motion, since

no swinging of the main body is involved. As such, we are

not concerned with this manifold in this work.

The other eigenmanifold is associated to swing motions,

and therefore especially useful for locomotion. In this case

a natural choice for the master variable xm is α. Thus, the

first elements of X and Ẋ are the identity. As examples,

we report in Fig. 4 the swing motion manifold for the

choice of springs discussed in the experimental section, and

in Fig. 5 the manifold for the set of system parameters

presented in the simulation section. Examples of autonomous

orbits for different energy levels are also reported. Each one

corresponds to a swing motion of the p-SLIP with different

amplitude. Additionally, Fig. 6 depicts the swinging CoM

trajectories in Cartesian coordinates corresponding to orbits

on the Eigenmanifold in Fig. 4.

C. Gait Planning Based on Nonlinear Modes

In this work we focus exclusively on the mode related to

the stance phase, i.e., we exploit the natural oscillations of

the system when the foot is in contact. Let us define the touch

down (TD) and take off (TO) related quantities belonging to

k-th cycle with the superscript (·)k. In order to benefit from

the efficiency of the modes, at each touch down the system

should be on the mode. To assure that this is the case, we

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08

0.16

0.18

0.2

0.22

2.69

2.49

2.29

2.08

Fig. 6. Trajectories of the CoM in Cartesian coordinates corresponding to
autonomous orbits on the Eigenmanifold presented in Fig. 4 for a range of
energy levels. In this work, the resulting swinging motion is exploited to
build efficient locomotion patterns.

introduce the following matching conditions
[

αk
TD

rkTD

]

≡ X(αk
TD, α̇

k
TD) ,

[

α̇k
TD

ṙkTD

]

≡ Ẋ(αk
TD, α̇

k
TD) . (4)

Note that the master variable is xm = α, as described in

Section II-B. In this manner, the trajectories stay on the mode

during stance without the need of corrections.

In order to fulfill condition (4), each k-th stance phase

mode must be connected in a proper way to the next k + 1
stance phase. Figure 1 presents the idea utilized in this paper

to perform this connection. Essentially, the take off and touch

down events are designed such that fulfilling (4) becomes

feasible by properly regulating the angle of attack and leg

extension during the flight phase. Note that the uncontrolled

ballistic CoM trajectory is determined by α̇TO and ṙTO,

which, in turn, determines α̇TD and ṙTD.

1) Leg Extension Planning: Let us consider a trajectory

on the chosen mode for the stance phase of the p-SLIP, i.e.,

satisfying (3), and where the TD and TO events occur for

the same leg length r, i.e. rkTD = rkTO, then we have the

following properties

αk
TO = −αk

TD, α̇k
TO = α̇k

TD, ṙkTO = −ṙkTD, (5)

Furthermore, expressing (5) in Cartesian coordinates allows

to also conclude

ẋk
c,TO = ẋk

c,TD , żkc,TO = −żkc,TD . (6)

If the k+1 stance phase occurs after a time interval 2żkTO/g
with

αk+1
TD = −αk

TO, rk+1
TD = rkTO , (7)

then simple ballistic calculations allow to conclude that

ẋk+1
c,TD = ẋk

c,TO, żk+1
c,TD = −żkc,TO . (8)

Thus, by using the transition maps in Fig. 3, (8) and (6)
[

α̇
ṙ

]k+1

TD

= Jc
−1

[

ẋc

żc

]k+1

TD

= Jc
−1

[

ẋc

−żc

]k

TO

= Jc
−1

[

ẋc

żc

]k

TD

=

[

α̇
ṙ

]k

TD
(9)

Therefore, at each touch down, the system starts again on

the mode. During the flight phase, the control system should

guarantee (7), i.e., regulation of the attack angle and leg

extension to the desired values.

The desired take off and touch down are designed to occur

when r = r0, as shown in Figure 7. This specific design

choice avoids requiring a preload for the radial spring at the

moment of impact, i.e., the touch down occurs when the

spring is at its rest length.
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r = r0

Fz = 0
Modal trajectory

Des. TD Des. TO

ẋk
c,TD

ẋk
c,TO

x

z

Fig. 7. In order to properly connect the k-th stance phase mode to the mode
k + 1 , the conditions r ≤ r0 and r > r0 are used to determine whether
the system enters the stance or flight phases. The take off is triggered by
control instead of waiting for the condition Fz ≤ 0 to occur.

