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SUMMARY

The transition to sustainable energy is well underway and is introducing changes
on both sides of the electricity balance scale – generation and demand. On the
generation side, emissions-free renewable generation resources such as wind
and solar are replacing the pollution-emitting thermal power plants. On the de-
mand side, energy sectors traditionally dependent on fossil fuels such as heat,
mobility, gas, chemicals, and others are being coupled to electricity using Power
to X (or P2X) technologies. These developments are introducing changes to the
planning and operation of the electricity grid. Large-scale power generation from
renewables and an increased demand for power resulting from the electrifica-
tion of energy sectors in a grid with limited capacity is causing congestion chal-
lenges. Increased penetration of renewables is also driving demand for power
system services that can complement the uncertainty and intermittency asso-
ciated with renewable power generation. Until sufficient capacity is installed,
mitigating these challenges requires the grid, especially its participants, to be
flexible.

To provide for an increasing amount of flexibility in a rapidly evolving power
system, new entities that specifically provide such services are emerging. These
Flexibility Service Providers (FSPs) include entities such as aggregators or virtual
power plants. The flexibility provided by the FSPs often comes from demand-
side resources, especially the sector coupling P2X resources. However, in the cur-
rent energy landscape, there are only FSPs with resource-specific portfolios, such
as FSPs with EV (Electric Vehicles) portfolios, FSP with residential heat pump
portfolios, etc. Being resource-specific helps the FSP to quantify its available flex-
ibility since the operational characteristics of a single type of resource in the port-
folio can be characterized and aggregated. Quantification of flexibility becomes
complicated in portfolios consisting of resources with different operational char-
acteristics. Therefore, the research in this thesis focuses on an FSP with a portfo-
lio of more than one type of P2X resource. The main objective of this research is
to develop metrics that can help FSPs quantify its flexibility from such a portfolio.

Assessment of this objective starts with understanding the importance of
modeling P2X resources. Here, with the help of several case studies involving
models of different types of P2X resources, differences in simplistic and detailed
modeling approaches are highlighted. The case studies also show the benefits of
using detailed models in understanding phenomena that impact flexibility avail-
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able from P2X resources. The observations from these case studies form the ba-
sis for recommendations regarding modeling approaches for assessing flexibil-
ity from P2X resources. Once the need for appropriate modeling is established,
the focus in this research shifts toward model-based simulation methods for the
assessment of sector-coupled energy systems (also known as multi-energy sys-
tems). Here, co-simulation is proposed as a tool for the FSP to simulate systems
consisting of models of different technologies and networks, developed in differ-
ent programming languages and with different levels of detail. Finally, the thesis
brings attention to developing metrics for measuring the flexibility available in
the FSP’s portfolio. An assessment of existing metrics is presented, and the inac-
curacy in existing metrics to quantify flexibility is shown. Consideration is given
to operational time frames – minutes to hours to a day – where extracting flexibil-
ity from P2X resources is of most value to the FSP. Taking inspiration from long-
term power system adequacy studies three metrics are designed to help the FSP
quantify flexibility from a portfolio of flexible energy resources. The applicability
of these metrics to power system challenges listed previously is shown. Recom-
mendations are made on the use and applicability of the proposed method and
metrics for other power system challenges, such as frequency regulation.

The final chapter of this thesis provides conclusions to the research con-
ducted and answers the research questions posed at the onset. In summary, the
following conclusions are drawn. First, the observations from studies and sim-
ulations advocate that model detail is essential when characterizing flexibility
from P2X resources. An analogy is made between current P2X modeling tech-
niques in power systems studies and early-stage modeling of renewables as neg-
ative loads in power system studies. With the increasing adoption of these tech-
nologies and their growing impact on power system operation, the use of models
that appropriately describe their behavior is essential. Second, co-simulation as
a method to assess a portfolio offers significant benefits over monolithic simula-
tion. Co-simulation facilitates model exchange between different stakeholders
and allows the FSP to understand the operation of P2X resources in a setting
where the resources dynamically interact with both the power system and the
coupled energy sector. The third and final conclusion pertains to the usabil-
ity of the proposed metrics for the FSP. The designed metrics can encapsulate
the behavior of different types of P2X resources in a portfolio, each with unique
operational characteristics and constraints that impact their and, consequently,
portfolio flexibility. The ability to quantify flexibility in a diverse portfolio paves
the way for FSPs to extract flexibility from more than one type of flexible energy
resource, quantify it, and offer it in the market. Ultimately, this also benefits
the consumer, which does not need to contract multiple P2X technology-specific
FSPs to participate in the market to provide its flexibility.



SAMENVATTING

De overgang naar duurzame energie is in volle gang en brengt veranderingen
met zich mee aan beide zijden van de elektriciteitsbalans - opwekking en vraag.
Aan de opwekkingszijde worden de vervuilende thermische centrales vervangen
door emissievrije hernieuwbare energiebronnen zoals wind- en zonne-energie.
Aan de vraagzijde worden energiesectoren die traditioneel afhankelijk zijn van
fossiele brandstoffen, zoals warmte, mobiliteit, gas en chemicaliën, gekoppeld
aan elektriciteit met behulp van Power to X-technologieën (of P2X). Deze ont-
wikkelingen brengen veranderingen teweeg in de planning en de werking van
het elektriciteitsnet. Grootschalige stroomopwekking uit hernieuwbare energie-
bronnen en een toegenomen vraag naar stroom als gevolg van de elektrificatie
van energiesectoren in een net met beperkte capaciteit veroorzaken congestie-
problemen. De toegenomen penetratie van hernieuwbare energiebronnen leidt
ook tot een grotere vraag naar energiesysteemdiensten die de onzekerheid en in-
termitterendheid van de hernieuwbare energieproductie kunnen aanvullen. Zo-
lang er niet voldoende capaciteit is geïnstalleerd, moeten het net en vooral de
deelnemers aan het net flexibel zijn om deze problemen op te lossen.

Om te zorgen voor een toenemende mate van flexibiliteit in een snel evo-
luerend elektriciteitssysteem, ontstaan er nieuwe entiteiten die specifiek derge-
lijke diensten verlenen. Deze aanbieders van flexibiliteitsdiensten (FSP’s) om-
vatten entiteiten zoals aggregatoren of virtuele elektriciteitscentrales. De door
de FSP’s geleverde flexibiliteit is vaak afkomstig van middelen aan de vraagzijde,
met name de sectorale koppeling van P2X-middelen. In het huidige energie-
landschap zijn er echter alleen FSP’s met hulpbronspecifieke portefeuilles, zo-
als FSP’s met EV-portefeuilles (elektrische voertuigen), FSP’s met warmtepomp-
portefeuilles voor woningen, enz. Middelengebondenheid helpt de FSP om zijn
beschikbare flexibiliteit te kwantificeren, aangezien de operationele kenmerken
van één type middel in de portefeuille kunnen worden gekarakteriseerd en sa-
mengevoegd. De kwantificering van flexibiliteit wordt ingewikkeld in portefeuil-
les die bestaan uit hulpbronnen met verschillende operationele kenmerken. Daarom
richt het onderzoek in dit proefschrift zich op een FSP met een portefeuille van
meer dan één type P2X-middelen. Het hoofddoel van dit onderzoek is metrie-
ken te ontwikkelen die FSP’s kunnen helpen hun flexibiliteit van een dergelijke
portefeuille te kwantificeren.

Beoordeling van deze doelstelling begint met inzicht in het belang van het
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modelleren van P2X-middelen. Aan de hand van een aantal case studies met
modellen van verschillende soorten P2X-middelen worden de verschillen tussen
simplistische en gedetailleerde modelbenaderingen belicht. De case studies la-
ten ook de voordelen zien van het gebruik van gedetailleerde modellen bij het
begrijpen van verschijnselen die de beschikbare flexibiliteit van P2X-middelen
beïnvloeden. De bevindingen van deze case studies vormen de basis voor aan-
bevelingen betreffende modelbenaderingen voor de beoordeling van de flexibi-
liteit van P2X-middelen. Zodra de noodzaak van passende modellering is vast-
gesteld, verschuift de aandacht in dit onderzoek naar modelgebaseerde simu-
latiemethoden voor de beoordeling van sectoraal gekoppelde energiesystemen
(ook bekend als multi-energiesystemen). Hier wordt co-simulatie voorgesteld
als instrument voor het FSP om systemen te simuleren die bestaan uit model-
len van verschillende technologieën en netwerken, ontwikkeld in verschillende
programmeertalen en met verschillende detailniveaus. Tenslotte wordt in het
proefschrift aandacht besteed aan de ontwikkeling van metrieken voor het me-
ten van de beschikbare flexibiliteit in de portefeuille van het FSP. Een beoordeling
van bestaande metrieken wordt gepresenteerd, en de onnauwkeurigheid in be-
staande metrieken om flexibiliteit te kwantificeren wordt aangetoond. Er wordt
gekeken naar de operationele tijdsbestekken - van minuten tot uren tot een dag
- waarin het onttrekken van flexibiliteit aan P2X-middelen het meest waardevol
is voor het FSP. Geïnspireerd door studies naar de toereikendheid van het elek-
triciteitssysteem op lange termijn, worden drie maatstaven ontworpen om het
FSP te helpen de flexibiliteit van een portefeuille van flexibele energiebronnen te
kwantificeren. De toepasbaarheid van deze maatstaven op de eerder genoemde
uitdagingen voor het energiesysteem wordt aangetoond. Er worden aanbevelin-
gen gedaan voor het gebruik en de toepasbaarheid van de voorgestelde methode
en metrieken voor andere uitdagingen in het energiesysteem, zoals frequentie-
regeling.

Het laatste hoofdstuk van dit proefschrift geeft conclusies over het uitge-
voerde onderzoek en beantwoordt de onderzoeksvragen die aan het begin zijn
gesteld. Samengevat worden de volgende conclusies getrokken. Ten eerste plei-
ten de waarnemingen uit studies en simulaties ervoor dat modeldetails essen-
tieel zijn bij het karakteriseren van flexibiliteit van P2X-middelen. Er wordt een
analogie gemaakt tussen de huidige P2X-modelleringstechnieken in studies van
energiesystemen en de vroege modellering van hernieuwbare energiebronnen
als negatieve belastingen in studies van energiesystemen. Met de toenemende
invoering van deze technologieën en hun groeiende invloed op het functioneren
van het energiesysteem, is het gebruik van modellen die hun gedrag adequaat
beschrijven essentieel. Ten tweede biedt co-simulatie als methode om een port-
folio te beoordelen aanzienlijke voordelen ten opzichte van monolithische simu-
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latie. Co-simulatie vergemakkelijkt de uitwisseling van modellen tussen verschil-
lende belanghebbenden en stelt het FSP in staat de werking van P2X-middelen te
begrijpen in een omgeving waarin de middelen dynamisch interageren met zo-
wel het elektriciteitssysteem als de gekoppelde energiesector. De derde en laatste
conclusie betreft de bruikbaarheid van de voorgestelde meetgegevens voor het
FSP. De ontworpen metrieken kunnen het gedrag van verschillende soorten P2X-
middelen in een portefeuille inkapselen, elk met unieke operationele kenmerken
en beperkingen die hun flexibiliteit en bijgevolg de flexibiliteit van de portefeuille
beïnvloeden. Het vermogen om de flexibiliteit in een gevarieerde portefeuille te
kwantificeren maakt de weg vrij voor FSP’s om flexibiliteit uit meer dan één type
flexibele energiebron te halen, deze te kwantificeren en op de markt aan te bie-
den. Uiteindelijk komt dit ook ten goede aan de consument, die niet meerdere
P2X-technologie-specifieke FSP’s hoeft te contracteren om deel te nemen aan de
markt voor zijn flexibiliteit.
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INTRODUCTION

1.1. FLEXIBILITY NEEDS IN POWER SYSTEMS
The adoption of variable renewable energy sources (VRES) such as wind and so-
lar PV has been phenomenal in recent years, as shown in Fig. 1.1. According to
data published by the Centraal Bureau voor de Statistiek (CBS), [1], the share of
wind energy increased from 3391 MW in 2015 to 6619 MW in 2020 within the
Netherlands (shown in green). The adoption of solar PV technology has been
even more explosive than wind energy, increasing from just 1526 MW in 2015
to 10717 MW in 2020 in the same time frame (shown in pink). This trend is ex-
pected to continue in the near future as the Netherlands looks to achieve its 2030
and 2050 renewable energy and CO2 emissions targets.

A more significant share of VRES in our energy system also comes with its
share of challenges. Consider the following example. In regions of high solar
PV penetration, sunrise and sunset times correspond to events of a significant
amount of solar PV generation turning on and turning off, respectively. A planned
and coordinated transition from solar PV to other generation forms is needed
when the sun goes down. This means that other power-generating resources
must come up online and ramp up their power production quickly. Consider
the net load (demand minus renewable generation) curve in Fig. 1.2 from a typi-
cal day in Germany. There is a need for almost 15500 MW of power (almost 30%
of peak load) to come up online within two hours.

To address scenarios such as one listed above, the future power system must
be flexible. It is for this reason that flexibility in electric power systems has be-
come an area of keen interest in recent years [2–9]. A study was conducted by
the Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek
(TNO) [4] to evaluate the demand and supply of flexibility in the Dutch power

1
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Figure 1.1: Recent growth in adoption of renewable energy in The Netherlands. Green represents
wind energy capacity, while pink represents the capacity of solar energy in the Netherlands. Data
taken from CBS.

system between 2015 and 2050. The authors noted in this report that demand
for flexibility in 2050 will increase almost six-fold compared to 2015, thanks to
the aforementioned increase in the adoption of VRES across various voltage lev-
els in the Dutch power grid.

The topic of flexibility is vast and deep. Therefore, before commencing any
further into the commentary and discussion on this topic, a clear and concise
definition of flexibility must be first established in the context of electric power
and energy systems.

Flexibility is defined as the ability of the power system to respond to
any event, planned or unplanned, such that the balance between

supply and demand of electricity is always maintained and therefore
operational reliability of the system is preserved.

There are two critical points in the definition mentioned above: 1) flexibility
is tied to the idea of ensuring the dynamic balance of demand and supply, and
2) this balance has to be maintained in case of any event, planned or unplanned.
The first point can be seen as composed of two sub-points 1a) the ability to re-
spond quickly to ensure the balance, that is, ramping flexibility, and 1b) the abil-
ity to provide a certain amount of power and energy, that is, power and energy
flexibility [10]. The second point refers to the timing of the request for flexibility.
In essence, both have to be satisfied simultaneously.

http://www.cbs.nl
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Figure 1.2: VRE generation, load, and net-
load on September 20, 2020, in Germany.
Data taken from www.open-power-system-
data.org.
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Figure 1.3: Wind power generation in
Ireland over 24 hours on November 15,
2021. Data taken from smartgriddash-
board.eirgrid.com.

1.2. POWER SYSTEMS CHALLENGES REQUIRING FLEXIBILITY
There are several events in the power system every day which require it to be
flexible. In this section, I list some of these challenges.

Renewable Forecasting Errors Unlike conventional power generation plants,
which depend on a steady supply of fossil fuels, wind and solar PV power output
depends on weather conditions, which are volatile and unpredictable. Power
systems might experience missing generation when the wind does not blow, or
there is a cloud cover. Alternatively, systems might experience a generation sur-
plus due to excessive, unpredictable winds. For an economical operation of a
power system, the amount of power produced by each generator (including VRES)
is fixed a day before the actual time of delivery. Due to volatile and unpredictable
weather, there is almost always a difference between the projected and actual
values of power generated, causing scenarios of generation deficits and surpluses,
as illustrated in Fig. 1.3. The power grid, therefore, needs to be flexible in accom-
modating such scenarios.

Net Load Ramping The phenomena illustrated in the example in Section 1.1
reflects the need for flexibility to fulfill the net load ramp requirements. The
curve in Fig. 1.2 is called the Duck Curve since the net load curve (blue-solid)
looks like a duck silhouette. The California Independent System Operator (CAISO)
first observed this while analyzing the impact of increased solar PV adoption in
their grid. However, the large ramps in net load occur from predictable events
such as sunrises and sunsets and other unpredictable events such as forecasting

https://open-power-system-data.org/
https://open-power-system-data.org/
http://smartgriddashboard.eirgrid.com/
http://smartgriddashboard.eirgrid.com/
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errors in VRES power generation. When a large deficit or surplus of generation
is produced, apart from requiring flexibility in the form of power and energy to
fill the gap, it is also required that this flexibility is obtained quickly, i.e., ramping
flexibility.

Congestion Management A typical challenge faced by distribution and trans-
mission system operators is congestion. Congestion in power networks occurs
when the line capacity constrains the power transfer from one point to the other.
In the transmission grid, transporting cheap renewable energy generated from
a rapidly growing portfolio of utility-scale VRES such as offshore wind farms to
load centers several hundred (and even thousands) kilometers away on exist-
ing infrastructure causes congestion issues. For the system operator, who is re-
quired to maintain system reliability and stability, this congestion becomes a
re-dispatching problem, which can be expensive. In Germany, the frequency
of re-dispatching operations done by the system operator to tackle local VRES-
induced congestion issues is increasing the costs in the electricity market [11].
Within the distribution grid as well, congestion problems can cause issues for the
distribution system operator. In the Netherlands, it is expected that by 2050, al-
most 45% of distribution substation transformers will be congested due to over-
generation from distributed VRES [12]. To tackle these issues, the system requires
flexibility to adapt generation or consumption when congestion occurs.

Frequency regulation The power system is a highly dynamic entity that re-
quires a constant, second-by-second balance between load and generation to
maintain frequency near a constant value. The system operator keeps an ex-
cess capacity known as an operating reserve to ensure this balance. Calculat-
ing capacity in operating reserve is determined using expected load and gener-
ation values, as well as anticipated reserve triggering events. With an increasing
amount of VRES, the expected generation is known with much less confidence
compared to conventional power plants owing to uncertainties in weather pre-
dictions. If the system operator has to rely solely on operating reserve, the cost
of electricity for the final consumer will be impacted [13, 14]. This is because the
cost of this reserve power is much higher than the cost of power available from
energy markets [15]. The grid operator, therefore, needs flexibility in procuring
the operating reserves in the face of uncertain VRES power generation.

1.3. POWER SYSTEM ENTITIES AND FLEXIBILITY
The challenges highlighted in the previous section represent the requirement for
flexibility in power systems in the face of both planned and unplanned events.
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The responsibility to address the listed challenges lies with various entities within
the power system. These entities are the transmission system operator (frequency
regulation, congestion, net load ramping), the distribution system operator (con-
gestion, net load ramping), and the balance responsible party (forecast error cor-
rection). A balance responsible party (BRP) is a power system entity consisting
of one or more power producers and/or consumers. A BRP interacts with the
system operator to exchange energy. It submits a schedule of its expected energy
exchange with the grid, which is fixed a day in advance. The system operator
expects the BRPs to adhere to the agreed schedule, ensuring the balance of the
power system is maintained (hence the name, balance responsible party). If the
BRP deviates from the agreed schedule of energy exchange and causes a devia-
tion, the system operator covers up for it using the operating reserve. However, it
levies a penalty upon the BRP, which can be a significant expense. Therefore, the
BRP has an obligation and a financial incentive to maintain it’s internal balance.

For a BRP with significant VRES, such as a prominent wind power park owner,
or a solar PV farm owner, the uncertainty in VRES’s power production affects its
ability to accurately determine its energy exchange schedule with the system op-
erator in advance. Hence, such a BRP will require flexibility to counter the un-
certainty from VRES and avoid imbalance. Such a BRPs’ need for flexibility has
enabled entities such as aggregators and virtual power plants (VPP) to emerge
as Flexibility Service Providers (FSPs). FSPs rely heavily on controlling and co-
ordinating flexibly operated distributed flexible energy resources. By controlling
a portfolio of flexible energy resources, the FSP can modulate aggregated power
profile of its portfolio as needed, providing required flexibility [2, 16–18] to a Flex-
ibility Requesting Party such as the BRPs. The FSPs are a new power system en-
tity that can provide flexibility as a resource in electricity markets. Alternatively,
FSPs can also make bilateral contracts with the BRP to provide flexibility [19].
This makes FSPs an essential component of current and future power systems
where flexibility is and will increasingly be an indispensable commodity to en-
sure a safe, reliable, and economic operation of the power system.

In this thesis, I assess flexibility from the perspective of an FSP and look at
some of the aforementioned technical challenges which require flexibility.

1.4. MULTI ENERGY SYSTEMS AS FLEXIBLE RESOURCES
One type of the aforementioned flexible resources which an FSP can control is
the power and energy conversion devices that couple the electricity sector to
other energy sectors such as heat (electric boilers and heat pumps), gas (elec-
trolyzers), transportation (electric vehicles), etc. These energy converters are
called Power to X or P2X devices. P2X devices act as energy transformers and cou-
ple energy sectors to electricity. Such coupled systems are known as multi-energy
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systems or MES. Coincidentally, while VRES introduces the need for greater flex-
ibility in power systems, MES offers a potential source of the needed flexibility
[3] in the form of P2X devices. The P2X devices have characteristics that can be
exploited to provide flexibility to the power system. These include:

• P2X devices can be extremely flexible in operation with high operational
ramp rates, allowing them to quickly shift their operating power set point
as needed by the power system.

• In the case where P2X resources are spatially distributed and have diverse
technical characteristics, the aggregated and coordinated control of these
resources can provide a significant and granular control on aggregated power
demand at any time.

• Integrated communication capabilities allow P2X devices to be seamlessly
incorporated into a smart energy management systems (Smart EMS) frame-
work and control their operation as required. In industrial areas where ro-
bust communication infrastructure is already well established, large-scale
P2X devices can be easily set up to offer flexibility to the power system.

For some FSPs, P2X devices form an integral component of their portfolio
of controllable resources. Controlling and modulating their power demand to
support the power system operation is known as Demand Side Management
or Demand Response [20]. It has been shown in studies around the world that
Demand Response is a key, affordable, and viable solution to the power sys-
tem’s flexibility needs. Demand Response is defined and enacted using programs
called Demand Response Programs, or DRPs. A DRP defines the conditions un-
der which participating resources will be controlled to provide demand response.
This includes setting parameters between which device will be asked to operate
(such as defining the temperature range for heating system in buildings), set-
ting times, and durations during which device will be asked to modulate its con-
sumption pattern. In a report published by US Energy Information Administra-
tion [21], the authors reported that DRP was responsible for saving energy and
reducing the peak demand in a pilot program in the USA. In another pilot study
in the USA [22], authors showed that DRP was a cost-effective option for provid-
ing frequency response. The authors in [23] use DRP in a VPP portfolio to assist
the distribution system operator in maintaining the voltage in its network within
an acceptable range. The problem of congestion management using DRP was
tackled in [24, 25]. In Norway, a pilot study involving residential P2H electrical
water heaters showed that DRP was an effective tool in reducing peak demand
[26]. Therefore, the FSP with a diverse set of flexible resources requires a DRP to
coordinate and control the power consumption to provide flexibility.
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1.5. UNDERSTANDING THE RESEARCH PROBLEMS
To sell flexibility as a product, the FSP (with multiple controllable resources in its
portfolio), must:

1. study the constraints and operational behavior of the controllable resource
in its portfolio,

2. evaluate the impact these constraints have on the flexibility provided by
the portfolio as an entity itself, and finally,

3. use this information to design a DRP that can maximize the flexibility avail-
able from the portfolio.

The first step is to model and evaluate the various types of resources in the
portfolio. Each P2X device’s behavior, and consequently the flexibility extractable
from it, is dependent upon two key factors:

1. the operational constraints of the device itself, such as maximum available
ramping capability from the current operating condition, and

2. the operational constraints of the sector it couples, for example, unavail-
ability of flexibility from a P2H resource due to high heat demand.

The FSP needs to ensure that the models used to compute the flexibility avail-
able are an acceptable representation of the system or device’s behavior. The
used model should be of sufficient resolution (i.e., it should be modeled with suf-
ficient detail) to evaluate operational constraints and dynamics. Therefore, for
my first research problem, I focus on the value of including various constraints
that define the operational behavior of P2X devices, that is, the importance of
detail in the modeling of P2X devices.

To assess flexibility from various P2X resources, it is crucial to evaluate the
operation of these P2X devices in an MES setting. Since the P2X devices used
by the FSPs couple various energy domains to electricity, an approach to eval-
uate the flexibility of P2X devices must consider its operation and implication
in the electricity domain and the coupled domain. Traditionally, modeling and
simulation of different domains in energy system analysis have been done in
domain-specialized monolithic modeling and simulation environments. This
has allowed using state-of-the-art modeling languages and solvers to obtain ac-
curate system responses. However, as systems get increasingly integrated and
their behavior and operation more dynamically interluded, it becomes essential
to evaluate this system on an integrated, holistic level rather than an individual
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subsystem. Therefore, in the second part of the research, I focus on the useful-
ness of an integrated simulation-based approach to an FSP.

