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Summary

Due to an increased demand for transport, ships become larger, needing a larger
navigable depth. For these reasons a waterway needs to be dredged and a Cutter
Suction Dredger is a vessel suitable for this operation.
A Cutter Suction Dredger is a floating vessel which removes sand, clay or soft rock
from sea or river beds. It has a cutter head with pickpoints attached to it. By
rotating and swinging, the pickpoints are pushed into the soil, disintegrating it.
The soil enters the cutter head where it is mixed with water. From inside the
cutter head it is hydraulically transported to the vessel via the suction mouth and
pipe. The rotational speed of the cutter head can be varied by the vessel operator.
When increasing the rotational velocity and swing speed, more production can be
obtained. However, this leads to an outflow of water and dredged material near the
ring, spilling the soil.
When the Cutter Suction Dredger is employed for cutting sand, the sand particles
are easily kept in suspension due to the rotating motion before it is sucked up. A
cutter suction dredger is also used for cutting rock, leading to large pieces, which
are more influenced by gravity and the centrifugal force. Due to these forces, the
pieces are thrown out of the cutter head more easily than smaller sand particles.
The pieces of rock which are thrown out of the cutter are considered spilled. This
spillage is unfavourable since this material has to be dredged a second time or is
left on the sea floor. When the material is left on the sea floor, a larger layer of soil
needs to be dredged for creating the same navigable depth.
To reduce spillage, the processes contributing to spillage should be quantified in or-
der to design a better cutter head or working method. This dissertation contributes
to this goal by presenting a validated model for simulating the spillage of rock par-
ticles inside a rotating cutter head. Such a model can be used to quantify different
processes and test new cutter head designs.
Many researchers created models and performed experimental studies. However, this
did not lead to an integral model for simulating both the fluid and rock accurately
in a rotating cutter head. This dissertation will present such a model to simulate
spillage. One of the researchers performed experiments in cutting cemented gravel
and measured the production fraction. The production fraction is the fraction of
the amount of material entering the suction mouth over the total amount of cut
material. This showed an optimum compared to the rotating velocity. A hypothesis
for this optimum is that low rotational velocities do not keep the dredged material
in suspension and therefore the material does not enter the suction mouth, while
for high rotational velocities, the centrifugal forces acting on the material together
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with the outflow near the ring cause spillage. In between there is an optimum for
the production fraction.
To simulate the spillage, this research employs three existing models. The first is to
be able to model the flow velocity due to the rotation. Secondly, the large pieces of
rock are tracked in a time efficient manner and the collisions between the particles
and between the particles and the rotating cutter head are predicted. Lastly, the
interaction forces between the fluid and pieces of rock are applied to both phases.
The novelty of the combined method is its ability to model large particles in a
rotating geometry in a time-efficient manner.
The fluid is modelled as a continuum and the rotating cutter head is modelled using
a sliding mesh approach. For modelling the rock pieces the Discrete Element Model
is employed, which tracks the path of a piece of rock. The open-source software
OpenFOAM is used for this approach. It already offered the possibility to model
the fluid motion with the sliding mesh approach and the tracking of small particles,
including collisions.
All the three methods are validated or verified. The fluid flow is validated against
velocity measurements in two different schematized free rotating cutter heads. The
trend in the time-averaged velocities for different rotational speeds is very similar
to the measurements for both cutter heads.
In the simulation of the cutter head, the mesh size of the fluid simulation is smaller
than the particles in order to solve the velocity gradients. Coupling a large particle
to small mesh sizes leads to very high errors in settling velocity, since the computa-
tion of the settling velocity is based on the undisturbed fluid velocity, while in the
simulation the fluid is accelerated by the large particle. Secondly, it causes volu-
metric concentrations higher than 1 when a particle volume is larger than the cell
volume, which is not physical.
Two existing methods are implemented to solve the issues with the large particles in
small cell volumes. These estimate the undisturbed fluid velocity at the centre of the
particle and divide the particle volume over multiple cells to ensure a concentration
less than 1. The first method is a statistical kernel function to map the data between
the Lagrangian and Eulerian phases, from and to multiple cells. Cells closer to the
particle centre have a bigger influence than the cells at a larger distance from the
centre. A second method uses a diffusion equation to spread the concentration and
force field, which were initially mapped to a single cell. This results in a similar
estimation of the undisturbed fluid velocity at the centre of the particle as the
statistical kernel function.
The fluid-particle interaction is verified for individual settling particles and of a cloud
of particles. A settling cloud of particles is used for verifying the hindered settling
implementation and the resulting forces on the fluid. Hindered settling describes
the effect of a slower settling cloud of particles than a settling individual particle.
For both verification cases both the kernel method and diffusion method show good
results. However, the diffusion method showed unstable results for smaller influence
volumes (which is similar to a small standard deviation in the kernel method). This
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is likely caused by the continuity equation used for computing the fluid motion. For
this reason, the kernel function is used in simulating the particles in the cutter head.
Contact forces during a collision are computed by a so-called soft-sphere approach,
which allows the particles to overlap each other, slightly. Based upon the overlap
distance and the modulus of elasticity the rebound forces are computed using a
spring-damper system. The damper models the dissipated energy of a collision.
To get similar time steps for the fluid simulation and the collision simulation, the
modulus of elasticity is artificially reduced. This leads to longer contact times
and time steps. With a reduction of a factor 6000, measured normal and oblique
collisions could still be accurately predicted together with collision time steps in the
same order as the fluid time steps.
For the freely rotating cutter heads with a suction mouth and with a uniform suction
over the back ring, one of the spillage mechanisms is analysed. This is the out-flowing
fluid flux from the cutter head. The out-flowing flux for a freely rotating cutter head
is halve of the suction discharge for the nominal values of the rotational velocity
and suction discharge at a 1 to 4 model scale. These are 60 rpm and a discharge of
0.12 m3/s. When comparing the axial cutter head to the cutter head with a suction
mouth, the onset of outflow is at a lower rotational speed for the cutter head with
a suction mouth. At 20 rpm and a suction discharge of 0.12 m3/s the axial cutter
head shows an inflow over the whole contour, while the cutter head with back-plate
shows an out-flowing flux near the ring.
For the cutter head with suction mouth, spillage is simulated using the combination
of the three validated simulation techniques. The cutter head is initially filled with
particles, which is different from reality where material is continuously fed to the
cutter head. These simulation results do not match previously performed experi-
ments in cutting cemented gravel: the model does not show the significant spillage
at the low rotational velocities as was hypothesised to be caused by not suspending
the particles. This difference is likely caused by the feeding technique which does
not lead to a steady cutter production. At higher rotational velocities, it is likely
that the spillage is induced by the out-flowing flux near the ring as the simulated
spillage follows the same trend as the out-flowing flux and is present at the same
distance from the ring.
This research shows it is possible to model spillage using a combination of a contin-
uous model for the fluid and Lagrangian tracking of large particles. The resulting
spillage follows the trend of experiments for high rotational velocities where the cen-
trifugal force dominates the spillage. When including a continuous feed of particles
into the cutter head, the model will likely predict the high spillage at low rotational
speeds. Therefore, including this continuous feed of particles is the most important
recommendation for future work.





Samenvatting

Door de grotere vraag naar transport worden schepen steeds groter, waardoor gro-
tere en diepere vaarwegen nodig zijn. Deze vaarwegen worden gemaakt door bagger-
schepen. Een snijkopzuiger is een baggerschip geschikt voor deze werkzaamheden.
Een snijkopzuiger kan zand, klei of zachte rots van de bodem van waterwegen ver-
wijderen. Om de grond los te maken heeft een snijkopzuiger een open snijkop met
tanden erop. Deze snijkop wordt geroteerd en door de grond getrokken, dit heet
verhalen. Hierdoor komt de grond los en wordt het de snijkop in getransporteerd.
In de snijkop wordt de grond gemengd met water om daarna via de zuigmond en -
pijp naar het baggerschip te worden gepompt. De rotatiesnelheid en verhaalsnelheid
kunnen vanaf de snijkopzuiger geregeld worden. Een hogere rotatie- en verhaalsnel-
heid kan tot meer productie leiden, maar deze rotatie kan ook een uitstroming van
water en grond veroorzaken. Door deze uitstroming zal er meer materiaal uit de
snijkop worden gemorst.
Bij het baggeren van zand blijft de losgekomen grond in suspensie in het water in de
roterende snijkop voordat het opgezogen wordt. Als een snijkopzuiger wordt ingezet
om rots te baggeren komen er grote delen rots vrij. Deze worden meer beïnvloed
door de zwaartekracht en de centrifugaal kracht dan zandkorrels. Hierdoor valt dit
materiaal eerder uit de snijkop en wordt het makkelijker de snijkop uit geslingerd
dan gebaggerd zand. Het gebaggerde materiaal wat uit de snijkop komt, wordt mors
genoemd. Als er veel mors is, moet er een extra keer over het losgesneden materiaal
gebaggerd worden of wordt het materiaal achter wordt gelaten op de bodem. Bij de
laatste optie dient er een grotere laag gebaggerd te worden om dezelfde vaardiepte
te verkrijgen.
Om deze mors te kunnen verminderen dienen de processen die hier invloed op hebben
te worden gekwantificeerd. Dit kan leiden tot een beter ontwerp voor de snijkop
of tot een betere werk methode. In deze dissertatie wordt een gevalideerd model
gepresenteerd om de mors van gesneden rots in een snijkop te simuleren. Dit model
kan worden gebruikt om de processen in de snijkop te kwantificeren en om nieuwe
snijkop-ontwerpen te testen.
Ondanks dat er al veel experimentele studies zijn uitgevoerd en simulatie modellen
zijn gemaakt, is er nog geen integraal model voor vloeistofstroming en beweging
van het gesneden materiaal in de snijkop. Deze dissertatie zal een model beschrij-
ven om de beweging van het gesneden materiaal en de mors te simuleren. In een
eerder uitgevoerd experimenteel onderzoek is de productie en mors bij het snijden
van gecementeerd gravel gemeten. Hieruit is het productiepercentage uitgerekend:
het percentage van het gesneden materiaal wat opgezogen wordt. De testen toonden
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een optimum productiepercentage ten opzichte van de rotatiesnelheid. Een hypo-
these voor dit optimum is dat lage rotatiesnelheden het materiaal niet in suspensie
houden, waardoor het niet in de zuigmond terecht komt, terwijl bij de hoge ro-
tatie snelheden, de centrifugaalkracht het materiaal naar buiten slingert en mors
veroorzaakt. Hiertussen zit een optimum voor het productiepercentage.
Dit onderzoek gebruikt drie gekoppelde modellen om de mors te simuleren. De
eerste is gebruikt om de stroming door de roterende snijkop te simuleren. Een
tweede model is voor het simuleren van de banen van de stukken rots. Hierbij wordt
ook een botsingsmodel gebruikt voor de botsingen tussen de deeltjes onderling en
tussen de deeltjes en de roterende snijkop. Het laatste model wordt gebruikt om de
interactie-krachten tussen de stukken rots en het water op beide fases toe te passen.
Door deze drie methodes te combineren is het mogelijk om op een tijds-efficiënte
mannier grote deeltjes in een roterende geometrie te simuleren.
De vloeistofstroming is gemodelleerd als een continuüm. De stroming in de roterende
snijkop wordt met een glijdend rekenrooster gekoppeld aan de stilstaande delen in
de simulatie. Een Lagrangiaanse methode genaamd ’Discrete Elementen Methode’
is gebruikt voor de simulatie van de banen van de gesneden rotsblokken. Voor de
simulaties is de open-source software OpenFOAM gebruikt. In dit pakket zit een
model voor de vloeistofstroming inclusief een glijdend rekenrooster en de modelering
van de banen kleine deeltjes. De botsingen van de deeltjes kunnen ook gemodelleerd
worden met deze software.
De drie gekoppelde methodes voor het simuleren van mors zijn allemaal gevalideerd
aan de hand van metingen of geverifieerd tegen een (numeriek geïntegreerde) ana-
lytische oplossing. De vloeistofstroming in de snijkop is gevalideerd tegen eerder
uitgevoerde metingen voor twee geschematiseerde snijkoppen. De trend in de tijds-
gemiddelde snelheden voor verschillende rotatie snelheden komt goed overeen met
de metingen.
Voor de simulatie van de snijkop is een fijn rekenrooster gebruikt om de snelheids-
gradiënten in de snijkop goed te kunnen beschrijven. Hierdoor zijn de rekencellen
kleiner dan de grootte van de gemodelleerde rotsblokjes. Het koppelen van deze
grote deeltjes met kleinere rekencellen leidt tot grote fouten in de valsnelheid van
de deeltjes. De oorzaak hiervan is de aanname dat de valsnelheid wordt berekend
met de ongestoorde vloeistofsnelheid, terwijl in de simulatie de vloeistof versneld
wordt door het vallende deeltje. Een tweede probleem is dat bij deeltjes groter dan
een rekencel de concentratie van een deeltje in de cel groter is dan 1; hetgeen niet
fysisch is.
Om de problemen met de grote deeltjes op te lossen zijn twee bestaande methodes
geïmplementeerd. Deze benaderen de ongestoorde vloeistofsnelheid ter plaatse van
het deeltje en spreiden het volume van een deeltje over meerdere rekencellen. Voor
deze spreiding is een normale verdeling gebruikt. Rekencellen dichter bij het middel-
punt van het deeltje hebben een grotere invloed dan cellen verder verwijderd van het
middelpunt. Een tweede methode gebruikt een diffusie-vergelijking om het volume
van een deeltje te spreiden over meerdere rekencellen en de vloeistofsnelheid van
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meerdere rekencellen te gebruiken voor het berekenen van de ongestoorde vloeistof-
snelheid ter plaatse van het deeltje. In deze methode wordt initieel het volume van
een deeltje toegekend aan een enkele rekencel, waarna dit met de diffusie-vergelijking
wordt uitgesmeerd over meerdere rekencellen. Dit leidt tot eenzelfde afschatting van
de ongestoorde vloeistofsnelheid en concentratie als het gebruik van de normale ver-
deling.
De koppeling tussen de vloeistofstroming en de deeltjes is geverifieerd voor een enkel
vallend deeltje en een wolk van deeltjes. Met de wolk van deeltjes is het hindered
settling gedrag geverifieerd, wat het effect beschrijft van het langzamer vallen van
een wolk van deeltjes dan van een enkel deeltje. Met deze simulaties wordt de imple-
mentatie van de interactie-krachten tussen de deeltjes en de vloeistof geverifieerd.
De methode met de normale verdeling en de diffusie methode beschrijven het ge-
drag van een enkel vallend deeltje en een wolk vallende deeltjes goed. De diffusie
methode werd instabiel als een te lage diffusiecoefficient werd gebruikt. Dit wordt
waarschijnlijk veroorzaakt door de continuïteitsvergelijking voor de vloeistofstro-
ming. Om deze reden is voor de simulatie van deeltjes in de snijkop de methode
met de normale verdeling gebruikt.
De interactiekrachten tijdens een botsing worden uitgerekend met een zogenaamd
soft-sphere botsingsmodel. In dit model kunnen deeltjes een klein beetje overlappen
tijdens een botsing. De overlapafstand en de elasticiteitsmodulus bepalen de reac-
tiekracht van de botsing met behulp van een massa-veer-demper-systeem. Hierbij is
de demper verantwoordelijk voor het energieverlies tijdens de botsing. Om eenzelfde
tijdstap voor de botsing als voor de vloeistofsimulatie te verkrijgen, is de elastici-
teitsmodulus van de deeltjes verkleind. Hierdoor ontstaan langere botsingstijden en
kan daardoor een grotere tijdstap gebruikt worden. Ondanks dat de elasticiteits-
modulus met een factor 6000 verkleind is, worden loodrechte botsingen en schuine
botsingen uit experimenten nog steeds goed voorspeld.
Voor beide snijkoppen, de snijkop met zuigmond en de snijkop met uniforme af-
zuiging, is het morsmechanisme van de uitstroom bij de ring geanalyseerd. De
vloeistof-uitstroom is de helft van het zuigdebiet bij nominale waarde van de rota-
tiesnelheid en zuigdebiet (60 rpm en 0.12 m3/s voor de geteste 1:4 model snijkop).
Hierbij moet de kanttekening geplaatst worden dat beide snijkoppen vrij in het wa-
ter draaien en hierdoor meer water uit kan stromen dan bij het draaien in een bres.
De uitstroom begint bij een lagere rotatiesnelheid voor de snijkop met zuigmond
dan voor de snijkop met uniforme afzuiging. Bij een rotatiesnelheid van 20 rpm en
een zuigdebiet van 0.12 m3/s is er bij de snijkop met axiale afzuiging een instroom
over de hele contour, terwijl bij de snijkop met zuigmond een uitstroom bij de ring
plaats vind.
Voor een vrij-draaiende snijkop met zuigmond is de mors gesimuleerd door gebruik
te maken van de drie gevalideerde simulatie technieken. De simulatie is opgestart
met deeltjes tussen de bladen, terwijl in werkelijkheid er een constante stroom van
rotsblokken de snijkop binnenkomt. Hierdoor komt de simulatie niet overeen met
de in een eerdere studie uitgevoerde experimenten waarbij gecementeerd gravel ge-
sneden werd. De simulaties laten niet de toename in productiepercentage bij hogere
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rotatiesnelheden zien. De oorspronkelijke hypothese voor deze toename is de toene-
mende mate van suspensie van de deeltjes. Waarschijnlijk komt het verschil doordat
de deeltjes niet continue worden gevoed aan de snijkop. De simulaties tonen wel
de afname van productiepercentage bij hogere toerentallen. Dit is waarschijnlijk
door de uitstroom bij de ring, aangezien de mors dezelfde trend volgt als het uit-
stroomdebiet en dat de mors op dezelfde afstand vanaf de ring plaatsvindt als de
uitstroom.
Dit onderzoek toont aan dat het mogelijk is om mors te simuleren met een continue
model voor de vloeistof en de Discrete Elementen Methode voor de modelering van
de stukken rots. De gesimuleerde mors volgt dezelfde trend als de experimenten bij
hoge toerentallen. Als er continue deeltjes worden toegevoegd aan de snijkop zal het
model waarschijnlijk ook de hoge mors bij lage toerentallen voorspellen. Daarom is
de belangrijkste aanbeveling voor vervolgonderzoek om een continue instroom van
deeltjes te modeleren.
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Roman symbol Description Unit
A The area of the circular domain in a integration [m2]
A Diagonal part of the momentum matrix [s-1]
A0 Constant in the computation of the turbulent viscosity [-]
Acut Projected area of the cutter head in the breach [m2]
Af Area of a face of a finite volume [m2]
As Variable in the computation of the turbulent viscosity [-]
Ais Area of a face i in the source mesh of the sliding mesh [m2]
Ajt Area of a face j in the source mesh of the sliding mesh [m2]
Ais ∩Ajt Intersection area of the source face area (Ais) and the

target face area (Ajt)
[m2]

Ap Area of the particle projected to the flow direction [m2]
c Cell centre [m]
cj Cell centre of cell j [m]
cp Centre of the particle [m]
cp,n Centre of the particle n [m]
cgp Centre of the ghost particle [m]
C1 Variable for the production term in computing the dis-

sipation of turbulent kinetic energy
[-]

C2 Constant for the dissipation term in computing the dis-
sipation of turbulent kinetic energy

[-]

CAM Added mass coefficient [-]
Ccol Coefficient in the computation of the collision time [-]
Cd Drag coefficient [-]
Cf Centre of a face of a finite volume [m]
Cimplicit Implicit coefficient of the interaction force between the

fluid and the discrete particles
[kg/s]

Cslip Slip factor between the angular fluid velocity and the
angular velocity of the blades

[-]

Cµ dimensionless constant for computing the turbulent vis-
cosity

[-]

‖d‖ Distance between the cell centre c and the neighbour
cell centre N .

[m]

dblade Travel distance of the blade during a collision with a
particle

[m]

dmin Minimum distance vector from the particle centre to
the wall

[m]

dinter Inter-particle distance [m]
dp Particle diameter [m]
d50 Median particle diameter [m]
D Diffusion coefficient [m2/s]
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Roman symbol Description Unit
Dp Diameter of a container or pipe [m]
en Normal overlap unit vector [-]
et Tangential overlap unit vector [-]
E Modulus of Elasticity (Young’s modulus) [N/m2]
E∗ Effective modulus of Elasticity (effective Young’s mod-

ulus)
[N/m2]

Ei, Ej Moduli of Elasticity of the two particles in a collision [N/m2]
f Fraction of the pressure driving the inflow and driving

the outflow.
[-]

fi Interaction force of the discrete particles acting on the
fluid per unit volume

[N/m3]

fj Interaction force of the discrete particles acting on the
fluid per unit volume for cell j

[N/m3]

FAM Added mass force [N]
Fb Buoyancy force [N]
Fd Drag force on a particle influenced by the concentration

due to the presence of neighbouring particles
[N]

Fd,0 Drag force on a single particle in absence of surrounding
particles

[N]

Fg Force due to gravity [N]
Fi Interaction force between the fluid and the discrete par-

ticles
[N]

Fi,n Interaction force between the fluid and the discrete par-
ticle n

[N]

F nc,explicit Explicit part of the interaction force between the fluid
and the discrete particles

[N]

Fn Normal collisional force [N]
Fpg Pressure gradient force [N]
Ft Tangential collisional force [N]
Fvisc Viscous force [N]
Fr Froude number [-]
g, g Gravitational acceleration vector and magnitude [m/s2]
G∗ Effective shear modulus of the two particles in a colli-

sion
[N/m2]

Gi, Gj Shear modulus of the two individual particles in a col-
lision

[N/m2]

hb Breach height [m]
H Diagonal matrix containing the off-diagonal contribu-

tions of the momentum matrix and the source terms
[m/s2]

H Height of the cutter head [m]
I Identity tensor, consisting of ones on the diagonal and

zeros on all off-diagonals
[-]

I0 Moment of inertia of the (spherical) particle [kg m2]
k Turbulent kinetic energy [m2/s2]
kn Normal spring coefficient [N/m]
kt Tangential spring coefficient [N/m]
K0 Factor in the moment of inertia, 2/5 for a sphere [-]
Lp Length at prototype scale [m]
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Roman symbol Description Unit
Lm Length at model scale [m]
L Characteristic length scale [m]
m General empirical exponent for the drag force influ-

enced by hindered settling
[-]

mi, mj Masses of the two individual particles in a collision [kg]
M Angular momentum [kg m2/s2]
M Momentum matrix containing the discretised Navier-

Stokes equations
[s-1]

M2D, M3D Integral of weight function (r2) for mapping continuous
phase properties to a particle in a circular and spherical
domain, respectively

[-]

Mts Matrix for mapping the source values to the target val-
ues at the sliding mesh interface

[-]

M∗ Effective mass of two particles in a collision [kg]
n Empirical Richardson and Zaki exponent [-]
nc rotational speed of the cutter head [rpm]
nd Dimension of the simulation for determining the Gaus-

sian kernel
[-]

nf Unit normal of a face of a Finite Volume [-]
nf,i Unit normal of face i [-]
nFr Froude number scale factor [-]
nL Geometric scale factor [-]
nU Velocity scale factor [-]
N Off-diagonal part (or non-diagonal part) of the momen-

tum matrix
[s-1]

N Neighbour cell (centre) [m]
N Total number of data points in a summation [-]
Naxial Number of cells in axial direction [-]
Ncells Number of cells in a summation; typically the cells in

the spherical influence volume around a particle
[-]

Np Number of particles intersecting a cell [-]
Nr Number of cells in radial direction [-]
Ns Number of source faces in the sliding mesh [-]
Ntimesteps User defined number of time steps for discretising the

collisions
[-]

Nθ Number of cells around the circumference of the cylin-
der

[-]

p Pressure acting on the continuous phase [N/m2]
P Kinematic pressure acting on the continuous phase [m2/s2]
P ∗ Uncorrected kinematic pressure in the cell centres at

the intermediate time step
[m2/s2]

P ∗∗ Corrected kinematic pressure in the cell centres at the
intermediate time step

[m2/s2]

P Power generated by a impeller kg m2/m3]
Pb Production term of turbulent kinetic energy due to

buoyancy
[kg/m s3]

Pcut (Theoretical) cutting production of the Cutter Suction
Dredger

[m3/s]
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Roman symbol Description Unit
Pini Initial amount of particles inserted in the cutter head [-]
Pk Production term of turbulent kinetic energy [kg/m s3]
Pk,z Production term of turbulent kinetic energy based on

the shear over the vertical direction
[kg/m s3]

Pout Number of particles transported outside the cutter head
contour

[-]

Ppipe Volume flux or number of particles of transported to-
wards the vessel

[m3/s] / [-]

P% Production fraction; fraction of the volume flux of the
soil transported towards the vessel (Ppipe) over the vol-
ume flux of soil being cut

[-]

q, q A general vector or scalar quantity
qs Vector of values of quantity q at the source faces
qis quantity q at face i of the source mesh
qt Vector of values of quantity q at the target faces
qjt quantity q at face j of the target mesh
Q1 Out-flowing flux near the ring of the cutter head [m3/s]
Qi Flux of segment i in the analytical two segments model [m3/s]
Qm Mixture discharge in the suction pipe [m3/s]
Qout Out-flowing flux near the ring of the cutter head [m3/s]
r Radial coordinate. In some cases the distance from the

current cell to the particle centre
[m]

rj,n Distance from the current cell j to the centre of particle
n

[m]

rp Radius of a particle [m]
R Radius of influence volume of a particle [m]
Rc Radius of the ring of the cutter head [m]
R∗ Effective radius of two particles in a collision based

upon the radii of the two particles
[m]

Ri, Rj Radii of the two particles in a collision [m]
Ri Inner radius; cutter head radius of segment i [m]
Ro Outer radius [m]
Rin Vector of the inner radius of a pump blade or cutter

head blade
[m]

Ro Vector of the outer radius of a pump blade or cutter
head blade

[m]

R̃ Dimensionless radial coordinate [-]
Re Reynolds number [-]
Rep Reynolds particle number based on the particle velocity [-]
Res Reynolds particle number based on the slip velocity [-]
Rif Flux Richardson number [-]
s Step size [m]
S Magnitude of the strain rate of the velocity [s-1]
S Source term of the momentum matrix equation [m4/s2]
S Local strain rate tensor [s-1]
Sf Face area normal vector [m2]
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Roman symbol Description Unit
S% Spillage fraction; the fraction of the volume flux of

spilled soil over the volume of soil being cut by the
dredger

[-]

St Stokes number [-]
StAM Stokes number, including the added mass of the fluid [-]
t Time [s]
tcol Collision time [s]
tblade Blade passing time [s]
T Transpose of a tensor [-]
Tend End time for the solution of the diffusion equation [s]
Tf Fluid time scale determined by eddies in the fluid [s]
Tp Particle time scale [s]
uabs,θ,in Tangential component of the absolute velocity at the

inner radius of a pump or cutter blade
[m/s]

uabs,θ,o Tangential component of the absolute velocity at the
outer radius of a pump or cutter blade

[m/s]

uc (Unfiltered) continuous phase velocity [m/s]
uc (Time averaged) continuous phase velocity [m/s]
uc

n Continuous phase velocity in the cell centre at the new
time

[m/s]

uc
o Continuous phase velocity in the cell centre at the old

time
[m/s]

uc
′ Continuous phase velocity fluctuation [m/s]

uc
∗ Momentum predictor; the uncorrected velocity at the

intermediate time step in the cell centre, which does
not obey the continuity equation

[m/s]

uc
∗∗ Corrected velocity in the cell centre, obeying the conti-

nuity equation
[m/s]

uc,f Continuous phase velocity at a cell face [m/s]
uc|p undisturbed continuous phase velocity at the particle

location
[m/s]

ui Velocity at face i [m/s]
un Normal velocity of a colliding particle [m/s]
un,in Magnitude of the normal incidence velocity before a

collision
[m/s]

un,out Magnitude of the normal rebound velocity after a col-
lision

[m/s]

urefn Velocity of the reference solution at point or time step
n

[m/s]

usimn Simulated velocity at point or time step n
up Particle velocity [m/s]
up,f Particle velocity at the face of the Eulerian mesh [m/s]
up,t Particle terminal settling velocity, corrected for the hin-

dered settling
[m/s]

up,t,0 Particle terminal settling velocity of a single particle [m/s]
urad,i Radial (mixture) velocity at segment or face i [m/s]
urad,o Radial velocity at the outer radius of the impeller or

blade
[m/s]



xxiv List of symbols

Roman symbol Description Unit
urel,o Relative velocity at the outer radius of the impeller or

blade
[m/s]

urms Root mean square error of the velocity of a simulation [m/s]
us Slip velocity [m/s]
ut Tangential velocity of a colliding particle [m/s]
ut
t Tangential velocity of a colliding particle at time t [m/s]

ut,in Tangential incidence velocity before a collision [m/s]
ut,out Tangential rebound velocity after a collision [m/s]
u′x, u′y, u′z Components of the continuous phase velocity fluctua-

tion
[m/s]

uθ, uθ (Magnitude of) Fluid velocity in azimuthal (tangential)
direction

[m/s]

uθ,o , uθ,i Fluid velocity in azimuthal (tangential) direction at the
outer or inner edge of a blade

[m/s]

uτ Friction velocity [m/s]
U Characteristic fluid velocity [m/s]
Ũ Dimensionless tangential velocity [-]
Up Velocity at prototype scale [m/s]
Um Velocity at model scale [m/s]
U∗ Variable based on the local strain rate and local shear

rate for computing the turbulent viscosity
[s-1]

vh Haul velocity of the cutter head. Also called swing
speed.

[m/s]

vm Mixture velocity in the suction pipe [m/s]
V Reference volume, which is typically the volume of a

mesh cell or the spherical influence volume around a
particle

[m3]

Vcell Volume of a mesh cell [m3]
Vcell,j Volume of the cell j in which the particle is located [m3]
V cell,jerror Continuity error of cell j [m3]
V localerror Absolute maximum value of the continuity error of all

cells
[m3]

V globalerror Sum of all the continuity error of the cells [m3]
V cumerror Sum of the global continuity error over all time steps

until the current time
[m3]

Vp Volume of a particle [m3]
Vp,n Volume of particle n [m3]
wi Height of segment i in the analytical model [m]
W Variable based on the local strain rate and local shear

rate for computing the turbulent viscosity
[-]

yw Distance from the first cell centre to the wall [m]
y+ dimensionless wall distance [-]
y+
avg, y+

max Mean and maximum dimensionless wall distance [-]

Greek symbol Description Unit
α Flow factor in the analytical model [-]
α′i Adapted flow factor in the analytical model [-]
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Greek symbol Description Unit
αc Continuous (fluid) phase fraction [-]
αc,j Fluid fraction at cell j [-]
αnc Continuous phase fraction at the new time [-]
αoc Continuous phase fraction at the old time [-]
αc,f , αnc,f Continuous phase fraction at a face (at the new time) [-]
αc|p,n Fluid fraction at particle n [-]
αp Volumetric concentration of particles (or particle frac-

tion)
[-]

αp,j Volumetric concentration of particles (or particle frac-
tion) in cell j

[-]

αη Coefficient describing the viscous damper. [-]
β Empirical coefficient for describing the coefficient of

restitution based on Stokes number
[-]

β Hindered settling exponent for the drag force [-]
β Pressure factor in the analytical model [-]
γ Distance factor relating the particle diameter (dp) to

the standard deviation of the kernel
[-]

γhor, γvert Distance factor in the horizontal and vertical direction,
respectively

[-]

δn Normal overlap distance for a colliding particle [m]
δt Tangential overlap vector for a colliding particle [m]
∆αc Difference in continuous phase fraction [-]
∆Pi Pressure difference driving the flow between the inside

and outside of the cutter head for segment i r
[N/m2]

∆pbl Pressure difference generated by the blade or impeller [N/m2]
∆pbl,i Pressure difference generated by the blades in segment

i
[N/m2]

∆t Time step of the temporal discretisation [s]
∆tcol Time step for the computing the collision [s]
∆x Grid cell size [m]
ε Dissipation of turbulent kinetic energy [m2/s3]
εdry Coefficient of restitution for dry collisions [-]
εn Coefficient of restitution in normal direction [-]
εt Coefficient of restitution in tangential direction [-]
εwet Coefficient of restitution for wet (viscous) collisions [-]
ζin Angle of incidence at the contact point [◦]
ζout Angle of rebound at the contact point [◦]
ζcritin Critical angle of incidence at the contact point [◦]
η Damping coefficient at a soft-sphere collision [N s/m]
η Variable for the production term in computing the dis-

sipation of turbulent kinetic energy
[-]

η̃ Fraction of the inner and outer cylinder radius [-]
θ Spherical coordinate [rad]
θc Flow number defined by Steinbusch et al. (1999) [-]
θin Angle of incidence at the centre of the particle [◦]
θout Angle of rebound at the centre of the particle [◦]
λ Scale factor between the prototype scale and model

scale
[-]
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Greek symbol Description Unit
µ Laminar dynamic viscosity [N/m2 s]
µeff Effective dynamic viscosity [N/m2 s]
µf Friction coefficient [-]
µt Turbulent dynamic viscosity [N/m2 s]
µv Viscous dynamic viscosity [N/m2 s]
ν Laminar kinematic viscosity [m2/s]
νi, νj Poisson’s ratio of particles i and j [-]
νt Turbulent kinematic viscosity [m2/s]
ρc Density of the continuous phase / fluid phase [kg/m3]
ρi Mixture density of at segment i [kg/m3]
ρp Density of a particle [kg/m3]
σ Standard deviation of the Gaussian kernel [m]
σk Prandtl number for diffusion of turbulent kinetic energy [-]
σε Prandtl number for diffusion of the dissipation of tur-

bulent kinetic energy
[-]

τ Pseudo time for the diffusion process [s]
τ Viscous and turbulent shear stress tensor acting on the

fluid
[N/m2]

τt Turbulent shear stress tensor acting on the fluid [N/m2]
τv Viscous shear stress tensor acting on the fluid [N/m2]
τwall Shear stress at the wall [N/m2]
ϕ Spherical coordinate [rad]
ϕi Angle between the blade and the tangent line of the

cutter head for segment i
[rad]

ϕo Angle between the outer edge of the blade and the tan-
gent line of the cutter head

[rad]

ϕo, ϕn Continuous phase flux at the faces at the old time and
the new time, respectively

[m3/s]

ϕrad,i Continuous phase flux in radial direction at face i [m3/s]
ϕ∗ Uncorrected continuous phase flux [m3/s]
ϕ∗∗ Corrected continuous phase flux [m3/s]
φ Variable in the computation of the turbulent viscosity [-]
φ(r) Kernel for mapping the particle information to the Eu-

lerian mesh
[m-3]

φ(rj,n) Kernel for mapping the particle information of particle
n to cell n of the Eulerian mesh

[m-3]

φgp,j Non-scaled kernel value for mapping the ghost-particle
information to cell j

[m-3]

φp,j , φp,k Non-scaled kernel value for mapping the particle infor-
mation to cell j or k

[m-3]

φprocKp,k Non-scaled kernel value for mapping the particle infor-
mation to cell k at processor K

[m-3]

φprocMgp,m Non-scaled kernel value for mapping the ghost particle
information to cell m at processor M

[m-3]

φtot,j Scaled total kernel value for mapping the particle infor-
mation to cell j

[m-3]

ψ(r) Kernel for mapping the Eulerian information of the cells
to a particle

[m-3]
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Greek symbol Description Unit
ψ(rj,n) Kernel for mapping the Eulerian information of cell j to

the particle n computed with either ψ2D(r) or ψ3D(r)
[m-3]

ψ2D(rj,n) Kernel in a 2D case for mapping the Eulerian informa-
tion of cell j to the particle n

[m-2]

ψ3D(rj,n) Kernel in a 3D case for mapping the Eulerian informa-
tion of cell j to the particle n

[m-3]

ψgp,j , ψgp,k Non-scaled kernel value for mapping the information of
cell j or k to the ghost-particle

[m-3]

ψp,j , ψp,k Non-scaled kernel value for mapping the information of
cell j or k to the particle

[m-3]

ψprocKp,k Non-scaled kernel value for mapping the information of
cell k at processor K to the particle

[m-3]

ψprocMgp,m Non-scaled kernel value for mapping the information of
cell m at processor M to the ghost particle

[m-3]

ψtot,j Scaled total kernel value for mapping the information
of cell j to the particle

[m-3]

Ψin Effective angle of incidence at the contact point [-]
Ψout Effective angle of rebound at the contact point [-]
Ψ∗ Critical effective angle between the stick and slip region [-]
ω Angular velocity of the impeller [rad/s]
ωc Angular velocity of the cutter head [rad/s]
ωf Angular velocity of the fluid near the blades [rad/s]
ωi Angular velocity at the inner cylinder [rad/s]
Ω Local rotation rate tensor [s-1]

Special subscripts

Subscript Description
bottom Value at the bottom face of the segment
c Value at the cell centre
f Value at the cell faces
N Value at the neighbour cell centre
top Value at the top face of the segment

Special superscripts

Superscript Description
model Value at model scale
n Value at the new time level
o Value at the old time level
prototype Value at prototype scale
ref reference value
sim value of the simulation
∗ Value not corrected for the continuity equation at the new time

step
∗∗ Value corrected for the continuity equation at the new time step
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Abbreviations

Abbreviation Description
ADV Acoustic Doppler Velocimetry
cp contact point
DEM Discrete Element Modelling
LES Large Eddy Simulation (method for simulating turbulence)
MRF Multiple Reference Frame (method for simulating rotation)
(U)RANS (Unsteady) Reynolds Averaged Navier-Stokes (method for simu-

lating turbulence)
PIMPLE Solution algorithm. Combination of PISO and SIMPLE algorithm
PISO Solution algorithm. Abbreviation stands for: Pressure-Implicit

with Splitting of Operators
rms Root mean square (error)
rpm Revolutions per minute
SIMPLE Solution algorithm. Abbreviation stands for: Semi-Implicit

Method for Pressure Linked Equations
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Introduction

1.1 Spillage when cutting rock
Dredging equipment is specialized in the removal of soil from the sea- or river bed. A
cutter suction dredger is one of such a dredge vessel (Figure 1.1a). It has been around
since the end of the 19th century and is widely used. It can be employed for dredging
all kinds of soils: sand, clay and softer rock like sandstone or limestone. The dredging

(a) Cutter Suction Dredger ’Athena’. (b) Cutter head of the Artemis specialised
in cutting rock.

Figure 1.1: A Cutter Suction Dredger and a cutter head. Both belonging to the fleet of van Oord
(courtesy of van Oord).

vessel has a cutter head with pickpoints attached to it (Figure 1.1b). Its cutter head
rotates, swings, and pushes its pickpoints into the soil, disintegrating the soil. Due to the
shape of the blades, the soil is picked up and transported to the front of the suction tube.
Here, the soil-water-mixture is hydraulically transported to the vessel, from where it is
transported again to a discharge location. In the cutter head, the suction flow together
with the rotating motion of the blades keeps the particles in suspension before they are
sucked up. Figure 1.2 shows the different components of a cutter head.
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Spilled gravel

Contour
of blades

Backplate

Suction pipe

Suction mouth

Figure 1.2: Schematic representation of a cutter head with named parts. The red part shows the
spilled gravel after a cutting experiment (Den Burger, 1999).

For sandy soils, the removal process is relatively easy compared to rock. When sand is
cut, it is easily kept in suspension until it is sucked up. The small sand particles follow
the flow and are not influenced much by gravity or centrifugal forces. Rock type soils like
sandstone and limestone do not totally disintegrate when the pickpoints cut through the
soil. The pickpoints crush part of the rock, creating fine particles. However, the largest
fraction are the pieces that break out of the soil. These large particles are more influenced
by gravity and the centrifugal force and are thrown out of the cutter head more easily than
smaller sand particles. The problem with these pieces leaving the cutter head is that they
will stay on the seabed. This is called spillage.

This research defines two types of spillage: spillage due to cutting and spillage due to
mixing (Figure 1.3). Spillage due to cutting includes the soil that is cut, but never enters
the cutter head. The particles which, after entering the cutter head, are thrown out again,
are defined as being spilled due to mixing. This research will focus on the spillage due to
mixing when cutting rock.

Spillage due
to cutting

Spillage due
to mixing

Spillage due
to cutting

Spillage due
to mixing

Figure 1.3: Definition of the two different spillage types. Figure adapted from Den Burger (2003).

A dredger has two options to create a certain delivered depth when much material is
spilled. Either the dredger has to go over the area a second time to dredge the already cut
material that was not removed the first time. Another option is to remove more material
than needed for the desired depth and leave much material behind. This second method
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is called dredging an over-depth. Both options cost more time and fuel than when the
depth would be reached with limited spillage. When the processes causing the spillage
are accurately described, the design of the cutter head and the working method can be
adapted to reduce the amount of spillage, leading to a lower cost of a work. The amount
of spillage is also an uncertainty in the tender phase of a project. When this uncertainty
would be reduced, the risk of a project going over budget will be lowered.

In the past research towards better performance of the cutter head has been performed.
However, this has not yet led to a model which includes all processes leading to spillage of
the cutter head. These studies can be categorised in research towards the flow in the cutter
head (Dekker et al. , 2003, Mol, 1977b,c, Moret, 1977a, Slotta, 1968). A second category is
the research towards dredged material in the cutter head (Den Burger, 2003, Miltenburg,
1983, Moret, 1977b). Lastly, researchers worked on the mechanism of cutting rock and the
forces required for this (Chen, 2021, Helmons, 2017). However, this lies outside the scope
of this dissertation.

This research describes a model including all physical processes, which can be used for
determining spillage. Parallel to this research Miedema (2019) created a model for deter-
mining spillage using empirical relations based on spillage experiments. This can be used
as an estimation of spillage, but not to gain insight the underlying processes, which are
needed for adapting the working method or the design of a cutter head.

1.2 Aim of this research
The aim of this research project is: "Develop a model which can reliably simulate the
spillage behaviour of rock particles inside a rotating cutter head."

Previous researchers have studied parts of the physical processes in a cutter head and
have created models for the individual processes. This research contributes to the goal of
limiting spillage for a cutter head when cutting rock, by creating a model which includes
all these physical processes.

The model will be validated for the different processes in a cutter head. Using this validated
model, the spillage can be simulated. In future research this model can form the basis for
quantifying spillage in different operational conditions.

1.3 Research methodology: development and validation of
a numerical model

The processes in the cutter head will be modelled using a numerical model for the fluid
flow in the cutter head together with a model for the motion of the pieces of rock. This
model is created using the OpenFOAM framework.

OpenFOAM uses a finite volume approach to discretise the equation of motion for the
fluid phase (Navier-Stokes equations). For the large-scale flow inside a cutter head the
turbulence in the flow needs to be modelled instead of solved directly. The (Unsteady)
Reynolds Averaged Navier-Stokes (URANS) equations are used, which model the time
averaged turbulent quantities. This is a time efficient method and has a good accuracy for
these kind of flows.
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For the modelling of the pieces of rock in the rotating cutter head, four methods are needed.
The rotating motion of the cutter head needs to be included and the pieces of rock need
to be modelled. OpenFOAM uses a sliding mesh approach to simulate rotating objects in
the flow. The cutter head can be modelled with this approach.

Secondly, the pieces of rock are modelled using a Discrete Element Model (DEM) tracks
point particles through the fluid by computing the acceleration of the particles due to the
forces acting on it.

A third model describes the interaction between the point particles and the fluid. In
this simulation the point particles are relatively large compared to the finite volumes for
modelling the flow. For the interaction a special mapping method is needed.

Lastly, the inter particle collisions and the collisions with the cutter head are modelled.

1.4 Outline of this dissertation
Figure 1.4 shows the outline of this dissertation. It consists of 5 parts. Chapter 2 begins
with describing the working method of a cutter suction dredger and the processes occurring
inside the cutter head. The chapter continues with a literature review of the experiments
and simulations describing the processes in the cutter. These are split into 3 modelling
approaches: the flow in the cutter head, the particle flow interaction and particle collisions.

