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Bode Analysis of Uncertain Multivariable Systems

Paul Tacx and Tom Oomen

Abstract— Bode plots are crucial for frequency domain anal-
ysis of SISO systems. The aim of this paper is to develop a
complete approach for Bode plots of multivariable uncertain
systems for both the magnitude and phase. The magnitude
is based on the singular values. The phase is based on the
phase spread of the numerical range. An IQC-based approach
is pursued to provide both the magnitude and phase. A
simulation example shows that the presented approach allows
the generation of multivariable Bode plots of multivariable
uncertain systems.

I. INTRODUCTION

Models are inherently subject to uncertainty and robust-
ness to these uncertainties is of vital importance in control
design. This typically comes from parameter uncertainty or
unmodeled dynamics. Robust control explicitly addresses
model uncertainty by considering a model set. The avail-
ability of reliable and systematic robust control algorithms
has spurred the development of identification approaches of
multivariable model sets for robust control, see [1], [2],
[3], [4]. However, the multivariable aspect and the trend
towards more advanced uncertainty structures complicates
uncertainty structure comparison, understanding, controller
design, and performance analysis of uncertain systems. For
this reason, visualizing multivariable uncertain systems is
essential.

The Bode plot is a critical tool for understanding, con-
troller design, and performance analysis of control systems
[5], [6]. The Bode plot of SISO systems is based on the
polar description of the complex number. Consequently, the
Bode plot contains the magnitude and phase. The combina-
tion of magnitude and phase provides essential information
regarding performance and stability including gain and phase
margin. The close relationship between magnitude and phase
is underlined by the Bode gain-phase relation [7]. Frequency
response function-based approaches are also used in for
example, for non-linear systems [8] and LPTV systems [9].

Bode plots for SISO nominal systems are well developed,
but extensions to the multivariable case are not straightfor-
ward. An element-wise Bode plot is often considered for
MIMO systems based on the matrix elements [1]. However,
the element-wise Bode plot becomes unclear if the number of
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inputs and outputs increases. Consequently, a multivariable
Bode plot is essential.

In sharp contrast to the multivariable magnitude, a mul-
tivariable phase definition has received substantially less
attention. The multivariable magnitude is often based on
the singular value, which are also referred to as principal
magnitude [7], [5]. In [10], the scalar polar description is ex-
tended to a multivariable polar description. The multivariable
polar description is used to define the principal magnitude
and principal phase in [5]. The principal magnitude and
phase define a principal region which are known to contain
the characteristic loci. Consequently, analogous to the scalar
polar decomposition, the multivariable polar description in-
tuitively connects the multivariable magnitude and phase
to stability. This property might be used for developing a
multivariable phase margin.

Alternatively, Bode magnitude plots using singular value
decompositions have been further developed towards un-
certain systems [11], [12]. In [13], such generalizations
are made based on the generalized and skewed structured
singular values. However, a Bode phase equivalent is lacking.

The principal phase is a suitable measure of multivariable
phase, yet extending the principal phase to uncertain systems
is not straightforward. The key obstruction of the principal
phase for uncertain systems is that the underlying eigenvalue
problem is not necessarily convex. Eigenvalues are often
approximated by the numerical range, which is convex [10].
In [14], the numerical range is used to define the minimum
and maximum phase, i.e., phase spread. In [15], [14], [16] the
phase spread is used for performance and stability analysis
of uncertain systems. The phase spread introduces some
conservatism with respect to the principal phase. However,
for normal matrices, including SISO and diagonal systems,
the phase spread is exact [14]. For many MIMO applications,
systems are close to diagonal in the relevant frequency ranges
[17, Sec. 2.1]. In addition, for the element-wise Bode plot,
SISO results hold.

Although several results are available to analyze the
magnitude and phase for multivariable uncertain systems,
at present a unified approach for constructing Bode plots
of uncertain multivariable systems is lacking. The main
contributions of the paper are the following.

C1 A unified approach for MIMO uncertain Bode plots.
C1.1 Element-wise Bode magnitude and phase.
C1.2 Multivariable Bode magnitude and phase.

