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Influence-Augmented Local Simulators:
A Scalable Solution for Fast Deep RL in Large Networked Systems

Miguel Suau 1 Jinke He 1 Matthijs T. J. Spaan 1 Frans A. Oliehoek 1

Abstract
Learning effective policies for real-world prob-
lems is still an open challenge for the field of
reinforcement learning (RL). The main limitation
being the amount of data needed and the pace at
which that data can be obtained. In this paper, we
study how to build lightweight simulators of com-
plicated systems that can run sufficiently fast for
deep RL to be applicable. We focus on domains
where agents interact with a reduced portion of a
larger environment while still being affected by
the global dynamics. Our method combines the
use of local simulators with learned models that
mimic the influence of the global system. The
experiments reveal that incorporating this idea
into the deep RL workflow can considerably ac-
celerate the training process and presents several
opportunities for the future.

1. Introduction
The remarkable success of Deep Reinforcement Leaning
(RL) on paper is in stark contrast with its narrow applicabil-
ity to real-world problems. Among many other reasons, the
most important factor preventing the practical deployment
of this framework is perhaps its high sample complexity
(Botvinick et al., 2019). This is a very well-known issue
and there is a long list of previous works that in one way
or another have tried to alleviate it (Kakade, 2003; Mnih
et al., 2015; Ha & Schmidhuber, 2018). Nonetheless, there
have been relatively few real-world successes thus far. Here,
rather than proposing yet another method that tries to solve
the problem directly, we present a more pragmatic approach
to get around it. Our solution is based on the observation that
Deep RL’s best results have been obtained in domains like
video games (Bellemare et al., 2013; Vinyals et al., 2019)
or simulated environments (Brockman et al., 2016; Ganesh
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et al., 2019; Bellemare et al., 2020) where data collection is
extremely fast. Unfortunately, real-world problems are typi-
cally more complex and simulators, if available, are usually
very slow (Dulac-Arnold et al., 2019).

In this work, we design lightweight versions of large simula-
tors with the goal of speeding up the overall training process.
The method we propose applies to domains where agents
only interact with a reduced local part of a larger environ-
ment, yet they are indirectly being affected by the global
dynamics. Traffic control is one example of such environ-
ments. Say, for instance, that we wanted to train an agent to
control the traffic lights of a particular intersection in a very
large city. To do so we could build a small local simulator
that captures only the information that is directly relevant to
the agent (traffic density in the neighborhood; van der Pol
& Oliehoek 2016). However, after training, we may find
out that an agent that does very well in the small simulator,
performs poorly in the real intersection. The performance
gap would be caused by a data distribution shift (Quionero-
Candela et al., 2009; Arjovsky, 2021). Even though the
simulator might be able to closely mimic the local dynamics
(i.e. cars moving within the intersection), it would fail to
account for the interactions of the local neighborhood with
the rest of the city. Thus, the agent learns a policy based on
certain transition dynamics that turn out to be very different
in the real world. Alternatively, we could try to model the
dynamics of a sufficiently large portion of the city, but this
would surely result in a very slow simulator.

One important property of the traffic domain is that, al-
though the agent’s local problem may be affected by many
external variables (traffic densities in other parts of the city),
it is only directly influenced by the road segments that con-
nect the intersection with the rest of the city. Hence, we can
simply monitor the traffic densities at these road segments
since, from the agent’s local perspective, they summarize
the effect of all the external variables. This insight is not spe-
cific to the traffic domain. It is in fact common in networked
systems (e.g. warehouse commissioning, Claes et al. 2017;
electrical power grids, Wang et al. 2021; heating systems,
Gupta et al. 2021; telecommunication networks, Suau et al.
2021) that interactions between different components occur
through a limited number of variables.
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Supported by the formal framework of influence-based ab-
straction (IBA) (Oliehoek et al., 2021), we exploit the above
property to build local simulators that mirror the response of
the global system through the so called influence predictor.

Contributions The main contribution of this paper is the
integration of the IBA framework with the Deep RL work-
flow. Our experiments reveal, that the combination of local
simulators and influence predictors can considerably acceler-
ate the reinforcement learning process. We also demonstrate
both theoretically and empirically that, under mild condi-
tions, the memory needs of the influence predictor are fully
determined by the agent’s memory capacity. Moreover, we
study the impact that distribution shifts caused by changes
in the agent’s policy may have on the influence predictor,
and explore how to prevent the model from picking up on
spurious correlations that are not invariant across policies.
Finally, we investigate the effect of transfer learning and
show how inaccurate simulators might also be able to render
effective policies.

2. Related Work
The problem of sample complexity has been extensively
studied by the RL community. Among many others, the
most promising solutions are: replaying previous experi-
ences to make more efficient use of the available data (Mnih
et al., 2015; Schaul et al., 2016; van Hasselt et al., 2019),
or learning surrogate models of the environment dynam-
ics (Sutton, 1990; Ha & Schmidhuber, 2018; Schrittwieser
et al., 2020; Moerland et al., 2020). Yet, these techniques
are only effective when provided enough real samples. If
not, replay buffers might not be sufficient to obtain good
policies and surrogate models might generalize poorly. An
alternative is to train agents with synthetic data coming
from a simulator. However, most real-world scenarios are
excessively complex and simulators, if available, are com-
putationally expensive (Dulac-Arnold et al., 2019). Here we
argue that building a simulator of the entire system is often
unnecessary. In fact, as we explain in the following sections,
in many situations we can get away by just modelling the
dynamics around the agent’s local neighborhood.

A few prior works have investigated the computational ben-
efits of factorizing large systems into independent local
regions (Nair et al., 2005; Varakantham et al., 2007; Kumar
et al., 2011; Witwicki & Durfee, 2011). Unfortunately, since
local regions are often coupled to one another, such factor-
izations are not always appropriate. Nonetheless, in many
cases, the interactions between regions occur through a lim-
ited number of variables. Using this property, the theoretical
work by Oliehoek et al. (2021) on influence-based abstrac-
tion (IBA) describes how to build influence-augmented local
simulators (IALS) of local-FPOMDPs, which model only

the variables in the environment that are directly relevant
to the agent while monitoring the response of the rest of
the system with the influence predictor. The problem is,
the exact computation of the conditional influence distribu-
tion is intractable and we can only try to estimate it from
data. Congeduti et al. (2021) provide theoretical bounds on
the value loss when planning with approximate influence
predictors. The work by He et al. (2020) has empirically
demonstrated the advantage of this approach to improve the
efficiency of online planning in two discrete problems.

Here, we extend the method to more realistic problems and
study how to integrate the IBA framework with Deep RL.
This has profound implications that do not arise in the plan-
ning context, namely the relation between the agent’s mem-
ory capacity and the history dependence of the influence
predictor (Section 4.1), and the problem of off-policy gener-
alization (Section 4.2). Moreover, while He et al. showed
that the IALS outperforms the global simulator only when
the time budget is limited, our results reveal that the IALS
can train policies in a fraction of the time and that these
can match the same performance as policies trained on the
GS, without imposing any time constraints, and despite the
IALS being only approximate.

3. Preliminaries
In this section, we introduce the notation used throughout
the paper, provide the mathematical definition of the prob-
lem, and describe the Influence-based abstraction (IBA)
framework (Oliehoek et al., 2021), which gives theoretical
support to the method we introduce in Section 4.

3.1. Problem definition

As explained in the introduction, we target domains where
the agent, although affected by the global dynamics, can
only observe its local neighborhood. These can be modelled
as factored partially observable Markov decision processes
(FPOMDP) (Kaelbling et al., 1996; Boutilier et al., 1999).

Definition 1 (FPOMDP). A factored partially observ-
able Markov decision process (FPOMDP) is a tuple
⟨S,A, T,R,Ω, O⟩ where S is the set of k state variables
S = {S1, ..., Sk}, such that every state s ∈ ×k

i=1S
i is a

vector s = ⟨s1, ..., sk⟩, A is the set of actions, T is the tran-
sition probability function T (st+1|st, at), R(st, at) defines
the immediate reward, Ω is the observation space, and O is
the observation function, O(ot+1|st+1).