Also, the next three parts consist of the same three modelling approaches. Chapter 3
describes the model used for simulating the pieces of rock in a cutter. It shows the Navier-
Stokes equations for solving the fluid velocities and pressures. The motion of the particles
is based on the forces acting on a particle based and Newton’s second law of motion. For
large particles compared to the fluid cell sizes, the concentration and forces should be
distributed over more than a single cell (Section 3.4 and 3.4.2). Collisions of the particles
are described using a soft-sphere approach (Section 3.5).

Chapter 4 describes the numerical implementation of the Navier-Stokes equations and the
distribution of the particle properties (forcing, concentration) to the mesh. Its last section
shows the implementation of an analytical model for determining the flow in a cutter and
simulating spillage.

These implementations are verified and validated in Chapters 5 to 7, where each chapter
covers one of the three modelling approaches. Chapter 5 shows the validation of the flow
in a model cutter. The particle-flow interaction is verified in Chapter 6 by simulating
single settling particles and the hindered settling effect in a cloud of particles. Normal and
oblique collisions of the particles are validated in Chapter 7.

All these parts are combined when simulating the spillage of particles in a rotating cutter.
Chapter 8 first shows the out-flowing fluid flux compared to the analytical model. After-
wards, it shows the feasibility study of simulation the rock in a rotating cutter head using
a simplified model cutter. The resulting spillage is compared to experiments and to the
analytical model.

Lastly, Chapter 9 discusses the conclusions and recommendations of this study.
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Literature
Particle-flowinteraction§2.6.2 Flow in a

cutter head
§2.3.2 / 2.4

Collisions
§2.6.3

Modelling methodParticle-flowinteraction§3.3 / 3.4 Flow in a
cutter head

§3.2

Collisions
§3.5

Numerical implementationParticle-flowinteraction
§4.3

Flow in a
cutter head
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Collisions
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Modelling spillage in

a schematized cutter setup
Chap. 8

Figure 1.4: Outline of this dissertation.
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2.1 Introduction
This chapter shows the working method of a Cutter Suction Dredger (Section 2.2) followed
by literature on experiments on cutter heads in Section 2.3. These experiments are divided
in experiments on the flow in a cutter head, the spillage when cutting sand and the spillage
when cutting (imitated) rock. Section 2.4 shows the status of models created for simulating
the fluid flow and spillage phenomena in a rock cutter head. The influences on spillage,
obtained from the experimental and simulation results, are discussed in Section 2.5. Section
2.6 shows the applicable models for simulating the processes in the cutter head. These are
split into the 3 modelling approaches presented in Section 1.4: the flow due to the rotating
motion, the modelling of pieces of rock and the modelling of collisions.

2.2 The Cutter Suction Dredger and the cutter head
Cutter Suction Dredgers are typically used to cut hard soils or for precision dredging.
For hard soils like sandstone or limestone pickpoints are used to cut the rock into pieces.
These pickpoints are attached to the blades of the rotating cutter head (Figure 2.1). The
dredged face, where the cutter head removes the soil is is called the breach. When the
pieces of rock break out of the breach, the blades guide these into the cutter head. Inside
the cutter head, the pieces of rock are mixed with water to be hydraulically transported
via the suction pipe to the vessel, through which it is pumped to a discharge location. This
can be a reclamation site or a barge.

Besides the rotating motion, the cutter head has a haul velocity, a (near) translating motion
by rotating the vessel around a pivot at its stern. This spud pole is used to anchor the
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vessel when it swings the cutter head from side to side (Figure 2.3). The motion is induced
by pulling at an anchor line using a winch. When the Cutter Suction Dredger is at the end
of its swing, the spud pole is pushed back, pushing the vessel forward. This is called a step
and after this step, the vessel swings in opposite direction. Figure 2.2 shows schematic
picture of a vessel, indicating the important parts.

Blade

Pickpoints

Ladder

Ring

Hub Breach

Figure 2.1: Cutter head operating in over-cutting mode. Important parts are labelled (Royal
Boskalis Westminster N.V., 2016).

It is important to note that cutter heads can only rotate in one direction. This is due to
the shape of the blades and pickpoints (Figure 2.1). When the cutter head translates in
the same direction as the top of the cutter head (like a rolling wheel), the soil is cut from
top to bottom. This is called over-cutting (Figure 2.4b). When the cutter head translates
in the opposite direction, the pickpoints cut the soil from bottom to top, which is called
under-cutting (Figure 2.4a). The figure shows the hauling velocity (vh), rotational velocity
(nc) and breach height (hb).

While cutting, the operator of a Cutter Suction Dredger can vary 5 operational parameters:
the haul velocity, the rotational velocity of the cutter head, the suction discharge, step size
and breach height. Table 2.1 shows common values for these parameters, together with
other important parameters.

Auxiliary spud pole

Spud pole

Ladder

Cutter head

Figure 2.2: Schematic view of the Cutter Suction Dredger Athena (Van Oord Marine Dredging
and Marine Contractors, 2017). Important parts are labelled.
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For cutting rock, the haul velocity is limited by the total cutting force applied on the cutter
head. This is influenced by the breach height, step size, the geometry of the cutter head,
the power of the motor driving the rotating motion and the power of the winches pulling
the vessel around its spud pole.

Anchor line

Ladder

Spud pole
Auxiliary spud pole

Cutter head

Anchor

Spud carriage

Figure 2.3: Working method of a Cutter Suction Dredger. The circular lines indicate the step size
of the Cutter Suction Dredger.

The step size, the distance between two succeeding swings, and the breach height are also
limited by the power of the drive system for rotating the cutter head and the power of the
winches pulling the vessel. The step size should be smaller than the height of the cutter
head and the cutting depth should be smaller than the diameter of the cutter head. Note
that when cutting sand, the cutting depth is sometimes larger than the diameter of the
cutter head.

Another important parameter is the ladder inclination angle. This is determined by
dredged depth and the length of the ladder. Modern dredgers can reach a ladder inclination
angle of more than 50 degrees (Van Oord Marine Dredging and Marine Contractors, 2017).
However, with an increasing ladder angle, the vertical distance from bed to the suction
mouth point increases (illustrated in Figure 2.13). This means that the soil-water-mixture
needs to be sucked up over a larger vertical distance, causing more spillage. To circumvent
this, Cutter Suction Dredgers mainly operate at a ladder angle of 20 to 30 degrees.

Spillage definition
When dredging rock, the spillage is more significant than for sand cutting. Bigger pieces of
rock are more influenced by gravity and centrifugal forces, due their larger mass. Secondly,
their path deviates from the flow, due to their high inertia.

This spillage is defined as the amount of soil which is cut, but not removed. Usually this
is defined as a fraction of the theoretical cutting production of the Cutter Suction Dredger
(Pcut). Equation 2.1 shows the relation between the theoretical cutting production, the
haul velocity and the projected area of the breach to the plane normal to the haul velocity.
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Pcut = Acut vh (2.1)

Where:
Pcut (Theoretical) cutting production of the Cutter Suction Dredger [m3/s]
Acut is the projected area of the cutter head in the breach [m2]
vh the haul velocity of the cutter head. Also called swing speed [m/s].

Equation 2.2 shows the production fraction (P%) being the fraction of the volume flux of
the soil transported towards the vessel (Ppipe) over the volume flux of soil being cut (Pcut).
The spillage fraction (S%) is the fraction of the volume flux of spilled soil over the volume
of soil being cut by the dredger.

P% = Ppipe
Pcut

S% = 1− P% = 1− Ppipe
Pcut

(2.2)

vh

vh

nc

nc

hb

(a) Under-cutting

vh

vh

nc

nc

hb

(b) Over-cutting

Figure 2.4: Schematic view of under- and over-cutting. It shows the cross-
section along the axis (left) and perpendicular to the axis (right) of the two
different cutting method. The light-grey indicates the bank, which is still to
be cut. The dark grey indicates the breach. It also shows the hauling velocity
(vh), rotational velocity (nc) and breach height (hb) (adapted after Den Burger
(2003)).
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2.3 Experimental research on cutter heads
In this section on experimental research, first the scaling of cutter heads will be described.
Followed by experiments on the flow in a cutter head, spillage in sand, spillage experiments
of single particles and lastly the spillage when cutting cemented gravel. Section 2.5 will
give an overview of the physical processes influencing spillage.

2.3.1 Characteristic values on model and prototype scale
Den Burger (2003) showed that a cutter head can be scaled using geometric scaling for the
length scales and Froude scaling for the velocities. The geometrical similarity requirement
is

nL = λ = Lp/Lm (2.3)

Where:
Lp is the length at prototype scale [m]
Lm is the length at model scale [m]
λ is the scale factor between the prototype scale and the model scale [-].
nL the geometric scale factor [-].

The subscript p denotes the quantity at prototype scale (full-scale). The subscript m is
used for denoting the model scale.

Equation 2.3 shows that the scale factor λ is defined as the geometrical scale factor nL. A
value of 1 means that the quantity has the same value on model and prototype scale. For
the 1 to 4 model scale cutter head λ equals 4.

Froude scaling entails a constant Froude number when scaling. The Froude number is
a dimensionless number indicating the fluid velocity over the wave speed (Equation 2.4).
Equation 2.5 shows the relation between the velocities and length scales on model and
prototype when using Froude scaling.

Fr = U√
gL

(2.4)

nFr = Frp

Frm
=

Up√
gLp
Um√
gLm

= 1 (2.5)

Where:
Fr is the Froude number [-]
nFr is the Froude number scale factor, which equals 1 when using Froude scaling [-]
U is the characteristic fluid velocity [m/s]
Up, Um is the velocity at prototype- and model scale, respectively [m/s]
L is the characteristic length [m]
Lp, Lm is the length at prototype- and model scale, respectively [m/s]
g is the gravitational constant [m/s2]
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Gravity has the same value for both scales and is therefore a constant. With this fact, the
scale law of Equation 2.5 can be rewritten in a the scaling law for the velocities (nU ):

nU = Up
Um

=
√
Lp
Lm

=
√
λ (2.6)

Equation 2.6 shows that the velocities scale with the square root of the scale factor (λ).
Using these scaling laws, the lengths and velocities of a prototype cutter head can be
related to model scale. Table 2.1 shows these values.

Parameter Prototype 1:4 model 1:8 model

Cutter head diameter [m] 3 0.75 0.38
Rotational velocity [rpm] 20 - 40 40 - 80 57 - 113
Angular velocity ωc [rad/s] 2.1 - 4.2 4.2 - 8.4 5.9 - 11.8
Tip velocity [m/s] 3.1 - 6.3 1.6 - 3.1 1.1 - 2.2
Suction discharge [m3/s] 3.9 - 5.5 0.12 - 0.17 0.022 - 0.03
Suction velocity 1000 mm pipe [m/s] 5 - 7 2.5 - 3.5 1.8 - 2.5
Haul velocity [m/s] 0.1 - 0.2 0.05 - 0.1 0.035 - 0.071
Breach height [m] ≈ 2 m ≈ 0.5 m ≈ 0.25 m
Step size [m] 0.1 - 1 m 0.025 - 0.0125 -

0.25 m 0.125 m
Median Particle diameter d50 [mm] 80 20 10
Settling velocity (Eq. 3.38, 3.41) [m/s] 1.9 1 0.73
Particle Reynolds number (Eq. 3.42) [-] 1.5 · 105 2 · 104 7.300
Cutter head Reynolds number [-] 7.1 · 106 8.8 · 105 3.1 · 105

Table 2.1: Characteristic values for dredging with a cutter head at different scales. The length scales
are scaled using geometric scaling and the velocities using Froude scaling based on Den Burger
(2003). Dimensions of the cutter head and particle size can deviate from these values. Scale rules
are applied for these specific values. The cutter head Reynolds number is based on the median
rotational velocity and the radius of the cutter head.

2.3.2 Flow in a cutter head
The research toward the flow in a cutter head started by visualising the flow around the
cutter head. Slotta (1968) used hydrogen bubbles for investigating the flow around a cutter
head with a ring diameter of 0.165 m. To improve the hydrodynamic efficiency, different
modifications were tested. The important processes were described using 5 dimensionless
groups, which were found using the Buckingham Pi theorem. These groups were Froude
number, Reynolds number, Euler number, ratio of the ring diameter of the cutter head
to suction pipe diameter and a dimensionless velocity. This dimensionless velocity is the
ratio between the blade tip speed of the cutter head and the suction velocity and was later
defined by Moret (1977a) as:

ωcRc
vm

(2.7)
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This can be related to the rotational speed of the cutter head:

ωc = 2π nc60 (2.8)

A second flow number defined by Steinbusch et al. (1999) (Equation 2.9), is based on the
centrifugal flow.

θc = Qm
ωcR3

c
(2.9)

Where:
ωc is the angular velocity of the cutter head [rad/s]
nc is the rotational speed of the cutter head [rpm]
Rc is the radius of the ring of the cutter head [m]
vm is the mixture velocity in the suction pipe [m/s]
Qm is the mixture discharge in the suction pipe [m3/s]

In 1977 extensive experimental research has been performed at the Delft Hydraulics labo-
ratory (now known as Deltares). One of the goals was to assess the influence of different
operational parameters on the flow and mixture forming in a cutter head. For this research
a cutter head with a diameter of 0.6 metre was used. The cutter head was not hauled,
with the exception for a single test. The step size used in the tests was 0.3 metre. (Mol,
1977b,c, Moret, 1977a,b)

Moret (1977a) injected ink at 4 different locations in the cutter head located in a breach
and for a freely rotating cutter head. The dimensionless velocity (Equation 2.7) showed to
be an important parameter. For the cutter head in a breach the ink stayed in the cutter
head for ωc Rc/vm < 0.42 for both under- and over-cutting. This indicates that the flow
along the entire height of the cutter head was directed inward. For higher values of the
nominal velocity outflow near the ring appeared as is illustrated in Figure 2.5.

This flow pattern is caused by the shape of the cutter head. Near the hub of the cutter
head, the blades have the shape similar to an axial pump. When rotating, this pumps
water into the cutter head. At the ring of the cutter head, the blades are positioned as the
impellers of a centrifugal pump. This causes the water to flow out near the ring when the
rotational velocity is high compared to the suction velocity.

When ink was injected in a freely rotating cutter head, Mol (1977b) showed that the
transition value for the dimensionless velocity (ωc Rc/vm) was 0.6 at the side of the cutter
head which would be under-cutting and 0.5 for the side which would over-cut. These values
are higher than for a cutter head located in a breach. This indicates fluid flows more easily
out of the cutter head when rotating in a breach than when rotating freely. For the freely
rotating cutter heads, water flows out more easily at the side of the over-cutting than at
the side of under-cutting.

Velocity measurements
To quantify the flow in and around the cutter head, Dekker (2001a) performed Acoustic
Doppler Velocimetry (ADV) measurements in two freely rotating 1:4 scale cutter heads.
Both did not have pickpoints attached to the blades. One had the conical backplate and
a kidney shaped suction mouth. In the other set-up, the backplate was removed and the
suction discharge was uniformly distributed over the whole inner diameter of the ring.
These experimental setups are described more elaborate in Sections 5.3 to 5.5 of this
dissertation, accompanied with photos and technical drawings of the setup.
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nc

Figure 2.5: Flow pattern in a freely rotating cutter head with a rotational speed (nc).

The velocities were measured at different locations in the cutter head using a sampling
frequency of 25 Hz. Measurements were performed for many different combinations of
suction discharge and rotational velocity.

Dekker (2001a) concluded that for all the point measurements, the tangential velocity
components showed a linear relation with the rotational speed of the cutter head. The
axial velocity component showed a linear trend with the suction velocity. He stated that
no relation for the radial velocity could be made, due to the big spread in measured radial
velocities and showed this for a single point inside the cutter. However, when plotting the
radial velocities for four points outside the cutter head against the dimensionless velocity
a trend can be distinguished (Figure 2.6). For an increasing rotation, or a decreasing
suction velocity, the fluid starts to flow out of the cutter head. For the under-cutting side
of the cutter head, this is clearly visible. The transition value of the dimensionless velocity
(ωc Rc/vm), from complete inward flow to outward flow, is 0.5 and 1.0 respectively for a
location near the suction mouth and one further away. Fluid flowed more easily out of the
cutter head, at the location closer to the suction mouth. This is a very counter-intuitive
result as one would expect the suction mouth to have a positive influence on keeping the
fluid in the cutter head.

Mol (1977b) also found an outflow of water at higher value of the dimensionless velocity
for the under-cutting side than for the over-cutting side, indicating an easier outflow at the
over-cutting side. While the values differ (especially for the over-cutting side), the trend
of an earlier onset of outflow at the over-cut side is described by both authors. Table 2.2
shows a complete overview between the two experiments.

For the over-cutting side, the data of Dekker (2001a) do not show a transition from in-
flowing to out-flowing regime, since only a few points show an inflow. It does show the
trend of a higher outflow at higher rotational speeds. Mol (1977b) measured a clear onset
of outflow at the over-cutting side, which is not visible in the data of Dekker (2001a).
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Figure 2.6: Radial velocities outside the cutter head 35 mm under the ring for different suction
velocities and rotational velocities. Based upon the measurements of Dekker (2001a). A positive
value is an outward directed flow. The red markers are close to the suction mouth. The blue
markers are located in the same azimuthal plane, but further away from the suction mouth. The
location of these points are indicated by Ao,Eo,Io,Mo in Figure B.1

Mode ωc Rc/vm ωc Rc/vm rpm (1:4) rpm (1:4)
Mol (1977b) Dekker (2001a) Mol (1977b) Dekker (2001a)

Under-cut 0.6 0.5 - 1.0 58 48 - 96
Over-cut 0.5 0 48 0

Table 2.2: Comparing onset of outflow between Mol (1977b) and Dekker (2001a). The values of
Dekker (2001a) are computed in this dissertation. The rotational velocities are computed for a 1:4
scale cutter head with a suction discharge of 0.12 m3/s.

2.3.3 Spillage in sand cutting
Mol (1977a) studied the influence of the ladder inclination angle and haul velocity on the
production fraction for sand with a median diameter (d50) of 120 µm. For both under- and
over-cutting the production fraction had an optimum at a ladder angle of 30◦. However,
this effect was more pronounced for over-cutting. Between 20◦ and 30◦ the production
fraction increases with increasing ladder inclination angle. Mol (1977a) stated that this is
probably due to a more effective position of particles entering the cutter head or due to a
larger absolute production resulting from a different breach face area. Mol (1977b) showed
that production fraction is dependent on the position where the particle enters the cutter
head based on ink injections. Changing the angle of the cutter head possibly changes the
dominant entering position and therefore the production fraction.

Miltenburg (1983) studied the flow pattern inside a cutter head, as well as the spillage
of sand with a median diameter of 180 µm. Different cutter heads were used with ring
diameters of 0.395 metre and a ladder angle of 30◦. The cutter head is approximately 1
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to 8 scale. Based on his experiments, he proposed three adaptations of the cutter head
for increasing the production of cutter heads with a small spacing between the blades:
creating a smaller volume of the cutter head by modifying the backplate; longer blades
further reducing the gaps between the blades and rotating the suction mouth in the rotation
direction.
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Under, vm = 5.25 m/s

Figure 2.7: Measured production fraction against the dimensionless velocity for cutting sand (Mil-
tenburg, 1983). The dotted lines indicate over-cutting. The solid lines represent under-cutting.

A smaller volume inside the cutter head, will increase the axial velocities induced by the
suction discharge. This decreased the spillage with 2% to 5% in both under- and over-
cutting.

With the use of skirts attached to the trailing edges of the blades of the cutter head, an
increase of 5 to 10% on the production was achieved in both under- and over-cutting. Mil-
tenburg (1983) hypothesised this is probably due to the skirts hindering the eddy developed
by the rotation of the cutter head.

(a) Over-cutting (b) Under-cutting

Figure 2.8: Under- and over-cutting using a rotated suction mouth as proposed by Miltenburg
(1983).

When the suction mouth was rotated with 30◦ in the direction of the cutter head rotation
(Figure 2.8), the suction mouth is located closer to the breach when under-cutting. This
reduces the spillage with 5% for the under-cut situation. For the over-cut situation rotating
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the suction mouth had no effect on the spillage. A rotation in the opposite direction,
towards the breach in over-cutting situation, led to increase in spillage, especially for over-
cutting. When over-cutting the material has a large downward velocity due to the rotation
and gravity being directed in the same direction. Due to this large velocity, the material has
no time to be accelerated in axial direction to the suction mouth. Therefore, it flows past
the suction mouth and will leave the cutter head. In the case of the rotated suction mouth
the suction is present at the location of the largest downward velocities, leading to less
time for the material to be accelerated in axial direction. This effect was also described by
Den Burger (2003) for gravel in a cutter head without a shifted suction mouth as visualised
by path 2 in Figure 2.9.

1 2+3

3

2

1

Figure 2.9: Particle paths in a cutter head used for over-cutting in gravel cemented blocks
(Den Burger, 2003).

Figure 2.7 shows the production fraction for both under- and over-cutting for a closed
cutter head using a haul velocity of 0.1 m/s. The dotted lines, representing over-cutting,
show a lower production than when cutting in under-cutting mode for the same suction
velocity. There is no optimum rotational speed where the production is highest as in the
case of the cutting experiments using rock (Figure 2.12).

2.3.4 Spillage in rock cutting
Experiments on injection of soil in the cutter head
Moret (1977b) performed experiments with injections of coarse sand (median particle di-
ameter d50=480 µm), gravel (d50=1800 µm) and blocks of clay (10 x 3 x 2 cm) with a
density of 2000 kg/m3 in a cutter head with a ring diameter of 600 mm. At low nominal
velocities (<0.42) part of the sand and gravel ended up below the cutter head. When the
larger clay particles were injected, this occurred more often, likely indicating the effect of
the particle weight on the spillage.

Mol (1977c) studied whether plastic particles injected into the cutter head were sucked
up or thrown out of the cutter head and determined the production fraction. The plastic
particles were hollow halve spheres with a density of 1118 kg/m3 and a diameter of 2
cm. The production fraction was larger for under-cutting than for over-cutting. For these
particles a change in suction velocity had nearly no influence on the production fraction.
However, it had an influence on the path of the particle.

Over-cutting and under-cutting showed a difference in motion of the particle in front of
the suction mouth. When over-cutting, the particle is moved in front of the suction mouth
with a large velocity and has limited time to be bend towards the suction mouth indicated
by paths 1 and 2 in Figure 2.9.
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When under-cutting the particles are transported from further away towards the suction
mouth indicated by paths 1, 3 and 4 in Figure 2.10. At this large distance the drag force
exerted by the suction force is limited. However, the time over which this force is applied
is much longer.
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Figure 2.10: Particle trajectories when under-cutting in gravel cemented blocks (Den Burger, 2003).

Den Burger (2003) studied the residence times of single particles in a cutter head, rotating
in an artificial breach. Tests with particle density of 2650 kg/m3, 2200 kg/m3, 1400 kg/m3

were performed. With decreasing density, the residence time decreased. The experiments
showed that the two denser particles were thrown out easier than the lighter one, indicating
a relation between the mass of the particles and spillage.

In another series of experiments, Den Burger (2003) used a silo with gravel to inject the
gravel in the cutter head via the back plate. These experiments showed an optimum in
production fraction for changing rotational velocity. This optimum was also visible in the
cutting experiments, explained hereafter.

Cutting experiments
Den Burger (2003) and Den Burger et al. (1999) performed experiments in cutting of
blocks of cemented gravel. The experiments were scaled using geometric scaling for the
dimensions and Froude scaling for the velocities. This leads to a ring diameter of 0.4 m
for a 1 to 8 scale cutter head (Figure 2.11). The gravel used in this experiment had a
median diameter of 0.01 m and a density of 2650 kg/m3. The in-situ density of the block
(thus including pores) was 1700 kg/m3. The cutter head was hauled with 0.1 m/s and
had a ladder angle of 45◦ with the horizontal, which is a large ladder angle compared to
commonly used ladder angles used on Cutter Suction Dredgers.

From video-recordings of the experiments Den Burger (2003) derived qualitative informa-
tion about the particle trajectories as shown in Figures 2.9 and 2.10. In the experiments the
production of the cutter head was measured to compute the production fraction. Figure
2.12 shows this production fraction for under-cutting against the dimensionless velocity.

Each mixture velocity shows an optimum in production fraction. Den Burger (2003) ex-
plained this using two regimes. At a dimensionless velocity higher than the dimensionless
velocity for the optimum production fraction, both the centrifugal force on the particles
and the pump effect increases. Both effects lead to an outward movement of the particles,
leading to more spillage near the ring. At the second regime at lower dimensionless ve-
locities than for the optimum production fraction, the production fraction increases with
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Figure 2.11: Dimensions of the cutter head used for the gravel cutting experiments in mm
(Den Burger, 2003).

increasing dimensionless velocity. Den Burger (2003) attributed this effect to a better mix-
ing of the particles due to the collisions of the particles with the faster rotating blades.
These collisions suspend the particles, after which the particles enter the suction mouth
more easily, causing less spillage.

Talmon et al. (2010) created a new dimensionless number to support the hypothesis of
the increased mixing at higher rotational velocities. This dimensionless number is the
fraction of the inward radial velocity over the settling velocity in the direction of the
axial coordinate. Talmon et al. (2010) applied this dimensionless number to the data
of Den Burger (2003). It showed a nearly linear correlation of the production fraction
with this dimensionless number for the data points on the left-hand-side of the top of
the parabolas in Figure 2.12. Therefore, this dimensionless number likely describes the
physical behaviour of the increasing production at low rotational velocities.

Figure 2.12b shows the production fraction for a cutter ladder angle of 25◦ compared to
the cutter ladder angle of 45◦ (Den Burger et al. , 2001). The production fraction increases
for this smaller cutter ladder angle and there is no optimum in production fraction visible.
Den Burger et al. (2001) described three effects contributing to this higher production
fraction for a smaller ladder angle. Figure 2.13 visualises these effects. First of all, a
smaller ladder angle leads to a smaller distance from the bed to the suction mouth. This
in turn decreases the amount of energy needed for the vertical transport. The second
effect is a higher vertical component of the rotational velocity (uθ) when using a smaller
ladder angle, which ensures an easier suspension of the particles. Lastly, the blades of a
cutter head with a smaller ladder angle are closer to the bed, closing off the cutter head
for a water flow into the cutter head. In Figure 2.13 this is indicated with the blue arrow.
Closing off the cutter head, ensures suction velocities inside the cutter head.

For a larger particle diameter of 15 mm, the production fraction decreases compared to a
10 mm particle at the same ladder angle and suction velocity (Figure 2.12b). Also for this
particle diameter there is an optimum value in production fraction. The reduction of the
production fraction for larger particles can be related to the energy needed to transport
the particles from the bed to the suction mouth. The increase in particle size leads to
an increase in weight, leading to more energy required for vertical transport, indicating
less production. This effect was also mentioned by Moret (1977b), where at low rotational
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velocities the particles fell out of the cutter head and a larger particle diameter led to more
spillage.

The optimum rotational velocity of the cutter head cutting cemented gravel matches the
optimum rotational velocity measured in the experiments where gravel was injected from a
silo. However, the production factor for the silo experiment is a factor two higher. A part
of this difference is due to the spillage in the cutting process. Den Burger (2003) assumed
this spillage to be a maximum of 30% of the total spillage. The other difference is assumed
to be the difference in initial position of the particles. Where the cut particles enter near
the hub, the silo particles enter at the backplate close to the suction mouth.

Both Miltenburg (1983) and Den Burger (2003) show the spillage for different parameters
and present theories based on their data. However, they do not show what processes
occur inside the cutter head. Using a computational method, it is possible to simulate the
processes inside the cutter head.
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Figure 2.12: Production fraction against dimensionless velocity for under-cutting cemented gravel
(Den Burger, 2003, Den Burger et al. , 2001). (a) shows the production fraction for different
mixture velocities. (b) shows both the effect of a decreased ladder angle and of a larger particle
diameter.
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(a) Ladder angle 25 degrees (b) Ladder angle 45 degrees

s s s s

h hg g

uθ uθ

Figure 2.13: Effect of difference in ladder angle adapted from Den Burger (2003). (a) depicts a
ladder angle of 25 degrees and (b) a ladder angle of 45 degrees for an identical step size (s). The
blue arrow indicates the water flow into the cutter head. The two vectors indicate the tangential
velocity (uθ) in relation to the gravitational vector (g).

2.4 Numerical research on cutter heads
To complement the experimental research on cutter heads, numerical simulations have
been performed. The literature on numerical research on cutter heads can be divided into
literature on simulating the fluid flow, simulations on the (spillage due to) particle motion
and an analytical model for determining spillage. The next three sub-sections will cover
these topics.

2.4.1 Fluid flow
Steinbusch et al. (1999), Dekker (2001b) and Dekker et al. (2003) created a potential
flow model of a schematised cutter head. This 1:4 model cutter head had a backplate with
suction tube, while the pickpoints and adapters were removed from the blades. It rotated
freely in water, without the presence of a breach. To model the flow around the blades
correctly, a jump in the velocity potential was implemented at the trailing edge of the
blade. The model predicted the steady potential flow. Four different blade positions were
simulated, each shifted by 15◦, to mimic the unsteady behaviour of the moving blades.
Using Fourier analysis, a time signal was constructed. This time-series was averaged to
get a time-averaged velocity, which compared reasonably well with the measured data of
Dekker (2001a).

The modelled tangential velocities overestimated the measured velocities inside and outside
the cutter head. Appendix B shows the locations of the measurements. The model of
Dekker (2001b) underestimated the axial velocities and the radial velocities where slightly
under-estimated. Comparing the modelled radial velocities to the measurements is difficult,
since the measured velocities showed a large spread.

Zhang et al. (2016) modelled the velocities in a full scale (2.8 m diameter) cutter head
without a backplate or pickpoints using Ansys Fluent. This model performed no suction at
the back and it was completely rotational symmetric. The model used a Multiple Reference
Frame (MRF) approach for simulating the rotating blades. In this approach the blades
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do not rotate in the domain. The relative fluid velocity to the blades is computed and
in the rotating part of the domain, the centrifugal and Coriolis force are added to the
momentum equation. The simulations used a steady approach, where a steady state is
computed without the evaluation of the unsteady terms. A Reynolds Averaged turbulence
(RANS) model was used to model the turbulence.

2.4.2 Simulating transport using the Discrete Element Method
Different researchers used the Discrete Element model (DEM) for simulating single particle
transport in the cutter head and simulating spillage using many interacting particles.

Single particle models
Den Burger (2003) created three models for studying the particle behaviour in a rotating
cutter head. Figure 2.14 shows the results of a potential flow model. In this model, a vortex
flow represents the rotational motion of the blades and a sink describes the suction mouth
(Den Burger, 1997). A second model described the motion of a particle in contact with
rotating blade in the same vortex flow (Den Burger, 2001). Figure 2.15a shows a result
of the simulation. The last model combined the potential flow computations of Dekker
(2001a) for the blades and suction mouth for transporting a particle along a rotating blade
(Den Burger et al. , 2002). Figure 2.15b) shows the path of particle along the blade towards
the suction mouth.

Den Burger (2003) concluded that in the vortex-sink model (Figure 2.14) only particles
close to the suction mouth were sucked up. This is not consistent with the performed
experiments for measuring the residence times of single particles in the cutter head, where
particles were transported over a larger distance to the suction mouth. The pressure
gradient of the vortex-sink model was not sufficient to transport the particle to the suction
mouth. This is a result of the potential flow model, where the pressure gradient is constant
in all directions, resulting in spherical flow toward the suction mouth. While in reality there
is a preferred flow direction, resulting in a larger pressure gradient, transporting the particle
to the suction mouth. Secondly, the flow field does not include the pump effect; there is
no outflow near the ring.

In contrast to the vortex-sink model, the model with the rotating blade in the vortex flow
(Figure 2.15a) included the contact of the particle with the blade. However, the flow was
still induced by the vortex flow and a sink. The slip factor (Cslip) between the angular
velocity of the cutter head (ωc) and of the vortex flow of the fluid (ωf ) showed to be a
very sensitive parameter (Equation 2.10). This factor determined the fluid flow entering
or leaving the cutter head at the leading edge of the blade.

Cslip = 1− ωf
ωc

ωf = ωc (1− Cslip)
(2.10)

Both positive and negative values of the slip factor were used. A positive value leads to a
lower fluid velocity than blade velocity. Due to outward pointing blades, this leads to an
inward flow. A negative slip factor leads to a fluid velocity higher than the blade velocity
and an outward flow. In a freely rotating cutter head the fluid is attracted at the hub of
the cutter head and pushed away at the ring (Figure 2.5). When using a constant slip
factor, this effect is not taken into account.
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Figure 2.14: Two views of a simulation of particles (dp=6mm, ρp=2200 kg/m3) in a forced vortex
flow in a cutter head with rotational speed of 40 rpm and a mixture velocity (vm) of 3 m/s
(Den Burger, 2003).

Den Burger (2003) concluded that a for a slip factor larger than 0.1, the particles left at
the trailing edge and for a smaller or negative slip factor the particles could leave at the
leading edge. The centrifugal force in combination with the shape of the blade transported
the particle in axial direction to the ring and suction mouth. The centrifugal force in
combination with the outward pointing blades, pushes the particle towards the leading
edge of the blade. A positive slip factor, a smaller fluid velocity than blade velocity,
transports the particle to the trailing edge. A negative slip factor transports the particle
to the leading edge.
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-0.1 0 0.1
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Xglobal

Y
gl

ob
al

(b) Blade with potential flow.

Figure 2.15: Simulated particle transported over the blade towards the suction mouth. The
black dot represents the position at the end of the simulation (Den Burger, 2003).
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The last model simulated the rotating blades in the potential flow model. Den Burger
(2003) expressed doubt if these models simulated the outward flow well, since it used a
large slip factor (Cslip ≈ 0.5). In this case the blades rotate twice as fast as the fluid at the
blade This resulted in particles getting overtaken by the blade and leaving at the trailing
edge of the blade. To model the flow at the blade more accurately, he proposed to use a
RANS model.

Spillage using multiple particles
For simulating spillage and production, Zhang et al. (2018) extended the fluid model of
Zhang et al. (2016) with pickpoints, backplate and a suction tube. Figure 2.16 shows the
resulting flow patterns. They used the Discrete Element model to model the particles in
the cutter head and used an unsteady RANS approach for modelling the fluid.

Figure 2.16: Flow pattern of a freely rotating cutter head of 2.8 metre in diameter for a rotational
velocity of 30 rpm and a suction velocity of 2 m/s, resulting in ωc Rc/us = 2.2. The flow is modelled
using the Multiple Reference Frame (MRF) approach (Zhang et al. , 2018).

The particles were injected from the blades and had a particle diameter of 1 to 5 mm. The
rotating cutter head was modelled using a Multiple Reference Frame, indicating that the
blades did not rotate in the model. This means that the blades could not transport the
particles towards the suction mouth as was observed and modelled by Den Burger (2003).
Secondly, only the collisions between the particles and the cutter head are considered and
not the inter-particle collisions. This will prevent the formation of a bed inside the cutter
head, which was observed by Den Burger (2003) during his experiments.

In this model the pump effect was visualised (Figure 2.16) for rotating speed of the cutter
head of 30 rpm with a suction velocity of 2.0 m/s. The height of the zone where fluid flows
out of the cutter (the bottom right side of Figure 2.16) is approximately 0.25 metre.

The spillage fraction was computed from simulations using a rotational speed of 30 rpm
and a range of suction velocities varying from 1.5 m/s to 3.5 m/s, resulting in a dimen-
sionless velocity of 1.3 to 2.9. Figure 2.17 shows the production against the dimensionless
velocity. The results showed an increase in production with increasing suction velocity
and a decreasing production with increasing rotational velocity. The suction velocities
are low compared to the nominal suction velocities described in Table 2.1 resulting in low
dimensionless velocities compared to the results of Den Burger (2003) visualised in Figure
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2.11. This might explain the low production fraction they obtained compared to the gravel
cutting experiments of Den Burger (2003).
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Figure 2.17: Production fraction from Zhang et al. (2018) for particle diameters of 1 to 5 mm.

In these simulations no optimum in production was found like in Den Burger (2003). This
can be explained by the difference in operational parameters between the simulation and
the experiment like the ladder angle and particle size or simplifications in the simulation
like the method for applying the rotating motion. But most probably the difference is
due to the low dimensionless velocity in the simulations compared to the experiments of
Den Burger (2003).

2.4.3 Analytical model for determining spillage
Miedema (2017) derived an analytical model for determining the spillage in a freely rotating
cutter head using a uniform mixture density. He based the model on the affinity laws for
centrifugal pumps for both the pressure and the discharge. Miedema (2019) describes this
model, together with an improved model, which includes a breach and particles settling
out of the cutter head. This improved model is derived from the Euler turbine equation.

Both models splits the cutter head into two segments in axial direction: the top segment
where the backplate and suction mouth are located and a bottom segment ending at
the hub of the cutter head. In the top segment an outward flow is present due to the
centrifugal force. At the bottom segment there is an inward fluid flow to compensate for
the fluid flowing out at the top segment. Figure 2.5 shows a schematic representation of
this circulating flow and Figure 4.8 shows an illustration of the two segments together with
the in- and out-flowing fluxes.

The model of Miedema (2017) and all the other analytical models derived from this model
contain 4 important assumptions:

1. Pressure outside the cutter head is constant.
2. The flow is inviscid; there are no pressure losses.
3. The dynamic pressure due to the radial flow through the blades is not taken into

account.
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4. The flux of the suction mouth acts over the whole inner area of the cutter ring,
leading to a rotational symmetric out-flowing flux.

Werkhoven et al. (2018) described a method for including a breach around the cutter
head, where no outflow was allowed. Later, Werkhoven et al. (2019) added the influence
of the blade angles on the discharges and pressures in the cutter head. He also described
an extra deposition term based on the settling velocity of the material in the cutter head.
With these additions the model fitted the spillage envelopes of Den Burger (2003) and
Miltenburg (1983). However, it only showed the decrease in production for increasing
rotational speed and not the increase in production Den Burger (2003) measured for the
lower rotational speeds (Figure 2.12).

Miedema and Nieuwboer (2019) and Miedema (2019) incorporated a relation on the settling
velocity with the suction velocity in a similar fashion as Werkhoven et al. (2019) to simulate
spillage due to the settling of soil at lower rotational velocities. To simulate the increasing
production with increasing rotational velocities, they also included the upward velocity
due to the rotation of the blades. With the combination of the settling velocity and
the upward velocities by the blades, they were able to model the optimum in rotational
speed for the production as found by Den Burger (2003). To this author’s knowledge
there is only one experimental data set for rock cutting, therefore the model could not
be calibrated and validated on different data sets. This makes the model less reliable for
spillage computations.

In this dissertation an analytical model will be calibrated on numerical fluid flow simula-
tions and compared to numerical spillage simulations. The previous described models use
many empirical relations. This dissertation aims to create a model using as less empirical
relations as possible, therefore the model used in this dissertation will be similar to the
first description of the model by Miedema (2017), while deriving it from the Euler’s turbine
equation similar to Miedema (2019) and Werkhoven et al. (2019). This analytical model
will be derived in Section 4.4.

2.5 Processes influencing spillage
The previous two sections showed the results of experiments and models for describing the
physics in the cutter head. This section will show how these physical processes are related
to the physical models, which can be included in a simulation. These physical processes
influencing spillage are related to the particle motion and the geometry of the cutter head.
Figure 2.18 shows how the motion of pieces of rock (called particles) is affected by its mass,
the mixture flow and collisions.

Mixture flow
The mixture flow is the flow of the fluid together with the motion of the particles. The
fluid flow acts on the particles and the resulting forces of the particles act back on the
fluid. This fluid flow is influenced by the suction flow, rotating blades and the density
in the cutter head. Miltenburg (1983) showed that a smaller volume of cutter head leads
to less spillage. It increases the axial velocities, since the suction discharge flows through
a smaller area inside the cutter head. The pump effect induces spillage by creating an
outflow of mixture underneath the ring (Figure 2.5). It is a result of the centrifugal force
acting on the mixture caused by the rotating blades. While the rotation causes the outflow
and thus spillage, the rotating blades also keep the particles in suspension.
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Figure 2.18: Influences on the spillage processes in a cutter head (shown in dark-grey). The process
of spillage due to mixing can be related to other processes, indicated in white and is related to the
properties of the cutter and the soil (indicated in light-grey).

The density difference in the cutter head drives a density current inside the cutter head
at the side of the breach. This flow acts in the same direction as the rotation when over-
cutting and in a counter direction when under-cutting. The high velocity in over-cutting
mode leads to more spillage, since the amount of time particles are in the influence area of
the suction mouth is reduced (Den Burger, 2003).

Particle mass
Particles with a larger mass have a higher settling velocity and therefore a higher fluid
velocity is needed for keeping them in suspension and for transporting them to the suction
mouth. Also, the geometry and ladder angle of the Cutter Suction Dredger play an impor-
tant role in the transport of particles to the suction mouth. The ladder angle determines
the distance between the bed and the suction mouth (illustrated in Figure 2.13), which
together with the mass of the particle determines the energy needed to lift the particle to
the suction mouth.

Den Burger (2003) proposed a hypothesis for the optimum in production fraction against
the dimensionless velocity as visualised in Figure 2.12. At low rotational velocities the
particles are not being suspended and therefore spilled. High rotational velocities lead
to higher outflow near the ring due to the increased pump effect and are spilled. The
high rotational speed also causes a centrifugal force acting on the particles, which induces
spillage.
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The ladder angle is directly related to the angle between the gravitational vector and the
rotational velocity. A larger ladder angle leads to a smaller vertical component of the
rotating motion, which is needed for suspending the particles. Thus, it has a negative
influence on both the energy needed to lift the particle and the energy provided to lift the
particle (Visualised in Figure 2.13).

The suction flow provides part of the energy needed for lifting the particles. This effect is
likely more pronounced for larger ladder angles since this increases the vertical component
of the suction velocity. However, the negative effects of a higher ladder angle, such as
the increased distance from the bed to the suction mouth, likely dominate the spillage
phenomenon. Particles will not be suspended high enough to reach the influence volume
of the suction mouth.

A high particle mass leads to a high inertia of the particles. This effect on spillage is
pronounced when over-cutting. Over-cutting leads to high rotational particle velocities in
the azimuthal plane. Inert particles need more time for the acceleration in axial direction
to end up in the suction mouth. For over-cutting, the higher velocities in the azimuthal
plane lead to particles spending less time in the influence volume of the suction mouth.
Together with the high inertia of the particles, this results in the particles not ending up
in the suction mouth and being thrown out of the cutter head as shown in Figure 2.9.

Particle collisions
Collisions can be sub-divided in inter-particle collisions and collisions with the rotating
blades. When a large amount of material is present in the cutter head, a layer of material
may form on the blades. At this location the contact/collisions between the particles and
the particles with the blades are important. The blades transport the particles towards
the suction mouth as shown by the simulation of Den Burger (2003) in Figure 2.15b.

Discarded processes in previous models
Of the three models of Den Burger (2003), the potential flow model was the most complete.
It discarded the inter-particle collisions and the density effects including hindered settling.
The model of Zhang et al. (2018) discarded the physical motion of the rotating blades
and the hindered settling effect. From the description in the paper it is not clear if the
particles influence the density in the momentum equation of the fluid/mixture and if the
resulting forces of the Discrete Element Model act on the fluid.

2.6 Overview of applicable models for simulating spillage
In the outline of this dissertation (Section 1.4) the three important methods for modelling
spillage are mentioned: flow induced by the blades of a cutter head, particle-flow inter-
action and collisions. These are directly related to the spillage influences in Figure 2.18.
The next sub-sections show the available literature on modelling these processes. First it
shows the literature on fluid motion in rotating turbo-machinery. Secondly the modelling
techniques of large particles using the Discrete Element Method will be discussed. Lastly,
the experiments and models on collisions will be described.
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2.6.1 Fluid motion in rotating turbo-machinery
This section shows different reference studies for determining the commonly used turbu-
lence models, Reynolds numbers, methods for rotating geometry and grid sizes at the
wall.

