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Abstract

This article proposes an efficient correction model that enables the extension of the

blade element momentum method (BEM) for swept blades. Standard BEM

algorithms, assuming a straight blade in the rotor plane, cannot account for the

changes in the induction system introduced by blade sweep. The proposed extension

corrects the axial induction regarding two aspects: the azimuthal displacement of the

trailed vorticity system and the induction of the curved bound vortex on itself. The

extended algorithm requires little additional processing work and maintains BEM's

streamtube independent approach. The proposed correction model is applied to

simulations of swept blade geometries based on the IEA 15 MW reference wind

turbine. Results show good agreement with lifting line simulations that inherently can

account for the swept blade geometry.

Blade sweep couples bending and torsion deformations by curving the blade axis in

the inplane direction. As such, it can be used to passively alleviate loads and, thus,

aeroelastically tailor wind turbine blades. The implementation of aeroelastic tailoring

techniques, and the aeroelastic analysis in general, becomes increasingly significant

with the size of wind turbine rotors continually rising. Due to its low computing

complexity, BEM remains a crucial tool in the aerodynamic and aeroelastic analysis of

wind turbine rotors. Thus, the proposed correction model contributes to a fast and

accurate evaluation of swept blade designs.

K E YWORD S

blade element momentum theory, blade sweep, engineering model, wind turbine
aerodynamics

1 | INTRODUCTION

With recent developments, the blades of horizontal axis wind turbines (HAWT) have grown beyond 100 m blade span. These increasingly slender

and flexible structures necessitate a detailed aeroelastic analysis. Simultaneously, concepts for aeroelastic tailoring of the blades' properties

become ever more relevant. One such tailoring technique is blade sweep, defined as a fore or aft displacement of the blade axis in the rotor plane.

This idea was first introduced by Liebst1 in the context of wind turbine blades. By placing the aerodynamic axis at a distance to the blade's

pitching axis, flapwise deformations are coupled to a twist of the blade similar to the effect that off-axis fibre orientation can have. Blade sweep

can, therefore, be used as a passive load alleviation technique. For example, an aft-swept blade will experience a negative pitching moment that
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locally twists the blade to lower angles of attack, thereby, reducing the loading. Ideally, this enables an extension of the rotor diameter while

keeping the load envelope of a non-swept reference blade.

The potential of blade sweep was demonstrated in the STAR (Sweep Twist Adaptive Rotor) experiment. Zuteck2 initially investigated swept

blade planforms and found that up to 4� of twist could be reached at the blade tip. Larwood and Zuteck3 ran simulations using FAST and ADAMS

to investigate the aeroelastic behaviour of a preliminary design of the STAR rotor. They found that a 20% decrease in peak flap bending can be

achieved in comparison to a straight reference blade while power capture remains nearly constant. In the final project report, Ashwill et al4 report

that using swept blades with slightly increased diameter led to an increase of annual energy capture of 10–12%. The measured blade root

moments in flatwise and edgewise direction showed no significant increase while a conventional, straight rotor of equivalent diameter was

expected to increase these loads by 80%.

Next to the experimental approach, blade sweep has also been studied numerically. Suzuki et al5 used a hybrid Navier-Stokes/vortex-panel

solver to simulate the NREL Phase VI rotor with aft sweep. The results showed no significant change in power. Kaya et al6 employed computa-

tional fluid dynamics (CFD) to study the NTNU rotor with various sweep configurations. The power coefficient increased for a forward swept

blade while backward sweep led to a decrease in power production due to a lower thrust coefficient. Contrary results were obtained by Chattot7

using a lifting line code based on the Goldstein model to study the NREL 6 kW rotor where backward sweep resulted in a slight power increase

while the forward sweep reduced the rotor power. Picot et al8 studied the effect of swept blades on a free-yawing, stall controlled downwind

rotor using HAWC2. They show that the bend-twist-coupling delays stall to higher wind speeds, thereby, increasing the rated power. Sessarego

et al9 used the lifting line module of MIRAS to simulate the NREL 5 MW turbine in complex inflow conditions. Their results indicate that blade

sweep can positively affect power and thrust performance of the turbine. Next to increased annual energy production, Larwood et al10 report a

positive impact of blade sweep on flapwise bending loads. This is in line with a study by Verelst and Larsen, who simulated the NREL 5 MW rotor

for various sweep configurations using HAWC2. Their study showed that backward sweep can be used to reduce flapwise fatigue and extreme

loads. Using the lifting line code AWSM coupled to a structural solver, Grasso et al11 show that an aft swept blade oscillates less than a straight

reference blade when hit by a gust, indicating the potential for a reduction of fatigue loading.

An important effect of the bend-twist-coupling is the introduction of severe additional torsional loads. Suzuki et al5 and Verelst and Larsen12

report increases in the range of 280–400%. When simulating the NREL 5 MW rotor, Larwood et al10 encountered a torsional instability

potentially related to the flutter boundary.

The studies presented above mainly rely on numerical models of medium and higher fidelity, such as lifting line models, CFD, and hybrid

vortex panel/CFD. The computational cost of these methods prohibits their use in the concept design and certification phase of wind turbines

where many design variations and load cases are calculated. In wind turbine applications, such calculations are generally performed using codes

based on blade element momentum theory. BEM, however, assumes a straight blade geometry located in the rotor plane and, thus, cannot

account for the effect of sweep on the induction. This effect is neglected in the studies presented above8,12 where the BEM based tool HAWC2

is used. In order to further investigate and exploit the benefits of swept wind turbine blades, BEM based tools need to be extended to account

for the effects of blade sweep. One such approach is presented by Li et al.13 The employed model is based on the near wake model originally

adapted for wind turbine applications by Madsen and Rasmussen14 and further developed by Pirrung et al.15 It combines a lifting line

representation of the near wake consisting of the first quarter revolution of the wake with a far wake BEM implementation. In their work,

Li et al13,16 extend this near wake model to be able to account for swept blade geometries. Contrary to BEM, the near wake model models the

coupling of the solutions of multiple streamtubes.