The task consists in finding a policy π that maximizes
the expected discounted sum of rewards (Sutton & Barto,
1998). Since the agent receives only a local observa-
tion o of the true state s, a policy that is based only on
the most recent information can be sub-optimal (Singh
et al., 1994; McCallum, 1995). In general, the agent is
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Figure 1. Left: A Dynamic Bayesian Network of a Local-FPOMDP unrolled 3 timesteps. Right: A diagram of the IALS: the GS is a
full-scale representation of the environment that models the global dynamics. In contrast, the IALS only models the local dynamics and is
equipped with an AIP that monitors the response of the global system to a given ALSH.

required to keep track of its past actions and observations
to make the right action choices. Policies are therefore
mappings from the past action-observation history (AOH),
ht = ⟨o1, a1..., at−1, ot⟩, to actions, π(at|ht).

We consider, in particular, a special case of FPOMDP here-
inafter referred to as Local-FPOMDP.

Definition 2 (Local-FPOMDP). A Local-FPOMDP is an
FPOMDP where O and R depend only on a subset of
state variables X = {X1, ..., Xj} ⊆ S with j ≤ k,
such that the agent’s local states x ∈ ×j

i=1X
i are vectors

x = ⟨x1, ..., xj⟩. Hence, we have that O(ot+1|st+1) =
Ȯ(ot+1|xt+1) and R(st, at) = Ṙ(xt, at), where Ȯ and Ṙ
are the local observation and local reward functions.

Looking at the above definition, one can argue that simu-
lating the transitions T (st+1|st, at) of the full set of state
variables is unnecessary, and while doing so is possible
in small problems, it might become computationally in-
tractable in large domains. We can instead define a new
transition function T̄ that models only the local state vari-
ables x, T̄ (xt+1|xt, at). The problem is that xt+1 may still
depend on the rest of state variables st and thus T̄ is not
well defined. Hence, we are forced to keep track of the
action-local-state history (ALSH) lt = ⟨x1, a1..., at−1, xt⟩
such that we can sample the next local state as

P (xt+1|lt, at) =
∑
st

T (xt+1|st, at)P (st|lt). (1)

3.2. Influence-based Abstraction

With the above formulation, the problem is only partially
solved. We no longer need to simulate the global state
transitions, yet we have to maintain a distribution over the
full state given the ALSH, P (st|lt), and then calculate the
local transitions with P (xt+1|st, at). As explained in the
introduction, in many local-FPOMDP problems, however,
only a fraction of the state variables will directly influence
the local region.

The diagram in Figure 1 is a Dynamic Bayesian Network
(DBN) (Pearl, 1988; Boutilier et al., 1999) of a local-
FPOMDP prototype. The agent’s local region, corresponds
to the variables, denoted by x ∈ X , that lie within the red
box, x = ⟨x1, x2⟩. The diagram also shows the non-local
variables, known as influence sources u ∈ U ⊆ S \ X ,
that influence the local region directly. The three dots on
the top indicate that there can be, potentially many, other
non-local variables in S. These are denoted by y and, as
shown in the diagram, can only influence x via u. As
such, given ut, xt+1 is conditionally independent of yt,
P (xt+1|xt, ut, yt) = P (xt+1|xt, ut).

Definition 3 (IALM). An influence-augmented local Model
(IALM) is a FPOMDP with local states x ∈ ×j

i=1X
i,

influence sources u ∈ ×k
i=1U

i with U ⊆ S \ X , local
observation function Ȯ(ot+1|xt+1), local reward function
Ṙ(xt, at), local transition function Ṫ (xt+1|xt, ut, at) and
an influence distribution I(ut|lt).

Using the IALM we can simulate the local transitions as

P (xt+1|lt, at) =
∑
ut

Ṫ (xt+1|xt, ut, at)I(ut|lt). (2)

Note that, as opposed to the Local-FPOMDP, the transition
function Ṫ in the IALM is defined purely in terms of the
local state variables and the influence sources. Moreover,
the influence distribution is just the conditional probability
over ut instead of the full set of of state variables st. All
in all, this translates into a much more compact, yet exact
representation of the problem (Oliehoek et al., 2021), which
should be computationally much lighter than the original
FPOMDP.

4. Influence-Augmented Local Simulators for
Deep RL

In the following, we describe how we make use of the
IALM formulation to design lightweight simulators that can
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speed up the long training times imposed by neural network
policies. Figure 1 (right) shows a diagram of the influence-
augmented local simulator (IALS), which is composed of a
local simulator and an approximate influence predictor.

Local simulator (LS): The LS is an abstracted version of
the environment that only models a small portion of it. As
opposed to a global simulator (GS), which should closely re-
produce the dynamics of every state variable, the LS focuses
on characterizing the transitions of those variables xt that
the agent directly interacts with, Ṫ (xt+1|xt, ut, at). Recall
that, in our setting, both the reward R and observation O
functions are defined in terms of xt and at.

Approximate influence predictor (AIP): The AIP moni-
tors the interactions between the local region and the exter-
nal variables yt by estimating I(ut|lt). Ideally, we would
like the approximation to match the true influence distri-
bution. However, due to combinatorial explosion, comput-
ing the exact probability I(ut|lt) is generally intractable
(Oliehoek et al., 2021), and so we can only try to approxi-
mate it using, for instance, a parametric function. We write
Îθ to denote the AIP, where θ are the parameters, which
need to be learned from data. Replacing the true influence
distribution with an approximation implies that we are no
longer guaranteed to find the optimal policy (Congeduti
et al., 2021). Nonetheless, as we show in our experiments, it
is often worth trading accuracy for computational efficiency.
We model Îθ using a neural network, which we train on a
dataset of N samples of the form (ln, un) collected from
the GS (see Algorithm 1 in Appendix G). Since role of the
AIP is to estimate the conditional probability of the influ-
ence sources ut given the past ALSH, we can formulate
the task as a classification problem.1 The neural network is
optimized using the expected cross-entropy loss,

L(Îθ) = − 1

N

N∑
n=0

log Îθ(un|ln), (3)

which minimizes the KL divergence between the true proba-
bilities I(ut|lt) and those predicted by Îθ(ut|lt).2 Once the
network has been trained, we can simulate trajectories with
the IALS (Algorithm 2 in Appendix G). These trajectories
can then be used to train policies with any standard Deep
RL method (Mnih et al., 2015; Schulman et al., 2017).

In the next two sections we discuss two important consid-
erations when training AIPs for the RL setting. We first
show that, since the agent’s memory is inevitably finite, we

1Note that we assume for simplicity that the influence sources
U are discrete variables. However, our approach can generalize to
continuous variables by formulating the AIP learning problem as a
regression rather than a classification problem.

2Please refer to Appendix F for more details on the implemen-
tation of the AIP.

normally will not need to train complicated AIPs that con-
dition on the full ALSH (Section 4.1). In Section 4.2, we
study the impact that distribution shifts caused by changes
in the agent’s policy may have on the AIP, and explore how
to prevent the AIP from picking up on spurious correlations
that are not invariant across policies.

4.1. Finite memory agents and AIP history dependence

As mentioned before, we can only rely on approximations
of I(ut|lt) since computing the exact distribution that con-
ditions on the full ALSH is intractable. Unfortunately
though, even with the most sophisticated RNNs (Hochreiter
& Schmidhuber, 1997; Cho et al., 2014), learning long term
temporal dependencies is also very difficult. However, it is
worth noting that, if capturing long term dependencies is
hard for the AIP, it is too for the agent. In fact, it is very
common in Deep RL to find policies that have access only
to finite memories (Mnih et al., 2015; Oh et al., 2016) or
that are trained on short sequences (Schmidhuber, 1991;
Hausknecht & Stone, 2015). Thus, if the agents memory
is finite, one might well wonder whether the extra level of
accuracy that an influence predictor which conditions on
the full ALSHs provides is needed. The result below shows
that, the history dependence of the influence predictor is,
under mild conditions, determined by the agent’s memory
capacity.

Theorem 1. Let lt−k:t be a truncated version of lt contain-
ing only the last k action-local-state pairs and let a0:t−k

be the sequence of past actions from time 0 up to k. Let
the agent’s policy π̄ be a function of ht−k:t π̄(at|ht−k:t),
where ht−k:t is also a truncated version of ht. If for all ut

we have P (ut|lt−k:t, a0:t−k) = P (ut|lt−k:t), then an influ-
ence predictor that conditions only on lt−k:t, Ī(ut|lt−k:t),
is sufficient to guarantee no loss in value.3

Proof. Found in Appendix A.