Study Reynolds
number

y+ value Turbulence
model

Software

Francis turbine

Lenarcic et al.
(2015)

1.8 · 106 y+
avg > 30 k-ε and k-ω SST FOAM-

extend
3.1

Trivedi (2018) 1.8 · 106 y+
max <

2.6
SAS SST Ansys CFX

Ship propeller

Guilmineau et al.
(2018)

1.0 · 106 y+
max = 2 k-ω SST,

EARSM and
DES

in-house finite
volume code

Hu et al. (2021) 2.0 · 106 5 LES (Dynamic
Smagorinsky)

STAR-
CCM+

Posa et al. (2021) 3.6 · 105 - LES (WALE) inhouse IBM

Centrifugal pump

Petit and Nilsson
(2013)

6.5 · 105 y+
avg = 50 k-ε, RNG k-ε,

realizable k-ε and
k-ω SST

FOAM-
extend

Posa and Lippolis
(2019)

1.5 · 105 - LES (WALE) inhouse IBM

Zhang et al. (2019) 2.6 · 106 10 SST based DDES Ansys-Fluent
18.0

Table 2.3: Reference cases for simulating fluid in turbo-machinery applications.

A common method for simulating large scale flows is the Reynolds Averaged Navier-Stokes
(RANS) equations, which solves the (moving) time averaged Navier-Stokes equations for
the momentum transport. This is in contrast to a Large Eddy Simulation (LES), which
spatially averages the velocities and requires a stricter mesh quality and time step. Section
3.2.2 will provide more details on the different turbulence methods. For a more complete
overview of turbulence and different models see Bailly and Comte-Bellot (2015).

When comparing the different numerical simulations for their applicability in simulating
spillage there are two important criteria: the Reynolds number and the dimensionless wall
distance should be similar. The Reynolds number is the inertia over the viscous force
(Equation 2.11). A high Reynolds number leads to a turbulent flow.

Re = U L
ν

(2.11)
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Where:
Re is the Reynolds number
U is the characteristic fluid velocity [m/s]
L is a characteristic length scale [m]
ν is the kinematic viscosity [m2/s]

The second important parameter for numerical simulations is the dimensionless distance
from the first computational point to the wall (y+). This should be small enough to capture
or model the boundary layer, which is the region with the highest shear.

y+ = yw uτ
ν

uτ =
√
τwall
ρc

(2.12)

Where:
y+ is the dimensionless wall distance [-]
yw is the distance from the first cell centre to the wall [m]
uτ is the friction velocity [m/s]
τwall is the shear stress at the wall [N/m2]
ρc is the density of the continuous phase or fluid phase [kg/m3]

For a RANS model the value of y+ should be between 30 and 500 to ensure the velocity at
this point can be described using a logarithmic velocity profile Versteeg and Malalasekera
(2007). For an LES turbulence model the y+ value should be around 1, leading much more
grid cells and a longer simulation time.

Table 2.3 shows a couple of reference cases. Petit and Nilsson (2013), Posa and Lippolis
(2019) and Zhang et al. (2019) simulated centrifugal pumps. Zhang et al. (2019) used an
MRF method for the modelling of the pump, while Petit and Nilsson (2013) used a sliding
mesh approach and Posa and Lippolis (2019) used an Immersed Boundary Method (IBM)
for implementing the rotating blades. In the Immersed Boundary Method a wall moves
through the domain. A force acts on mesh cells close to the immersed boundary.

Guilmineau et al. (2018), Posa et al. (2021) and Hu et al. (2021) simulated a ship
propeller. Guilmineau et al. (2018) and Hu et al. (2021) used a sliding method while
Posa et al. (2021) used the same Immersed Boundary Method as for the centrifugal pump
simulation. Both RANS and LES models are used for these simulations.

Lenarcic et al. (2015) and Trivedi (2018) modelled a Francis turbine, which is a highly
efficient turbine for hydro power using a sliding mesh method and RANS turbulence models.

Table 2.3 shows these reference cases together with the used y+ values, turbulence model
and Reynolds number. These reference cases have a similar Reynolds number as a 1:4 scale
cutter head, which is 8.8 · 105 (Table 2.1). Modelling this kind of flow will be possible.
Some of the more recent studies use an LES type of turbulence modelling, while most use
RANS. The selected references all included rotating blades. These are modelled either via
Immersed Boundary Method or using a sliding mesh approach.

2.6.2 Modelling of large particles
Modelling of large particles in fluid can be divided into three main categories. The first is
an Euler-Euler model. Also called two-fluid model since the particles are modelled using
a similar momentum equation as for the fluid. Secondly, the combination of individual
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particle with fluid can be modelled using an Immersed Boundary Method which acts as a
moving wall in the fluid influenced by the pressure gradient of the fluid. The last model
uses a simplification of this method and is called the Euler-Lagrange method. In an
Euler-Lagrangian description point particles are tracked and their interaction is spatially
averaged over fluid cells. The drift-flux model, described in for example Ishii and Hibiki
(2011), is not included, since this is only applicable for particles with low inertia.

The Immersed Boundary Method is suitable for large particles compared to a typical
mesh size, while the Euler-Lagrangian point particle method is designed for particles much
smaller than the mesh size. For particles with a size comparable to the cell size, four
methods are presented which divides the particle over multiple cells are presented. The
details of these methods will be discussed after a more detailed explanation of the 3 main
methods. After the overview of these methods, the most applicable methods for simulating
particles in a cutter head is discussed.

1. Two-fluid model
A two-fluid model could be used for modelling large particles. However, it is not ideal
for modelling the large pieces in a cutter head, since it models the particle interactions
instead of computing them explicitly as is performed in Lagrangian modelling. Secondly,
the simulations do not show the particle paths, which gives insight in the spillage process.

The two-fluid model solves two Eulerian momentum equations. One for the fluid and
one for the particle phase. Chauchat et al. (2017) implemented this method into the
OpenFOAM solver called SedFoam and used it for modelling sediments in water. The
particle collisions are modelled as a viscosity either using granular rheology or via kinetic
theory.

2. Immersed Boundary Method
A large particle compared to the mesh cell can be represented by an Immersed Boundary
Method, which acts as a wall in the flow. The pressure gradient and shear stresses at the
immersed boundary accelerates the particle. To compute these accurately, the resolution
at the particle should be sufficiently high. Bigot et al. (2014) used the Immersed Boundary
Method to simulate a settling sphere (Rep=40). The drag coefficient was computed for
different particle diameter over grid cells (∆x/dp) and compared against the fine resolution
benchmark using a boundary fitted geometry of Park et al. (1998) for 128 points around
the sphere, which corresponds to a resolution of 40 cells over the diameter of the particle.
At this resolution (∆x/dp = 40) their results showed an error of 4.6% compared to the
boundary fitted simulation. For ∆x/dp = 20 the error was 8.6 % and for a ∆x/dp = 5 they
computed an error of 47.7 % in the drag coefficient.

For the simulations of particles in a cutter head, a mesh size of 1/20th of a particle diameter,
would result in a mesh size of 1 mm at 1:4 model scale. This would lead to a too large
mesh size to perform multiple simulations with cutter head. This technique is therefore
too computational expensive for describing spillage in a cutter head.

3. Lagrangian modelling
An Euler-Lagrangian model can be performed using one-way coupling, two-way coupling or
four-way coupling. In one-way coupling the forces of the fluid phase act on the particle. The
resulting forces do not act on the fluid. This is usable for very low particle concentrations.
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When the particle concentration increases, two-way coupling is needed to model the process
correctly. This includes both the forces on the particles as the resulting forces on the fluid.
At even higher concentration, also collisional forces become important, which is solved
using four-way coupling. To model the bed of particles in the cutter, the four-way coupling
approach is needed. The following five methods are able to include four-way coupling.

3.1. Point centroid method
Sun and Xiao (2015b) described the issue of unrealistic particle velocities resulting from
particles much larger than a mesh cell when using the Discrete Element Method in combi-
nation with the Finite Volume Method. They showed multiple methods for mapping the
properties of the Lagrangian particle to the Eulerian mesh. The first method in Figure
2.19 is the traditional particle centroid method. Fluid properties are interpolated to the
particle and the forcing of the particles act on the whole mesh cell. The particle interacts
with a cell when the centre of the particle is located in that particular cell. This works well
for particles smaller than the cell sizes but lead to unphysical results when the particle is
larger than the cell size.

3.2. Divided particle method
In the divided particle method, the particle interacts with a cell were the volume of the
particle is located in as shown in Figure 2.19b. However, this method does not solve the
issue of unphysical results when a particle is larger than a cell. Figure 2.20 shows the results
of the different mapping techniques for a circle filled with particles at random locations.
The particle centroid method and the divided particle volume method do not deliver a
smooth concentration distribution.

While for regular shaped meshes it is possible to compute the amount of volume of a
particle is located in each cell, this is a complex procedure for irregular shaped cells.

3.3. Two-grid approach
Another way of treating particles larger than the cell is to make use of a second coarser
mesh. In this two-grid approach the particles interact with this coarser mesh. The fluid
velocities and the particle forcing are mapped between the coarse and the fine mesh (Figure
2.19c). This results in a smooth distribution of the concentration (Figure 2.20). However,
implementing this method is complex for irregular cells combined with a sliding mesh and
multiple processor cores.

3.4. Kernel function
Xiao and Sun (2011) used a statistical kernel function to map the data between the La-
grangian and Eulerian phase. All the cells in a specified influence sphere around the particle
are used for mapping the Eulerian and Lagrangian data. Cells closer the particle centre
have a bigger influence than the cells at a larger distance from the centre. The kernel func-
tion for computing the weights of each cell approximates the solution of the heat equation
of a Dirac delta function after certain time. Figure 2.20 shows the smooth distribution of
the concentration using this method.
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Figure 2.19: Different modelling techniques for large particles (Sun and Xiao, 2015b).

3.5. Diffusion method
Sun and Xiao (2015b) updated the kernel method to a method where not every single
particle would be smoothed, but an initial concentration and force field. First, the particle
forcing and concentration are mapped to the cell containing the centre of the particle.
This is similar to the particle centroid method. Afterwards, a diffusion equation is applied
to the fields containing the particle concentration and forcing. This leads to smoothed
field variables including the fluid velocity field acting on the particles, estimating the
undisturbed fluid velocity at the centre of the particle. This is mass conservative technique
also shows good results for particles near walls. Sun and Xiao (2015a) used this method
for simulating fluidized beds.
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Figure 2.20: Comparison of the volumetric concentration (αp) for 5 different mapping methods.
A circle was filled with a random distribution of particles. The figures display the volumetric
concentration over the middle cross-section of the circle (Sun and Xiao, 2015b).
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Methods applicable for simulating cutter spillage
For simulating spillage, a Lagrangian method would be most suitable, since it simulates
individual collisions and track the particle paths. In a Lagrangian method all the collisions
are individually solved, instead of modelled as a viscosity as in an Euler-Euler method.
The high particle concentration at the blades (observed by Den Burger (2003)) leads to
contact driven transport. A Lagrangian method is most suitable for modelling this kind of
phenomena.

The Immersed Boundary Method needs a high resolution around the particles, leading to
many mesh cells, resulting in long simulation times. The largest cell size in the mesh of
the cutter head is dominated by the resolution needed for simulating the velocity gradients
and by capturing the small details in the geometry of the cutter, for example near the ring
and the backplate. A typical mesh size would be 1 cm, which is half the particle size at 1:4
scale. Decreasing the cell size to 1/20th of the particle diameter would lead to a mesh size
of 1 mm, increasing the number of cells by a factor 103. This would lead to unreasonably
long simulation times.

The particle centroid method cannot be used in this situation, since the mesh cells of 1 cm
are smaller than the particle diameter of 2 cm. Dividing the volumes over adjacent cells,
as in the divided particle volume method, would not solve the problem as the particles
still take up a large part of the cell volume. A two-mesh method would need two rotating
meshes, boundary fitted to the geometry. It is difficult to create a much courser mesh with a
similar mesh quality for a complex geometry like a cutter head together with incorporating
a sliding mesh method for enabling the rotating motion. This leaves the statistical kernel
function of Xiao and Sun (2011) and the diffusion method of Sun and Xiao (2015b) as
candidates. These are promising techniques to be used in the coupling of the Lagrangian
particles with the Eulerian mesh and will be used in this study.

2.6.3 Modelling of collisions
Collisions in the Discrete Element Method are generally modelled using a so-called soft-
sphere approach, using a spring-damper system for computing the forces in a collision. For
the non-elastic collision of a particle a viscous damper can be used. This method enables
the use of a relatively large time step. Tsuji et al. (1992) and Cundall and Strack (1979)
described the Eulerian-Lagrangian coupling with the use of this soft-sphere collision model.
This method is implemented in OpenFOAM. However, it has the drawback that the damp-
ing in the spring-damper-system is not yet related to only physical parameters. Legendre
et al. (2006) derived an empirical formulation between the inertia (Stokes number) and
the coefficient of restitution overcoming the drawback in the original model.

One of the problems with modelling of collisions is the stiffness of the spring-damper system.
A higher stiffness of the particles leads to smaller collision times and therefore a smaller
time step for a stable solution is needed. Lommen et al. (2014) showed a solution for
this. They showed that reducing the shear modulus and corresponding Young’s modulus
of DEM-particles by a factor 100, had limited influence on the penetration resistance of a
wedge in soil.

Another option is a hard-sphere model, which will be explained in this section. This relates
the rebound velocity directly to the incoming velocity using a coefficient of restitution. One
of the drawbacks of this model is the small time step needed for computing the collisions.
To capture the moment of collision, a very small time step is needed.
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The remainder of this section will show the experimental results of oblique particle-wall
interactions and inter-particle interactions. These are compared to an analytical hard-
sphere model.

Oblique particle-wall collisions
Many authors performed experiments of oblique bouncing spheres, for example Foerster
et al. (1994), Joseph and Hunt (2004), Maw et al. (1976) and Yang and Hunt (2006).
Of these authors, Maw et al. (1976) created an extensive analytical model describing the
motion and defined three regions of bouncing behaviour based on the impact angle and
friction: stick, stick-slip and gross slip. When the friction is lower than the tangential force
exerted, the particle starts to slip. In the stick region the particle sticks to the surface
and starts rolling because of this. This is the case for smaller collision angles with respect
of the normal (ζin in Figure 2.21). For a larger angle, the particle starts to slip during
the first part of the collision, due to the increased tangential impulse. It does stick when
the tangential impulse is reduced during the collision. This is called stick-slip. In gross
slip, the tangential impulse is larger than the friction force for the duration of the entire
collision.

ζout

cp cpθoutθin

ζin

ωout

Figure 2.21: Oblique bouncing particle with the definitions of the incidence and rebound angles
and the contact point: cp.

Walton (1993) and Foerster et al. (1994) simplified Maw’s model and defined only two
regions: a stick region and a slip region. They based their model on the dynamics of a
particle with a given normal and tangential impulse and a maximum tangential (friction)
force based on the normal force. This is the same criterion as in the soft-sphere model. The
model can be derived using the conservation of linear and angular momentum. Equation
2.13 shows the relation between the incidence and rebound angle and Equation 2.14 shows
the definitions of the effective angles together with the critical effective angle between the
stick and slip region.

Ψout =

{
−εt Ψin Ψin ≤ Ψ∗ stick
Ψin − µf (1 + εn)

(
1 + 1

K0

)
Ψin > Ψ∗ slip (2.13)
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Ψin = tan ζin = ut,in
un,in

Ψout =εn tan ζout = ut,out
un,in

Ψ∗ = tan ζcritin = µf
1 + εn
1 + εt

(
1 + 1

K0

)
I0 =K0 mp r

2
p = 2

5 mp r
2
p

(2.14)

Where:
Ψin and Ψout are the effective angles of incidence and rebound [-]
ζin and ζout are the angles of incidence and rebound at the contact point [◦]
θin and θout are the angle of incidence and rebound at the centre of the particle [◦]
Ψ∗ is the critical effective angle between the stick and slip region [-]
ζcritin is the critical angle of incidence at the contact point[◦]
εn and εt are the coefficients of restitution in normal and tangential direction [-]
un,in and un,out are the normal incidence and rebound velocities [m/s]
ut,in and ut,out are the tangential incidence and rebound velocities [m/s]
µf is the friction coefficient between the particles or the particle and a wall [-]
I0 is the moment of inertia of the (spherical) particle [kg m2]
K0 is the factor in the moment of inertia, 2/5 for a spherical particle [-]
rp is the radius of the particle [m]

Based on Equations 2.13 and 2.14, the relations of the friction coefficient and tangential
coefficient of restitution are obtained:

µf = 2
7

Ψin −Ψout

1 + εn
εt = −Ψout

Ψin
(2.15)

The relations in Equation 2.15 are used by Joseph and Hunt (2004) to compute the friction
coefficient and tangential coefficient of restitution for their data. Figure 2.22 shows these
experimental results together with the model results (Equation 2.14).

Oblique inter-particle collisions
Yang and Hunt (2006) measured inter-particle collisions (Figure 2.23). For two colliding
steel spheres the spread in data is larger than the spread in the data of the sphere-wall
collisions Joseph and Hunt (2004). Secondly, the data shows a slightly lower rebound angle.
The difference in spread could be explained due to the higher asperity/roughness of the
steel spheres in comparison to the Zerodur (glass) wall, where the spheres collided with.
The higher roughness is also causing more friction, leading to a smaller effective rebound
angle. This is visible in Figure 2.23 for the collisions of the steel spheres of Yang and Hunt
(2006).

The glass and Delrin spheres have different friction coefficients: 0.15 for glass and 0.10 for
Delrin. For the Delrin spheres there is quite a spread in the data. The difference between
the inter particle collisions and the particle-wall collisions is the lack of negative rebound
angles for the Delrin inter particle collisions. Yang and Hunt (2006) posed the hypothesis
that the mobility of the spheres would reduce the contact time leading to less transfer of
tangential impulse.
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It can be concluded that inter-particle collisions are more influenced by asperities than
particle-wall collisions. This makes the collisions more stochastic than particle-wall colli-
sions. Also due to their mobility, nearly no negative rebound angles are present.

0 0.5 1 1.5 2 2.5 3

0

1

2

3

Ψin

Ψ
o
u
t

Joseph and Hunt (2004) glass
Joseph and Hunt (2004) steel
Walton (1993) model glass
Walton (1993) model steel

Figure 2.22: Comparing the Walton model of incidence and rebound angles at the contact point
for glass and steel spheres with the measurements of Joseph and Hunt (2004).
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Figure 2.23: Comparison of the measured incidence and rebound angles of the inter-particle colli-
sions of Yang and Hunt (2006) with the particle-wall collisions of Joseph and Hunt (2004).
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Modelling oblique collisions using soft-sphere approach
Costa et al. (2015) performed direct numerical simulations and modelled the normal and
oblique particle-wall interaction using a soft-sphere approach. Their results match the
data of Gondret et al. (2002) for normal collisions and Joseph and Hunt (2004) for oblique
collisions.

2.6.4 Conclusions on modelling technique
For turbo-machinery modelling, many authors use a Finite Volume Method in combina-
tion with a sliding mesh and the Unsteady Reynolds Averaged Navier-Stokes (URANS)
equations. These give good results for the time-filtered velocities. Turbulent fluctuations
are generally not well captured with the URANS method. Since this research focuses on
big particles, the turbulent fluctuations are of less importance.

For modelling the pieces of rock, a Lagrangian method seems suitable, since this allows
for incorporating individual collisions between particles and the acceleration towards a
terminal settling velocity. Both the kernel method (Xiao and Sun, 2011) and the diffusion
method of Sun and Xiao (2015b) seem promising.

The soft-sphere model of Tsuji et al. (1992) will be used for modelling the collisions. It
will be described in more detail in Section 3.5. This method enables larger time steps than
the hard-sphere model described in this section.
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Method for modelling rock

inside a cutter head

3.1 Introduction
Predicting the spillage of rock in a rotating cutter head requires a combination of methods
to capture the underlying phenomena. These methods need to be able to model the flow
velocity due to the rotation motion, track the large pieces of rock in a time efficient manner
and apply the interaction forces between the fluid and pieces of rock to both phases.

The fluid is modelled as a continuum and the rock pieces as discrete spherical particles.
Due to the movement of the discrete particles, the fluid volume fraction will change in
time and space. This will be modelled using the incompressible Navier-Stokes equations
(Section 3.2.1) with a variable volume fraction. A second forcing on the fluid is the rotating
cutter head, which is modelled using the sliding mesh method (Section 3.2.3).

The pieces of rock in the cutter head are modelled using a Lagrangian method called the
Discrete Element Modelling (Section 3.3). Typically the interaction between the particles
and the fluid is performed using the particle centroid method, where the particle only
exchanges information with the cell it is located in. This information consists of the fluid
volume fraction, forces and fluid velocity. In this study the particles are larger than the
cell and therefore two other methods will be used for exchanging the information between
the fluid in the cells and particles (Section 3.4). The first is a kernel function to map the
particle properties, such as its mass, to multiple cells around the particle. The second
method is a diffusion method, where the information is spread over the mesh using a
diffusion equation.
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Section 3.5 describes the inter-particle collisions and the collisions between the particles
and the blades. The rebound velocity is computed using the coefficient of restitution,
which is the fraction of the rebound velocity over the incoming velocity. In contrast to dry
collisions, this coefficient of particles in a fluid depends on the Stokes number, which is the
ratio between the inertia of the particles and viscous forces.

3.2 Modelling rotating fluid motion
This section describes the fluid motion using the Navier-Stokes Equations together with
the included turbulence model and the sliding mesh method.

3.2.1 Navier-Stokes for an incompressible fluid with a dispersed phase
Fluid motion is governed by the Navier-Stokes equations, which describes the conservation
of momentum for a fluid. For a derivation, see for example Versteeg and Malalasekera
(2007) for single phase flow or Ishii and Hibiki (2011) for multiphase flow.

For modelling the cutter head, the fluid is assumed to be incompressible with a variable fluid
volume fraction or continuous phase fraction (αc). Equation 3.1 shows the conservation
of momentum using this continuous phase fraction. The fluid fraction is the part of the
volume filled with fluid, where the other part consists of pieces of rock. These are modelled
using the Discrete Element Method. Zhou et al. (2010) shows the different equations
used for modelling the fluid phase and the interaction forces. A white-paper by Hofman
(2015) describes the implementation of the fluid momentum in OpenFOAM when using
the Discrete Element Method.

The terms on the left side of Equation 3.1 represent the inertia of the fluid and the advection
of momentum. On the right-hand side the first term is the pressure gradient. This, together
with gravity, is typically driving the flow. The second term on the right side represents the
stresses are applied to the fluid. These stresses act as a diffusive term on the momentum
and are caused by the fluid viscosity and the turbulent stresses. The last terms are the
gravity and an interaction force per unit volume of the discrete particles acting on the
fluid.

∂αc ρc uc
∂t

+∇ · (αc ρc ucuc) = −∇p+∇ ·
(
αc τ

)
+ ρc g + fi (3.1)

Where:
αc is the continuous phase fraction [-]
ρc is the continuous phase density [kg/m3]
uc is the continuous phase velocity [m/s]
t is the time [s]
τ is the effective stress tensor including both the viscous and turbulent shear stresses act-
ing on the fluid [N/m2]
p is the pressure acting on the continuous phase [N/m2]
fi is the interaction force of the discrete particles acting on the fluid per unit volume
[N/m3]
g is the gravitational acceleration [m/s2]
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In Equation 3.1 both the pressure gradient and the gravitation are not multiplied with
the continuous phase fraction. These contributions are included in the interaction force
(Hofman, 2015, Zhou et al. , 2010).

Equation 3.2 shows the interaction forces accounting for the acceleration of the pieces of
rock in water. These will be discussed in detail in Section 3.3. The forces in Equation
3.2 are respectively: drag, added mass, pressure gradient force, viscous force, gravity and
buoyancy.

Fi = −
(
Fd + FAM + Fpg + Fvisc + Fg + Fb

)
(3.2)

Where:
Fi is the interaction force between the fluid and the discrete particles [N]
Fd is the drag force [N]
FAM is the added mass force [N]
Fpg is the pressure gradient force [N]
Fvisc is the viscous force [N]
Fg is the force due to gravity [N]
Fb is the buoyancy force [N]

Equation 3.2 shows the interaction force. The momentum equation (Equation 3.1) uses
the interaction force per unit volume, which is defined as:

fi = Fi
V

(3.3)

Where:
V is a reference volume, which is typically the volume of a mesh cell [m3]

Equation 3.4 shows the conservation of mass. The continuous phase fraction αc equals to
1 for single phase modelling and can be disregarded in that case.

∂αc ρc
∂t

+∇ · (αc ρc uc) = 0 (3.4)

For modelling the fluid with particles, the continuous phase fraction and the particle phase
fraction are summed to be unity:

αc + αp = 1 (3.5)

Where:
αp is the particle phase fraction

The viscous stresses on the fluid in Equation 3.1 can be related to the dynamic viscosity of
the fluid using Equation 3.6, which is described in for example Versteeg and Malalasekera
(2007). For an incompressible fluid, without the presence of particles, the last term equals
zero, due to the continuity equation for such a fluid. Therefore, this term is omitted in
many studies. However, in multi-phase flow this term should be incorporated.

τv = µ

(
∇uc +∇ucT − 2

3 I (∇ · uc)
)

(3.6)
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Where:
τv is the viscous shear stress tensor [N/m2]
µ is the laminar dynamic viscosity [N/m2 s]
I is the identity tensor, which consists of ones on the diagonal and zeros on all off-diagonals
[-]
T is the transpose of a tensor [-]

3.2.2 Turbulence modelling
An important effect in modelling the fluid is the mixing or diffusion of the momentum due
to turbulence. While it is possible to model all the length scales of eddies in a turbulent
flow, this is very computational expensive. Such a simulation is called Direct Numerical
Simulation (DNS) and does not need to include a model for turbulence.

For modelling the cutter head, such a Direct Numerical Simulation is not feasible and a
model will be needed to account for the turbulence. Bailly and Comte-Bellot (2015) give
an overview of the physics of turbulence and different models for simulating it. Two main
methods can be used: Large Eddy Simulation (LES) or an Unsteady Reynolds Averaged
Navier-Stokes (unsteady RANS). A LES model spatially averages the turbulent quantities
and computes the turbulent viscosity based on the local shear rate. In order to get accurate
simulation results, the mesh for the computation should be relatively fine. This holds
especially for the walls, where the fluid experiences a high shear rate.

An unsteady RANS model does not solve the small eddies like LES does; it captures the
energy of these eddies in a so-called turbulent kinetic energy. The velocities are described
using a (moving) time average and a fluctuation (Equation 3.7). This fluctuation is related
the turbulent kinetic energy (Equation 3.12), which in turn is used to compute the diffusion
of momentum via a turbulent viscosity. Modelling turbulence in this way, assumes isotropic
turbulence, meaning the velocity fluctuations in each direction are the same.

The transport of turbulent kinetic energy is computed using an advection-diffusion equation
with a production and dissipation term. Different unsteady RANS models have different
production and dissipation terms. Section 2.6.1 and 2.4 showed some reference projects
using unsteady RANS models.

Unsteady RANS model
The unsteady RANS turbulence model is derived using the Reynolds decomposition: a time
varying average and a fluctuation. This is described by for example Bailly and Comte-Bellot
(2015). For the fluid velocity the Reynolds decomposition is:

uc = uc + uc
′ (3.7)

Where:
uc is the unfiltered continuous phase velocity [m/s]
uc is the time averaged continuous phase velocity [m/s]
uc
′ is the continuous phase velocity fluctuation [m/s]

All the terms in the momentum and mass conservation equation (Equations 3.1 and 3.4) are
decomposed in the time averaged part and the fluctuations. Afterwards both equations are
time averaged again, resulting in all products of a fluctuation and a time averaged quantity



3.2. Modelling rotating fluid motion

3

43

to become zero. The time average of the product of two fluctuations is not zero, meaning
that the decomposition of the advection term leads to an extra term in the Reynolds
averaged momentum equation. In this study a closure model is used for computing the
product of the two fluctuations by using the eddy-viscosity concept proposed by Boussinesq
in 1877. Equation 3.8 shows on the left-hand side the velocity fluctuations in the advection
term. On the right, it shows the closure model for these velocity fluctuations via a turbulent
stress tensor. This term can be modelled using the gradient of the flow field in the same way
as for the viscous stresses in Equation 3.6. Equation 3.9 shows the resulting model for the
turbulent stresses using the turbulent dynamic viscosity. Note that the overbars denoting
the time average are not shown in Equation 3.9 and will be left out in the remainder of
this dissertation, for convenience.

∇ ·
(
αc ρc u′ u′

)
= ∇ ·

(
αc τt

)
(3.8)

τt = µt

(
∇uc +∇ucT − 2

3 I∇ · uc
)

(3.9)

Where:
τt is the turbulent stress tensor [N/m2]
µt is the turbulent dynamic viscosity [N/m2 s]

The effective shear stress used in the momentum equation is the summation of both the
viscous stresses and the turbulent stresses (Equation 3.10). Since both equations for the
viscous shear stress and the turbulent shear stress are identical with a different viscosity,
it is generally assumed that these dynamic viscosities can be added together to create an
effective viscosity (µeff ) (Equation 3.11).

τ = τv + τt (3.10)
µeff = µv + µt (3.11)

The turbulent dynamic viscosity is calculated in Equation 3.13 using the turbulent kinetic
energy defined in Equation 3.12 and the dissipation of turbulent kinetic energy (ε).

k = 1
2

(
u′ 2x + u′ 2y + u′ 2z

)
(3.12)

Where:
k is the turbulent kinetic energy [m2/s2]
u′x, u′y, u′z are the components of the continuous phase velocity fluctuation [m/s]

Realizable k-epsilon model
The Reynolds Averaged Navier-Stokes can be modelled using a set of two transport equa-
tions: the transport of turbulent kinetic energy (k) and the dissipation of this turbulent
kinetic energy (ε). Launder and Spalding (1983) derived this model and it is called the
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k − ε model. They also derived the relation between the turbulent kinetic energy, the dis-
sipation of turbulent kinetic energy and the dynamic turbulent viscosity (Equation 3.13)
and prescribed the constant Cµ = 0.09.

Typically, this k − ε model is not very suitable for flow with high shear and separation as
are present in a cutter head. Shih et al. (1995) mentioned that the standard k − ε model
over-predicts the turbulent viscosity in these cases. They adapted the standard k-ε model
and created the realizable k − ε model by including the rotation of the flow and making
sure that the turbulent quantities cannot become negative by using a variable value of Cµ.
As a test case they showed the spreading of a round jet. For this case the relative error
with respect to measurements in spreading rate diminished from 22% to 5%, indicating
the realizable k-ε models predicts the turbulence better for high shear cases.

The model equations for the turbulent kinetic energy and dissipation are described by
Equations 3.14 and 3.15.

µt = Cµ ρc
k2

ε
(3.13)

∂αc ρc k

∂t
+∇ · (αc ρc uc k) = ∇ ·

(
αc ρc

(
ν + νt

σk

)
∇k

)
+ Pk − αc ρc ε (3.14)

∂αc ρc ε

∂t
+∇ · (αc ρc uc ε) = ∇ ·

(
αc ρc

(
ν + νt

σε

)
∇ε

)

+ C1 αc ρc S ε− C2 ρ
ε2

k +
√
ν ε

(3.15)

Where:
Cµ is a dimensionless constant for computing the turbulent viscosity [-]
ε is the dissipation of turbulent kinetic energy [m2/s3]
ν is the laminar kinematic viscosity [m2/s]
νt is the turbulent kinematic viscosity [m2/s]
σk is the Prandtl number for diffusion of turbulent kinetic energy [-]
σε is the Prandtl number for diffusion of the dissipation of turbulent kinetic energy [-]
Pk is the production term of turbulent kinetic energy [kg/m s3]
C1 is a constant for the production term in computing the dissipation of turbulent kinetic
energy [-]
C2 is a constant for the dissipation term in computing the dissipation of turbulent kinetic
energy [-]

Both Equation 3.14 and 3.15 have the form of an advection-diffusion equation with a
production and dissipation term. The terms on the left-hand side are the rate of change
and the advection of k or ε, respectively. The terms on the right-hand side represent the
diffusion, the production and the dissipation of k or ε, respectively.

The production of turbulent kinetic energy is related to the magnitude of the strain rate
of the velocity (S) and the turbulent viscosity (Equation 3.16). Equation 3.17 relates the
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magnitude of the strain rate to the local strain rate tensor via the double dot product.

Pk = µt S
2 (3.16)

S =
√

2S : S (3.17)

The turbulent dynamic viscosity is calculated using Equation 3.13, where Cµ is computed
based on the local strain rate tensor (S) and rotation rate tensor (Ω) by Equations 3.18,
3.19 and 3.20.

Cµ =
(
A0 +As U

∗ k

ε

)−1

(3.18)

U∗ =
√
S : S + Ω : Ω (3.19)

The local strain rate tensor and rotation rate tensor are defined as:

S = 1
2

(
∇uc +∇ucT

)
Ω = 1

2

(
∇uc −∇ucT

)
(3.20)

Table 3.1 shows all the variables included in the model. The first two constants are for
determining the value of Cµ in Equation 3.18. The third and fourth constants are the
source and sink term for the dissipation of turbulent kinetic energy. The last terms are
Schmidt numbers for the relation of the kinematic turbulent viscosity and the diffusion of
both the turbulent kinetic energy and its dissipation. Equation 3.21 shows three addition
relations used for determining the six variables

A0 As C1 C2 σk σε

4.0
√

6 cosφ max
(

η
η+5 , 0.43

)
1.9 1.0 1.2

Table 3.1: Variables used in the realizable k-ε model as specified by Shih et al. (1995).

η = S
k

ε
φ = 1

3 arccos(
√

6W ) W =
2
√

2
(
S S

)
: S

S3 (3.21)

Neglected buoyancy effect
This model is suitable for rotating flows. However, it includes two assumptions regarding
the influence of the dispersed phase.

Firstly, the influence of the turbulent velocity fluctuations on the particle velocity is not
included in this research, since the inertia of the particles is relatively high as shown in
Section 3.3.7.

Secondly, the model does not include the production and dissipation of turbulent kinetic
energy due to a varying density. Such a buoyancy production term is positive for unstable
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stratified flows. The term acts as a sink for the turbulent kinetic energy when the stratifi-
cation is stable. Van Maele and Merci (2006) included the buoyancy term in the Realizable
k − ε model to model buoyant plumes.

This buoyancy is not incorporated in this study, since the buoyancy production is nearly 20
times smaller than the shear production measured over the whole cutter head. This is not
the case near the bed, where the buoyancy production is higher than the shear production.
This ratio is defined by the flux Richardson number:

Rif = − Pb
Pk,z

(3.22)

Where:
Rif is the flux Richardson number [-]
Pb is the production term of turbulent kinetic energy due to buoyancy [kg/m s3]
Pk,z is the production term of turbulent kinetic energy based on the shear over the vertical
direction [kg/m s3]

Van Maele and Merci (2006) andWinterwerp (2001) computed this flux Richardson number
and its derivation follows their approach. In this relation, the production based on the
vertical shear is used, which is also taken to be the direction in which the gravity works.
The turbulent production term for the vertical direction Pk,z is:

Pk,z = −ρm u′x u′z
∂ux
∂z

(3.23)

Where:
ρm is the mixture density defined as:

ρm = αp ρp + αc ρc (3.24)

Where:
αp is the particle phase fraction [-]
ρp is the density of the dispersed particles [kg/m3]

The buoyancy term is:

Pb = u′z ρ′m
ρm

gz ρm (3.25)

Where:
g is the magnitude of the gravitational acceleration [m/s2]
ρ′m is the mixture density fluctuation computed by the Reynolds decomposition. [kg/m3]

Substituting Equations 3.23 and 3.25 into Equation 3.22 leads to

Rif = u′z ρ′m gz

ρm u′x u′z ∂ux/∂z
(3.26)

Using the eddy-viscosity concept, the turbulent velocity fluctuation is represented as a
turbulent viscosity times a velocity gradient:
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u′x u′z = −νt
∂ux
∂z

(3.27)

Similarly, this eddy-viscosity concept can be used for the fluctuation density:

u′z ρ
′
m = − νt

σk

∂ρm
∂z

(3.28)

Inserting Equation 3.27 into Equation 3.23 leads to the final form of the turbulent kinetic
energy production term for the vertical:

Pk,z = ρm νt

(
∂ux
∂z

)2

(3.29)

Similarly, inserting Equation 3.28 into Equation 3.25 leads to the final form of the buoyancy
production of turbulent kinetic energy:

Pb = −g νt
σk

∂ρm
∂z

(3.30)

A negative vertical density gradient, indicating an unstable stratified flow, results in a pos-
itive buoyancy term (Equation 3.30). This buoyancy term acts as a sink for the turbulent
kinetic energy.

Assuming the Prandtl number for the diffusion of turbulent kinetic energy to be unity
(σk = 1.0), the flux Richardson number is:

Rif = g ∂ρm/∂z

ρm
(
∂ux/∂z

)2 (3.31)

The flux Richardson number can be computed for the density variations over the cutter
and over the bed by discretising the gradients:

Rif = g

ρm

∆ρm/∆z(
∆ux/∆z

)2 (3.32)

Using the values of Table 3.2, the flux Richardson number can be computed for the bed
region and in the cutter head as a whole. For the bed region a 0.3 m layer of sediment
with a volumetric particle concentration of 0.4 is assumed. For the cutter head as a whole
a volumetric particle concentration of 0.05 is assumed. This leads to a flux Richardson
number of 0.055 for the whole cutter head excluding the bed region. Locally at the bed the
flux Richardson number is 2.2. These two Richardson numbers indicate that the buoyancy
term can be neglected in the cutter head, outside the bed region.
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Parameter Cutter head Bed region

Particle concentration difference (∆αp) 0.05 0.4
Fluid density (ρc) [kg/m3] 1000 1000
Particle density (ρc) [kg/m3] 2650 2650
Mixture density difference (∆ρm) [kg/m3] 82.5 660
∆z [m] 0.3 1.5
∆ux [m/s] ∆z ωc ∆z ωc
∆ux/∆z [1/s] ωc ωc
Angular velocity (ωc) [1/s] π π
Flux Richardson number Rif 2.2 5.5 · 10−2

Table 3.2: Parameters for computing the flux Richardson number.

3.2.3 Sliding mesh method
OpenFOAM solves the interface of the rotating motion between two parts of the mesh
using a sliding mesh interface based upon the method of Farrell and Maddison (2011).
This interface boundary condition couples the rotating part of a mesh with the stationary
part. Figure 3.1 shows schematic representation of the mesh around the cutter blades.
The black mesh rotates with the cutter head, while the grey mesh is fixed. The dotted
line shows the interface between the rotating and fixed mesh. It couples the face values at
both sides of the interface, which are located at the face centres denoted by the face area
normal vector (Sf ) in the detail.

Sliding mesh interface

Sf

Sf

%
%
%

Figure 3.1: Schematic example of a sliding mesh interface containing the cross-section of a cutter
head.

When solving for a quantity q, the face values at the interface should be mapped from one
side (source) to the other side (target). This is performed using area mapping where the
target values on the target face are computed based on the overlapping face area of the
source face. Figure 3.2a shows an example of a source and target mesh. The target values
are computed from the source values by summing all the values from the overlapping source
faces multiplied by the area weight as shown in Figure 3.2. The area weight of a specific
source face is the ratio of the intersection area and the target area (Equation 3.33).
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qjt =
Ns∑
i=1

Ais ∩Ajt
Ajt

qis (3.33)

Where:
qjt is the value of quantity q at face j of the target mesh
qis is the value of quantity q at face i of the source mesh
Ais and Ajt are respectively the source and target area [m2]
Ais ∩Ajt is the intersection area of the source face area (Ais) and the target face area (Ajt)
[m2]
Ns is the number of source faces [-]

Farrell and Maddison (2011) show a complete mathematical derivation of the method, here
an example will be shown based on the mesh in Figure 3.2. It shows a 1-dimensional source
mesh on the left side and a target mesh on the right side. The mesh on the left side has
three cells with a spacing of ∆x = 2/3, while the target mesh on the right has a spacing
of ∆x = 1/2 and four cells. Both meshes have a length of one in the in-plane direction.
The four values on the target mesh are computed using the sliding mesh interface by
constructing the matrix in Equation 3.34.

2

4/3

2/3

0

2

1 1/2

1

1/2

0

Source Target
qs qt

j = 1

j = 2

j = 3

j = 4
i = 3

i = 2

i = 1

(a) Source and target mesh

A2
s A2

t
A2,2
s,t

As = 2/3

At = 1/2 At ∩As = 1/3

x x x

(b) Weight functions

Figure 3.2: Example of a mapping from one interface to the other.

Figure 3.2b shows the method to compute the interpolation value of face number 2 on
the source mesh to face number 2 on the target mesh based on the overlapping areas.
The first two graphs in the figure shows the areas of both faces. The third graph shows
the intersection of both areas, which has an area of 1/3. This process can be performed
for the other faces as well. Equation 3.34 shows the general form of the matrix mapping
the source values to the target values (Mts). Equation 3.35 shows all the matrix form
of this equation with the matrix coefficients. Equation 3.36 shows the general method
of computing the matrix coefficients for row j and column i together with the numerical
values for the coefficients.
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qt = Mts qs (3.34)
q1
t

q2
t

q3
t

q4
t

 =


m11 0 0
m21 m22 0

0 m32 m33
0 0 m43


q1

s

q2
s

q3
s

 (3.35)

mji = Ais ∩Ajt
Ajt

m11 = A1
s ∩A1

t

A1
t

=
1/2

0.5 m21 = A1
s ∩A2

t

A2
t

=
1/6

0.5 m22 = A2
s ∩A2

t

A2
t

=
1/3

0.5

m32 = A2
s ∩A3

t

A3
t

=
1/3

0.5 m33 = A3
s ∩A3

t

A3
t

=
1/6

0.5 m43 = A3
s ∩A4

t

A4
t

=
1/2

0.5

(3.36)

Using a numerical example for the source values of qs = [ 3 6 9] , the target values are
computed using Equation 3.36, resulting in qt = [ 3 5 8 9].

3.3 Solid particles in fluid flow
Section 2.6.2 showed an overview of applicable methods for simulating dispersed phases
in fluid flows for particles with high inertia. From these available modelling techniques,
the Discrete Element Method (DEM) was the most suitable method. It is a time-efficient
method, which is suitable for modelling the contact driven motion of the particles near the
blade.

The Discrete Element Method tracks the centre of a sphere throughout a domain, based
on the forces acting on the sphere. In combination with the Finite Volume Method for the
fluid, the forces from the fluid on the particles are included. The resulting forces are also
applied to the fluid phase as was shown in the momentum equation for the fluid (Equation
3.1). The particles in the flow can be described by applying Newton’s second law on a
particle (Equation 3.37). On the left-hand side of the equation, inertia of the particle is
denoted. The right-hand side shows all the forces acting on a single particle.

This is described by for example: Maxey and Riley (1983) or Zhou et al. (2010).

Vp ρp
∂up
∂t

= Fd + FAM + Fpg + Fvisc + Fg + Fb (3.37)

Where:
Vp is the volume of the particle [m3]
ρp is the density of the particle [kg/m3]
up is the particle velocity [m/s]
t is the time [s]
Fd is the drag force on the particle [N]
FAM is the added mass force on the particle; resulting from the fluid around the particle
accelerating together with the particle and in that sense can be seen as added mass [N]
Fpg is the pressure gradient force. The force due to the pressure acting on the particle [N]
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Fvisc is the viscous force acting on the surface of the particle [N]
Fg is the gravitational force [N]
Fb is the buoyancy force [N]

The next sections first show the neglected forces in the spillage simulations, followed by
the formulations for the different forces, the hindered settling formulation and the Stokes
number of particles in a rotating cutter head. Equation 3.68 shows the equation of motion
including all Equations of the individual forces.

3.3.1 Neglected forces
In this method three forces are neglected and therefore not included in Equation 3.37.
These forces are the Magnus lift force, the history force and the force due to turbulent
dispersion.

The Magnus lift force is the effect of rotation on the translating movement of the particle.
Den Burger (2003) showed via a dimensional analysis that this force is an order of mag-
nitude smaller than the other forces acting on the particles in a cutter head and therefore
can be neglected.