The present work introduces a novel method to extend BEM so that it can account for the effect of blade sweep. For this purpose, a sweep

correction model is derived that is applied to the axial induction. The proposed model retains the streamtube independent approach of BEM and

adds little computational effort. Section 2 presents the methodology including the rotor model, the sweep parametrisation, and numerical tools

used in this study. The sweep correction function is derived in Section 3. A comparison between results from lifting line and BEM simulations is

shown in Section 4, validating the newly developed BEM extension. Finally, conclusions are presented in Section 5.

2 | METHODOLOGY

2.1 | Sweep parametrisation

Blade sweep is defined as displacement of the blade axis in the rotational plane. A schematic of a blade with aft sweep is shown in Figure 1.

For the parametrisation of the blade sweep, a power law equation is chosen that was previously also applied by Zuteck,2 Verelst and

Larsen,12 and Larwood et al.10

xΛ ¼
0 for y ≤ ystart

xtip
y�ystart
R�ystart

� �γ
for y > ystart

(
ð1Þ
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Here, xΛ is the inplane displacement of the blade axis, xtip is the tip displacement, ystart is the sweep starting position, γ is the sweep exponent,

and R is the blade radius. The local sweep angle Λ can be determined as ΛðyÞ¼ tan�1 dx=dyð Þ. The local aerofoil orientation is kept perpendicular

to the blade pitching axis. In order to maintain the same tip radius as the unswept reference blade, the swept coordinates are scaled by

ð1þx2tip=R
2Þ�1=2

. Several other approaches for sweep parametrisation can be found in the literature. Kaya et al6 report a parametrisation similar to

Equation (1), based on xtip, ystart and a third sweep parameter. Hansen17 uses a combined linear-quadratic shape function to allow for combina-

tions of fore and aft sweep. Li et al13 employ Bézier curves parameterised by sweep starting position, tip displacement, and tip sweep angle to

describe the blade axis shape. The sweep correction model proposed in Section 3 is independent of the parametrisation variables and, thus, also

applicable to all methods mentioned above.

2.2 | Numeric models

2.2.1 | Blade element momentum theory

Despite the availability of numerical models of higher fidelity, such as CFD and vorticity-based methods, the blade element momentum theory

remains a crucial model to analyse the aerodynamic performance of rotors such as wind turbines or propellers. This is due to its rapid calculation

speed, which makes it suitable for the calculation of vast numbers of loadsets required, for example, for wind turbine certification.

The BEM algorithm couples the momentum theory of an actuator disc with the blade element theory. To this purpose, the blade is discretised

by a number of blade elements where the local loads are calculated by interpolating aerofoil polars based on the inflow conditions. Similarly, the

actuator disc is discretised using concentric annuli that correspond to a number of streamtubes for which the momentum equations are solved

independently. Many correction models exist to improve the accuracy of BEM algorithms, for example, correction models for obtaining 3D polars,

unsteady aerofoil aerodynamics, tilt/cone/yaw angles, tower effects, and so forth. In the baseline algorithm used in this study, only Prandtl's tip

and root correction and Glauert's correction for heavily loaded rotors are implemented as presented by Burton et al.18

Based on an initial guess for the axial induction factor a and the tangential induction factor a0, the local inflow angle ϕ is calculated as

ϕ¼ tan�1 U∞ ð1�aÞ
ωrð1þa0Þ
� �

ð2Þ

where U∞ is the free stream velocity, ω is the rotational speed and r is the radial position of the regarded annulus. Together with information of

the blade pitch and local twist, the inflow angle is used to calculate the local forces from aerofoil polars. The normal force Fn in turn yields the

local thrust coefficient

CT ¼ FndrNb
ρ
2U

2
∞Aann

: ð3Þ

Here, dr is the radial extent of the annulus, Nb is the number of blades, ρ is the density of air, and Aann is the annulus surface area. At high

values for thrust coefficient or axial induction, respectively, BEM theory becomes invalid, and the momentum relation needs to be replaced with

an empirical model. Glauert's correction model gives the following relation between axial induction factor a and thrust coefficient CT :

a¼
1
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�CT

p
2

, for CT <CT2

1þ CT �CT1

4
ffiffiffiffiffiffiffi
CT1

p �4
, for CT ≥CT2

8>>><
>>>:

ð4Þ

where CT1 ¼1:816 and CT2 ¼2
ffiffiffiffiffiffiffi
CT1

p �CT1 .

F IGURE 1 Schematic of an aft swept blade
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Prandtl's tip correction is applied to correct the momentum theory for the effects of finite numbers of blades. At the blade tip, a trailing tip

vortex occurs, which leads to large values of induction and therefore altered inflow conditions. Similar effects occur at the blade root. The Prandtl

factors for tip and root correct for this increase in induction and can be calculated as

Ftip ¼2
π
cos�1 e

�Nb
2

R
r�1ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λr

1�að Þ2
q0

@
1
A ð5Þ

Froot ¼2
π
cos�1 e

Nb
2

rroot
r �1ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λr

1�að Þ2
q0

@
1
A ð6Þ

where rroot and R are the root and tip radius and λr is the local tip speed ratio. The total Prandtl factor FP ¼ Ftip �Froot is then used to correct the

annulus-averaged induction factors to account for the induction at the blade

ab ¼ a=FP ð7aÞ

a0b ¼ a0=FP ð7bÞ

Equations (2) to (7) are solved iteratively until convergence is reached.

A BEM algorithm as described here inherently assumes a straight blade located in the rotor plane. Thus, it can account neither for the

displacement of the trailed vorticity due to blade sweep, nor for the induction of the curved bound vortex representing a swept blade on itself. To

include both effects, a correction model is developed in Section 3 that can represent the changes in induction as a function of the sweep shape

and the radial position of the evaluation point.