Intuitively, a finite memory agent whose policy conditions
on the last k elements in the AOH is only be capable of com-
puting an expectation over the action-values given these k
elements. In turn, the distribution of ut given the full ALSH
lt, I(ut|lt), is effectively washed away by the same expec-
tation. The condition P (ut|lt−k:t, a0:t−k) = P (ut|lt−k:t)
is needed for P (ut|lt−k:t) to be well-defined independently
of the policy. Intuitively, this just means that a0:t−k cannot
have any long-term effects on the influence distribution such
that lt−k:t contains enough information to predict ut (See
proof in Appendix A for more details). The upshot is that
the agent’s memory capacity limits the temporal dependen-

3Note that this refers only to the value of polices of the form
π̄(at|ht−k:t), which might perform arbitrarily worse than policies
that condition on the full AOH, π(at|ht) (Singh et al., 1994).
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cies of the influence predictor,4 meaning that I may as well
condition directly on lt−k:t rather than lt. This insight is
empirically evaluated in Section 5.4.

4.2. Off-policy generalization and d-sets

Given that the true influence distribution conditions on the
full ALSH, it is, in principle, independent of the exploratory
policy π0 that we use to collect the data. Indeed, if we would
represent I(ut|lt) with a table, we could compute unbiased
estimates of the true probabilities I(ut|lt) by using any ar-
bitrary policy that visits every possible ALSH. The problem
arises when we use function approximators to estimate the
influence sources. In particular, if we call Pπ0(lt, ut) the
stationary joint distribution of influence sources and AL-
SHs induced by the exploratory policy π0 that we use to
collect the data Dπ0 = {(l1, u1), ...(lN , uN )} from the GS
(as described by Algorithm 1 in Appendix G), we can write

θ∗ = argmin
θ

L(Îθ, D
π0), (4)

where we see that, in fact, the loss in (3) depends on Dπ0 .
Therefore, because we are fitting Îθ to Dπ0 , the model will
be biased towards Pπ0 . This is not so bad considering that
we want the influence predictions to be more reliable for
those ALSHs that the agent visits more often. However, it
can pose a problem when the policy π that we train starts
deviating from π0. In general, we want the AIP to perform
well on any distribution that the agent may experience dur-
ing training, {Pπ}π∈Π, where Π denotes the set of possible
policies. We then rewrite the optimization problem in (4) as

θ∗ = argmin
θ

max
π∈Π

L(Îθ, D
π) (5)

to indicate that we wish to minimize the worst-case loss.

The key issue here is that, before training, we have only
access to the exploratory policy π0. Equation (5) is an
instance of a well-studied problem in the field of out-of-
distribution generalization (Quionero-Candela et al., 2009;
Arjovsky, 2021). In principle, according to Arjovsky (2021,
Section 3.6.1), finding a solution to (5) by minimizing (4)
requires, (i) supp(Pπ) ⊆ supp(Pπ0), (ii) infinite number
of samples, and (iii) infinite capacity models.

The first condition is met so long as π0(at|lt) > 0 for all
at and lt. The second and third conditions, on the other
hand, can never be fulfilled in practice. On top of that, high-
capacity influence predictors are particularly undesirable for
our purpose because they are computationally demanding.
The consequence of training low-capacity models on finite
datasets is that they may pick-up on spurious correlations
(Pearl, 2000) between ALSHs and influence sources.5 These

4More details on the practical implications of this result are
given in Appendix F.

5A visual example of a spurious correlation appearing in the
traffic problem is given in Appendix B.

correlations could be just an artifact of π0 and may disappear
after the policy is updated. One way to prevent the above, is
to find a representation of lt that elicits an invariant predictor
of ut across all Pπ (Peters et al., 2016; Arjovsky et al., 2019;
Krueger et al., 2021).

Definition 4 (invariant predictor). A subset of variables
dt from lt elicit an invariant predictor of ut across poli-
cies π ∈ Π if for all dt in the intersection of supports,
supp(Pπ1(d, u)) ∩ supp(Pπ2(d, u)), we have

Pπ1(ut|dt) = Pπ2(ut|dt) for all π1, π2 ∈ Π. (6)

The notion of d-separation (Bishop, 2006) comes in handy
here. Given a DBN, such as the one depicted in Figure 1,
one can determine a subset of variables in the ALSH that is
sufficient to predict ut (Oliehoek et al., 2021).

Definition 5 (d-separating set). The d-separating set (d-
set) is a subset of variables dt from lt, such that influence
sources ut and the remaining parts of the ALSH lt \ dt are
conditionally independent given dt, (ut ⊥⊥ lt \ dt | dt). The
d-set is said to be minimal d∗t , when no more variables can
be removed from d∗t while the above still holds.

Theorem 2. A subset of variables dt from lt is guaranteed
to elicit an invariant predictor of ut, across all π ∈ Π, if
(i) dt constitutes a d-separating set and (ii) all policies are
functions of the local AOH, π(ht).

Proof. Found in Appendix A.

Note that, according to the result above, the full ALSH lt
does elicit an invariant predictor of ut since it is, by defini-
tion, a d-set. Hence, feeding lt should be sufficient for the
model to find stable and invariant correlations. The prob-
lem, however, is that in practice, models tend to converge
to low-capacity solutions that require little “effort” to learn
(i.e. least-norm solution) (Arjovsky, 2021). As such, the
representations formed by an influence predictor that is fed
the full ALSH may or may not constitute a d-set. The so-
lution we propose is to feed solely a minimal d-set d∗t into
the AIP Îθ. Not only does this reduce the dimensionality
of the input space but also prevents the AIP from learn-
ing shortcuts (Geirhos et al., 2020) resulting from spurious
correlations that are not stable under policies other than
π0

5. Provided we have the DBN of the problem, there are
many algorithms available that can help us find a minimal
d-set (Acid & De Campos, 1996; Tian et al., 1998). If not,
some domain knowledge may be sufficient in most cases,
to remove a few variables from lt and prevent confounding
(Suau et al., 2022).

Working in the joint space (dt, ut) instead of (lt, ut) has a
another positive effect on off-policy generalization. Since lt
includes the agents actions the distribution Pπ0(l, u) might
be arbitrarily far from a distribution in {Pπ(l, u)}π∈Π. This
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is problematic because our low-capacity influence predictor
may be unable to generalize well under large distribution
shifts.

Proposition 1. Let π0 be the exploratory policy used to
collect the dataset. Then, for all π ∈ Π

KL(Pπ0(dt, ut)||Pπ(dt, ut)) ≤ KL(Pπ0(lt, ut)||Pπ(lt, ut))

where KL is the Kullback–Leibler divergence.

Proof. Found in Appendix A.

The result above shows that the distributions of pairs (d∗, u)
induced by two policies in Π are never further apart than
their full AOHs counterparts. In fact, if actions and d-sets
are only weakly-coupled the distributions may be very close.
In the extreme case, if d-sets are causally independent with
respect to the agent’s actions, the influence sources can
be considered exogenous (Boutilier et al., 1996; Chitnis &
Lozano-Pérez, 2020) and the two distributions are equiva-
lent.

Corollary 1. Let a0:t be the past sequence of actions from
0 to t. If P (dt|do(ao:t)) = P (dt) for all dt and a0:t. Then,
for any π1 ̸= π2 : π1, π2 ∈ Π we have Pπ1(dt, ut) =
Pπ2(dt, ut) even though Pπ1(lt, ut) ̸= Pπ2(lt, ut).

Proof. Found in Appendix A.

Of course, in some domains, certain instantiations of the
influence sources may only occur when very specific action
sequences are followed. In such cases, a finite dataset col-
lected with a random uniform policy will not be sufficient
to fully cover the joint space of influence sources and d-sets,
and thus the AIP may be unable to generalize well. If this
happens, assuming a GS is available during training, the
obvious solution would be to retrain the AIP every certain
number of policy updates. Nonetheless, as we explain in the
next section, in many cases, it might not be worth paying the
computational cost associated to this solution since inaccu-
rate simulators might still provide good enough experiences
to learn from.

4.3. Sufficiently similar training conditions

Up to this point we have discussed the importance of train-
ing accurate AIPs that are also invariant to distribution shifts
caused by changes in the agent’s policy. Nonetheless, here
we pose a different question: to what extent is it possible
to achieve near-optimal performance with inaccurate AIPs?
As a matter of fact, it is very common in real-life engineer-
ing to model individual components in isolation without
considering whether they belong to a larger system. Here
we will fall short of giving a complete answer but we will
make some observations to suggest that agents might not

always require the most accurate AIPs. A view that is also
supported by our experiments.