C2 A relevant simulation example.
Compared to [13], this paper considers an Integral

Quadratic Constraints (IQC)-based approach to calculate the
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multivariable magnitude. This paper extends to the results
in [15], [14], [16] as the multivariable phase definition is
extended to construct Bode phase plots. To compute the
multivariable phase, an IQC-based approach is pursued. The
combination of the multivariable magnitude and phase leads
to a unified approach for constructing multivariable Bode
plots of uncertain systems. As a special case, the results in
[5], [13], [14], [16], [15] are recovered.

This paper is organized as follows. In Section III, the prob-
lem considered in this paper is introduced. A multivariable
magnitude and phase definition for multivariable Bode plots
are introduced in Section IV. In Section V, the approach to
generate the multivariable Bode plots is proposed. The new
approach is applied in a simulation example in Section VI.
Lastly, the conclusion is provided in Section VII.

II. NOTATION

The following notation is used throughout. For a matrix
M , the transpose and complex conjugate transpose are de-
noted by M⊤ and M∗ respectively. A matrix X is normal
if XX∗ = X∗X . For a matrix M , M > (≥)0 and
M < (≤)0 denote positive (semi)definiteness and negative
(semi)definiteness. For a matrix X , σ(X), λ(X), σ(X)
and σ(X) denotes the singular values, eigenvalues, largest
and smallest singular value respectively. The upper linear
fractional transformation (LFT) is given by Fu(Ĥ,∆u) =

Ĥ22 + Ĥ21∆u

(
I − Ĥ11∆u

)−1

Ĥ12.

III. PROBLEM FORMULATION

A. Preliminary: Bode Plots of Multivariable Systems

The Bode plot of a scalar LTI system with the transfer
function P (s) ∈ R is a graphical representation of the
complex frequency response of the system. The Bode plot is
a combination of the Bode magnitude and phase plot which
are constructed by plotting the magnitude

∣∣P (s)∣∣ and phase
arg (P (s)) on s = jω for a grid of frequencies ω ∈ Ωd.
The frequency grid Ωd is defined by the control engineer
based on the frequency range of interest and should be
sufficiently dense to capture potential resonances. Essentially,
the magnitude and phase are based on the polar description
of a complex number

z = r exp(jθ) (1)

where r > 0 denotes the magnitude and θ ∈ [0, 2π) denotes
the phase.

A multivariable magnitude and phase definition is essential
for the development of a multivariable Bode plot. Analogous
to the polar form of a scalar, the polar decomposition of a
square matrix P ∈ Cn×n is defined as [10]

P = UHR, (2)
P = HLU, (3)

where U is unitary and the matrices HR and HL are
Hermitian. The matrices U , HR, and HL can be determined
from the singular value decomposition

P = ΦΣΨ∗ (4)

H11H12

H21H22
w z

qp

∆

Fig. 1. Upper LFT plant setup.

where U = ΦΨ∗, HR = ΨΣΨ∗, and HL = ΦΣΦ∗. The
multivariable magnitude of P are the eigenvalues of the
Hermitian part HL or HR of the polar decomposition [10]

σ(P ) = λ(HR) = λ(HL). (5)

The multivariable magnitude coincides with the widely ac-
cepted definition of multivariable magnitude, the singular
values of P . Although a widely accepted multivariable phase
definition does not exist, a multivariable phase definition
based on the multivariable polar description exists. The
principal phases of the matrix P are defined as the arguments
of the eigenvalues of the unitary part U [10], given by

ψ(P ) = arg {λ(U)} . (6)

A multivariable Bode plot can be constructed by computing
the principal magnitude and phase for each frequency in the
frequency grid Ωd.

Remark 1: In this paper, square systems are considered.
However, the principal magnitude can be extended to non-
square systems by adding auxiliary zero rows or columns
such that a square system is obtained. This procedure es-
sentially boils down to the singular values of nonsquare
matrices. In sharp contrast, extending the principal phase to
nonsquare systems is not straightforward. A multivariable
phase can potentially be defined based on a numerical range
for nonsquare systems, see [18].