The history force is a viscous forcing due to the development of the boundary layer around
the particle when the particle accelerates or decelerates with respect to the fluid velocity.
When the non-linear drag is dominant, the viscous force is negligible, also rendering the
history force negligible. For example, Den Burger (2003) and Sun and Xiao (2016b) did
not include the history force in their simulations.

The force due to turbulent dispersion accounts for the turbulent velocity fluctuations acting
on the particle. While these fluctuations are not incorporated in the velocities used for
computing the forces, these can be modelled using a turbulent dispersion force. In this
study the dispersion force can be neglected as this force will be small compared to the
inertia of the particle. Section 3.3.7 proves this by comparing the Stokes number of a
particle for different time scales of fluid velocity fluctuations in the cutter head.

3.3.2 Drag on a single particle
The drag force on a single, spherical particle can be computed using Equation 3.38.

Fd = 1
2 CdAp ρc

(
uc|p − up

)∥∥uc|p − up
∥∥ (3.38)

Where:
Cd is the drag coefficient
Ap is the area of the particle projected to the flow direction [m2]
up is the velocity of the particle [m/s]
uc|p is the undisturbed fluid velocity at the particle location [m/s]

The undisturbed fluid velocity at the particle location is the velocity at the particle, without
its influence on the velocity. In other words, the fluid velocity without the particle being
present. However, the influence of other particles on the undisturbed fluid velocity should
be taken into account. A method for estimating this undisturbed velocity will be presented
in Section 3.4.
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The drag coefficient (Cd) in Equation 3.38 is related to the particle Reynolds number
based on the slip velocity (

∥∥uc|p − up
∥∥) (Equation 3.42). There are many formulations for

the drag coefficient all based on empirical relations. In this dissertation, the formulation
of Brown and Lawler (2003) will be used since it is relatively simple and it is valid for
a wide range of particle Reynolds Numbers (Res < 2 · 105), Equation 3.41. Other drag
formulations are for instance the Dallavalle drag relation (Equation 3.39) used in Di Felice
(1994) and the Schiller-Naumann drag formulation (Equation 3.40) described in Enwald
et al. (1996)

Cd =
(

0.63 + 4.8√
Res

)2

(3.39)

Cd =
{

24
Res

(
1 + 0.150 Re0.687

s
)

Res ≤ 1000
0.44 Res > 1000 (3.40)

Cd = 24
Res

(
1 + 0.150 Re0.681

s
)

+ 0.407
1 + 8710 Re−1

s
Res ≤ 2 · 105 (3.41)

Res =

∥∥uc|p − up
∥∥ dp

ν
(3.42)

Where:
Res is the Reynolds particle number based on the slip velocity [-]
dp is the particle diameter [m]
ν is the laminar kinematic viscosity [m2/s]

3.3.3 Added mass force
The added mass force on the particle is attributed to the amount of fluid around the
particle which needs to be accelerated together with the particle. Equation 3.43 shows this
force as described by Maxey and Riley (1983).

FAM =CAM Vp ρc

(
Duc|p

Dt
−
∂up
∂t

)
Duc|p

Dt
=
∂uc|p

∂t
+ uc|p · ∇uc|p

(3.43)

The added mass coefficient (CAM ) in this expression is typically taken as 0.5.

3.3.4 Pressure gradient and viscous forcing
The pressure gradient force on the particle includes the centrifugal effect on a particle in
a rotating flow. Maxey and Riley (1983) showed that for the assumption of undisturbed
flow by the particle, the pressure gradient force together with the viscous force is equal to
the total derivative of the fluid velocity (Equation 3.44). This equation does not include
the particle concentration as in the momentum equation (Equation 3.1), since the effect of
concentration on the pressure on the particle will be incorporated in the hindered settling
formulation for the drag force (Section 3.3.6).
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ρc
Duc|p

Dt
= −∇p+∇ · τ (3.44)

The pressure gradient plus the viscous force is computed as the total derivative of the
undisturbed fluid velocity at the particle location:

Fpg + Fvisc = Vp
(
−∇p+∇ · τ

)
Fpg + Fvisc = Vp ρc

Duc|p

Dt

(3.45)

3.3.5 Gravity and buoyancy force
The gravity and buoyancy acting on a particle computed by the weight of the particle and
the weight of its displaced fluid.

Fg + Fb = Vp (ρp − ρc) g (3.46)

3.3.6 Hindered settling effect on drag formulation
Richardson and Zaki (1954a) described the hindered settling effect of solids in a fluid.
They showed that the terminal settling velocity of sediment decreased with increasing con-
centration. Winterwerp (1999) identified several processes leading to the hindered settling
effect and classified three of them as dominating processes. The first is the fluid flowing
around the settling sediment. It creates an upward flow, increasing the drag on the par-
ticles and therefore slowing them down. The more particles settle, the higher the upward
fluid velocity leading to a decrease in settling velocity. Secondly, a higher concentration of
particles creates a higher mixture density leading to a higher static pressure. Which in turn
increases the buoyancy force on the particles. The third effect is an increased fluid flow
resistance due to the presence of other particles, which can be described as an apparent
viscosity.

The last effect, determined by Richardson and Zaki (1954a) is the wall effect on the settling
velocity. Settling in a small container (or pipe) compared to the particle diameter leads to
a hindered return flow due to the shear stress of the wall on the return current. Equation
3.47 shows the terminal settling velocity corrected for hindered settling.

up,t = 10−dp/Dp αnc up,t,0 (3.47)
Where:
up,t is the particle terminal settling velocity, corrected for the hindered settling [m/s]
up,t,0 is the particle terminal settling velocity of a single particle [m/s]
αc is the fluid fraction [-]
n is the empirical Richardson and Zaki exponent [-]
dp is the particle diameter [m]
Dp is the diameter of the pipe or container [m]

Hindered settling effect on terminal settling
Richardson and Zaki (1954a) stated that the exponent n varied between 2.39 for large
particle Reynolds numbers and 4.65 for small particle Reynolds numbers. Rowe (1987)
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fitted a continuous function through the data of Richardson and Zaki (1954a) for this
exponent:

n = 4.7 + 0.41 Rep
0.75

1 + 0.175 Rep
0.75 (3.48)

This Reynolds number for the hindered settling is based upon the terminal settling velocity
of a single particle (up,t,0) as expressed in Equation 3.55. Usually, the Reynolds number
is based on the slip velocity (us) (Equation 3.54). To rewrite the settling velocity to a slip
velocity, the volume balance is considered in Equation 3.49, which leads a relation between
the continuous phase velocity and the particle phase velocity (Equation 3.50).

αc uc + (1− αc) up = 0 (3.49)

uc = −1− αc
αc

up (3.50)

By substitution Equation 3.50 into the slip velocity (Equation 3.51) a relation between the
particle velocity and the slip velocity is obtained in Equation 3.53.

us = uc − up (3.51)

us = −1− αc
αc

up − up (3.52)

up = −αcus (3.53)

Using Equation 3.53 into Equation 3.54 leads to the particle Reynolds number based on
the settling velocity of a single particle expressed as a slip velocity (Equation 3.55). This
form of the particle Reynolds number is used in the hindered settling exponent (Equation
3.48)

Res = ‖us‖ dp
ν

=

∥∥uc|p − up
∥∥ dp

ν
(3.54)

Rep =

∥∥up∥∥ dp
ν

=
αc
∥∥uc|p − up

∥∥ dp
ν

(3.55)

Hindered settling effect on drag formulation
For the Lagrangian formulation the correction based on the terminal settling velocities
(Equation 3.47) will not suffice, since the particles are not constantly settling with the
terminal velocity. Therefore, the influence of increased concentration on the drag of a
particle (Fd) is used (Equation 3.56). Richardson and Zaki (1954b) derived that this
exponent has a negative value. A negative exponent increases the drag on a particle with a
decreasing continuous phase fraction. Common expressions for this exponent are described
by Wen and Yu (1966), Gidaspow (1994) and Di Felice (1994).

Fd = Fd,0 α
m
c (3.56)
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Where:
Fd is the drag force on a particle influenced by the concentration due to the presence of
neighbouring particles [N]
Fd,0 is the drag force on a single particle in absence of surrounding particles calculated
with Equation 3.38 [N]
αc is the fluid fraction [-]
m is a general empirical exponent for the drag force influenced by hindered settling [-]

Di Felice (1994) includes the effect of the particle Reynolds number on the hindered set-
tling exponent similar to the exponent (n) in the hindered settling relation described in
Equation 3.47. In contrast Wen and Yu (1966) use a fixed exponent and Gidaspow (1994)
uses a fixed exponent for particle concentrations lower than 20%. Of these three mod-
els, Di Felice (1994) is the only one including the effect of Reynolds particle number on
the hindered settling exponent as was experimentally determined by Richardson and Zaki
(1954a). Therefore, this formulation is used in this study. Equation 3.57 and 3.58 show
the resulting relations as shown by Enwald et al. (1996).

Fd = Fd,0 α
−β+2
c (3.57)

β = 3.7− 0.65 exp
(
− (1.5− log10 Rep)2

2

)
(3.58)

Where:
β is the hindered settling exponent for the drag force
Rep is the Reynolds particle number defined by Equation 3.55

Note the α−β+2
c , where the addition of 2 stems from the difference in the used velocity in

the drag relation. Di Felice (1994) used the particle velocity of Equation 3.53 to compute
the drag, where in this study the formulation Enwald et al. (1996) based on the slip
velocity is used. Inserting Equation 3.53 into the drag relation (Equation 3.38), this leads
to the α2

c term in the quadratic drag formulation.

Enwald et al. (1996) describes the difference in drag formulation between Wen and Yu
(1966) and Di Felice (1994). Where Wen and Yu (1966) only take the pressure gradient
of the fluid phase into account, Di Felice (1994) uses the pressure gradient of the mixture
of particles and fluid. While being mathematically identical, the latter one is a physically
more correct description. The pressure due to mixture acts on the particles. Equations
3.59 and 3.60 show the difference in force balance for both methods.

Wen and Yu (1966)

Vp ρp g + Fd = Vp ∇pc
∇pc = ρc g

Fd = −Vp (ρp − ρc) g
(3.59)

Di Felice (1994)

Vp ρp g + Fd = Vp ∇pm

∇pm =
(
αc ρc + (1− αc) ρp

)
g

Fd = −αc Vp (ρp − ρc) g

(3.60)

Enwald et al. (1996) derived from Equation 3.59 and 3.60 that:

Fd,WenY u = Fd,diFelice
αc

(3.61)
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In OpenFOAM, the pressure (and therefore the pressure gradient) only accounts for the
fluid phase, meaning the balance of forces as specified by Wen and Yu act on a particle.
To implement the Di Felice drag formulation of Equation 3.57 into OpenFOAM, it should
be divided by αc leading to:

Fd = Fd,0 α
−β+1
c (3.62)

Originally, Di Felice (1994) used the drag relation of DallaValle (Equation 3.39). However,
this relation gives a relatively high drag force compared to common other drag models like
the Schiller-Naumann model (Equation 3.40) or Brown and Lawler (2003) (Equation 3.41).
For a Reynolds particle number at the experimental scale in this research (Rep = 7000)
the Dallavalle drag model predicts a 18% higher drag coefficient than the (Brown and
Lawler, 2003) drag formulation and 7% higher than the Schiller-Naumann drag model.
For this reason, the drag model of Brown and Lawler (2003) is used in combination with
the exponent of Di Felice (1994).

For computing the hindered settling effect, the concentration at the particle centre is
needed. The concentration field is computed by distributing the concentration of all the
particles in the domain. Section 3.4 will explain how this is performed.

3.3.7 Stokes number
The Stokes number (St) defines the influence of the flow fluctuations on the particle velocity
and defines if a particle follows the velocity fluctuations caused by eddies or deviates from
them due to its inertia. It is defined as the characteristic time scale of particle over the
time scale of the forcing fluid (Equation 3.63).

St = TpTf
(3.63)

Where:
St is the Stokes number [-]
Tp is the particle time scale [s]
Tf is the fluid time scale determined by eddies in the fluid [s]

A Stokes number lower than 1 means that the particles follow the fluid flow. A Stokes
number higher than 1 means that the particle is not much influenced by the flow. At a
Stokes number equalling 1, the fluid and particle time scales are equal. This indicates both
the inertia of the particle and the fluid forces influence the particle movement.

The particle time scale is calculated using the characteristic velocity and acceleration.
These are the terminal velocity and the gravitational acceleration, respectively. The ter-
minal velocity is the velocity of a single particle settling in the flow. When this velocity
is reached the gravitational force and the drag force are in equilibrium. The particle time
scale is obtained by dividing the terminal velocity by the gravitational acceleration (Equa-
tion 3.64).

Tp =
√

4 (ρp − ρc) dp
3Cd ρc

(3.64)
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Den Burger (2003) showed a typical diameter of the pieces of rock in the cutter is of 8 cm
and the density is around 2200 kg/m3. This leads to a particle time scale of 0.18 seconds.

The fluid time scale is based on the length scale and the velocity of the cutter:

Tf = LU = Rc
ωcRc

= 1
ωc

(3.65)

St =
√

4 (ρp − ρc) dp
3Cd ρc

ωc (3.66)

When the cutter rotates with 30 rpm, the angular velocity is π rad/s (30 rpm). This leads
to a Tf of 1/π = 0.32 seconds.

In the cutter head another smaller eddy due to the blade-passings is present. A cutter
typically has 6 blades and therefore they have a time scale of a sixth of the cutter: 1/6π =
0.053 seconds.

Both the eddy in the whole cutter head and the eddy due the blade-passing lead to a Stokes
number. These Stokes numbers are 0.55 and 3.3 for the cutter head and blade-passing,
respectively. A piece of rock will follow the eddy caused by the cutter head, but it is not
influenced by eddies resulting from the blade-passings.

In Section 3.3.1, the turbulent dispersion force was neglected since the fluctuations of
turbulent eddies will not influence the inert particles. This section shows that eddies
caused by the blade-passings will not influence the path of the particles. Turbulent eddies
will have even smaller time scales and will therefore not have an effect on the particle.

3.4 Mapping between the finite volume mesh and the La-
grangian particles

Typically, in two-way coupled DEM simulations, the concentration is spatial averaged over
the volume of the finite volume cell it is located in. This works well for small particles,
while for particles with a larger volume compared to the cell, this becomes problematic.
In modelling the cutter head, the particles are larger than the mesh cells, since a fine
resolution is needed for simulating the velocity gradients and capturing the geometry of
the cutter head. These large particles lead to concentrations higher than 1, which would
be unphysical.

A second problem with exchanging information between the particle and the fluid is de-
riving the undisturbed fluid velocity at the particle. The drag force formulation on the
particle has the underlying assumption that the fluid velocity is undisturbed by the parti-
cle. For a large particle compared to the cell size, the particle will accelerate the fluid in
the cell. This will break the assumption of an undisturbed fluid velocity and will lead to
an over-prediction of the terminal settling velocity.

Distributing the forces and concentration from the particle to the mesh ensures a good
approximation of the undisturbed fluid velocity and results in a well-predicted settling
velocity.

Equation 3.67 and 3.68 show the momentum equations for the Eulerian and Lagrangian
phase, which were already shown in the previous sections. The momentum equation of the
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Eulerian phase (Equation 3.1) is divided by the density of the continuous phase since this
is constant in time and space. Equation 3.68 shows the equation of motion of a particle
including all the forces, by inserting Equations 3.38, 3.43, 3.45 and 3.46 into Equation 3.37.

∂αc uc
∂t

+∇ · (αc uc uc) = − 1
ρc
∇p+∇ ·

(
αc τ

)
+ g + fi

ρc
(3.67)

Vp ρp
∂up
∂t︸ ︷︷ ︸

Inertia

= 1
2 CdAp ρc

(
uc|p − up

)∥∥uc|p − up
∥∥ α−β+1

c︸ ︷︷ ︸
Drag force

+ CAM Vp ρc

(
Duc|p

Dt
−
∂up
∂t

)
︸ ︷︷ ︸

Added mass force

+Vp
Duc|p

Dt︸ ︷︷ ︸
Pressure

+Vp (ρp − ρc) g︸ ︷︷ ︸
relative gravity

(3.68)

Both equations need information from the other phase. The resulting forces of the particles
on the fluid need to be mapped to the Eulerian mesh by distributing it over a volume. For
the computation of the forces on the particle, the fluid phase fraction, the fluid phase
velocity and the fluid phase acceleration are needed. These need to be mapped from the
particles to the mesh cells and from the cells to the particles. Section 2.6.2 showed different
methods to distribute the forces, concentration and velocities over multiple cells and Figure
2.19 showed a good overview of the methods. This section will show the mathematical
description of these methods.

Section 3.4.1 will describe the mapping of the particle information to the finite volume
using the particle centroid method, the kernel function and the diffusion method. When
using the kernel function, a function φ(r) will be used for the mapping. This is a weight
function based on the distance of the cell centre to the particle centre (r). The sum of the
kernel values will be unity.

Section 3.4.2 shows the mapping of the continuous phase properties to the particles. For
the kernel method this is performed with a kernel function ψ(r) based again on the distance
(r) from the cell centres to the particle centre.

Section 3.4.3 shows the interaction between both phases via the interaction force and the
fluid phase fraction.

3.4.1 Mapping particle information to finite volume mesh
Particle centroid method
The simplest interaction between the particles and the mesh is the particle centroid method.
For each cell, the contribution of a particle located in that cell is taken into account. This
leads to an expression for the volumetric concentration in a specific cell:

αp,j =
Np∑
n=0

Vp,n
Vcell,j

(3.69)

Where:
αp,j is the volumetric concentration of particles (or particle fraction) in cell j [-]
Np the number of particles intersecting cell j [-]
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Vp,n is the volume of particle n [m3]
Vcell,j is the volume of the cell j in which the particle is located [m3]
j is the cell number
n is the particle number

The problem with this method was already outlined briefly: for larger particles the accel-
erated continuous phase velocity will induce an over-predicted settling velocity. Secondly,
it is possible to obtain volumetric concentrations higher than 1 when a particle volume
is larger than the cell volume, which is not a physical result. Figure 3.3 illustrates the
difference in forcing between small and large particles compared to the cell volume.

Equation 3.70 shows the balance between the inertia of the fluid and the forces of the par-
ticle on the fluid to mathematically show the problem with large particles to cell volumes.
This equation neglects the other terms in the momentum equation (Equation 3.67).

∂αc uc
∂t

= Fi
ρc Vcell,j

(3.70)

Applying the chain rule leads to:

αc
∂ uc
∂t

+ uc
�
���

0
∂ αc
∂t

= Fi
ρc Vcell,j

(3.71)

When looking at a particle moving in a single grid cell, the time derivative of the fluid
fraction (∂ αc/∂t) can be neglected. This leads to an expression of the acceleration of the
continuous phase due to the forcing of the particle.

∂ uc
∂t

= Fi
αc ρc Vcell,j

(3.72)

In the limit of a particle volume getting equal to the volume of the cell, the acceleration
of the continuous phase tends to go to infinity.

lim
αc→0

∂ uc
∂t

= Fi
αc ρc Vcell,j

=∞ (3.73)

The consequence for the particle velocity can be drawn by comparing a big and a small
particle in the same grid cell. A large particle in the small grid cell has a relatively large
forcing (Fi) on the remaining fluid in the grid cell. This accelerates the fluid in the grid
cell as shown by Equation 3.73, which causes an under-predicted slip velocity between the
particle and the fluid. As a result, the drag will become smaller (at the same settling
velocity) and the particle will accelerate to a higher terminal settling velocity compared to
the expected solution.

The next two parts show the two methods chosen in Section 2.6.2 for coupling the particles
to multiple cells.

Kernel function
Xiao and Sun (2011) described a method for mapping Lagrangian particles with a diameter
larger than a mesh cell on an Eulerian mesh using the solution of the heat equation.
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up

uc

Fd ∼ uc|p − up

up

uc

Fd ∼ uc|p − up

αc ≈ 1 αc ≈ 0

Figure 3.3: Comparison of a particle in a large (left) and small (right) mesh cell having the same
settling velocity. In the small fluid cell, the fluid gets accelerated more than in the larger fluid cell.
The slip velocity and therefore the drag are lower at the particle in the small fluid cell. This leads
to an over-estimation of the terminal settling velocity.

The concentration of a single particle was distributed over multiple cells using this kernel
function. In this study the method of Xiao and Sun (2011) will be used using the slightly
different Gaussian kernel described by Equation 3.74.

φ (rj,n) = 1(
σ
√

2 π
)nd exp

(
−
r2
j,n

2 σ2

)
with rj,n =

∥∥cj − cp,n∥∥ (3.74)

Where:
φ(rj,n) is the kernel for mapping the particle information of particle n to cell n of the
Eulerian mesh [m-3] (for a 3-dimensional simulation)
rj,n is the distance from the current cell j to the centre of particle n [m]
nd is the number of spatial dimensions of the simulation. Since the integral of the function
should be 1, the peak of the function goes down when computing it for a higher dimension
[-]
σ is the standard deviation of the Gaussian kernel [m]
cj is the location of the cell centre of cell j [m]
cp,n is the centre of particle n [m]

The particle fraction at cell j is computed by Equation 3.69 for the particle centroid
method. For the kernel method, the particle fraction in a cell is computed by the kernel
function multiplied with the cell volume and the fraction of the particle volume over the
cell volume:

αp,j =
Np∑
n=0

φ (rj,n) Vcell,j
Vp,n
Vcell,j

(3.75)

The kernel function evaluated for the distance of the particle centre of particle n to the
cell centre of cell j (φ (rj,n)). The distributed quantity, for instance the mass of a particle,
is conserved using the mapping method since the integral of the kernel function is unity.
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Evaluating every kernel function over all the cells in the domain is not efficient since the
contribution further away from the particle is negligible. Evaluating the kernel until 3
standard deviations (Equation 3.76) will include 99% of the volume, which only leads to a
minor error. ∫ ∞

0
φ (r) dr = 1

∫ 3σ

0
φ (r) dr ≈ 1 (3.76)

The exponent-function in Equation 3.74 is relatively expensive to solve. Xiao and Sun
(2011) approximated the kernel with a power function. This is smooth over the whole
domain and approximates the exponent well, for r ≤ 3σ.

exp
(
− r2

2 σ2

)
≈


(

1−
(
r

3 σ

)2)4
if

(
r

3 σ

)2 ≤ 1.0

0 if
(
r

3 σ

)2
> 1.0

(3.77)

The kernel method introduces a volume averaging to the particle fluid interaction. It
therefore introduces a second numerical length scale, along with the mesh length scale into
the simulation. A change in this length scale leads to slightly different numerical behaviour,
which can be illustrated when looking at the extreme cases. For a dilute homogeneous
suspension of particles on a fine mesh, a small kernel width leads to an inhomogeneous
concentration field. In that case the kernel width is smaller than the inter particle distance,
leading to the inhomogeneous concentration field. This causes a higher concentration near
the particles, which leads to a higher drag on the particles when using the Di Felice drag
formulation, resulting in a lower terminal settling velocity.

The other extreme is a settling cloud of particles in a container where the cloud does not
reach the walls of the container; the fluid is allowed to flow around the settling cloud. For
a small kernel the concentration field will not touch the wall leading to a density current.
Using a larger kernel function, the concentration field could reach the walls. This leads to
hindered settling of the cloud, which is a much slower process than the density current.

While this volume averaging can cause the described errors, the two-grid method (described
in Section 2.6.2) suffers from the same problems. It is therefore a common issue in using
this type of modelling.

This method of distributing the concentration via a kernel function works well in the
middle of the domain. However, boundaries like walls, processor interfaces and the slid-
ing mesh interfaces should be treated differently. Section 4.3 will explain the numerical
implementation of the methods including the treatment of these special cases.

Diffusion method
Sun and Xiao (2015b) showed that the kernel method is similar to distributing the field
using the diffusion equation:

∂αp
∂τ

= D∇2αp (3.78)

With the initial condition based on the particle centroid method (Equation 3.69):

αp,j |τ=0 =
Np∑
n=0

Vp,n
Vcell,j

(3.79)
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Where:
αp is the volumetric concentration of particles (or particle fraction) [-]
αp,j |τ=0 is the initial condition for the volumetric concentration at cell j [-]
τ is a pseudo time for this diffusion process [s]
D is a diffusion coefficient [m2/s].

Equation 3.80 shows the solution of the diffusion equation at the end time τ = Tend.

αp(r) = 1
(4πD Tend)nd/2

exp
(
− r2

4DTend

)
with r =

∥∥cj − cp,n∥∥ (3.80)

Using Equation 3.80, the end time (Tend) and the diffusion coefficient (D) can be related
to the width of the kernel. This is depicted by the standard deviation σ of Equation 3.74.

σ =
√

2DTend (3.81)

Via Equation 3.81 the kernel method and the diffusion method are related to each other.
Substituting Equation 3.81 into Equation 3.80 for DTend, leads back to Equation 3.74 for
the kernel method.

3.4.2 Mapping fluid properties to particle
The previous section explained the mapping of concentration to the mesh, this section will
explain the mapping of fluid velocity to the particles for the three methods.

Particle centroid method
For the particle centroid method, the mapping of fluid velocity to the particle centre is
performed via interpolation of the fluid velocities in the cells to the particle centre. This
is based on the velocity in the cell the particle is located in and the adjacent cells.

Kernel function
When using the kernel function, a different kernel function for the mapping of the fluid
velocity to the particle will be used than for mapping the concentration to the Eulerian
mesh. As a result of applying the interaction force to the fluid phase, the fluid accelerates
together with the particle. To predict the undisturbed fluid velocity as required for com-
puting the drag (Equation 3.38), a quadratic distance weighing function will be used. In
this method, the fluid velocities at the centre of particles have a zero weight factor and the
fluid surrounding the particle a larger weight factor, in order to diminish the influence of
the accelerated fluid velocity due to the presence of the particle.

The quadratic distribution should have integral of unity over the domain 0 < r ≤ R with
R = 3σ. For the 2-dimensional case the volume under the paraboloid is:

M2D =
∫
A

r2 dA with dA = r dr dθ

M2D =
∫ 2π

θ=0

∫ R

r=0
r2 r dr dθ

M2D = 1/2π R4

(3.82)
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Where:
M2D is integral of the weight factor (r2) in the circular domain for mapping continuous
phase properties to a particle [m4]
A is the area of the circular domain in the integration [m2]
R is the radius of the influence area of a particle [m]
r is the radial coordinate [m]
θ is the azimuthal angle [rad]

The integral of the parabolic distribution in 3 dimensions is:

M3D =
∫
V

r2 dV with dV =
(
r2 sin θ

)
dr dθ dϕ

M3D =
∫ 2π

ϕ=0

∫ π

θ=0

∫ R

r=0
r2 (r2 sin θ

)
dr dθ dϕ

M3D = 4/5π R5

(3.83)

Where:
M3D is integral of the weight factor (r2) in the spherical domain for mapping continuous
phase properties to a particle [m5]
V is the volume of the spherical domain in the integration [m3]
R is the radius of the influence volume of a particle [m]
ϕ is the polar angle [rad]

This leads to a distribution for 2- and 3-dimensional cases using rj,n as the distance from
particle n to cell j:

ψ2D(rj,n) =

{
2

π R4 r
2
j,n for

(
rj,n/3 σ

)
< 1.0

0 for
(
rj,n/3 σ

)
≥ 1.0

ψ3D(rj,n) =

{
5

4π R5 r
2
j,n for

(
rj,n/3 σ

)
< 1.0

0 for
(
rj,n/3 σ

)
≥ 1.0

(3.84)

Where:
ψ2D(rj,n) is the kernel function in a 2D case for mapping the Eulerian information of cell
j to the particle n [m-2]
ψ3D(rj,n) is the kernel function in a 3D case for mapping the Eulerian information of cell
j to the particle n [m-3]

Similarly as Equation 3.75, the velocity and concentration at the particle can be computed
as:

uc|p,n =
Ncells∑
j=0

ψ (rj,n) Vcell,j uc,j (3.85)

αc|p,n =
Ncells∑
j=0

ψ (rj,n) Vcell,j αc,j (3.86)

Where:
uc|p,n is the undisturbed fluid velocity for particle n [m/s]
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uc,j is the fluid velocity at cell j [m/s]
ψ(rj,n) is the kernel for mapping the Eulerian information of cell j to the particle n
computed with either ψ2D(r) or ψ3D(r) [m-3]
rj,n is the distance between the centre of cell j and the centre of particle n
αc|p,n is the fluid fraction at particle n [-]
αc,j is the fluid fraction at cell j [-]

Note that Equation 3.75 sums over the number of particles influencing a single cell, while
this Equation sums over the cells in the influence volume of the particle.

Diffusion method
The diffusion method is used to compute the fluid velocity at the particle. For the interpo-
lation of the fluid velocity at the particle, the fluid velocity is diffused using the diffusion
Equation (3.87) using the same method as for the concentration.

∂uc|p

∂τ
= D∇2uc|p (3.87)

With initial condition based on the fluid phase velocity:

uc|p |τ=0 = uc (3.88)

3.4.3 Interaction between the fluid and the particles
The fluid and particles interact with each other via the continuous phase velocity, the
continuity equation and the interaction force. The interaction via the continuous phase
velocity is already described in the part on the influence of the drag and the cell size.

Due to the motion of the particles, the fluid needs to move in the opposite direction. This
effect is quantified using the continuity equation:

∂αc
∂t

+∇ · (αc uc) = 0 (3.89)

In the continuity equation, the motion of the particles is incorporated by the time derivative
of the fluid fraction. Since the summation of both the fluid phase fraction and the particle
phase fraction is unity (Equation 3.5), the fluid fraction can be derived from the particle
fraction:

αc = 1− αp (3.90)

Where the particle fraction at each cell is computed by Equations 3.69, 3.75 and 3.78 for
the particle centroid method, the kernel method and the diffusion method, respectively.

In the simulation procedure of both the particles and fluid, first the particle motion is
computed. The resulting particle positions at the new time step are used for computing
the particle concentration at the new time step. The time derivative in the continuity
equation (3.89) can therefore be discretised using the fluid fraction at the new and old
time step:

∂αc
∂t

= αnc − αoc
∆t (3.91)
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Since the fluid fraction is computed from the particle fraction, the time derivative is in
essence described by the time derivative of the particle fraction:

∂αc
∂t

= −
αnp − αop

∆t (3.92)

The mapping of the interaction forces is computed using the same equations as for mapping
the concentrations (Equations 3.69, 3.75 and 3.78). In this case, the particle fraction is
substituted for the interaction force. For the kernel method, substituting the particle force
for the concentration in Equation 3.75 leads to:

fj =
Np∑
n=0

φ (rj,n) Vcell,j
Fi,n
Vcell,j

(3.93)

Where:
Fi,n is the interaction force between the fluid and the discrete particle n [N]
fj is the interaction force per volume for cell j [N/m3], [kg/m2s2]

3.5 Particle-Particle and Particle-Wall collision in a viscous
fluid

The inter-particle collisions and particle-wall collisions in the cutter head are solved using
a soft-sphere collision model. After explaining the model, this section shows the reduction
of the coefficient of restitution for collisions in viscous fluids.

3.5.1 Standard soft-sphere model
For the collisions between particles and the particles and the wall, the method described
by Tsuji et al. (1992) will be used. The contact forces are computed by a so-called soft-
sphere approach, which allows the particles to overlap each other and the wall. Based
upon the overlap distance the rebound forces are computed. Figure 3.4 shows the spring
coefficient (k) and damping coefficient (η) for both an inter-particle collision and for a
particle colliding with the wall. In Figure 3.4a the spring and damper are shown for
computing the collisional force of the right, filled particle.

This method is an extension on the collision model of Cundall and Strack (1979), which used
a linear relation between the overlap distance and the collisional force. Tsuji et al. (1992)
used a Hertzian (non-linear) spring for the relation between the force and displacement
based on the work of Mindlin and Deresiewicz (1953), Mindlin (1949).

An alternative approach for this soft-sphere model is a hard-sphere model, where the exact
moment of the collision, the restitution is computed. This model was described in Section
2.6.3. To compute the exact moment of collision, a very small time step is needed, which
becomes a limiting factor in the simulation. Since the soft-sphere model allows for a larger
time step this method is used in this study.

The forces are computed using a spring-damper system, where the spring is a non-linear
Hertzian spring. The viscous damping will be linked to a coefficient of restitution. Equa-
tions 3.94 and 3.95 show the normal and tangential collision force based on the overlap of
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kn

η
ktη

up

up

(a) Two colliding particles

kn

η ktη

up

(b) Particle collision with the wall

Figure 3.4: Spring-damper system to model particle collisions. kn and kt denote the normal and
tangential spring stiffnesses. η is the viscous damping coefficient.

a particle with the wall or another particle. Figure 3.5a shows a closer view of the two
colliding particles, indicating the local coordinate system with the normal and tangential
overlap unit vectors for the right particle (en and et). The normal overlap distance is
indicated as δn. Figure 3.5 shows the relative velocity components. The overlap unit vec-
tors are defined in the positive direction of these relative velocity components indicated in
Figure 3.5.

The tangential force will be computed differently for a slipping particle as for a sticking
particle. A particle will slip if the tangential force is larger than the friction factor multi-
plied with the normal force. This is the maximum tangential force which can be exerted
on the particle by the wall or other particle.

Fn = −knδ
3
2
n en − η un (3.94)

Ft =

{
−kt
√
δnδt − η ut for ‖Ft‖ ≤ µf‖Fn‖

−et µf ‖Fn‖ for ‖Ft‖ > µf‖Fn‖
(3.95)

δt =
t=tcol∑
t=0

ut
t ∆tcol (3.96)

Where:
Fn and Ft are the normal and tangential collisional force components on the particle. [N]
kn and kt are the normal and tangential spring coefficient [N/m]
un and ut are the normal and tangential velocity of the particle. [m/s]
ut
t is the tangential velocity of the particle at the contact point, thus including rotation

at time t [m/s]
η is the damping coefficient [N s/m]
δn is the normal overlap distance [m]
δt is the tangential overlap vector [m]
tcol and ∆tcol are the collision time and the time step for the computing the collision [s]
µf is the friction coefficient [-]
en and et are the normal and tangential overlap unit vectors (indicated in Figure 3.5a) [-]

The two spring coefficients (kn and kt) are based on the material properties of the particles
and are defined by Equation 3.97 (Tsuji et al. , 1992). These spring coefficients make sure
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en

et
up

upδn

(a) Normal and tangential unit overlap vectors

un ut

urel

(b) Normal and tangential velocity

Figure 3.5: Definition of the normal and tangential overlap vectors for the right sphere indicated
in (a). These vectors are defined in the direction of the relative velocity between the particles as
shown in (b).

the particle rebounds, while the damping coefficient (Equation 3.100) accounts for the
energy loss during the collision. Which will be related to a coefficient of restitution.

kn = 4
3
√
R∗E∗ kt = 8.0

√
R∗G∗ (3.97)

For two particles with different properties, the effective properties for the collision are
calculated using the Equations 3.98.

1
R∗

= 1
Ri

+ 1
Rj

1
M∗

= 1
mi

+ 1
mj

1
E∗

= 1− ν2
i

Ei
+

1− ν2
j

Ej
1
G∗

= 2− νi
Gi

+ 2− νj
Gj

(3.98)

Where:
R∗ is the effective radius based upon the radii of the two particles Ri and Rj [m]
M∗ is the effective mass. mi and mj are the masses of the individual particles. [kg]
E∗ is the effective modulus of Elasticity (Young’s modulus) of the two particles Ei and Ej
[N/m2]
G∗ is the effective shear modulus of the two particles Gi and Gj [N/m2]
νi and νj are the Poisson’s ratio of both particles [-]

The relation between the modulus of elasticity and the shear modulus is:

E = 2G (1 + ν) (3.99)

The damping coefficient, used in Equations 3.94 and 3.95 are computed from the normal
overlap distance and the material properties by using Equation 3.100, where the coefficient
αη can be retrieved from the coefficient of restitution εn using Equation 3.100.

η = αη
√
M∗ kn δ

1
4
n (3.100)



3

68 3. Method for modelling rock inside a cutter head

Tsuji et al. (1992) computed the values of the relationship between the coefficient of
restitution in normal direction (εn) and the damping coefficient numerically. Antypov and
Elliott (2011) derived an analytical formulation for this relationship (Equation 3.101).

αη = −
√

5 ln εn√
ln2 εn + π2

(3.101)

The coefficient of restitution (εn) is the ratio between the incidence particle velocity normal
to the wall and the rebound velocity.

εn = un,in
un,out

(3.102)

Where:
εn is the coefficient of restitution in normal direction [-]
un,in is the magnitude of the normal incidence velocity before a collision [m/s]
un,out is the magnitude of the normal rebound velocity after a collision [m/s]

Equations 3.100 and 3.101 show the coupling of the viscous damping to the coefficient of
restitution. However, the value for this coefficient of restitution is not yet known. This
will be derived in the Section 3.5.2.

Wall collisions
When a particle collides with a wall, the radius of the wall is much bigger than that of the
particle. In this case the effective radius is taken to be equal to the radius of the particle.
Also, the mass of the wall is assumed to be much larger than the mass of the particles.
Therefore, the effective mass is taken to be the mass of the particle.

3.5.2 Normal Coefficient of restitution for wet collisions
Many authors performed experiments for measuring the coefficient of restitution for normal
collisions of spheres colliding with a wall in viscous fluids for different incoming velocities.
Legendre et al. (2006) collected the data of Joseph et al. (2001), Gondret et al. (2002) and
others and derived an empirical formulation (Equation 3.103) to describe the measurement
data. Figure 3.6 shows this data together with the empirical formula of Legendre et al.
(2006). In this formulation the coefficient of restitution for wet collisions is related to the
Stokes number. Where the Stokes number is based on the particle inertia including added
mass and viscous dissipation as shown in Equation 3.104.

εwet = εdry exp
(
− β

StAM

)
(3.103)

StAM =
(
ρs/ρf + CAM

)
un,in dp

9 ν (3.104)

Where:
εwet is the coefficient of restitution for wet (viscous) collisions [-]
εdry is the coefficient of restitution for dry collisions [-]
β is a empirical coefficient. A value of 35 was proposed by Legendre et al. (2006) [-]
StAM is the Stokes number, including the added mass of the fluid. [-]
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Figure 3.6: Expression of Legendre et al. (2006) and the data of Joseph et al. (2001).

When using this approach only the material/bulk properties (Youngs modulus, Poisson’s
ratio and dry coefficient of restitution) and the wet friction coefficient are needed to simu-
late the collision. Joseph and Hunt (2004) showed that the wet friction coefficient is 0.02
for glass and steel spheres in water for most collision angles. This friction coefficient is
lower when the incoming angle is less than 10◦ from the surface normal. When taking the
friction coefficient constant, the slip for a near normal collision is underestimated. How-
ever, in this case the velocity parallel to the wall is very small and therefore the absolute
error in slip is small as well.

3.5.3 Collision time scale
To get numerically stable results it is important that the collisions are solved using a small
enough time step. The time step is limited by the collision time of a particle and the
collision time should be resolved with sufficient time resolution. Typically, the time step
is around 10% of the Hertzian collision time (Equation 3.105).

tcol = Ccol

(
ρp
E∗

)2/5 rp

u
1/5
p

(3.105)

Where:
tcol is the collision time [s]
rp is the radius of the particle [m]
Ccol is in the range of 5.09 to 5.84 (respectively Maw et al. (1976) and Timoshenko and
Goodier (1970)). In OpenFOAM the value π7/5

(
5
4

)2/5 = 5.43 is used.

The time step for solving the collisions is determined by Equation 3.106, which uses the
Hertzian collision time and a user defined number of time steps Ntimesteps.



3

70 3. Method for modelling rock inside a cutter head

∆tcol ≈
tcol

Ntimesteps
(3.106)

Where:
∆tcol is the time step for solving the collisions [s]
Ntimesteps is a user defined number of time steps [-]

Section 2.6.3 showed the possibility to reduce the Young’s modulus and Shear modulus
in order to reduce the stiffness of the system. Equation 3.105 shows that this increases
the collision time and the temporal resolution. Increasing the Young’s modulus of the
particles in the cutter head will lead to a time step for the collisions of the same order
as the fluid time step. This leads to more stable simulation of particles in a cutter head
without changing the effective Coefficient of Restitution. Chapter 7 compares the collisions
using a lower Young’s modulus with collisions using the original Young’s modulus.

3.5.4 Soft-sphere modelling of oblique collisions
Modelling the inter-particle collisions can be performed using the spring-damper system
presented by Equations 3.95 and 3.94. Using the spring-damper system, the particle can
slip when the tangential force is larger than the friction force. Since the collision is evaluated
at multiple time steps, the stick-slip regime of Maw et al. (1976) described in Section 2.6.3
is also automatically included.



4
Numerical implementation of

models

4.1 Introduction
This chapter shows the numerical implementation of the method described in Chapter
3. Section 4.2 shows the finite volume method used for discretising the Navier-Stokes
equations and the solution method. Section 4.3 shows the implementation of the kernel
method when the particle is located close to a boundary. Section 4.4 shows implementation
of the analytical spillage model described in Section 2.4.3.

4.2 Modelling fluid motion
This section shows the discretisation of the momentum equation together with the solution
method for solving this equation called the PISO-SIMPLE algorithm. Using the derivation
of this algorithm, the boundary conditions for the pressure can be derived. This research
shows that the previous method in OpenFOAM, which uses a Neumann boundary for the
pressure on a rotating wall, will not result in a correctly simulated pressure gradient. To
circumvent this problem the newly derived pressure boundary condition will be used.

4.2.1 Finite volume discretisation
The momentum equation from Section 3.2.1 will be discretised using the finite volume
methodology. Afterwards the PISO-SIMPLE solution algorithm will be discussed, which
is used for solving the coupled pressure-velocity system.

For the discretisation of the equations using a Finite Volume methodology, it is convenient
to show the conservation of momentum (Equation 3.1) in its integral form (Equation 4.1).
This equation shows the change of momentum inside a Finite Volume. This equation
has two differences with Equation 3.1: it has been divided by the fluid density and the
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kinematic pressure P will be used. This is defined as the pressure divided by the fluid
density (Equation 4.2).

This section will only describe the fluid properties, therefore the sub-script for continuous
phase is dropped. Instead, the sub-scripts for the cell averaged values in the cell centres,
c and face averaged value, located at the cell faces f will be used. Also, the subscript i at
the interaction force is dropped.

d
dt

∫
V

α udV +
∫
V

∇ · (αuu) dV = −
∫
V

∇P dV

+
∫
V

1
ρ
∇ ·
(
ατ
)

dV +
∫
V

g dV +
∫
V

F

ρ V
dV

(4.1)

P = p

ρ
(4.2)

The continuity equation (Equation 3.4) is divided by the fluid density, leading to the
continuity equation of the fluid phase fraction (Equation 4.3). This equation should be
discretised for solving the system of equations and is therefore shown in its integral form
(Equation 4.4). For readability it is not shown in its integral from in most of this section.
At the end of this section, the discretised formulation is shown.

∂α

∂t
+∇ · (αu) = 0 (4.3)

d
dt

∫
V

α dV +
∫
V

∇ · (αu) dV = 0 (4.4)

Figure 4.1 shows an example of a finite volume, which can have any shape. The quantity,
for instance momentum, inside the finite volume changes by how much enters and leaves
over the faces of the finite volume. Figure 4.1 shows one of the faces in grey and its centre is
labelled with Cf . The fluxes leaving or entering the finite volume always have the direction
of the face area normal vector (Sf = Af nf ). This is the direction of the normal of the
face (nf ) multiplied by the area of the face (Af ). Jasak (1996) and Rusche (2003) describe
the discretisation and interpolation more thoroughly.

Equation 4.1 can be rewritten in the conservative form using the Gauss theorem for a
general vector quantity q or a scalar quantity q. The Gauss theorem equals the change of
a quantity integrated over a volume to the integral of the surface fluxes of the quantity (qf
and qf ). Equation 4.5 shows the Gauss theorem for the divergence of a vector quantity
and Equation 4.7 shows the result for the gradient of a scalar quantity. For a cell with
faces as shown in Figure 4.1 the surface integral can be split up into the summation of the
fluxes across all faces, resulting in Equation 4.6 and 4.8 for the divergence and gradient,
respectively.∫

V

∇ · qc dV =
∫
Sf

qf · dSf (4.5)∫
V

∇ · qc dV =
∑
f

qf · Sf (4.6)

∫
V

∇q dV =
∫
Sf

qf dSf (4.7)∫
V

∇q dV =
∑
f

qf Sf (4.8)

Where:∑
f
indicates the summation over all faces of a finite volume.
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qc and qc are a scalar and vector quantity defined at the cell centres.
qf and qf are a scalar and vector quantity defined at the cell faces.