The final research problem I tackle in this thesis is the design of metrics that
can help the FSP assess its portfolio’s flexibility by considering the relevant P2X
resource characteristics and their operation in an integrated MES setting. Given
the research problems, the objective of this thesis is therefore stated as follows:

The objective of this thesis aims to develop adequacy metrics that quan-
tify the operational flexibility available to the electric power systems
from various flexible energy resources in an integrated energy system
setting.

1.6. RESEARCH QUESTIONS
The following research questions are posed in line with the problems and objec-
tive stated in Section 1.5.

1. The amount of flexibility must be expressed with respect to the nature of
flexibility requests. What are the flexibility requests of interest for an FSP?

2. The level of detail in a model directly influences outputs obtained from
that model. What impact does model detail have on the accurate assess-
ment of operational behavior and, consequently, accurate assessment of
flexibility available from P2X devices?

3. Evaluation of flexibility from P2X devices must be done by considering its
operation in an integrated setting. How can this be achieved?

4. The metric must convey information on the ability of a portfolio with flex-
ible resources to fulfill flexibility requests. How can such metric(s) be for-
mulated?

5. Activation of flexibility from a device at any time can lead to changes in
the subsequent ability of devices to provide flexibility. How can the time-
dependent behavior of P2X resources be accounted for in the formulation
of the metric(s) describing flexibility?

6. Flexibility requests and availability of P2X devices for providing flexibility
are uncertain quantities to determine. How can the metric(s) capture this
uncertainty?

7. How will such metric(s) be helpful for an FSP?
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1.7. PROPOSED APPROACH
Technical modeling and simulation-based assessment form a key first step in any
power and energy system analysis [27]. In the ever-changing energy landscape,
the modeling and simulation approach is pervasive in determining the efficacy
of a technology: studying its impact on the power grid, assessing its long-term
impacts, and the usefulness of the resource itself in the short and long term on
the grid, and the energy landscape. However, different users can employ differ-
ent models with different level of model details for the same study, since there is
no rule guiding the selection of models for a particular study. Therefore, insights
generated from using different models for the same study can vary. To prop-
erly understand and quantify this, I will develop models of different P2X devices
in different resolutions using Modelica modeling language. This is done for the
reason that Modelica allows acausal, equation-based modeling of the physical
systems. In addition, it is open source and a widely used modeling language for
modeling physical systems in various industries such as energy and automobile.
The development of these models and accompanying studies will provide im-
portant insights on why model detail is needed, addressing the first two research
questions.

For the research objective, which is centered around developing metrics for
flexibility assessment, I take inspiration from the power systems planning and
operations domain. The system operator performs studies such as transmission
expansion planning, and generation adequacy [28, 29] to determine the expan-
sion plan of the grid and adequacy of generation capacity to service an expected
load demand in the future. These studies employ specific metrics designed to
"quantify performance of the power system" operation under different condi-
tions and guide the system operator’s decision-making process. Examples of
these metrics are Loss of Load Expectation (LOLE) and Expected Unserved En-
ergy (EUE). LOLE describes the expected number of hours when a given genera-
tion capacity will not serve the load. This information helps the TSO determine
if the generation amount is adequate for the forecasted demand.

Similarly, EUE uses the forecasted data for a given time horizon (typically,
a year) and calculates the expected amount of energy that would not be served
with the given generation portfolio. The TSO uses these metrics extensively in
generation planning and network expansion planning. The usage of these met-
rics is shown in Fig. 1.4.

A similar approach with appropriate metrics can also benefit the FSP. These
metrics would serve as a measure for the FSP to quantify available flexibility, en-
abling it to maximize available flexibility from the portfolio. This requires investi-
gation of the abilities and limits of the existing metrics, identification of require-
ments for a useful flexibility metric, and derivation of such a metric.
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Figure 1.4: Traditional generation expansion planning process adopted by the system operator.
Metrics quantifying power system performance play an important role in guiding the decision-
making process of the system operator to plan the grid expansion. Taken from [7]



1.8. RESEARCH CONTRIBUTIONS

1

11

1.8. RESEARCH CONTRIBUTIONS
The main contribution of this thesis is to provide a thorough discussion on flexi-
bility in the context of integrated energy systems and to enrich the current knowl-
edge on flexibility available to power systems from the integration of energy sec-
tors. More specifically, for the first time ever, this thesis introduces metrics that
help to assess the flexibility of a portfolio of flexible energy resources. The dis-
tinguishing feature of the proposed metrics is that they explicitly consider the
operational limitations of the coupling P2X device as well as the constraints in
the coupled energy sector. This consideration is absent from current metrics.

During this thesis, along with several M.Sc. student contributions, models of
various P2X devices (of various modeling resolutions) were developed and ana-
lyzed in a synthetic test case setting. The developed models, grid networks, and
other research output is made publicly available for reuse and extension with
an open source license. During this research project, I also developed software
packages to assist in developing, simulating, and optimizing integrated energy
systems. These include:

• ENERGYSIM: A modular co-simulation tool to simplify the setup and anal-
ysis of multi-energy system cosimulation

• DELMOD: A Modelica library designed to assist in the modeling of Smart
Grids.

1.9. SOFTWARE TOOLS
This thesis used only open-source modeling languages and tools to describe var-
ious physical systems. Specifically, I have employed OpenModelica to describe
physical processes and understand the dynamics of physical systems. Open-
Modelica is an open-source modeling tool based on the Modelica language. The
Modelica language provides an acausal way to describe equations governing the
behavior of a process. It is used extensively in various fields of study, includ-
ing thermal systems, fluid dynamics, automotive design, control systems, and
electrical power systems. For assessing electric power systems, I use Python pro-
gramming language. Specifically, I employ the use of the pandapower package.
Unless specified otherwise, the models, algorithms, and simulation frameworks
used or developed in this thesis use open-source software.

1.10. OUTLINE OF THESIS
Chapter 2 is dedicated to modeling P2X devices to investigate the role model res-
olution plays in flexibility assessment studies. In this chapter, I develop detailed
and simplified models of various P2X technologies, which are then embedded in



1

12 1. INTRODUCTION

different power system flexibility assessment studies to evaluate the additional
value that detailed models offer over simplified models. I also evaluate the im-
pact these insights have on not only the device but also on the system itself.

In Chapter 3, I introduce a co-simulation toolchain for simulation-based as-
sessment of integrated energy systems. After highlighting the usefulness of using
detailed models of P2X devices, this toolchain combines these models, which
could be developed in mature, domain-specific software and solved using state-
of-art solvers. I motivate the reasons for the development of ENERGYSIM and its
feature set, which differentiates it from current co-simulation tools. An example
is provided where I showcase the usefulness of ENERGYSIM to conduct a multi-
stakeholder, flexibility assessment study using a detailed model of power-to-gas
hydrogen electrolyzer.

Once the role of modeling and simulation is established, and their relevance
is placed in the context of flexibility assessment, I shift focus to quantification of
flexibility. In Chapter 4, I take the perspective of an FSP controlling a portfolio
of flexible energy resources. I evaluate currently used metrics for flexibility as-
sessment in literature, arguing against their accuracy, especially for quantifying
short-term operational flexibility. The limitation of the most prominent method,
which uses Minkowski Summation for assessing flexibility, is analytically shown
to be inaccurate. Here, I propose a simulation-based approach for more accurate
quantification of short-term operational flexibility. Taking inspiration from the
metrics used in determining the power system’s resource adequacy, I specify the
requirements for appropriate metric(s) for assessing flexibility and the method
to derive and interpret them.

Chapter 5 demonstrates the applicability of the simulation-based approach
and the proposed flexibility metrics using two case studies. Examples in the two
case studies are designed so that the usefulness of the proposed metrics to an
FSP is clearly and easily visible. The examples consider the most common power
system issues which require flexibility, namely, renewable forecasting errors and
congestion in the distribution grid. Further, results from the proposed method
are compared with the Minkowski Summation method to illustrate the differ-
ences in quantified flexibility. For each of the two examples, I provide qualitative
and quantitative discussion on the value of the proposed method and metrics for
the FSP.

Finally, in Chapter 6, I present a discussion on the research, results obtained
in this thesis, and conclusions. I highlight the gaps that remain to be researched
and provide ideas for future research on the topic of flexibility in integrated en-
ergy systems.
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2
MODELING FLEXIBLE ENERGY

RESOURCES

2.1. INTRODUCTION
As stated previously, P2X technology is a viable source to supply the increasing
demand for power system flexibility [3, 4]. By integrating P2X into the electri-
cal power systems, P2X devices can absorb over- and under-generation VRES by
modulating their power consumption. Using storage systems as buffers, such a
flexible operation of P2X can provide ample opportunities for effective demand
side management [5, 6]. A detailed technical assessment is usually needed to
properly assess the value of these technologies as sources of flexibility for elec-
tric power systems. Modeling and simulation form the first step in such a tech-
nical assessment. The availability of representative models of components and
systems is vital in this process, and so, the importance of modeling cannot be
understated.

Models for assessing flexibility from P2X devices can generally be divided into
three broad categories. In the first category, the most common one, studies look
at the problem of P2X device integration into the grid from the perspective of the
electrical grid operator. Typically, in electrical power system modeling and sim-
ulations, loads are modeled with Eq. (2.1). This equation describes the depen-
dence of electrical power demand of a load in Watts as a function of the voltage
and change in frequency at the connected bus bar [7]. Load models described
by Eq. (2.1) are one-dimensional, i.e., modeled from the electrical grid operator
perspective.

Parts of this chapter have been published in IEEE PowerTech 2019 [1], ISIE 2020 [2], and ISGT NA
2022.
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P2X resources are therefore modeled as a simplified power system static load
model described by Eq. (2.1). In [8], the electrolyzer is used as a fast ramping
resource to provide frequency regulation. Here, the authors focus on assessing
the electrolyzer’s ability to help the grid frequency. Hence, the electrical grid is
modeled in detail, while the electrolyzer system is a static load model with a high
ramp rate characteristic. Similarly, in [9], the authors focus solely on the applica-
bility of an intelligently controlled hydrogen electrolyzer and fuel cell to provide
voltage stability and transient stability for the DC power grid. Therefore, volt-
age control and grid transient control models are prioritized, whereas the elec-
trolyzer model is simplified.

The second category includes studies that focus strongly on device physics,
ignoring the grid entirely. For example, in [10], the author assesses the utilization
of the PEM electrolyzer and fuel cell and quantify the PEM cell’s energy efficiency
sensitivity to operating temperature, current density, electrolyte thickness, and
electrode catalytic activity. The detailed electrolyzer cell model can also provide
insights into how the device will behave when provided with renewable solar and
wind power for hydrogen generation. The model of the grid or the renewable
technologies are not presented.

The third category includes studies where the focus is put on energy carrier
coupling via P2X devices. Here, the discussions on the multi-energy system tend
to ignore the P2X device completely, treating them as ideal energy converters.
This is reflected in concepts such as the energy hub proposed in [11] to assess
multiple energy carriers. Here, the P2X devices linking the energy carriers are
represented as a transformation matrix consisting of energy efficiency factors.
The insufficient detail in modeling P2X resources is an issue with the energy hub
approach to assessing multi-energy systems.

It has been shown in [12] that simplifications in the modeling of components
and systems can limit the accuracy of the results obtained from such analysis.
In each category described above, there is either a lack or an excess of detail in
the modeling effort. This can lead to a system representation where dynamic
system interactions between system components are absent, and linearization
of important non-linear characteristics of physical systems is incorrectly done.

OUTLINE OF CHAPTER

In the following sections, I provide examples and case studies to motivate, illus-
trate, and quantify the need and use of detailed models. The first section quanti-
fies the difference between simplified and detailed models. Using a P2H electric
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heat pump and a P2G electrolyzer system, I compare the two levels of model
detail — low and high — to establish the motivation for using detailed models.
In the second section, I delve deeper into using such detailed models to assess
these devices. Using examples of an integrated electric boiler and storage tank
system, and an electrolyzer system, I investigate the factors influencing the flex-
ibility available to these P2X devices. I also derive conclusions for the level of
detail to be included for modeling P2X devices in energy system analyses.

2.2. THE NEED FOR DETAILED MODELS
An issue with existing studies assessing the viability of P2X devices in current and
future energy systems is that available models and methods in the literature [5,
13, 14] make significant simplifications on physical characteristics of these P2X
devices. This is particularly true considering the impacts of operational tempera-
ture and pressure conditions on device performance in P2H electric heat pumps
and P2G electrolyzer systems. Authors in [15–17] employ simplified and generic
representations such as equations with constant relation between the power in-
put and energy output of P2X, often using an averaged value of efficiency or coef-
ficient of performance available from manufacturer’s data as models to represent
these technologies. Using the characteristics published in the manufacturer’s
data sheet for these devices can be helpful in obtaining a high-level indication of
the applicability of these devices. Manufacturers calculate these metrics by con-
sidering operation under ideal conditions and averaging results over test periods,
such as seasonally or yearly (commonly seen with the heat pump’s coefficient of
performance (COP)). From the manufacturer’s point of view, it is more impor-
tant to show that the device’s overall characteristics and performance comply
with the regulation in place for the device. Therefore, these systems are charac-
terized in their datasheet by overarching statistics such as average efficiency and
average COP. In reality, however, the performance of a P2X device is complex. It
depends on operational conditions such as ambient temperature and pressure
values within the device, among many other variables. Using the aforemen-
tioned simplified representations and averaged values for modeling purposes
in a simulation-based technical analysis, especially from a user perspective (as
opposed to a manufacturer perspective), will impact the results of such studies.
This could result in incorrect estimates of operational costs and miscalculation
of required capacity [18]. When P2X devices are even more pervasive in the en-
ergy landscape, the impact of these erroneous assessments could be higher for
the user.

Therefore, in this section, I investigate the P2X technologies — P2G elec-
trolyzer and P2H electric heat pump to evaluate the differences in simplified and
detailed models. Mainly, I investigate the impact of simplifying temperature dy-
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namics on the characteristics of both the P2H and P2G devices. The simplified
models are referred to as Model A while the detailed models are referred to as
Model B in the following sections.

2.2.1. THE HYDROGEN ELECTROLYZER SYSTEM

P2G electrolyzers use electrical current to split water molecules to produce hy-
drogen and oxygen. In this example, I model an electrolyzer cell that forms the
core component of a large electrolyzer system. The considered system has a ca-
pacity of 50 MW and is a proton-exchange membrane (PEM) electrolyzer. It is
assumed that electrolyzer cells are assembled into stacks and connected in se-
ries and parallel configurations. It is also assumed that the scaled electrolyzer
system consisting of stacks of electrolyzer cells behaves precisely similarly to a
single electrolyzer stack. Four physical domains are modeled: electrochemical,
pressure, mass flow, and thermal. Each sub-model has input and output vari-
ables connected as illustrated in Fig. 2.1.

ELECTROCHEMICAL MODEL

The electrolyzer cell voltage is given by Eq. (2.2). It is composed of open circuit
voltage and associated overpotentials. The open-circuit voltage is necessary to
start the water electrolysis reaction under ideal conditions, while the overpoten-
tials are needed to model the energy losses within the PEM cell stack.

Vcell(θ) =Vocv(θ, p)+Vact(θ)+Vohm(θ)+Vconc(θ) (2.2)

Here, Vocv is the open-circuit voltage and is dependent on the temperature
(θ) and pressure (p) in the cell. Vact is the activation overpotential, depending
only on the temperature. It is the dominant overpotential at low current densities
and is modeled using Eq. (2.3).

Vact =
R ·θop

2 ·αan ·F
·asi nh

(
λdens

2 ·λ0,an

)
(2.3)

Here, λdens is the electric current density of stack electrodes expressed in
A/m2, λ0,an is the exchange current density (for the considered platinum elec-
trodes, λ0,an = 1.0205E − 3), αan is the charge transfer coefficient of the anode
and is calculated experimentally [19], θop is the stack operating temperature, R
is the ideal gas constant, and F is Faraday’s constant.

Vohm in Eq. (2.2) is ohmic overpotential which is necessary to model the en-
ergy loss due to resistance of the cell membrane. It dominates at nominal current
densities and is calculated using Eq. (2.4).

Vohm = Rmem ·λd (2.4)
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Electrochemical
Subsystem

Pressure
Subsystem

Massflow
Subsystem

Thermal
Subsystem

Gas Demand

θ amb

θ op

Produced
H2 and O2
Mass flow rates

Partial Pressures of H2, O2

Λcell

Pcell

Figure 2.1: Block diagram of the electrolyzer model developed in OpenModelica with thermal de-
pendencies between various subsystem models. The electrochemical subsystem model takes as
input the gas demand, partial pressure of gases produced in the cell (calculated in pressure sub-
system model), and the operating temperature of the cell (calculated in thermal subsystem model)
and outputs quantities Eqs. (2.2) to (2.7). The thermal subsystem model takes as input the ambi-
ent temperature (θamb ) and cell power (Pcel l ) and outputs the operational temperature of the
cell. The pressure subsystem model takes as input operating temperature of the cell and outputs
the partial pressure of the produced gases. The massflow subsystem model takes as input the
cell current (Λcel l ) (calculated in the electrochemical subsystem model) and outputs the gas flow
rates for hydrogen and oxygen produced in the cell. Each subsystem model depends directly or in-
directly on the operational temperature, which further depends on the ambient temperature. To
compare simple and detailed models, for Model A, θamb is set constant, while for Model B, θamb
is variable.
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Here, Rmem is membrane resistance. The temperature dependence of mem-
brane conductivity can be modeled using the Arrhenius expression as shown in
[20]. Finally, Vconc is concentration (saturation) overpotential which occurs when
the electrolysis reaction is fast, and the mass transport is relatively slow. Its ef-
fect is dominant at very high current densities. Concentration overpotential is
ignored in this study, assuming nominal cell current never reaches high current
densities that concentration overpotential is dominant.

Over time, especially with dynamic use, the wear and tear of the electrolytic
cell membrane is inevitable. This results in an increase in the ohmic overpoten-
tial in PEM cells over time as electrolysis goes on. According to [21], the ohmic
overpotential increases approximately at the rate of 2-3 µV/hr for the duration of
its lifetime.

The electrolyzer cell current Λcell and active power consumption Pcell is cal-
culated using Eqs. (2.5) and (2.6).

Λcell = Amem ·λdens (2.5)

Here, Amem in Eq. (2.5) is the membrane area. The power consumption of the
cell is given by Eq. (2.6), which is a product of cell current and voltage. The cell
efficiency η is calculated using Eq. (2.7).

Pcell =Λcell ·Vcell (2.6)

η= Vocv

Vcell
(2.7)

PRESSURE MODEL

The input of the pressure sub-model is stack operation temperature θop, and the
output is the partial pressures of water, hydrogen, and oxygen as described in
Eq. (2.8).

ppH2O = 6.1078.10−3 ·exp
(
17.2694 · θop −273.15

θop −34.85

)
(2.8)

Here, ppH2O is the partial pressure of water and is calculated using the em-
pirical expression in [19],

MASSFLOW MODEL

The massflow sub-model describes the mass flow rates in electrolysis cell with
Eqs. (2.9) and (2.10). The input of this sub-model is cell current calculated in the
electrochemical sub-model, η f is the Faraday efficiency and is assumed to be 1,
ncells is the number of electrolyzer cells.
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ṅH2 =
ncells ·Λcell

2 ·F
·η f (2.9)

ṅO2 =
ncells ·Λcell

4 ·F
·η f (2.10)

THERMAL MODEL

The electrochemical, pressure, and massflow sub-models are the same for both
Model A, and Model B. In Model B, the thermal domain is taken into account
using a lumped thermal capacitance model. The temperature of the electrolyzer
system is modeled with Eq. (2.11).

Cth
dθ

d t
= Pth,el,h +Wpum,l −Pth,c−

Pth,l(θ)−∑
j

ṅj ·∆hj
(2.11)

Here, Cth is the lumped thermal capacity of the cell. The first term on the
right side, Pth,el,h, describes the heat lost during the electrolysis reaction, and it
depends on cell voltage and current. The second term, Wpum,l represents the
heat losses by the circulation pump. The third term, Pth,c, represents the heat
removed by the heat exchanger, and it has a linear relation with the consumed
active power. The fourth term, Pth,l, is for the heat lost to ambient, and it de-
pends on operational temperature θop and ambient temperature θamb. The last
term comes from enthalpy lost with the products leaving the system (which can
be seen as sensible heat leaving the system), and it has an empirical equation
that depends on the operating temperature. For more details, reader is referred
to [22]. Eqs. (2.2) to (2.6) and (2.8) to (2.10) describe Model A. Adding thermal
dynamic sub-model described in Eq. (2.11) to Model A creates a non-linear, dy-
namic Model B of the electrolyzer system where each sub-model depends on the
temperature parameter directly or indirectly.

2.2.2. THE ELECTRIC HEAT PUMP SYSTEM

Electric Heat Pumps are devices that use electric energy to transport heat from a
colder to a hotter region. These systems are characterized by a parameter called
the coefficient of performance or COP. The COP of a heat pump reflects its ability
to transfer heat. As opposed to efficiency, the COP is a value that is always greater
than 1. The reader is directed to [23] for more information on this. The coeffi-
cient of performance (COP) of an electric heat pump depends on the choice of
refrigerant and the Rankine cycle efficiency (Carnot efficiency) of the refrigerant
inside the heat pump, as described in Eq. (2.12).
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COP = Pth

P
(2.12)

Here, Pth is the thermal power (heat flow) output, and P is the electrical
power consumed by the heat pump. In this section, the refrigerant used for mod-
eling is R134a, a common refrigerant in heat pumps. Again, two models are de-
veloped — Model A representing a simplified model and Model B representing a
more dynamic and complex model which depends on the ambient temperature.
Model A uses a constant COP and has no dependency on ambient temperature.
It is described with Eq. (2.13).

P = Pth

COP avg (2.13)

The COP strongly depends on the source or inlet temperature. In this exam-
ple, I assume that the inlet temperature of the fluid is equal to ambient temper-
ature. Using the pressure-enthalpy table of R134a, COP values are calculated for
various θamb conditions. This data set of COP and θamb is then used to create a
fifth order polynomial function of COP that depends on ambient temperature, as
shown in Eq. (2.14). Eq. (2.14) is then used to calculate the power consumption
of the heat pump as shown in Eq. (2.15). Eq. (2.14) and Eq. (2.15) represent Model
B of the heat pump.

COP real(θamb) = a1θ
5
amb +a2θ

4
amb+

a3θ
3
amb +a4θ

2
amb +a5θamb +a6

(2.14)

Pel =
Pth

COP real(θamb)
(2.15)

Using curve fitting functionality in Python [24], the coefficients a1, a2, a3, a4,
a5, a6 of Eq. (2.14) are calculated to 3.46E-8, 1.29E-6, 4.35E-5, 2.387E-3, 1.186E-
1, and 5.063 respectively. Eq. (2.14) with aforementioned coefficients therefore
represents COP-θamb curve for any heat pump using R134a refrigerant.

2.2.3. STUDY CASE

Model A and Model B of each technology are given the same demand profiles
to compare the two models. Corresponding to this demand specification, both
models’ active power consumption is noted and compared.
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GENERATING DEMAND PROFILES

The gas demand for the electrolyzer is assumed to come from an industrial pro-
cess, whereas the heat demand for the P2H heat pump comes from district heat-
ing. This assumption is valid since most applications of electrolyzers are found
in an industrial setting, whereas heat pumps, especially large heat pumps, find
applications in district heating.

Without real-world data, artificial demand profiles need to be generated. To
generate these artificial demand profiles for each P2X models, the approach adopted
in reference [25] is used. The benefit of this approach is that it only requires his-
torical ambient temperature data to generate the time-series scheduled energy
demand profiles. Equation (2.16) describes the model in reference [25]. Here,
Pth,dem is the heat demand but can also be replaced by H2dem to obtain gas de-
mand.

Pth,dem(t ) = Pth,base +
Pth,max −Pth,base

θref −θmin
·max(0, θref −θ(t )) (2.16)

Piecewise linear temperature dependency of heat demand (Pth,dem) (hydro-
gen demand H2dem) in equation 2.16 is illustrated in Fig. 2.2. Here, Pth,base (H2base)
is the base demand, which occurs at temperatures above the reference temper-
ature θref. Variable Pth,max (H2max) represents maximum heat (hydrogen) de-
mand, corresponding to the minimum ambient temperature θmin. The demand
in district heating networks is certainly sensitive to ambient temperature changes.
On the other hand, industrial hydrogen demand is expected to be less dependent
on ambient temperature. Therefore, the slope of the linear line in figure Fig. 2.2
is larger for power-to-heat than power-to-gas. This means industrial hydrogen
demand has fewer variations with respect to varying ambient temperature than
district heating demand. Values of the parameter are shown in table 2.1 and are
taken directly from [26].