Stance Control Flight Control

r ≥ r0 ∨ Fz < δz,TO

r < r0 ∧ Fz ≥ δz,TD

Mode stabilization

and excitation through

(13) and (14)

Using (10), regulate

attack angle to αd
TD,

leg extension to rdTD

Fig. 8. A state machine manages the switching between the two controllers.
The additional conditions on Fz are introduced to robustify the switches in
practical applications.

2) Attack Angle Planning: Given the modal manifold M,

and a desired energy level Ed (related to a desired forward

speed), the reference attack angle can be calculated using

the intersection of the modal trajectory with the desired leg

extension rdTD = r0. The required state at touchdown is then

xd
TD = ME(x,ẋ)=Ed ∩ {r = r0, ṙ < 0, sign(α) = sα} ,

(10)

where ME(x,ẋ)=Ed identifies the unique system trajectory

on the mode with the energy level Ed, and sα ∈ {−1, 1} is

used to pick the desired direction of horizontal motion. We

approximate the solution of (10) for αd
TD analytically, using

a polynomial. During the flight phase, the leg is regulated

to the desired attack angle αd
TD and radial length rdTD. In a

real system, this can be achieved by transforming the desired

configuration into joint positions, and then directly feeding

these to the motors using a position controller.

III. CONTROL ARCHITECTURE

The control architecture consists of two controllers - one

active during stance (foot on the ground) and the other during

flight (foot in the air) - which are scheduled by a simple

state machine (Fig. 8). The stance controller is designed so to

stabilize the swing-like nonlinear mode. The flight controller

is used to close the hybrid orbit by regulating the angle of

attack and radial length.

A. Phase Detection

The transition in the finite state machine in Fig. 8 cor-

responds to detection of transitions between the stance and

the flying phase, and viceversa. In theory, these guarding

conditions can be implemented by directly measuring contact

forces through a sensor placed in the foot. This is however

not always desirable - e.g., these sensors are expensive and

-0.3 -0.2 -0.1 0 0.1 0.2

0.15

0.2

0.25

Fig. 9. Non-regular behaviour of the uncontrolled p-SLIP. The system is
initialized with α(0) = 0.2 rad, r(0) = 0.144m, α̇(0) = ṙ(0) = 0, and
a constant attack angle = 0.2 rad. The trajectory of the CoM is depicted
with solid lines during stance and with dotted lines during flight.

2.5 3 3.5 4

0.1

0.2

0.3

0.4

0.5

2.5 3 3.5 4

0.5

1

1.5

Fig. 10. Left plot: attack angle as function of the mechanical energy
using modal information. In order to connect the stance phase modes for
different speeds (different energy levels), a proper attack angle is required.
The values of the two attack angles corresponding to a low and a high
energy level used for the simulations are marked with circles. Right plot:
average forward speed for different energy levels.

fragile. As an alternative, contact forces can be inferred by

comparing the leg extension r with r0, and using thresholds

on the projection of kα(α) and kr(r) along the vertical

direction with respect to the ground, i.e., Fz. Whenever

r < r0 and Fz is higher than a threshold δz,TD for a

minimum time interval, the state machine triggers the touch

down (TD) event, and the control system reacts to this event.

Like-wise, when r ≥ r0 or Fz is below a threshold δz,TO,

the take-off (TO) event is triggered.

B. Stance Phase Mode Controller

The overall action of the mode controller is defined as [27]

τ ctrl(x, ẋ) = τ s(x, ẋ) + τ in(x, ẋ;E
d), (11)

where (x, ẋ) is the system state, and

τ s = kMx(x)

(

x−X(xm, ẋm) +
d

k
(ẋ− Ẋ(xm, ẋm))

)

,

τ in = γMx(x)ẋ(E
d − E(x, ẋ)) ,

(12)

with k > 0, d > 0 being the proportional and derivative gains

respectively, γ > 0 the energy regulation gain, and Mx is the

inertia matrix in x coordinates. The goal of τ s is to stabilize

the swing eigenmanifold, i.e., (x, ẋ) → (X, Ẋ). The role

of τ in is to select the right amplitude of oscillation by

regulating the energy level - i.e., E → Ed. This way, a single

swing-like modal orbit can be stabilized without relying on

trajectory tracking controllers. Note that the overall controller

is designed such that τ ctrl → 0 (hyper-efficient oscillation)

when the system converges to the desired modal trajectory.