For readability, the sum of the fluxes over the faces will in some cases be denoted by
discretised operators as shown in Equations 4.9 and 4.10. Table 4.1 shows an overview of
the volume and surface integrals and their discretised (shorthand) notation.∑

f

qf · Sf = ∇c · q (4.9)
∑
f

qf Sf = ∇c q (4.10)

Where:
∇c is the discretised gradient operator for the cell centre, returning in the fluxes at the
faces [m-1]
∇f is the discretised gradient operator for the faces, returning the gradients at the faces
[m-1]

Using Gauss theorem, the Navier-Stokes equations in their integral from are represented by
Equation 4.11. The first term on the left-hand side represents the changes of momentum
in the finite volume and the last two terms on the right-hand side are the gravity and the
resulting force from the moving discrete particles. The other terms account for the fluxes
over the surfaces.

Volume integral Surface integral Surface sum shorthand
discretised

∫
V

∇ · q dV
∫
Sf

qf · dSf
∑
f

qf · Sf ∇c · q

∫
V

∇q dV
∫
Sf

qf dSf
∑
f

qf Sf ∇c q

∇qc |f
qN − qc
‖d‖ nf ∇f q

∫
V

∇·(D∇q) dV
∫
Sf

(Df∇f qc) ·dSf
∑
f

Df
qN − qc
‖d‖ ‖Sf‖ ∇c · (D∇f q)

Table 4.1: Overview of the discretisation of the volume and surface integrals.
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d
dt

∫
V

αudV +
∫
Sf

αf uf uf · dSf = −
∫
Sf

Pf dSf

+
∫
Sf

(
αc
ρc
τ c

)
f

· dSf +
∫
V

g dV +
∫
V

F

ρ V
dV

(4.11)

An integral over the boundary of the volume can be written as the sum over all the faces of
the boundary (Equation 4.6, 4.8). Equation 4.12 shows the resulting discretised momentum
equation. The values on the faces of the finite volume are computed by interpolation
between two adjacent finite volumes and are denoted by the sub-script f . These are used
to compute the flux of mass and momentum leaving and entering a finite volume. The
time integral can be solved using one of many time integration schemes. In the case of this
derivation the Euler implicit scheme will be used.

αnc u
n
c − αoc uoc
∆t V = −

∑
f

αnf u
n
f u

o
f · Sf −

∑
f

P of Sf

+
∑
f

(
αnc
ρc
τ
n
c

)
f

· dSf + g V + F nc
ρc

(4.12)

Where:
∆t is the time step of the temporal discretisation [s]

For an implicit method, information at both the new and old time level is used for com-
puting the values at the new time level. Value at the new and old time level are indicated
by the superscript n and o, respectively. When discretising the advection completely im-
plicitly, a non-linear system of equations is obtained. This is very time-consuming to solve
and generally not needed for an accurate prediction of the flow. The advection term is
therefore linearised using a constant flux at the old time (Equation 4.13) and a velocity on
the new time (ucn). Equation 4.14 shows the advection term on the left-hand side and the
discretised advection term on the right-hand side. Note that Equation 4.12 already uses
the velocity at the old time step in the advection term.

Sf

V

c

N

Cf

f

Figure 4.1: Mesh with cell centre c, a neighbour cell N , a face f and a face area normal vector Sf .
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ϕo = uof · Sf (4.13)

∇c · (αuu) =
∑
f

αf u
n
f ϕ

o (4.14)

Where:
ϕo is the continuous phase flux at the faces at the old time [m3/s]

The last remaining term to be discretised is the divergence of the stresses. These stresses
can be expressed as velocity gradients using the stress-strain relation derived in Section
3.2.2. Equation 4.15 shows this relation and Equation 4.16 shows the resulting momentum
equation together with the interpolation of the stresses.

τ = µeff

(
∇u+∇uT − 2

3 I∇ · u
)

(4.15)

αnc u
n
c − αoc uoc
∆t V =−

∑
f

αnf u
n
f ϕ

o −
∑
f

P of Sf

+
∑
f

((
αnc
ρc

νoeff,c

)
f

(
∇c un

))
· Sf

+
∑
f

(
αnc
ρc

νoeff,c

)
f

((
∇c uo

)T − 2
3 I
(
∇c · un

))
· Sf

+ g V + F nc
ρc

(4.16)

The discretised continuity equation can be derived similarly to the derivation of discretised
the momentum equation starting from the finite volume formulation of the continuity
equation (Equation 4.4). Note that the time discretisation of the continuous phase fraction
is pre-computed via the change in particle fraction due to the moving discrete particles as
shown in Section 3.4.3.

αnc − αoc
∆t V = −

∑
f

(
αnf u

n
f

)
· Sf (4.17)

Interaction force of the particles
The interaction force between the Discrete Particles and the fluid (Fi) due to the accelera-
tion of the particles is the summation of all the described forces as shown in Equation 3.2.
These forces can be split into explicit and implicit components. The implicit implementa-
tion ensures a more stable simulation. The sum of both parts is the interaction force at
the new time step, defined in the cell centres:

F nc = F nc,explicit + Cimplicit u
n
c (4.18)

Where:
F nc is the interaction force between the fluid and the discrete particles at new time step at
the cell centres [N]
F nc,explicit is an explicit treated force at the new time [N]
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Cimplicit is a coefficient for implicitly treating the forcing, which enters the momentum
matrix [kg/s]

The resulting force on the fluid from the drag force is an example of a force that is treated
semi-implicitly. Revisiting the relation of the drag force, where sub-script c denotes the
continuous phase:

Fd = 1
2 CdAp ρc

(
uc|p − up

)∥∥uc|p − up
∥∥ (3.38 rev.)

The drag force (Equation 3.38) can be split into an implicit coefficient and an explicit
contribution:

Cimplicit u
n
c = 1

2 CdAp ρc
∥∥uoc|p − uop

∥∥ unc (4.19)

F nc,explicit = −1
2 CdAp ρc

∥∥uoc|p − uop
∥∥ uop (4.20)

4.2.2 PISO-SIMPLE algorithm for solving the Navier-Stokes equations
OpenFOAM uses a collocated method for solving the equations, which means all unknown
variables are defined in the cell centres. The values at the faces in the discretised equations
are computed by interpolating the cell centred values to the faces. OpenFOAM has many
different interpolation schemes for this operation. However, for the remainder of this
section it is not needed to specify an interpolation scheme.

For solving the discretised momentum and continuity equation, OpenFOAM uses a semi-
implicit solution method called the PISO-SIMPLE algorithm or PIMPLE algorithm. Weller
(2005) and Jasak (1996) describe this for a single phase flow. More information on solu-
tion methods can be found in Versteeg and Malalasekera (2007). This algorithm uses two
loops for solving the velocity and pressure at the new time step. While this is a standard
algorithm, this section derives it to show the implementation of the interaction of the fluid
with the discrete particles via the continuous phase velocity, the interaction forces and the
continuity equation shown in Section 3.4.3.

In the previous section, all variables where either defined at the old or new time level.
In the PISO-SIMPLE algorithm two intermediate time levels are introduced: uncorrected
variables, indicated by ∗ and corrected variables indicated by ∗∗. The corrected variables
are equal to the values at the new time level when the algorithm is converged. The
uncorrected intermediate velocity u∗c does not obey the continuity equation, while the
corrected intermediate velocity u∗∗c is corrected for the continuity equation. Algorithm 1
shows the complete algorithm, which will be derived in this sub-section.

This sub-section first describes the momentum predictor and momentum corrector, which
are used for computing the velocity based on the previous pressure and for updating the
velocity with the new pressure. After these two parts the pressure Poisson equation is
derived and PISO-SIMPLE solution method is outlined. This is followed by some additional
remarks and the illustration of the Jacobi iteration scheme.
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Momentum predictor and corrector
The discretised momentum equation (Equation 4.16) can be represented in a matrix nota-
tion, where all the coefficients corresponding to u∗c will enter the momentum matrixM.
This matrix describes the relation between the unknown velocities at the new/intermediate
time level and the already known quantities at the old time level. Terms at the old time
level and the terms that do not depend on u∗c will be treated as a source term (S), resulting
in Equation 4.21. The pressure gradient is evaluated at the uncorrected, intermediate time
step since the corrected pressure gradient is not yet known.

The interaction force of the discrete particles (Equation 4.18) is included in the momentum
matrix and the source term. The explicit part of the interaction forces will enter as a source
term. The implicit part will enter the momentum matrix.

For readability the equations will be shown in semi-discretised form. The ∇c operator is
a shorthand notation for the discretised gradient after Gauss integration. All operations
and their shorthand notation are shown in Table 4.1. Equation 4.22 shows the equation
using the discretised pressure. All the terms in the discretised momentum equation have
the unit equal to the acceleration term, m/s2.

Mu∗c =S −∇c P ∗ (4.21)

Mu∗c =S −
∑
f

P ∗f Sf (4.22)

Where:
M is the momentum matrix [s-1]
u∗c the uncorrected velocity at the cell centres at the intermediate time step, which does
not obey the continuity equation [m/s]
S is the source term of the matrix equation containing only known information [m/s2]
∇c is the discretised gradient operator returning in the fluxes at the faces [1/m].
P ∗f is the uncorrected kinematic pressure on the faces at the intermediate time step [m2/s2]
P ∗ is the uncorrected kinematic pressure in the cell centres at the intermediate time step
[m2/s2]
Sf is the face area normal vector [m2]

Equation 4.21 is solved for the uncorrected, intermediate velocity u∗c . This velocity does
not yet satisfy the continuity (Equation 4.3), since the pressure of the intermediate time
step is used. To ensure the continuity, the pressure Poisson equation will be used to
compute the corrected pressure P ∗∗.

To derive the pressure Poisson equation, first the momentum predictor and corrector are
derived, following the procedure of Weller (2005) and Jasak (1996). The momentum matrix
of Equation 4.21 is split into a diagonal part A and an off-diagonal part N (or called non-
diagonal), resulting in Equation 4.23. This stems from a Jacobi iteration scheme as will
be explained in a later part. The diagonal part of the matrix will be treated implicitly and
the off-diagonal explicitly.

Au∗c +N u∗c = S −∇c P ∗ (4.23)

Where:
A is the diagonal part of the momentum matrix [s-1]
N is the off-diagonal part (or non-diagonal part) of the momentum matrix [s-1]
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Now the off-diagonal part and the source terms are combined in Equation 4.24 leading to
Equation 4.25 for the momentum equation. When the pressure at the new time step is
known, this equation is easily solved, since A is a diagonal matrix and its inverse is the
reciprocal of each term.

H = S −N u∗c (4.24)
Au∗c =H−∇c P ∗ (4.25)

Where:
H is a diagonal matrix containing the off-diagonal contributions of the momentum matrix
and the source terms [m/s2]

Equation 4.26 shows the momentum corrector, which is the solution of Equation 4.25 using
the inverse of matrix A. This equation corrects the velocity using the corrected pressure
leading to the corrected, intermediate velocity u∗∗c .

u∗∗c = A-1H−A-1∇c P ∗∗ (4.26)

To solve Equation 4.26 the corrected pressure is needed. The equation for computing the
corrected pressure, the pressure Poisson equation, will be derived from the momentum
corrector (Equation 4.26). The term A-1H is called the momentum predictor; it is a
prediction of the uncorrected velocity using a single step the Jacobi iteration scheme.

To compute the corrected face velocities, Equation 4.26 is interpolated from the cell centres
to the faces and multiplied with the face area normal vector resulting in Equation 4.27.
Rewriting the face corrected velocity to the corrected flux using: ϕ∗∗ = u∗∗f · Sf leads to
Equation 4.28. This step is called the flux correction.

u∗∗f · Sf =
(
A-1H

)
f
· Sf −A-1

f ∇fP ∗∗ · Sf (4.27)

ϕ∗∗ =
(
A-1H

)
f
· Sf −A-1

f ∇fP ∗∗ · Sf (4.28)

Note that the pressure gradient (∇fP ∗∗) in Equation 4.28 is computed differently than
in the momentum corrector. The gradient at the face is computed using the cell centred
values at both sides of the face (Jasak, 1996, Rusche, 2003):

∇fP ∗∗ = P ∗∗N − P ∗∗c
‖d‖ nf (4.29)

Where:
∇fP ∗∗ is the corrected pressure gradient at the face [m/s2]
‖d‖ is the distance between the cell centre c and the neighbour cell centre N [m]
nf is the normal vector of the face [-]

The general formulation for computing gradients at faces is shown in Table 4.1.

Pressure Poisson equation
The resulting corrected velocity of Equation 4.26 should obey the continuity equation
for the fluid phase in discretised form (Equation 4.17). In this derivation the continuity
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equation is evaluated for the corrected intermediate velocity (Equation 4.30). Equation
4.31 shows the semi-discretised form, where the time derivative is left as a partial derivative
for better readability.

αnc − αoc
∆t V = −

∑
f

(
αnf u

∗∗
f

)
· Sf (4.30)

∂α

∂t
= −∇c ·

(
αn u∗∗

)
(4.31)

The discretised time derivative in Equation 4.30 is a result of the motion of the discrete
particles as mentioned in Section 3.4.3 and is essentially computed using the particle phase
fraction as shown in Equation 3.92.

To solve the corrected velocity, the pressure gradient at the new time step is needed.
However, this pressure gradient is not yet known. This pressure gradient can be computed
by substituting Equation 4.27 into the discretised continuity equation (Equation 4.31) for
the corrected velocity, leading to the pressure Poisson equation (Equation 4.32). Solving
this equation for the corrected pressure leads to a pressure which can be used in Equation
4.26 to compute the corrected velocity; the velocity obeying the continuity equation.

∇c ·
(
αnA-1∇f P ∗∗

)
= ∂αc

∂t
+∇c ·

(
αnA-1H

)
(4.32)

The Laplace operation on the left-hand side of Equation 4.32 can be discretised using the
combination of Equation 4.6 and 4.29 leading to Equation 4.33. However, the notation of
Equation 4.32 will be used for readability in the rest of this section.

∇c ·
(
αnA-1∇f P ∗∗

)
=
∑
f

αnf A-1
f

(
P ∗∗N − P ∗∗c
‖d‖

)
nf · Sf (4.33)

PISO-SIMPLE
By subsequently solving the momentum matrix, computing the momentum predictor, solv-
ing the pressure Poisson equation and the momentum corrector, one can compute the cor-
rected velocity and pressure. In this procedure, Equations 4.21, 4.24, 4.32 and 4.26 are
solved subsequently.

However, in this solution method the linearised velocity (Equation 4.14), the off-diagonal
coefficients in the momentum matrix and the explicitly treated part of the stress tensor
are computed fully explicit. To treat these terms in a semi-implicit manner, Algorithm 1
loops over the Equations, updating the explicit values.

Algorithm 1 shows the complete solution method for both the fluid simulation as the
discrete particles. It consists of three loops. The first loop is the time integration (starting
at line 1); it loops over all the time steps from start time till end time. In line 2 to 8,
the particle velocities and positions are updated together with the computation of the
interaction terms between the particles and the fluid. At line 10, the SIMPLE loop starts
by computing the momentum matrix, the momentum predictor, the poison equation and
the momentum-and flux corrector.

The third loop is the PISO loop, which is located inside the SIMPLE loop (line 14 till 21)
and does not reassemble and solve the momentum matrix as the SIMPLE loop does. During
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this loop the fluxes are not recomputed, meaning the advection term is not re-linearised.
Secondly, the momentum matrix is not solved. According to Jasak (1996) the linearisation
of the advection term is less important than the coupling of the pressure with the velocity.
Therefore, the PISO-SIMPLE method allows for multiple PISO loops, within a SIMPLE
loop, ensuring a good pressure-velocity coupling, without the overhead of linearising the
momentum equation multiple times. Note that in all the simulations in this dissertation a
single PISO loop is used, while using multiple SIMPLE loops to ensure the update of the
fluxes in the advection term.

These iterations will continue until the matrix residuals satisfy a user specified value or the
number of iterations is exceeded as specified in line 21 and 24. nPISO and nSIMPLE show
the current iteration of the loop. nmaxPISO and nmaxSIMPLE show the user specified maximum
number of iterations.

At the end of all iterations the corrected values are used as values of the new time step
(line 26) and the method will continue to compute the next time step.

Additional remarks
When solving the momentum matrix, the uncorrected velocity is computed using the un-
corrected pressure. In this operation part of the stress tensor (Equation 4.15) is treated
semi-explicitly. It cannot be solved implicitly since the different velocity components are
solved individually, using 3 matrices. The transpose of the velocity gradient contains cou-
pling terms with other velocity components. These cannot be solved implicitly when the
matrix is solved decoupled. In a subsequent iteration of the SIMPLE loop, these terms are
updated, treating these in an semi-implicit manner.

Note that this description of the solution method is far from complete. It shows the most
relevant topics. Jasak (1996) shows a near-complete overview of the solution for single
phase flows including the use of under-relaxation for a more stable solution method and
non-orthogonal corrections for computing the gradients at the cell faces.

Jacobi iteration
OpenFOAM solves the momentum matrix (M) approximately by using a single iteration
of the Jacobi iteration scheme (Rusche, 2003). The matrix is split into a matrix with only
the diagonal partsA and a matrix with the off-diagonal partsN as was shown in Equation
4.23.

Equation 4.34 shows a matrix M for computing a quantity q with a source term S.
Equation 4.35 shows an example of the matrix with the diagonal and off-diagonal parts.
In Equation 4.36 the matrix is split into a diagonal matrix A and a matrix containing
off-diagonal parts N .

M q = S (4.34)A N N
N A N
N N A

q1

q2

q3

 =

S1

S2

S3

 (4.35)

(N +A) q = S (4.36)

Equation 4.36 can be rearranged for iteratively solving for q (Equation 4.37), where i
denotes the iteration number. On the left-hand side, the diagonal part of the matrix is
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multiplied with the solution at the new iteration number, indicating that the diagonal
part of the matrix is treated implicitly and the off-diagonal coefficients are treated semi-
implicitly.

A qi+1 = S −N qi (4.37)

When placing the diagonal coefficients to the right-hand side, Equation 4.38 is obtained,
which is the method for computing the momentum predictor used in Equation 4.26.

qi+1 =
(
S −N qi

)
A−1 (4.38)

OpenFOAM combines the source and the off-diagonal part in one matrix (H) for simplicity:

H = S −N qi (4.39)

Leading to:
qi+1 = A−1H (4.40)

An initial guess of the solution of the matrix can be obtained by performing this iteration
once as shown by Equation 4.41.

q ≈ A−1H (4.41)
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Algorithm 1: PISO-SIMPLE algorithm for an Euler-Lagrange simulation
1 while t < tend do
2 Set t = t+ ∆t ;
3 Compute fluid fraction and undisturbed fluid velocity at the

particle using Equation 3.69, 3.85 or 3.87 ;
4 Compute particle positions and velocities using Equation 3.37;
5 Compute Lagrangian interaction forces using right-hand side of

Equation 3.37 ;
6 Map particle concentration and interaction forcing on Eulerian

mesh using Equations 3.69, 3.75 or 3.78 ;
7 Compute fluid fraction at Eulerian mesh using Equation 3.90;
8 Compute time derivative of fluid fraction using Equation 3.92 ;
9 Set P ∗c = P oc , ϕ∗ = ϕo ;

10 repeat
11 Construct momentum matrixM using Equation 4.16 and ϕ∗ ;
12 Construct A from the diagonal terms of the momentum matrix

M ;
13 Solve momentum matrix (Eq. 4.21) for uc∗ :

Mu∗c = S −∇c P ∗ ;
14 repeat
15 Compute H matrix using Equation 4.24:

H = S −N u∗c ;
16 Compute the momentum predictor A-1H ;
17 Interpolate the momentum predictor

(
A-1H

)
f
;

18 Solve pressure Poisson equation for P ∗∗ using Equation 4.32:
∇c ·

(
αnA-1∇f P ∗∗

)
= ∂αc

∂t +∇c ·
(
αnA-1H

)
;

19 Apply the momentum corrector (Equation 4.26):
u∗∗c = A-1H−A-1∇c P ∗∗;

20 Set the intermediate velocity and pressure for the next PISO
iteration: u∗ = u∗∗ , P ∗c = P ∗∗c ;

21 until PISO loop converged or nPISO > nmaxPISO;
22 Update the flux using Equation 4.28

ϕ∗∗ =
(
A-1H

)
f
−A-1

f ∇fP ∗∗ · Sf ;

23 Set the intermediate flux for the next PIMPLE iteration:
ϕ∗ = ϕ∗∗ ;

24 until SIMPLE loop converged or nSIMPLE > nmaxSIMPLE ;
25 Compute turbulent viscosity νneff ;
26 Set the values at the new time step based on the corrected values:

unc = u∗∗c , ϕn = ϕ∗∗, Pnc = P ∗∗c ;
27 end
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4.2.3 Pressure gradient at the wall
The pressure gradient at the wall is a very important boundary condition for rotating flows.
For many OpenFOAM simulations the assumption of a zero gradient for the pressure at the
wall is (partially) valid. For rotating flows this assumption is not valid at all. This section
shows a more accurate prediction of the pressure gradient boundary condition, which is
valid at a rotating wall, but can also be used for other boundaries, such as in- and outflow
boundary conditions.

To derive this pressure boundary condition, Equation 4.27 for the face velocity update
based on the pressure is rewritten to a pressure gradient needed to compute a predefined
face velocity. While in the velocity corrector step, the velocity is the unknown variable,
in this case the pressure gradient will be based on a known velocity, which is defined as a
boundary condition.

u∗∗f · Sf =
(
A-1H

)
f
· Sf −A-1

f ∇fP ∗∗c · Sf (4.27 rev.)

Rearranging Equation 4.27 using Sf = nf‖Sf‖ leads to the expression for the wall normal
pressure gradient (∇fP ∗∗c · nf ):

∇fP ∗∗c · nf =
((
A-1H

)
f
· Sf − u∗∗f · Sf

) Af
‖Sf‖

(4.42)

This derivation assumes a Dirichlet boundary condition for the velocity. In other words,
the velocity at the boundary at the new time step is known. When a Neumann boundary
condition is applied, the velocity at the boundary at the new time step is not yet known.
In this case the uncorrected velocity (u∗c) will be used in Equation 4.42. When the PISO-
SIMPLE algorithm is converged, the uncorrected velocity should approximate the corrected
velocity.

When this boundary conditions is used at the wall, implying a zero normal velocity, Equa-
tion 4.42 simplifies to Equation 4.43. It shows that the flux due to the pressure gradient
counter-acts the flux based on the momentum predictor.

∇fP ∗∗c · nf =
((
A-1H

)
f
· Sf

) Af
‖Sf‖

(4.43)

4.2.4 Courant number
The stability of an explicit method is bounded by the Courant number (Co):

Co = ‖u‖ ∆t
∆x Co = 1

2 ∆t
∑

f
‖uf · Sf‖
∆V (4.44)

The notation on the left side in Equation 4.44 shows the general notation. The right side
shows the notation used in OpenFOAM based on the fluxes at the faces.

For Courant numbers higher than 1 an explicit numerical method becomes unstable. For
implicit schemes the Courant number does not give an upper limit for stability. However,
the temporal accuracy will decrease with increasing Courant number. Also it will require
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more iterations to update the velocity flux, before reaching a converged state. Therefore,
increasing the time step does not always result in a lower simulation time.

4.3 Implementation of distributed particles
This section shows the numerical implementation of the distributed particles of Section
3.4.1. It first shows the commonly used kernel widths from literature. Afterwards the
treatment of different boundaries is discussed. The interaction of the distributed particles
with the fluid is discussed in Section 3.4.3.

4.3.1 Width of the kernel and corresponding diffusion coefficient
The smoothness of the concentration field corresponds to the width of the kernel function
and the corresponding diffusion coefficient. The width of the kernel in Equation 3.74 in
Section 3.4.1 is denoted by the standard deviation σ of the Gaussian kernel. Via the
solution of the diffusion equation the standard deviation can be related to the diffusion
coefficient for the diffusion equation (Equation 3.81 in Section 3.4.1).

Xiao and Sun (2011) related the standard deviation to the average mesh cell dimension ∆.
They used σ ≈ 1.1 ∆ to σ ≈ 1.8 ∆. Afterwards Sun and Xiao (2015a,b) related it to the
particle diameter. This study introduces a distance factor γ, relating the particle diameter
(dp) to the standard deviation (σ):

σ = γ dp (4.45)

This standard deviation of Equation 4.45 can be used directly in computing the kernel
function. For the diffusion method it should be related to the diffusion coefficient (D) via
Equation 3.81, leading to Equation 4.46. In this equation the end time of the diffusion
process Tend in Equation 3.81 is taken as the time step for the fluid simulation ∆t.

D = (γ dp)2

2 ∆t (4.46)

Sun and Xiao (2015a,b) studied the influence of the distance factor and used the range
2
√

2 ≤ γ ≤ 3
√

2 for initial test cases and a simulation of a fluidized bed. Sun and Xiao
(2016a,b) used different values for horizontal and vertical diffusion. For sediment transport
with 500 particles they used γhor =

√
2 and γvert = 1/2

√
2 for the horizontal and vertical

diffusion respectively. When simulating more particles (O
(
1 · 105) ), they doubled the

values to γhor = 2
√

2 and γvert =
√

2. The same values were used in their dune formation
simulations. Note that in these papers the distance factor is called the bandwidth and
this is a factor

√
2 larger than the distance factor presented here. The mathematical

implementation is the same, leading to the same diffusion of a particle.

While the diffusion method is simple to implement for a mono-dispersed particle size dis-
tribution (all particles have the same size), its implementation becomes more difficult for a
poly-dispersed particle size distribution. In that case the diffusion coefficient will become
non-uniform over the domain and should be computed based on the particle size in the
vicinity of a mesh cell. This is not implemented in this dissertation.
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4.3.2 Mapping data at boundaries
This section shows mapping of the properties between the Lagrangian and Eulerian phase
for undisturbed particles and particles near walls, processor interfaces and the sliding mesh
interface. Each of these boundaries will be discussed in this section.

The following particle properties need to be mapped to the Eulerian mesh: the fluid phase
fraction (αc), implicit force coefficient (Cimplicit) and the explicit treated Force (Fexplicit).
This is performed using the mapping function φ(r) defined in Equation 3.74.

Also the Eulerian properties need to be mapped to the Lagrangian particles. These are:
the continuous phase velocity (uc), the fluid phase fraction (αc), the material derivative
(Duc/Dt). This is performed using the quadratic weight function (ψ(r)) defined in Equation
3.84.

Note that the particle fraction is mapped from the particle to the fluid and also from the
fluid to the particle. The first is to create the concentration field, the second is to calculate
the concentration influence for computing the hindered settling.

No influence of boundaries
While the infinite integral of the kernel function is equal to one, a summation over the
mesh cells is not. This is due to the discretisation shown in Equation 4.47. The summation
approaches 1 when the particle is mapped onto many cells. Figure 4.2a shows an illustration
of the weights of the mapping function in grey-scale for the mapping to the Eulerian mesh.
The mapping to the Lagrangian particle is shown in Figure 4.2b. The dot represents the
particle centre, the solid line the particle size and the dotted line the influence area of the
weight function.

∫ 3σ

0
φ(r) dr ≈ 1

Ncells∑
j=1

φ (rj,n) 6= 1

∫ 3σ

0
ψ(r) dr ≈ 1

Ncells∑
j=1

φ (rj,n) 6= 1

(4.47)

In the case the kernel is not influenced by a boundary, the weight factors are divided by
the sum of all the weight factors to ensure the sum to be equals to 1. Equations 4.48 and
4.49 show this scaling both for the mapping to the particle and to the Eulerian mesh.

φtot,j = φp,j∑Ncells
k

φp,k
(4.48)

ψtot,j = ψp,j∑Ncells
k

ψp,k
(4.49)

Where:
φtot,j is the scaled total kernel value for mapping the particle information to cell j [m-3]
ψtot,j is the scaled total kernel value for mapping the information of cell j to the particle
[m-3]
φp,k and ψp,k are the non-scaled kernel value for mapping the information of cell k [m-3]
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∆x

dp 3 γ dp

(a) Mapping to Eulerian mesh

∆x

dp 3 γ dp

(b) Mapping to Lagrangian particle

Figure 4.2: Mapping to and from the particle without the influence of a boundary.

Treatment of walls
When the walls would not be treated in a special way the concentration close to the wall
would be lower than further away from it. To overcome this a ghost particle is added at
the other side of the wall based on the method of Xiao and Sun (2011) as illustrated in
Figure 4.3.

γ dp

(a) Mapping to Eulerian mesh

γ dp

(b) Mapping to Lagrangian particle

Figure 4.3: A single particle near a wall. To compute the mapping function a mirrored ’ghost’
particle is used at the other side of the wall.

The position of the ghost particle is computed by mirroring the position of the particle
(cp) to the closest face of the wall to create the centre of a ghost particle (cgp). Figure 4.4
shows the steps to compute the centre of the mirrored particle and the process is illustrated
in Figure 4.5.

The mapping function for a cell j (φtot,j) and (ψtot,j) is computed by adding the weight
factor of the particle and the ghost particle. This is divided by the sum of both the weight
factors (Equations 4.50 and 4.51). This ensures that the sum of the weight factors is 1.

φtot,j = φp,j + φgp,j∑Ncells
k

φp,k +
∑Ncells

k
φgp,k

(4.50)

ψtot,j = ψp,j + ψgp,j∑Ncells
k

ψp,k +
∑Ncells

k
ψgp,k

(4.51)

Where:
φgp,j and ψgp,j are the weights mapping functions for the ghost particle at cell j [m-3]
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Compute the distances
(‖d‖) to the centre of
the faces of the wall

Take the minimum dis-
tance (‖dmin‖) as il-
lustrated in Figure 4.5

Compute the distance perpen-
dicular to the wall (dmin · nf )

Compute the coordinate of
the centre of the mirrored

particle: cgp = cp − 2dmin · nf

Figure 4.4: Flowchart for computing the location of the mirrored particle.

Treatment of processor interface
The computational domain is divided into different sub domains based on the number of
cores the simulation runs on. Each core computes the fluid motion and particle motion on
its specific domain. On the interfaces between the cores the information is exchanged. For
point particles the only information that needs to be transferred is the particle information
such as velocity, position and size. While, for the distributed particles, also the mapping
functions need to be evaluated on both sides of the interface.

The sum of the mapping function is transferred over the processor interface for scaling the
mapping function. Equations 4.52 and 4.53 show the scaling.

cpcgp

nf dmin

d

dmin · nf dmin · nf

Figure 4.5: Schematic drawing of the location of the centre of the ghost particle.
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φtot,j = φp,j∑Ncells,K
k φprocKp,k +

∑Ncells,M
m

φprocMgp,m

(4.52)

ψtot,j = ψp,j∑Ncells,K
k ψprocKp,k +

∑Ncells,M
m

ψprocMgp,m

(4.53)

Where:
φprocKp,k and ψprocKp,k are the non-scaled kernel values of the particle of cell k at processor K
[m-3]
φprocMgp,m and ψprocMgp,m are the non-scaled kernel value for the ghost particles of cell m at
processor M [m-3]

For a particle overlapping the processor interface, the concentration at the particle, needed
for computing the hindered settling, is based on the concentration in the cell in which the
centre of the particle resides. If the concentration would be computed using the mapping
function (ψ(r)), the data from the other processor should be transferred a second time.
This is relatively time-consuming.

Treatment of sliding mesh interface
At the sliding mesh interface, the kernel functions do not extend to the other side (Figure
4.6). This has two reasons. The main reason is that OpenFOAM has the limitation that
the sliding mesh should reside on a single processor for DEM simulations. Which means
that the particle concentration should be spread across multiple interfaces: the processor
interface and the sliding mesh interface. This leads to a more complicated procedure. The
second reason is that it is more complicated to get the information of the cell at the other
side of the sliding mesh since its connections changes over time.

up

dp γ dp

(a) Before crossing interface

up

dp γ dp

(b) After crossing interface

Figure 4.6: Concentration for a particle before and after crossing a sliding mesh interface. Note
that this concentration is normalised over a smaller number of influenced cells, indicated by the
darker colours tah in Figure 4.2a.

This implementation leads to an instability for the fluid phase, since change in concen-
tration over time is very large when a particle passes the sliding mesh interface. Figure
4.6 shows the concentration field before and after crossing the sliding mesh interface. The
time derivative of the concentration field will be high in this case, destabilising the simu-
lation. To solve this, the concentration change around the sliding mesh is removed from
the right-hand side of the pressure Poisson equation:
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∇c ·
(
αnA-1∇f P ∗∗

)
=
�
��∂αc
∂t

+∇c ·
(
αnA-1H

)
(4.54)

Section 6.2.3 shows this has a very limited effect on the error in settling velocity of a
particle across a sliding mesh interface.

Summary of treatment of special boundary conditions
Table 4.2 shows an overview the different mapping methods for particles near different
types of boundaries.

Figure 4.7 shows the flowchart for distribution of the particles. The first step of computing
the mask around the sliding mesh is needed for discarding the time derivative in the
continuity equation around the sliding mesh shown in Equation 4.54. For newly initialised
particles the mapping functions are computed before applying the motion on the particles.
These are the particles changing from one processor to another. Existing particles use the
mapping functions computed at the end of the previous time step. After computing the
mapping function and the mapping function for the particles near a wall, the information
of the particles near a processor interface is exchanged and added to the original particle.
The last step is the scaling of the weights to ensure the sum of the weights per particle are
equal to unity.

Transferring the particle information to all other processors and back is a time consuming
operation. Upscaling using more cores for a simulation is therefore not always efficient.

Particle to mesh Mesh to Particle

No Boundaries Eq. 4.48 Eq. 4.49
At wall Eq. 4.50 Eq. 4.51
At processor interface Eq. 4.52 Eq. 4.49
At sliding mesh interface Eq. 4.48 * Eq. 4.49 *

Table 4.2: Equations used for mapping the data at different interfaces. The values at the sliding
mesh interface (indicated by *) are only computed at one side of the sliding mesh interface.

The concentration at the particle location used for computing the hindered settling is
computed using first mapping the particle concentration to the mesh and afterwards map
the concentration back at the particle including the concentration of surrounding particles.
For the sliding mesh this is not possible. In this case the concentration at the particle is
computed using the particle centroid method, which linearly interpolates the concentration
to the particle centre.
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Compute mask
around sliding mesh

Distribute newly ini-
tialised particles

For each processor patch find
the particles located within
the distribution distance

Apply the motion on ev-
ery particle according to
the forces acting on them

Send these particle prop-
erties to all processors

Compute the mapping functions
φ (r) and ψ (r) without scaling

Create a ghost particle
at the ‘other side’ of the
processor interface and
compute φ (r) and ψ (r)

Compute the mapping functions
for particles located near a wall

Transfer the ghost parti-
cle information: uc, ∂uc/∂t,
φ (r) and ψ (r) back to
the original processor

Send the information of the
particles crossing a processor
interface to every processor

Add the data from the
ghost particle to the
particle and normalise

Scale the weights per par-
ticles for the particles not
at the processor interface

Figure 4.7: Flowchart for computing the normalisation of the scale factors within the domain, at
walls, at processor interfaces and at sliding mesh interfaces.
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4.4 Analytical spillage model
This section describes the analytical spillage model used in this dissertation, which was
originally derived by Miedema (2017, 2019) and Werkhoven et al. (2018, 2019). These
original models including the assumptions and usage are described in Section 2.4.3.

In the model, the cutter head is split into a top and bottom segment, respectively named
segment 1 and 2 as shown in Figure 4.8. There is an out-flowing flux at the top segment
and an in-flowing flux at the bottom segment. The dynamic pressure difference generated
by the cutter blades drive this circulating flow and is schematically illustrated in Figure
2.5.

The original models, cited at the start of this section, described the spillage well. However,
they used many empirical relations and coefficients to match the model with existing
experiments. In relation to the previous models, this model does not include a breach and
the only spillage mechanism is the spillage resulting from the out-flowing flux near the
ring. This resembles the model of Miedema (2017). However, the calibration factors are
implemented differently and the interpolation of the pressures and angles for the segments
is performed slightly different to account for the curvature of the contour of the cutter
head.

This section shows the derivation of the model. It first describes the used spillage definition
followed by a description of the flow and the pressure differences. These are inserted
into a continuity equation to derive the formulation for the outflow height. Lastly, the
interpolation of the pressures and angles will be discussed.

4.4.1 Spillage definition
For low Stokes numbers (Equation 3.63) the particles follow the fluid exactly. For this
case the spillage fraction can be defined as the ratio of the mixture flow over the total flow
coming into the cutter head (Equation 4.55). This is true for sand. For pieces of rock, this
is not valid. Still this assumption will be used.

S% = Q1

Qm +Q1
P% = Qm

Qm +Q1
(4.55)

Where:
Qm is the mixture flow through the suction mouth [m3/s].
Q1 is the out-flowing flux near the ring indicated in Figure 4.8 [m3/s].
S% is the spillage fraction [-]
P% is the production fraction [-]

To determine the spillage fraction, the out-flowing flux Q1 at segment 1 is computed.

4.4.2 Discharge for the two sections
Figure 4.8 shows a schematized version of the cutter head, which is subdivided into two
segments. Segment 1, located near the ring, is the location where outflow occurs and in
segment 2 water flows into the cutter head. The height of both segments is determined
by the pressure and discharge generated by the rotating blades. The relations are similar
to the outflow and pressure relations for a centrifugal pump, which are described in for
instance Gülich (2014). The discharge at segment i is determined by the radial velocity
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Qm

H

w
1

w
2

Q1

R1

R2

Q2

P0

∆Pbl,1

∆Pbl,2

P1

P2 = β P1

Figure 4.8: Pressures and flows in the segments.

and the area of the cylinder around the pump impeller (Equation 4.56).

Qi = 2π Ri wi urad,i (4.56)

Where:
Qi is the flux of segment i indicated in Figure 4.8 [m3/s]
Ri is the cutter head radius of segment i [m]
wi is the height of segment i [m]
H is the total height of the cutter head [m]
urad,i is the radial mixture velocity at segment i [m/s]

The radial velocity can be related to the tangential velocity using the angle between the
blade and the tangent line of the cutter head (ϕi) and a flow factor α. Figure 4.9 and 4.10
show this tangent angle at the outer radius and it is therefore called ϕo.

urad,i = αutan,i tanϕi
urad,i = αωRi tanϕi (4.57)

When there is no slip between the rotating blades and the fluid, α = 1. The flow factor
can be related to the slip factor used by Den Burger (2003) in Equation 2.10:

α = 1− Cslip (4.58)

A flow factor larger than 1 relates to a negative slip factor and would mean a larger fluid
flow than the velocity of the blades. In this model, this is assumed not possible.

Substituting Equation 4.57 into 4.56 leads to Equation 4.59, which shows the relation
between the centrifugal out-flowing flux, the cutter head radius, the outflow height and
the rotational velocity of the cutter head. Essentially it relates the discharge with the
cutter head geometry and the angular velocity.
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Qi = 2π R2
i wi αωc tanϕi (4.59)

4.4.3 Pressure relationship based on centrifugal pump
The out-flowing flux at segment 1 is related to the dynamic pressure differences over the
contour of the cutter head; the hydrostatic pressure does not contribute to the flow. These
pressure differences can be expressed by the pressure relation of a centrifugal pump.

Gülich (2014) describes the angular momentum in a centrifugal pump called the Euler’s
turbine equation (Equation 4.60). This assumes the flow follows the impeller and the
impeller occupy no space.

M = ρQ
(
Ro × uabs,θ,o −Rin × uabs,θ,in

)
(4.60)

Where:
M the angular momentum [kg m2/s2]
Rin the inner radius [m]
Ro the outer radius [m]
uabs,θ,o the tangential component of the absolute velocity at the outer radius [m/s]
uabs,θ,in the tangential component of the absolute velocity at the inner radius[m/s]

ω

urel,o

urel,o

uθ,o = ω ×Ro

urad,o

uabs,o

uabs,θ,o
ϕo

Figure 4.9: Velocity components at the outer radius of the impeller of a centrifugal pump. The
velocity of the impeller is shown in blue. Red indicates the absolute fluid velocities and the grey
vectors show the relative velocities to the velocity of the impeller.

Figure 4.9 shows the velocity components for the outer radius of the centrifugal pump used
in Equation 4.60. The blue vector represents the tangential velocity, the grey vectors show
the velocities relative to the impeller and the red vectors denote the absolute velocities. A
similar velocity triangle could be constructed for the velocities at the inner radius.

The angular momentum is related to the pressure difference by the power P . The power is
the centrifugal pump is equal to angular momentum times the angular velocity (Equation
4.61). It is also equal to the pressure increase times the flow (Equation 4.62). From these
two relations the pressure over the blade can be related to the angular momentum and the
discharge (Equation 4.63).
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P = ω ·M (4.61)
P = Q ∆ pbl (4.62)

∆Pbl = ω ·M
Q

(4.63)

Where:
P is the power generated by the impeller [kg m2/s3], [N m/s], [J/s]
ω is the angular velocity of the impeller [rad/s]
∆Pbl is the pressure difference generated by the blade or impeller [N/m2]

Substituting Equation 4.60 into 4.63 leads to a relation of the pressure difference based on
the tangential and absolute velocities:

∆Pbl = ρ ω ·
(
Ro × uabs,θ,o −Rin × uabs,θ,in

)
(4.64)

∆Pbl = ρ
(∥∥uθ,o∥∥∥∥uabs,θ,o∥∥−∥∥uθ,in∥∥∥∥uabs,θ,in∥∥) (4.65)

In centrifugal pumps the tangential velocities at the outer radius are much larger than at
the inner radius, therefore the contribution of the inner radius is neglected. In a cutter
head, this is not the case. However, the same approximation is used and therefore the
terms corresponding to the inner radius are neglected:

∆Pbl = ρ
(∥∥uθ,o∥∥∥∥uabs,θ,o∥∥) (4.66)

Excluding the pressure contribution due to the inner edges of the blades will lead to a
higher pressure difference over the blades. This is mitigated by the pressure coefficient (β)
which will be introduced later on.

The magnitude of the absolute velocity
∥∥uabs,θ,o∥∥ in Equation 4.66 can be expressed by

Equation 4.67 using the relations shown in Figure 4.9.

∥∥uabs,θ,o∥∥ =
∥∥uθ,o∥∥−∥∥urad,o∥∥ cotϕo (4.67)

Combing Equations 4.66 and 4.67 and dropping the magnitude of the vectors leads to:

∆Pbl = ρ
(
u2
θ,o − uθ,o urad,o cotϕo

)
(4.68)

Application to the cutter blades
Equation 4.68 for the centrifugal pump can also be used in a cutter head. Figure 4.10
shows the velocity triangles for a cutter blade, which are similar, but with an opposite
direction of the radial and relative velocity.

The subscript i is re-introduced for the segment number and replaces the index for the
outer radius in Equation 4.69.
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Figure 4.10: Velocity components at the outer radius of a cutter blade.

∆Pbl,i = ρi
(
u2
θ,i − uθ,i urad,i cotϕi

)
(4.69)

∆Pbl,i = ρi
(
ω2
c R

2
i − ωcRi urad,i cotϕi

)
∆Pbl,i =

(
1− urad,i cotϕi

ωcRi

)
ρi ω

2
c R

2
i

By substituting Equation 4.57 into Equation 4.69 for the second term between the brackets,
the final form of the pressure over the blades can be found:

∆Pbl,i = (1− α) ρi ω2
c R

2
i (4.70)

4.4.4 Relating pressure to flow
Figure 4.11 shows the absolute and relative pressures in and around the cutter head and
is a schematic representation of the segments in Figure 4.8. Segment 1 is now located on
the left side and segment 2 on the right. Outside the cutter head, the ambient pressure P0
is constant. This is indicated at the top of the figure.