First, if the IALS can produce at least a few observation
sequences that are similar to the ones generated by the
true environment, an agent with sufficient capacity will
be able to learn from those, and perform well in the real
world. Given that one of the premises of our method is
the need for accurate LS, even if the influence predictor
was entirely random, the chances of getting just a small
percentage of useful experiences may be in fact quite high.
Yet, as discussed in Section 4, different frequencies in some
of the transitions might change the value of certain ALSHs
and in turn affect the agent’s policy. This will occur if some
of the unrealistic trajectories generated by an inaccurate AIP
overlap partly with the realistic ones. Our second argument,
is that different influence distributions may still lead to the
same, or very similar, optimal policy (Becker et al., 2003).
That is, even if the agent is trained on an inaccurate IALS,
some of the strategies that the agent will develop might be
transferable and could also be useful when followed under
real trajectories (Lazaric, 2012).

5. Experiments
The performance of the method is empirically evaluated
on two benchmark domains: traffic control and warehouse
commissioning. The goal of the experiments is to: (1)
Study whether we can reduce training times by replacing
the GS with the IALS. (2) Measure the impact of the AIP
accuracy on the learning process and the agent’s final perfor-
mance. (3) Investigate the memory needs of the AIP when
the agent’s memory is finite.

5.1. Experimental setup

Agents are trained separately with PPO (Schulman et al.,
2017) on (1) the global simulator (GS), (2) the influence-
augmented local simulator (IALS) with an AIP trained of-
fline on a dataset collected from the GS, (3) an IALS that
uses an untrained AIP to make predictions (untrained-IALS).
To measure the agent’s performance, training is interleaved
with periodic evaluations on the GS. The results are aver-
aged over 5 runs with different random seeds.

5.2. Traffic control

Figure 2 shows a grid-like traffic network composed of 25
intersections. The agent controls the traffic lights at one
of the intersections only. The rest of the traffic lights are
controlled by fixed actuators that use sensors to adapt to
the traffic. The policies used in this experiment for the
actuated traffic light controllers were extensively optimized
by Wu et al. (2017). We train agents separately on the
two intersections highlighted in Figure 2. The goal is to
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1

2

Figure 2. A screenshot of the traffic environment. We train agents
separately on the two intersections highlighted by the blue and the
red dashed boxes. The rest of the intersections are controlled by
fixed actuators that use sensors to adapt to the traffic. The goal is
to maximize the average speed of cars within the intersection. The
agent can only observe cars inside the dashed boxes.

maximize the average speed of cars within the intersection.
The agent can only observe cars inside the dashed boxes.

5.2.1. GS, LS, AIP AND D-SET

The GS and LS are built using Flow (Wu et al., 2017) and
SUMO (Lopez et al., 2018). The GS simulates the entire
traffic grid (Figure 2) while the LS only models the local
neighborhood of the intersection being trained (Figure 9 in
Appendix D). The influence sources ut are binary variables
indicating whether or not a car will be entering the simu-
lation from each of the four incoming lanes at the current
timestep. The AIP Îθ is a feedforward neural network that
we train offline on a dataset of (dt, ut) pairs collected from
the GS. The d-set dt is a length 37 binary vector encoding
the location of cars along the four incoming lanes. Traffic
light information is not included in dt to prevent confound-
ing (Section 4.2).6 Since the two intersections highlighted
in Figure 2 are influenced differently by the rest of the traffic
network we train separate AIPs for each of them.

5.2.2. RESULTS

The plot at the top of Figure 3 are the learning curves of
agents trained with the GS, the IALS, and the untrained-
IALS to control the traffic lights at intersection 1 (Figure
2).7 The plot shows the mean episodic reward as a function
of real wall-clock time, which for IALS includes the time
for data collection and the AIP training time. Agents are
trained for 2M timesteps on all three simulators. The dotted
horizontal lines at the end of the red and blue curves show
the agent’s final performance. The black horizontal line indi-

6A visual example of a spurious correlation appearing in the
traffic problem is given in Appendix B.

7Results for intersection 2 are provided in Appendix E.1.
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Figure 3. Top: Learning curves of agents trained with the GS, the
IALS and the untrained-IALS on intersection 1 (Figure 2) as a
function of wall-clock time. The dotted horizontal lines show the
final performance of the agents after 2M timesteps of training.
Middle: Total runtime of training for 2M training steps on the
three simulators. Bottom: Cross entropy loss for the trained and
untrained AIPs.

cates the performance of the actuated traffic light controller.
The two bar charts at the bottom show the total training time
when using each of the three simulators, and the AIP’s accu-
racy with and without training. The results suggest that poli-
cies trained on the IALS (red) can match the performance
of those trained on the GS (orange) in about 1/3 of the total
training time, despite the IALS is not as accurate as the GS.
This is in line with our hypothesis in Section 4.3. Similar
influence distributions, I(ut|lt) ≈ Îθ(ut|lt), may lead to
the same, or very similar, optimal policy. More experiments
exploring this phenomenon are provided in Appendix E.3.
In contrast, since the distribution Pπ(lt, ut) induced by the
untrained AIP is very different from the true distribution, as
evidenced by the high cross entropy loss (blue bar bottom
chart), agents trained on the untrained-IALS (blue) perform
much worse. A table with a breakdown of the runtimes is
included in Appendix C. A comparison of the mean episodic
reward as a function of the number of timesteps is provided
in Appendix E.2.

5.3. Warehouse commissioning

A team of 36 robots (blue and purple) need to fetch the items
(yellow) that appear with probability 0.02 on the shelves
(black dashed lines) of the warehouse in Figure 4. Each
robot has been designated a 5 × 5 square region and can
only collect the items that appear on the shelves at the edges.
The regions overlap so that each of the 4 item shelves in a
robot’s region is shared with one of its 4 neighbors. The
blue robots have been programmed to go for the oldest
item in their region. The purple robot that is inside the
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Figure 4. A screenshot of the warehouse environment. The robots
(blue and purple) need to fetch the items (yellow) that appear on
the shelves (black dashed lines). Each robot can only collect the
items that appear on their designated region. We train the purple
robot inside the red box. The blue robots have been programmed
to go for the oldest item in their region. The purple robot only
receives information about its own location and what items need to
be collected. However, cannot see the location of the other robots.

region highlighted by the red box, still needs to be trained.
This robot receives as observations a bitmap encoding its
own location and a set of 12 binary variables that indicate
whether or not each of the 12 items within its region needs
to be collected. The purple robot, however, cannot see the
location of the other robots even though all of them are
directly or indirectly influencing it through their actions.

5.3.1. GS, LS, AIP AND D-SET

The GS simulates the entire warehouse (Figure 4), while the
LS models only the 5 × 5 square region delimited by the
red box (Figure 9 in Appendix D). The influence sources ut

encode the location of the four neighbor robots. The AIP is
a GRU (Cho et al., 2014) that we train offline on a dataset of
(dt, ut) pairs collected from the GS. If the AIP predicts that
any of the neighbor robots is at one of the 12 cells within the
red box and there is an active item on that cell, that item is
removed and the purple robot can no longer collect it. The
d-set dt includes the history of the 12 item variables and
12 additional binary variables encoding whether or not the
controlled robot was (is) at one of the item locations. The
latter variables are meant to differentiate between an item
that is gone because the controlled robot collected it from
an item that was picked up by the neighbor robots. The
rest of variables in lt (i.e. the robot’s history of locations)
are unnecessary for predicting ut, and thus susceptible of
becoming confounders (Section 4.2).

5.3.2. RESULTS

The plot at the top of Figure 5 shows the learning curves of
the warehouse robot as a function of real wall-clock time,
which for IALS includes the time for data collection and the
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Figure 5. Top: Learning curves of agents trained with the GS, the
IALS and the untrained-IALS on the the warehouse environment
as a function of wall-clock time. The dotted horizontal lines at
the end of the red and blue curves show the final performance of
the agents after 2M timesteps of training. Middle: Total runtime
of training for 2M steps on the three simulators. Bottom: Cross
entropy loss for the trained and untrained AIPs.