This is possible because the modes are natural evolutions of

the system dynamics. More details about this strategy can be

found in [28]. As mentioned in Section II-B, in the case of

the template model considered in this work, τ ctrl = (τα, τr),
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Fig. 11. Simulations of the p-SLIP controlled using the proposed approach showing stable forward hopping for two energy levels. For both simulations,
the system is initialized with α(0) = 0.2 rad, r(0) = 0.19m, α̇(0) = ṙ(0) = 0. Control inputs for each simulation are also reported, together with the
corresponding spring contributions. After few steps, the motion evolves along the nonlinear mode, and the control action converges to zero.

Mx ∈ R
2×2 is a diagonal matrix with elements mr2 and

m, and we take xm = α. Thus, in our case, (12) becomes
τα
m

= γ(Ed − E(α, r, α̇, ṙ))r2α̇ ,

τr
m

= γ(Ed−E(α, r, α̇, ṙ))ṙ+k(r−Xr(α, α̇))+d(ṙ−Ẋṙ(α, α̇)) .

(13)

This controller may generate forces that violate the unilateral

ground constraint (i.e., attempting to pull the foot away from

the floor) and thus degrade the excitation of the oscillation.

Therefore, the control action is saturated as

τ sat
α =

{

min(τα, −δαkα(α)), if α ≥ 0

max(−δαkα(α), τα), otherwise,

τ sat
r = max(−δrkr(r), τr),

(14)

to guarantee Fz > 0, where δα, δr ∈ [0, 1] are used to tune

a safety margin.

C. Example in Simulation

We carry out simulations for a simple implementation

of the p-SLIP in order to demonstrate that stable forward

hopping can be achieved with the proposed control architec-

ture. A model with the following parameters is considered:

m = 1kg, kα(α) = k1α with k1 = 3Nm/rad, kr(r) = k2r
with k2 = 600N/m, and r0 = 0.20m.

In order to highlight the irregular motion that generally

arises from the the hybrid dynamics of the p-SLIP, the

system is simulated with an initial condition not on the mode

and holding a constant angle of attack during the aerial

phase. The resulting trajectories of the CoM in Cartesian

coordinates are presented in Fig. 9.

In a further simulation, the proposed control strategy is

used to perform hopping at two different energy levels. Fig-

ure 5 presents the Eigenmanifold of the mechanical system

associated with the swing motion. Following the planning

strategy described in Section II-C, the desired attack angles

are determined using the relationship with the desired energy

provided by the mode. Figure 10 presents the polynomial

Fig. 12. Experimental setup used to validate the strategy proposed in this
paper. An elastically actuated articulated leg is connected to a pole hinged at
a point. The pole constraints the rotation of the trunk body, thereby forcing
the system to evolve along the sagittal plane with free translation and fixed
rotation of the trunk.

k

q1

q2

k

m

α

r

TABLE I

SYSTEM PARAMETERS

Trunk body m 822 gr
Hip Link - 122 gr

Shank Link - 6 gr
Link Length l 12 cm

Springs k 2.9 Nm

rad

Fig. 13. BERT 2-DoF leg. Serial elastic actuators with soft springs drive
each link. The links are lightweight: most of the mass is due to the actuators
and the support hook. The analogous p-SLIP model is also reported.

approximation of αd
TD as function of Ed within the studied

energy range. The CoM trajectories resulting from the simu-

lations are depicted in Fig. 11, together with snapshots of the

system. The simulations show that regular and modal motion

is achieved with the proposed controller, using exclusively

the natural exchange of kinetic and potential energy since

τ ctrl = 0 on the mode as shown in the plots of the control

inputs in Fig. 11.