In segment 1 and 2, the rotation of the blades creates an under-pressure in the cutter head.
Since the radius of the blades at segment 1 is larger, the under pressure at these trailing
edges of the blades is larger than in segment 2. This is indicated by the difference between
∆Pbl,1 and ∆Pbl,2 in Figure 4.11 . This pressure difference drives the circulating flow in the
cutter head. Equation 4.70 shows the pressure increase between the trailing and leading
edge of the blade for both segments, where i is the index of the segment.

The flow at segment 1 and 2 can be related to the pressure difference between the in and
outside of the cutter head. The pressure increase due to the rotating blades (Equation
4.70) is inserted into the discharge relation (4.59) to obtain a general relation between the
discharge and pressure difference:

Qi = 2π wi
α

1− α
∆Pi
ρi ωc

tanϕi (4.71)

For segment 1 the relation for the pressure difference is equal to the pressure increase over
the rotating blades as can be viewed in Figure 4.11.

∆P1 = P0 − P1 = ∆Pbl,1 (4.72)
P1 = P0 −∆Pbl,1 (4.73)
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P0

P1 P2

P2,inside

∆P1 = ∆Pbl,1

β∆Pbl,2

∆P2 = ∆Pbl,1 − β∆Pbl,2

Segment 1 Segment 2

Figure 4.11: Pressure states related to the outside pressure P0 for the two segments of the cutter
head indicated by the different grey scales. ∆P1 and ∆P2 indicate the flow-driving pressure
differences.

When substituting ∆Pbl,1 into Equation 4.71, the original discharge equation (4.59) is
obtained.

The inflow at segment 2 is based on the pressure difference of the under-pressure in the
cutter head in segment 2 (P2) and the pressure generated by the blades (∆Pbl,2). Pressure
P2 is equal the pressure of segment 1 (Equation 4.74). This pressure is lower than the
under pressure generated by the rotating blades (P2,inside in Equation 4.75) driving an
inward flow in segment 2 with a pressure difference indicated by Equation 4.76. Note
the pressure coefficient β in this Equation. This coefficient is a loss coefficient accounting
for the pressure loss in section 2. This coefficient is only applied in section two, since in
this section the pressure over the blades counteracts the flow direction. While the under-
pressure in the cutter head directs the flow inward, the pressure generated by the blade
direct the flow in outward direction. Since the under-pressure is larger than the pressure
generated by the blades an inflow occurs. The pressure coefficient also includes the pressure
contributions of the blades at the inner radii as was mentioned before.

P2 = P0 −∆Pbl,1 (4.74)

P2,inside = P0 − β∆Pbl,2 (4.75)

∆P2 = P2,inside − P2 = −β∆Pbl,2 + ∆Pbl,1 (4.76)

4.4.5 Applying the continuity equation
This discharge relation (Equation 4.71) can be rewritten to get a direct relation between
the discharge, outflow height and the pressure difference over the segment of the cutter
head using a new coefficient α′i. This will be convenient in deriving the relation for the
outflow height.

Qi = α′i wi∆Pi (4.77)

Where:
α′i = 2π tanϕi

ωc ρi

α

1− α (4.78)
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For solving for the outflow height, the continuity of the discharges (Equation 4.79) is
needed. Outflow is considered positive, therefore the inflow Q2 has a negative sign.

Q1 −Q2 +Qm = 0 (4.79)

The inflow is related to the pressure difference (Equations 4.72 and 4.76) over the rotating
blades. These equations are inserted into Equation 4.77, leading to:

Q1 = α′1w1 ∆Pbl,1 (4.80)
Q2 = α′2w2 ( ∆Pbl,1 − β∆Pbl,2) (4.81)

Substituting these into the continuity equation (4.79) leads to the relation:

w1 α
′
1 ∆Pbl,1 − w2 α

′
2 (∆Pbl,1 − β∆Pbl,2) +Qm = 0 (4.82)

This relation can be rewritten to an explicit relation for w1. Using the fact that the sum
of the inflow and outflow height is equal to the height of the cutter head: H = w1 + w2
and inter-changing the signs in the second term leads to:

w1 α
′
1 ∆Pbl,1 + (H − w1) α′2 (β∆Pbl,2 −∆Pbl,1) +Qm = 0 (4.83)

Divide by α′2 ∆Pbl,1 and put the last two terms to the right-hand side.

α′1
α′2
w1 = (H − w1) β∆Pbl,1 −∆Pbl,2

∆Pbl,1
− Qm

∆Pbl,1 α′2
(4.84)

Defining another variable f depicting the fraction of the pressure driving the inflow and
driving the outflow.

f = ∆Pbl,1 − β∆Pbl,2
∆Pbl,1

(4.85)

(4.86)

Using this pressure fraction f , the relation can be written out for w1(
α′1
α′2

+ f

)
w1 = H f − Qm

∆Pbl,1 α′2
(4.87)

w1 =
(
H f − Qm

∆Pbl,1 α′2

)
1

α′1/α
′
2 + f

(4.88)

The fraction of the two alpha primes can be simplified to:

α′1
α′2

= ρ2 tanϕ1

ρ1 tanϕ2
(4.89)

Equation 4.88 needs to be iteratively solved to compute the outflow height, since R1, R2,
ϕ1 and ϕ2 are functions of w1.
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4.4.6 Interpolating the radii and blade angles
For obtaining the outflow height in Equation 4.88, the pressures and angles of the two
segments are needed. In the models in previous papers, these values were computed at the
centre of the segments. However, due to the quadratic dependency of the pressure and the
discharge on the radii, this leads to an interpolation error. Also, the blade angles do not
change linearly over the height of the cutter head, contributing to the interpolation error
as well. To solve this issue, the values at the top and bottom of each segment should be
taken and averaged to get a representative value.

Equation 4.90 shows the difference in interpolating the radii (left-hand side) and the pres-
sures (right-hand side).

(0.5R1top + 0.5R1bottom)2 6= 0.5R2
1top + 0.5R2

1bottom (4.90)
Based on this inequality one can show that interpolating the radii leads to an under-
prediction of the pressures.

The pressure fraction can be computed using Equation 4.91

f =
ρ1

1
2

(
R2

1,top +R2
1,bottom

)
− β ρ2

1
2

(
R2

2,top +R2
2,bottom

)
ρ1

1
2

(
R2

1,top +R2
1,bottom

) (4.91)

Similarly, the tangent of the angle is interpolated from the top and bottom value.

tanϕi = 1
2 (tanϕi,top + tanϕi,bottom) (4.92)

4.4.7 Solving for the spillage
The solution procedure for solving the spillage fraction consists of the following steps:

1. The outflow height w1 is determined iteratively by solving Equation 4.88 and recom-
puting R1, R2, ϕ1 and ϕ2 each iteration.

2. The outflow discharge Q1 is computed (Equation 4.59) based on the variables for
segment 1.

3. Finally, the production fraction is determined with Equation 4.55.

For this model two coefficients and the shape of the cutter head and blades are needed.
The coefficients α and β determine the out-flowing flux and the pressure difference at the
inflow segment. Both parameters cannot exceed 1 for physical results.

The blade angles for both segments and the radii of the two cutter head segments can be
obtained from the geometry of a cutter head.



5
Verification and validation of
flow in a rotating cutter head

5.1 Introduction
This chapter describes the validation of the simulated fluid velocities in a rotating cutter
head. The rotating motion can be solved by adding the fictitious forces to the momentum
equation or by rotating part of the geometry in the domain by a sliding mesh approach.
Rotating cases nowadays mostly use a sliding mesh approach to incorporate unsteady rotor
stator interaction.

This chapter starts by validating the sliding mesh method of OpenFOAM version 1712
using the circular Couette case. Section 5.3 shows an analysis of the velocity measurements
by Dekker (2001a). Section 5.4 and 5.5 show the flow in two different schematized free
rotating cutter heads. Section 5.4 shows the flow velocities in a cutter head with an uniform
axial suction at the ring. Parts of this section were published in Nieuwboer et al. (2017).
Section 5.5 presents the flow velocities in the cutter head including a back plate and a
suction mouth. These velocities are compared with the Acoustic Doppler Velocimetry
measurements of Dekker (2001b) and Dekker et al. (2003). Lastly, Section 5.6 shows the
conclusions on modelling the fluid in a rotating cutter head.

5.2 Verification of sliding mesh: circular Couette flow
Circular Couette flow is a steady laminar shear flow between two rotating cylinders (Figure
5.1). The outward directed centrifugal force and the inward directed pressure gradient are
in stable equilibrium. It is one of the few cases where an analytical solution for the
incompressible Navier-Stokes equations exists, due to the axi-symmetry of the case in
combination with laminar flow.

The flow becomes unstable for higher Reynolds numbers. In such cases the centrifugal force
and pressure gradient are no longer in equilibrium, which leads to secondary circulations.
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The general name for these flows is Taylor Couette flows. These flows are studied for
example by Dong (2007) and Ostilla-Mónico et al. (2014).

For simulating a rotating wall, the correct boundary condition for the pressure is needed.
Generally, the pressure on a wall is simulated in OpenFOAM using a Neumann boundary.
This works well for wall-bounded flows in straight channels. However, for a rotating flow,
this boundary condition is physically incorrect. Equations 5.1 and 5.2 shows the differential
equations for both the velocity in tangential direction (uθ) as well as the pressure gradient
(dp/dr). At the rotating inner wall, both the velocity and the radius are non-zero, leading to
a non-zero pressure gradient at the wall. Imposing a Neumann pressure boundary condition
will therefore lead to an error. To solve this OpenCFD, the company maintaining and
developing OpenFOAM, developed a new boundary condition (Section 4.2.3), called the
fixedFluxExtrapolatedPressure boundary condition.

This section shows the verification of the sliding mesh interface in OpenFOAM 1712 (Sec-
tion 3.2.3) using the circular Couette case. Both pressure boundary conditions are simu-
lated to verify the difference. As a base case the circular Couette flow is simulated using
an imposed rotating velocity at the inner cylinder and without a sliding mesh.

~ω

RAMI

Ri d
Ro

z

y

x

Figure 5.1: Set-up of the flow between a rotating and a stationary cylinder leading to circular
Couette flow.

5.2.1 Analytical solution of the circular Couette flow
The Navier-Stokes equations simplify significantly for a steady axi-symmetrical rotating
case. The two equations governing the steady circular Couette flow are:

u2
θ

r
= −1

ρ

d p
d r (5.1)

d2 uθ
d r2 + 1

r

duθ
d r −

uθ
r2 = 0 (5.2)

Where:
uθ is the fluid velocity in azimuthal direction [m/s]
p is the pressure [Pa]
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r is the radial coordinate [m]
ρ is the fluid density [kg/m3]

Note that the subscript c for fluid (or continuous) phase will not be used in this chapter
since only the fluid velocities will be validated.

Equation 5.1 shows the balance between the centrifugal force and the pressure gradient.
Equation 5.2 is the equation for the tangential velocity (uθ) over the radial direction (r) in
a steady state. The analytical solution for this differential equation is given by for instance
Andereck et al. (1986). In dimensionless form the solution is:

Ũ = η̃

R̃
1− R̃

2

1− η2 (5.3)

with:
R̃ = r

Ro
Ũ = uθ

ωi Ri
η̃ = Ri

Ro
(5.4)

Where:
R̃ is the dimensionless radial coordinate [-]
Ũ is the dimensionless tangential velocity [-]
Ri is the inner radius [m]
Ro is the outer radius [m]
ωi is the angular velocity at the inner cylinder [rad/s]
η̃ is the fraction of the inner and outer cylinder radius [-]

Equation 5.5 shows the boundary conditions for the fluid velocity at the inner and outer
wall.

uθ (Ri) = ωi Ri uθ (Ro) = 0 (5.5)

While the steady state solution is independent of the viscosity of the fluid, the viscosity
does influence the adaptation time and the type of flow. It also depicts if the centrifugal
force and the pressure gradient will remain in equilibrium and no secondary flow will
develop. A low viscosity leads to a higher Reynolds number (Equation 2.11). In this case
the Reynolds number is defined by the velocity at the inner cylinder (ωiRi) and the radial
distance between the two cylinders (Ro − Ri). At a Reynolds number of 100, the flow
becomes unsteady in radial direction and a Taylor Couette flow develops (Andereck et al.
, 1986). In this sense the viscosity does influence the solution.

5.2.2 Numerical setup
As Equations 5.1 and 5.2 showed, Circular Couette flow is a 2-dimensional flow phe-
nomenon, with no flow in axial direction. Therefore, the simulation can be 2-dimensional
as well.

While the simulation will be compared to a steady state solution, the simulation needs
to be transient, for the sliding mesh to work. The transient solution of the Navier-Stokes
equation is computed using the PISO-SIMPLE algorithm (Algorithm 1 in Section 4.2).

Both the time and spatial discretisation are second order. The time is discretised us-
ing the backward discretisation scheme (Jasak, 1996) and for the advection term linear
interpolation is used.



5

102 5. Verification and validation of flow in a rotating cutter head

Parameter Quantity

Fluid
ν 2 · 10−2 m2/s2

Re 50
Domain
Ri 1 m
Ro 2 m
ωi 1 rad/s
Nθ 32, 64, 128, 256
Nr 8, 16, 32, 64
Naxial 1

Time
Comax 0.025
∆t 7.1 · 10−3 to 6.1 · 10−4s
Tend 80π (40 rotations)

Table 5.1: Parameters for the circular Couette simulation.

The convergence criteria for the pressure and velocities are set at 1 · 10−11. The initial
pressure residual for determining the number of SIMPLE loops showed to be quite sensitive
for the finer grids. For obtaining a second order spatial scaling this initial pressure residual
had to be set to at most 1 · 10−3.

After 20 rotations the flow reaches a steady state. To ensure the solution has no start-up
effects the results are plotted after 40 rotations. Four different meshes are used to simulate
the circular Couette flow for visualising the error between the numerical model and the
analytical solution. The number of grid cells are shown in Table 5.1, where Nθ is the
number of cells around the circumference of the cylinder, Nr is the number of cells from
the inner cylinder to the outer cylinder.

At the end of the simulation, the tangential velocity (uθ) is averaged over the azimuthal
direction.

5.2.3 Results
Figure 5.2 shows the tangential velocities of the simulation compared with the analytical
solution (Equation 5.3) over the radial coordinate of the domain. The solution with the
sliding mesh and the solution with the imposed rotating velocity at the inner cylinder
(Wall velocity) predict the solution almost equally well. The simulated velocity deviates
slightly from the analytical solution for the coarsest mesh (left). For the finer mesh, the
error between the analytical solution and the simulations reduces towards zero.

The pressure gradient (Figure 5.3, left side) is computed accurately when using the fixed-
FluxExtrapolatedPressure boundary condition. Both the simulation with 8 and 64 cells
over the radial coordinate show a good prediction of the pressure gradient. The right fig-
ure shows the results for the case with a Neumann boundary condition for the pressure
(dp/dr = 0). The pressure gradients for both the 8 and 64 cell case are oscillating leading
to a big error in the solution.



5.2. Verification of sliding mesh: circular Couette flow

5

103

Coarse mesh

1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1
Coarse mesh

Radial distance (r) from axis of rotation [m]

A
ve
ra
ge
d
ta
ng

en
ti
al

ve
lo
ci
ty

(〈
u
θ
〉)

[m
/s
]

Sliding mesh (8 cells)
Wall velocity (8 cells)
Analytical solution

Finer mesh

1 1.2 1.4 1.6 1.8 2

Radial distance (r) from axis of rotation [m]

Sliding mesh (32 cells)
Wall velocity (32 cells)
Analytical solution

Figure 5.2: Simulation of tangential velocity of the circular Couette flow compared with the ana-
lytical solution. The left pane shows the results for the coarsest mesh consisting of 8 cells in radial
direction. The right pane shows the results for a finer mesh of 32 cells. All results are computed
using the fixedFluxExtrapolatedPressure boundary condition.
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Figure 5.3: Simulation results of the radial pressure gradient along the radial coordinate for the
circular Couette flow compared with the analytical solution. Left: for the fixedFluxExtrapolated-
Pressure boundary condition. Right: for the zero gradient pressure boundary condition.

Figure 5.4 shows the Root Mean Square (rms) error for the tangential velocity and for the
pressure gradient for all the cases. Equation 5.6 shows this error for the velocity, where
the velocity of the reference solution (urefn ) is computed using the analytical solution of



5

104 5. Verification and validation of flow in a rotating cutter head

dp
dr

∣∣
r=Ri

6= 0

8 16 32 64
10−4

10−3

10−2

10−1

1:2

Number of grid cells in radial direction [-]

R
M
S
er
ro
r

Sliding mesh dp
dr

Sliding mesh uφ
Wall velocity dp

dr

Wall velocity uθ

dp
dr

∣∣
r=Ri

= 0

8 16 32 64

1:2

2:1

Number of grid cells in radial direction [-]

Figure 5.4: Error in the velocity and pressure gradient for the Circular Couette flow when refining
the mesh. Left: the results for the fixedFluxExtrapolatedPressure boundary condition. Right:
simulations for a zero gradient pressure at the wall.

Equation 5.3. The left pane of the figure displays the errors of the case which uses the
fixedFluxExtrapolatedPressure boundary condition. In this case the pressure gradients
scale nearly with O(2). When the pressure gradient is fixed to zero on the wall the pressure
gradients scale with less than O(1/2) (right pane of Figure 5.4).

urms =

√√√√ 1
N

N∑
n=0

(
usimn − urefn

)2
(5.6)

Where:
urms is the root mean square error of the simulation [m/s]
usimn is the velocity computed by the simulation for position n [m/s]
urefn is the velocity of the reference solution for position n, which is the analytical solution.
N is the total number of data points

However, the error in the pressure does not seem to affect the error in the velocity, which
scales second order for the case with rotating boundary condition (Wall velocity) for both
pressure boundary conditions. The error in the velocity for the sliding mesh case scales
down slightly less than second order.

To get a O(2) scaling of the error in the pressure gradient for the finest mesh in the sliding
mesh case, the pressure-velocity coupling might need a tighter convergence criterion by
setting a lower initial pressure residual, leading to more SIMPLE loops and therefore a
tighter pressure-velocity coupling. Another option is that the time discretisation error is
visible in the results and the time step should be lowered.
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5.3 Velocity measurements in cutter heads
Dekker (2001a) performed the velocity measurements in a 1:4 scale model of a cutter head.
This section analyses the quality of the time-series to determine if the time-series can be
used for validation or if the time-averaged values should be used instead. The next two
sections show the validation of the flow model using the experimental data presented in
this section.

5.3.1 Measurement method
Dekker (2001a) measured fluid velocities inside and around two types of cutter heads: a
cutter head with conventional suction mouth and a cutter head with an axi-symmetrical
suction mouth between the axis and the ring (Perspex part in Figure 5.5a). This last cutter
head will hereafter be called the axi-symmetrical cutter head. Figure 5.5 shows the photos
of both the axi-symmetrical cutter head and the cutter head with a suction mouth. Both
cutter heads were situated 0.39 m above the bottom of the flume, which measured 3 m by
7.5 m and was 1.6 m deep (Verdoodt, 1998).

(a) Cutter head with uniform axial suction (b) Cutter head with suction
mouth

Figure 5.5: Photo of experiment performed by Dekker (2001a) and Velthoen and Dekker (2000).

The velocities were measured with a Nortek Acoustic Doppler Velocimeter (ADV) using a
sampling frequency of 25 Hz. In Section 5.4 and 5.5 the measured velocity will be compared
with the modelled velocity in the cutter head for the two types of cutter heads.

5.3.2 Analysed operational parameters
Dekker (2001a) measured the velocities at different discharges and rotational speeds. In
this dissertation the velocities are compared for a discharge of 0.12 m3/s on model scale.
This was the highest discharge used in the experiments and when scaling up this discharge
comes closest to the prototype suction discharge. In the experiment, the velocities were
scaled down using Froude scaling and the geometry was scaled down using geometric
scaling. (See Appendix D).
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Using these scaling laws, the discharge on prototype scale will be:

Qmodelm = 0.12m3/s

Qprototypem = λ2.5 Qmodelm = 3.84m3/s

Where:
λ is the scale factor, which equals 4 in this case

This is similar to the lower value for a typical discharge of a Cutter Suction Dredger
(Qm = 3.9 m3/s) as shown in Table 2.1.

The rotational velocities in the experiments were varied between 0 rpm and 105 rpm on
model scale. At the highest rotational velocity, Dekker (2001a) reported a standing wave
in the water basin, which likely influenced the measured velocities in the cutter head.
Therefore, this rotational velocity is discarded for comparison with the simulations. At
0 rpm the position of the blades was not documented. This makes it impossible to do
a comparison with the simulations. This leaves the rational speeds of 20 rpm to 90 rpm
on model scale. On prototype scale this would be 10 rpm to 45 rpm, which includes the
typical rotational speed of a cutter head of 20 to 40 rpm.

5.3.3 Artefacts in the measured data
When analysing the velocity signals, some artefacts come to light. This is might explain
why Dekker et al. (2003) compared the simulations with time averaged velocity data and
not with the time series. Figure 5.6 and 5.7 show the time series including some artefacts.

Figure 5.6 shows the velocity data for the cutter head with the uniform axial suction.
Every pane shows the location of the measurement, the rotational velocity and in different
colours the velocity components, which will be used in the remainder of this chapter for
velocity components. Tangential velocities are indicated in red; green represents radial
velocities and blue the axial velocities. Positive tangential velocities are in the direction
of the rotating blades, a positive axial velocity is from the hub to the suction mouth
and a positive radial velocity indicate outward flow. Appendix A shows the coordinates
corresponding to the measurement locations indicated by the letters.

The time series show some artefacts. Some time series show long waves. Others show
sudden jumps or spikes. In Figure 5.6 the long waves are mainly visible for the axial
velocities. They are very distinct for point Z, 60 rpm. The sudden jumps can be found
in the tangential velocity (red) at point W, 75 rpm and for the radial velocity at point X
at 60 rpm (green). Spikes in the velocity are visible for nearly all the velocities. They are
best visible for the tangential velocities at point Z for 30 rpm.

The velocity data for the cutter head with suction mouth (Figure 5.7) shows the same arte-
facts, but more distinct. Appendix B gives the corresponding coordinates to the names
presented in the Figure. For points Ci and Gi, the data shows a lot of spikes in the tangen-
tial (red) velocity. At the end of the time series for point Ei all the velocity components
show a slow jump. This is also visible for Point Ji in the axial and radial velocity. Point
Mi, shows a big jump in the tangential velocity. Long waves are visible in many of the
signals; for example at the axial velocity at point Gi and the radial velocity at point Ji.

The long waves in the signals could be due to small waves in the basin. Dekker (2001a)
reported these waves in the basin at 105 rpm. However, smaller not clearly visible velocity
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Figure 5.6: Time series of the velocity measurements in an axi-symmetrical cutter head by Dekker
(2001a). The red line represents the tangential velocity component, green shows the radial com-
ponent and blue the axial one.

oscillations might have been present at lower rotational velocities as well. The return flow
of the suction discharge back into the basin could also have influenced the measurements,
while not being explicitly visible in the time series.

The jumps in the velocity can be induced by a quasi-steady eddy. When the centre of
an eddy changes position, the measured velocity changes significantly. The spikes in the
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data are an artefact of the ADV measurement. Goring and Nikora (2002) mentioned that
reflections of pulses at walls can contaminate the signal and lead to these spikes. The
rotating blades likely cause reflections leading to these spikes. Spikes can also be caused
by the velocity exceeding the pre-set velocity range.

A last issue is the under sampling of the data. The sampling frequency of 25 Hz is in-
sufficient to obtain detailed unsteady flow behaviour in the cutter head. A 1 to 4 model
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Figure 5.7: Times eries of the velocity measurements in a cutter head with backplate and suction
mouth by Dekker (2001a). The red line represents the tangential velocity component, green shows
the radial component and blue the axial one.
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cutter head with a nominal rotational velocity of 60 rpm has a blade passing frequency
of 6 Hz. When sampling with 25 Hz only four time measurements are taken between two
blade passings. At 90 rpm, less than three measurements are taken in between the blade
passings.

These three artefacts, combined with the under-sampled data, makes the data unsuitable
for processing the transient signal. When time-averaging the data, the artefacts will be
averaged out. This will be a good way of comparing the modelled results with the data.

Due to the under-sampling, the measured fluctuations are under-estimated. The unsteady
Reynolds Averaged Navier-Stokes (URANS) turbulence model captures the effect of the
turbulent fluctuations on the (moving) time averaged velocities (Versteeg and Malalasekera,
2007). The fluctuations itself are solved less accurately. Therefore, the validation of the
model compared to the experiments will be solely performed on time-averaged velocities.
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5.4 Cutter head with uniform axial suction
The flow in an axial cutter head will be validated against the experiments of Dekker
(2001a). Figure 5.8 shows the setup of the experiments and the dimensions of the cutter
head.

100
435

45
440

200 516122 122

ω

Trigger

Figure 5.8: Dimensions of experiment performed by Dekker (2001a) and Velthoen and Dekker
(2000). The horizontal line indicates the trigger position: the position at which the measurements
started. The dimensions are in mm.

5.4.1 Numerical setup
The numerical domain is a cylinder with a diameter of 5 metre and a height of 1.31 metre
with the cutter head placed in the middle. The height is similar to the height of the water
level in the tank the experiments where performed. The mesh consists of 1.18 · 106 cells
and Figure 5.9 shows illustration of the refinement in cell size. At the blades the cell
size is 4 mm, which corresponds to a dimensionless wall distance y+

mean = 87 for the 60
rpm simulation (Equation 2.12). While this is larger than the values used in the reference
cases (Section 2.6.1), it lies within the log-law region where the boundary condition for the
velocity at the wall is valid.

Table 5.2 shows more information on the domain and operating conditions. The suction
discharge is kept constant at 0.12 m3/s and the rotational velocity is varied between 20
and 90 rpm.

All the walls in the domain have a no slip boundary condition. The inlet is located at the
circumference of the cylinder and has a Dirichlet boundary for the velocity. The velocity
boundary condition for the outflow at the top of the suction pipe is a Neumann boundary
condition. All the pressure boundaries use the fixedFluxExtrapolatedPressure boundary
condition. This boundary condition computes the pressure gradient based on the predicted
momentum and is described in Section 4.2.3.

Discretising the advection term using a complete linear interpolation leads to unstable
results. This term is therefore discretised using a 90-95% linear- and 5-10% upwind scheme.
Still, some areas with lower mesh quality caused the solution to become unstable. In the
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area underneath the ring, the blend factor between central and upwind was reduced from
90-95% to 54-57% to keep the simulation stable. Table 5.3 shows the convergence criteria
for the matrix solvers and the initial pressure criterion determining the number of PIMPLE
loops.
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Figure 5.9: Close up view of the computational
mesh.

Parameter Quantity

Fluid water at 20◦ C
ν 1.003 · 10−6 [m2/s2]

Domain
Diameter 5 m
Height 1.31 m
∆x in 4 mm - 10 mm
cutter head

Operating
condition
Discharge Qm 0.12 m3/s
Rot. velocity 20, 30, 45,
nc 60, 75, 90 rpm

Time
Comax 0.8

Table 5.2: Parameters for the axial cutter
head simulation.

Time integration was performed using an Euler implicit scheme with a variable time step
limited by a maximum specified Courant number of 0.8 (Equation 4.44).

The flow in the cutter head is initialized using a Multiple Reference Frame approach (MRF).
This technique solves the fluid motion relative to the rotation and adds a centrifugal and
Coriolis force to the momentum equation for the rotating part. After this initialisation, 14
rotations of the cutter head were simulated using the sliding mesh method. The velocities
of last 4 rounds were stored for analysis in this chapter.

Residual pini p u

Value 1 · 10−3 1 · 10−8 1 · 10−8

Table 5.3: Convergence criteria for the base case.

5.4.2 Sensitivity analysis
For the 60 rpm case the numerical parameters are varied to visualize the sensitivity of
these parameters. The simulated fluid velocities are compared to the velocities computed
using the base case described in the previous section. This case uses the settings of Table
5.2 and 5.3. Table 5.4 shows the four changed settings.

The velocities inside the cutter head for the 4 cases are compared to the base case using
the Root Mean Squared error value and the out-flowing flux. In Equation 5.6 the reference
velocities are the velocities simulated by the base case. The method for computing the
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Case name Change

Time step Lowered the maximum Courant number from 0.8 to 0.3
Finer mesh Overall mesh refinement by 25%
Residual tighter matrix convergence and therefore lowering the residuals from

10−8 to 10−11

Pimple residual Lower initial pressure residual from 10−3 to 5 · 10−4 to update the
linearisation of the advection term more often each time step.

Table 5.4: Changes in numerical settings for sensitivity analysis.

out-flowing flux will be discussed in Chapter 8 together with the results over the range of
rotation speeds.

Figure 5.10 shows the Root Mean Square errors for the four cases computed with Equation
5.6. The error is based on all cell-centred velocities inside the cutter head after 14 rotations
of the specific case compared to the base case.
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Figure 5.10: Sensitivity analysis based on the RMS errors (Equation 5.6) between the velocity
components of the base case compared to the mentioned case for the velocities inside the cutter
head. These are instantaneous velocities after 14 rotations.

These difference in errors between the different cases is large. The reduction of the time
step has a large influence on the radial and tangential velocities, while increasing the
convergence has a larger effect on the tangential and axial components. All these errors
are high compared to the RMS errors for the cutter head with a backplate (Figure 5.18),
which has a maximum RMS error of 0.25.

To visualize the source of these errors, Figure 5.11 shows the instantaneous velocities along
the y-axis 35 mm under the ring. Along this line the difference in radial velocity for different
settings is clearly visible. The base case and the case with a smaller time step seem to
be in counter-phase, which is visible in the radial velocity component. This is likely the
reason for the large RMS error of the radial velocity. Due to the open nature of the axial
suction pipe, unstable flow patterns may develop, which are similar to the Taylor Couette
flow. The correct phase of these instabilities can be more sensitive to numerical settings.
The tangential and axial velocity are very similar in the figure.
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For a better quantification of the sensitivity, the out-flowing flux is computed for the
cases. Figure 5.12 shows these fluxes. Changing the numerical settings leads to decrease
in out-flowing flux of 10% between the base case and the case with a finer mesh.
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Figure 5.11: Line plots of the velocity components in the cutter head with uniform suction at
z=-0.035m along the y-axis. Positive radial velocities indicate outward flow, positive tangential
velocities are in the rotational direction and positive axial velocities are from the hub to the suction
mouth.
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Figure 5.12: Sensitivity analysis based on the out-flowing flux for the different cases.



5

114 5. Verification and validation of flow in a rotating cutter head

5.4.3 Time average results
This section compares the simulation results against the measurements. For the simulations
the numerical settings of the base case are used. These are described in Table 5.2 together
with the used rotating velocities and the fixed suction discharge. Both the simulated
velocities as the measurement velocities are time-averaged. The time-averaged simulated
velocities are computed based on the last 4 revolutions.

A positive tangential velocity is defined in the direction of the rotating blades. The radial
velocity is positive when moving from the centre of the cutter head to the blades. The flow
towards the suction pipe is a positive axial flow. The time averaged measured and modelled
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Figure 5.13: Time averaged velocities of the last 4 rotations. The velocity components are plotted
against the rotational velocity for the modelled and measured velocities. The measured velocities
are denoted with dotted lines. The modelled velocities have solid lines. Left: point X situated 72
mm from the ring Right: point Z situated 217 mm from the ring.

velocities are plotted against the rotational velocity for two measurement locations (Figure
5.13). The Figure shows a linear relationship between the rotational velocity and the
tangential velocity. The modelled tangential velocity is over-predicted. Especially the
tangential velocity at point Z, near the hub of the cutter head, is over-predicted by 50%.
The axial velocities (in blue) at point Z show a slight increase with increasing rotational
velocity. The increase in velocity is due the axial pump effect.

Figure 5.14 shows the modelled instantaneous streamlines after 14 rotations. The left
panes show the front view of the cutter head at different rotational velocities. At the right
panes, the top view of the streamlines is showed. At low rotational velocities, as illustrated
by the 20 rpm case, the fluid is flowing inwards over the whole contour of the cutter head.
This leads to a rotational flow in the opposite direction with respect to the rotation of the
blades. This effect is not only visible at 35 mm below the ring in the right panes, but also
slightly lower in the cutter head at point X (72 mm below the ring). Figure 5.13 shows
a counter rotational velocity at this location. At 75 rpm, the water flows outward of the
cutter head underneath the ring. The numerical simulations show an intermediate regime.
At 45 rpm, the water flows out of the cutter head near the ring and flows right back into
the cutter head at a larger distance from the ring (middle left plot of Figure 5.14).
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Figure 5.14: Instantaneous streamlines of the simulation results for 3 different rotational velocities
after 14 rotations. Top: 20 rpm, middle: 45 rpm and bottom: 75 rpm. All are simulated with a
suction discharge of 0.12 m3/s. The colours indicate the in-plane velocity magnitudes. The left
panes show the yz-plane at x=0. The right panes show the xy-plane at z=-0.035.
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Modelled against measured velocity
Figure 5.15 shows the modelled velocity components versus the measured velocity com-
ponents inside and outside the cutter head. The dashed line is a 1 to 1 relation between
both velocity components. The left figure shows the results inside the cutter head. Here,
the time averaged axial velocities are in relatively good agreement with the measurements.
The modelled radial velocities however, show to be less accurately predicted as they de-
viate significantly from the measurements. When considering the absolute error velocity
magnitude, the difference is not that significant. Nearly all the tangential velocities are
over-predicted by the model.

The velocities outside the cutter head (right pane) show a larger difference between the
modelled and measured velocities than inside the cutter head. Especially the radial veloc-
ities are systematically over-predicted by the model.
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Figure 5.15: Modelled time averaged velocities against the measured velocities for all simulations.
The left figure shows the 3 velocity components at the 5 measurement locations inside the cutter
head. The right figure shows the velocity components of the 8 locations outside the cutter.
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5.5 Cutter head with a backplate and a suction mouth
In the same experimental program as described in Section 5.4, Dekker (2001a) measured
the flow velocities in a cutter head with a backplate and a suction mouth. Figure 5.16
shows the dimensions of this cutter head and Figure 5.5 a photo of the experiment. In
this cutter head, the same measurement setup was used as in Section 5.3. However, in this
case, the velocities were measured at 12 points inside the cutter head and 16 outside the
cutter head. The coordinates of these measurement locations can be found in Appendix
B.
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Figure 5.16: Front and bottom view of the cutter head used in the experiments by Dekker (2001a)
and Verhoeven and Dekker (2000). For clarity only one of the blades of the cutter head is visualised,
while the cutter head has 6 blades. The measurements are in mm and the area A in m2.

5.5.1 Numerical model
Figure 5.17 shows the mesh of the numerical setup. The mesh is similar to the mesh of the
cutter head with uniform axial suction; the areas that are refined are at the same location.
The mesh consists of 9.78 · 105 cells and has a minimum cell size of 4 mm at the blades.
This results in a y+

avg = 102 over the cells attached to the blades.

The advection term is discretised using 85-90% linear interpolation and 10-15% upwind.
At 3 locations in the cutter head more upwind is added to keep the simulation stable.
These locations are located at the connection of the backplate and the ring, at the connec-
tion of the axis and backplate and under the ring. The mesh quality is slightly lower at
these locations, due to the intersection of the sliding mesh plane and two wall boundaries.
Here, the advection term is discretised using a 60-63% linear interpolation and a 37-40%
upwind interpolation. This ensures a stable simulation. All the other numerical settings
are similar to the axial cutter head described in Section 5.4.1. Table 5.5 shows the oper-
ational conditions used in the simulations, which are also similar to the cutter head with
the uniform axial suction.
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Parameter Quantity

Fluid water at 20◦ C
ν 1.003 · 10−6 m2/s2

Domain
Diameter 5 m
Height 1.31 m
∆x in 4 mm - 10 mm
cutter head

Operating
condition
Discharge Qm 0.120 m3/s
Rot. velocity 0, 20, 30, 45,
nc 60, 75, 90 rpm

Time
Comax 0.9

Table 5.5: Parameters for the simulation of
the cutter head with backplate and suction
mouth.
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Figure 5.17: Close up view of the computational
mesh.

5.5.2 Sensitivity analysis
The sensitivity analysis is based on the same cases as for the axial cutter head and uses
the same methods as described in Section 5.4.2. Table 5.3 shows the residuals used for
simulating the base case and Table 5.4 shows the different settings of the four cases of the
sensitivity analysis.
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Figure 5.18: Sensitivity analysis based on the RMS errors (Equation 5.6) between the velocity
components of the base case compared to the mentioned case for the velocities inside the cutter
head. These are instantaneous velocities after 14 rotations.

Figure 5.18 shows the RMS errors for the four cases compared with the base case and
computed using Equation 5.6. When comparing these results with the results in the cutter
head with uniform axial cutter head (Figure 5.10), the errors for cutter head with suction
mouth are significantly lower. This proves that the cutter head with suction mouth is
much less sensitive to numerical settings than the axial cutter head. This behaviour likely



5.5. Cutter head with a backplate and a suction mouth

5

119

occurs due to the asymmetric forcing in the cutter head with the suction mouth. Due to
this forcing, there are less transient effects.

The out-flowing fluxes (Figure 5.19) over the contour of the cutter head show no significant
influence of the numerical settings. The maximum difference between the base case and
another numerical setting is 5 · 10−4 m3/s, which is less than 1% difference.
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Figure 5.19: Sensitivity analysis based on the out-flowing flux for the different cases.

Figure 5.21 shows the instantaneous velocity components for the different cases over a line
below the suction mouth. The case with mesh refinement shows different results compared
to the other cases. This is also visible in Figure 5.18 where the case with mesh refinement
showed the largest errors. The mesh refinement case predicts larger radial velocities than
the other cases. The refined case shows a larger radial inflow velocity near the axis below
the suction mouth. This is also visible in the comparison of the streamlines of the mesh
refinement and the base case (Figure 5.20) in the right panes. At the suction mouth an
eddy is present. The difference in radial velocity for the finer mesh and the base case is
due to a shift in this eddy between these cases.

The streamlines in Figure 5.20 also show a different outflow pattern near the ring. The
base case shows outflow, while the refined case shows a circulating eddy near the ring with
an outflow under the ring and inflow further toward the hub.

5.5.3 Time averaged results
In this section, the time averaged results for the two points closest to the suction mouth
are discussed. Point Gi is in rotational direction of the suction mouth. Point Ki is located
in the upstream direction of the suction mouth. Both points are located 137 mm below
the ring. The location of these points is indicated in Figure 5.24. Figure 5.22 shows the
time-averaged velocity components for both the simulations and the experimental data
plotted against the rotational speed. The measured velocities are shown by the dotted
lines with the open markers and the simulation results are represented by the solid lines
with the filled markers. Appendix B shows the measured and modelled velocities for all
points.

At point Gi, the tangential velocity is dominated by the suction flow at low velocities
leading to a negative (counter rotational) velocity. This effect is visible in both the mea-
surements and the simulations. This phenomenon is also be visualised in the streamlines
in the right panes of Figure 5.24. These streamlines are located in-plane with the measure-
ment location Gi. The top pane shows the counter rotating flow at a low rotational speed
and the two panes below show the streamlines for higher rotational speeds. At these two
panes, the flow is co-rotating with the blades.



5

120 5. Verification and validation of flow in a rotating cutter head

60 rpm
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Figure 5.20: Instantaneous streamlines of the simulation results for 2 different numerical setting
after 14 rotations. Top: base case and bottom: 25% mesh refinement. The colours show the
in-plane velocity magnitudes. The left plots show the yz-plane at x=0. The right plots show the
azimuthal plane (xy-plane) at z=-0.035

For the higher rotational speeds, the tangential velocity is not predicted well at point Gi.
The right pane of Figure 5.22 shows a sudden decrease in the measured tangential velocity
at 75 rpm (the red dotted line), while the modelled value does not show this sudden
decrease. The right panes of Figure 5.24 can provide a possible explanation. It shows
an eddy near the Gi measurement location. If the location of the eddy is not predicted
correctly by the simulation or the measurement location is slightly different than reported,
this could lead to a large error in velocity, since the velocity gradient is large in the eddy.
Therefore, the difference between the measurements and the model is either due to a shift
in measurement location or the position of the eddy is not simulated accurately.

The tangential velocity at Ki is slightly under-predicted, while the trend of the measure-
ments and the modelled velocities is similar. When the flow is a solid body rotation, the
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Figure 5.21: Line plots of the velocity components in the cutter head with backplate and suction
mouth at z=-0.035m along the y-axis. Positive radial velocities indicate outward flow, positive
tangential velocities are in the rotational direction and positive axial velocities are from the hub
to the suction mouth.

tangential velocity would vary linearly with increasing rotational speed. The deviation at
the lower rotational speeds is caused by the suction flow which forces a nearly counter-
rotating flow (top right pane of Figure 5.24).

The radial velocity is predicted well for both points. At point Ki, the increase in radial ve-
locity from in-flowing to out-flowing is visible in both the measurements and the simulation
results, which is also clearly shown in the streamline plots. At point Gi, the measurements
show an increase in inflow for higher rotational velocity, while the simulations show a near
constant value. This could be attributed to the simulated location of the eddy. The mea-
surements almost show no tangential velocity, which is the case for a point at the east side
of the eddy indicated by the triangle in the lower right pane of Figure 5.24. At this point
there is a radial inflow and nearly no tangential velocity. This might be an indication the
eddy is simulated at the wrong location. For an increased rotational speed, the eddy will
rotate faster, increasing the radial velocity, which was visible in the measurements.
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Figure 5.22: Velocity components against the rotational velocity. The measured velocities are
denoted with dotted lines. The modelled velocities have solid lines.

The axial velocity in both locations is underestimated. This could be a numerical artefact.
Due to diffusion of momentum the flow will be directed to the suction mouth over a larger
area, resulting in a lower axial velocity.

Modelled against measured velocity
Similar as for the axial cutter head, Figure 5.23 shows the modelled against the mea-
sured velocity magnitudes inside and outside the cutter head. Similar to the simulation of
the axial cutter head, the modelled velocities inside the cutter head show a better com-
parison than the velocities outside the cutter head. Compared to the axial cutter head,
the simulations with the backplate and suction mouth show a larger deviation from the
measurements.

The tangential velocities are over-predicted by the model which could be the result of the
predicted location of the eddy. The other velocity components are found to be in better
agreement with the measurements.

5.6 Conclusions
This chapter showed the validation of the flow in the cutter head.

• The circular Couette flow is predicted well by the simulation using the sliding mesh
method. Both the velocity and pressure gradient show a near second order behaviour.
However, for the finest meshes there is some deviation. This might be solved by
tighter initial pressure residual or a lower time step.

• The measurements of Dekker (2001a) are under-sampled. For the velocity measure-
ment at 90 rpm, there are less than 3 samples between two blade passages. Hence,
the data is not suitable for an unsteady flow analysis. The under-sampling could
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Figure 5.23: Modelled velocities against the measured velocities for the 3 velocity components
measured at the 12 locations inside the cutter head and the 16 locations outside the cutter head.

influence the time-averaged velocity. Nevertheless, the time-averaged values of this
data is used for comparison with the numerical simulations

• For the axial cutter head the sensitivity analysis shows significant deviations in the
RMS error for the velocities. Different numerical settings lead to a decrease in out-
flowing flux of 10%. These effects are not visible in the cutter head with suction
mouth. For these simulations the difference in out-flowing flux is less than 1 %.
This difference is most probably caused by the flow being forced by the geometry
instead of a shear flow, which is less forced by a pressure gradient.

• The trend in the time-averaged velocities for different rotational speeds is similar to
the measurements for both cutter heads. The results of the model of the axial cutter
head compare better with the measurements than the model with the backplate and
suction mouth.