AIP training time. Agents are trained for 2M timesteps on
all three simulators. The dotted horizontal lines at the end of
the red and blue curves show the agent’s final performance.
The short horizontal line at the beginning of the red curve
represents the time for data collection and the AIP’s train-
ing time. The two bar charts at the bottom show the total
training time when using each of the three simulators, and
the AIP’s accuracy with and without training. Again, we see
that robots trained on the IALS (red) are able to reach the
same performance as those trained on the GS (orange) in
about 1/3 of the total training time despite the IALS is only
approximate. Moreover, robots trained on the untrained-
IALS (blue) perform reasonable well on the GS. Although
the frequency at which items disappear with the untrained-
IALS differs very much from that of the true environment,
the basic strategy on how to collect items can still be learned.
These results further confirm our hypothesis that inaccurate
simulators may, in some cases, render effective policies
(Section 4.3). More experiments experiments exploring this
phenomenon are provided in Appendix E.3. A table with a
breakdown of the runtimes is included in Appendix C. The
learning curves as a function of the number of timesteps are
provided in Appendix E.2.

5.4. Finite memory agents and AIP history dependence

Here we investigate whether our theoretical result from
Theorem 1 also holds in practice. We want to show that
when the agent’s memory is finite, meaning it can only ac-
cess observations from k timesteps in the past, an influence
predictor which conditions on the same history length is
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Figure 6. Top: Learning curves of agents with (M) and without
memory (NM) trained on M-IALS and NM-IALS. Bottom: item
disappearance frequencies with NM-IALS and with M-IALS.

sufficient. We test this on the warehouse domain. To make
the need for memory more evident, we modify the envi-
ronment so that items always disappear from the robot’s
region after exactly 8 timesteps. We first train, AIPs with
and without memory. We call the resulting simulators M-
IALS and NM-IALS respectively. A histogram showing for
how long items are active before disappearing under each
of the simulators is shown in Figure 6. As expected, while
the former can reach an accuracy of 100% (items always
remain for 8 timesteps with the M-IALS), the spectrum is
much wider for the NM-IALS. This is because the latter can
only estimate the marginal distribution Pπ(ut|ot). Then,
we train agents with (M) and without memory (NM) on
the M-IALS and the NM-IALS. The results for all four
combinations are shown in Figure 6. As indicated by the
theory, the plot shows that when agents have no memory
AIPs may condition only on the current observation (red).
In such cases, the extra level of detail that a more accurate
history-dependent AIP can provide is wasted (green). In
contrast, when agents can distinguish observations from one
another based on their memories from the past, AIPs that
make predictions by looking at the history are fundamental.
This is evidenced by the gap between the blue and orange
curves. It is worth to point out that, even though the mem-
ory agent performs worse when trained on the NM-IALS
(orange) than when trained on the M-IALS (blue), it can
still outperform the agents with no memory (red and green).
We posit that this is because, with the NM-IALS items still
disappear after 8 timesteps on average (see dashed vertical
line in the bottom left histogram in Figure 6), which allows
the memory agent to learn to not go for an item if this has
been active for a long time. This once again suggests that,
in some cases, inaccurate influence predictors might still
provide good enough experiences to learn from.

6. Conclusion
This paper has offered a practical solution to allow the appli-
cation of Deep RL methods to large systems, where perform-
ing exhaustive simulations can not be afforded. We focused
on domains where, although the agent only interacts with
a local portion of the environment, it is influenced by the
global dynamics. The main idea was to replace the com-
putationally inefficient global simulator by a lightweight
version that only models the agent’s local problem. How-
ever, as we showed in our experiments, directly doing this
sometimes translates in a distribution shift on the agent’s
experience that yields poor performing policies. A good
simulator needs to account for the interactions between the
local region and the global dynamics. The results of our
experiments suggested that by combining a pretrained influ-
ence predictor with the local simulator, we could speed up
the learning process considerably while matching the perfor-
mance of agents trained on the global simulator. Moreover,
we analyzed the consequences of training influence predic-
tors on data distributions that are different from those the
predictor sees when deployed and resolved that, when pos-
sible, the human designer should remove from the input
those variables that are irrelevant for predicting the influ-
ence sources. Finally, in line with the results in Section
4.1, the last experiment revealed that the agent’s memory
capacity limits the memory needs of the influence predictor.

Future work may explore how to train multiple agents using
independent IALS. This could lead to even further speedups
since agents could train on separate simulators running in
parallel. However, having agents learning simultaneously
would imply that the influence distributions would no longer
be stationary since a change in any of the agents’ policies
could alter the other agents’ local dynamics. Hence the
method would need to be reworked such that the AIPs can
handle moving targets. Another direction for future research
is to study how to deal with environments where coverage
of untrained and trained policies is different. That is, en-
vironments where random policies are unlikely to reach
certain ALSHs. If the AIPs cannot generalize to the new
data points, a solution would be to retrain the AIPs when the
agent starts visiting new ALSHs. Nonetheless, paying the
computational cost associated to this solution might not be
necessary in many cases since, as we discuss in section 4.3,
slightly inaccurate simulators might be sufficient to train
good performing policies.
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Chitnis, R. and Lozano-Pérez, T. Learning compact models
for planning with exogenous processes. In Proceedings
of the Conference on Robot Learning, 2020.

Cho, K., van Merrienboer, B., Gulcehre, C., Bougares, F.,
Schwenk, H., and Bengio, Y. Learning phrase representa-
tions using RNN encoder-decoder for statistical machine

translation. In Conference on Empirical Methods in Nat-
ural Language Processing, 2014.

Claes, D., Oliehoek, F., Baier, H., Tuyls, K., et al. De-
centralised online planning for multi-robot warehouse
commissioning. In Proceedings of the 16th international
conference on autonomous agents and multiagent sys-
tems, pp. 492–500, 2017.

Congeduti, E., Mey, A., and Oliehoek, F. A. Loss bounds for
approximate influence-based abstraction. In Proceedings
of the Twentieth International Conference on Autonomous
Agents and MultiAgent Systems, 2021.

Dulac-Arnold, G., Mankowitz, D., and Hester, T. Chal-
lenges of real-world reinforcement learning. arXiv
preprint arXiv:1904.12901, 2019.

Ganesh, S., Vadori, N., Xu, M., Zheng, H., Reddy, P., and
Veloso, M. M. Reinforcement learning for market making
in a multi-agent dealer market. ArXiv, abs/1911.05892,
2019.

Geirhos, R., Jacobsen, J.-H., Michaelis, C., Zemel, R., Bren-
del, W., Bethge, M., and Wichmann, F. A. Shortcut learn-
ing in deep neural networks. Nature Machine Intelligence,
2(11):665–673, 2020.

Gupta, A., Badr, Y., Negahban, A., and Qiu, R. G. Energy-
efficient heating control for smart buildings with deep
reinforcement learning. Journal of Building Engineering,
34:101739, 2021.

Ha, D. and Schmidhuber, J. Recurrent world models facili-
tate policy evolution. In Advances in Neural Information
Processing Systems, volume 31, pp. 2450–2462, 2018.

Hausknecht, M. and Stone, P. Deep recurrent Q-learning
for partially observable MDPs. In Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence,
2015.

He, J., Suau, M., and Oliehoek, F. Influence-augmented
online planning for complex environments. In Advances
in Neural Information Processing Systems, volume 33,
pp. 4392–4402, 2020.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

Kaelbling, L. P., Littman, M., and Moore, A. Reinforcement
learning: A survey. Journal of AI Research, 4:237–285,
1996.

Kakade, S. M. On the sample complexity of reinforcement
learning. PhD thesis, University College London, 2003.



Influence-Augmented Local Simulators

Krueger, D., Caballero, E., Jacobsen, J.-H., Zhang, A., Bi-
nas, J., Zhang, D., Priol, R. L., and Courville, A. Out-
of-distribution generalization via risk extrapolation (rex).
In Proceedings of the 38th International Conference on
Machine Learning, 2021.

Kumar, A., Zilberstein, S., and Toussaint, M. Scalable
multiagent planning using probabilistic inference. In
Proc. of the International Joint Conference on Artificial
Intelligence, pp. 2140–2146, 2011.

Lazaric, A. Transfer in reinforcement learning: a framework
and a survey. In Reinforcement Learning, pp. 143–173.
Springer, 2012.

Littman, M. L. Memoryless policies: Theoretical limitations
and practical results. In Proc. of the Third International
Conference on Simulation of Adaptive Behavior : From
Animals to Animats 3, pp. 238–245, 1994.