Industrial P2G District Heating P2H
θref[°C ] 25 25
θmin[°C ] 5 5

Base Demand [m3/s] 3.13E-3 3
Max Demand [m3/s] 3.85E-3 4

Table 2.1: Ambient temperature - demand relation parameters

To conduct the experiment, set points from demand profile and temperature
values to both the models are provided for 7 representative days. For the elec-
trolyzer system, Model A is given a constant temperature input, while Model B
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θ [°C]
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θ min θ ref

Figure 2.2: The relationship between ambient temperature and hydrogen and heat demand (taken
from [25]) was used to model the demand for this experiment.

is given a variable temperature input Fig. 2.3. For the heat pump system, Model
A is given a daily average temperature input, while Model B is given an hourly
temperature time series.

2.2.4. RESULTS AND DISCUSSION

The effect of operational temperature evolution on the efficiency curve of the
electrolyzer and ambient temperature evolution on COP of the heat pump can
be observed in figures 2.4 and 2.6 respectively.

The efficiency plots of the two models are shown in Fig. 2.4. It is observed that
due to the temperature deviation, the maximum efficiency difference between
the two models is 0.6%.

Figure 2.5 shows the power consumption of the electrolyzer Model A and
Model B corresponding to the gas demand provided as input. The maximum
power consumption difference between them is 0.4 MW for a 50 MW electrolyzer
system. This corresponds to 0.8% of the total capacity. This can represent a sig-
nificant deviation for power system applications requiring precise power con-
sumption knowledge, such as for frequency response. This is compounded when
the number of units providing this service increases. On the other side, such de-
viations also impact the design and sizing of the auxiliary units for temperature
regulation within the electrolyzer system. For example, consider the cooling sys-
tem. If the cooling capacity of the designed system is calculated to be less than
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Figure 2.3: The calculated operating temperature of the electrolyzer cell in Model A and Model B.
For Model A, the equation determining relationship between θamb and θop is removed, resulting
in a constant θop throughout the simulation time, while for Model B, an hourly variable θamb is
provided, which consequently generates a variable θop used by other subsystem models.
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Figure 2.4: Efficiency characteristics of the electrolyzer Model A and Model B corresponding to the
θop.
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Figure 2.5: Power consumption characteristics of electrolyzer system based on efficiency charac-
teristics. The differences between the outputs of the two models substantiate the importance of
using detailed models considering thermal dynamics.
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Figure 2.6: Coefficient of Performance (COP) values for heat pump Model A and Model B. Signifi-
cant deviations between the COP characteristics of the two models can be seen.

required, it would lead to more considerable temperature differences between
Model A and Model B. This would result in an even more significant deviation in
the calculated and actual efficiency of the system.

Figure 2.6 compares the COP of Model A and Model B. In Model A, the COP
is calculated from the daily average temperature; therefore, it is constant during
the day. Model B uses the hourly measured temperature to calculate the COP.
The maximum difference in COP values between Model A and Model B is seen
to be 1.4. These results also show that temperature considerations significantly
affect the COP characterization of the examined heat pump.

Figure 2.7 compares the active power consumption of Model A and Model
B of the heat pump corresponding to the heat demand profile. The maximum
power consumption difference between Model A and Model B is 9 MW. This rep-
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Figure 2.7: Comparison of active power consumption of heat pump Model A and Model B. A sig-
nificant difference (almost 9 MW) in power consumption between Model A and Model B can be
seen. These deviations can influence the contribution of this heat pump to providing power sys-
tem services such as intraday load shifting and frequency response. More generally, neglecting the
influence of temperature on heat pump behavior can also impact long-term economic assessment
and resource sizing studies.

resents a maximum error of 18% for a 50 MW electric heat pump system. For
power system services where participation from devices is required for a short
interval of time, such as reducing peak load for an hour or correcting a 15-minute
renewable forecast error, incorrect estimation of power consumption of the de-
vice can represent a lost economic opportunity to provide valuable flexibility.

It is clear from this experiment that detailed models offer significant advan-
tages over simple model representations, especially when assessing their oper-
ation in the sub-hourly time scales. Now that the need for detailed models has
been established, I seek to investigate the use of detailed models and explore
the impact they can have on the flexible operation of the device and its conse-
quences on the power system.

2.3. USING THE DETAILED MODELS
The previous section established the need for using detailed models over simpli-
fied ones. In this section, I delve deeper into the use of detailed models. This
is shown using two examples of P2X devices — a P2H electric boiler and storage
tank (EBST) system and the P2G electrolyzer system developed in Section 2.2.

2.3.1. TEMPERATURE DYNAMICS INSIDE THERMAL STORAGE TANKS

Coupling electricity and heat domains have shown to offer considerable flexibil-
ity opportunities due to the heat sector’s unique characteristics [27]. Specifically,
coupling thermal storage tanks with an electric boiler for temperature regulation
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can provide flexibility to the power system. This is because thermal storage sys-
tems have inherent thermal inertia associated with them. Modulating the elec-
tric boiler’s electrical energy input does not immediately impact the thermal dy-
namics of the storage system it regulates, taking minutes to hours to reflect any
temperature change. This makes such systems ideal for shifting loads in time
without significantly impacting operation in the coupled system.

The underlying physics of such a system is often ignored in technical assess-
ments. Typically, such an analysis, in [28], relies on modeling the temperature
dynamics using a first-order model. The temperature evolution at each time step
t is obtained using Eq. (2.17).

θ(t +1) = θ(t )+ Pth,in(t )−Pth,out

ṁ · c
(2.17)

Here, Pth,in is the thermal power added to the system (thermal power input)
and Pth,out is the thermal power taken out of the system (thermal power demand)
at time step t , ṁ is the mass flow rate of the fluid flowing through the system,
while c is the specific heat capacitance of the flowing fluid. This model, a simpli-
fied representation of the actual system, works exceptionally well when consider-
ing small systems such as residential refrigerators. However, when large systems,
such as industrial thermal storage tanks (for example, oil storage tanks in indus-
trial areas) or building heat, air conditioning, and ventillation (HVAC) system is
to be analyzed, such a representation is unsuitable [29]. Large systems require
more detail in their modeling to capture complex dynamics and adequately as-
sess the system. Modeling these dynamics can be important for an entity such as
an FSP looking to flexibly operate, for example, a group of oil storage tanks in an
industrial area.

In this section, I consider the example of an integrated electric boiler and
storage tank (EBST) system. It represents a large thermal storage system with a
height of 10 meters and a volume of 50.000 liters. It is also assumed that fluid in
the tank is to be maintained at 50°C . The integrated electric boiler system has a
rated power of 8 kW, and the system uses a simple on-off controller to maintain
the temperature of the fluid between 49.75°C and 50.25°C . The storage tank also
loses energy to the ambient environment.

As mentioned, an EBST is ideal for shifting loads in time. For the system
described above, operating with an on-off control strategy, I consider the case
where the EBST is required to increase its power consumption when requested.
This is a practical request; for example, an increase in power consumption may
be requested to correct an unexpected surplus of renewable generation. The
ability of the EBST to accept this request to increase its power consumption de-
pends on the temperature of the fluid. To evaluate this ability, I developed a first-
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Figure 2.8: Integrated storage and boiler system model developed in OpenModelica using the
AixLib. The detailed model allows us to investigate complex dynamics which cannot be captured
in simple models, such as thermal stratification.

order model based on Eq. (2.17) and a more detailed model using OpenModelica
and components from the thermal systems modeling library AixLib [30]. The
OpenModelica model is shown in Fig. 2.8.

Figure 2.9 compares the temperature dynamics of the fluid in the EBST ob-
tained from the two models. As can be seen, the temperature profiles obtained
from the two models are very different. This means that any decision to shift the
power consumption of the EBST based on the temperature of the fluid obtained
from the two models will be different, too, resulting in a different estimate of the
ability of such a system to provide the load shifting service.

It is of interest to investigate this extreme difference in temperature dynam-
ics between the two models. The tank model used in the detailed representation
of the EBST system includes several characteristics of the physical storage that
are not present in the model described by Eq. (2.17). There is thermal stratifi-
cation in a thermal storage tank such as that described in this example. At a
given time, there are three zones: hotter fluid near the top, colder fluid at the
bottom, and an intermediate zone known as the thermocline. This thermocline
can be considered a boundary between the hotter and colder zones. When the
storage is "charged," the "hotter" fluid fills from the top while simultaneously,
the "colder" fluid is withdrawn from the lower side of the tank. This leads to the
thermocline shifting lower. The reverse is true for "discharging". To model this
phenomenon, the tank volume is discretized into smaller segments, or layers as
shown in Fig. 2.10. Within each layer, the temperature of the fluid is modeled
to remain constant, its dynamics evolving as it interacts with other layers. Ide-
ally, as more layers are considered, storage behavior is closer to reality. However,
computational costs are attached to considering an increasing number of layers.
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Figure 2.9: Comparing temperature dynamics of integrated storage and boiler system obtained
from the first order simple model and those from a detailed model. Despite both the models being
initialized with the same starting temperature, the temperature evolution dynamics from the first-
order model are extremely different from the detailed model.

As is shown in Fig. 2.11, increasing the number of layers leads to an exponential
increase in simulation time. In this case, I consider ten layers. The temperature
is typically measured at the top of the tank.

In contrast, the first-order model considers temperature as a single param-
eter of the entire volume of the fluid. Hence, heating a 50.000-liter volume by
0.5°C with an 8kW heating system takes much longer than heating the top layer
of the stratified thermal storage system. Therefore, to investigate the flexibility
available from the integrated storage and boiler system, I use the detailed Open-
Modelica model.

When flexibility needs to be activated, it can be done only when the tem-
perature of the fluid is lower than 50°C . A simple boolean controller is therefore
implemented, which provides a boolean indicator depending on the fluid’s tem-
perature inside the tank when the boiler can be activated to provide flexibility
(such that the fluid temperature inside the tank can be increased). In this exam-
ple, the electrical boiler is activated to absorb additional energy when the boiler
is turned OFF, and the fluid temperature crosses 50°C for the first time (around t
= 2.8h). A sensitivity analysis is conducted by changing the duration of boiler ON
operation from 0 to 60 mins in intervals of 5 mins. Figure 2.12(a) highlights the
temperature profile of the boiler’s top layer under nominal operation, while the
temperature of fluid for three selected times: 20 mins, 40 mins, and 60 mins, can
be seen in Fig. 2.12 (b,c,d) respectively.

An interesting point to note is that once the electric boiler provides flexibility,
the temperature of the fluid takes some time to get back below 50°C mark. There-
fore, in this period, the EBST cannot provide any flexibility. This is known as the
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same experiment increases exponentially.
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Figure 2.12: Temperature dynamics in the integrated storage and boiler system on activation of
flexibility. (a) represents normal evolution temperature in the top layer of the EBST system. (b),
(c) and (d) represent the scenarios when the boiler is instructed to turn ON for 20 minutes, 40
minutes, and 60 minutes respectively. The red dotted line indicates the instant when the boiler is
instructed to turn ON.

rebound effect (also known as kickback effect), and the time for which the boiler
and storage system are unavailable to provide flexibility is known as down time.
In Fig. 2.13, the results from sensitivity analysis are plotted, illustrating the en-
ergy absorbed by the boiler and storage combination system and the downtime
for this configuration.

Generally speaking, using insights from the presented example, downtime
for a P2H system utilizing thermal inertia depends a lot on the time duration of
the flexibility request. Other factors which impact the downtime for such sys-
tems include:

• instance of flexibility activation,

• duration of flexibility activation,

• energy and power content of the flexibility provided, for example, if instead
of activating the boiler completely, it is only turned on partially,
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Figure 2.13: Analyzing the downtime and the energy absorbed as a function of the duration for
which the EBST provides flexibility. Zero downtime depends highly on various factors such as the
instance of flexibility activation, the amount of energy absorbed by the EBST, etc. These factors
have been listed and discussed in the text.

• ambient temperature, for example, ambient thermal losses will be higher
in winter than summer, and finally,

• control strategy, for example, a more sophisticated and advanced control
scheme such as model predictive control, can control the boiler’s opera-
tion to be more flexible compared to a simple rule-based control scheme
used in the presented case study.

A similar collaborative study was also undertaken on thermal inertia in dis-
trict heating networks to provide flexibility to the electrical power grid in [31].
Here, a detailed operational model of a district heating network was developed,
including subsystem models for heat exchangers and network transport delays
(standard components in large heating networks). Using a model predictive con-
trol with the developed detailed heat network model, we assessed the impact of
network delays on the flexibility of the heat network to mitigate wind power fore-
cast imbalance. We found that heat network delays due to thermal inertia played
a significant role in determining the flexibility available to the electrical grid from
the heat network. This insight further supports the argument for a need for de-
tailed modeling.

In summary, in this section, I showed the use of a detailed thermal storage
tank and electric boiler system model to determine factors such as downtime and
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rebound effect. I showed the value of using detailed models to understand phe-
nomena such as thermal stratification, which impacts the assessment of large
thermal systems. Using simplified first-order models to represent a thermal sys-
tem for large storage systems is therefore inaccurate.

2.3.2. EVALUATING ELECTROLYZER HEALTH

Detailed models can also be used to evaluate the health of the P2X system. Us-
ing the detailed electrolyzer model from Section 2.2 (Eqs. (2.2) to (2.6) and (2.8)
to (2.11)), in this section, I examine the impact that provision of power system
services has on the device. V-I curves are used in a laboratory setup to measure
the health of an electrolyzer cell. The aim here is also to use the detailed model
to generate V-I curves before and after experiments on the electrolyzer to test
its health and viability as a flexibility service provider. The individual cells are
assumed to be controlled quickly within 0-100% of their power range. I again as-
sume, for simplification purposes, that the behavior and output of a single cell
are not affected by other cells, and the gaseous output of a single cell and its be-
havior can be multiplied by the number of cells to represent a large-scale system.

For this example, nominal power of the electrolyzer is set at 10 MW, with
the ability to sustain up to 150% of its rated power (15 MW) for short durations.
Though a PEM electrolyzer can easily be switched OFF and ON quickly, to avoid
cold-start, I set the minimum power consumption to 5 MW. This setting is due
to two reasons: firstly, avoiding cold-start avoids the cell degradation caused by
repetitive cycling of the electrolyzer between ON and OFF states, and secondly,
a minimum power set-point maintains a minimum gas production. Such a con-
straint is useful for an industrial electrolyzer system where the main objective is
to fulfill a gas demand. The existing model is extended by adding a power ramp
rate limiter with maximum and minimum ramp rate set at ±500kW /s, a typi-
cal standard for PEM electrolyzers [15]. Three cases are developed to assess the
electrolyzer performance for three power system services and analyze the impact
this has on the electrolyzer.

C2.1.1: FREQUENCY REGULATION

In this case, the performance of the electrolyzer system as a frequency regulation
device is evaluated. The electrolyzer control system regulates its operation. The
electrolyzer can also be operated temporarily at elevated current densities up to
150% of rated current density [32]. In this use case, I provide the electrolyzer sys-
tem with a continuous 40-minute regulation signal (Reg-D) obtained from PJM
[33] and observe the system response. The regulation signal is given in per unit
(pu) values, which ranges between -1.0 and 1.0. This signal is multiplied by the
regulation capacity R MW (= 5 MW) and added to the regulation baseline B MW
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Figure 2.14: Electrolyzer cell performance for the given AGC signal. The electrolyzer can follow
the AGC signal accurately, making it an excellent candidate for providing frequency regulation
services to the power system. This result also shows that a constant power load model adequately
represents electrolyzer systems in frequency support assessment studies.

=(10 MW) to obtain the power reference. The R +B MW is then the input power
for the electrolyzer system.

To measure the performance of the cell, the correlation between electrolyzer
cell current and efficiency versus the AGC signal is observed. The response is
shown in Fig. 2.14. The electrolyzer system can continuously follow the AGC sig-
nal accurately over the 40-minute duration. This implies that the cell dynamic re-
sponse is adequate for using it as a frequency regulation device since it responds
quickly to changes in the AGC signal. To analyze the electrolyzer degradation,
the cell V-I plot is compared between the detailed model before and after the
experiment (shown in Fig. 2.16). Since both curves are almost identical, it can
be concluded that no significant cell degradation has occurred by providing this
service over 40 minutes. Thus, a static power load model in frequency regulation
studies is sufficient to represent an electrolyzer system.

C2.1.2: FLEXIBILITY PROVISION

In this case, the electrolyzer system’s ability to correct wind forecast errors through-
out the day to help the wind power producer maintain its day ahead positions
and avoid imbalance costs is evaluated. The performance of the electrolyzer to
respond within seconds to regulate frequency was analyzed in the last section;
hence, in this case, I assume that the wind power forecast is constant over the 15-
minute Program Time Unit (PTU) to focus on the ability of the electrolyzer to cor-
rect errors. To absorb the wind forecast errors, I need to control the electrolyzer
power set-point such that operational constraints for the electrolyzer system and
the grid are not violated.

As is shown in Fig. 2.15, the actual power exchange at the bus where the
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Figure 2.15: The top figure shows forecasted power and actual bus power exchange at the elec-
trolyzer bus. The middle figure shows the actual wind and forecasted wind generated by the WTO.
The bottom figure shows load set-points for the electrolyzer as it receives continuous updates
about forecasting errors from the WTO. This operation allows the electrolyzer to mitigate imbal-
ances of VRES when such a system is operated in tandem.

electrolyzer is connected is maintained equal to the forecasted power exchange
(derived from the wind power forecasts). This behavior is achieved despite the
wind power fluctuating from its forecasted value by controlling the flexible elec-
trolyzer. The electrolyzer power set-points are shown at the bottom of Fig. 2.15,
highlighting dynamic operation throughout the day. At the end of the day, the to-
tal energy in the fluctuations absorbed by the electrolyzer with its flexible opera-
tion is calculated. This value can then be used to remunerate the electrolyzer op-
erator. In this case, the total energy in fluctuations absorbed by the electrolyzer
during the day is calculated to 12.91 MWh.

To observe the device health, I construct the V-I curve as is shown in Fig. 2.16.
Comparing the V-I curve before and after a full day simulation shows that the dif-
ference between the two curves is still negligible, similar to C2.1.1. This implies
that the dynamic operation of the cell does not degrade the cell, even when op-
erated dynamically throughout the day.
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C2.1.3: LONG TERM IMPACT ANALYSIS

Most energy system planning tools that optimize system operation over longer
time use models of energy conversion systems that do not exhibit any dynamic
behavior. Examples of these tools includes PLEXOS, TIMES, etc. Even the tools
that take care of short-term variations into long-term planning models, like OES-
MOSYS, do not consider the impact of the variable operation on the resource
health itself (such as the impact of efficiency, degradation, etc.). Thus, the val-
uation of demand response flexibility from the said resource can be under- or
over-estimated. In this case, changes to the electrolyzer’s ability to provide flex-
ibility are investigated using V-I curves generated from the detailed electrolyzer
model.

C2.1.1 and C2.1.2 showed little correlation between cell degradation and dy-
namic operation. Nonetheless, degradation also comes from continuous opera-
tion of the electrolyzer and regular wear-and-tear, which may affect the device’s
ability to provide flexibility. To analyze the wear and tear, electrolyzer is operated
in a constant current mode for a duration of 1 year. Figure 2.16 shows a shift of
the V-I curve from the original curve for C2.1.3, signaling cell degradation. With
the input current of 1.2 A, the new cell voltage is 1.6 V, increased from 1.58 V. The
efficiency of the cell, as calculated by Eq. (2.7), now becomes 73.6 % compared
to 74.4% of the new cell. Therefore, the current and the power required will in-
crease to produce the same amount of hydrogen. Since the flexibility band re-
mains fixed around the original nominal power of 10 MW, the flexibility available
will also change. The efficiency drop in cell performance is more pronounced
over a longer duration (for example, over a 5-year duration, the cell efficiency
drops by almost 3.5%) than for a shorter duration. Since the amount of flexibility
provided by the electrolyzer is determined by the range within which the power
set-point can be varied, this drop in efficiency will impact the amount of flex-
ibility that the electrolyzer can offer for frequency regulation service as well as
forecast error correction service in the long term as well.

In summary, in this section, I showed the use of the detailed model to assess
the health of the electrolyzer when it is used for providing power system services.
The ability to extract V-I plots from such a model and the inability of a simplified
constant power load model to do so again highlights the use of detailed model-
ing.

2.4. DISCUSSION
In the current energy landscape, the first step in adopting a technology is con-
ducting a simulation-based assessment. The choice of models used in these
studies, whether simple or detailed, will influence the study’s outcome. In many
studies on assessments and optimization of energy system configuration and
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Figure 2.16: Effect of providing power system flexibility services on the electrolyzer itself, visual-
ized and assessed using V-I curve for the three cases. The V-I curve for C2.1.3, which models the
electrolyzer operation’s long-term behavior, is shifted upwards, indicating that cell degradation
has occurred. This degradation implies the reduced efficiency of the electrolyzer system, which
must be accounted for when assessing flexibility from such systems over longer periods.

P2X operation, the components’ models are frequently represented in simpli-
fied linear forms. A false representation of the technical models used in these
assessments will impact the understanding of the applicability and feasibility of
a particular technology in the future energy system.

Although model detail is necessary, it is essential to simultaneously consider
the complexity that accompanies it in both the designing of the model to an ap-
propriate level of detail and then complexity in the computation of the model
itself. The question "how detailed is too detailed?" must be asked constantly.
There are apparent trade-offs that need to be made between insight obtained
from the model and the efforts in modeling and simulation of the said model.

In Section 2.2, the value of using detailed models over simplified models was
immediately visible. The dependence of device characteristics such as efficiency
and coefficient of performance on ambient temperatures causes deviations be-
tween results obtained from simple and detailed models. Since these character-
istics are used extensively to represent P2X devices in technical assessments, due
consideration must be given to deviations in the values of these characteristics.
Knowledge of accurate device response provides economic benefits for power
system services whose remuneration depends on the precise amount of energy
exchange (such as frequency regulation, intraday imbalance correction, etc.).

For the sake of discussion, it is essential to point out that neither of the mod-
els developed is validated with real-world data leading to questions on the ac-
curacy of model outputs. However, since Model B is built on top of Model A,
the differences shown in model outputs are relative. If real-world data is avail-
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able and model validation can be performed, then the differences in the model
outputs would follow similar trends as obtained in this study. A more compre-
hensive parameter uncertainty assessment can be done further to understand
the importance of tuned parameters on model output differences.

Detailed models of P2X systems help us understand the dependency between
device physics and the power system. In Section 2.3.1, the load shifting capabil-
ity of a large thermal storage tank coupled with an electric boiler was evaluated.
Critical phenomena such as thermal stratification are not present in the simpli-
fied first-order model. Modeling these phenomena is critical to fully understand-
ing the factors that impact flexibility available from resources utilizing their ther-
mal inertia, such as the considered thermal storage tank. Modeling these phe-
nomena requires discretization of the fluid volume, and the more the model is
discretized, the closer its behavior is to reality. However, this leads us back to the
question of "how detailed is too detailed?" since modeling detail has computa-
tional costs, as shown. To determine appropriate detail within reasonable com-
putational costs, an iterative approach should be taken. When the incremental
improvement in model outputs is lower than the effort required to compute (as
well as design) the model, the model can be considered sufficiently detailed. De-
ciding on acceptable improvements in model detail relies on the modeler.

In Section 2.3.2, I looked at another application of a detailed model of P2X
systems by comparing the V-I curves of the constituent electrolyzer cell. These
curves help evaluate the electrolyzer’s health and provide quantifiable informa-
tion on the ability of the electrolyzer cell to operate flexibly. While the V-I curves
obtained from detailed models provide valuable insights, these models are too
detailed for all technical assessment studies conducted in time frames of sec-
onds to days. However, insights from these models have a significant role in any
flexibility assessment studies conducted within time frames of years, typically
energy outlook scenarios and economic viability studies. These insights should
be integrated into such assessments.

As more P2X devices are introduced into our energy system, and their in-
telligent operation allows us to use them in power system supporting services,
attention must be paid to the modeling of these devices. Accurate insights from
the detailed models will help better estimate the support these devices can offer
to power system operations in the future. As was the practice during the early
days of PV adoption, where distributed VRES were modeled as "negative loads,"
using simple model representations (such as constant power loads) as the go-to
option is not viable anymore. Appropriate attention must be paid to the time
frame of analysis, the device being used, and the size of the system considered.
This consideration is valid, especially for large systems relying on thermal inertia,
where it becomes essential to use detailed models to properly assess the impact
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of phenomena such as rebound effect, thermal stratification, etc.

2.5. CONCLUSION
In this chapter, I have shown the important role that modeling P2X devices play
in energy system analysis. In Section 2.2, the need for detailed modeling was es-
tablished by showing conclusively that differences exist between simplistic and
detailed model representations of P2X devices. Using examples of electric heat
pumps and electrolyzer systems, I investigated these devices’ coefficient of per-
formance and efficiency metrics. The dependence of these metrics on ambient
and operational temperature was highlighted. I showed that using detailed mod-
els of these devices leads to better insights into the operation of these systems.
The electrolyzer considered in this example showed a difference of almost 0.6%
in efficiency curves between simple and detailed models. The maximum differ-
ence in COP values for the considered heat pump was 1.4. These metrics in-
fluence not only the products produced by these devices but are also important
to appropriately size the system. Inaccuracies stemming from the use of inad-
equate models can impact not only the contribution of these devices to power
system services but also the amount of product they produce, which directly im-
pacts the sizing and economic viability studies.