IV. IMPLEMENTATION AND EXPERIMENTS

We perform experiments with the latest iteration of the

elastic leg proposed in [30], which is a 2-DoF segmented

leg, actuated through series elastic actuators. Fig. 13 shows a
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Fig. 14. Experiment 1a. Top plots: trajectories of the system in the
coordinates defined in (19). Center plots: mechanical energy during the
stance phases (a constant signal is hold during flight). Bottom plots:
trajectories of the system in state space using the presented mode controller
for Ed = 2.42J . Both stance phase trajectories (solid black lines) and
flight phase trajectories (dotted black lines) are depicted. Only the useful
slice of the mode is shown (depending on the hopping direction).

side-view of this leg, with its kinematic model superimposed.

Tab. I reports the physical parameters as directly measured

from the system. Fig. 12 shows the whole setup, composed

of a pole rigidly connected to the hopping robot and hinged

at a point; in the setup, the rotation of the main body is thus

fixed. The dynamics is described by the equations

M(q)q̈ +C(q, q̇)q̇ + g(q) + k(q − θ) = JT
f λ , (15)

Bθ̈ + k(θ − q) = τm . (16)

where q = (q1, q2) ∈ R
2 are the joint angles defined as in

Fig. 13, θ = (θ1, θ2) ∈ R
2 are the motor angles, k ∈ R is the

stiffness of both springs, J f ∈ R
2×2 is the foot Jacobian, λ ∈

R
2 are the ground reaction forces, and the other terms are

defined as usual. The vertical force Fz is reconstructed using

the measured spring deflections. In our case, this estimation

is accurate because the leg mass and joint friction are very

low.

A. Low Level Controller

We control the motors’ angles θ using a PID strategy

τm = −Kp(θ − θref)−Kdθ̇ −Ki

∫

(θ − θref)dt, (17)

where θref is the reference motor position, and Kp,Ki,Kd ∈
R are three positive gains. In practice, motor angles θ have

much faster dynamics than joint angles q, thus we assume

θ ≃ θref . Under this assumption the leg behaves as the 2-

DoF system M(q)q̈+C(q, q̇)q̇+g(q)+k(q−θref)−JT
f λ ≃

0. We then select the reference position θref as

θ
ref =

τ
q

ctrl

k
+ q0 (18)
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Fig. 15. Experiment 1b. Top plots: trajectories of the system in the
coordinates defined in (19). Center plots: mechanical energy during the
stance phases. Bottom plots: trajectories of the system in state space using
the presented mode controller for Ed = 2.64J .

where q0 ∈ R
2 is a virtual setpoint and τ

q
ctrl ∈ R

2

an equivalent torque applied at joint level. This results in

the following parallel elastically actuated system M(q)q̈ +
C(q, q̇)q̇ + g(q) + k(q − q0)− JT

f λ ≃ τ
q
ctrl.

B. Change of coordinates: from segmented leg to p-SLIP

Motivated by Tab. I, we consider the mass and inertia of

the links negligible compared to the trunk. As suggested in

[30], we introduce the change of coordinates

α = (q1 + q2)/2, r = l
√

2(1 + cos(q2 − q1)). (19)

The dynamics of the system written in (α, r)-coordinates

is the p-SLIP in stance phase (1), when naming the general-

ized forces as

τ ctrl = (τα, τr), (20)

and taking the elastic potential forces equal to

kα(α)=−2k(α− α0), kr(r)=−
k

√

(4l2 − r2)
(ρ(r)− ρ(r0)),

(21)

where ρ(r) = arccos
(

1−r2

2l2

)

. The rest attack angle and rest

length are referred α0 and r0 respectively, and are related

to q0 through (19). Note that coherently with the general

template, α and r represent here the polar coordinates of

the leg’s CoM, which is coincident with the trunk’s COM,

situated at the hip joint.