Lopez, P. A., Behrisch, M., Bieker-Walz, L., Erdmann, J.,
Flötteröd, Y.-P., Hilbrich, R., Lücken, L., Rummel, J.,
Wagner, P., and Wießner, E. Microscopic traffic simula-
tion using SUMO. In The 21st International Conference
on Intelligent Transportation Systems, 2018.

McCallum, A. K. Reinforcement Learning with Selective
Perception and Hidden State. PhD thesis, University of
Rochester, 1995.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529, 2015.

Moerland, T. M., Broekens, J., and Jonker, C. M. Model-
based reinforcement learning: A survey. arXiv preprint
arXiv:2006.16712, 2020.

Nair, R., Varakantham, P., Tambe, M., and Yokoo, M. Net-
worked distributed POMDPs: A synthesis of distributed
constraint optimization and POMDPs. In Proc. of the Na-
tional Conference on Artificial Intelligence, pp. 133–139,
2005.

van der Pol, E. and Oliehoek, F. A. Coordinated Deep
Reinforcement Learners for traffic light control. NIPS
Workshop on Learning, Inference and Control of Multi-
Agent Systems, 2016.

Oh, J., Chockalingam, V., Singh, S., and Lee, H. Control
of memory, active perception, and action in minecraft. In
Proc. of the 33rd International Conference on Machine
learning, pp. 2790–2799, 2016.

Oliehoek, F., Witwicki, S., and Kaelbling, L. A sufficient
statistic for influence in structured multiagent environ-
ments. Journal of Artificial Intelligence Research, 70:
789–870, 2021.

Pearl, J. Probabilistic Reasoning In Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann,
1988.

Pearl, J. Causality: Models, Reasoning, and Inference.
Cambridge University Press, 2000.
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A. Proofs
Theorem 1. Let lt−k:t be a truncated version of lt containing only the last k action-local-state pairs and let a0:t−k be the
sequence of past actions from time 0 up to k. Let the agent’s policy π̄ be a function of ht−k:t π̄(at|ht−k:t), where ht−k:t is
also a truncated version of ht. If for all ut we have P (ut|lt−k:t, a0:t−k) = P (ut|lt−k:t), then an influence predictor that
conditions only on lt−k:t, Ī(ut|lt−k:t), is sufficient to guarantee no loss in value.8

Proof. We will prove that, when conditioning on the last k elements of the AOH, ht−k:t, the action-value function
Q̄π̄(ht−k:t, at), can be expressed in terms of an influence predictor that conditions on lt−k:t, Ī(ut|lt−k:t). If this is true,
then Q estimates can be obtained by sampling from the finite memory IALS (with influence predictor Ī(ut|lt−k:t)) and the
agent’s optimal policy (in the class of finite memory policies of the form π̄(at|ht−k:t)) can be found via policy iteration
(Sutton & Barto, 1998). Note that, finite memory policies have been shown to perform arbitrarily bad compared to their full
memory counterparts (Singh et al., 1994). Moreover, empirical results have revealed that standard RL methods for MDPs
may fail when state representations are not Markovian (Littman, 1994). Nonetheless, here we are only concerned with
whether or not we can find the same finite memory policies when using influence predictors that condition only on ht−k:t as
those found with influence predictors that condition on the full AOH. That is, independently of the effectiveness of the RL
method we use or the absolute performance of the policies we find.

Given the full AOH, the action-value function Qπ(ht, at) of a local-FPOMDP satisfies the Bellman equation and can be
expressed as

Qπ(ht, at) =
∑
xt

P (xt|ht)Ṙ(xt, at) +
∑
lt

P (lt|ht)
∑
xt+1

P (ot+1|lt, at)
∑
at+1

π(at+1|ht+1)Q
π(⟨ht, at, ot+1⟩, at+1), (7)

where and P (xt|ht) is the probability of the local states xt given the previous AOH, and from (2)

P (ot+1|lt, at) =
∑
xt+1

Ȯ(ot+1|xt+1)
∑
ut

Ṫ (xt+1|xt, at, ut)I(ut|lt) (8)

If, instead, the agent’s policy π̄, and in turn the Q̄π̄ function, can condition only on the last k elements in the AOH ht−k:t,
we have

Q̄π̄(ht−k:t, at) =
∑

h0:t−k

P π̄(h0:t−k|ht−k:t)Q
π̄(ht = ⟨h0:t−k, ht−k:t⟩, at),

where h0:t−k is the AOH from 0 to k and the above expression is just the expected Q value given ht−k:t. Then, using (7)

Q̄π̄(ht−k:t, at) =
∑

h0:t−k

P π̄(h0:t−k|ht−k:t)
∑
xt

P (xt|h0:t−k, ht−k:t)Ṙ(xt, at)

+
∑

h0:t−k

P π̄(h0:t−k|ht−k:t)
∑
lt

P (lt|h0:t−k, ht−k:t)
∑
ot+1

P (ot+1|lt, at)
∑
at+1

π̄(at+1|h−k+1:t+1)Q̄
π̄(h−k+1:t+1, at+1)

and from (8) we have∑
h0:t−k

P π̄(h0:t−k|ht−k:t)
∑
lt

P (lt|h0:t−k, ht−k:t)
∑
ot+1

P (ot+1|lt, at)

=
∑
ot+1

∑
xt+1

Ȯ(ot+1|xt+1)
∑
ut

∑
lt

Ṫ (xt+1|xt, at,ut)I(ut|lt)
∑

h0:t−k

P π̄(h0:t−k|ht−k:t)P (lt|h0:t−k, ht−k:t).

Then, using the rule of conditional probability, the last summation can be simplified as∑
h0:t−k

P π̄(h0:t−k|ht−k:t)P (lt|h0:t−k, ht−k:t) =
∑

h0:t−k

P π̄(lt, h0:t−k|ht−k:t) = P π̄(lt|ht−k:t)

8Note that this refers only to the value of polices of the form π̄(at|ht−k:t), which might perform arbitrarily worse than policies that
condition on the full AOH, π(at|ht) (Singh et al., 1994).
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and thus∑
lt

Ṫ (xt+1|xt, at, ut)I(ut|lt)P π̄(lt|ht−k:t) =
∑

l0:t−k,lt−k:t

Ṫ (xt+1|xt, at, ut)I(ut|l0:t−k, lt−k:t)P
π̄(l0:t−k, lt−k:t|ht−k:t)

=
∑

l0:t−k,lt−k:t

Ṫ (xt+1|xt, at, ut)I(ut|l0:t−k, lt−k:t)P
π̄(l0:t−k|lt−k:t)P

π̄(lt−k:t|ht−k:t)

since P π̄(l0:t−k|lt−k:t, ht−k:t) = P π̄(l0:t−k|lt−k:t) because lt−k:t is the only parent of ht−k:t

=
∑
lt−k:t

Ṫ (xt+1|xt, at, ut)
∑
l0:t−k

P π̄(ut, l0:t−k|lt−k:t)P
π̄(lt−k:t|ht−k:t)

=
∑
lt−k:t

Ṫ (xt+1|xt, at, ut)Ī
π̄(ut|lt−k:t)P

π̄(lt−k:t|ht−k:t)

Hence, putting all together,

Q̄π̄(ht−k:t, at) =
∑

h0:t−k

P π̄(h0:t−k|ht−k:t)
∑
xt

P (xt|h0:t−k, ht−k:t)Ṙ(xt, at)

+
∑
ot+1

∑
xt+1

Ȯ(ot+1|xt+1)
∑
ut

∑
lt−k:t

Ṫ (xt+1|xt, at, ut)Ī
π̄(ut|lt−k:t)P

π̄(lt−k:t|ht−k:t)
∑
at+1

π̄(at+1|h−k+1:t+1)Q̄
π̄(h−k+1:t+1, at+1)

Intuitively, we see that, because the action-value function Q̄π̄(at, ht−k:t) is just an expectation over all possible ht given
ht−k:t, the distribution of ut given the full ALSH lt, I(ut|lt), is effectively washed away by the same expectation. Hence,
we may as well condition the influence predictor directly on lt−k:t, Ī π̄(ut|lt−k:t).

Finally, using the assumption P (ut|lt−k:t, a0:t−k) = P (ut|lt−k:t) we can drop the superscript π̄ from Ī π̄(ut|lt−k:t).
This assumption is important because the distribution Ī(ut|lt−k:t) is generally not well-defined. Hence, if we estimate
Ī π̄0(ut|lt−k:t) from samples collected while following π̄0 but P (ut|lt−k:t, a0:t−k) ̸= P (ut|lt−k:t), then, when we update
the policy, the marginal distribution P π̄(a0:t−k) will change and the old estimates will be biased.