In Section 2.3, I investigated further the use of detailed models. In the first
subsection, I developed a detailed model of an electric boiler and a thermal stor-
age tank. Using a highly detailed model, a common phenomenon in flexibility
analysis known as the demand response rebound effect was explored. It was
concluded that using these detailed models, insights into underlying complex
dynamics of large systems relying on thermal inertia can be obtained and subse-
quently be used to model them into flexibility assessment strategies.

Another example was explored to assess the value of detailed models in Sec-
tion 2.3. In this subsection, technical analysis to evaluate the ability of a large-
scale PEM electrolyzer to provide power system services was undertaken. I re-
used the electrolyzer model from Section 2.2. Three use cases were designed to
assess the PEM electrolyzer under various operating conditions, and the impact
on the electrolyzer was measured by studying the V-I curves of the electrolysis
cell. It was seen that the PEM electrolyzer is an excellent candidate to provide
various kinds of flexibility services to the power grid. Its fast dynamic response
helps in providing frequency regulation services, while its efficient and safe part-
load operation can be used to correct renewable forecast errors throughout the
day. It is shown that dynamic operation has a negligible impact on degradation
based on the model detail considered. The wear-and-tear of the cell was notice-
able in the third case, where the cell was operated for an entire year. The drop
in cell efficiency, as well as cell current, was noted. It was concluded that this
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efficiency drop needs to be incorporated into the electrolyzer’s long-term oper-
ational strategy, economic assessment, and business model. This insight also
concludes that detailed models are integral in providing insights into the opera-
tion of P2X devices as power system flexibility resources.

In conclusion, it was determined that modeling any P2X device and its sub-
system must always be done by assessing the use case. In the current changing
energy landscape, where the development of new and improved technology is
rapid, it is critical to include insights from detailed models in any technical and
non-technical assessment studies.
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3
COSIMULATION OF MULTI ENERGY

SYSTEMS

3.1. MOTIVATION AND SIGNIFICANCE
The coupling of energy systems is essential for a sustainable energy system. This
recent trend in coupling various energy sectors has been driven primarily by the
effort to decarbonize the energy system [2, 3]. As an added benefit, the energy
conversion devices enabling this coupling, such as power-to-heat, power-to-gas,
and power-to-mobility, can also serve as sources of flexibility to the highly renew-
able future power systems [4, 5]. As previously mentioned, such coupled systems
are known as multi-energy systems or MES.

To assess MES correctly, a holistic analysis of the system is required. It has
been well noted in [6] that before an economic analysis can be conducted to de-
termine a business case based on an MES, it is essential to evaluate its technical
feasibility. This assessment involves evaluating various control strategies, assess-
ing the operation and reliability of components and associated networks, deter-
mining operational bottlenecks, etc. Therefore, modeling and simulation-based
analysis form the first step toward assessing such integrated energy systems.

Simulation-based assessments are not new in energy system analysis. The
dynamic and steady-state characteristics of different energy domains are unique.
For example, the system dynamics for different energy carriers evolve at differ-
ent time scales. For an electricity network, the changes in active power and fre-
quency are immediately visible throughout the network. This is not the case for a
heat network: while pressure changes in the heat network are reflected through-
out the network in seconds, the temperature dynamics across the network can

Contents of this chapter have been published in Elsevier’s SoftwareX [1].
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take minutes and hours to reach a steady state. Consequently, to accurately con-
sider these characteristics in analyzing a particular energy sector, state-of-the-art
tools and solvers have been used. These tools have been developed using years
of research and development to accurately model the aforementioned unique
characteristics of the energy domain in focus. Examples of such tools include
POWERFACTORY for modeling electrical power system, DYMOLA/OPENMODELICA

for modeling fluid system, MATLAB and PYTHON-based APMONITOR [7] for de-
veloping model-based control and PYTORCH [8] for developing data-driven con-
trols.

When it comes to conducting a combined system study for an MES, there
are two natural pathways. The first pathway is modeling the entire system in a
single modeling environment, such as MATLAB, and then simulating it using a
general-purpose solver. This process is a time-consuming approach: it requires
extensive knowledge on the modeler’s part to design different MES components.
Moreover, the solver used to simulate the MES needs to be a general-purpose
one that can handle the characteristics of various components of the MES as de-
scribed previously. Finally, because the MES is modeled in a single environment,
the problem size for the computer to solve increases, which can require signifi-
cant computing resources [9].

The second pathway is dividing the MES into smaller subsystems (such as
electrical, heat, gas, etc.) and leveraging software techniques to couple these
subsystems. The subsystems can then be modeled using domain-specific mod-
eling environments and solved with dedicated solvers to obtain high accuracy
results. This method is known as co-simulation, or coupled simulation [10]. Co-
simulation is a method that allows the coupling of models developed in vari-
ous modeling environments by managing the time progression of the simulation
and coordinating the data flow between subsystem models. Dynamic interac-
tion between subsystem models can be facilitated by exchanging data (values of
interest), such as process outputs, sensor measurements, etc. Even though any
data value can be shared, when creating an MES model, the exchanged variables
usually lay on the boundary of two energy carriers. For example, mechanical
power of steam turbine obtained from the thermo-mechanical model (process
output) of generator given as input to the rotor of the synchronous generator
in the electrical power system model, or temperature of room obtained from a
building’s thermal model (sensor measurement) given as input to a control sys-
tem model, etc. Enabling this dynamic interaction allows for a holistic system
analysis, where domain-specific characteristics are preserved while interacting
with other energy domains. As is noted in [11, 12], operational model details have
significant impact on results. Thus, using domain-specific accurate models re-
moves potentially misleading simplifying assumptions. It is interesting to point
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out that by using co-simulation, large complex systems can be broken down into
smaller subsystems and simulated in a coupled fashion using techniques such
as parallel and distributed simulation [13]. Although, it must be noted that split-
ting larger systems into subsystems and using co-simulation introduces some
numerical challenges of its own, such as algebraic loops [10].

The main challenge in achieving this goal is developing a modular frame-
work that allows the coupling of various subsystem models and an algorithm that
manages overall simulation time progression and data exchange. This is where
ENERGYSIM steps in. ENERGYSIM allows users to easily couple subsystem mod-
els and focus on high-level tasks in MES technical assessment studies such as
subsystem model development, control algorithm development, and case study
definition, among others, rather than focusing on co-simulation-specific tasks
such as time progression management and data exchange. The availability of a
simplified energy system co-simulator will allow increased insights into an MES
setting by enabling a more collaborative modeling and simulation environment.

Previously, I used ENERGYSIM in [14] and [15]. In [14], I demonstrated how
complex the model of the closed-cycle gas turbine was combined with the dy-
namic model of the electricity network for analyzing the impact of fuel supply
change on electrical network frequency. In [15] I demonstrated how ENERGYSIM

can facilitate a multi-stakeholder analysis that involved concurrent simulation
of detailed models of the electricity grid, electrolyzer, and control systems to
correct forecasting errors of a nearby wind turbine. The version of ENERGYSIM

used for simulating use cases in the aforementioned articles has been updated.
The current version (ENERGYSIM (v2.1)) provides more simulation adapters (ex-
plained in the next subsection) to couple other widely used energy modeling
tools, allows access to the algorithm that coordinates time progression and data
exchange which further allows users to implement non-energy applications, uses
HDF data format to store results, making it useful for very-high fidelity simula-
tions generating considerable amounts of data.

ENERGYSIM is developed in Python and is tested for compatibility with Python
version after v3.6. ENERGYSIM is installable via the Python Package Index (PYPI).
An example case is available in the main repository to illustrate the usage. A
working example of the use case described in this chapter has also been up-
loaded to the Code Ocean platform for reproducibility of results (available as a
link on Github).

COMPARISON WITH OTHER TOOLS

At the heart of any co-simulation tool lies an algorithm that manages time pro-
gression and data exchange. There already exist a few tools in literature such
as MOSAIK [16], MASTERSIM [17], MESCOS [18], PTOLEMY II [19] to set up co-
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simulation. However, I believe ENERGYSIM offers several advantages to its users
compared to the tools mentioned above. The first and foremost advantage is that
it is developed in Python. Python is the most widely used language for scientific
and general-purpose computing and has developed a huge user base, especially
in the energy system community. Proprietary tools also frequently provide bind-
ings to Python, which makes accessing them easy. This familiarity with the pro-
gramming language allows ENERGYSIM to be easily understandable and accessi-
ble to large audiences compared to tools which are developed in languages such
as JAVA (PTOLEMY II), C, C++ (MASTERSIM, MESCOS). Secondly, the structure
of ENERGYSIM is modular. This modularity means that access to time progres-
sion and message exchange algorithm can be done via what I refer to as sim-
ulation adapters. Simulation adapters interface the simulation entity to ENER-
GYSIM by defining four key function: init() , set_value() , get_value() ,

and step() . These functions enable ENERGYSIM to initialize the simulator, set
and get variable values at any time, and control the progress of the simulator in
time, respectively. To put it simply, these adapters provide a way for ENERGYSIM

to “talk to simulators.” The tool already provides ready-made adapters to cou-
ple the most common tools used in the energy system modeling and simulation
domain. Additionally, creating new adapters can also be done easily. This ease-
of-use is in contrast to other tools which require complex setup configurations
(such as setting up Scenario API and Component API for each simulator with
MOSAIK) or can support only a single type of simulation entities (for ex. MAS-
TERSIM supports only Functional Mock-up Units (FMUs)).

3.2. SOFTWARE DESCRIPTION

3.2.1. SOFTWARE ARCHITECTURE

ENERGYSIM is classified as a “hybrid-simulator”. It supports both quasi-static and
continuous-time dynamic simulation (CTDS). I have not classified ENERGYSIM as
a discrete-time simulator because the term encompasses a broad range of sim-
ulation techniques, some of which ENERGYSIM does not support, for example,
event-based simulations, such as those involving communication network sim-
ulation.

TIME PROGRESSION AND DATA EXCHANGE MANAGEMENT

In ENERGYSIM, there are two primary time variables to define: macro-time step
(which is a global variable) and micro-time step (which is a local variable). The
data exchange between simulators occurs at fixed time intervals, known as the
macro-time step. Individual simulators use an optional and unique micro-time
step between each macro-time step for solving their own model equations. This
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Start

Initialize Simulators

Exchange Data

Step Each Model 
till t + t_macro

t = 
stop_time
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t = start_time
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No
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Figure 3.1: Flowchart depicting the co-simulation process. To start, the simulators are initialized,
and then, at each macro time step data is exchanged between the simulators. Each simulator can
use an individual micro-time step between the macro-time steps for simulation.

differentiation is essential for CTDS models to perform time integration for solv-
ing their model equations. The co-simulation flowchart is shown in Fig. 3.1.

In between the macro-time steps, when no input data is available to the CTDS
model, an interpolation method needs to be applied. Although there are quite
a few techniques to implement the interpolation (constant, linear, polynomial
[20]), within ENERGYSIM, I have opted for a constant interpolation method. In
this method, the inputs to the CTDS model are held constant at the value ob-
tained at the last macro-time step.

SOFTWARE COMPONENTS

The core component of the ENERGYSIM package is the world object. Once the
world object is imported from ENERGYSIM package, the user can instantiate it

as shown in Listing 3.1.

Listing 3.1: Instantiating world

1from energysim import world
2my_world = world ( start_time =0 , stop_time =23*3600 , logging=True , t_macro

=60)
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my_world is the canvas on which simulators, simulator connections, and
simulation options can be specified. The main parameters to be specified here
are start_time , stop_time , logging , and t_macro . The parameter t_macro
specifies the macro-time step and has a default value of 60 seconds.

Once my_world object is created, users can add simulators to it via the

add_simulator() method as shown in Listing 3.2.

Listing 3.2: Adding simulators

1my_world . add_simulator ( sim_type = ’fmu ’ , sim_name = ’fmu1 ’ , sim_loc = ’ /
path/ to /fmu ’ , step_size = 1 , inputs = [ ] , outputs = [ ’ var ’ , ’ obj1 . var1 ’
] )

The add_simulator() method requires specification of sim_type , sim_name ,

sim_loc , and step_size . The parameter step_size specifies the micro-
time step, unique to each simulator. These six parameters are shared for the
specification of any simulator and are enough to execute a basic co-simulation.
However, users can also do so if additional parameters need to be specified. For
example, the electric network added as a PANDAPOWER [21] model in ENERGYSIM,
by default, uses the AC power flow functionality of PANDAPOWER to solve the
model (ENERGYSIM does not contain a solver of its own). Therefore, an additional
argument pf is provided, so users can specify a different power flow option if
required. These include “pf” (default), “dcpf”, “opf”, and “dcopf”. This is useful
when, for example, an optimal controller based on electrical network power flow
is needed. The example in the GitHub repository uses this functionality. There
exist other similar simulator-specific options within ENERGYSIM. The software
documentation provides a detailed list and description of these options.

As mentioned in Section 3.1, I have developed simulation adapters to couple
simulators to ENERGYSIM. Through an extensive literature search, I identified the
languages that are most commonly used to develop models for energy domains
of interest: Modelica [22–26], MATLAB [6], Python [27, 28] are typically used to
model thermal and heat systems. Python [28, 29], DigSILENT PowerFactory [23,
30, 31], Modelica [32, 33], and MATLAB [34] are used for electricity network sim-
ulations. For gas systems, Modelica [32, 33, 35] is a common choice of software
for many, whereas, for analysis of electric vehicle systems, Modelica [36], Python
[27, 36, 37], and MATLAB [38] are used the most. These are summarized in Ta-
ble 3.1.

Some modeling languages allow exporting models as Functional Mock-up
Units (FMUs) according to the Functional Mock-up Interface (FMI) standard [39].
Models are packaged as a combination of XML files, binaries, and C-code and
distributed as a ZIP file called FMU. The FMU contains model equations and
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Energy Domain Modeling Language
Heat Systems Modelica, MATLAB/Simulink, Python, CSV, Oth-

ers
Electricity Systems Modelica, MATLAB/Simulink, Python, Power-

Factory, Others
Gas Networks Modelica, MATLAB/Simulink, Python, Others
Transportation MATLAB, Python, CSV, Others

Table 3.1: List of common modeling languages used in energy system modeling and simulation
community.

optionally an associated solver. Model exchange via FMU is gaining wider adop-
tion across the modeling and simulation community, with currently more than
150 tools supporting exporting models to FMUs. Within ENERGYSIM, FMUs can
be added by setting the value of the sim_type parameter as ’fmu’ .

To ensure wider operability and integration to other software/Python pack-
ages, I have also provided a way for users to interface their simulator of choice
with ENERGYSIM by setting the sim_type parameter with ’external’ . To add
a user-defined simulator to ENERGYSIM via a user-developed simulation adapter,
the to-be-coupled simulator must offer a “play-and-pause” functionality. This
means that ENERGYSIM must be able to:

• initialize the simulator,

• get inputs from simulator when requested,

• instruct the simulator to take one step forward,

• request output values from the simulator,

• pause the simulation while the simulator waits for instructions, and new
inputs from ENERGYSIM.

A detailed description of this method is available in the documentation.
Once the simulators are specified and added to my_world , users can spec-

ify the connections between the simulators as a Python dictionary object, as
shown in Listing 3.3. Then, the my_world object can then be simulated using

the simulate() command. By default, the record_all parameter is set to
True which instructs ENERGYSIM to record each simulator’s output values at every
micro-time step. False leads to output recording only at macro-time step inter-
vals. The results can be obtained by calling the command my_world.results() ,
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which returns a Python dictionary object with keys as sim_name and value as a

pandas dataframe with time-stamped output values. If the to_csv option is set

to True, then results are also exported as CSV files. The parameter record_all
toggles the simulation progress bar.

Listing 3.3: Finalizing simulation

1connections = { ’ sim1 . output_variable1 ’ : ’ sim2 . input_variable1 ’ , ’ sim3 .
output_variable2 ’ : ’ sim4 . input_variable2 ’ , ’ sim1 . output_variable3 ’ : ’
sim2 . input_variable3 ’ , }

2my_world . add_connections ( connections )
3my_world . simulate ( pbar=True , record_al l=True )
4r e s u l t s = my_world . r e s u l t s ( to_csv=False )

3.2.2. SOFTWARE FUNCTIONALITIES

Apart from the basic functionality to add simulators and simulate them, ENER-
GYSIM offers a range of additional inbuilt functions to support the user in setting
up multi-energy co-simulations.

ADDING SIGNALS

In many cases, users may require a simple external input to their model. For
example, a control system simulator needs a constant input value of True to in-
dicate that the simulator is active, or a wind power plant simulator which may re-
quire a random number generated from a continuously updated probability dis-
tribution function as an input to account for the randomness of wind power pro-
duction, etc. These inputs can be added as CSV simulators, FMU simulators, or
first, be modeled in another modeling language and interfaced to ENERGYSIM us-
ing the simulation adapters. However, such a process can be cumbersome. I de-
veloped dedicated functionality to add "signals" to simplify this process. Signals
can provide the users with requested values and can be defined as Python func-
tions. Signals can be added to ENERGYSIM using the add_signal() method.
Examples of time-dependent and independent signals are shown in Listing 3.4.

Listing 3.4: Adding signal

1def td_signal ( t ) :
2return [ True ]
3

4def t i d _ s i g n a l ( t ) :
5return [np . sin (2*np . pi *omega* t ) ]
6

7my_world . add_signal (sim_name= ’ sine_wave_signal ’ , s ignal = td_signal ,
step_size =1)

8my_world . add_signal (sim_name= ’ constant_signal ’ , s ignal = t id_signal ,
step_size =1)



3.2. SOFTWARE DESCRIPTION

3

57

9

INITIALIZATION

For CTDS models, correct initialization of system states is needed for accurate
assessments. Different initial values will result in different dynamic behavior. To
specify initial values to simulators, users can provide the initial values of param-
eters for the simulators as a dictionary with ’init’ keyword. This dictionary
can then be passed onto the my_world object through options method.

MODIFYING DATA EXCHANGE

On many occasions, it becomes necessary to modify the output value of a par-
ticular simulator before it is provided to the other simulator. This situation is
fairly common in multi-energy system simulations. Consider two simulators: a
thermo-mechanical model of a combined heat and power system (CHP) and a
steady-state power flow model of an electric network (EN). The power output
from the CHP simulator is obtained in Watts (W). This power output of the CHP
needs to be provided to the corresponding generator model in the EN. However,
the generator in the EN accepts values only in megawatts (MW). One way to
address the problem is to change the output values of the CHP in the model
itself and recompile the model. However, this may not always be possible or
doable (the model may require a toolchain for compilation that may not be avail-
able at that moment). Therefore, ENERGYSIM allows users to apply modifications
simulator outputs by specifying a Python function that defines the modifica-
tion. A dictionary entry listing all modification functions can then be provided to
the options dictionary using ’modify_signal’ keyword. Both initialization
and output modification is shown in Listing 3.5.

Listing 3.5: Initialization and Output Modifications

1i n i = { ’ sim1 ’ : ( [ ’ sim_vars ’ ] , [ vals ] ) ,
2’ sim2 ’ : ( [ ’ sim_vars ’ ] , [ vals ] ) }
3

4def mod1( x ) :
5return a1 * x + b1
6

7def mod2( x ) :
8return np . log ( x ) + a1
9

10mdf = { ’ sim1 . var1 ’ :mod1,
11’ sim2 . var1 ’ :mod2}
12

13options = { ’ i n i t ’ : ini ,
14’ modify_signal ’ : mdf}
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Electrical 
Network 
(pandapower)

Electrolyzer 
(FMU)

Control System 
(FMU)

Data File 
(CSV)

(signal)

Figure 3.2: The co-simulation setup for the described case. Data File (as CSV) provide forecasted
wind power to the control system. Electrolyzer FMU sends internal pressure and mass flow rates
to the control system. The Electrical Network sends voltage values at each bus node and the actual
power output from the wind plant to the control system. The Control System uses this input to
determine the operational power set point for the electrolyzer, which it sends to both Electrical
Network and Electrolyzer models.

15

16my_world . options ( options )

PARAMETER SWEEP

Understanding the sensitivity of results on various simulation variables is an in-
tegral part of technical assessments of MES. To perform repeated simulations
with different initial conditions for the co-simulation in focus, users can use the
init option shown in Section 3.2.2. Using a for-loop and providing different

values of initial conditions, the sensitivity of results from the co-simulation can
be obtained.

TOPOLOGY PLOT

Using plot() method on my_world object, users can obtain a graph plot of
the simulators, and connections between them. ENERGYSIM uses Python’s Net-
workX package to generate the topological plot of the multi-energy system based
on the specified connections’ dictionary.

3.3. ILLUSTRATIVE EXAMPLE
In this section, I illustrate the application of ENERGYSIM by showing a multi-
stakeholder analysis. This is an extension of the study conducted in C2.1.2 in
Section 2.3.2 (shown in Fig. 3.2). In C2.1.2, I investigated the impact on the elec-
trolyzer of providing forecasting error correction service to the wind turbine op-
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Stakeholder Objective Model Inputs Model Outputs

Grid
Manager

• Monitoring
network
imbalances

• Monitoring
network
voltages

• Monitoring line
congestion

Electrolyzer power
set-point & wind
power production

Grid voltage and
line congestion

Device
Operator

• Device
wear/tear

• Primary
production
constraints

Electolyzer power
set-point

Mass flow rates,
cell temperature

Wind
Turbine
Operator

• Minimize
imbalance and
curtailment

Actual and
forecasted power
generation

Table 3.2: Objectives, inputs, and outputs of the three stakeholders considered in this study.

erator (WTO) throughout the day. Let us consider stakeholder 1 to be the WTO
which operates an 18 MW rated wind turbine, and stakeholder 2 to be the elec-
trolyzer operator. Additionally, the electrical grid operator needs to ensure that
any changes in load and generation set-points coming from electrolyzer and
wind turbine, respectively, due to flexibility arrangement does not affect volt-
age stability significantly in its distribution grid. Let us take the grid operator to
be stakeholder 3. A recap of each stakeholder’s objectives, inputs, and outputs is
listed in Table 3.2.

The control system in Fig. 3.2 is tasked with assessing the full system using
models provided by each stakeholder. The control system continuously receives
information from the models of the three stakeholders. This information is: i)
wind power forecast (Pw,fc) and actual wind power production (Pw,a) from WTO
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(added as combination of csv simulator and signal simulator), ii) hydrogen

pressure and mass flow rate (pH2,ṁH2) from electrolyzer (added as a fmu sim-
ulator), and bus voltage at point of connection of wind turbine and electrolyzer
(V ) from grid operator (added as powerflow simulator). Based on the received
values, it calculates the electrolyzer power set-point (Pel,sp) and dispatches those
values to the electrolyzer model and grid. This set-point is used by 1) the elec-
trical grid to evaluate bus voltage based on the AC power flow solution and 2)
by the electrolyzer to calculate hydrogen production rates. It also generates an
imbalance signal which is dispatched to the WTO to indicate if there was any
imbalance.

Listing 3.6 shows the co-simulation setup in Python using ENERGYSIM.

Listing 3.6: A code snippet to illustrate setting up and simulating a co-simulation-based multi-
stakeholder analysis using ENERGYSIM.