• Since the trends in the cutter head with a suction mouth are predicted well and the
sensitivity analysis shows little impact on the out-flowing flux, this model can be
used for spillage simulations.
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Figure 5.24: Instantaneous streamlines of the simulation results for 3 different rotational velocities
after 14 rotations. Top: 20 rpm, middle: 45 rpm and bottom: 75 rpm. The colours show the
in-plane velocity magnitudes. The left panes show the yz-plane at x=0. The right panes are in the
xy-plane and are cut at z=-0.137 m. The dots indicate the measurement location of the velocities
in Figure 5.22. The triangle indicates a location of a large radial flow near the eddy.



6
Verification of particle-flow

interaction

6.1 Introduction
For simulating spillage in a cutter head, the particle-flow interaction is important, since it
is one of the causes of spillage. In this chapter, this interaction is verified using a single
settling particle and a settling cloud of particles.

When using two-way-coupling for a single settling particle, the fluid near the particle is
accelerated by the moving particle, while the point particle formulation assumes an undis-
turbed fluid field. Since the particle influences the fluid field, this field is not undisturbed,
leading to an error in the terminal settling velocity for larger particle to cell size ratios.
Section 3.4.1 showed this problem. In this chapter, Section 6.2 will quantify the error by
comparing the simulated settling velocity against a reference solution. Also, the simulated
settling velocities of the kernel method and the diffusion method will be verified against
this reference solution to show these methods circumvent this problem.

The settling cloud of particles is used for verifying the hindered settling implementation
and the resulting forces on the fluid. In a cutter head, the dredged material enters from to
breach into the cutter head leading to a local high mixture density, influencing the settling
velocity. Section 6.3 verifies the simulation results of the hindered settling relation of Di
Felice (1994) against a reference solution.

6.2 Settling velocity of a single particle
The settling of a single sphere is one of the most elementary verifications of the coupling
between Discrete Element Method and finite volume interaction. The position and velocity
of a particle are solved using the forces acting on the particle (Equation 3.37). The drag
force, the gravity, buoyancy, pressure gradient force and the added mass force act on a
settling particle. To compute these forces, the fluid velocity is interpolated to the parti-



6

126 6. Verification of particle-flow interaction

cle centre using one of the three methods described in Section 3.4: the particle centroid
method, the kernel method or the diffusion method.

Interface

p

6.4 m

0.11 m

0.3 m 0.02 m

Figure 6.1: Numerical domain and setup for
a settling particle (p), including the sliding
mesh interface used in some of the simula-
tions.

Parameter Quantity

Particle
dp 0.01 m
ρp 2650 kg/m3

Fluid water at 20 ◦ C
ρf 998.2 kg/m3

ν 1.0034 · 10−6 [m2/s2]
Domain
Width 0.3 m
∆x 0.1, 0.02, 0.01, 0.0067,

0.005, 0.002 m
Dist. fac. γ 1.0, 3.0
Time

∆ t 1 · 10−3 s
NtimeStpes 12

Table 6.1: Simulation parameters for the settling
particle simulation.

6.2.1 Numerical setup
In a 6.4 metres high and 0.30 metre wide domain a 1 cm particle settles until it reaches
its terminal settling velocity. Figure 6.1 shows the setup of the simulation with the initial
particle position is denoted by p. The influence of the wall on the settling velocity is
negligible for this particle diameter compared to the domain size.

On six different mesh sizes, the particle settling is simulated. The largest cell size is 10
times the particle diameter (0.1m) and the smallest 1/5 of the particle diameter. Table 6.1
shows these cell sizes together with the other relevant numerical and physical properties.
The six meshes are used to compare the three different methods described in Section 3.4.1.
The first case uses the particle centroid method, Secondly, the kernel method is tested.
Lastly, the settling is computed using the diffusion method. Table 6.2 shows an overview
of these simulations. No turbulence model is included in these simulations.

Without sliding mesh With sliding mesh

Particle centroid method x
Kernel method x x
Diffusion method x

Table 6.2: Simulations performed with and without the sliding mesh interface using the different
methods.
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A special case is a particle settling through a sliding mesh interface. Near a sliding mesh
interface there is no information exchange in particle data from one side of the sliding
mesh to the other, as was shown in Section 4.3.2. This will lead to an error in the settling
velocity. This section will quantify this error in the settling velocity together with the
error in the continuity equation for the cases in- and excluding the time derivative in the
continuity equation.

The results of the simulations are verified against a reference solution, computed in Python
using the same forces as in the simulation but without the fluid flow induced by the settling
particle. As a result, the slip velocity is equal to the settling velocity. For computing the
reference solution, a much smaller time step (1 · 10−7 s) is used than the time step in the
simulations, ensuring a very small error in the reference solution. Table 6.3 shows the
resulting terminal settling velocity for a single settling particle αp = 0 and for particle
concentrations up to 0.30.

In both the simulations using the kernel method and the simulations using the diffusion
method, different distance factors (γ) are tested. The standard deviation of the kernel (σ)
is the distance factor times the particle diameter (dp) as shown in Equation 4.45.

σ = γ dp (4.45 rev.)

Equations 3.74 and 3.84 are respectively used for computing the Gaussian and quadratic
kernel. In the diffusion method the volume fraction is diffused using Equation 3.78, where
the diffusion coefficient computed by Equation 4.46.

αp [-] 0 0.027 0.05 0.1 0.208 0308

up,t [m/s] 0.736 0.692 0.656 0.580 0.434 0.319

Table 6.3: (Hindered) terminal settling velocities for specific particle fractions computed using by
numerically integrating Equation 3.68 to reach a steady state.

6.2.2 Verifying the particle centroid and kernel method
The simulated settling velocity is shown in Figure 6.2. In this figure, the left pane shows
the results of the particle centroid method and the right pane the results of the kernel
method. The black dotted line indicates the reference solution.

For the particle centroid method, the settling velocity is well-simulated for a particle di-
ameter to cell size ratio (dp/∆x) of 0.1 and 0.5. The solution starts to deviate from the
reference solution at dp/∆x = 1. This is a 1 cm particle inside a cell volume of 1x1x2 cm
leading to a particle volume compared to cell volume ration of Vp/Vcell = 0.26.

When particle volume ratio is 60% (the case of dp/∆x = 1.5), the terminal settling velocity
is roughly 90% over-predicted (illustrated with the orange line in Figure 6.2a). Simulating
the settling velocity with a diameter of two times the cell size shows unstable results (in
cyan). The simulated settling velocity on the smallest mesh size (dp/∆x = 5) was omitted
in this figure since it showed large instabilities in the particle velocity.

Section 3.4.1 showed an infinite fluid acceleration for a particle completely filling a cell
(αc ≈ 0). The drag formulation is based on the assumption that the fluid flow is undis-
turbed by the particle. Therefore, the fluid velocity should be zero for a single settling
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Figure 6.2: Simulation of a 1 cm settling sphere in different mesh sizes using a distance factor (γ) of
1 compared to the reference solution ( ). dp/∆x = 0.1 ( ), dp/∆x = 0.5 ( ),dp/∆x = 1.0
( ),dp/∆x = 1.5 ( ),dp/∆x = 2.0 ( ),dp/∆x = 5.0 ( ).

particle in a water tank. Due to the fluid acceleration, the fluid velocities are high as
well. This results in an under-prediction of the drag on the particle and leads to a particle
settling faster than is physical.

In contrast with the particle centroid method, the maximum relative error in the sim-
ulated terminal settling velocity using the kernel method is 0.4%. Even for dp/∆x = 5
the simulation gives good results, whereas the particle centroid method showed unstable
results.

6.2.3 Results for a settling particle through a sliding mesh
When using the kernel method, the information from the other side of the sliding mesh is
not used for determining the fluid velocity at the particle and for computing the resulting
forces on the fluid. Without any modifications to the solution method, this leads to a
large return flow when the particle passes the interface resulting in an error in the settling
velocity. This error will be compared to the error when setting the time derivative of the
concentration in the continuity equation to zero around the sliding mesh interface as was
described in Section 4.3.2).

For three cases, the error in settling velocity and the continuity error is computed. These
cases include a settling particle without a sliding mesh, a particle settling through a sliding
mesh without any modifications to the continuity equation and a particle settling through
a sliding mesh, where the time derivative of the concentration in the continuity equation
is set to zero around the sliding mesh interface. This last case is called the masked sliding
mesh.

In the settling simulation a stationary sliding mesh interface is included at 0.2 metre from
the top of the domain. At this interface, the faces of both sides are not aligned with each
other to simulate the non-alignment of the faces of a moving sliding mesh interface. In the
previous described simulations multiple mesh sizes were used. These simulations will only
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Figure 6.3: Settling velocity and continuity errors of settling particle simulations for a simulation
without a sliding mesh, a simulation with a sliding mesh and a simulation with a sliding mesh and
a mask on the time derivative of the concentration in the continuity equation. All simulations use
finest mesh: dp/∆x = 5.0.

use the finest mesh (dp/∆x = 5.0), since this shows the most pronounced error in settling
velocity.

Figure 6.3 shows the deviations in particle velocity when the particle settles through the
sliding mesh together with the continuity errors of the simulation. Figure 6.3a shows the
particle velocity for the simulation of a particle passing through a sliding mesh. After
0.21 seconds the particle passes through the sliding mesh leading to a decrease in settling
velocity for the sliding mesh case without a mask. Table 6.4 shows the absolute and
relative velocity errors at the sliding mesh interface for the three cases. The sliding mesh
without the mask shows the largest absolute and relative error in settling velocity. It has
an absolute error of 1.1 · 10−2 m/s at the passing of the sliding mesh, while the error at
sliding mesh including the mask is 8.3 · 10−4 m/s. This shows that the mask around the
sliding mesh reduces the error in settling velocity. Still, the error in settling velocity for the
masked sliding mesh case is 20 times higher than the error for the case without a sliding
mesh.
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The continuity errors in Figure 6.3 are computed using the left-hand-side of the continuity
equation (Equation 4.4) and are multiplied with the current time step and the cell volumes
(Equation 6.1) to obtain a volumetric error. The maximum local continuity error is the
absolute maximum value of the continuity error of all cells (Equation 6.2). The global
continuity error (Equation 6.3) sums the errors from all the cells and the cumulative con-
tinuity error sums the global continuity error over all time steps until the current time
(Equation 6.4). All the continuity errors in the figure are scaled with the particle volume.

V cell,jerror = ∆t
(

d
dt

∫
V

α dV +
∫
V

∇ · (αu) dV
)

(6.1)

V localerror =
∥∥∥V cell,jerror

∥∥∥ (6.2)

V globalerror =
Ncells∑
j=1

V cell,jerror (6.3)

V cumerror =
tend∑
t=1

V globalerror (6.4)

Where:
V cell,jerror is the continuity error of cell j [m3]
V localerror is the absolute maximum value of the continuity error of all cells [m3]
V globalerror is the sum of all the continuity error of the cells [m3]
V cumerror is the sum of the global continuity error over all time steps until the current time,
indicating the total loss or gain of volume during the simulation. [m3]

Both simulations including the sliding mesh show an increase in the local continuity error.
The case with the sliding mesh and the mask shows a local maximum continuity error of
2.2% of the particle volume. While this is a large error, the maximum global continuity
error (Figure 6.3b) of both sliding mesh cases is comparable. The case of the sliding mesh
with the mask even shows a slightly lower cumulative continuity error.

No sliding mesh Sliding mesh Sliding mesh, masked

Abs. vel. error at interface 4.1 · 10−5 m/s 1.1 · 10−2 m/s 8.3 · 10−4 m/s
Rel. vel. error at interface 3.7 · 10−5 1.6 · 10−2 1.2 · 10−3

V localerror/Vp 5.1 · 10−9 3.6 · 10−5 2.2 · 10−2

V
global
error /Vp 3.7 · 10−15 3.6 · 10−5 1.3 · 10−5

V cumerror/Vp 4.2 · 10−15 3.9 · 10−5 1.7 · 10−5

Table 6.4: Overview of the absolute and relative velocity errors of the different simulations together
with the continuity errors.

The cumulative continuity error of both sliding mesh cases is O10 higher than without a
sliding mesh. While this is a huge increase in error, it is still small compared to the volume
of a particle (V cumerror/Vp = 10−5). This error will therefore not likely influence the results of
the simulations of particles in a rotating cutter head.
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6.2.4 Errors for particle centroid, kernel and diffuse method
Figure 6.4 displays the root mean square error (Equation 5.6) for the four different cases
shown in Table 6.2 against different Vp/Vcell values. This error is computed with respect to
the reference solution (uref ), which is computed using Python using a much smaller time
step.

urms =

√√√√ 1
N

N∑
n=0

(
usimn − urefn

)2
(5.6 rev.)

The error in velocity and position of the particle centroid method, indicated in blue, is
higher than the error of the other two methods. For small particles comparison to the cell
size, the errors are comparable. However, the error increases significantly when particles
take up more than 10 % of the volume of the cell.

Both the errors for the diffusion method and kernel method show a similar trend. For both
methods the error does go down with increasing kernel width. The kernel method has a
slightly lower error. However, for the two smallest cell sizes with the lowest distance factor
(γ = 1) the diffusion method performs better.
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Figure 6.4: Root mean square error for the settling particles using the three simulation techniques.
The diffusion method and kernel method are simulated using two different distance factors. The
kernel method in combination with a sliding mesh interface is simulated for a single distance factor.

6.2.5 Oscillations in settling velocity
All the methods show unphysical oscillations in the settling velocity. For the particle
centroid method, these oscillations where visible in Figure 6.2a. Figure 6.5 displays a
close-up of the settling velocity and visualises these oscillations for the diffusion and kernel
method. However, the amplitude of these oscillations is much smaller than for the particle
centroid method.

On a finer mesh, indicated by the higher dp/∆x, the amplitudes of the oscillations decrease
(Figure 6.5 b). In this figure, the settling velocity computed with the particle centroid
method falls outside of the plotted area as it over-predicted the particle velocity by 90%.
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Figure 6.5: Particle velocity oscillations for the three simulation methods for mesh size dp/∆x = 0.5
and dp/∆x = 1.

These oscillations are caused by the particle’s centre changing cell. For the particle centroid
method and the diffusion method the particle changes cell during a single time step. Only
at that moment the particle volume is transported. To compensate for this volume, a
volume of water should be transported in the opposite direction. This velocity acts on the
particle and slows it down via the drag relation. After the particle has changed cells, the
fluid velocity is directed in the same direction as the particle and the particle accelerates.

Figure 6.6 shows the concentration and the return flow for the kernel method (on top)
and the diffusion method (bottom panes). For the kernel method the concentration profile
moves gradually during the 3 sequential time steps, since each time step the Gaussian
kernel is evaluated based on the distance between the particle centre and a cell centre. The
velocity profile over the vertical centreline of the particle is mostly negative, indicating a
flow in the settling direction. There is a small part, where a continuous return flow is
present.

The diffusion method spreads the influence of the particle concentration over multiple
cells. However, it does not smooth the concentration over time. Figure 6.6 shows the
concentration profile moving a whole grid cell, when the particle centre changes cell, leading
to a 10 times as large return flow as for the kernel method. In the time step before and after
the particle changed cells, there is no return flow, leading to the aforementioned velocity
oscillations.

The oscillation with a small amplitude when using the kernel method is likely due to the
changing interpolation volume of the fluid phase velocities.

Note the difference in the concentration peak between the diffusion method and the kernel
method. For the kernel method the concentration at the peak is largest when the particle
is located at the centre of a cell, while the concentration in the diffusion method is not
influenced by this distance.
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Figure 6.6: Particle fractions and velocities at three sequential time steps: before changing cell
( ), after changing cell ( ) two time steps after the particle changed cell ( ). The two
top panes show the results for the kernel method and the downward panes for the diffusion method.

Effect of continuity equation
This return flow of Figure 6.6 can be explained by the continuity equation of the fluid
phase fraction (Equation 4.3). In this continuity equation, there is only a fluid return flow
from the moving particle when there is a change in the fluid fraction. In both the particle
centroid method and the diffusion method, the time derivative of the fluid fraction αc is
only non-zero when the particle changes cells.

∂αc
∂t

+∇ · αc uc = 0 (4.3 rev.)

In order to see the influence of the concentration and time step on the velocity, the continu-
ity equation is discretised using the Gauss theorem (Equation 4.6) and the time derivative
is discretised using an Euler discretisation leading to Equation 6.5. The right-hand side
shows the summation of fluxes over the faces (f). Note the double subscripts for the fluid
phase and the value at the faces, whereas in Section 4.2, the subscript for the fluid phase
was left out.
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Vcell
∆αc
∆t = −

∑
f

αc,f uc,f · nf Af (6.5)

Equation 6.5 can be rearranged to an expression for the fluid velocity on a single face in
normal direction due to the change in concentration over time (Equation 6.6). Note that
this is simplifies the discretised continuity equation to a single face.

uc,f · nf = − 1
∆t

∆αc
αc,f

Vcell
Af

(6.6)

Equation 6.6 shows an increasing return flow on the face with an increasing change in
fluid fraction ∆αc. This explains the oscillations in the fluid velocity and therefore the
settling velocity. In Figure 6.5 the oscillations diminished with finer mesh (larger dp/∆x).
When using a finer mesh, a same size particle is smoothed over more mesh cells than for a
coarser mesh, leading to a smaller change in concentration when the particle moves to an
adjacent cell. For the kernel method the concentration changed more gradually than for
the diffusion method, leading to a more constant particle velocity.

Equation 6.6 shows that a smaller time step leads to a larger return flow during a smaller
time period. Typically a smaller time step leads to a more stable simulation. However not
for the diffusion method, since a smaller time step increases the return flow velocity.

6.3 Hindered settling effect
Section 3.3.6 showed the drag relation with the influence of hindered settling. This section
will show the verification this Di Felice drag formulation (Equation 3.58).

αp

1 m

2.5 m

2 m

1.5 m

0.01 m

Figure 6.7: Numerical do-
main and set-up for hindered
settling.

Parameter Quantity

Particle
dp 0.01 [m]
ρp 2650 [kg/m3]
αp 0.027, 0.1, 0.21 and 0.31 [-]

Fluid water at 20◦ C
ρf 998 [kg/m3]
ν 1.0034 · 10−6 [m2/s2]

Domain
∆x 0.1 m, 0.01 m

Dist. fac. γ 0.5, 0.75, 1, 2, 3
Time

∆ t 2 · 10−3 s
NtimeSteps 20

Table 6.5: Simulation parameters for the
hindered settling simulation.
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6.3.1 Numerical setup
The numerical domain is a 6 metre high and 1 metre wide 2-dimensional column (Figure
6.7). In this column a cloud of particles with a specified concentration is released over a
height of 2 meters. Gravity, drag, added mass and the pressure gradient force act on the
particles in the cloud. Turbulence is modelled using the realizable k-ε turbulence model
(section 3.2.2). Appendix C shows the relevant numerical settings for these models. The
results of the numerical simulation are verified against a reference solution computed using
Python with the same forces as in the simulation using a much smaller time step (1 · 10−7

s).

Table 6.5 shows physical and numerical parameters of the simulations. All these simulations
are performed using the realizable k − ε turbulence model.

The particle volume concentrations range from 2.7 · 10−2 to 0.31. While the Di Felice drag
model is typically used up to particle fractions of 0.2, the concentrations in the simulation
go up to 0.3 to demonstrate the models capability of including the effects of a smaller
inter-particle distance. In the cutter head, high concentrations are likely only found at the
blades. At the rotating blades, there will be a layer of rock, which is dominated by contact
forces rather than hydrodynamic forces.

The next section compares the results of the three simulation techniques presented in
Section 3.4. Section 6.2 showed that the particle centroid method over-predicts the terminal
settling velocity for small mesh sizes relative to the particle size. To get physical results
for the particle centroid method, a coarse mesh of 10 cm is used for these simulations
(dp/∆x = 0.1). In the simulations using the kernel method and diffusion method a 1 cm
mesh size is used (dp/∆x = 1). When this finer mesh would be used for the particle centroid
method, the settling velocity of a single particle would be over-predicted up to 90% as was
shown in the previous section. Therefore, only the coarse mesh will be used for the particle
centroid method.

The cloud of particles is tracked for 1 second in which it reaches its terminal settling
velocity. Every 1/100 s, the median settling velocity of all the particles is computed, which
is taken to be representative for the hindered settling velocity of the cloud.

6.3.2 Verifying the simulation results
Figure 6.8 shows the simulated median settling velocity of the cloud in time compared
to the reference solution. The top left pane shows the simulation results for the original
particle centroid method. For the higher concentrations the simulation first under-predicts
the settling velocity, while the terminal settling velocity is over-predicted compared to the
reference solution. An explanation could be a difference in the local concentration at the
particle caused by the mapping to the mesh. A second hypothesis is a difference in raining
out of particles in the bottom of the cloud, causing a lower concentration and a higher
terminal settling velocity.

The kernel method shows better results on both a coarse mesh and a fine mesh using
a distance factor of 3.0 than the particle centroid method (Figure 6.8b, c). Also, the
diffusion method shows good results on the fine mesh (Figure 6.8d) using this distance
factor. Similarly to the particle centroid method, the diffusion method is under-estimates
the particle velocity at higher concentrations when accelerating.
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Figure 6.8: Simulation of the settling velocity of a cloud of particles for the original particle centroid
method, the kernel method and the diffusion method. The different concentrations, αp = 0.027 (
), αp = 0.1 ( ), αp = 0.21 ( ) and αp = 0.31 ( ), are plotted against the reference solution ( ).
The kernel method and the diffusion method use a distance factor γ = 3.

Comparing the error of the different methods
For a quantitative analysis of the methods the root mean square error (rms error) is
computed between the simulations and the reference solution (Equation 5.6). Figure 6.9
shows these errors for the different methods against the volumetric concentration. The
thick green line represents the root mean square error of the analytical solution using a
10% higher drag coefficient, representing the uncertainty in the drag coefficient of natural
grains, since these will have different shapes. A 10% higher drag coefficient leads to a
comparable rms error as Haider and Levenspiel (1989) computed for their drag relation
with respect to measurements. They found a rms error in the drag coefficient of 0.022
to 0.034 for isometric solids and 0.077 to 0.154 for non-isometric solids. These values are
comparable to the rms error of 0.042 when increasing drag coefficient with 10%.
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Figure 6.9: The urms error at different particle fractions (volumetric concentrations) for the three
solution methods. Different distance factors are used for the simulations with the kernel method.

A numerical method does not need to have a significant higher accuracy than this error,
since this error will be the determining the total modelling error. The black line shows the
error for the particle centroid method on the coarse mesh. The blue line represents the
error when using the diffusion method on a fine mesh and the red lines show the results of
the kernel method using different distance factors on a fine mesh.

When lowering the distance factor for the kernel method, the error increases. Especially
for the lower volumetric concentrations. The rms error goes down with increasing concen-
tration for these smaller distance factors. This indicates an inhomogeneous concentration
field for the lower concentrations, leading to deviations in drag force and causing the error
in settling velocity. The errors for all the distance factors converge to a small value for
higher concentrations.

For a distance factor of 1.0, the maximum error of the kernel method is in the same order
of magnitude as for the particle centroid simulation. The distance factor of 0.75 shows
a lower error than the particle centroid method from volume concentrations starting at
10%. Both distance factors predict the settling velocity within the error margin defined
by the 10% increased drag coefficient, rendering these values applicable for simulating the
particles inside the cutter head. A distance factor of 0.5 shows a larger error than the
reference solution with the increased drag. Up to a particle fraction of 0.10, these results
show a larger error than the point particle method. This is an unacceptable high error.

The diffusion method using a distance factor of 3.0 shows an error 3 times higher than
the error for the kernel method, while having a similar trend in relation to the volumetric
concentration. Simulations using the diffusion method with a lower distance factor went
unstable and crashed. Both the higher error and the crashes are likely caused by the sudden
upward velocity as a particle changes cell as was visualised in Figure 6.6 for a single particle.
These upward velocities are more extreme when a cloud of particles settles, since multiple
particles change cell and the fluid velocities interact with the particles. When using a lower
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distance factor, the concentration is less homogeneous, leading to higher upward velocities
when particles change cells. This could cause the simulation to become unstable.

Influence of a different continuity equation
The unstable results of the diffusion method using a distance factor lower than 3.0 con-
tradict the paper of Sun and Xiao (2016b). As described in Section 4.3, they used the
smaller distance factor of

√
2 in their simulations. This difference likely arises from using

a different form of the continuity equation as shown in Equation 6.7. In this form there is
no time derivative of the particle concentration present.

∇ · αc uc +∇ · αp up = 0 (6.7)

This relation is obtained by summing the species balance for the fluid (Equation 3.89)
and species balance for the particles. Adding these causes the time derivatives of the fluid
and particle fraction to drop out of the equations. Equation 6.6 showed that this time
derivative in the continuity equation causes the oscillating return flow around a settling
particle.

Note that particle velocity up in Equation 6.7 is a volume averaged Eulerian quantity
instead of a Lagrangian one. To obtain this velocity, the Lagrangian particle velocity
should be mapped in the same way as the particle and fluid fractions. The return flow
due to the settling particle can be computed by discretising the continuity equation in the
same manner as Equation 6.5:∑

f

αc,f uc,f · nf Af = −
∑
f

αp,f up,f · nf Af (6.8)

The return flow uc,f can be computed from the volume averaged particle velocity at the
faces up,f . Equation 6.9 shows this fluid phase velocity at a face, based on a cell with a
single face. It shows a steady upward flow due to the particle velocity. This relation shows
no jump in return flow when a particle changes cell, since there is no relation to the time
derivative of the concentration.

uc,f = −αp,f up,f
αc,f

(6.9)

In a single test case, it showed a realistic fluid velocity profile around the particle compa-
rable to the one obtained from the kernel method. This method will therefore hold better
results than the currently implemented diffusion method and could be used in future re-
search.

6.3.3 Time plot of concentration profile
To visualise the behaviour of the settling cloud of particles, Figure 6.10 shows snapshots of
the particle concentrations over the height of the column. This figure compares the kernel
method and diffusion method with an initial volumetric concentration of 0.10. For the
kernel method both the distance factor of 1.0 and 3.0 are used. In these simulations the
bottom is heightened to 1 metre below the lowest part of the cloud to simulate the cloud
forming a bed at the bottom.
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Figure 6.10: Time series of a cloud of settling particles. The initial volumetric concentration is
0.1. Kernel method with a distance factor of 1 ( ), kernel method with a distance factor of 3
( ), diffusion method with a distance factor of 3 ( ).

The second pane in Figure 6.10 shows a more dilute concentration of particles at the bottom
of the cloud after a second of settling. This indicates particles at the bottom of the cloud
going faster than the rest of the cloud. As a result, the initial sharp interface with the
fluid beneath, will become smoother. The kernel method with a distance factor of 1.0 (in
red) predicts concentration waves at the bottom of the cloud, while the diffusion method
and the kernel method with a larger distance factor do not show this. Since the results
differ for the two distance factors, it is likely that this effect is smoothed for the other two
methods.

At the top of the cloud the kernel method also predicts density variations. These are
highlighted in the middle panes in the figure. The diffusion method shows a slight increase
in concentration. These density variations are more pronounced for the results of the kernel
method. For both distance factors, the kernel method predicts multiple density waves.
While these waves tend to occur for concentrations higher than a critical concentration,
they should not occur at these relatively low concentrations. Together with the fact that
the diffusion method does not show this behaviour to this extend, it gives reason to believe
this could be caused by using a different kernel for computing the concentration as for
mapping the fluid velocity to the particle.

After 5 seconds the whole cloud is settled and has formed a bed. The diffusion method
predicts a slightly higher bed concentration than the kernel method.

6.4 Conclusion and discussion
The particle centroid method leads to physical unrealistic results for large dp/∆x or Vp/Vcell
ratios. In these simulations, the particles settle too fast or the simulation becomes unsta-
ble. This effect was already mentioned in Section 3.4.1 as the reason for implementing a
smoothed method such as the kernel method or diffusion method.

Both the kernel method and diffusion method show good results for the single settling
particle and the hindered settling. However, the diffusion method becomes unstable for
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distance factors lower than 3 due to the influence of the time derivative of the fluid fraction.
A single test case using Equation 6.7 for the continuity showed a more realistic flow between
the particles, looking similar to the flow when using the kernel method. This different
continuity equation is likely the reason Sun and Xiao (2016b) could perform simulations
with distance factors as small as

√
2. The smoother return flow is also probably the reason,

the errors of the kernel method are smaller than the errors of the diffusion method.

Processor and sliding mesh interfaces should be treated as special cases (Section 4.3.2)
for the kernel method. The sliding mesh interfaces causes a relative error in the settling
velocity of 1.2 ·10−3 for a particle passing a sliding mesh interface when excluding the time
derivative of the particle concentration in the continuity equation. This leads to a global
error in the continuity equation of 1.3 · 10−5 times the particle volume, which is in the
same order of magnitude when including the time derivative of the concentration in the
continuity equation. However, this is orders larger than the global error of the simulation
without a sliding mesh interface.

As mentioned in Section 4.3.2, transferring particle information to all other processors and
back is a time-consuming operation. Increasing the number of cores for the simulation is
therefore not always efficient. However, when using the alternative diffusion method, every
time step an expensive diffusion equation needs to be solved for two vector and two scalar
quantities. There is likely an optimum in simulation time for both methods with respect
to number of cores.

With the use of the continuity equation including the time derivative of the fluid phase
fraction, the kernel method is the best method to solve the interaction of large particles
on a finite volume mesh. For a distance factor 2 and higher, the errors in the hindered
settling case are very low. A distance factor of 1.0 ensures a faster simulation, with
root mean square errors smaller than the reference solution with a 10% increased drag
coefficient. This increased drag coefficient is an indication of the uncertainty in the shape
of the modelled material in the cutter head. Since the numerical error is smaller than the
modelling error, this method in combination with the distance factor of 1.0 suffices for
simulating particles in a cutter head.



7
Validation of colliding

particles in a viscous fluid

7.1 Introduction
This chapter shows the validation of the particle collision model described in Section 3.5.
First, the normal particle-wall collisions will be validated. Gondret et al. (2002) performed
multiple experiments of normal colliding spheres and simulated some of these experiments.
In this chapter, the OpenFOAM model is validated against the measurements of Gondret
et al. (2002) for a bouncing steel sphere in silicon oil and a bouncing Teflon sphere in air.

Validating the OpenFOAM code for these two particle-wall collisions of Gondret et al.
(2002), only shows the model is able to simulate a correct rebound velocity for two specific
Stokes numbers. Therefore, the coefficient of restitution should also be validated for a wide
range in Stokes numbers. This validation is performed against the data of Joseph et al.
(2001) and verified against the relation of Legendre et al. (2006).

Joseph and Hunt (2004) performed experiments with obliquely colliding glass and steel
spheres against a wall in different glycerol water solutions. These results are used for
validation the oblique particle-wall collisions.

In the last section inter-particle collisions are verified against the relation of Legendre et al.
(2006). The oblique collisions are validated against the data of Yang and Hunt (2006),
who performed oblique inter-particle collisions for steel and Delrin spheres.

7.2 Particle-wall collisions
7.2.1 Time trace of a normal collision with a wall
Gondret et al. (2002) performed experiments on the rebound of spheres in different kind
of fluids. They measured the position of the sphere using a high-speed camera and derived
the particle velocities from this data. Their experiments with a colliding steel sphere in
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Parameter Steel sphere in silicon oil Teflon sphere in air

Particle Steel Teflon
dp 3 mm 6 mm
ρp 7800 kg/m3 2150 kg/m3

E 240 GPa 400 MPa
edry 0.97 0.82
un,in 0.58 m/s 1.01 m/s
Rep 164 394
St 152 7.8 · 104

Fluid Silicon oil Air
ρf 935 kg/m3 1.2 kg/m3

ν 1.06952 · 10−5 m2/s 1.5417 · 10−5 m2/s
Dist. fac. γ 3 3
Domain

∆x 0.03 m, 0.006 m 0.06 m, 0.012 m
Time

∆t 1 · 10−3 s 1 · 10−3 s
NtimeSteps 12 12

Table 7.1: Simulation parameters for a particle colliding with a wall based on the experiments of
Gondret et al. (2002).

viscous oil and a Teflon sphere in air are used as a first validation case for the numerical
model. In the simulation of the experiments the gravity, drag force, pressure gradient
force and added mass force are considered (Equation 3.38 to 3.46). The forces during the
collision are computed using Equations 3.94 and 3.95.

Table 7.1 shows the physical properties of both the numerical and physical experiments.
The material properties of the steel sphere in silicon oil are the same for the numerical model
and the experiments. However, in the model of the Teflon sphere in air, the coefficient of
restitution is slightly increased to match the successive rebounds better. Gondret et al.
(2002) specified a coefficient of restitution of 0.8 ± 0.02. In the numerical simulations a
value of 0.82 is taken, which lies within the specified accuracy range. The number of time
steps (NtimeSteps) describe the temporal discretisation of the collision. The time step for
the collision is computed with Equations 3.105 and 3.106.

Based on the described values of the Reynolds number and Stokes numbers in Gondret et al.
(2002), it seems to be defined by the particle radius instead of the particle diameter. In
this dissertation the Reynolds number based on diameter will be used, which is calculated
using from the Stokes numbers defined in Gondret et al. (2002).

Figure 7.1 shows the experimental data compared with the modelled results for the steel
sphere in silicon oil. The rebound velocity after the first collision is predicted with 7.5%
accuracy. This shows that the soft-sphere model can be applied for particle collisions with
the wall. The simulated first rebound height is 18% higher than was measured in the
experiment. This over-prediction of the rebound height matches the conclusion of Gondret
et al. (2002). When they simulated the first rebounds of their experiment, they also over-
predicted the rebound height. They attributed this difference to the absence of the history
force in their simulations.
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Figure 7.1: Simulation of a falling 3 mm steel particle in viscous oil compared with the experimental
results of Gondret et al. (2002) (). The simulations are executed for two particle diameters over
cell size ratios. dp/∆x = 0.1 ( ) and dp/∆x = 5 ( ).

When they included the history force, the simulated collision heights matched the exper-
iments within a few percent. Their simulations without history force were off by more
than 50% when simulating a particle with a particle Reynolds number of 30 based on the
diameter. (Rep = up dp/ν).

This error decreased for higher Reynolds numbers to 14% for a particle Reynolds number
of 788. This gives reason to believe that the history force becomes less important with
higher particle Reynolds numbers. In a 1 to 4 model cutter head the particle Reynolds is
2 · 104 (Table 2.1), which is orders higher than these tested particle Reynolds numbers.

The simulation results of the Teflon sphere colliding in air match better with the exper-
imental results. (Figure 7.2). In this case the motion is dominated by gravity and the
collisions. For collisions in air, there is no extra energy dissipation at the collision, due to
the fluid motion during the collision. Therefore, for all the collisions the same coefficient
of restitution can be used, meaning the expression of Legendre et al. (2006) is not used in
this case.

Simulating the first collision show a slight over-prediction of the rebound heights. These
collisions would match better when the original coefficient of restitution 0.80 would be
used. However, then the successive collisions will be dampened too much. Even with this
higher coefficient of restitution of 0.82, the rebound height is under-predicted from the 7th
rebound onward.

For colliding spheres in air, the history force is not important, since the gravity is the
dominating force. The rebound heights are better modelled, which shows that the collision
model based on a single coefficient of restitution works well.
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Figure 7.2: Simulation of a falling 6 mm Teflon particle in air compared with the experimental
results of Gondret et al. (2002) (). The simulations are executed for two particle diameter over
cell size ratios. dp/∆x = 0.1 ( ) and dp/∆x = 5 ( ).

7.2.2 Validation of coefficients of normal restitution with a wall
Joseph et al. (2001) measured the coefficient of restitutions of Delrin (a hard plastic),
glass, nylon and steel spheres when colliding on a wall with or without liquid present.
They used different materials and diameters for the spheres. This resulted in a wide range
of different Stokes numbers. Figure 3.6 in Section 3.5.2 shows the experimental results of
data Joseph et al. (2001) together with the expression of Legendre et al. (2006).

uin

uout

Figure 7.3: Numerical
set-up.

Parameter Quantity

Particle Glass
dp 50 µm - 20 mm
uin 7.4 · 10−3 - 1.4 m/s
ρp 2540 kg/m3

E 60 Gpa
edry 0.97
St 2 · 10−1 - 1.86 · 104

Fluid Water
ρf 1000 kg/m3

ν 1e-6 m2/s
Time
NtimeSteps 12

Table 7.2: Simulation parameters for normal
particle-wall collisions.

While in the experiments different materials and fluids were used, these are simulated using
only glass spheres. The size of the spheres is varied together with their impact velocity to
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Figure 7.4: Verification of normal coefficient of restitution for wet particle-wall collisions.

simulate the wide range of Stokes numbers. The impact velocity is equal to the imposed
terminal settling velocity. No other forces besides the collision force act on the particle
to purely verify the effect of the collision. Because only the collisional force act on the
particles, there is no need for coupling between the fluid and the particles. Table 7.2 shows
the input properties of the simulations, such as the particle diameter, impact velocity and
resulting Stokes number.

Figure 7.4 shows the results of the simulated coefficient of restitution scaled by the dry
coefficient of restitution (εwet/εdry) together with the data of Joseph et al. (2001) and the
expression of Legendre et al. (2006). The red diamonds show the simulation results for
a typical Youngs modulus of glass (60 GPa). The expression of Legendre et al. (2006) is
well reproduced.

Effect of decreasing the Young’s modulus
Lommen et al. (2014) showed that lowering the Young’s modulus of the particles does not
lead to significant errors in the results, while it does lower the computational costs. The
blue dots in Figure 7.4 show the same simulation results using a lower Young’s modulus (10
Mpa). This lowers the stiffness of the collision, increases the collision time and increases
the time step of the DEM simulation. This does not influence the rebound velocity, which
is determined by the damper and not by the stiffness of the spring. Therefore, the Young’s
modulus can be lowered without making a large error.

Equation 3.105 in Section 3.5.3 showed the collision time being proportional to E∗−2/5.
Decreasing the Young’s modulus of 60 GPa with a factor 6000 to 10 Mpa, leads to an 32
times increase in collision time and time step. This will be used for decreasing the time
step for collisions of particles with the blades of the cutter head (Section 8.3.2).

Figure 7.5 shows the error of the simulation with respect to the formulation of Legendre
et al. (2006) together with the maximum scatter of the experimental data Joseph et al.
(2001) with respect the formulation of Legendre. The modelled data lies within the enve-
lope of the measured data and over-predicts the coefficient of restitution with a maximum
of 0.046. Thus, the simulations can predict the rebound velocity within the accuracy of
the measurement.
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Figure 7.5: Error in simulations of normal coefficient of restitution for particle-wall collisions
compared to the envelope of the data of Joseph et al. (2001) depicted by the dashed line.

Decreasing the Young’s modulus leads to a slightly larger error, which is probably due to a
slightly too large time step for solving the viscous damper in the collision model. However,
the simulation error is not larger than the spread in the experimental data. This shows
that the Young’s modulus can be reduced by a factor 6000 without making large errors in
modelling the normal rebound of the particles.

Dredged material is mostly sand- or limestone. Sandstone has a typical Unconfined Com-
pressive Stress (UCS) of 20 to 30 MPa and its Young’s modulus is said to be 200 times
the UCS value leading to a Young’s modulus of 4 to 6 GPa. For lime stone the UCS is 30
to 40 MPa and the Young’s modulus is 500 times the UCS value: 15 to 20 GPa. These
values are at most a single order of magnitude smaller than the Young’s modulus of glass.
Therefore, the validation for glass beads is representative for dredged material.

7.2.3 Validation of oblique collisions with a wall
Joseph and Hunt (2004) measured the rebound angle after a collision for different incidence
angles in fluids of different viscosities. Glass and steel spheres with a diameter of 12.7 mm
collided with a Zerodur glass plate. The rotation of the particle and the rebound angle were
measured using a high-speed camera. The incident and rebound angles were normalised
using:

Ψin = tan (ζin) = ut,in
un,in

Ψout = ε tan (ζout) = ut,out
un,in

(7.1)

Where:
Ψin and Ψout are the effective angles of incidence and rebound [-]
ζin and ζout are the angles of incidence and rebound at the contact point [◦]

Figure 7.6 shows the location of a particle before and after it collides with the wall and
shows the definition of the angles. An important parameter in modelling the collision is the
friction factor (µf ). This is the ratio between the tangential and normal force during the
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Figure 7.6: Numerical set-up for an obliquely colliding particle with the wall.
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Figure 7.7: Simulation and experiment of an obliquely colliding 12.7 mm sphere with the wall
including a trend line in the data of Joseph and Hunt (2004).

collision and is used for computing the maximum tangential force before the particle starts
sliding. Joseph and Hunt (2004) computed this friction factor with Equation 2.15 from
Walton (1993) using the incidence and rebound angle and the coefficient of restitution.
Table 7.3 shows all the parameters used in the simulation and the experiments.

Figure 7.7 shows the experimental and numerical results of the oblique collision of steel
and glass spheres. Glass spheres have a higher friction factor than steel spheres and this
creates a larger backspin when colliding with the wall, leading to smaller (effective) rebound
angles. For small incident angles (nearly normal collisions) the rotational velocity (ωoutR)
is higher than the translational velocity. The rotational velocity at the contact point is in
opposite direction of the movement of the particle, leading to negative rebound angles.

Steel spheres show a nearly reflective collision with an equal rebound angle as incident
angle. The small friction factor does not slow down the tangential velocity as much as
for the glass spheres. Also, the particle does not create much backspin and therefore the
rebound angle (Ψout) stays positive.
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Parameter Quantity for glass Quantity for steel

Particle
dp 12.7 mm 12.7 mm
unormalin 0.37 m/s 0.27 m/s
θin 2.5◦ to 65◦ 2.5◦ to 65◦
ρp 2540 kg/m3 7780 kg/m3

E 60 Gpa 190 Gpa
ν 0.23 0.27
µf 0.15 0.02
Stin 360 1064
εdry 0.97 0.97

Fluid water at 20◦ C
ρf 998 kg/m3 998 kg/m3

µ 4.5 · 10−3 Pa s 3 · 10−3 Pa s
ν 4.51 · 10−6 m2/s 3.01 · 10−6 m2/s

Time
NtimeSteps 12 12

Table 7.3: Simulation parameters for obliquely colliding particles.
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Figure 7.8: Errors in the simulation of an obliquely colliding 12.7 mm sphere, where the envelope
is defined as the difference of the data with the trend line.

Both the steel and glass simulations show a similar trend as the experiments. To compare
the simulation results with the experiments, a moving average of the experimental data
is computed (depicted by the lines in Figure 7.7). Figure 7.8 shows the spread of the
experimental data with respect to this moving average. It also shows the error of Ψout
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against the incident angle (Ψin) for the simulations using different Young’s moduli. This
visualises if the Young’s modulus can be scaled down to speed up the simulations. For
glass spheres, the Young’s modulus can be lowered to 10 MPa while the error remains
nearly the same. The error for the steel spheres increased significantly when the Youngs
modulus is lowered to 10 MPa. The rebound angle is over-predicted, meaning that the
tangential velocity is over-predicted. Still most of the modelled values lie within the envelop
of the measured data. For 100 Mpa the results are nearly identical to the original Young’s
modulus (190 Gpa). This indicates the Young’s modulus can be scaled down to increase
the speed of the simulations for oblique collisions.
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7.3 Inter-particle collisions
The previous section showed the validation for normal and oblique particle-wall collisions.
This section continues with the verification and validation of normal and oblique inter
particle collisions.

Yang and Hunt (2006) measured inter-particle collisions and concluded that the collisions
behave similar to particle-wall collisions. For the rebound in normal direction, the relation
between the Stokes number and the coefficient of restitution showed the same trend as
found by Joseph et al. (2001). However, the measured oblique inter-particle collisions
showed a bit different trend as was already shown in Figure 2.23.

uin1

uin2

uout1

uout2

Figure 7.9: Normal
inter-particle collision.

Parameter Quantity

Particle glass
dp 100 µm - 36 mm
unormalin 7.6 · 10−3 - 1.31 m/s
ρp 2540 kg/m3

E 60 Gpa
edry 0.97
St 2 · 10−1 - 1.85 · 104

Fluid water
ρf 1000 kg/m3

ν 1e-6 m2/s
Time
NtimeSteps 12

Table 7.4: Simulation parameters for normal
particle-wall collisions.