□

Theorem 2. A subset of variables dt from lt is guaranteed to elicit an invariant predictor of ut, across all π ∈ Π, if (i) dt
constitutes a d-separating set and (ii) all policies are functions of the local AOH, π(ht).

Figure 7. Graphical causal model of a local-FPOMDP. The bidirectional arrows between two sets of variables (e.g. between dt and ut)
indicate that there can be variables in one set that are affected by other variables in the other set and vice-versa. As depicted by the two
diagonal arrows in the middle, actions a0:t may or may not be included in dt. The top dashed arrow connecting y and π indicates that π
cannot be a function of the non-local variables.

Proof. In this proof, we will make use of the graphical causal model in Figure 7. We know that the agent’s policy π can
only influence the environment through its actions a0:t. Moreover, from the definition of d-set (Definition 5), we know
that the direct path (Pearl, 2000) that connects the past sequence of actions a0:t with ut must go through dt. Otherwise,
(ut ⊥̸⊥ dt \ lt|dt) and dt would not constitute a d-set. Note that, as shown by the diagonal arrows in the middle, actions in
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a0:t may or may not be included in dt. Finally, the second condition in Theorem 2 implies that there cannot be backdoor
paths (Pearl, 2000) between π and ut. Hence, if we control for dt, π and ut become conditionally independent,

P (ut|dt) = Pπ(ut|dt) for all π ∈ Π.

Moreover, for the above to hold, the d-set does not necessarily need to be minimal, dt ⊆ d∗t . That is, as long as the path
between lt \ dt and ut remains closed, dt may include as many additional (irrelevant) variables as there are in lt. Note that
this path is only open when dt is not a d-set. □

Proposition 1. Let π0 be the exploratory policy used to collect the dataset. Then, for all π ∈ Π

KL(Pπ0(dt, ut)||Pπ(dt, ut)) ≤ KL(Pπ0(lt, ut)||Pπ(lt, ut))

where KL is the Kullback–Leibler divergence.

Proof.

KL(Pπ0(dt, ut)||Pπ(dt, ut)) =
∑
dt,ut

Pπ0(dt, ut) log

(
Pπ0(dt, ut)

Pπ(dt, ut)

)

=
∑
dt,ut

Pπ0(ut, dt) log

(
Pπ0(ut|dt)Pπ0(dt)

Pπ(ut|dt)Pπ(dt)

)

=
∑
dt

log

(
Pπ0(dt)

Pπ(dt)

)∑
ut

Pπ0(ut, dt)

since, from Theorem 2, we know that P (ut|dt) is invariant across all π ∈ Π

= KL(Pπ0(dt)||Pπ(dt))

Similarly, because P (ut|lt) is also invariant across all π ∈ Π, Pπ0(ut|lt) = Pπ(ut|lt),

KL(Pπ0(lt, ut)||Pπ(lt, ut)) = KL(Pπ0(lt)||Pπ(lt)).

Then, since dt ⊆ lt, we can write
Pπ(lt) = Pπ(dt, lt \ dt)

and, using the chain rule

KL(Pπ0(lt)||Pπ(lt)) = KL(Pπ0(lt \ dt|dt)||Pπ(lt \ dt|dt)) +KL(Pπ0(dt)||Pπ(dt))

≥ KL(Pπ0(dt)||Pπ(dt))

where the last inequality holds because the KL divergence is always non-negative. □

Corollary 1. Let a0:t be the past sequence of actions from 0 to t. If P (dt|do(ao:t)) = P (dt) for all dt and a0:t. Then, for
any π1 ̸= π2 : π1, π2 ∈ Π we have Pπ1(dt, ut) = Pπ2(dt, ut) even though Pπ1(lt, ut) ̸= Pπ2(lt, ut).

Proof. Follows from Proposition 1. We know that π can only influence the environment through the actions a0:t. Hence,

∀π1 ̸= π2, dt, a0:t P (dt|do(a0:t)) = P (dt) ⇒ Pπ1(dt) = Pπ2(dt) ⇐⇒ KL(Pπ1(dt)||Pπ2(dt)) = 0

and from the proof of Proposition 1

KL(Pπ1(dt, ut)||Pπ2(dt, ut)) = KL(Pπ1(dt)||Pπ2(dt))

which means

∀π1 ̸= π2, dt, a0:t, ut P (dt|do(a0:t)) = P (dt) ⇒ KL(Pπ1(dt, ut)||Pπ2(dt, ut)) = 0 ⇐⇒ Pπ1(dt, ut) = Pπ2(dt, ut)

and, because lt ⊆ a0:t then

∀π1 ̸= π2, lt, a0:t, ut KL(Pπ1(lt)||Pπ2(lt)) > 0 ⇐⇒ KL(Pπ1(lt, ut)||Pπ2(lt, ut)) > 0 ⇐⇒ Pπ1(lt, ut) ̸= Pπ2(lt, ut)

□
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B. Example: Spurious Correlations in the Traffic Domain
Figure 8 shows four screenshots taken from the SUMO simulator (Lopez et al., 2018). These capture a sequence consecutive
states in the traffic domain (see Section 5.2 for more details about this environment). The agent’s local region is depicted
by the red dashed box. The small cyan box on the right of every screenshot indicates the location of an influence source.
As shown in the screenshots, when traffic is dense, lines of cars are formed along the incoming lanes in front of the traffic
lights. This situation leads to the appearance of spurious correlations between the traffic lights and the influence sources. In
particular, Figure 8 reveals that three timesteps after the traffic lights on the horizontal lanes are switched to green a new car
appears at the influence source. Although there is clearly no direct relationship between these two events, if this pattern
occurs often enough, as it is the case under a uniform random policy, the AIP might pick it up and use it as a shortcut. That
is, the AIP might learn to predict that a car will show at the influence source exactly three timesteps after the lights are
switched to green. This would indeed be effective at the beginning of training, since traffic jams are common under poor
performing policies, but may result in highly inaccurate predictions when policies are further improved. As explained in
Section 4.2 the problem above can be prevented if d-sets, rather than full AOHs, are fed into the AIP.

Green light

Influence
source

New car
appears

2 31 2 4

Figure 8. Four screenshots capturing a sequence of states that may occur under a uniform random policy. The agent’s local region is
depicted by the red dashed box. The small cyan box on the right of every screenshot indicates the location of an influence source. The
screenshots reveal that, when the traffic is dense, three timesteps after the traffic lights on the horizontal lanes are switched to green a new
car appears at the influence source. This is clearly a spurious correlation as there is not direct relationship between the traffic lights and
the influence sources.

C. Runtimes
The table below shows a breakdown of the runtime for the two environments and the three simulators. These were measured
on an Intel i7-8650U CPU with 8 cores.

Simulator Agents training (h) Data collection (h) AIP training (h) Total (h)

Traffic
GS 6.16 - - 6.16
IALS 2.13 0.03 0.01 2.17
untrained-IALS 2.13 - - 2.13

Warehouse
GS 13.12 - - 13.12
IALS 3.90 0.03 0.06 3.99
untrained-IALS 3.90 - - 3.90
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D. Local Simulators

Figure 9. A screenshot of the local simulators for the traffic control (left) and warehouse (right) environments

E. Results
E.1. Traffic control intersection 2
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Figure 10. Top: Learning curves of agents trained with the GS, the IALS, and the untrained-IALS on intersection 2 (Figure 2) as a
function of wall-clock time. The dotted horizontal lines show the final performance of the agents after 2M timesteps of training. The
dotted horizontal line at the begining of the red curve corresponds to the AIP training time. Middle: Total runtime of training for 2M
training steps on the three simulators. Bottom: Cross entropy loss for the trained and untrained AIPs.

E.2. Comparison on the number of timesteps
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Figure 11. Learning curves as a function of the number of timesteps for the traffic (left) and warehouse (right) environments.
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E.3. Sufficiently similar training conditions

Here we further explore our research question in Section 4.3. To what extent can agents trained on inaccurate IALS achieve
similar performance to those trained on the GS? To shed some light on this this complicated question, we introduce a new
type of AIP which represents the influence sources by a fixed marginal probability P (ut) independent of the ALSH. We call
the resulting simulator F-IALS (F for fixed).