1from energysim import world
2

3mw = world ( stop_time =3600*5. , logging = True , t_macro = 120)
4

5simulators_dir = ’ ’ # setup a simultor directory containing a l l models
6

7c o n t r o l l e r _ l o c = os . path . join ( simulators_dir , ’ c o n t r o l l e r . fmu ’ )
8grid_loc = os . path . join ( simulators_dir , ’ gridModel . p ’ )
9e l e c t r o l y s e r _ l o c = os . path . join ( simulators_dir , ’ e l e c t r o l y s e r . fmu ’ )
10

11mw. add_simulator ( sim_type = ’ powerflow ’ , sim_name = ’ grid ’ , sim_loc =
grid_loc , inputs = [ ’ wind12 . P ’ , ’ E l e c t r o l y s e r . P ’ ] , outputs =[ ’Bus 0 .V ’ , ’
Bus 1 .V ’ , ’Bus 12.V ’ , ’wind1 . P ’ , ’ wind12 . P ’ , ’ E l e c t r o l y s e r . P ’ ] ,
step_size =3)

12

13mw. add_simulator ( sim_type = ’fmu ’ , sim_name = ’ c o n t r o l l e r ’ , sim_loc =
control ler_loc , step_size = 3 , inputs = [ ’ v ’ , ’P ’ , ’ E_c ’ ] , outputs =[ ’ y ’ ,

’ gain1 . y ’ , ’ load_should_be ’ , ’ new_load_should_be ’ , ’ p_forecasted ’ , ’
power_delta ’ ] )

14

15mw. add_simulator ( sim_type = ’fmu ’ , sim_name = ’ e l e c t r o l y s e r ’ , sim_loc =
e l e c t r o l y s e r _ l o c , step_size = 3 , inputs = [ ’p ’ ] , outputs =[ ’ y1 ’ , ’ y2 ’ , ’p
’ , ’ integrator1 . y ’ ] , variable=True )

16

17mw. add_simulator ( sim_type = ’ csv ’ , sim_name = ’ wind_data ’ , sim_loc= os . path .
join ( simulators_dir , ’ diff_win . csv ’ ) , step_size =60 , outputs =[ ’ speed ’ , ’
power ’ , ’power2 ’ ] )

18

19def emergency ( time ) :
20return [ 1 ]
21

22mw. add_signal (sim_name = ’Emergency ’ , s ignal = emergency )
23
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24options = { ’ i n i t ’ : { ’ c o n t r o l l e r ’ : ( [ ’ v ’ , ’ E_c ’ , ’P ’ , ’C_max ’ ] , [14 , 1 , −18 ,
−100]) ,

25’ e l e c t r o l y s e r ’ : ( [ ’p ’ ] , [ 1 0 ] ) } ,
26}
27

28mw. options ( options )
29

30connections = { ’ wind_data . speed ’ : ’ c o n t r o l l e r . v ’ ,
31’ wind_data . power ’ : ’ grid . wind12 . P ’ ,
32’ wind_data . power2 ’ : ’ grid . wind1 . P ’ ,
33’ c o n t r o l l e r . y ’ : ’ grid . E l e c t r o l y s e r . P ’ ,
34’Emergency . y ’ : ’ c o n t r o l l e r . E_c ’ ,
35’ grid . wind12 . P ’ : ’ c o n t r o l l e r . P ’ ,
36’ grid . E l e c t r o l y s e r . P ’ : ’ e l e c t r o l y s e r . p ’ ,
37}
38

39mw. add_connections ( connections )
40

41res = mw. simulate ( pbar=True )

Here, the co-simulation macro time-step is 120 seconds, meaning the sim-
ulators exchange data between themselves every 2 minutes. Additionally, each
simulator has a unique micro time-step. The grid, control system, and elec-
trolyzer system have a micro time-step of 3 sec, whereas the CSV simulator has
a micro time-step of 60 seconds. The simulation takes precisely 6 minutes to ex-
ecute on a dual-core Intel i5-6300U CPU @ 2.4GHz running Ubuntu 20.04. Fig-
ures 3.3 to 3.5 shows the electrical network bus voltage, the hydrogen produc-
tion rate obtained from the detailed electrolyzer model simulator, and the elec-
trolyzer operating power set-points determined by the control system simulator,
respectively.
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Figure 3.3: Voltage at the bus where the electrolyzer is connected to the electrical grid. This output
comes from the electrical network simulator.

ENERGYSIM allows such analyses to take shape. A non-co-simulation ap-
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Figure 3.4: Production of hydrogen gas from the variable operation of the electrolyzer. This output
comes from the detailed electrolyzer model simulator.
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Figure 3.5: Electrolyzer operating power set point obtained. This output comes from the control
system simulator.

proach would have required the entire system to be developed in a single mono-
lithic simulation environment, which is time-consuming and requires expert knowl-
edge of modeled subsystems (such as electrolyzer or electrical grid). With EN-
ERGYSIM, models developed in various software domains can be put together.
Because I have already developed adapters to the most commonly used energy
system modeling and simulation software, ENERGYSIM provides an easy entry for
users to integrate different models and expert knowledge. Additionally, with the
availability of a simple method to connect any external simulator, ENERGYSIM

ticks all boxes for multi-energy system analysis with multi-fidelity models.

3.4. DISCUSSION
The need to take the proposed approach of coupled simulation toward energy
system technical analyses is highlighted by the widespread blackouts in Texas in
2021. Although the impact of extreme weather on power systems was assessed,
the impact on natural gas supply and its equipment, which acts as a fuel source
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for backup gas-powered peak power generation, was not considered jointly. This
led to inaccurate assessments, leading to a catastrophic situation whereby mil-
lions lost access to electricity and heat. [40].

Using ENERGYSIM, a combined assessment of energy sectors is possible, al-
lowing users of the tool to better understand technical limitations in an intercon-
nected system. The availability of such a tool facilitates interdisciplinary research
efforts by bringing together models developed by experts in modeling tools of
their choice. By making the technical assessment model agnostic, all subsystems
can be modeled in desired detail, solved using dedicated solvers, and brought to-
gether to create a system model closer to reality and, consequently, an analysis
that presents better solutions. This approach contrasts existing modeling and
simulation tools, simplifying or completely ignoring the interactions and depen-
dence between energy sectors.

In Chapter 2, several models of various P2X resources are developed. For
an FSP utilizing multiple such resources, it is essential to assess the operational
flexibility extractable jointly from all the resources in this portfolio. It must con-
sider that these resources are embedded in a network that its own limits can
constrain, and therefore the operation of these resources must abide by these
network constraints. As is shown in the example in Section 3.3 and Chapter 2,
models available for P2X resources can have different levels of detail and be de-
veloped in different software packages or even different programming languages.
ENERGYSIM will enable a simulation-based assessment of models of various P2X
resources in the FSP’s portfolio. Results obtained from this simulation-based as-
sessment will help the FSP to evaluate the portfolio’s operational behavior and,
consequently, its flexibility. Furthermore, this will allow the FSP to derive critical
insights and knowledge of their integrated system operation, identify operational
bottlenecks, test control strategies, and evaluate sensitivities of various parame-
ters on portfolio behavior.

3.5. FUTURE WORK
ENERGYSIM is a versatile tool for researchers to integrate various energy subsys-
tem models to conduct holistic and comprehensive technical assessments. How-
ever, despite a range of available functionality, a few functionalities are still lack-
ing, which are being actively worked on. These tasks have been identified to
increase the adoption of ENERGYSIM and its capabilities as a multi-energy sys-
tem co-simulator. Among these are the ability to specify different interpolations
for data exchange between simulators, an inbuilt capability to parallelize the ex-
ecution of individual simulators to enhance computational efficiency and en-
able large-scale co-simulations, and the development of simulation adapters for
other common software tools such as DigSILENT PowerFactory.
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3.6. CONCLUSIONS
In this chapter, I presented ENERGYSIM, a multi-energy system co-simulation tool
for coupling energy system models developed in different software tools. I have
described in detail the main features and functionalities of the proposed soft-
ware, illustrating its ease of use and versatility. I provided code listings to high-
light the important features of the proposed tool: such as adding user-defined
signals, initialization for conducting parameter sweeps, the ability to perform
output data modification, and generating topology plots for complex and simple
MES. In the end, I demonstrated the use of ENERGYSIM in a case study where de-
tailed models of an electrolyzer, the electricity network, and a control system are
used to assess the ability of the electrolyzer to act as a flexibility service provider
to the wind plant generator. The provided case study showed how various stake-
holders could come together to perform a holistic study and use preferred mod-
eling tools and solvers in doing so, which is not possible with traditional mono-
lithic simulation tools.
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4
QUANTIFICATION OF FLEXIBILITY

IN MULTI ENERGY SYSTEMS

4.1. INTRODUCTION
The increased flexibility needs in power systems have created an attractive op-
portunity for actors such as aggregators to act as Flexibility Service Providers
(FSPs). The FSPs find customers in entities such as Virtual Power Plants (VPPs),
Balance Responsible Parties (BRP), Transmission System Operators (TSO), Dis-
tribution System Operators (DSO) who require flexibility to alleviate problems
such as congestion management, feeder voltage management, forecast error cor-
rection, uncertain net-load ramps management, balancing problems, etc. Of
particular interest are the flexibility needs arising specifically from the forecast-
ing of power generation of variable renewable energy sources (VRES) present at
various levels in the grid. Since weather cannot be forecasted much ahead of
time, the actual power generation varies from the forecasted power generation,
leading to requirements for correction of forecasting errors.

The BRP holds the responsibility to manage its imbalance before the sys-
tem operator (SO) takes over the responsibility of management and settlement
of imbalances (typically 3-4 Program Time Units (PTU) before the time of deliv-
ery. 1 PTU = 15 mins). The penalties for causing system imbalances are already
large, and expected to increase even further in the future [2]. As such, it is of
interest to the BRP to arrange the required flexibility beforehand to avoid any
imbalance penalties. Enabled by a growing communication infrastructure, the
FSPs utilize advanced control and coordination techniques to control a pool of

Parts of this chapter have been published in Elsevier’s International Journal of Electric Power and
Energy Systems [1].
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flexible resources which can provide valuable flexibility to the BRPs [3, 4]. Typ-
ically, these resources consist of distributed generators (DG), thermostatically
controlled loads (TCLs) (refrigeration systems, thermal storage, buildings, etc.),
power-to-gas (P2G) systems, electric vehicles (EVs), etc. This flexibility from the
FSP can be purchased by the BRP from short-term markets such as the intraday
markets [5], be contracted by the BRP as a bilateral agreement, or from some
form of a demand response market (DRX) [6]. Alternatively, the FSP can operate
in close cooperation with the BRP, by controlling the resources in the BRP port-
folio to fulfill the BRP’s flexibility needs. The advantage of this idea is that the
internal imbalances caused by the activation of flexibility are known to the BRP,
and are managed as part of the flexibility provision scheme [7]. Such a model is
already used by energy suppliers in the Netherlands [8].

In either case, it is crucial for the FSP to accurately assess and quantify the
flexibility of its portfolio in order to provide reliable service. Estimating the flex-
ibility of a pool of resources, however, is a challenging task. A pool of resources
can have a diverse set of characteristics such as ramp rates, up/downtimes, power
ratings, etc. If the characteristics of each of the resources are represented as a set
of static time-invariant values such as power deviations, ramp rates, etc., then
methods derived from set theory can be used to represent the aggregated flex-
ibility. This is referred to as the available flexibility. The amount of flexibility
that can be dispatched, however, can be different. It can be constrained by fac-
tors such as device inter-temporal constraints, network capacity constraints, the
geospatial spread of the flexible resources on the network, and even the opera-
tional strategy employed. Furthermore, the uncertainty of the flexible load de-
mand and the VRES generation can lend additional complexity to the problem
of quantification. This much more constrained form of flexibility is referred to
as the operational flexibility. In this thesis, I propose three metrics to quantify
operational flexibility.

In [9], the authors formulate an optimal policy for energy-constrained bat-
tery systems. In this reference, flexibility is defined as the maximum time a set of
battery systems can follow a power reference signal before exhausting its energy.
However, the authors do not consider ramp constraints, the network constraints,
and are limited to consideration of upward flexibility, i.e., the battery systems
that can only discharge. In [10], the authors investigate the flexibility of a flexible
resource from its location in the grid. The proposed methodology, however, does
not indicate the aggregated flexibility from all such resources in the grid and does
not take into account the operational strategy of the FSP. An interesting take on
flexibility is seen in [11] where the authors propose a flexibility metric that does
account for transmission limits. The flexibility of the system is quantified as a tu-
ple of lower and upper bounds of the largest uncertainty under which the system
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can remain operationally feasible.

The metric introduced in [11] is a deterministic one, derived from solving
a robust optimization problem. Although robust optimization guarantees the
feasibility and optimality of the solution even against the worst-case scenario, it
does not provide an expected solution, which is more relevant for studies on the
short-term markets, especially the intraday markets [12, 13]. In [14], the authors
introduce the Normalized Flexibility Index as a metric to quantify flexibility in in-
dividual generating resources and the power system as a whole. The authors use
deployable range, the summation of total power deviation, and the average ramp
rate, to calculate the contribution of each resource to system flexibility. This ap-
proach is developed only for generation-side flexibility. Authors in [15] provide
insights on the quantification of flexibility in the context of supply adequacy and
reserve requirement in power systems. The quantification metric is derived from
a process control paradigm, where three-dimensional polyhedra are used to rep-
resent available flexibility. The authors use this notion to assess the balancing
reserves and flexibility in supply to meet the demand. However, the measure
does not include flexibility from responsive demand or sector coupling.

More recently, authors in [16] have proposed two tools: Flexibility Solution
Modulation Stack and Flexibility Solution Contribution Distribution to quantify
flexibility from the perspective of the entity providing it, i.e. the FSP. Their focus
in quantifying flexibility is limited to only power system components, and can-
not take into account the flexibility from sector coupling. The authors in [17–19]
have proposed flexibility envelopes. The primary application of the envelopes is
for flexibility adequacy planning from a generation viewpoint. The authors ac-
count for sub-hourly dynamics by using dynamic models of the power system
generators, providing flexibility to the power systems. The method proposed by
the authors does not account for flexibility from sector coupling. Additionally,
since the models are included within the economic dispatch framework that the
authors propose, the models are simplistic linear time-invariant systems. This
limits the representation of more complex, flexibility providing resources such
as TCLs which have flexibility rebound effects. A rebound effect occurs when the
changes in power consumption of a flexible resource from activation of flexibility
at a particular time restrict its ability to do so again in subsequent time steps [20,
21].

To summarize, a useful flexibility metric must:

1. provide an assessment of portfolio-level aggregated flexibility considering
operational characteristics of diverse resources in the portfolio,

2. account for resource and network constraints,
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3. account for uncertainty in VRES power production, flexible load demand,
and flexibility requests,

4. account for the strategy of control and coordination of resources, and fi-
nally,

5. be intuitive to understand.

In this thesis, I propose three new metrics to quantify operational flexibility.
The proposed flexibility metrics are the first, to the best of the authors’ knowl-
edge, to jointly satisfy all the above requirements. The key characteristic of the
newly proposed metrics is in their ability to quantify the portfolio response to
uncertain flexibility requests while accounting for the network, resource, and
spatio-temporal constraints and the operational strategy employed to dispatch
flexibility. I use a scenario-based simulation method to achieve this.

This chapter is further divided into the following sections. Section 4.2 intro-
duces the need for short-term flexibility planning to the FSP. Section 4.3 dives
into the current flexibility quantification techniques and their limitations. Fi-
nally, it introduces the proposed metrics.

4.2. SHORT TERM FLEXIBILITY PLANNING
The increasing levels of sector integration between electricity, gas, heat, trans-
portation, etc. have created ample opportunities for the FSP to include flexible
demand in its portfolio. The demand response programs (DRP) designed by the
FSP, therefore, play a crucial role in determining the amount of operational flex-
ibility that can be extracted from its portfolio. As was previously stated, a DRP
defines the conditions under which participating resources will be controlled to
provide demand response. This includes setting parameters between which de-
vice will be asked to operate (such as defining temperature range for heating sys-
tem in buildings), setting times and durations during which device will be asked
to modulate its consumption pattern, etc. The FSP needs short-term flexibility
planning to design suitable demand response policies that maximize the flexi-
bility from its portfolio. Just as the transmission system operator (TSO) requires
metrics such as EUE, LOLE, etc. to evaluate and compare long term flexibility
measures (such as network expansion, generation planning, etc.), the FSP also
requires metrics to evaluate short term flexibility measures (such as designing
DRPs, selecting an operational strategy, comparing the value of flexibility from
different products, etc.).

Figure 4.1 shows a typical scenario-based flexibility planning procedure for
an FSP. The planning process is conducted well ahead of actual time of delivery
of flexible energy. The FSP generates a time series of flexibility requests (called
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FR signal) it expects to receive from the Flexibility Requesting Party (FRP). Since
this time series is an uncertain quantity for the FSP to determine, multiple fore-
casts of FR signals are generated by the FSP (i.e. a scenario set consisting of FR
signals is created). For each FR signal, the FSP executes an operational simula-
tion to assess the flexibility of its portfolio. This operational simulation is con-
ducted subject to constraints of resources in its portfolio. The bounds of these
constraints are set by the FSP’s DRP. Examples of such constraints can be the
minimum duration for flexibility provision, the maximum number of flexibility
activation requests received, temperature limits in thermal loads etc. The FSP
always looks to maximize its ability to service any flexibility request it expects to
receive. The results of these simulations are then quantified into flexibility met-
rics. These metrics help the FSP to quantify the effectiveness of DRP in use to ex-
tract flexibility from the portfolio. If flexibility in the portfolio is sufficient for the
forecasted FR signals in each scenario, then the process ends. If however, for the
evaluated DRP, the flexibility in portfolio is not sufficient to fulfill the forecasted
FR signals, the FSP can update the DRP. When changes in DRP do not lead to any
improvement in the value of metrics (i.e. do not increase the ability of portfolio
to fulfill the forecasted FR signals) compared to previous iterations, then most
appropriate DRP is selected. Additionally in such a case, the FSP can procure
additional flexibility (for example, from intraday or demand response market or
through bilateral contracts) to cover for insufficient flexibility.

The inclusion of operational simulation in Fig. 4.1 serves an important pur-
pose in this quantification process. An important determinant of flexibility is the
possible rebound effect [21, 22] that occurs after its activation. I believe that it
is imperative that any flexibility quantification metric must be inclusive of this
information. By executing an operational simulation, such effects are inherently
captured through resource operational constraints.

4.3. FLEXIBILITY QUANTIFICATION

4.3.1. STATE OF THE ART

Some efforts have been made to quantify and represent short-term flexibility
from a portfolio using static resource characteristics. For example, in the case
of thermostatically controlled loads, temperature bands around the nominal op-
erating point are used to represent flexibility [23]. Set notations have also been
employed to represent the flexibility of a resource. In reference [24], the authors
quantify flexibility from a single resource with a set of power, ramp rate, and en-
ergy deviations from the nominal operating point, and represent it as a polytope.
When considering flexibility from a portfolio of resources, total flexibility is pro-
posed to be calculated by applying set-theory methods. One such well-known
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Figure 4.1: Planning for short term flexibility by the FSP. Metrics help the FSP to assess and quantify
the flexibility available from its portfolio when using a particular DRP.
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and ubiquitously used method is the Minkowski Summation as proposed in [24,
25]. However, as shown next, this is not an accurate representation of flexibility.

Consider a pool I consisting of Ni flexible resources. The flexibility of re-
source i at PTU (Program Time Unit) k is denoted with the set ν↑,↓

i ,k = (∆P↑,↓
i ,k , r ↑,↓

i ).

Here, ∆P↑
i ,k is the available power deviation (P i −Pi ,k ) in the upward direction

and ∆P↓
i ,k is the available power deviation (Pi ,k −P i ) in the downward direction.

r ↑
i ,k and r ↓

i ,k are the available ramp rate in upward and downward direction re-

spectively. Pi ,k is the scheduled operating state at start of PTU k, whereas P i and
P i are the maximum and minimum allowable power limits of resource i . The
Minkowski Summation method for representing the aggregated flexibility avail-
able from this pool of Ni total resources in PTU k is given by Eq. (4.1).

ν↑ms,k =
( I∑

i=1
∆P↑

i ,k ,
Ni∑

i=1
r ↑

i ,k

)
ν↓ms,k =

( I∑
i=1
∆P↓

i ,k ,
Ni∑

i=1
r ↓

i ,k

) (4.1)

For the sake of simplicity, I focus on the case of ramping up of a resource
without losing generality and drop the ↑,↓ notations. Then, νms,k represents
the aggregated flexibility (in the upward direction) at PTU k calculated using the
Minkowski summation method (denoted by subscript ms). However, since the
Minkowski summation is a set summation method and is calculated for an inter-
val of time, in this case for a PTU, it ignores the sub-hourly and sub-PTU resource
inter-temporal dynamics important for flexibility assessment. To specifically ac-
count for these peculiarities in flexibility assessment, it is necessary to conduct
an operational simulation.

Consider in the same PTU k, when a resource starts ramping at t = 0 (assum-
ing the start of PTU corresponds to start of global time t ), depending on its ramp
rate, time to reach the required power level can be more or less than the PTU du-
ration (τPTU = 15 mins). Here, I define Time to Ramp, denoted by τi ,k (Eq. (4.2)),
as the time taken by the resource i in PTU k to change its operating power by
∆Pi ,k units.

τi ,k = ∆Pi ,k

ri ,k
(4.2)

If τi ,k is less than the duration of a PTU, then the resource will ramp up and
stay at the new power level for the remainder of the duration of the PTU as shown
in Fig. 4.2. When flexibility from multiple resources is activated in PTU k, the
aggregated continuous-time power profile of the portfolio will naturally be the
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Figure 4.2: The sub-PTU power profile for resources with short time to ramp τi ,k .

sum of individual continuous-time power profiles (considering a copperplate
network). I refer to this as an Individual Power Profile (IPP) Summation method.
If all the resources have the same τi ,k , the ramp rate of the portfolio will be given
by Eq. (4.1). Consequently, the time to ramp for the portfolio will be given by
Eq. (4.3).

τms,k =
∑I

i=1∆Pi ,k∑I
i=1 ri ,k

(4.3)

In the case where at least two resources have different τi ,k , the ramp rate of
the aggregated power profile will decrease at each τi ,k , making the aggregated
ramp rate of the portfolio, a piecewise linear function. This decrease occurs be-
cause at each τi ,k , the resource i will reach the specified power set-point and can
no longer contribute to the aggregated ramp of the portfolio. Therefore, Eq. (4.4)
gives the time to ramp for the portfolio.

τagg,k = min(max{τi ,k : ∀i ∈ I },τPTU ) (4.4)

Although it seems logical to conclude that τagg,k = τms,k , it can be proved that
τms,k ≤ τagg,k . The basis for the proof lies in Mediant inequality.
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Proposition 4.3.1 (Mediant Inequality). For positive real numbers a,b,c,d such
that a/c ≤ b/d then the following holds:

a

c
≤ a

c
⊕ b

d
≤ b

d

where
a

c
⊕ b

d
= a +b

c +d

Corollary 4.3.1.1. For any PTU k, let Ξk = {τi ,k : ∀i ∈ I } be the set of time to ramp
for each resource in the portfolio, then,

max(Ξk ) ≥
∑Ni

i=1∆Pi ,k∑Ni

i=1 ri ,k

Proof. In the set Ξk , let j be the resource with the largest τ j ,k = ∆P j

r j
= max(Ξk ).

Therefore,

∆P j

r j
≥ ∆Pi

ri
⇐⇒ ∆P j · ri ≥∆Pi · r j ∀i ∈ I

Then, from Proposition 4.3.1, the following holds.

∆P j

r j
≥ ∆P1 +·· ·+∆PI

r1 +·· ·+ r I

⇐⇒ ∆P j r1 + . . .∆P j r I ≥∆P1r j + . . .∆PI r j

Since the τms,k ̸= τagg,k , there exists a difference between the continuous-
time aggregated power profile generated using the Minkowski Summation method
and that generated using the IPP Summation method. I refer to this gap as the
Flexibility Gap.

To illustrate the flexibility gap, let us consider a small example. A portfolio
of three flexible resources (R1, R2, R3), at a randomly chosen PTU k, is selected.
Each of the three resources can increase their power consumption by 1 MW with
ramp rates of 1.5, 2, 8 MW/PTU. The flexibility set ν of the portfolio is given by
{(1, 1.5), (1, 2), (1, 8)}. Following Eq. (4.1), the total ramp, and power deviation
available from the portfolio in this PTU is νms,k = [(3, 11.5)]. I will drop the PTU
notation (k) henceforth in this example since I consider a single PTU. I take ∆t =
1 min and Nt = 15, such that total time of interest is T =∆t ·Nt = 15 min.

Next, consider a flexibility request νreq = [(2.5, 11.5)], implying a flexibility re-
quest for∆P = 2.5 MW at 11.5 MW/PTU ramp rate. When all the resources in the
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Figure 4.3: Aggregated portfolio power profile generated using Minkowski Summation method and
IPP Summation method. The shaded region is the Flexibility Gap. The gray lines indicate IPP for
R1, R2, and R3.

portfolio are activated simultaneously to fulfill the request, the ramp rate of the
aggregated profile trajectory is

∑
ri = 11.5 MW/PTU. Among the three resources,

the one with the lowest τi is R3 (τ3 = 0.125 PTU = 2 min). When ∆P reaches 1
MW, R3 will stop contributing to the total ramp at t = 2. With only R1 and R2
now contributing, the total ramp decreases to

∑
ri = 3.5 MW/PTU. This process

will continue as R2 (t = 7.5 min), and then finally R1 reach their respective∆P = 1
MW (t = 10 min). The continuous-time power profile of the aggregated portfolio
(in red) and individual resources (in gray) within the PTU is shown in Fig. 4.3. It
is seen that the total portfolio ramp changes at each τi . In the same figure, the
black line represents the power profile generated using the Minkowski Summa-
tion method. It can be seen here that τagg = τ1 ≥ τms, where τ1 is the time to
ramp for R1. The shaded region between the two curves is the flexibility gap.

4.3.2. INSPIRATION FROM SYSTEM ADEQUACY METRICS

In this section, I seek to be inspired by the metrics used by transmission system
operators (TSO) to ensure adequacy in power systems. These will serve as an in-
spiration for the metrics this thesis proposes. As mentioned in Section 1.7, the
TSO uses power system adequacy metrics such as LOLE and EUE to make appro-
priate investment and policy decisions such that system reliability is maintained.
The TSO uses these metrics extensively in generation planning, network expan-
sion planning, etc.