B. Uncertain Systems

Consider the uncertain multivariable model set P . The
model set is based on the LFT in Fig. 1, i.e.,(

q
z

)
=

(
Ĥ11 Ĥ12

Ĥ21 Ĥ22

)(
p
w

)
. (7)

The channel w 7→ z is referred to as the performance channel
and p 7→ q is the uncertainty channel with p = ∆q. The
structure of the model set is defined by the transfer matrices
Ĥ11, Ĥ12, Ĥ21, and Ĥ22. The model set is defined as

P = {P |P = Fu (H,∆)} , (8)

where the uncertainty ∆ ∈ ∆ is an H∞-norm bounded
subset [19]

∆ =
{
∆ ∈ RH∞

∣∣ ∥∆∥∞ ≤ γ,

blockdiag(δ1, ..., δnd
,∆1, ...,∆nu)

}
.

(9)
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The parameter γ defines the H∞-norm bound, δi ∈ C and
∆i ∈ Cpi×pi . The uncertainty set can be subject to additional
constraints, such as parameter uncertainty from a polytope
[20], [21].

C. Problem Formulation

The aim of this paper is to develop a unified approach to
construct multivariable Bode plots of uncertain systems. The
key idea is to extend the multivariable magnitude and phase
definition based on the multivariable polar decomposition to
the uncertain case.

IV. MULTIVARIABLE MAGNITUDE AND PHASE ANALYSIS

1) Multivariable Magnitude: The key idea for the compu-
tation of the multivariable magnitude of uncertain systems is
to compute the minimum and maximum singular value of the
uncertain system for each frequency in the frequency grid.

Definition 1: Let P be an uncertain system according to
(8). For a fixed frequency ω the minimum and maximum
magnitude are defined as

ξ(P) = inf
P∈P

σ (P (jω)) , (10)

ξ(P) = sup
P∈P

σ (P (jω)) . (11)

By calculating ξ(P) and ξ(P) for each frequency in the
frequency range of interest, a multivariable Bode magnitude
plot is constructed.

2) Multivariable Phase: Although the principal phase is a
suitable multivariable phase definition, extending to uncertain
systems is not straightforward. The key reason is that the
underlying eigenvalue problem in (6) is not necessarily
convex. For this reason, the numerical range

W(P ) = {x∗Px|x ∈ Cn, ∥x∥ = 1} (12)

is considered [10], [14]. The key benefit of the numerical
range is that the set W(P ) is convex. Furthermore, the
numerical range is known to contain the spectrum of a matrix
[10].

The numerical range allows generating a multivariable
phase definition which allows to approximating the principal
phase for uncertain systems. To construct such a multivari-
able phase definition, the numerical range is extended to the
uncertain case by considering the union of the numerical
ranges W(P ) for P ∈ P . Next, consider a cone in the com-
plex plane that contains numerical ranges of the uncertain
system P . The cone is centered in the origin and is described
by two angles ϕ(P) and ϕ(P) as indicated in Fig. 2. The key
challenge is to find the smallest cone that contains the union
of numerical ranges. The angles ϕ(P) and ϕ(P) define the
multivariable phase.

Definition 2: Let P be an uncertain system according to
(8). Assume the union of numerical ranges of P to be in the
right half-plane. For a fixed frequency ω the minimum and
maximum multivariable phase are defined as

ϕ(P) = inf
P∈P

{
inf

κ∈W(P )
arg {κ}

}
, (13)

ℜ(W(P ))

ℑ(W(P ))

φ(P)
φ(P)

Fig. 2. Union of numerical ranges W(P ), ∀P ∈ P (orange) and cone
defined by the multivariable phases ϕ(P) and ϕ(P) (grey).

ϕ(P) = sup
P∈P

{
sup

κ∈W(P )

arg {κ}

}
, (14)

Throughout, without loss of generality, the numerical range
is assumed to be contained in the right half-plane. If the
numerical range is not in the right half-plane, the numerical
range is rotated by an angle ν such that W(exp(jν)P (jω0))
is in the right half-plane for all P ∈ P .