2.2.2 | Lifting line theory

In the lifting line theory, the rotor blade is represented by a bound vortex filament running through the quarter chord point of the specified blade

cross sections. The rotor wake is represented by a system of trailed and shed vorticity usually referred to as vortex lattice. In this study, steady

conditions are assumed so that no shed vorticity occurs. Wake self-induction is neglected leading to a wake represented by concentric helical

vortex filaments trailing at the edges of the numerical elements by which the blade is discretised. No vortex core model is applied to the induction

of the trailed vorticity elements. For the representation of the wake, an azimuthal increment of Δθ¼1 ∘ is chosen and a downstream wake

extension of Lwake ¼10D is simulated, where D is the rotor diameter. The trailed vortices are convected by U¼U∞ð1�arotorÞ, where arotor is the

rotor averaged axial induction factor in the rotor plane, and the helix lead angle is calculated as δ¼ tan�1 ð1�arotorÞR
λr

� �
. In this study, arotor is calcu-

lated by a BEM simulation with equivalent operating conditions as described in Section 2.2.1.

Local loads are calculated based on the inflow conditions and interpolated aerofoil polars which are provided as input. Based on the loads,

the bound circulation and the resulting wake circulation can be calculated. The induced velocity is determined by evaluating the Biot-Savart law.

As described in Section 2.2.1, a curved bound vortex representing a swept blade induces a velocity on itself. In this study, simulations are run with

and without accounting for the bound vortex self-induction. A more detailed discussion of the vortex core model and radius used in the calcula-

tion of the bound vortex' self-induction follows in Section 3.3. Knowing the local induction at the rotor blade, the inflow conditions, the blade

loads and the bound and trailed vorticity can be updated. At the same time, the prescribed wake geometry is kept constant. This way, the loads

are calculated in an iterative procedure until convergence is reached. Next to the prescribed wake approach described here, the free wake lifting

line code AWSM19 is employed to evaluate the influence of the wake discretisation approach on the aerodynamic solution. The lifting line theory

is capable of representing the blade axis and the wake in three-dimensional space and, therefore, is appropriate to simulate swept blade designs.

3 | SWEEP CORRECTION MODEL

By sweeping the blade, two main changes are made to the vorticity system.

1. The release point of trailed vorticity is moved ahead or aft of a straight reference blade in the azimuthal direction. Based on Equation (1), it is

obvious that the largest displacement occurs at the tip. Modern wind turbine blades are designed to achieve an almost constant circulation

4 FRITZ ET AL.



distribution along their span, meaning that the majority of vorticity is trailed at the root and tip. Thus, the effect of sweep can be approximated

by the effect of the changing tip vortex position. Compared to a reference case with a straight blade, the sweep will add or subtract a piece of

the helical vortex filament that describes the tip vortex. For realistic sweep configurations and wind turbine blade dimensions, this

additional/missing part of the tip vortex can be approximated as straight vortex filament and the induced axial velocity of a swept blade Wind,Λ

can be described as

Wind,Λ ¼Wind,ref þWind,VF ð8Þ

where the swept case, reference case and the additional/missing vortex filament are denoted with the subscripts “Λ,” “ref,” and “VF.”
Consequently, the axial induction factor of a swept blade configuration can be expressed as

aΛ ¼ aref 1þWind,VF

Wind,ref

� �
: ð9Þ

2. The bound vortex is curved and, in contrast to a straight vortex filament, induces a velocity on itself.

3.1 | Velocity induced by a semi-infinite helical vortex filament

The tip vortex of a wind turbine blade rotating in clockwise direction as seen from upstream can be described by a helical vortex filament, its

curve defined as x¼�R sinθ, y¼R cosθ and z¼ θ l. A schematic of this filament is shown in Figure 2.

Kawada20 and Hardin21 independently derived the equations describing the velocity field induced by a infinitely extending helical vortex

filament. Often overlooked, Kawada's contribution is related by Fukumoto et al.22 Using the Kawada-Hardin equations, the velocity field is

calculated by means of the Kapteyn series. Extended to account for the tip vortices of multiple equispaced blades, the equation for the induced

velocity along the helix axis reads

uz ¼NbΓ
2πl

1

0

� �
�ΓR
πl2
XNb

n¼1

X∞
m¼1

m
Imðmr=lÞK0

mðmR=lÞ
I0mðmR=lÞKmðmr=lÞ

� �
cos mχnð Þ ð10Þ

where l is the helix pitch, χ¼ θ� z=l and χn ¼ χþ2πðn�1Þ=Nb. ImðxÞ and KmðxÞ are the modified Bessel functions of first and second kind and the

prime indicates their derivative with respect to the argument. The upper line in the notation “f:g” represents the solution for r <R while the lower

line states it for r ≥R. With multiple blades present, the wake exhibits a periodicity. The term
PNb

n¼1 cosðmχnÞ then becomes zero if m is not a

multiple of Nb, a circumstance referred to as “Kawada cancellation.” Okulov23 presents a more efficient approximation to the velocity field to

which Wood et al24 apply the Kawada cancellation. While previous work24 still contained a typographic mistake, the correct equations are given

by Wood et al.25

uz ¼

NbΓ
2πl

þ Γ
2πl

ffiffiffiffiffi
cR
cr

r
NbU
1�U

þ 1
24

9ðR=lÞ2þ2

c3R
þ3ðr=lÞ2�2

c3r

" #
log 1þ U

1�U

� � !
for r <R

Γ
2πl

ffiffiffiffiffi
cR
cr

r
Nb

1�U
þ 1
24

9ðR=lÞ2þ2

c3R
þ3ðr=lÞ2�2

c3r

" #
log 1þ 1

U�1

� � !
for r ≥R

8>>>>><
>>>>>:

ð11Þ

with

F IGURE 2 Schematic of a helical vortex filament
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cR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R

l

� �2
s

, ð12Þ

cr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r

l

� �2r
, ð13Þ

U¼ rðcRþ1Þ
Rðcr þ1Þ expðcr �cRÞ
� �Nb

: ð14Þ

Okulov23 presents additional terms to further improve the accuracy of this approximation. Wood et al25 compare Okulov's extended

approximation to other approximations of the Kawada-Hardin equations. They conclude that, while increasing the accuracy at high helix pitch

values, Okulov's additional terms do not significantly improve the accuracy for wind turbine relevant helix pitch angles ðl≈0:1Þ. Thus, the
additional terms are omitted from the discussion.