Since, the power system adequacy metrics were created for a system that was
based on the concept of "generation must always follow demand", this concept
is no longer "always" applicable to the renewable-rich power system. This limits
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their applicability in future power system planning. To overcome this challenge,
several authors suggested modifications to existing adequacy metrics that can
assist the traditional generation adequacy studies with VRES. The Insufficient
Ramp Resource Expectation (IRRE) metric proposed in [26] is a power system
flexibility metric that takes into account the operational schedules of generators
in the portfolio and provides the expected number of observations when the sys-
tem will face ramping shortages arising from the variations in netload. Another
metric introduced in [27] is called Periods of Flexibility Deficit (PFD). The PFD
measures the frequency of flexibility shortfalls of specified time duration for each
hour. The flexibility needs are derived from netload ramps, similar to those in
IRRE. The calculation of IRRE and PFD follows that of LOLE and helps the TSO in
generation planning considering challenges from VRES. These metrics quantify
the system inflexibility based on which generation planning decisions (such as
investments in a more high-ramping generation like gas turbines) can be formu-
lated.

Due to this lack of metrics to quantify short-term flexibility, many studies
employ power system adequacy metrics in some form to the short-term flexibil-
ity planning. Reference [28] incorporates the Expected Energy Not Served Sup-
plied (EENS) metric with its Conditional Value at Risk (CVaR) to determine opti-
mal sizing and location of the DER units in the distribution system using a risk-
based optimization framework. In [29], the authors employ Expected Unserved
Energy (EUE) and Loss of Load Probability (LOLP) to formulate a reliability con-
strained unit commitment problem. Other adequacy metrics such as SAIDI and
SAIFI [30, 31], etc. are also employed to conduct operational studies to evaluate
the impact of flexibility from DER and flexible loads in a microgrid. While the
metrics IRRE and PFD overcome some challenges posed by VRES, they are still
primarily focused on generation planning in the long term.

The disadvantage of using power system adequacy metrics for short-term
flexibility studies stems directly from their calculation methodology, and con-
sequently, their interpretation. Firstly, these metrics are calculated by aggrega-
tion of yearly data, which implies that sub-hourly dynamics are unaccounted for.
This is important since, in operational time scales, such dynamics can constrain
the amount of flexibility [32]. Secondly, the impacts stemming from activation
of flexibility, such as previously mentioned flexibility rebound effects cannot be
captured through these metrics. Thirdly, since these metrics are designed to eval-
uate the power system’s ability to meet demand in the long term [33], they do not
consider any network-related constraints or uncertainty in demand and VRES
generation.

Despite the disadvantages, the methodology used for calculating these met-
rics is noteworthy because it condenses complex relationships between various
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variables (such as those defined in AC and DC power flow equations) available as
time-series data (yearly load, generation profiles) into a single numerical value
that conveys useful information to the TSO about adequacy of generation in the
power system. To the best of the authors’ knowledge, metrics specifically ad-
dressing the requirements for short-term flexibility quantification highlighted in
Section 4.1 do not exist. Few metrics that do quantify short term flexibility are
furthermore shown to be inaccurate (Section 4.3.1).

In Section 4.3.3, I therefore propose three new flexibility quantification met-
rics. These metrics take inspiration from the methodology used in the calcula-
tion of system adequacy metrics, and use a simulation-based approach to ad-
dress the requirements listed in Section 4.1 for a useful flexibility metric.

4.3.3. PROPOSED METRICS

Revisiting the requirements for a useful flexibility metric from Section 4.1, I pro-
pose three flexibility quantification metrics derived from scenario-based simu-
lations. The proposed metrics provide a comprehensive overview of the opera-
tional flexibility available to the FSP from its portfolio. However, to understand
and derive the metrics, it is first important to define the following terms:

• Flexibility Request (FR) signal: The FR signal (denoted by π) is a time series
of power set-points that the FSP receives from the FRP.

• Unserved Flexibility (UF) signal: The UF signal (denoted by Pπ
UF) is deter-

mined after running an operational simulation using the FR signal. The
FSP aims to follow the FR signal as closely as possible by controlling and
coordinating the resources in its portfolio. Therefore, any non-zero val-
ues of Pπ

UF will imply the FSP is unable to fulfill some part of the flexibility
request. Technically, if Psh is the power signal that represents the power
shifted by FSP to fulfill the FR signal, then, I can define Pπ

UF as UF signal
with Eq. (4.5).

Pπ
UF(t ) = |π(t )−Psh(t )| (4.5)

Here, the value of UF signal Pπ
UF at each time step t is the absolute value of

the difference between value of FR signal and Psh at time step t . Now, I can now
define the three metrics:

EXPECTED UNSERVED FLEXIBLE ENERGY (EUFE)
The energy in the UF signal (Pπ

UF) after serving a flexibility request π is the un-
served flexible energy (UFE). However, the FR signal is an uncertain quantity for
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the FSP to determine. To address uncertainty in the flexibility evaluation, the FSP
considers a range of FR signals (π1,π2 . . .πn ∈Π) to obtain the expected value of
the UFE. This expected value is termed as Expected Unserved Flexible Energy
(EUFE) and calculated using Eq. (4.6). The EUFE metric is similar to the calcula-
tion of the power system reliability metric Expected Unserved Energy.

EUFE = 1

Nπ
·

Nπ∑
πi=1

(∆t ·
T∑

t=0
Pπi

UF[t ]) (4.6)

Here, Pπi
U F is the UF signal corresponding to the FR signal πi and defined in

MW ,∆t is the time resolution of UF signal in hours and Nt is the total time steps
in the UF and FR signals, and Nπ is the total number of FR signal scenarios.

EXPECTED DURATIONS OF INSUFFICIENT FLEXIBILITY (EDIF)
The Expected Duration of Insufficient Flexibility (EDIF) is a graphical measure of
flexibility. It aggregates the UF signal calculated after analyzing all the Nπ num-
ber of UF signals to generate an overview of the time periods of insufficient flex-
ibility in the portfolio and its direction and presents it as a heatmap. Each cell
(m,n) in the mth row and nth column of the heatmap is value of Pπi

UF signal at in

the mth scenario and nth time interval.

EXPECTED FLEXIBILITY INDEX (EFI)
Expected Flexibility Index or EFI provides a more general and intuitive indica-
tion of the flexibility of a portfolio. EFI is a unitless measure of the operational
flexibility of the portfolio. It is the expected value of F̂π(0) calculated over the
set of FR signals (π1,π2 . . .πn ∈ Π). Here, F̂π is the Empirical Cumulative Distri-
bution Function (ECDF) (shown in A.1) of the UF signal Pπ

UF. F̂π(0) denotes the
fraction of the UF signal π that is zero. The FSP’s ability to fulfill the FR signal is
indicated by F̂π(0), which is the fraction of the total time steps where the value
of Pπ

UF is 0. The FSP is completely flexible to fully service the FR signal π when
F̂π(0) = 1. Conversely, the FSP is completely incapable of servicing any FR signal
when F̂π(0) = 0. While no particular value is a reference for EFI, the FSP should
desire a value as close to 1 as possible.

4.3.4. APPLYING THE PROPOSED METRICS

Increasing distributed VRES, especially utility-scale wind and solar PV, has led
to the emergence of entities such as virtual power plant operators (VPP), which
aggregate these power-generating sources for trading their electricity on mar-
kets such as the day-ahead market. However, as with any VRES, which depends
on unpredictable weather conditions for power generation, generation surpluses
and deficits are common. Mitigating these imbalances is essential for the VPP to
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avoid penalties. FSPs with a portfolio of flexible energy resources find an essen-
tial role to play in this scenario. The FR signals, in this case, will be defined with
forecasts of deviation in scheduled power generation from the VRES in the VPP
portfolio. The FSP can use these forecasts of FR signals to assess flexibility in its
portfolio to service the VPP.

Similarly, congestion is an issue commonly encountered in electricity dis-
tribution networks. Many factors contribute to the issue of congestion within
the distribution network. These include increased adoption of solar rooftop PV,
higher peak loads due to electrification of heating, mobility, etc. Until DSO can
upgrade its network capacity, it uses market-based solutions such as flexibility
markets, day-ahead dynamic pricing, and non-market-based solutions such as
bilateral contracts for demand response with industrial loads. If this does not
work, it must use direct control methods such as network reconfiguration, trans-
former tap changing, and active and reactive power control of loads [34]. Direct
load control measures can be undesirable for customers. An FSP can provide
flexibility to the DSO to alleviate its congestion problems. As with the previous
example, the FSP finds an essential role. FSPs can intelligently modulate the op-
eration of the flexible resources in their portfolio and provide this flexibility to
the DSO. The FSP can use the introduced metrics to assess operational flexibility
in its portfolio. In this thesis, I focus on the two aforementioned power system
challenges.

For these power system challenges, the FSP uses proposed metrics as part of
the flexibility assessment of its portfolio (as shown in Fig. 4.1). The FSP calculates
EUFE and EFI along with the EDIF heatmap and uses these to update and tune its
DRP such that the portfolio is as flexible as possible to service the forecasted FR
signals. The calculated metrics, therefore, allow the FSP to quantify the impact
of modifying DRP in use on available flexibility from the portfolio. If the portfo-
lio has sufficient flexibility to fulfill the forecasted FR signals, there is no need to
update the DRP or procure additional flexibility. However, if the operational sim-
ulation results in insufficient flexibility, then the FSP has an option to update its
DRP. As will be shown using examples in the following chapter, by modifying the
parameters of the DRP, a portfolio can be made more flexible. If changes in DRP
do not lead to any improvement in the value of the metrics, i.e., there still exist
instances of insufficient flexibility after an operational simulation is conducted,
then the FSP can procure additional flexibility from external sources itself (such
as intraday market, or contracting additional flexible units).

It must be noted here that both the FR signal and the UF signal (input to the
operational simulation and the output generated from it) are time series charac-
terized by signal time resolution ∆t and the total number of time steps Nt . The
resolution of this time series depends on the type of service FSP provides. For ex-
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ample, an FSP provides flexibility to address challenges such as congestion man-
agement, VRES power forecast error balancing, and others where the FR signals
are specified in sub-hourly intervals (1 min, 5 min, 15 min, etc.), ∆t will be in
the same time scale. However, for an FSP providing frequency support service
(where the FR signal would be the AGC signal), ∆t will be in seconds. In either
case, once these signals are known, the proposed metrics can be calculated. It is
also helpful to note here that in planning for operational flexibility of its portfo-
lio, the FSP always looks to maximize its ability to service any flexibility request
it expects to receive.

4.4. DISCUSSION
Flexibility is an unavoidable necessity of the future power system, and FSPs will
play a significant role in ensuring its availability. Therefore, the ability to quantify
flexibility is necessary for the FSP to operate. In this chapter, I started with eval-
uating existing methods for flexibility quantification and assessment. The focus
was on accurate quantification of short-term operational flexibility considering
peculiarities arising from activation of flexibility, particularly demand response.
It was shown, analytically, that the Minkowski Summation method was insuffi-
cient for estimating and assessing flexibility from a portfolio of resources with
diverse characteristics. A simulation-based approach was therefore proposed.
Additionally, I proposed three metrics to quantify the flexibility of a portfolio of
flexible energy resources. These metrics are designed to process the data gener-
ated from the proposed simulation-based approach and provide a quantifiable
way to gain insights into the flexibility of a portfolio of flexible energy resources.

However, there are a few limitations to the proposed simulation-based ap-
proach and the metrics introduced. The first one is computational complex-
ity. The metrics are computed using scenario-based simulations, which involve
executing FSP’s operational policy subject to individual resource dynamics and
constraints. Firstly, I assume that a model accurately represents the real-world
physical system. Any approach suffers from modeling assumptions and inac-
curacies when compared to reality. Secondly, if additional model complexity is
included for more realistic representation (for example, including network con-
straints such as heat network transport delays, electric network voltage viola-
tions, etc.), the simulation problem can be hard to solve and become time-consuming.
To overcome this, scenario simulations must be well formulated.

A second limitation of the method is that the quantification process depends
on the accuracy of scenarios of the FR signals. While the forecasted signals will
never be 100% accurate and will introduce uncertainties in the results, advanced
scenario generation and reduction techniques can partially offset these limita-
tions. Finally, the metrics EUFE and EFI provides a single expected value of the
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UFE, which is generated from scenario simulations. This can be deceiving if
not properly used. Since this is an expected value, extreme values are usually
masked. This can lead to issues if the FSP is looking for robust solutions. In
Chapter 5, these challenges are highlighted with illustrative examples.

4.5. CONCLUSIONS
The chapter focused on the problem of quantification of operational flexibility
from a portfolio of flexible resources. Firstly, available and operational flexibility
in power systems was clearly defined and differentiated. Next, existing methods
to quantify flexibility were shown to be inadequate. I then proposed three new
metrics: EUFE, EDIF, and EFI, to measure portfolio flexibility. The metrics are
shown to be calculated analytically using scenario-based simulations.
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5
USE CASES FOR THE PROPOSED

METRICS

5.1. INTRODUCTION
In Chapter 1 I introduced power system challenges requiring flexibility, such as
VRES forecasting errors, congestion management in both transmission and dis-
tribution networks, etc. To put it in the context of this work, these power sys-
tem issues determine the flexibility request signals or FR signals introduced in
Chapter 1. In this chapter, I present two use cases to illustrate the FSP’s use of
proposed metrics in addressing these challenges.

5.2. EXAMPLE STUDY 1
In this first example, I focus on the issue of flexibility caused by VRES forecasting
errors. To illustrate this, consider a region’s virtual power plant (VPP) aggregat-
ing distributed wind generators. The VPP optimizes its power exchange for each
hour of day D with the external grid by executing a day-ahead scheduling pro-
gram on D-1. The VPP is also a BRP; once the TSO confirms the schedule, it is
solely responsible for any imbalance in its portfolio. Since the VPP is a collec-
tion of distributed VRES, forecasting errors and imbalances are inevitable. It,
therefore, requires flexibility to avoid unforeseen costs arising from the result-
ing imbalance. The VPP contracts an FSP to obtain this flexibility. The FSP can
use multiple electrical and thermal loads connected to the local electric and heat
network and exploit their flexibility. Therefore, the FSP must evaluate its portfo-
lio’s flexibility to adequately assist the VPP in managing its imbalance.

Parts of this chapter have been published in Elsevier’s International Journal of Electric Power and
Energy Systems [1].

91



5

92 5. USE CASES FOR THE PROPOSED METRICS

5.2.1. FSP’S PORTFOLIO DESCRIPTION

In this example, the portfolio of the FSP is a multi-energy system (as shown in
Fig. 5.1). Selecting the FSP portfolio as a multi-energy case study instead of a
pure power system is natural. As motivated in Chapter 1, the P2X resources are
increasingly prevalent in our energy system and, consequently, lead to tighter
integration between electricity and other energy sectors. Therefore, the flexibil-
ity of these resources requires the integrated system to be analyzed as a whole.
The electric network interfaces to the higher voltage level via the main substation
(here represented as an external grid (EG)). Two additional substations (SS1 and
SS2) are servicing two feeders (F1 and F2). These substations are connected to EG
via underground cables. SS1 connects a small-scale fuel cell (FC) to the electrical
grid, while SS2 is connected to a large electrical boiler (EB). The EB interfaces the
electrical grid to the local heat grid. The heat grid is responsible for supplying
necessary heat to two nearby greenhouses (GH-A and GH-B). For emergencies,
the heat grid also contains a gas boiler (GB) operated using natural gas. A ther-
mal storage (TS) tank is available as a buffer to reduce the dependence on GB. A
building load (B) is connected to SS2 via a heat pump (HP). The FSP controls F1,
F2, FC, and EB. Additionally, it controls the temperatures inside the building (θB)
and the greenhouses (θGH). The building temperature is controlled by modulat-
ing the HP power, while the temperatures inside GH-A and GH-B are controlled
by modifying the thermal power demand of greenhouses. The FSP controls the
EB and GB thermal power outputs to meet the thermal power demand. PFR is
a negative power systems load that represents the FR signals. The model of FR
signals is explained in the next subsection. Table 5.1 lists the upper and lower
limits of power and ramp rates of flexible resources in the given portfolio.

5.2.2. FR SIGNALS

In this case, the VPP is considered to have a significant amount of wind power
in its portfolio. Due to the inherent uncertainty in wind speeds, there almost al-
ways exists a difference between the day-ahead committed power from the wind
generator and the actual power generated, which gives rise to wind power fore-
casting errors. In this case, I assume that the VPP portfolio is dominated by wind
power, and therefore, the VPP’s flexibility requests comprise mainly of these wind
power forecasting errors. The FSP receives this FR signal from the VPP to miti-
gate the forecast errors from its renewable-rich portfolio throughout the day. To
plan for this, the FSP conducts an operational simulation of the portfolio using
forecasts of FR signals. In [2], wind power forecasting errors can be modeled us-
ing a Gaussian distribution. The Gaussian model is parameterized by N (0, 0.1).
This model generates forecasts of FR signals for Ns = 10 scenarios. A dummy
power system load at the point of connection of VPP to the grid represents the
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Figure 5.1: Proposed multi-energy system setup representing the FSP’s portfolio. The red area rep-
resents the heat network, while the black part represents the electricity network. All the resources
in FSP’s portfolio are highlighted with green dashed lines. EG: External Grid, FC: Fuel Cell, HP:
Heat Pump, B: Building, EB: Electric Boiler, GB: Gas Boiler (for peak demands), TS: Thermal Stor-
age, GH: Greenhouse.

Resource Parameter Value Unit

EB P EB, P EB 0, 1 MW

Fi P F,i , P F,i 0, 3 MW

Fi r ↓
F,i , r ↑

F,i -3, 3 MW/PTU

FC P FC, P FC 0, 3 MW

FC r ↓
FC, r ↑

FC -3, 3 MW/PTU

HP P HP, P HP 0, 2 MW

HP r ↓
HP, r ↑

HP -2, 2 MW/PTU

B θB, θB 24, 25 °C

GHi θGH, θGH 33, 34 °C

GB P th,GB, P th,GB 0, 0.5 MWth

TS P th,TS, P th,TS -0.5, 0.5 MWth

TS STS, STS 0, 0.5 MWhth

Table 5.1: Parameters for resources in the FSP’s portfolio.
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FR signals. For the use case defined here, since FR signals represent the VRES
forecasting errors, which can be positive or negative, the value of PFR can also be
positive and negative depending on whether a surplus or deficit of VRES genera-
tion needs to be corrected respectively.

5.2.3. OPERATIONAL SIMULATION

As was mentioned in Section 4.2 and Section 4.3.4, the FSP looks to maximize
its ability to service any flexibility request (π) it receives from the VPP. In other
words, the FSP’s operational policy minimizes the EUFE given by Eq. (4.6). In
most markets, imbalance penalties are determined based on the magnitude and
direction relative to the system imbalance position. If the BRP contributes to the
system imbalance position, it is fined, while if its imbalance lies in the opposite
direction relative to the system imbalance position, it is remunerated. There-
fore, there is an opportunity for an entity to make money if it can ensure that
its imbalance lies in a direction opposite to the system position. However, this
depends on the accuracy of the forecast of system position, which can be tricky.
Therefore, in this study, to simplify the matter, I minimize the absolute Pπ

UF sig-
nal. This objective implies that the focus is on reducing the magnitude of im-
balance regardless of its direction. The study is focused on understanding the
impacts of the thermal temperature range of devices connected directly (B) and
indirectly (GH-A, GH-B, TS) to the electricity grid on flexibility. In this example
study, I set ∆t = 15 min and Nt = 96 to represent an optimal re-dispatch for an
entire day. It must be noted, however, that it is also possible to consider finer
resolution signals with ∆t = 5 min or ∆t = 1 min to quantify flexibility using the
proposed method and metrics when resources such as electrolyzers and battery
systems are included where the sub-PTU dynamics can be more relevant in the
quantification process.

5.2.4. OVERVIEW OF CASE STUDIES

In total, in this example, I investigate five cases. These are divided into three
subsections for easier understanding. The first subsection is Flexibility Assess-
ment using Minkowski Summation. This assessment of portfolio flexibility is
conducted using Minkowski summation. To compare and contrast the result of
this method with the proposed method, flexibility in the portfolio is also assessed
with the simulation-based approach. The simulation is modeled as an optimal
dispatch problem with the objective to minimize UFE subject to equality and in-
equality constraints defined in A.2 and parameterized using Table 5.1. This is
then taken as the base case C5.1.1. Each subsequent case builds on the results
from the previous cases. The second subsection is Flexibility Assessment for De-
signing DRP. In this subsection, I formulate and investigate two cases (C5.1.2,
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C5.1.3), built upon the results from C5.1.1 Herein, I show the use of proposed
metrics and the heatmap to assist the FSP in updating and tuning its DRP as
mentioned previously in Section 4.2 and making the portfolio more flexible. The
third subsection is Flexibility Assessment for Intraday Market Participation. In
this subsection, two more cases (C5.1.4 and C5.1.5) are formulated and inves-
tigated, further building on the results from C5.1.3. The idea here is to show
the use of the proposed metrics and heatmap in assisting the VPP+FSP entity
in planning and covering for flexibility shortages using the intraday market. The
simulations take the form of a MILP problem, which is modeled in Python us-
ing pyomo [3] framework and solved using the Gurobi solver. All the simulations
are carried out on a dual-core Intel i7-10510U CPU @ 1.80GHz running Ubuntu
20.04. The cases are further explained in the following subsections.

FLEXIBILITY ASSESSMENT USING MINKOWSKI SUMMATION

This method explicitly takes into account only the ramp rates (in MW/min) of
the electrical assets of the FSP —F1, F2, FC, EB, and HP. In other words, the flex-
ibility of resources connected to the heat grid —TS, GH-A, GH-B, GB, and the
operational inter-dependencies resulting from sector coupling are not captured
by this method.

As discussed previously, Minkowski Summation for flexibility assessment is
not based on simulation but on set summation. The FSP using this method for
flexibility assessment does so by calculating the aggregated power deviation and
ramp rate available from the resources’ planned operational state (the D-1 opti-
mal power schedule) for each required interval of time and at each required time
step using Eq. (4.1). This gives static upper and lower bounds on the power ex-
cursions that its portfolio can take at each time step interval. For this MES case,
the Minkowski evaluated bounds are shown in Fig. 5.2.

Figure 5.2 can be interpreted as follows: the FSP is assured that there is enough
flexibility in the portfolio to fulfill any received FR signal it receives at any time.
In the rest of this section, I will use the metrics proposed in this paper to show
that this characterization is invalid. A significant limitation here, in addition to
previously mentioned issues, is that the assessment from this method does not
inform the FSP of changes occurring in the event of the activation of flexibility in
any resource. In such an event, the resources and, consequently, the portfolio’s
operational state change. The available power deviation and ramp rate from the
resource change for a subsequent time step directly impact the flexibility avail-
able in subsequent periods. Therefore, a re-assessment of portfolio flexibility is
needed every time flexibility in a resource is activated.

To compare with the method proposed in this paper, flexibility is evaluated
by conducting a simulation-based assessment and then calculating the proposed
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Figure 5.2: Assessing flexibility using Minkowski Summation. The red lines indicate the FR signal
scenario set. The black dashed lines indicate the upper and lower levels of allowable power excur-
sion calculated using the Minkowski method. The available flexibility bound is calculated in each
PTU for the next PTU.

metrics for this case. In this baseline case C5.1.1, the parameters values in Ta-
ble 5.1 for defining operational constraints given by Eqs. (A.3) to (A.15) form the
DRP. The temperature in the office building is to be maintained between 24°C
and 25°C . For the greenhouses, the temperature must be maintained between
33°C and 34°C . The total load on feeders F1 and F2 cannot be ramped by more
than 3MW in either direction per PTU. The fuel cell generator’s power rating is
3MW, which limits its flexible operation. The values for the parameters are sum-
marized in Table 5.1.