Traffic results: Figure 3 shows the performance of agents trained on the F-IALS with P (ut) = 0.1 (F-IALS 0.1) and
P (ut) = 0.5 (F-IALS 0.5). The bar plot at the bottom of Figure 3 shows that the cross-entropy loss is much higher when
modeling the influence sources with the marginal distribution P (ut) (F-IALS 0.1 and F-IALS 0.5) than when modeling
them with the learned influence predictor P (ut|lt) (IALS). This suggests that there is a non-trivial relationship between
ALSH and influence sources, and in principle

KL(I(ut|dt)||Îθ(ut|dt)) < KL(I(ut|dt)||P (ut) = 0.1) < KL(I(ut|dt)||P (ut) = 0.5) (9)

Nonetheless, agents trained on the F-IALS 0.1 reach the same (intersection 2) or similar (intersection 1) level of performance
as those trained on the IALS. This is in line with our hypothesis in section 4.3. If real trajectories are somewhat likely under
a random influence predictor, an agent with sufficient capacity will be able to learn from them and perform well on the true
environment. In fact, given that the probability used for the inflow of vehicles entering the GS is also 0.1, the chances of
generating traffic patterns with the F-IALS (0.1) similar to those of the GS are very high. In contrast, when setting the
probability of cars entering the LS to a less sensible P (ut) = 0.5 agents trained on the F-IALS (0.5) can no longer match
the same performance level.
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Figure 12. Top: Learning curves of agents trained with the GS, the IALS and the F-IALS on the the two intersections highlighted in
Figure 2 as a function of wall-clock time. The dotted horizontal lines show the final performance of the agents after 2M timesteps of
training. Second from the bottom: Total runtime of training for 2M training steps on the three simulators. Bottom: Cross entropy loss
evaluated at intersection 1 for the three AIPs (values are very similar for intersection 2).
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Figure 13. Top: Learning curves of agents trained with the GS, the IALS and the F-IALS on the the warehouse commissioning task as a
function of wall-clock time. Zoom in version of the same chart showing the performance difference between IALS and F-IALS. The
dotted horizontal lines show the final performance of the agents after 2M timesteps of training. The dotted horizontal line at the beginning
of the red curve corresponds to the AIP training time. Second from the bottom: Total runtime of training for 2M steps on the three
simulators. Bottom: Cross entropy loss for the two AIPs.

Warehouse results: In this environment the fixed influence source probabilities is set to an estimate P̂ (ut) of true value
Pπ0(ut), which we approximated empirically from N = 10K samples collected from the GS while following π0. Even so,
the cross-entropy of the F-IALS is again higher than that of the learned influence predictor Îθ(ut|lt), indicating again that
influence sources ut and ALSHs are strongly coupled with one another and that there is a non-trivial relationship between
them,

KL(I(ut|dt)||Îθ(ut|dt)) < KL(I(ut|dt)||P̂ (ut)) (10)

Despite being less accurate, agents trained on the F-IALS can also perform well on the true environment. Yet, they do not
reach the same level of performance as those obtained with the GS and the IALS (see zoom in version in Figure 5). Even
though, the basic strategy on how to collect items can be learned from the F-IALS, the simulator does not provide the extra
level of detail needed to learn better policies. That is, a consistent pattern that is present in both the GS and the IALS by
which items that have been active the longest are more likely to disappear next. With this, agents can learn to not go for an
item when the chances that a neighbor robot will get there first are high.

All in all we see that, in certain situations, inaccurate influence predictors can still provide a fair amount of useful experiences
for the agent to perform well on the true environment. However, in domains with complicated dynamics, such as our
warehouse environment, the best policies can only be obtained when simulations provide the extra level of detail that only
accurate influence predictors are able to deliver.

F. Implementation Details
Approximate influence predictor: Due to the sequential nature of the problem, rather than feeding the full past history
every time we make a prediction, we use a recurrent neural network (RNN) (Hochreiter & Schmidhuber, 1997; Cho et al.,
2014) and process observations one at a time,

P (ut|lt) ≈ Îθ(ut|ĥt−1, ot) = Frnn(ĥt−1, ot, ut), (11)

where we use ĥ to indicate that the history h is embedded in the RNN’s internal memory.
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Given that we generally have multiple influence sources ut = ⟨u1
t . . . u

M
t ⟩, we need to fit M separate models Îθm to predict

each of the M influence sources. In practice, to reduce the computational cost, we can have a single network with a common
representation module for all influence sources and output their probability distributions using M separate heads. This
representation assumes that the influence sources are independent of one another,

I(ut|lt) =
M∏

m=0

P (um
t |lt), (12)

which is true for the two domains we study in this paper.

Practical implications of Theorem 1: One important consideration when training RNNs via backpropagation through time
(BPTT) is to choose the right length for the input sequences (Williams & Peng, 1990). This determines the number of steps
the network is backpropagated, and thus for how long past information can be retained. On the one hand, longer sequences
will often provide more information to predict the influence sources, on the other, they will also make it harder to optimize the
network. Ideally, we would like to choose just the right sequence length such that the agent cannot perceive any distribution
shift in the local transitions. Assuming that in our environment P (ut|lt−k:t, a0:t−k) = P (ut|lt−k:t), from Theorem 1 we
know that the sequence length should be (at least) as long as that of the agent’s (if these are also modelled by RNNs or as long
as the number of stacked observations fed to feedforward neural networks; FNN). If P (ut|lt−k:t, a0:t−k) ̸= P (ut|lt−k:t)
we can still condition the AIP only on lt−k:t but we might need to retrain the AIP every certain number of policy updates to
prevent it from becoming stale (see last paragraph in the proof of theorem 1; Appendix A).

Policies: We model policies by FNNs. In the warehouse environment, since the agent needs memory to perform well,
policies are fed with a stack of the last 8 observations. This architecture performed better than GRUs. In the traffic control
task, on the other hand, policies are fed only with the current observation as this seems to be sufficient to predict the influence
sources.

G. Algorithms

Algorithm 1 Collect dataset with GS

1: Input: T , O, π0 ▷ Global simulator, global observation function, and exploratory policy
2: for n ∈ ⟨0, ..., N/T ⟩ do
3: s0 ← reset ▷ Reset initial state
4: x0 ← s0 ▷ Extract local state from global state
5: l0 ← x0 ▷ Initialize ALSH with initial local state
6: o0 ∼ O(· | s0) ▷ Sample observation from O
7: h0 ← o0 ▷ Initialize AOH with initial observation
8: for t ∈ ⟨0, ..., T ⟩ do
9: ⟨u0

t , ..., u
k
t ⟩ ← st ▷ Extract influence sources from global state

10: D ← {lt, ⟨u0
t , ..., u

k
t ⟩} ▷ Append ALSH-influence-source pair to the dataset

11: at ∼ π(· | ht) ▷ Sample action
12: st+1 ∼ T (· | st, at) ▷ Sample next state from GS
13: xt+1 ← st+1 ▷ Extract local state from global state
14: lt+1 ← ⟨at, xt+1⟩ ▷ Append action-local-state pair to ALSH
15: ot+1 ∼ O(· | st+1) ▷ Sample observation from O
16: ht+1 ← ⟨at, ot+1⟩ ▷ Append actions-observation pair to the AOH
17: end for
18: end for
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Algorithm 2 Simulate trajectory with IALS

1: Input: Ṫ , Ṙ, Ȯ, π, Îθ ▷ local simulator, local reward and observation functions, policy, AIP
2: x0 ← reset ▷ Reset initial state
3: o0 ∼ Ȯ(·|x0) ▷ Sample observation from Ȯ
4: h0 ← o0 ▷ Initialize AOH with initial observation
5: for t ∈ ⟨0, ..., T ⟩ do
6: at ∼ π(· | ht) ▷ Sample action
7: Ṙ(xt, at) ▷ Compute reward
8: ut ∼ Îθ(· | lt) ▷ Sample influence sources from AIP
9: xt+1 ∼ Ṫ (· | xt, at, ut) ▷ Sample next local state from LS

10: lt+1 ← ⟨at, xt+1⟩ ▷ Append action-local-state pair to ALSH
11: ot+1 ∼ Ȯ(· | xt+1) ▷ Sample observation from O
12: ht+1 ← ⟨at, ot+1⟩ ▷ Append action-observation pair to AOH
13: end for