Equation (11) gives an expression for the evaluation of the induction of an infinite helical vortex filament. The tip vortex of a wind turbine

blade, however, only spans downstream of the rotor and, thus, resembles a semi-infinite helical vortex filament. It should be noted, that the

problem of induction by a helical vortex filament is not symmetrical. Nonetheless, dividing the solution of Equation (11) by two gives a good

approximation of the semi-infinite vortex filament's induction. This will be demonstrated by comparing this approach to results obtained when

evaluating the Biot-Savart law for a discretised helical vortex filament only spanning downstream of the rotor. Both methods are compared for

multiple helical vortex filaments defined by the axial induction factor a, tip speed ratio λ, number of blades Nb, wake extension Lwake=D and the

azimuthal increment Δθ. The latter two parameters are only relevant for the discretisation of the filament when calculating the induction using

the Biot-Savart law. The helix configurations are listed in Table 1, where the bold script indicates the parameter variation compared to Helix 1.

Figure 3 shows the ratio of induced velocity calculated using the Biot-Savart law (subscript BS) over the solution of Equation (11) divided by

two (subscript ∞=2, denoting a semi-infinite helix) as a function of the radial position.

The influence of the input parameters when compared with the baseline helix 1 can be summarised as follows:

• Changes in the axial induction a (helix 2) or tip speed ratio λ (helix 3) have no significant influence on the agreement of Equation (11) and the

Biot-Savart evaluation.

TABLE 1 Helix parametrisation

a [-] λ [-] Nb [-] Lwake=D [-] Δθ [�]

Helix 1 0.3 9 1 10 1

Helix 2 0:2 9 1 10 1

Helix 3 0.3 7 1 10 1

Helix 4 0.3 9 3 10 1

Helix 5 0.3 9 1 100 1

Helix 6 0.3 9 1 10 5

F IGURE 3 Ratio of induction when evaluating a helical vortex filament using Equation (11) and Biot-Savart law

6 FRITZ ET AL.



• A larger number of blades (helix 4) will result in more evenly spread vorticity, thereby reducing the impact of the symmetry assumption. The

results of helix 4 show the best agreement between the Biot-Savart law and the analytical solution.

• Instead of an exact representation of the helical vortex filament, the Biot-Savart law is used to evaluate a set of straight vortex filaments that

approximate the helix shape. Whereas Equation (11) is a solution for an infinite helical vortex filament, the discretised helical filament spans a

finite length Lwake downstream of the rotor. By increasing the discretised wake length (helix 5), deviations in the helix centre can be reduced

while the error at the tip remains unchanged. Additionally, the azimuthal increment defines how closely the curved helical shape is

approximated. By increasing the azimuthal increment (helix 6), this approximation becomes worse which increases the error particularly in the

proximity of the vortex itself.

Based on these observations, the helical filament of the tip vortex will be discretised using the parameters of helix 4, see Table 1 for all simu-

lations presented in this section. As such, assuming symmetry of the velocity induced by a helical vortex filament extending infinitely both

upstream and downstream of the rotor plane introduces an error smaller than 0.5%. It should be noted, that in this section, the wind turbine wake

is treated as a helix with constant radius while the wake expands behind a real wind turbine. However, Wood26 demonstrates that the approxima-

tion of the Kawada-Hardin equation for the axial induced velocity presented, here, remains accurate when compared to a Biot-Savart evaluation

of an expanding wake.

3.2 | Velocity induced by the additional/missing vortex filament

The effect of blade sweep is approximated by adding/subtracting a straight piece of vortex filament located in the rotor plane from the

semi-infinite vortex representing the tip vortex of the blade. A schematic of both a forward and backward swept case is given in Figure 4.

For simplicity, the trailing vortex is also plotted as straight line, while in reality, it is a helical vortex filament.

Considering the Biot-Savart law, the velocity induced at a given point by a straight vortex filament of length d l
!
can be calculated as

V
!

ind ¼ Γ
4π

ð
r
!�d l

!

r
!			 			3 ð15Þ

where r
!
is the distance vector between the vortex filament and the evaluation point and Γ is the filament's circulation. The induced axial velocity

of the additional/missing vortex filament can then be expressed as

Wind,VF ¼ Γ
4πðyV �yPÞ

ðcosθ2� cosθ1Þ ð16Þ

where yV and yP refer to the radial position along the blade pitch axis of the trailed vortex and the evaluation point on the blade, respectively.

Given that cosθ1 ¼0 for backward sweep and cosθ2 ¼0 for forward sweep, Equation (17) can be simplified to

Wind,VF ¼� Γ
4πðyV �yPÞ

sgnðxtipÞcosθΛ: ð17Þ

F IGURE 4 Schematic of the additional/missing vortex filament (dotted line) for an aft swept blade (left) and forward swept blade (right)
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Here, θΛ is the angle between the trailing vortex filament and the swept blade axis (θ2 for backward sweep and θ1 for forward sweep). This

angle can be calculated as

θΛ ¼ tan�1 yV �yP
xV �xP

� �
þ tan�1 xP

yP

� �
ð18Þ

where the coordinates of the evaluation point xP , yP and of the tip vortex starting point xV , yV are given in the rotated blade coordinate system

with axes xB, yB. Note, that the length of the additional/missing vortex filament is not only a function of the sweep parameters xtip, ystart and γ, but

also of the radial position of the evaluation point.

Figure 5 shows the velocity induced by such a vortex filament with unit circulation for forward swept blade geometries with varying sweep

parametrisation in blue. For comparison, the difference in induced velocity between lifting line simulations of the straight reference blade and the

swept blade geometries are plotted in red. In the lifting line simulations, vorticity is only trailed at the tip. Overall, very good agreement can be

observed, the differences visible inboard of 80% blade span only appear large due to the logarithmic ordinate. Identical results (with inverted sign)

are obtained when sweeping the blade backward instead of forward while keeping the other sweep parameters constant.

The analysis shown here and in Section 3.1 underlines that the axial induction of the tip vortex can be approximated for any swept blade

configuration with good accuracy by the sum of Equation (11) divided by two and Equation (17).