Remark 2: If the phase spread, i.e., the difference between
the minimum and maximum phase, is larger than π, the phase
is contained in a range of 2π. This is the case if the numerical
range contains the origin.

Remark 3: The multivariable phase based on the numerical
range approximates the principal phase. Specifically, the
numerical range-based phase bounds the principal phase
from below and above

ϕ(P ) ≥ ψ(P ), ϕ(P ) ≤ ψ(P ). (15)

If the matrix P is normal, then the inequalities become
equalities, i.e., W(P ) equals the convex hull of the spectrum
of P [14]. Consequently, if a SISO, diagonal, or element-
wise system is considered, the numerical range-based phase
is exact.

3) Element-wise Magnitude and Phase: Consider the un-
certain system P according to (8). The ijth element of P is
defined as

Pij = {Pij |Pij ∈ u∗iPuj} (16)

where ul denotes a vector of appropriate length with the l-
th element equal to one and all other elements zero. The
multivariable magnitude of Def. 1 and phase of Def. 2 are
easily extended to the element-wise case by considering the
elements (16). As indicated in Remark 3, the numerical
range-based phase is exact with respect to the principal phase
in the element-wise case. The element-wise Bode magnitude
and phase plot are also valid for nonsquare systems.

V. MAIN RESULT

This section aims to develop an approach to construct mul-
tivariable Bode plots of uncertain system which constitutes
Contribution C1. To generate the Bode plots, an IQC-based
approach is considered to determine the magnitude and phase
are determined on a frequency-by-frequency basis.
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A. Integral Quadratic Constraints (IQC)

The IQC framework is often used in Robust Control to
analyze the uncertainty and performance channel in terms
of relations between inputs and outputs. The first step in
characterizing the performance is to capture the uncertainty
channel p 7→ q in the IQC framework.

Definition 3: The signals q(jω) and p(jω) are said to
satisfy the IQC defined by the multiplier {Π11,Π12,Π22}
with Π11 = Π∗

11, Π12 = Π∗
12 and Π22 = Π∗

22 if∫ ∞

−∞

(
q(jω)
p(jω)

)∗ (
Π11(jω) Π12(jω)
Π∗

12(jω) Π22(jω)

)(
q(jω)
p(jω)

)
dω ≥ 0. (17)

Note that in this paper LTI uncertain systems are con-
sidered. For this reason, the integral in (17) is dropped
in the forthcoming. In addition, the magnitude and phase
are determined on a frequency-by-frequency basis. For this
reason, the results are developed based on a fixed frequency
ω and the frequency dependence is dropped. Consequently,
the IQC (17) can be reduced to(

q
p

)∗ (
Π11 Π12

Π∗
12 Π22

)(
q
p

)
≥ 0. (18)

For typical uncertainty structure, such as unstruc-
tured uncertainty or parameters from a polytope, matrices
{Π11,Π12,Π22} are available, e.g., in [22], [21]. In case
unstructured uncertainty is considered, see (9) without any
structural constraints, then (17) holds for the matrix

Πu = blockdiag
(
I,−γ2I

)
. (19)

The next step is to characterize the performance channel. For
this purpose, consider the performance criterion(

z
w

)∗ (
Πp,11 Πp,12

Π∗
p,12 Πp,22

)(
z
w

)
< 0. (20)

The performance matrix Πp satisfies Πp,11 = Π∗
p,11, Πp,12 =

Π∗
p,12 and Πp,22 = Π∗

p,22. The following theorem presents
a necessary and sufficient condition for the performance
analysis of uncertain systems.

Theorem 1: Suppose that (18) is satisfied for a given Π
for all ∆ ∈ ∆. The performance criterion (20) is satisfied
for a Πp if and only if

Ĥ11 Ĥ12

I 0

Ĥ21 Ĥ22

0 I


∗ (

Π 0
0 Πp

)
Ĥ11 Ĥ12

I 0

Ĥ21 Ĥ22

0 I

 ≺ 0. (21)

A proof can be found in [23, Section 4].