For C5.1.1, the operational simulation results in a EUFE value of 1.858 MWh.
Although the EFI is relatively high, a closer look at FR and UF signals in the worst-
case scenario in Fig. 5.3 shows that while the FR signal is absorbed in most parts
of the day (Pπ

UF = 0), the UF signal still has significant and frequent variations
in the remaining time steps. The presence of non-zero values in the UF signal
(Pπ

UF) highlights the insufficiency in flexibility in the portfolio to service the cor-
responding FR signal (π). Furthermore, the energy in the FR signal is 1.92 MWh,
whereas the energy in the UF signal corresponding to this FR signal is 1.858
MWh. This result indicates that the DRP in use merely aggregates and shifts the
energy in the FR signal, and there is little flexibility in the portfolio. Therefore,
the current DRP is highly ineffective. As is visible in Fig. 5.4, the expected time
instances (PTUs) where the FSP’s portfolio flexibility is insufficient to service the
FR signal scenario set Π are shown. Applying the ECDF function on the FR sig-
nal set (Π) and corresponding UF signal set (PΠUF) yields Fig. 5.5 which helps to
visualize and calculate EFI. In C5.1.1, the EFI is 0.906.
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Figure 5.3: The FR signal π7 for scenario 7 (black) and the corresponding Pπ7
UF signal (red) in C5.1.1

which has the worst UFE. While the flexibility requests are serviced in most parts of the day (Pπ7
UF =

0), the UF signal still has large and frequent non-zero values in the other time instances, indicating
that the DRP is ineffective.
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Figure 5.4: EDIF heatmap for C5.1.1. As mentioned in Section 4.3.3, each cell in a row represents
the value of Pπ

UF. Using the color bar as a legend, it is visible that in each scenario, there are
instances of insufficient flexibility, or unserved flexibility, early in the morning, in the daytime,
and then again at late night. The specific instances and magnitude of insufficient flexibility in
each scenario are different, which is expected. Pπ

UF in each scenario is a result of an operational
simulation, a representation of system behavior if the forecast of FR signals was realized. Since the
forecast in each scenario is different, the portfolio behavior, and consequently, Pπ

UF is different.
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Figure 5.5: The ECDF of the FR signal set and UF signal set obtained from scenario simulations
for C5.1.1 helps to visualize and calculate EFI. An (x, y) value on this curve indicates the ratio y,
of values in the input signal less than or equal to value x. Here, vertical lines depicting Pπ

UF in red
indicate that over 85% of values in the UF signal for every scenario are serviced. This figure also
shows that power values in the UF signal set are much larger than in the FR signal set.

FLEXIBILITY ASSESSMENT FOR DESIGNING DRP
It is visible from the calculated metrics, and the EDIF heatmap in C5.1.1 that used
DRP on the portfolio is highly insufficient to service the FR signal set, despite the
assessment made using the Minkowski Summation method. The largest mag-
nitudes in the set of Pπ

UF can be seen particularly in the early mornings, midday,
and then late-night periods. The FSP will want to reduce the EUFE of its portfolio
while also improving EFI. An obvious source of additional flexibility is tempera-
ture flexibility in thermal loads. An increased range for temperature variability
will proportionally allow increased power variations (Eq. (A.6)) and, therefore,
create greater flexibility in the portfolio. By modifying constraints in C5.1.1, two
new case studies are designed: C5.1.2 and C5.1.3, representing two options for
tuning the DRP.

• C5.1.2: The temperature bands are increased by ±1°C across all three ther-
mal loads (B, GH-A, GH-B). Since the modification is time-invariant, this
is referred to as additional non-targeted DR.

• C5.1.3: The office building temperature bands are relaxed only for time in-
tervals with low expected occupancy. The temperature limits in the build-
ing are set to 22− 27°C between 0000h-0800h, and 1900h-0000h; to 24−
25°C between 0800h-1900h. An additional constraint is added, which en-
sures that the building temperature is equal to 24°C at 0800h (typical start
of work hour). The temperature bands for greenhouses are kept unchanged
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Figure 5.6: EDIF heatmap for C5.1.2. When compared with the EDIF heatmap of C5.1.1 in Fig. 5.4,
it can be seen that the cells are reduced in intensity. This result implies that compared to C5.1.1,
the portfolio can absorb FR signals more effectively. This reduction is made possible by increasing
temperature bands on all thermal loads, which leads to significant reductions in durations of in-
sufficient flexibility compared to C5.1.1.

from C5.1.1. The reason for this choice of DRP stems from the knowl-
edge that crop yields are sensitive to ambient temperature variations, and
therefore maintaining the greenhouse temperature will have greater prior-
ity than maintaining thermal comfort in the office temperature. Since this
DR strategy has time variance, it is referred to as additional targeted DR.

The operational simulation of C5.1.2 with updated temperature ranges re-
sults in a EUFE of 0.746 MWh. This shows a reduction in EUFE of the portfolio by
≈ 60% compared to C5.1.1. The EFI of 0.934 corroborates the result that increas-
ing temperature bands by ±1 degrees on all thermal loads can provide significant
flexibility to the FSP. This is also visible with the EDIF heatmap in Fig. 5.6 where
the individual cell values are reduced in intensity and frequency of occurrence
across all scenarios. It can be observed that for the same PTUs with a high mag-
nitude of unserved flexibility in C5.1.1, the corresponding values for C5.1.2 are
lower, some even reduced to zero. Although the magnitude and frequency of oc-
currence of unserved flexibility are reduced to some extent, it exists prominently
in most scenarios.

With C5.1.3, the operational simulation resulted in a EUFE value of 0.608
MWh, whereas the EFI is calculated to 0.948, which suggests that C5.1.3 offers
an improvement over C5.1.2 and is, therefore, a more effective DRP. The de-
crease in EUFE values compared to C5.1.1 and C5.1.2 can be explained by the
fact that the building heating load is directly connected to the electricity grid,
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Figure 5.7: EDIF heatmap for C5.1.3. Compared to the EDIF heatmap in C5.1.2, in Fig. 5.6, it is seen
that cells are further reduced in their intensity, and most cells are zero. This reduction is made
possible by using targeted demand response from office building load by modifying temperature
bands provides slightly more flexibility to the system than C5.1.2.

whereas the greenhouses are connected to the heat grid. While the heat storage
tank, along with the peak boiler and the electric boiler, serves the loads in the
heat grid, the heat load for the building is supplied only from the electricity grid.
Thus, the flexibility of the building thermal load is directly available to the power
system, whereas flexibility from greenhouses is indirectly available, also depend-
ing on the operating state of resources in the heat network. The EDIF heatmap
for C5.1.3 shown in Fig. 5.7 shows the values of the unserved flexibility signal.
Although there is not a significant difference, there seem to be lesser times of
insufficient flexibility across all scenarios compared to C5.1.2.

The temperature of the office building and the greenhouses is also shown in
Fig. 5.8. The larger temperature variation range in the early morning and night
periods allows the building load to be more flexible with temperature variations,
thus providing increased flexibility to the FSP.

As shown in these cases, the metrics EUFE, EFI, and EDIF heatmap help
the FSP to compare flexibility from different DRPs and resources quantitatively.
These results have been summarized in Table 5.2. It can be seen from improved
EFI, and EUFE values that targeted DR actions will have a more significant im-
pact on the operational flexibility of the FSP portfolio.

FLEXIBILITY ASSESSMENT FOR INTRADAY MARKET PARTICIPATION

Although many more combinations of DR actions can be evaluated, for brevity, I
assume that this is the maximum flexibility that the FSP can obtain from its port-
folio. This assumption implies that the EUFE of 0.608 MWh (value from C5.1.3)
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Figure 5.8: The temperatures (θ) profiles for greenhouses and office building in the FSP portfolio.

Case EUFE EFI EDIF

C5.1.1 1.858 0.906
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C5.1.2 0.746 0.934
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C5.1.3 0.608 0.948
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Table 5.2: Overview of results C5.1.1 to C5.1.3.
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still needs to be procured from external sources, and therefore, the FSP relays
this information to the VPP. In this example, the additional flexibility is procured
by the VPP from the intraday market. Two strategies (and consequently, two new
cases) for the VPP are envisioned:

• C5.1.4: VPP is a risk-neutral entity and buys energy equivalent to the aver-
age UFE in each PTU in C5.1.3.

• C5.1.4: VPP is a risk-averse entity and buys energy equivalent to UFE in the
worst-performing scenario in C5.1.3.

In C5.1.3, the EFI value was 0.948, which implies that, on average, the port-
folio was able to service flexibility requests for 94.8% of the 96 PTUs (leaving ≈ 6
PTUs to be filled) evaluated for each scenario. Therefore, on average, 0.608 MWh
of energy needs to be procured for 6 PTUs per scenario. The location of these
PTUs in the day can be approximated by analyzing the EDIF heatmap. Consid-
ering the EDIF heatmap for C5.1.3, the six periods of insufficient flexibility are
PTUs 12, 28, 31, 45, 76, and 78. Therefore, 0.608 MWh/6 = 0.101 MWh of energy
needs to be procured for each of the 6 PTUs.

In C5.1.4, I specify the power bought from the intraday market (PID(k)) at
PTU k in Eq. (A.4) as 0.101 MWh/0.25h = 0.405 MW for each of the 6 PTUs listed.
On executing the operational simulation, the EUFE value is calculated at 0.077
MWh, while the EFI is 0.987. The corresponding EDIF heatmap is shown in
Fig. 5.9. The obtained values can be reasonably explained despite the expec-
tation that procuring the calculated amount of energy will result in ideal EFI (=1)
and EUFE (=0) values.

Investigating the EDIF heatmap for C5.1.3, it can be seen that inflexibility
only occurs in a few scenarios at isolated PTUs, each of which is of different mag-
nitudes. In C5.1.4, I calculated the power to be procured from the intraday mar-
ket using expected values (EUFE and EFI). This approach masks a magnitude of
insufficient flexibility in each PTU and scenario. For a risk-neutral VPP, this could
be an acceptable solution since the EDIF heatmap suggests that most of the in-
flexibility is measured for some scenarios and only at a minimal number of PTUs.
An EFI close to 1 (0.987) reaffirms that the small inflexibility is likely to occur in
one or two PTUs in only a few scenarios.

In C5.1.4, the FSP is a risk-averse entity, which means it would analyze the
worst-case scenario and plan its market participation accordingly. To achieve
this position, more attention needs to be paid to the EDIF heatmap from C5.1.3.
The scenario with the highest unserved flexible energy is selected, and intraday
market participation is derived by analyzing this scenario. For C5.1.3, this is sce-
nario 7. The unserved flexible energy in scenario 7 is 0.82 MWh and is seen in
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Figure 5.9: EDIF heatmap for C5.1.4. The energy to be procured from the intraday market is calcu-
lated based on the EFI and EUFE values, along with EDIF heatmap from C5.1.3.

Case Characteristics EUFE (MWh) EFI Cost (e)
C5.1.1 Baseline 1.858 0.906 38696
C5.1.2 Additional non-targeted DR 0.746 0.934 15536
C5.1.3 Additional targeted DR 0.608 0.948 12662
C5.1.4 IDM with risk-neutral VPP 0.077 0.987 1603
C5.1.4 IDM with risk-averse VPP 0.0 1.00 0

Table 5.3: Flexibility metric values for different cases

PTU 1, 2, 7, 16, 32, 82, and 96. This indicates an insufficient energy equivalent
to 0.82 MWh/6 = 0.1171 MWh for each PTU that needs to be procured from the
intraday market. The value of PID for these PTUs is set to 0.1171 MWh/0.25h =
0.4686 MW in Eq. (A.4). The operational simulation with the updated values of
PID results in EUFE of 0, and EFI of 1. The EDIF heatmap for C5.1.4 is shown in
Fig. 5.10, where it can be seen that there are no streaks, implying in all scenarios,
flexibility requirements are fully met with the proposed intraday market partic-
ipation. The FR and UF signals for the evaluated scenario seven are shown in
Fig. 5.11. Figure 5.12 represents the ECDF chart for signals in C5.1.4. The results
from the cases are summarized in Table 5.3 and plotted in Fig. 5.13.

5.2.5. ECONOMIC ANALYSIS

While EUFE indicates the volume of the flexible energy, the value for FSP in using
the proposed method to design DRPs can be best motivated by analyzing the un-
foreseen costs it would incur due to inaccurate flexibility assessment. In the UK,
according to ref. [4], the average imbalance price in 2019 was 57.06e/MWh. The
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Figure 5.10: EDIF heatmap for C5.1.5. No streaks indicate that the expected procured energy from
the intraday market will be sufficient to guarantee that any expected flexibility request from VPP
can be accommodated.
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Figure 5.11: This figure shows the FR signal π7 for scenario seven and the corresponding UF signal
Pπ7

UF for C5.1.5. The unserved flexibility is zero, implying the portfolio can fulfill the FR request.
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Figure 5.12: This figure shows the ECDF curves for FR and UF signals in C5.1.5. A vertical line of
the UF signal at 0 shows that the flexibility index is 1, implying a fully flexible portfolio.
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Figure 5.13: Comparison of EUFE and EFI for all 5 cases.
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Figure 5.14: Comparison of imbalance penalties for the FSP when using the Minkowski Summa-
tion method (C5.1.1) and proposed method for flexibility assessment (C5.1.2, C5.1.3, C5.1.4, and
C5.1.5). The costs are yearly cumulative imbalance costs faced by the considered FSP due to insuf-
ficient flexibility in the portfolio.

Minkowski summation method for flexibility quantification suggested that port-
folio flexibility was sufficient to fulfill every FR signal request at each time step.
However, using the simulation-based approach, I determined that the EUFE is
1.858 MWh. For the FSP, this directly translates to a yearly cost of e 38696. With
tuning of DRP, as shown with C5.1.2 and C5.1.3, the FSP can reduce the EUFE
to 0.746 MWh and 0.608 MWh, respectively. Consequently, its imbalance costs
decrease to e 15536 and e 12662 respectively. When FSP engages in timely in-
traday or day-ahead market participation to correct this expected insufficiency in
the flexibility calculated in C5.1.3, then, as shown in C5.1.4 and C5.1.4, the EUFE
and consequently its costs are further reduced to e 1603 and e 0 respectively, a
negligible amount compared to C5.1.1. The economic results are summarized in
Fig. 5.14 and tabulated alongside the technical results in Table 5.3. This analysis
shows that the proposed method offers the FSP a significant economic benefit,
even in highly volatile balancing markets.

5.3. EXAMPLE STUDY 2
In this case study, I focus on the second application area of the proposed metrics
– DSO congestion management. Here, the DSO is considered to contract an FSP
controlling flexible units in the distribution grid to alleviate congestion issues.

5.3.1. FSP’S PORTFOLIO DESCRIPTION

The FSP’s portfolio consists of Ni = 2000 units of integrated electric water boil-
ers each with rated power of Prated = 15kW with electric boiler and storage tank
(EBST). The EBST units service hot water requirements in buildings and residen-
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Figure 5.15: CIGRE medium voltage network used for deriving FR signals. The VRES in the network
is assumed to be solar rooftop PV systems aggregated at the MV node.

tial households. These units are assumed to be scattered all over the distribution
network. The FSP utilizes flexibility in the operation of these EBST units to keep
the temperature in the integrated tank within the acceptable range, in this ex-
ample, between 33° and 34° C. Thermal power consumption and losses to the
ambient environment in the integrated thermal storage tank are taken to be a
constant 7.5 kW.

5.3.2. FR SIGNALS

A CIGRE medium voltage network [5] is used to generate a realistic represen-
tation of FR signals. The network is shown in Fig. 5.15. For each load, a base
load profile is generated using its nominal load value in the CIGRE model and
scaled to a representative load profile that depicts a typical residential consump-
tion pattern in the Netherlands. This representative load profile is obtained from
NEDU (www.nedu.nl). Then, for each scenario, a gaussian model N (Pd [t ],Pd [t ]/10)

www.nedu.nl
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Figure 5.16: For each load in the network in Fig. 5.15, Ns = 10 scenarios are generated, with each
scenario consisting of load profiles for each load. This figure illustrates the constructed load profile
for load 1 for each scenario. Similar load profiles are constructed for every load in the network for
each scenario.

is used to generate load profile for each load. Here, P [t ] is the value at time t for
load d in its base load profile. This model is sampled at each time step t to gen-
erate the load profile for load d for that scenario. Power flow calculations are
executed at every 15-minute interval for a full day to obtain approximate con-
gestion magnitude and time. This is done for Ns = 10 scenarios. The heatmap
in Fig. 5.17 shows that the congestion is most likely to occur during the evening
time when the solar PV generation declines and the general load consumption
increases.

Zooming in on the evening period, as shown in Fig. 5.18, it can be seen that
loading at the transformer can reach up to 180% in specific scenarios. Assuming
that the maximum loading at the transformer is allowed to be only 100% at any
time (although in reality, it can momentarily be around 120%), the FR signal set
is generated by Eq. (5.1), where P ss is the active power through the transformer
at the substation, and nom subscript stands for a nominal power of the trans-
former.

π= P ss −P ss
nom (5.1)

The generated FR signal setΠ is shown in Fig. 5.19.

5.3.3. OPERATIONAL SIMULATION

The FSP controls the operation of EBST to provide flexibility to the DSO. Firstly,
based on the FR signal, the FSP determines the number of EBST units it requires
to turn OFF such that the required reduction in demand is achieved (Nreq). Once
this is determined, the FSP takes stock of the number of EBST units available to
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Figure 5.17: Loading at the substation transformers. The value is the average loading at the two
transformer sites. The axis originates at 100% loading since values below 100% are not interesting
to consider for congestion.
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Figure 5.18: Box plot highlighting congestion in evening period. At every time instance, me-
dian loading (orange lines) at the substations is more than 100%. The box captures values
from the data’s first to the third quartile. Other aspects of the boxplot are explained in https:
//en.wikipedia.org/wiki/Box_plot.

https://en.wikipedia.org/wiki/Box_plot
https://en.wikipedia.org/wiki/Box_plot
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Figure 5.19: FR signals π1,π2, ..π10 ∈Π generated according to Eq. (5.1).

it for the demand reduction process (Nava) from the pool of all units (Ntot). The
following conditions must be met for an EBST unit to be available:

• The temperature of the water in the storage tank is between 33° and 34° C.

• The EBST must already be in ON state (i.e., it must be charging).

If the number of EBST units required Nreq is less than the total number of
units available for demand reduction Nava, then Nreq units are selected at ran-
dom from pool of Nava EBST units, otherwise, all Nava units are selected. To add
realism and complexity to this example, I have introduced a probabilistic vari-
able pa associated with the EBST unit. pa denotes the EBST units’ probability of
acceptance to FSP’s request to turn the unit OFF (for example, due to the user’s
comfort preference, it may not turn OFF the EBST unit). In today’s world, privacy
is of utmost importance. A non-intrusive control scheme, which allows partici-
pants a "master control" over their resources, will always have greater preference
over direct control schemes where FSP controls the participants’ resources out-
right. Providing this option also means that the FSP is now less certain about the
amount of flexibility available in its portfolio. The introduction of this variable
in the simulation helps to evaluate the proposed metrics’ use of the FSP, which
involves probabilistic resource availability.

In Section 2.3.1, I discussed the need for detailed models of thermal storage
systems when considering their flexibility. I established that the small thermal
storage units, such as those used in this example, can be sufficiently modeled
using first-order thermal dynamics. Therefore, the thermal dynamics in EBST
units used in this example are modeled using Eq. (2.17). Each EBST unit uses
an internal rule-based control scheme to maintain the temperature between the
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specified limits. For each scenario simulation, the EBST units use a uniform dis-
tribution function (U (a,b)) for initializing the EBST temperature (U (33,34)) and
a binomial distribution function to initialize the starting ON/OFF state. Each op-
erational simulation provides the UFE value, which can then be used to calculate
EUFE.

5.3.4. OVERVIEW OF CASE STUDIES

To assess the flexibility of the portfolio, three test cases are designed C5.2.1, C5.2.2,
and C5.2.3. These are categorized under two subsections for a clearer under-
standing. In Section 5.3.4 I explain Case 1, where I investigate the flexibility in
the portfolio of 2000 EBST available to the FSP using the Minkowski Summation
method. This static flexibility assessment method does not consider the impact
of flexibility activation on flexibility available in subsequent time instances. In
Section 5.3.4, I assess flexibility using the proposed simulation-based assessment
and calculate the proposed metrics. In this subsection, I investigate two cases,
C5.2.2 and C5.2.3. In C5.2.2, the probability of acceptance, pa = 1. Therefore, the
FSP assesses flexibility, in this case, knowing that all EBST units will accept the
turn OFF signal. In C5.2.3, I examine the impact of the parameter probability of
acceptance by using different values of pa ≤ 1. This sensitivity analysis assesses
the parameter’s influence on proposed metrics EUFE and EFI.

FLEXIBILITY ASSESSMENT USING MINKOWSKI SUMMATION

As in Section 5.2, in this case, C5.2.1, I conduct an assessment of flexibility based
on the current state the EBSTs are in using the Minkowski summation method.
Figure 5.20 shows the number of available EBST units in each time instant in
ON and OFF states averaged over all scenarios. This is calculated by executing
a simple simulation where the EBSTs are allowed to function as normal without
any FR signals given as inputs. The number of EBSTs in the ON state at each time
instant is added up to obtain the total units that the FSP can turn OFF in that
time instant.

As seen in Fig. 5.21, all the FR signals lie below the available flexibility curve
determined using the Minkowski summation method between PTU 76 and 82.
The EDIF heatmap supports this assessment for C5.2.1 shown in Fig. 5.22. The
EDIF heatmap is generated by simulating the portfolio for each scenario. At every
time instant, depending on the state of the EBST unit, the amount of flexible
power available to the FSP to turn OFF is determined and compared to the FR
signal. It is important to note here that since this is a Minkowski summation-
based method, the simulation does not include changes in the state of EBST units
from activation of flexibility. In this case, the nominal states of EBST units are first
calculated and then used to determine available flexibility at each time instant.
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Figure 5.20: Availability of EBST units under nominal operating conditions averaged over all sce-
narios. Every EBST unit’s temperature is initialized using a uniform distribution, while its ON/OFF
status is initialized with a binomial distribution. Due to this initialization, there are an almost sim-
ilar number of EBST units in ON and OFF states (1000) at each time instant.

From Fig. 5.22, it is visible that the portfolio can provide adequate flexibility since
most cells have a zero value except for a few time instances between PTU 76 and
82, indicating insufficient flexibility in those time instances.

The EUFE for this case is calculated at 0.602 MWh, whereas the EFI is 0.9724.
For comparison, the average energy in the FR signal set is 64.42 MWh. Therefore,
the Minkowski method suggests that a portfolio of 2000 EBST units can provide
the majority of flexibility the DSO needs, with a deficiency of only 0.602 MWh
expected.

FLEXIBILITY ASSESSMENT USING PROPOSED METHOD

In C5.2.1, by not considering flexibility requests within the simulation, the flex-
ibility in the system was calculated to be sufficient. However, as mentioned,
changes in EBST unit states due to activation of flexibility at all time instants
were not considered. This assumption impacts flexibility assessment from the
portfolio. This section addresses this assumption by conducting a simulation
where activation of flexibility from EBST units changes the subsequent ability of
the EBST unit to be available for flexibility. Furthermore, in this case, pa = 1;
therefore, it is known with 100% certainty that flexibility signals given to selected
EBST units are accepted. The EDIF heatmap for C5.2.2 is given in Fig. 5.23. This
EDIF heatmap shows that the portfolio is not as flexible as determined in C5.2.1
using the Minkowski Summation method.

The EUFE value also corroborates this finding for this case, which comes to
30.69 MWh, whereas the EFI comes to 0.048, which indicates that, on average, the
portfolio can only fully service 5% of the signals in the FR signal set. Therefore,
the portfolio is not as flexible as it may seem. Figure 5.24 shows the power profiles
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Figure 5.21: The available flexibility calculated from the average availability of EBST units over all
scenarios using the Minkowski method is shown in the black dashed line. This corresponds to the
total power available to be turned OFF at each time instant (obtained by assessing Fig. 5.20). The
red curves correspond to the FR signal set.
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Figure 5.22: EDIF heatmap corresponding to C5.2.1. A few cells have non-zero values between
PTUs 76 and 82, indicating insufficient flexibility in those instances. This result is also corrob-
orated by Fig. 5.21 where part of the FR signal set lies above the Minkowski method’s available
flexibility curve.
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Figure 5.23: EDIF heatmap for C5.2.2. As opposed to EDIF heatmap from C5.2.1, which suggested
that the portfolio was amply flexible, the simulation-based approach suggests that the portfolio is
not as flexible. In each scenario, there are many time instances where the FSP portfolio does not
fully service the FR signal.

of the ten considered scenarios of FR signal set (Π) and the corresponding UF
signals (P UF

Π ) obtained from the simulation.

SENSITIVITY TO pa

In C5.2.1, the EBSTs were assumed to always respond to the FSP signal. However,
in reality, this may not always be the case. The individual EBST unit may decline
to accept the FSP’s request to turn it OFF. This stochastic nature of flexible re-
source operation is important for the FSP to assess flexibility. In this case, C5.2.3,
I evaluate this very phenomenon. Table 5.4 tabulates the change in EUFE and EFI
values for the same simulation setup as in C5.2.2 but with different probability of
acceptance values used for the EBST units. This is also plotted in Fig. 5.25.

Probability of Acceptance EUFE (MWh) EFI
0.5 48.982 3.793
0.6 45.617 3.862
0.7 41.732 4
0.8 38.305 4.069
0.9 34.637 4.138

1 30.690 4.896

Table 5.4: Flexibility metric values for different values of pa for case C5.2.3.