Figure 6 shows the ratio of the induced velocity simulated using a lifting line approach to the approximation described above. For this

simplified case, where vorticity is only trailed at the tip, the maximum error increases the further the tip is deflected and the further outboard the

sweep begins. However, even for the extreme cases with sweep parameters ystart ¼0:75R and xtip ¼�0:2R, the maximum error remains below

2.5% indicating a good approximation of the axial induction.

F IGURE 5 Difference in axial induction between swept and reference geometry. Simulated using a lifting line approach (red) and
approximated by a straight vortex filament (blue) for swept geometries with xtip ¼þ0:1R (left) and xtip ¼þ0:2R (right)

F IGURE 6 Ratio of induced axial velocity simulated using a lifting line approach to the sweep model for swept geometries with xtip ¼�0:1R
(left) and xtip ¼�0:2R (right)
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3.3 | Velocity induced by the bound vortex on itself

In lifting line theory, a wind turbine blade is represented by the bound vortex which is discretised by a number of vortex filaments. If this bound

vortex forms a straight line, it does not induce a velocity on itself. If, however, the bound vortex is curved, it is essential to consider its

self-induction. In lifting line theory, this is done by evaluating the Biot-Savart law. The induced velocity behaves singular in the direct vicinity of a

vortex filament. To avoid this effect, regularisation models are used. In this study, the bound vortex filaments are regularised using a Lamb-Oseen

multiplication factor

K¼1� exp
�αr2

r2c

� �
ð19Þ

where r is the distance between evaluation point and vortex filament, rc is the viscous core radius, and α¼1:25643.27 The choice of the viscous

core radius has a strong influence on the velocity induced by the curved bound vortex on itself. This is demonstrated exemplary on the left of

Figure 7. Here, the self-induction of a swept vortex filament with unit circulation strength is plotted. According to Equation (1), the sweep is

defined by ystart ¼0:5R, xtip ¼�0:2R and γ¼2, where the unswept reference length of the vortex filament is R¼100m, which is comparable with

the length of modern wind turbine blades. A blade of this length will have a chord distribution approximately ranging from a maximum of c¼5m

to c¼1m towards the tip. Along this line of thought, the chosen viscous core radii are also related to a mean chord of c¼3m on the left of

Figure 7. The filament is discretised using Nelem ¼50 elements. It is obvious, that larger viscous core radii lead to reduced self-induction. When

lowering the viscous core radius, the self-induction increases. There is a lower limit of the viscous core radius beyond which the self-induction

reaches a converged state that is equivalent to calculating the induced velocity without viscous core radius model.

In the swept part of the bound vortex where self-induction is most present, the highest contribution to the locally induced velocity comes

from the discretised vortex filaments in the proximity of the evaluation point. Assuming that the circulation distribution does not rapidly change

over the span, the following correction model is proposed to account for the bound vortex' self-induction in BEM algorithms. At the beginning of

a BEM simulation, a one-time evaluation of the bound vortex' self-induction is conducted using the Biot-Savart law. For each blade element i, the

sum of velocities induced by each other blade element j based on a unit strength circulation distribution is calculated.

V
!

ind,Γb¼1,i ¼
XNelem

j¼1

Kj
1
4π

ð
r
!
i,j�d l

!
j

r
!

i,j

			 			3 ð20Þ

This value of induced velocity per bound circulation strength is stored as a property of the respective blade element. During the iterative

solution of each streamtube, the axial component of this relative induction Wind,Γb¼1,i is multiplied by the currently calculated circulation of the

blade element, thus, approximating the velocity that the entire bound vortex would induce.

Wind,Γb ,i ¼Wind,Γb¼1,iΓb,i ð21Þ

The resulting change in the axial induction factor is

ΔaΓb ¼�Wind,Γb ,i

U∞
ð22Þ

F IGURE 7 Self-induced velocity of a swept vortex filament defined by R¼100m, Nelem ¼50, ystart ¼0:5R, xtip ¼�0:2R, γ¼2 for different
viscous core radii (left) and relative integrated circulation of a flat plate (right)
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The benefit of this correction model is that the streamtube independent approach of most BEM algorithms can be retained.

On a real wind turbine blade, the bound circulation is distributed over the blade's surface instead of being lumped at the quarter chord point.

Thus, a discussion regarding a reasonable viscous core radius size follows based on the example of a flat plate. The chordwise circulation

distribution of a flat plate is given by

γðxÞ¼2U∞α

ffiffiffiffiffiffiffiffiffiffi
1�x
x

r
ð23Þ

where α is the angle of attack and x is the chordwise coordinate; see, previous studies, Katz and Plotkin.28 The relative integrated circulation is

shown on the right of Figure 7. Representing the flat plate by a lifting line at the quarter chord location, it can be observed that a viscous core

radius of rc ¼0:25c would encompass approximately 80% of the bound circulation. Deeming this a good approximation of real conditions, all

simulations run for this study use this viscous core radius. On the left of Figure 7, the self-induction of a swept bound vortex with rc ≈0:25c is

plotted as solid red line.

3.4 | Implementation of the sweep correction in BEM

Combining the results of Sections 3.1 to 3.3, the axial induction factor of swept blades can be approximated. The resulting sweep correction can

be implemented inside of the iterative loop that solves the local blade element loads in equilibrium with the annulus momentum theory. Inside the

iterative loop, the rotor averaged induction factor arotor is not known. Therefore, the calculation of the helix pitch of the tip vortex (Equation 11) is

based on the local induction factor a. Consequently, the helix pitch does not only change with the radial position but also during each iteration in

which the local axial induction factor a is updated until convergence is reached. This approach can be justified by considering that blade sweep

results in changes especially in the near wake induction. Slight changes in the tip vortex helix pitch due to the varying local induction have a

relatively smaller impact on the axial induction compared to the additional/missing vortex filament introduced by the sweep.