We have shown this way that under assumption of negli-

gible hip and shank mass and inertias, the dynamics of our

leg during stance phase is equivalent to the one of the p-

SLIP. It is immediate to see that same steps also results in a

same flight phase dynamics (2). Therefore, our experimental

device is equivalent to a p-SLIP, and therefore we can

apply the algorithms discussed above to this system without
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Fig. 16. Experiment 1b: snapshots of the leg performing forward hopping on the mode. The stills allow to appreciate the compression and decompression
phases of the leg. The kinetic energy of the main body and the energy stored in the springs are exploited to perform the swing during the stance phase.
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Fig. 17. Experiment 2. The desired energy level is decreased from an high
value to a lower value during the hopping. The experiment shows that the
system can regulate its forward velocity in controlled and stable way.

the need of any feedback matching. For the spring rest

configuration q1 = −q2 = 17deg chosen for the experiments

(corresponding to r0 = 0.2295m), the swing eigenmanifold

of the system is shown in Fig. 4.

Finally, in view of (18), we transform the input forces in

(20) to joint space as follows

τ
q

ctrl = J
T
α,r(q)τ ctrl , (22)

where Jα,r(q) ∈ R
2×2 is the Jacobian associated with the

change of coordinates in (19), i.e., (α̇, ṙ) = Jα,r(q)q̇.

C. Experiment 1: hopping forward with constant energy

The controller presented in Sec. III and depicted in Fig. 8

is implemented to perform stable forward hopping with the

experimental leg. During the stance phase, controller (13)

is used with gains γ = 20, k = 30, and d = 10. Two

different energy levels are tested: a “slow” target energy

Ed = 2.42J , and a “fast” target Ed = 2.64J , corresponding

to a relatively faster gait. The desired angles of attack are

retrieved using the relationship with the desired energy. The

results of the two experiments are presented in Fig. 14 and

Fig. 15, which depict the evolution of system trajectories

in time and in state space for both stance and flight phase,

together with the evolution of the mechanical energy for each

experiment. The trajectories on the mode associated with the

“slow” and “fast” target energies are shown in solid blue

and red, respectively. Additionally, snapshots of the hopping

motion are shown in Fig. 16. The system is dropped from

approximately 5 cm above ground, and stable regular motion

is achieved after a brief transient. Both experiments show

that the motion during the stance phase occurs along the

Eigenmanifold (or very close to it), and that enough energy

is injected at each phase to sustain the designed locomotion

cycle. A few mid-air oscillations of the leg can be detected:

this happens during the flight phase, since both the leg inertia

and damping in the joints are very low, and accurate joint

control is hard to obtain. This can reduce the precision of

the effective angle of attack with which the robot impacts the

ground. Nevertheless, the trajectories mainly evolve on the

mode, hence the results demonstrate that natural oscillations

of the mechanical system are being exploited to realize the

dynamic gait. Notice that this is achieved regardless of the

assumptions made for the generation of the nonlinear mode,

the parametric uncertainties, and the lack of other feedback

actions (like template-matching), which highlights, to some

extent, the intrinsic robustness of the presented approach.

D. Experiment 2: switching energy level

The convergence properties and robustness of the mode

controller are tested in a second experiment by switching

energy levels during operation. The same “slow” and “fast”

target energy values from the previous experiment are con-

sidered. The results are reported in Fig. 17. First, the high

value is commanded, and the system, starting from outside

the mode, accelerates during each stance phase in order

to oscillate at this energy. As soon as the desired orbit is

reached, the lower energy value is commanded. The robot
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decelerates accordingly and converges to another stable and

regular hopping cycle. As soon as the impact is detected, the

mode controller takes over and quickly controls the springs

according to the planned trajectory. If the leg inertia cannot

be neglected, a retraction strategy can help to impact the

ground at the matching velocity, a solution that will be

explored in future works.

V. CONCLUSION

For the first time, a locomotion algorithm based on the

excitation and stabilization of nonlinear modes was pre-

sented and validated extensively with experiments. The ex-

perimental results demonstrate that provided an appropriate

method to connect the modes during the locomotion phases,

the system trajectories evolve naturally along the desired

eigenmanifold for different energies. The proposed control

architecture fully exploits the natural oscillations of the

system during the stance phase, allowing to control the

system at different speeds in an efficient way. No tracking or

feedback cancellations for template matching are required,

not even gravity compensation. Future work will focus on

extending these design principles to multi-legged floating

base robots, exploiting modes during the flight phase of

a leg, and comparing the efficiency with other locomotion

approaches.
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