B. IQC with Application to Magnitude and Phase

1) Magnitude: Finding the minimum and maximum sin-
gular value in Def. 1 can be formulated by computing the
largest α and smallest α such that

α2w∗w − z∗z < 0, (22)

−α2w∗w + z∗z < 0, (23)

where w, z refer to the signals in (7). The parameters α and
α define the interior and exterior respectively, of an annular

region in the complex plane. The description of the input-
output behavior can be formulated as IQC as shown in the
following.

Theorem 2: Let H denote the multivariable system at
frequency ω of the form (7) with its input w and output z.
If the inequalities (22) and (23) hold, then (20) holds with
the performance matrices

Πp,1 =blockdiag
(
−I, α2I

)
, (24)

Πp,2 =blockdiag
(
I,−α2I

)
. (25)

2) Phase: The computation of the minimum and maxi-
mum phase in Def. 2 can be reformulated by finding the
largest β and smallest β such that

ℜ{w∗z} >ℑ{w∗z}
tan(β)

, (26)

ℜ{w∗z} <ℑ{w∗z}
tan(β)

. (27)

Essentially, the angles β and β in (26) and (27) define a
cone in the complex plane. The largest β and smallest β
correspond to the multivariable phases in (13) and (14). The
inequalities in (27) and (27) can be reformulated to the IQC
framework.

Theorem 3: Let H denote the multivariable system at
frequency ω of the form (7) with its input w and output
z. The inequalities in (26) and (27) hold if and only if the
IQC (20) holds with the performance matrices

Πp,3 =

(
0 − sin(β) + j cos(β)

− sin(β)− j cos(β) 0

)
,

(28)

Πp,4 =

(
0 sin(β)− j cos(β)

sin(β) + j cos(β) 0

)
. (29)

Essentially, Theorems 2 and 3 allow to rewrite the
quadratic expressions (22), (23), (26), and (27) to matrix
inequalities (21). In the next section, Theorems 2 and 3 are
exploited to compute the multivariable magnitude and phase.

C. Magnitude and Phase Algorithm

In this section, the results of Sections V-A and V-B are
exploited to develop an approach to generate Bode plots of
uncertain multivariable systems.

Theorem 4: Let H be the system of the form (7), ∆ ∈ ∆
an uncertainty block of the form (9), and consider the fixed
bounds α, α, and β, β. Suppose that (17) holds for the given
matrices Π11, Π12, and Π22. The performance matrices Πp,i,
i ∈ {1, .., 4} are defined by (24), (25), (28) and (29). The
matrix inequalities

F (Πp,i) =


Ĥ11 Ĥ12

I 0

Ĥ21 Ĥ22

0 I


∗ (

Π 0
0 Πp,i

)
Ĥ11 Ĥ12

I 0

Ĥ21 Ĥ22

0 I

 ≺ 0

(30)
for i ∈ {1, ..., 4} hold if and only if

α ≤ ξ(P), ξ(P) ≤ α, (31)

β ≤ ϕ(P), ϕ(P) ≤ β. (32)
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Theorem 4 defines four feasibility problems for fixed
bounds α, α, and β, β. Testing the feasibility problems is
a linear matrix inequality that can be efficiently computed.
Theorem 4 can be used to determine the magnitude and phase
of uncertain systems. The minimum and maximum magni-
tude and phase (10), (11), (13), and (14) are determined by
solving the following optimization problems

ξ(P) = argmax
α

{α|F (Πp,1(α)) ≺ 0} , (33)

ξ(P) = argmin
α

{α|F (Πp,2(α)) ≺ 0} , (34)

ϕ(P) = argmax
β

{
β
∣∣F (Πp,3(β)) ≺ 0

}
, (35)

ϕ(P) = argmin
β

{
β
∣∣F (Πp,4(β)) ≺ 0

}
. (36)

The optimization problems are solved by iterating over the
parameters α, α and β, β through bisection. Since the
bisection algorithm is used, the magnitudes and phases can
be determined up to arbitrary precision. The multivariable
Bode plot is constructed by computing the magnitude and
phase for each frequency in the frequency grid. Conse-
quently, the computations can be executed in parallel. The
computational complexity is determined by the number of
inputs and outputs, the number of iterations, and the size of
the frequency grid.