It should be noted that both the velocity induced by the vortex filament representing the shifted tip vortex position (Equation 17) and the

velocity induced by the semi-infinite helical vortex filament representing the wake (Equation 11) are linearly proportional to the tip vortex

strength. When calculating the correction for the axial induction factor (Equation 9), the division of the two induced velocity terms ensures that

the circulation is cancelled from the equation. Consequently, this correction term is independent of the tip vortex strength. Numerically, this also

guarantees the correction model's independence from the blade discretisation, which can have an influence on how the tip vortex strength is

distributed over the outermost elements.

Given the assumption that the effect of sweep is described only by an additional/missing vortex filament at the blade tip and the bound

vortex' self-induction, the influence on the tangential induction factor a0 is negligible. Therefore, the tangential induction is not corrected.

By placing the sweep correction inside the iterative loop, the solution process remains streamtube independent and minimal computational effort

is added. The implementation of the sweep correction in BEM is shown in Algorithm 1.
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4 | RESULTS

4.1 | Baseline geometry

The IEA 15 MW rotor is chosen as baseline geometry for the numerical investigations presented in this study. Details of this reference turbine are

taken from the report by Gaertner et al29 and the corresponding GitHub repository.30 To simplify the geometry, slight modifications were done,

namely, the tilt and cone angle were set to zero and the prebend was neglected. The main characteristics of the modified IEA 15 MW rotor model

are listed in Table 2.

Initially, the straight reference blade is simulated using the BEM algorithm described in Section 2.2.1, the lifting line algorithm described in

Section 2.2.2 and the free wake lifting line code AWSM.19 The subscript ref represents the straight reference blade. The operational conditions

are U∞ ¼10m/s, λ¼9, and βpitch ¼0�. Figure 8 shows the spanwise distribution of axial induction on the left and the circulation distribution on

the right. There is good agreement between the numerical tools. It can be observed that the lifting line approaches give lower axial induction

values along almost the entire blade. This is in line with observations documented by Schepers et al31,32 for comparisons between BEM and lifting

line models of rotors with high induction values. Furthermore, the axial induction calculated using the free wake lifting line code AWSM is lower

than that of the prescribed wake lifting line approach described in Section 2.2.2. This discrepancy can be attributed to the wake discretisation

approach. The lower axial induction leads to slightly higher values of the bound circulation for the lifting line calculations. Independent of the

numerical model, the IEA 15 MW turbine has a constant circulation distribution for large parts of the blade span. The circulation gradient, which

represents the strength of the trailed vorticity, is largest at the blade tip. Thus, the assumption of vorticity mostly being trailed at the tip as made

in the derivation of the sweep correction model, is in good agreement with the simulation results.

The normal and tangential load distributions are plotted in Figure 9. In line with the induction and circulation distributions, the different

numerical models agree well for the blade loads. Given the overall congruence between the two lifting line codes, the inaccuracy introduced by

the prescribed wake formulation is deemed negligible. Thus, changes in the aerodynamic blade characteristics due to sweep are analysed based

TABLE 2 Parameters of the modified IEA 15 MW reference wind turbine

Parameter Value Unit

Number of blades 3 -

Rotor diameter 240.00 m

Rated power 15.00 MW

Rated wind speed 10.59 m/s

Rated pitch angle 0.00 deg

Design tip speed ratio 9.00 -

Tip prebend 0.00 m

Tilt angle 0.00 deg

Cone angle 0.00 deg

Note: Compared with the original report,29 the prebend, tilt, and cone are removed.

F IGURE 8 Spanwise distribution of the axial induction factor (left) and circulation (right) of the straight reference blade, case: U¼10m/s,
λ¼9, βpitch ¼0�
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on the lifting line algorithm with prescribed wake for the remainder of this paper. The cylindrical wake used in this approach matches the wake

assumptions made in the derivation of the sweep correction model for BEM. Consequently, this model is well suited for the validation of the

extended BEM algorithm.

4.2 | Sweep variation

For the simulations presented in this section, the sweep starting position ystart and the tip displacement xtip are varied while keeping the sweep

exponent γ constant. The parameter variation is listed in Table 3 and a graphical representation of the resulting blade geometries is shown in

Figure 10.

Both the prescribed wake lifting line model as well as the extended BEM model are employed for simulating the swept blade geometries. The

lifting line results are denoted as LL, the subscripts ref and Λ represent the straight and swept blade simulations, respectively. Additionally, the

subscript Γb indicates that the velocity induced by the bound vorticity on the blade itself has been taken into account. While the BEM simulations

employ the correction model described in Section 3.3 to do so, the lifting line simulations directly evaluate the velocities induced by the bound

vortex on itself. The operational conditions are U∞ ¼10m/s, λ¼9, and βpitch ¼0�. Exemplary, the simulation results of a swept blade with

ystart ¼0:5R, xtip ¼�0:2R, and γ¼2 are graphically compared with those of the straight reference blade.

F IGURE 9 Spanwise distribution of the normal force (left) and tangential force (right) of the straight reference blade, case: U¼10m/s, λ¼9,
βpitch ¼0�

TABLE 3 Sweep parameter variation

Parameter Value

ystart ½0:25, 0:50, 0:75�R
xtip ½�0:2, �0:1, þ0:1, þ0:2�R
γ 2

F IGURE 10 Swept blade geometries for xtip ¼�0:1R (left) and xtip ¼�0:2R (right)
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The sweep induced change of the axial induction factor a is plotted on the left in Figure 11. First, the results of the simulations not modelling

the bound vortex induction are discussed (solid lines). As expected for the presented case with aft sweep, the axial induction factor drops towards

the tip. This is due to the aft displacement of the tip vortex in azimuthal direction resulting in a “missing” part of vortex filament compared to the

straight blade. Contrary to this, a forward sweep will cause an increase in axial induction close to the tip. The results from the extended BEM

simulation show good agreement with the lifting line simulations. The changes in normal force FN are depicted on the right of Figure 11. Due to

the decreased induction, the blade tip experiences higher angles of attack which entail increased sectional loads. These results demonstrate that

the sweep correction model enables BEM to account for the sweep induced changes in the trailed vorticity system.