As can be seen, for lower values of pa , the EUFE is closer to EUFE of C5.2.1,
whereas for a pa = 1, the EUFE is equal to that of C5.2.2. This is understandable
since if there is only a 50% chance that the EBST unit accepts the flexibility re-
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Figure 5.24: FR and UF signal sets are shown in black and red, respectively. A UF signal close to
zero implies the FR signal is fully serviced. In this case, in almost all time instances, the UF signal
is non-zero.
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Figure 5.25: Change in EUFE and EFI for different values of pa for case C5.2.3.
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quest signal to turn OFF the EBST, then the amount of flexibility available from
the n selected resources will be lower than the case when it is known with com-
plete certainty that flexibility from all units is available. Using historical data, the
FSP can estimate the participation factor from its portfolio and use that informa-
tion to assess the amount of flexibility in the portfolio.

The DSO uses the information provided by the FSP to determine further ac-
tions on the grid to mitigate congestion issues. These actions are transformer
tap-changes, network reconfiguration, and ultimately load shedding. An accu-
rate and timely assessment of flexibility available to the FSP can help it sup-
port the DSO operation by avoiding untimely and undesirable mitigation actions
such as load shedding.

5.4. DISCUSSION
A simulation-based approach enables a more accurate assessment of the flex-
ibility of a portfolio of flexible resources. A unique advantage of the proposed
metrics is their usefulness in comparing resource flexibility that is defined in
unique ways. For example, in C5.1.2 and C5.1.3 from Section 5.2, the FSP can
compare the value of flexibility provided by altering temperature bands for elec-
tricity grid-connected buildings compared to altering temperature bands for all
thermal loads, two of which are connected to heat grid and therefore coupled
to electricity grid indirectly. Such a comparison can also be conducted for com-
paring flexibility from resources with vastly different operational characteristics,
such as heat pump operation in a heat grid and a battery system in the elec-
tric grid. The introduced metrics allow FSPs to assess the contributions of such
varied forms of flexibility intuitively. This assessment is useful for the FSP to de-
sign appropriate DRPs as shown in Section 5.2 whereby flexibility derived from
time-dependent and time-independent temperature bands for thermal loads are
compared.

Another use for proposed metrics and approach has been shown in C5.1.4
and C5.1.5 in Section 5.2. The applicability of the three metrics to decide par-
ticipation in intraday markets is illustrated. It is a well-known fact that prices of
electricity closer to gate closure time can be highly unpredictable and in many
cases, unusually high. The earlier a trade is made, the lower the uncertainty in
price. Since the EUFE and EDIF heatmap is calculated offline, the information
derived from these metrics can be used to procure any additional flexibility re-
quired well ahead of time.

An interesting point of discussion is the choice of the objective function for
the operational simulation in Section 5.2. There, I have proposed to minimize
the absolute value of the UF signal, which means I am aiming to minimize the
absolute amount of energy in the UF signal, ignoring the direction component
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of the UF signal. This choice is deliberately made for two reasons. One, the im-
balance costs are associated with the magnitude of the imbalance. The type of
payment to be made (either from system to BRP or BRP to system) depends on
BRP’s imbalance relative to the overall power system imbalance (which is a highly
uncertain quantity). If the magnitude of imbalance is minimized, the payment
(in either direction) can automatically be minimized. Two, consideration of di-
rection appends additional complexity to the operational simulation. Although
it was not examined here, the direction of the UF signal can be included in the
objective formulation as required without affecting the quantification process.

Section 5.3, focuses on the use of proposed metrics by the FSP addressing
network congestion challenges faced by the DSO using thermal flexibility in res-
idential electric boiler and storage (EBST) systems. I again illustrated the benefit
of using a simulation-based approach over the Minkowski Summation method
for assessing flexibility. This example brings back findings from Section 2.3.1,
which listed the factors which impact flexibility available from resources utiliz-
ing thermal inertia to support the electrical power system. One of the critical
factors I named there was the rebound effect. The flexibility evaluated using the
Minkowski method did not account for this since the method is a static measure.
Utilizing a simulation-based approach, the FSP can accurately determine and
quantify the impact of this phenomenon.

A key point of discussion in this example is the applicability of proposed met-
rics to quantify flexibility from a portfolio of P2X resources when the behavior of
these devices is probabilistic. This probabilistic behaviour is realized by intro-
ducing parameter pa or probability of acceptance associated with each EBST
unit. The introduction of pa adds realism to the example. In the example, I
evaluate ten scenarios, each representing a different FR signal the FSP expects
to receive from the DSO. However, since resource behavior is uncertain, in each
scenario, multiple operational simulations executed with the same FR signal can
generate different UF signals. It can be argued, therefore, that for each scenario,
multiple simulations are required to accurately calculate the unserved flexible
energy (energy in UF signal, mentioned in Section 4.3.3) and, consequently, to
calculate the EUFE and EFI. However, increasing the number of simulations con-
ducted increases the computation time for calculating the metrics. This leads us
back into discussions on the need to strike a balance between computational
time and result accuracy.

5.5. CONCLUSIONS
In this chapter, I introduced two examples to illustrate the usage of proposed
metrics: the renewable error forecasting problem and the distribution grid con-
gestion issue. Both the examples were formulated from the point of view of the



5

118 5. USE CASES FOR THE PROPOSED METRICS

FSP who serves different FRP. In the first example, the flexibility requester is a
BRP with large distributed VRES and controllable thermal loads, which requires
flexibility to address the forecasting errors from its VRES power plants. In the
second example, the FRP is a DSO that needs the flexibility to address conges-
tion issues at its distribution transformers.

Within these two examples, different case studies are analyzed. In Section 5.2,
I modeled simple resource dynamics and network constraints in an optimal dis-
patch problem. The nonlinearity in the objective formulation was reformulated
to create a standard well-formulated MILP problem. Here, the metrics were shown
to assist the FSPs in designing an appropriate DRP, comparing flexibility from
various resources, formulating operational policies, and identifying potential in-
sufficiency in flexibility provision from a portfolio. Flexibility is provided by re-
sources that interface power and heat energy sectors, P2H systems. It is shown
that flexibility can be extracted not only from resources directly coupled to the
electricity grid but also from those that are indirectly linked to the electricity grid
(in the presented example, these are the greenhouses connected to the heat grid).
The simulation-based approach enables the assessment of this flexibility, and
the proposed metrics allow this flexibility to be quantified. A short economic as-
sessment is also conducted at the end to highlight the value of proposed metrics
for the FSP.

In Section 5.3, I evaluated flexibility from electrical boiler and storage system
(EBST) units to solve the congestion problem. Here, I showed the use of met-
rics and proposed a simulation-based approach to provide an accurate assess-
ment of flexibility in the portfolio and compared it to the Minkowski Summation
method. The FSP and DSO then used this information to mitigate congestion is-
sues. Further complexity was introduced by defining a probability of acceptance
parameter. This parameter dictated the probability of the EBST unit accepting
the FSP’s request to turn OFF. It was shown that the metrics can be used to assess
the impact of uncertainty in resource availability on the flexibility available from
the portfolio.

In both cases, I have shown the usefulness of the simulation-based approach
compared to static approaches such as the Minkowski Sum method for assess-
ing flexibility. The proposed metrics were shown to encapsulate the information
generated from the simulation to provide valuable insights into the flexibility of
a portfolio. Their usefulness to the FSP is shown in the examples presented.
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6
CONCLUSION

I set out to conduct this research to understand, model, simulate, and quan-
tify the flexibility available to future electrical power systems. In this future, the
presence of flexible energy resources, such as electrolyzers, electric heat pumps,
electric boilers, etc., is abundant, owing to increased electrification efforts in our
society. My main objective was to quantify the flexibility available from the intel-
ligent operation of these resources; to come up with metric(s) that are intuitive
and simple yet encapsulate the complexity behind quantifying energy flexibility.
To achieve the research objective, seven research questions (listed in Chapter 1)
were formulated that methodically and systematically have led me to develop a
better understanding of flexibility. In the subsequent sections, I answer these
questions, discuss their applications and implications, and provide suggestions
for future research.

6.1. ANSWERS TO RESEARCH QUESTIONS
In this section, I answer the research questions formulated in Chapter 1.

The amount of flexibility must be expressed with respect to the nature of flexi-
bility requests. What are the flexibility requests of interest for an FSP?

In Section 1.2, I listed various power system challenges which require flexi-
bility. These include frequency response, ramp requirements, VRES forecasting
error mitigation, congestion management, etc. The FSP can address any of these
challenges depending on the characteristics of its portfolio’s flexible resources
and business model. In this work, however, I have explicitly focused on power
system challenges of VRES forecast error mitigation and congestion manage-
ment, commonly faced by balance responsible parties (BRPs) and distribution
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system operators (DSOs), respectively.

The level of detail in a model directly influences outputs obtained from that
model. What impact does model detail have on the accurate assessment of op-
erational behavior and, consequently, accurate assessment of flexibility available
from P2X devices?

Chapter 2 tackles this question. In Section 2.2, I sought to establish the need
to use detailed models over simplified models. Here, a power-to-heat electric
heat pump and a power-to-gas electrolyzer system were modeled in two levels of
detail. In the simplified models, the temperature dependencies within the model
were ignored, as is the case in current literature. In the detailed models, I explic-
itly consider the temperature dependencies between different variables. Out-
puts from the two model representations are compared. I observed distinct dif-
ferences between outputs from simple and detailed models. The significance of
these differences is shown to be dependent on the application of these models. A
slight difference between simple and detailed models of electrolyzers used in the
example may seem insignificant, but it can be significant for purposes such as
frequency response. Additionally, when considering a more significant number
of these resources in a more extensive study (such as national energy transition
scenarios), deviations in results from using the two models can become more
significant. The insight generated from this research was beneficial; the impact
of temperature dynamics on the operation of these devices should be considered
when making operational and planning decisions.

Once the need for detailed models is established, I show, using two examples,
the use of detailed models to extract relevant information in assessing flexibility
from P2X devices. In Section 2.3.1, using a thermal storage system model, I high-
light the influence of complex physical phenomena that dictates the resource’s
flexibility. Specifically, the impact of modeling and considering thermal stratifi-
cation in thermal storage systems on its flexibility and the time taken to simulate
the model is evaluated. It is noted that while greater detail in modeling does ben-
efit flexibility assessment studies, it comes at the cost of computational time. It is
noted that an incremental, iterative approach would suit well in determining ap-
propriate model detail. In this approach, models could be made incrementally
more detailed and be noted for the additional value they bring to the table. When
this value becomes insignificant compared to computational costs, a model can
be deemed to have the appropriate level of detail. The incremental significance
associated with model outputs is tied to the application.

Next, in Section 2.3.2, a detailed model of the power-to-gas electrolyzer is de-
veloped to understand valuable information regarding the degradation of the de-
vice. Using this detailed model, I quantified the adjustments that would need to
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be made in evaluating the resource’s flexibility as time progresses. By conducting
experiments on the applicability of P2X devices for different power system ser-
vices spanning different time durations, I found that the impact of degradation
on the flexibility offered by the device is more useful in long-term studies than in
studies involving shorter time frames. This insight was possible only by studying
the V-I curves obtained from a detailed model of the electrolyzer cell, which once
again underlined the value of detailed models.

Evaluation of flexibility from P2X devices must be done by considering its op-
eration in an integrated setting. How can this be achieved?

In Chapter 3, I highlighted that various components in a multi-energy sys-
tem have different modeling and, consequently, model-solving and simulating
characteristics. To bring together the models of these components, such as P2X
resources, grid models etc., into a single modeling and simulation framework
is challenging. Models of such components are best developed and solved in
domain-specific modeling languages and tools. Accordingly, an open-source
tool that enables assembling these models and executing a coupled simulation,
or co-simulation, was introduced. Using an example case, it was shown how
perspectives and objectives of different stakeholders could be addressed using
ENERGYSIM in an integrated setting. The tool allows using models provided by
the stakeholder themselves. A collaborative effort using co-simulation benefits
the process of flexibility evaluation for a couple of reasons. Firstly, each stake-
holder can model its asset/process in as much detail as needed, enabling access
to only necessary variables while preserving any details about the model, essen-
tially providing a black box system that allays any intellectual property-related
concerns. Secondly, using these detailed models in an integrated setting allows
assessment of operational dependencies between various models and obtaining
a greater insight from the study.

For an FSP, assessing flexibility from a portfolio of various P2X technologies in
an integrated setting, where each P2X device has unique operational characteris-
tics, is essential. ENERGYSIM allows the FSP to conduct a model and simulation-
based portfolio assessment whereby the available subsystem models of portfo-
lio components are developed in different modeling environments, solved using
different solvers, and may be fully encrypted black-box models. Since the specifi-
cation of the time scale of integrated simulation and individual subsystem model
simulation in ENERGYSIM can be freely defined from seconds to hours and days,
a wide range of studies addressing different power system challenges pertinent
to different time scales can be conducted. This includes flexibility assessment
for frequency response (seconds), congestion management (minutes), and VRES
forecast error correction (hours and day-ahead), among others. Therefore, EN-
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ERGYSIM allows the FSP to simulate the behavior of its portfolio to assess its flex-
ibility in addressing the power system challenge of interest.

The metric must convey information on the ability of a portfolio with flexible
resources to fulfill flexibility requests. How can such metric(s) be formulated?

In Chapter 4, I have discussed the factors that characterize a useful flexibil-
ity metric at length. The notion of measuring "ability" of an asset, in this case, a
portfolio of flexible resources, and associating a quantifiable value to it, is com-
plex. In my view, quantifying ability requires defining an associated challenge
that the asset must be able to address. In this case, I aimed to measure the "abil-
ity" of the portfolio of flexible resources to provide flexibility; the challenge takes
the form of defining flexibility requests. Therefore, I measure this ability by quan-
tifying the response of the portfolio when these flexibility requests are provided
as input. When the portfolio is modeled, a simulation-based approach is used
to measure this response and examine it against the input. I derived a quantity
that I called unserved flexibility, which is the portfolio’s response to flexibility re-
quests. Assessing the unserved flexibility then allowed me to measure the "ability
of the portfolio to be flexible" — flexible-ability — flexibility.

Activation of flexibility from a device at any time can lead to changes in the
subsequent ability of devices to provide flexibility. How can the time-dependent
behavior of P2X resources be accounted for in the formulation of the metric(s) de-
scribing flexibility?

As mentioned, a simulation-based approach is taken to evaluate the flexi-
bility in the FSP’s portfolio of flexible resources. A simulation-based approach
has the benefit of inherently taking into account the individual constraints of the
devices in the portfolio, including activation and subsequent unavailability con-
straints (such as due to rebound effect). A simulation-based approach ensures
that the time-dependent operational states of the resources are dynamically up-
dated as the simulation progresses; therefore, its behavior at any time is derived
from not only the specified device and network level constraints but also the cur-
rent and previous state of the resources. This was shown in Chapter 5, where the
state of the thermal storage system at previous time steps was considered while
evaluating flexibility available from the device at the current time step. There-
fore, I could encapsulate the time-dependent behavior within the metric formu-
lation with the proposed approach.

Flexibility requests and availability of P2X devices for providing flexibility are
uncertain quantities to determine. How can the metric(s) capture this uncertainty?

Uncertainty is inherent in any simulation-based assessment. Uncertainty



6.1. ANSWERS TO RESEARCH QUESTIONS

6

125

can creep in from various sources: model parameterization, model solving, input
data, prediction of future states, etc. A scenario simulation approach is proposed
to address uncertainty in flexibility requests that the FSP will receive. By creat-
ing multiple scenarios of flexibility requests and assessing the unserved flexibil-
ity signal obtained by simulation of each scenario of the modeled flexibility re-
quest, the portfolio’s behavior and ability to service flexibility requests are evalu-
ated. This takes the form of the expected value (i.e., mean value) of energy in the
unserved flexibility signal obtained from each scenario simulation. Besides un-
certainty in formulating flexibility requests, resource availability is another form
of uncertainty addressed in this thesis. With growing concerns around privacy
and increasing research on non-intrusive load monitoring and control, this was
an essential criterion to evaluate. The proposed simulation-based approach en-
ables the FSP to assess the influence of uncertain operational behavior of the
portfolio on the flexibility available to it. The introduced metrics can encapsu-
late this behavior into quantifiable information on operational flexibility in the
portfolio, which the FSP can use to determine its operational strategy to service
forecasted flexibility requests fully.

How will such metric(s) be helpful for an FSP?

One critical value of the proposed metrics and the scenario simulation-based
approach is that metric calculation is independent of the type of flexibility re-
quests it processes. As has been said previously in Section 4.3.4, the metrics can
be calculated as long as an FR signal, and corresponding UF signal can be ob-
tained. This is key since different approaches best represent flexibility requests
representing different power system challenges. For example, to model flexibil-
ity requests for the FSP participating in the frequency response market, a time
series modeling technique (such as Auto-Regressive Integrated Moving Average
(ARIMA) models) may be better, whereas, for modeling wind power forecasting
errors, a simple Gaussian/Cauchy model can be used. By separating the quan-
tification process from flexibility request modeling, I ensure that the metric can
measure the flexibility of a portfolio independent of which power system chal-
lenge FSP targets. In this thesis, I showed the applicability of the proposed met-
rics for two power system issues — VRES forecasting error mitigation and con-
gestion management.

Further, in Chapter 5, I provide examples illustrating the use of proposed
metrics to address realistic flexibility issues a representative FSP would target.
These examples employed the proposed scenario simulation-based approach to
quantify the flexibility in a portfolio of flexible resources by considering various
real-world constraints which can influence the flexibility that an FSP can ex-
tract from its portfolio. These included 1) flexibility from resources indirectly
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connected to the electric grid, 2) comparison of flexibility from time targeted
demand response programs (DRPs) and non-targeted DRPs, and finally, 3) the
probabilistic nature of individual flexible resources in adhering to flexibility ac-
tivation signals received from the FSP. Additionally, I compared the benefits of
using the proposed approach against the current method of flexibility evalua-
tion extensively. I also presented an economic study highlighting the benefit of
employing the proposed metrics for the FSP in avoiding unforeseen costs.

6.2. APPLICATION

There are two main contributions from this research that will have real-world
applications. The first one is the rise of entities such as multi-energy system ag-
gregators that combine flexible resources from the integrated energy system. The
absence of metrics that can accurately quantify the flexibility of flexibly operable
resources connected in different parts of the integrated grid is one of the rea-
sons that such an entity does not yet exist. Most aggregators work by pooling
resources of a single category, for example, thermal storage units, electric heat
pumps, building HVAC systems, and others. The availability of proposed metrics
that encapsulates flexibility from resources with diverse characteristics in an in-
tegrated way opens the doors for an entity such as an MES aggregator. Secondly,
the open source tool ENERGYSIM provides a way to couple energy system simu-
lators to come together to perform an integrated system assessment. Although
catering to the energy systems community, ENERGYSIM provides a ready-to-use
functionality to couple any Python-based simulator with another where a time-
dependent behavior of the combined system needs to be assessed. Therefore,
it can find non-energy uses where an assessment of the time evolution of sub-
systems is required in an integrated manner. Immediately, urban area planning
comes to mind as a use case. Consider the availability of models of urban popu-
lation growth, transportation systems, and water and waste management. These
models can be combined to assess how an urban area develops over time and
what policies could benefit the residents.

6.3. FUTURE RESEARCH

The area of flexibility assessment in energy systems still requires extensive re-
search. Here, I list some of the areas that could serve as an extension to the
presented work, as well as some topics that would be useful for the energy com-
munity in assessing flexibility. In this work, I have delved deep into modeling
flexible energy resources. I have established that detailed models are of signifi-
cant value since they help understand and quantify the impact of complex phe-
nomena present in these resources, affecting the operation and, consequently,
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the assessment of flexibility available. Assessing other P2X devices and identify-
ing phenomena directly impacting the flexibility of P2X devices (such as electric
vehicles) is needed. Here, an area of further interest is the inclusion of actors
in the simulation of P2X devices, specifically the behavioral aspects. This can
point to research on the quantification of uncertainty in their behavior, its im-
pact on quantified flexibility in a portfolio of flexible resources with individual
operational policies, etc.

Another meaningful research direction is investigating the uncertainty of model
parameters and the accuracy of model outputs. In the absence of real-world
data, validation of either Model A or Model B was not possible, which meant
that both models are assumed to be accurate. However, an interesting compar-
ison can be made between the value of a non-validated and non-tuned detailed
model and a validated and tuned simplified model. In the case study I presented
in Section 2.2, the detailed Model B is built by adding a thermal subsystem model
to simplified Model A. Therefore, if the simplified Model A is validated and accu-
rately represents reality, then what range of parameter uncertainty in the detailed
model still adds value to the user over using validated simplified models?

Next, the quantification process uses a scenario simulation approach and ad-
vocates the use of detailed models therein. As is shown, this could be a potential
issue when it is required by the application to use a highly detailed and complex
model or use a large number of scenarios. To this end, computationally efficient
methods need to be devised and researched. This includes replacing physical
models with data-driven models such as those based on neural networks and
using techniques such as Multi-level Monte Carlo to speed up computations. An
exciting area within data-driven modeling efforts is physics-informed neural net-
works (PINN). PINNs have attracted much attention in the domain of ata-driven
modeling of physical processes. Such techniques can allow high-speed compu-
tations and simulate hundreds of scenarios. This finds use in concepts such as
in Digital Twin, where a faster than the real-time model could benefit users in
devising mitigation and correction actions for various flexibility issues such as
congestion in real-time.

The use of these metrics to assess the flexibility of P2X devices for frequency
reserve services in power systems and the use of the proposed metrics for power
system expansion and planning problems is also interesting area for future re-
search. Planning for future power systems which consider the benefits of short-
term operational flexibility quantified in this thesis can lead to a more efficiently
designed and operated power system.
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A.1. EMPIRICAL CUMULATIVE DISTRIBUTION FUNCTION

Empirical Cumulative Distribution Function (ECDF) is a common non-parametric
estimator used in exploratory data analysis. Traditionally, it is used to determine
the underlying CDF of a dataset.

For a given dataset, {x1, ..., xn}, the ECDF is given mathematically by Eq. (A.1).

F̂ (x) = 1

n

n∑
i=1

I {xi ≤ x} (A.1)

where I {·} is the indicator function. It has two possible values:

I (xi ≤ x) =
{

1 when xi ≤ x

0 when xi > x
(A.2)

A.2. OPTIMIZATION PROBLEM

This section describes the constraints for optimization problem described in Sec-
tion 5.2.3. These constraints form the baseline DRP formulated in C1. The equal-
ity constraints are:
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Pth,GH +Pth,B = Pth,TS +Pth,EB +Pth,PB (A.3)

PFi +PEB +PHP +πi = PFC +PEG +PID (A.4)

STS(t +1) = STS(t )−Pth,TS(t )−Pth,l(t ) (A.5)

θ(t +1) = θ(t )+ Pth(t )−Pth,l(t )

ṁ · c
(A.6)

Pth,EB = PEB ·ηEB (A.7)

Pth,B = Pth,HP = PHP ·COPHP (A.8)

Nt∑
t=0

P D A
Fi −

Nt∑
t=0

PFi = 0 (A.9)

Nt∑
t=0

P̃ D A
th,GB −

Nt∑
t=0

Pth,GB = 0 (A.10)

Equations (A.3) and (A.4) represent the thermal and electrical power bal-
ance constraints respectively. Constraints in Eqs. (A.5) and (A.6) represent the re-
source dynamics for thermal energy storage and general temperature evolution
dynamics for building and greenhouses. ηEB represents the electrical boiler ef-
ficiency, while COPHP represents the coefficient of performance of the HP. Con-
straints in Eqs. (A.7) and (A.8) relate the electrical and thermal powers for electric
boiler and heat pump. Here, Pth,B represents the thermal power consumption of
the building. Equation (A.9) forms the load shifting constraint for flexible elec-
trical loads in feeders Fi (F1 and F2). It ensures that no load shedding occurs by
operating the loads flexibly. Equation (A.10) defines flexibility in operating GB.
Since the amount of gas to operate the GB was brought on D-1 in the gas mar-
ket, its operation is fuel constrained. Assuming a linear relationship between fuel
used, power output, and hours of operation of the GB, Eq. (A.10) ensures that the
rescheduling of the gas-based GB uses the same amount of gas as contracted in
the day-ahead market on D-1.

In addition to the equality constraints, the following inequality constraints
also apply.

θGH ≤ θGH ≤ θGH (A.11)

θB ≤ θB ≤ θB (A.12)

P Fi ≤ PFi ≤ P Fi (A.13)

r ↓
Fi ≤ PFi (t +1)−PFi (t ) ≤ r ↑

Fi (A.14)

0 ≤ PFC ≤ P FC (A.15)
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Equations (A.11) and (A.12) represent the upper and lower bounds on ther-
mal load (GH-A, GH-B, B) temperatures, Eqs. (A.13) and (A.14) represents the
bounds on power and ramp rates on feeders F1 and F2, and finally, Eq. (A.15)
describes the bounds on the power output of FC. The abs() in calculation of UF
signal introduces non-linearity in the optimization problem. This can however,
easily be linearized by introducing a slack variable in the problem formulation.
The reformulated problem then becomes a Mixed Integer Linear Programming
(MILP) problem which is easily solvable.
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