VI. EXAMPLE

This section shows that the proposed algorithm allows gen-
erating Bode plots of uncertain systems through a simulation
example which constitutes contribution C2.

A. System

In the example, a MIMO mass-spring-damper system is
considered with two inputs and two outputs with weak
interaction. Fig. 3 depicts a Bode diagram of the true
system Po. The system Po is stabilized by the experimental
controller Cexp which delivers a reasonable bandwidth of
5 Hz. Furthermore, an eighth-order control-relevant nominal
model P̂ ( Fig. 3) is estimated based on the algorithm in [1].
In the example, a specific model set is considered, the robust-
control relevant model set [1]. The robust-control-relevant
model set is defined as PRCR = Fu(Ĥ

RCR,∆u) with

ĤRCR =

[
D̂−1NC D̂−1

DC + P̂NC P̂

]
(37)

where the pair {N̂ , D̂} is a right coprime factorization of the
robust-control-relevant nominal model and the pair {Nc, Dc}
is a right coprime factorization of the experimental controller
Cexp. Since the nominal model P̂ does not capture the
complete behavior of the true system Po, a part of the
dynamics is captured in the uncertainty. In this example,
unstructured uncertainty is considered

∆u = {∆u ∈ RH∞|∥∆u∥∞ ≤ γ} . (38)

Fig. 3. Multivariable Bode magnitude plot of the true system Po ( ), the
nominal model P̂ ( ) and the model set P

( )
. Bandwidth is indicated

with the marker.

B. Result

The multivariable system is visualized using the tech-
niques presented in this paper. The multivariable Bode mag-
ntiude and phase plot are depicted in Fig. 3 and 4. Here, the
singular values of the true system Po and nominal model
P̂ are shown. Furthermore, the minimum and maximum
singular values of the model set PRCR are depicted using the
IQC-based algorithm of Section V-C. Iterations are stopped
if an absolute convergence, i.e., the difference between the
current and previous iteration, of −100dB is reached.

In the Bode phase plot, the principal phase of the true
system and the nominal model are shown. In addition, the
minimum and maximum phase of the model set is shown
based on the algorithm presented in Section V-C. Iterations
are stopped if an absolute convergence of 0.05◦ is achieved.
The Bode plots reveal that the model set is tight around the
desired cross-over frequency. However, at low frequencies,
the model set is large and hence uncertain. A similar ob-
servation holds at higher frequencies. It is emphasized that
this behavior is not caused by conservatism in the underlying
algorithm. This specific behavior is attributed to the control-
relevant coprime factors which emphasize the frequency
content important for achieving the desired performance.

The element-wise Bode magnitude and phase are depicted
in Fig. 5 and 6. Here, the elements of the multivariable sys-
tem are considered according to (16). The Bode magnitude
and phase of the elements of the model set are computed by
the algorithm presented in Section V-C. As pointed out in
Section III-C, as the elements are considered, the numerical
range-based phase is equal to the principal phase. Overall,
the

VII. CONCLUSION

In this paper, a new approach is developed for construct-
ing Bode plots of uncertain multivariable systems. This is
achieved by exploiting the multivariable extension of the
polar description. This results in a multivariable magnitude
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Fig. 4. Multivariable Bode phase plot: principal phase of the true system
Po ( ) and the nominal model P̂ ( ), and numerical range-based
phase of the model set P

( )
. Bandwidth is indicated with the marker.

Fig. 5. Element-wise Bode magnitude plot of the true system Po ( ),
the nominal model P̂ ( ) and the model set P

( )
.

Fig. 6. Element-wise Bode phase plot based of the true system Po ( ),
the nominal model P̂ ( ) and the model set P

( )
.

based on the singular values. The multivariable phase is
based on the numerical range. To construct the Bode magni-
tude and phase plot, an IQC-based algorithm is proposed. A
simulation example shows that the presented approach allows
the generation of multivariable Bode plots of multivariable
uncertain systems.
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