Along with the normal force, also the tangential force and the bound circulation increase at the tip for aft swept blades. Since their sweep

induced variation resembles that of the normal force in shape, plots of these changes have been omitted for brevity. The increased circulation at

the tip moves the large circulation gradient indicating the tip vortex to even higher radial positions. This further supports the assumption of

vorticity mostly being trailed at the tip as made in the derivation of the sweep correction model. In contrast to that, forward sweep decreases the

bound circulation at the tip, and therefore, the peak of the circulation gradient is moved further inboard and is slightly smoothed out. Thus,

forward sweep is less aligned with the model assumptions than aft sweep.

In a second set of simulations, the induction of the bound vortex on itself is included, see the dashed lines in Figure 11. For aft swept blades

the induction at the tip is still lower compared with straight reference blade. More inboard, however, the curved bound vortex increases the axial

induction. Sweeping the blade forward has a comparable effect with inverted sign. As a consequence of the induction distribution, the normal

force reduces at midspan and increases at the tip. Thus, blade sweep causes a load redistribution over the blade span. The BEM algorithm

underpredicts the velocity induced by the bound vortex on itself slightly when compared to the lifting line model. Nonetheless, the agreement

between the two models is very good. As mentioned in Section 3.3, velocity induced by the bound vortex on itself is highly dependent on the

chosen viscous core radius, here 25% of the local chord. If a lower core radius were chosen, the load changes around the sweep starting point

would appear stronger.

In order to validate the sweep correction model for all swept cases, the integrated flapwise moment at the blade root is calculated as

Mf ¼
ðR
rroot

FnðrÞrdr: ð24Þ

The linear weighting of the force due to the radially increasing moment arm stresses the changes in blade loads due to sweep which mainly

occur at the tip. The baseline flapwise moments of the straight reference case for BEM and the lifting line code are Mf,BEM,ref ¼5:9910 �107 Nm

and Mf,LL,ref ¼6:0393 �107 Nm. Thus, the difference in flapwise moment between the two baseline simulations is

Mf,LL,ref �Mf,BEM,refð Þ=Mf,LL,ref ¼0:8%. Based on the parameter variation listed in Table 3, simulations are conducted and the changes in flapwise

moment compared with the straight reference case are shown in Figure 12. both for simulations accounting for and neglecting the bound vortex'

self-induction.

Again, we first discuss the simulations neglecting the influence of the curved bound vortex on itself. The results confirm that both numerical

models show the same trend for all sweep configurations. In comparison with the lifting line simulations, it can be observed that the relative

change in flapwise moment is mostly underpredicted by the extended BEM code with the exception of the cases with ystart ¼0:25R and xtip <0.

The difference between the models grows with increasing tip deflection and sweep starting position. Furthermore, the relative change in flapwise

moment generally matches slightly better for aft swept cases as was explained on the basis of the circulation distribution. Larger deviations

between the lifting line and extended BEM code can primarily be found for the cases with ystart ¼0:75R and xtip ¼�0:2R. It should be noted, that

for these cases the tip displacement is almost equal to the spanwise extent of the blade that is being swept, resulting in a local sweep angle of

F IGURE 11 Spanwise distribution of sweep induced changes to the axial induction factor (left) and normal force (right), case: U¼10m/s,
λ¼9, βpitch ¼0 ∘ , ystart ¼0:5R, xtip ¼�0:2R, γ¼2
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nearly Λ¼60� at the tip. In such conditions, considerable crossflow will occur and the validity of either numerical model is questionable. A better

solution would be the application of models that resolve the three-dimensional blade geometry such as panel methods or CFD.

Accounting for the induction of the curved bound vortex on itself leads to a load redistribution as shown in Section 4.2. Figure 12 confirms

this for all swept configurations that were simulated. While the flapwise root bending moment still increases for all aft swept blades and reduces

for all forward swept blades, the extent of these changes is smaller compared to the simulations without bound vortex self-induction. The largest

influence of the bound vortex occurs for the swept blades with ystart ¼0:75R. Those cases have the highest curvature in the swept part of the

blade. As a consequence, the influence of the regularisation applied to the bound vortex' induced velocity reduces. The agreement between the

lifting line and BEM simulations is reasonably good.

4.3 | Variation of the operating conditions

The results presented in Section 4.2 demonstrate the effect of different sweep geometries on the aerodynamic performance of the wind turbine

blade. Those simulations are conducted at operating conditions close to the rated conditions of the IEA 15 MW reference wind turbine. This

section will extend that analysis to the whole range of operational conditions using the example of a swept blade with ystart ¼0:5R, xtip ¼�0:2R

and γ¼2. Within the documentation of the IEA 15MW reference wind turbine,29,30 the operating conditions are defined for wind speeds

between U∞ ¼3m/s and U∞ ¼25m/s. The tip speed ratio λ and the pitch angle βpitch are plotted in Figure 13.

The accuracy of the sweep correction model throughout the operating conditions is, again, investigated based on the blade root flapwise

moment. The left of Figure 14 displays the absolute values of Mf as a function of the wind speed for the straight reference blade. Throughout the

operational range, differences due to the employed numerical model are small compared to the variation due to the operating conditions. The

impact of sweep can be seen when plotting the relative change in flapwise moment due to sweep per model, as done on the right of Figure 14.

For most operating conditions (with the exception of below rated conditions for simulations including the bound vortex induction), the change in

flapwise moment is underpredicted by the extended BEM model. The difference between the two models grows with increasing wind speed. At

very high wind speeds, the BEM results even show a decrease in flapwise moment when sweeping the blade. In these conditions, negative

F IGURE 12 Relative change in flapwise moment for ystart ¼0:25R (left), ystart ¼0:50R (middle), ystart ¼0:75R (right), case: U¼10m/s, λ¼9,
βpitch ¼0 ∘

F IGURE 13 Operating conditions of the IEA 15 MW reference wind turbine
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induction and negative thrust occur in the outboard part of the blade. Exemplary, Figure 15 depicts the axial induction and normal force

distribution at U∞ ¼25m/s of the simulations neglecting the bound vortex influence. Since the sweep correction model for the altered trailed

vorticity system is applied as a scaling of the axial induction factor it scales positive and negative values alike. In the case of aft sweep, it reduces

the absolute value of axial induction for both positive and negative induction. This leads to increased negative thrust in the outboard region which

reduces the integrated flapwise moment of the swept blade at very high wind speeds. The load redistribution caused by the influence of the

bound vortex on itself as described in Section 4.2 is consistent throughout the operating range and expresses itself through a shift of the change

in flapwise moments to lower values.

5 | CONCLUSIONS

In the present study, an efficient correction model is presented that enables BEM codes to approximate the changes of axial induction due to

blade sweep. The model consists of two separate corrections, one of which corrects for the altered trailed vorticity system and the other for the

self-induction of the curved bound vortex. The former correction is based on the assumption that these changes in induction can be summarised

in the altered release point of the tip vortex. This effect is modelled by adding/subtracting the induction of a straight vortex filament representing

the displacement of the tip vortex to/from the induction of the helical tip vortex filament. Since no analytical solution exists for the induction of a

semi-infinite helical vortex filament, an approximation of the Kawada-Hardin equations describing the induction of an infinite helical vortex

filament is divided by two. While the introduced inaccuracy is demonstrated to be small, the model would, nonetheless, benefit from the

derivation of an analytical solution of the velocity induced by a semi-infinite helical vortex filament.

The influence of the curved bound vortex on itself is accounted for by evaluating the Biot-Savart expression for the swept bound vortex with

unit circulation during the initialisation of the BEM simulation. The thus calculated induced velocity per circulation strength is stored as property

of the individual blade elements. This relative velocity is multiplied by the local circulation to obtain an approximation of the velocity induced by

the entire curved bound vortex.

F IGURE 14 Flapwise moment at the blade root (left), its changes due to sweep (middle) and the deviation between lifting line and BEM
(right) along the operating conditions, case: ystart ¼0:5R, xtip ¼�0:2R, γ¼2

F IGURE 15 Spanwise distribution of axial induction (left) and normal force (right), case: U¼25m=s, λ¼3:8, βpitch ¼22:91 ∘ , ystart ¼0:5R,
xtip ¼�0:2R, γ¼2
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The proposed correction function is placed inside the iterative loop of a BEM algorithm ensuring that the effect of sweep is accounted for

during the convergence procedure. Additionally, the streamtube independent approach of BEM is retained and, thus, only minimal additional

computational effort is introduced.

Simulations of the IEA 15 MW reference wind turbine using the extended BEM algorithm are compared to a lifting line model with prescribed

wake. For the reference case of a straight blade, good agreement is found between BEM and lifting line model regarding the distribution of

circulation, induction, and local forces. Due to its ability to model the three-dimensional blade axis and rotor wake, the lifting line model can

predict the changes in induction introduced by the blade sweep. Aft swept geometries result in a reduced axial induction particularly around the

tip while forward swept geometries exhibit increased induction values. When the curved bound vortex is accounted for, the changes in induction

at the tip are counteracted by a change of induction with inverted sign around the sweep starting point. This effect leads to a load redistribution

for swept blade geometries.

Initially, a set of swept blade geometries with varying sweep start position and tip displacement (both forward and aft sweep) are simulated

at rated conditions. The trends of increased/decreased axial induction as calculated by the lifting line are approximated well with the correction

model used in the BEM simulations. Consequently, the circulation distribution and the local blade loads are also in very good agreement between

the two numerical models. In the second part of the study, simulations are conducted along the operational range of the wind turbine. Limitations

to the proposed model are found for wind speeds far above rated. In such conditions, low axial induction occurs and the scaling due to the sweep

correction function has limited effect. Furthermore, the circulation distribution departs from the favourable shape of constant values along large

parts of the blade for high wind speeds. Hence, the assumption of the sweep correction model that most of the vorticity is trailed at the blade tip

and root is being violated.

Blade sweep is mainly motivated by the coupling of flapwise bending and blade twist. Hence, blade sweep can be classified as an aeroelastic

tailoring technique. The simulations presented in this study are purely steady aerodynamic and no blade deformation is taken into account.

In future work, the proposed model will be tested in unsteady aeroelastic simulations where the extended BEM algorithm is coupled to a

structural solver. Such a model will enable extensive load case analyses accounting for the effect of blade sweep while retaining the rapid

calculation speed inherent to BEM algorithms.
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APPENDIX A: NOMENCLATURE

Latin letters

Aann annulus area

a, a0 axial and tangential induction factor

arotor rotor-averaged axial induction factor

CT rotor thrust coefficient

D rotor diameter

d l
! finite length of vortex filament

Fn , Ft normal and tangential force

Ftip , Froot Prandtl tip and root correction factor

h absolute helix pitch

Im ,Km modified Bessel function of first and second kind

K regularisation function

Lwake rotor wake length

l relative helix pitch

Mf flapwise moment

(Continues)
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Latin letters

Mt torsional moment

m order of Bessel functions

Nannuli number of annuli

Nb number of blades

R blade tip radius

r radial coordinate

rc viscous core radius

rroot blade root radius

r
! distance vector (Biot-Savart law)

U free stream velocity

uz axial velocity induced by helical vortex filament

V
! velocity vector

W axial induced velocity

x, y, z global cartesian coordinates

xB , yB , zB local blade cartesian coordinates

xP , yP coordinates of evaluation point

xtip tip displacement of swept blade

xV , yV coordinates of tip vortex starting point

xΛ edgewise blade sweep

ystart sweep starting position

Greek letters

βpitch blade pitch angle

Γ circulation

γ sweep exponent

δ helix lead angle

θ azimuthal angle

θ1, θ2 angles between vortex filament and distance vector to evaluation point

Λ sweep angle

λ, λr rotor and local tip speed ratio

ρ density of air

χ, χn general and blade specific derived helical coordinate

Subscripts

BEM BEM simulation

BS Biot-Savart

ind induced velocity

LL lifting line simulation

ref straight reference blade geometry

VF vortex filament

Γb simulation modelling the bound vortex self-induction

Λ swept blade geometry

∞=2 semi-infinite helical vortex filament
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