7.3.1 Verification of normal collisions
Figure 7.9 shows the numerical setup for the collision of two particles. As in the previous
section, the collisions are conducted without any hydrodynamic forces (drag, added mass,
etc.) acting on the particles. This means there is no coupling between the fluid and
particle phase. Both particles have the same properties (size, density, Young’s modulus)
and incidence velocity. Table 7.4 shows these values together with the numerical settings.

Figure 7.10 shows the result of the simulation for the Young’s modulus of glass (60 Gpa)
and a reduced Youngs’s modulus (10 Mpa). For both, the formulation of Legendre et al.
(2006) is well reproduced. The absolute errors in Figure 7.11 are much lower than the
envelope of the data of Joseph et al. (2001). A maximum absolute error of 0.0084 shows
that the method is can predict normal inter particle collisions accurately.
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Figure 7.10: Simulations of normal coefficient of restution for an inter-particle collision.
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Figure 7.11: Absolute error for the simulations of coefficient of normal restitution with two colliding
particles. The dashed line shows the deviation of the measurements of Joseph et al. (2001) with
the expression of Legendre et al. (2006).

7.3.2 Validation of oblique collisions
Yang and Hunt (2006) measured the rebound angle of an oblique collision between two
spheres. They performed experiments for both steel and Delrin spheres. This section
validates the implemented collision model using their data. Figure 7.12 shows the numerical
setup of the two colliding particles. Both particles have the same, but opposite velocity.
Their velocity vectors are parallel and the collision angle is imposed by an offset distance d
between both particles. Both have identical properties such as Young’s modulus, size and
density. Table 7.5 shows all these properties.

Figure 7.13 shows the numerical results compared with the measurements. The numerical
model slightly over-predicts the rebound angle for steel collisions (left pane, open symbols).
It under-predicts the collisions of glass spheres for an incident angle less than 50 degrees
(Ψin < 1.2).
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Parameter Quantity for Delrin Quantity for steel

Particle
dp 10 mm 10 mm
θin 2.5◦ to 65◦ 2.5◦ to 65◦
ρp 1400 kg/m3 7780 kg/m3

E 2.8 Gpa 190 Gpa
ν 0.35 0.27
µf 0.10 0.02
εdry 0.95 1 0.97

Fluid
ρf 1000 kg/m3 1000 kg/m3

ν 1 · 10−6 m2/s 1 · 10−6m2/s
Time
NtimeSteps 12 12

Table 7.5: Simulation parameters for oblique inter-particle collisions.
1 Value obtained from Gondret et al. (2002).

Section 2.6.3 discussed the differences between inter-particle collisions and particle-wall
collisions. The experiments of inter-particle collisions show a larger deviation in rebound
angle due to the higher surface roughness of the spheres. This effect is not included in the
model. This roughness also induces a higher friction for the steel inter-particle collisions.
When using the dynamic friction factor of 0.02 computed by Joseph and Hunt (2004) for
oblique particle-wall collisions, the rebound angles are over-estimated. The filled triangles
in the left pane of Figure 7.13 show the simulation results for a friction factor of 0.04,
which corresponds better to the trend in the measured data.

For the inter-particle collisions of particles there is nearly no negative rebound angle for
sticking collisions as can be seen in the collision of Delrin and steel spheres in Figure 7.13. In
the particle-wall collision, this negative angle was caused by rotation of the particle. Yang
and Hunt (2006) hypothesised that the mobility of the particles and the interstitial fluid
layer between the particles reduce the tangential impulse between the particles and thus

u1

u2

d

ζout

ζin

ωout

uout2

Figure 7.12: An oblique collision between two particles.
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reducing the rotation in inter-particle collisions. The simulations of the Delrin spheres
result in a lower rebound angle than measured. However, the simulations did predict
positive rebound angles in the sticking regime (Ψin < 0.5). This shows that the model
does capture the mobility of the particles. The influence of roughness is not included in
the model, resulting in less deviation in rebound angles.
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Figure 7.13: Simulation and experiment of two obliquely colliding spheres.

7.4 Conclusions
The simulation method presented in Section 3.5 shows good agreement with the data of
Joseph et al. (2001), Joseph and Hunt (2004) and Yang and Hunt (2006). Particle-wall
and inter-particle collisions are predicted within the measurement errors.

Reducing the Young’s modulus does not lead to a significant higher error. While it does al-
low a larger time step in simulating the particle collisions, thus reducing the computational
cost. A Young’s modulus of 10 MPa instead of 60 GPa for glass still predicts the rebound
velocity and angle well. This indicates that collisions of pieces of sand- or limestone can
be predicted as well, since these have a Young’s modulus in the same order of magnitude:
4 to 20 GPa.





8
Modelling spillage in a

schematized cutter setup

8.1 Introduction
This chapter shows the spillage from a freely rotating cutter head, together with an analysis
of one of the spillage mechanisms: the out-flowing fluid flux from the cutter head.

This spillage is simulated using the three simulation techniques described in this disserta-
tion. Previous chapters described the validation of these techniques: the unsteady flow in
a rotating cutter head (Chapter 5), the particle fluid interaction (Chapter 6) and colliding
particles (Chapter 7). The simulated spillage will be compared with the analytical model
derived in Section 4.4.

This chapter ends with on overview of the simulation times when simulating a prototype
scale cutter head and the recommendations future spillage simulations.

8.2 Out-flowing flux of the cutter head
The outflow of water near the ring is one of the mechanisms causing spillage in the cutter
head. In this section, the out-flowing flux from the cutter with a suction mouth is compared
to the cutter head with axial suction and to an analytical model. This section uses the
same numerical results of the axial cutter head and the cutter head with a suction mouth
as were discussed in Chapter 5.

8.2.1 Computing the out-flowing flux
The out-flowing flux can be computed from the numerical simulations. Equations 8.1 to
8.4 show the calculation of these fluxes. The velocities at the cell-centres of the simulation
are interpolated to a surface-hull around the contour of the blades of the cutter head. The
radial velocity at each face i of the surface is computed using the normal vector of the
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surface (Equation 8.1) and the velocity at the face. To compute the radial flux at each face
(ϕrad,i) the radial velocity is multiplied with the face area (Ai) as shown in Equation 8.2.
Summing these fluxes leads to the total flux over the surface-hull (Equation 8.3), which
should be equal to the suction discharge (Qm). When summing all the positive fluxes, the
out-flowing flux (Qout in Equation 8.4) is obtained.

urad,i = ui · nf,i (8.1)
ϕrad,i = urad,iAi (8.2)

Qm =
faces∑
i

ϕrad,i (8.3)

Qout =
faces∑
i

pos (ϕrad,i) (8.4)

While the computed radial flux from Equation 8.3 should equal the defined suction dis-
charge, there is a difference. The computed flux differs within a band of -3% and +10%.
This could be caused by the interpolation of the velocities to the surface-hull.

The radial velocities and fluxes are computed for every 5 time steps during the last rotation
of the simulated cutter head. Averaging these values leads to the time averaged radial
velocities and fluxes.

8.2.2 Resulting out-flowing flux
Figure 8.1 shows the time averaged out-flowing fluxes for the cutter head with an uniform
axial suction (from Section 5.4) in light-blue. The results indicate a clear transition from all
fluid being sucked up to a linear relation between the rotational velocity and the out-flowing
flux at 20 to 30 rpm. This corresponds qualitatively with the experimental observations of
Mol (1977b) that there is an onset of the out-flowing flux.

The discharges for the cutter head with a suction mouth are shown in darker blue. The grey
lines around this line indicate the minimum and maximum out-flowing flux at a certain
time step. This band is very small, indicating that the simulations predict a steady outflow.
In red the results of an analytical model are shown. These will be explained in Section
8.2.3.

Based on the simulated outflows four observations can be made. First on the out-flowing
flux of the axial cutter head compared to the cutter head with suction mouth (the light-
blue and the darker blue line in Figure 8.1). The axial cutter head shows nearly no outflow
at 20 and 30 rpm, while the simulation of the cutter head with suction mouth does show
an out-flowing flux. Due to the eccentric placement of the suction mouth, the cutter head
with suction mouth does not create enough under pressure in the cutter head to prevent
outflow further away from the suction mouth. This effect is also visible when comparing
the radial velocities over the contour of the cutter head between the axial cutter head and
the cutter head with a suction mouth (Figure 8.2). In this figure the suction mouth is
placed at θ = 0. At 20 rpm there is an out-flowing flux for the cutter head with suction
mouth, further away from the suction mouth. While, for the axial cutter head the whole
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Figure 8.1: Out-flowing flux obtained from the numerical simulations of cutter head and the
analytical model.

contour shows an in-flowing flux. In Chapter 5 this was visualised in the streamline plots of
the axial cutter head (Figure 5.14) and cutter head with the suction mouth (Figure 5.24).

The second observation is the onset of the out-flowing flux compared to the experiments
of Mol (1977b) and Dekker (2001a). Both performed experiments on the outflow of a
freely rotating cutter head (Section 2.3.2). Table 2.2 shows the dimensionless velocity at
the onset of outflow for a rotational speed based on a 1:4 scale cutter head and a suction
discharge of 0.12 m3/s. Both literature shows that there is an earlier onset of outflow at
over-cut side than at the under-cut side. The simulation results in Figure 8.2 do show the
onset of outflow at 20 rpm, which is the simulation with the lowest rotational speed. At
this simulation there is outflow at both the over- and under-cut side of the cutter head.
At the over-cut side the outflow is closer to the suction mouth than at the under-cut side,
indicating an easier outflow at the over-cutting side as was observed by Mol (1977b) and
Dekker (2001a). However, the rotational speed at which this occurs does not match.

The sudden increase in out-flow flux at 45 rpm for the cutter head with a suction mouth
is the third observation. Which can be explained by looking at the total area in Figure
8.2 where an out-flowing flux is present. At 45 rpm, there is inflow near the ring at the
suction mouth, while at 60 rpm, an outflow at that location is present. This increased area
of outflow likely leads to the higher outflow discharge.

The fourth observation of the simulated results is the location of in-flowing flux for the
suction mouth case in Figure 8.2. The location of inflow is shifted to the under-cut side for
all rotational velocities and at increasing rotational speed it moves even more towards the
under-cut side. At 60 rpm, which corresponds to the nominal 30 rpm on prototype scale,
the centre of the inflow area lies 30◦ to 45◦ toward the under-cut side. When rotating
the suction mouth with 30 to 45 degrees in the over-cut direction, the inflow would be
symmetrical for both under- and over-cut. This seems a logical solution for decreasing
spillage at the over-cut side. However, Miltenburg (1983) showed for sand cutting, that
this will have a negative influence on the spillage for sand in both under and over-cut
direction (as explained in Section 2.3.3). Also in practice, the suction mouth is sometimes
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Figure 8.2: Time averaged radial outflow velocities around the cutter head. The suction mouth is
located at θ = 0 and the rotational velocity is from left to right. The velocities have been averaged
over 1 rotation of the cutter head. Only the top part of the cutter head is visualised.

rotated to the under-cut side to get a less spillage when over-cutting (Figure 2.8). These
two practical observations counter the idea of rotating the cutter head to the over-cut side.
Likely, the location of inflow is not the determining factor in spillage.

8.2.3 Calibrating analytical model
The out-flowing flux from the numerical simulations can be used to calibrate the analytical
spillage model described in Section 2.4.3 and Section 4.4. Table 8.1 shows the input
parameters for the analytical model. In calibrating the model, both the flow coefficient α
and the pressure coefficient β are varied. The final values are based on the smallest absolute
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Parameter Calibration parameter Best fit value

Flow coefficient α 0.0 to 1.0 0.375
Pressure coefficient β 0.0 to 1.0 0.774
Density in top of cutter ρ1 998.2 kg/m3

Density at bottom of cutter ρ2 998.2 kg/m3

Table 8.1: Calibration parameters for the analytical model of the cutter head.

error between the analytical and the numerical model. These values are α = 0.375 and
β = 0.774. In Section 8.3 these values will be used to compare this analytical model against
the numerical spillage simulations.

Figure 8.1 shows the outflow against the rotational speed of the cutter head for the numer-
ical simulations and the analytical model. From 20 rpm up to 45 rpm, the analytical model
shows a lower out-flowing flux than the simulations with a suction mouth. The analytical
model compares better with the out-flowing flux of the numerical simulations of axial cut-
ter head, due to the axial nature of the analytical model. The eccentric placement of the
suction mouth is not considered in the analytical model, resulting in an equal distribution
of the out-flowing flux over the azimuthal coordinate.

8.2.4 Predictive capabilities of analytical model
To obtain insight in the predictive capabilities of the analytical model, the model is com-
pared to a two other series of numerical simulations. One simulation series uses half the
suction discharge and the same rotational speeds as the series used for the calibration.
In the other series the nominal rotational speed of 60 rpm is used with a varying suction
discharge. Table 8.2 shows the original set of operational conditions the analytical model
was calibrated for together with two other simulation sets the analytical model will be
tested against. The same calibration coefficients of Table 8.1 are used.

Test case Rotational velocity Suction discharge

Calibration case 20, 30, 45, 60, 75, 90 rpm 0.12 m3/s
0.06 m3/s 20, 30, 45, 60, 75, 90 rpm 0.06 m3/s
Varying suction 60 rpm 0.03, 0.06, 0.09, 0.12, 0.15 m3/s

Table 8.2: Operational parameters for the calibration and testing of the analytical model.

Figure 8.3 shows a good comparison between the out-flowing fluxes of the numerical simu-
lation and the analytical model. The bi-linear simulation results are not predicted by the
analytical model. This is likely similar to the effect as in Figure 8.2 where at low rotational
speeds the out-flowing flux is only present further away from the suction mouth.

Besides the out-flowing flux, also the outflow height can be compared between the analytical
model and the simulations (Figure 8.4). The figure shows the outflow height for the
calibration case and the two other cases. For all cases, the analytical model predicts
an outflow height nearly 3 times as high as the simulations. Since the discharges are
comparable, this means the outflow velocities in the analytical model are 3 times as low as
in the simulations.
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Figure 8.3: Simulation and analytical model for the suction velocity of 0.06 m3/s and different
discharges

For distinguishing which of the two models likely predicts the right outflow height, these
outflow heights are compared to the simulation result of Zhang et al. (2018) presented
in Figure 2.16 of this dissertation. From this figure an approximate outflow height on a
prototype scale simulation can be obtained. This is 0.25 m for a dimensionless velocity
(Equation 2.7) of 2.2. It corresponds to a 1 to 4 scale outflow height of 0.0625 m for
the same dimensionless velocity. This outflow height compares well with largest modelled
dimensionless velocity in these simulations (Figure 8.4), which showed an outflow height
of 0.0633 m at a dimensionless velocity of 2.5. This gives confidence that the simulation
results are correct and the analytical simulations are not very accurate in predicting the
outflow height.

By reviewing the analytical model equations, a second reason for the over-prediction of
the outflow height can be found. The low outflow velocity is computed by a fixed radial
velocity (4.56) for a given rotational speed, blade angle and flow coefficient:

Qi = 2π Ri wi urad,i (4.56 rev.)

The overpressure in the cutter head near the ring, which physically causes the outflow,
does not contribute to an increased radial velocity in the analytical model. In practice and
in the simulations the higher pressure does create an increased radial out-flowing velocity.
In the analytical model the pressure does cause a higher out-flowing flux, but with the
fixed radial velocity in Equation 4.56, this leads to an higher outflow height of segment 1
(w1).

While, the heights in Figure 8.4 do not compare at all, the trend is very similar. This gives
an indication that with an adaption of the outflow velocity, the analytical model will be
able to model the outflow height correctly. The results also show that the flow factor α
should have a different value for both segments. To get a higher outward velocity near the
ring, the value α should be increased. This conclusion was also described by Den Burger
(2003): he concluded the slip factor (Equation 2.10) near the ring should be negative. A
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Figure 8.4: Comparing the outflow height between the simulation and analytical model. The
results in the left pane are for a suction discharge of 0.06 m3/s. The middle pane shows the results
of the 0.12 m3/s discharge and right pane shows the results for a variable suction discharge and a
fixed rotational velocity of 60 rpm.

negative slip factor means a higher fluid velocity than blade velocity and corresponds to a
flow factor larger than 1.

8.3 Simulations of spillage in a cutter head
8.3.1 Assumptions in simulation influencing the modelled spillage
The simulated spillage in this section is computed using a simplified simulation of the
rock- cutting and mixing process. Therefore, the results cannot be directly compared to
experiments. While the simulations do not give a quantitative result for the spillage, it
is possible to visualise if the expected trends are correct. The 5 differences between the
numerical simulation and the experiments are listed below.

1. The main difference between the simulations and the experiments is the manner of
feeding the pieces of rock. In the simulations a single batch of particles is posi-
tioned in the cutter head as is indicated in Figure 8.5, while in the experiments of
Den Burger (2003) a continuous amount of gravel enters the cutter head by cutting
cemented gravel. Only a single batch is simulated, therefore the simulation will not
reach a (dynamic) steady state. Currently, it is not possible to insert large particles
while ensuring the inserted particles do not overlap the particles being present in the
domain.

2. In the model there is no breach included. The modelled cutter head is rotating freely
in a water basin. A breach will close off part of the cutter head, which influences the
flow and will prevent particles flowing out of the cutter head at the breach. Secondly,
it prevents the particles falling out of the cutter head.

3. The simulation does not model the hauling of the cutter head. This translating
movement can contribute to particles falling out of the cutter head at the lowest part
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of the cutter. In the video recordings of the lower rotational velocities, Den Burger
(2003) viewed a gravel bed forming on the blades. The haul velocity could induce
spillage since more particles fall off a translating and rotating blade, than from a
blade which only rotates.

4. The modelled pieces of rock are round, which make them roll over each other. For-
mation of a bed on top of a blade is therefore not likely.

5. The drag coefficient of the pieces is based on a sphere, which is typically 2.5 times
smaller than the drag coefficient for a natural grain (Cd = 0.44 for a sphere and
Cd = 1.1 for a natural grain). Using a larger drag coefficient, particles near the
suction mouth will be easier sucked up, while particles between the blades will be
more affected by the outflow flux.

8.3.2 Numerical setup
Similar to the simulation of the fluid flow in the cutter head (Section 5.5), the flow is
initialised using a steady state frozen rotor approach. Afterwards a single rotation is
simulated without particles being present, leading to the initial situation for the simulation
with particles. Thereafter, the particles are added between the blades to simulate the cut
material. Figure 8.5 shows the location of the particles placed at a location which mimics
the under-cut behaviour of the cutter head. The forces acting on these particles are:
gravity, drag, added mass force and the pressure gradient force, which were described in
Section 3.3.

Geometry
The geometry and scale of the cutter head are the same as in the simulations shown
in Section 5.5). These were performed on a 1:4 model scale, while Den Burger (2003)
performed his experiments on 1:8 model scale.

For the spillage experiments the ladder angle is an important parameter. Den Burger (2003)
mainly performed the experiments at a 45 degree ladder angle, which is relatively high for
practical applications, since much material will be spilled. It did show an interesting effect
of an optimum rotational speed (Figure 2.12). In these simulations the ladder angle of
45 degrees will be simulated by rotating the gravitational vector from the rotation axis as
visualised in Figure 8.5.

Particle and flow conditions
The simulated particles are 2 cm in diameter, which is geometrically scaled from the
experiments of Den Burger (2003). These particles are placed 3 cm apart (centre to centre).
Equation 8.5 shows an approximation of the concentration based on the least dense packing
of particles based upon a particle in a cube.

αp = 1
6
π d3

p

d3
inter

(8.5)

With the inter particle distance (dinter )1.5 times as big as the particle diameter (dp) this
leads to a concentration of: 0.155. The mixture density at the cutting side is 1254 kg/m3
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Figure 8.5: Initial condition of the concentration (αp) in the cutter head and the direction of the
gravity acting on the particles.

The spillage is computed for a single suction discharge (0.120 m3/s) and 6 rotational speeds
(20, 30, 45, 60, 75 and 90 rpm on model scale). On prototype scale these rotational speeds
lie between 10 and 45 rpm.

Numerical parameters for flow and mapping
Table 8.3 shows both the physical and numerical parameters of the simulation. To ensure
a stable simulation an upwind scheme is used for the advection of momentum. The rest of
the numerical settings is shown in Appendix C.

The distance factor (γ) is 1.0. Section 6.3 showed that this distance factor gives a slightly
higher error in settling velocity than γ = 3.0 and that this error is lower than the error
by a 10% deviation in drag coefficient. While a higher distance factor would decrease the
error in a single settling particle, it also creates a larger filter for the interaction between
the particles and the flow and thus reducing accuracy. The factor is therefore a trade-off
between an accurate predicted settling velocity and the prediction of the flow around the
particles. A second more practical reason is the increased computational time when using
a higher distance factor.

Numerical parameters for collisions
It is important to keep the time step for the moving blades (and thus the flow) and the
collisions in the same order of magnitude. If this is not the case, the overlap for the
soft-sphere collision model will become too large leading to high rebound velocities. To
ensure a stable simulation, the time step for the fluid computation is reduced to match a
maximum Courant number of 0.5. The Young’s modulus of the particles is reduced to 10
Mpa. Chapter 7 shows that reducing the Young’s modulus still represent the right normal
and oblique collisions.

In the cutter head, the collision time should not be large compared to the typical fluid time
scale, the blade passing time. Table 8.4 shows the fraction of the collision times (computed
with Equation 3.105) against the blade passing times. It also shows the tangential blade
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Parameter Quantity

Particle
dp 20 mm
ρp 2650 kg/m3

E 10 Mpa
ν 0.24 (inter-particle), 0.27 (particle-steel)
µf 0.15
εdry 0.97
Dist. fac. γ 1.0
Nparticles 368
dinter 30 mm
c 0.155

Cutter head
Rc 0.38 m
nc 20, 30, 45, 60, 75, 90 rpm
Q 0.120 m3/s

Fluid
ρc 998.2 kg/m3

ν 1.0034 · 10−6 m2/s
Time
NtimeSteps 15
Comax 0.5

Table 8.3: Parameters for the simulation of particles in the cutter head.

travel distance (dblade), which is the distance the blade travels during the particle collision
time. The fraction between the tangential blade travel distance and the particle diameter
is an indication for the overlap of the particle and the blade during a collision.

For this simulation of a 2 cm particle in 1 to 4 scale cutter head the effect of decreasing the
Young’s modulus leads to a particle collision time increase from 4.9 · 10−5 s to 1.6 · 10−3 s
based on the data in Table 2.1. Compared to the blade passing time, the increased time
collision time is still 105 times smaller than the blade passing time. On prototype scale the
collisional time step is 60 times smaller than the blade passing time. This is sufficiently
small for computing a correct collision. The distance the blade travels during the collision
time is a quarter of the particle diameter. This could lead to a high overlap distance,
resulting in an unphysical high velocity. However, the chance of this occurring is quite
small since both the blade and the particle have a similar velocity.

8.3.3 Results
Figure 8.6 shows the result of the spillage simulations. It shows the spillage fraction,
production fraction and the part of particles in the cutter head over the time. Equation
8.6 shows the production fraction (P%) and spillage fraction (S%) based on the amount of
particles inserted in the cutter head (Pini). A particle is considered to be spilled when it
is outside the contour of the cutter head.
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1:4 model 1:4 model prototype prototype
Physical E Scaled E Physical E Scaled E

E 60 Gpa 10 Mpa 60 Gpa 10 Mpa
dp [m] 0.02 0.02 0.08 0.08
tcol [s] 4.9 · 10−5 1.6 · 10−3 1.7 · 10−4 5.5 · 10−3

tblade [s] 0.17 0.17 0.33 0.33
dblade [m] 1.6 · 10−4 5.3 · 10−3 1.1 · 10−3 3.7 · 10−2

tblade/tcol [-] 3420 105 1960 60
dblade/dp [-] 8.2 · 10−3 0.26 0.014 0.46

Table 8.4: Collision time and the fraction of the blade travel distance during a time step over the
particle diameter. The collision time is computed with Equation 3.105.

P% = Ppipe
Pini

S% = Pout
Pini

(8.6)

In the lower right pane of Figure 8.6 the simulated production fraction is shown in blue
and the spillage fraction is shown in red. Both are related to the rotational speed on model
scale.

The bottom left pane, indicating the amount of particles in the cutter head, shows that
for 20 and 30 rpm all the particles are either sucked up or spilled. At higher rotational
velocities there is still 10% to 20% of the initial amount of particles present in the cutter
head at the end of the simulation.

The production and spillage against rotational speed shows a downward trend in production
for increasing rotational speed. Similar downward trends were found by Den Burger (2003),
Miltenburg (1983), Zhang et al. (2018).

Comparison with experimental data
Figure 8.7 shows the simulated production fraction compared to the experiments of Den Burger
(2003) and the analytical model results, which will be described in Section 8.3.3. The nu-
merically simulated production fractions are compared with the experiments of Den Burger
(2003) for a similar suction velocity. In the simulations the suction velocity was: 3.8 m/s
on 1:4 scale. When scaled down to 1:8 scale using Froude scaling (Equation 2.6), this is
2.7 m/s. The experimental data of the production fraction in Figure 8.7 is obtained using
a suction velocity of 2.6 m/s on 1:8 scale. These suction velocities are nearly identical and
therefore the resulting spillage can be compared.

For comparing the numerical simulations with the experiments, the two theories of Den Burger
(2003) on the optimum in production fraction will be used.

1. The decrease in production fraction with increasing dimensionless velocity is a result
of the centrifugal force on the rock-water mixture.

2. The initial increase in production with increasing dimensionless velocity is caused
by better mixing of the rock pieces in the cutter head.
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Figure 8.6: Spillage- and production fraction simulated for 1 rotation with a cloud of particles
injected between the blades at the start of the rotation. The time is made dimensionless with the
rotation time of the cutter head Tc. The down right pane shows the simulated production fraction
and spillage fraction against the rotational speed at T/Tc = 1.

When comparing the simulation data to the experiments, the simulations show a similar
effect of the decrease in production. The increase in production due to a better mixing is
not simulated.

The simulation over-predicts the production fraction with more than 90% at the higher
dimensionless velocities. This difference is likely due to the 5 simplifications in the simu-
lation as mentioned before. The downward trend does look similar for the experimental
results and the simulations.

To check if the decrease in the production fraction is correlated to the out-flowing flux near
the ring, the radial velocities at the contour of the cutter head are compared against the
spillage over the axial coordinate of the cutter head. Figure 8.8 shows in the bar graph
the height at which the particles flow out of the cutter head. For higher rotational speeds,
more particles flow out of the cutter head in the first 3 cm under the ring (the top bar in
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Figure 8.7: Production fraction against dimensionless velocity of the measurements by Den Burger
(2003), the simulation results and the analytical model.

the figure). The line plot in the same figure shows the radial velocity at the hull-surface.
This velocity is time-averaged and averaged over the azimuthal coordinate. At the top bin
under the ring, where the spillage occurs, the radial velocities are high.

The velocity between 0 and 3 cm under the ring looks correlated to the spillage. To visualize
this, Figure 8.9 compares the relative spillage of the top bar to the outflow velocity at the
same location. It shows the onset of spillage between a radial outflow velocity of 0.05 to
0.23 m/s. At higher velocities a non-linear relationship can be distinguished, however at
the highest outflow velocity, the curve flattens. This non-linear relation could be caused
by the drag being quadratically dependent on the velocity.

The simulation does not predict the increase in production, due to increased mixing as
was visualized in the experiments of Den Burger (2003). A likely cause for this is the
combination of the short simulation time with the method of feeding the particles. In this
simulation the majority of particles are initially located in the middle and top of the cutter
head, while in practice the amount of particles entering near the hub is at least as high as
the amount near the ring. These particles are further away from the influence volume of
the suction mouth and could therefore settle and form a layer at the bottom part of the
cutter head. These are the particles that first need to be suspended in order to be sucked
up. In the simulation these particles are under-represented and therefore this mechanism
might not be visible.

Spillage comparison between analytical model and numerical simulations
The simulation results can be compared with the analytical model, which was calibrated
for the out-flowing fluid flux in Section 8.2. This resulted in the two calibration coefficients
in Table 8.5. For using the analytical model for spillage, the top segment has the density
of the mixture with particles and the bottom segment contains only water. This idea was
proposed by Miedema (2017) and it assumes that the cut material concentrates at the top
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Figure 8.8: The bar plot shows the axial coordinate of spilled particles when they leave the contour
of the cutter head. 0 is at the ring and -0.44 is at the hub. The line plot shows the radial velocity
averaged over both time and the azimuthal coordinate. The top axis corresponds to the radial
velocities.

segment. The spillage is the fraction of the outflow over the total inflow around the cutter
head. The total inflow is the sum of the outflow and the suction discharge (Equation 4.55).

The resulting spillage of the analytical model is compared to the simulations in Figure 8.7.
The trend of the analytical model compares quite well with the simulations. However, for
the higher rotational speeds the production fraction still differs by nearly 50%. Both the
analytical model and the numerical simulations differ from the experiments. The effect of
increased production by increased mixing is not included in the analytical model, which
could be a reason of the difference at the lower rotational speeds.

The models described by Werkhoven et al. (2018, 2019) and Miedema and Nieuwboer
(2019) have a closer agreement to the experiments by expanding this model with a breach
and accounting for the difference in settling velocity for sand and pieces of rock. This model
is not used since it uses more empirical relations leading to more calibration coefficients,
making it less suitable to compare the physical behaviour.

To visualise the physical prediction capacities of the model, Figure 8.10 compares the out-
flowing flux of the numerical simulations with the out-flowing flux computed by analytical
model. Both the numerical simulations as the analytical model are presented for a cutter
head partially filled with particles and a cutter head rotating in water without particles.
The analytical model for water was calibrated on the simulation results for water, and
therefore matches up well. For the numerical simulation with particles the out-flowing flux
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Parameter Quantity

Flow coefficient α 0.375
Pressure coefficient β 0.774
Density in top of cutter ρ1 1254 kg/m3

Density at bottom of cutter ρ2 998.2 kg/m3

Table 8.5: Simulation parameters for the analytical model of the cutter head.
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Figure 8.9: The spillage fraction of the particles flowing out up to 3 cm under the ring against
the outflow velocity at 1.5 cm under the ring. This is the spillage of the top bars of Figure 8.8
compared with the velocity in the middle of that bar.

is nearly identical to the simulations without particles, while the analytical model shows a
70% increase in out-flowing flux with a mixture density than with water.

The density in the top segment of the analytical model causes the increase in out-flowing
flux. This increased density in the top segment leads to a higher pressure difference between
the inside and outside of the cutter head in the top segment. In turn, this higher pressure
difference causes a higher out-flowing flux near the ring for the cutter head with a mixture
in the top segment. One would expect to see the same effect in the simulation results as
well. However, this is not the case. There are two explanations for this difference. One
based on the simulations and the other on the analytical model.

On the simulation side a possible explanation could be the short simulation time before
the out-flowing flux was computed. The fluxes for the simulations with particles are taken
from a single time step after 1/18th of a rotation. This short time-span was needed to
ensure enough particles being left in the cutter head to see an effect of the increased density.
However, this period could be too short for the out-flowing flux to develop. For a good
comparison, this time span should be increased and the particles should be continuously
fed to the cutter head.

The second explanation based on analytical model is that this model likely over-predicts
the outflow. The mixture density used in this model is computed from the concentration
in the numerical simulation at the location of the particles in the cutter head. This is not
the average concentration over the whole top segment, since the concentration is highest at
the side of the breach where the particles are located. When averaging the concentration
over the whole top segment this would lead lead to a more representative, lower mixture
density. In turn this lower density leads to a lower outflow.
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Figure 8.10: Out-flowing flux from numerical model with and without particles compared against
the analytical model.

8.4 Computational time for upscaling to prototype scale
Appendix D shows the scaling of the simulation time Tcomp based on the scale laws applied.
Equation 8.7 shows the relation between the simulation time and the geometric scale factor
(λ) for fluid simulations.

Tcomp = λ2.5 (8.7)

The 1 to 4 model of the cutter suction head with backplate and suction tube has O
(
106)

cells. 5 revolutions of the cutter head without particles take 1.5 to 2 days on 28 cores when
rotating with 60 rpm on model scale (30 rpm scaled to prototype scale)

For a prototype cutter head, when scaling the boundary layers correctly and using the
same Courant number for keeping the same temporal accuracy the model would take 48
to 64 days to run on 28 cores. In this research a single test case showed no additional
scale up when using two nodes with a total of 56 cores. One would not expect a zero scale
up when doubling the amount of cores. In future research this should be investigated for
performing simulations on prototype scale.

Another option is to linearly increase the mesh to match the prototype cutter head and
thus using the same amount of cells. In this case simulation time stays approximately the
same, due to the same number of mesh cells and the same number of time steps as shown
by Equations D.13 and D.14 in Appendix D. However, this would mean the boundary layer
is less accurately resolved and will reduce the accuracy of the simulation.

Note that reducing the rotational speed for investigating the influence of rotation on the
flow and spillage will lead to an increase in computational time, since more time needs
to be simulated. The Courant number is not reduced much, since the flow through the
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suction pipe will stay the same. A prototype simulation of 10 rpm will therefore take 3
times longer than a simulation at 30 rpm.

8.4.1 Speed up over multiple cores or nodes
The simulations scaled relatively well over multiple cores. When increasing the number
of cores from 1 to 28, the simulations ran 20 times faster. On testing the speed up to 2
nodes of 28 cores (56 cores total), the simulations still ran only 20 times faster than on 1
core. There was no additional speed up. This could be due to a temporary issue with the
communication between the cores over the infiniband but was not investigated further.

Performing more research on the hardware requirements of an OpenFOAM simulation with
sliding mesh would be advised.

8.4.2 Computational times with particles
The simulation of the cutter head on 1 to 4 model scale with particles takes 10 days for 1
rotation on 8 cores. Scaling this up to a prototype scale will take too much time.

Much of the time per iteration goes to the mesh movement, which needs to be evaluated on
a single core for a DEM simulation in OpenFOAM v1712. When this would be implemented
for multi-core, the simulation can be parallelised over more cores, reducing the simulation
time.

Secondly, the diffusion method of Section 3.4.1 likely scales better than the kernel method,
since it is described using differential equations, which OpenFOAM solves efficiently. For
future simulations, the difference in performance and results for a rotating geometry could
be assessed.

8.5 Conclusions
Out-flowing flux
• The out-flowing flux for a freely rotating cutter head is half of the suction discharge

for the nominal scale parameters of 60 rpm and a discharge of 0.12 m3/s.
• When comparing the axial cutter head to the cutter head with a suction mouth, the

onset of outflow is at a lower rotational speed for the cutter head with a suction
mouth. At 20 rpm and a suction discharge of 0.12 m3/s the axial cutter head shows
only inflow over the whole contour, while the cutter head with back-plate shows an
out-flowing flux near the ring.

• For both the axial and cutter head with a suction mouth, higher rotational speeds
lead to higher outflow velocities near the ring.

• The area of inflow around the cutter head shifts towards under cutting side for higher
rotational velocities for the cutter head with a backplate.

Analytical model
• The analytical model predicts the out-flowing flux well for the calibrated fluid case.

However, the outflow height is over-predicted by a factor 3.
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• While the analytical model shows the trend spillage mechanism of particles leaving
at the ring, the model under-predicts the spillage at 90 rpm by 50%

Numerical simulation of spillage in cutter heads
This chapter shows it is feasible to compute the model spillage of large particles in a
rotating cutter head using a finite volume coupled with the discrete element method.

The simulation results do not match the experiments by Den Burger (2003): the model
does not show the significant spillage at the low rotational velocities of Den Burger (2003).
In the simulation the particles do not fall out at low rotational velocities, which could be
attributed to the short simulation time, the positioning of the particles in the cutter head
and not hauling the cutter head.

It is likely that this spillage is induced by the out-flowing flux under the ring. The simulated
spillage follows the same trend as the out-flowing flux. This trend is also predicted by the
analytical spillage model where spillage is caused by the centrifugal forcing acting on the
mixture.

Probably there is a dynamic effect in the cutter head which regulates the filling degree
and the spillage of the cutter head. The simulations do not show this, since there is no
continuous flow of particles into the cutter head and the simulation time is too short to
capture this phenomenon.

8.6 Recommendations
Analytical model
While the analytical model performs quite well for the simulating the flow, a few improve-
ments can be suggested:

• The outflow height is over-predicted. This can be resolved by using different flow
factors for both segments. An even better approach would be to compute the outflow
in segment 1 based on the pressure difference over the cutter head.

• A solution for solving the under-prediction of out-flowing flux at low rotational
speeds, would be to include the eccentric suction mouth in the analytical model.

• For computing the spillage, Miedema and Nieuwboer (2019) and Werkhoven et al.
(2019) derived more advanced models including the breach of the cutter head. These
models can be compared against future simulations including a breach.

Numerical simulation of spillage in cutter heads
This section shows the steps to be taken to model spillage in cutter head using the method
described in this dissertation. These improvements should overcome the 5 assumptions
mentioned in Section 8.3.1.

1. To model the spillage of the cutting process, the model should include a continuous
flow of particles into the cutter head. At this stage it is not possible to simulate
this in the model. An inflow of particles is modelled as particles being inserted
at a random position. When being inserted, the particles should not overlap each
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other. For particles smaller than the cell size, as the initial OpenFOAM code was
developed for, the chance of particles overlapping in a cell is very slim. For larger
particles than the cell size, the particle should fit in-between the already present
particles. Its insertion point should therefore not lie within one particle radius of
other particles or the wall.

2. A breach can be implemented by making a boundary fitted mesh around the cutter
head and the breach. Special care should be taken for constructing the sliding mesh
interface between the blades (or pickpoints) and the breach.

3. The haul velocity can be implemented as a flow around the cutter head.
4. It is possible to form a stable bed of particles in the cutter head to simulate the

piling of particles on the blades. For spherical particles to form a stable bed, the
rolling and sliding friction coefficients need to be adjusted such that a pile of particles
matches the angle of repose. Another option is creating multi-sphere particles, which
are angular and therefore do not easily role over each other.

5. The drag on non-spherical particles can be computed using the drag relation of
Haider and Levenspiel (1989) which is similar to Brown and Lawler (2003), but
includes a shape factor to model the drag coefficient of natural grains. The shape
factor is not applicable for flat particles, where drag coefficient will be dependent on
the flow angle to the particle.





9
Conclusion and

recommendations

9.1 Conclusions
In Chapter 1 the aim of this study is defined as: "Develop a model which can reliably
simulate the spillage behaviour of rock particles inside a rotating cutter head." To simulate
this behaviour, the influences on the motion of the rock particles, such as the operational
conditions and geometry, are identified in Chapter 2 in Figure 2.18. These influences are:

1. Geometry of the cutter head and the ladder angle, influencing the vertical distance
from the bed to suction mouth and therefore the energy needed for lifting the par-
ticles.

2. Mass of the particles influencing energy needed for suspension.
3. High inertia of particles leading to particles not being sucked up in front of the

suction mouth.
4. The unsteady fluid flow in the cutter head caused by the rotating blades.
5. The flow induced by the suction mouth.
6. A density current due to density difference in the mixture of rock and water.
7. Collisions between the particles and the rotating blades.
8. Collisions between the rock particles.

In this dissertation, these influences are grouped into 3 topics: flow in a cutter head, particle
flow interaction and collisions (Figure 1.4). The next sections will show the conclusions
for each of these topics and on the final aim of this dissertation: the modelling spillage in
a cutter head. Similarly, the recommendations are divided in the same categories.
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Flow in the cutter head
The modelled time-averaged velocities compare relatively well with the existing measured
data. For both the simulation in the axial cutter head as the cutter head with suction
mouth, the velocities inside the cutter head compare better with the measurements than
points outside the cutter head. The coarser mesh outside the cutter head is a possible
explanation of this difference. Another explanation lies in the measurement setup. During
the experiment standing waves in the basin were reported. Also, the return flow of the
suction discharge into the basin could have had an effect on the velocity measurements.

The measured data from the Acoustic Doppler Velocimeter (ADV) showed much noise
and was under-sampled for the blade passing frequency. Due to these imperfections the
transient effects in simulations could not be validated with the measurements.

Particle flow interaction
Both the settling of an individual particle as the hindered settling of a cloud of particles
is verified against reference solution computed in Python. The numerical error is much
smaller than the modelling error, caused by for example deviations in the drag coefficient
due to irregular shaped particles.

Near the sliding mesh interface, the concentration, amongst others, could not be evaluated
at both sides of the sliding mesh. For a particle crossing the sliding mesh, this would lead to
an increasing concentration at one side of the sliding mesh, which would become zero when
the particle crosses the sliding mesh interface. This concentration would then appear at
the other side of the sliding mesh, leading to a large concentration change in time. In turn
this forces a large return flow of water due to continuity, leading to unstable simulation
results. As a solution this return flow around the sliding mesh is not accounted for by
setting the time derivative of the particle concentration to zero. In the rest of the domain
this term is taken into account. Furthermore, the fluid velocities at the opposite side of
the sliding mesh from the particle do not contribute to the forcing on the particle. This
has two consequences: a slight error in the settling velocity and a continuity error. For a
single particle 5 times larger than the cell size, this leads to a relative error of 1.2 · 10−3 in
settling velocity. Smaller particles have a smaller error in settling velocity. The global error
in the continuity equation is in the same order of magnitude for particles settling through
a sliding mesh, with or without including the time derivative of the particle concentration.
While this continuity error is small compared to the particle volume, it is still orders higher
than the error without the sliding mesh interface.

In simulating the hindered settling, only the cases without a sliding mesh were tested. For
these cases, the kernel method predicted the reference solution better than the diffusion
method. Secondly, the kernel method allowed for using a smaller kernel width than the
diffusion method, leading to a faster simulation time. Using the smaller kernel width, the
diffusion method became unstable. The reason is the simulated return flow around the
particle, which was only present when the particle centre moved from one cell to another.
A single test case with an alternative formulation of the continuity equation showed better
results.
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Collisions
Inter-particle collisions and particle-wall collisions are validated against existing experimen-
tal data. Both the experimental measurements and the simulations use spherical particles,
which likely have a higher rebound than angular particles.

The normal rebound of the particles was modelled well for a complete range of Stokes
numbers. The oblique rebounds deviated more from the measurements but showed the
same trends.

Scaling down the Young’s modulus decreased the simulation time, since less time steps are
needed to solve the stiff collision. This did not impact the rebound height or velocity, only
collision time.

Modelling spillage in a cutter head
This research shows the possibility to model spillage for mixing rock in a cutter suction
head using the discrete element modelling with the finite volume fluid modelling.

The simulations show an increasing spillage with increasing rotational speed. Den Burger
(2003) hypothesised that this decrease in production fraction with increasing rotational
speed is a result of the centrifugal force on the rock-water mixture. The simulations also
show the increase in spillage mainly under the ring. Which is also the location where one
would expect this based on the hypothesis. The forces on the particles are not visualised.
It can therefore not be fully concluded that the spillage at this location is induced by the
centrifugal force.

The second hypothesis of Den Burger (2003) stating the increase in production with in-
creasing rotation due to better mixing, could not be visualised in the simulation. The
simulations showed only a decrease in production with increasing rotational speed. This
difference is likely due to the manner of feeding the particles in combination with a non-
translating cutter head and the lack of a breach and a bed. A continuous feed of particles
is more likely to predict this increase in production with increasing rotational velocity.
Translating or hauling the cutter head will result in material falling off the blades, reduc-
ing the production at lower rotational velocities. The breach and the bed will prevent the
particles falling out of reach of the blades of the cutter head.

The analytical model can predict the out-flowing flux well. However, it does not predict the
right outflow height. Secondly, there is a difference in spillage prediction of 50% between
the analytical model and the simulations.

At this moment it takes 10 days to simulate a single revolution with 300 particles in a 1
to 4 scale cutter head, which makes scaling up to prototype scale very time-consuming.
Simulating multiple revolutions for reaching a dynamic steady state would also take too
much time. Typically, it takes 5 to 10 revolutions to reach a dynamic steady state, resulting
in 50 to 100 days for performing a simulation.
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9.2 Recommendations
Flow in the cutter head
While this works shows the validation of the time-averaged flow velocities, the unsteady
flow velocities are not yet validated. The measurements used for validating flow in the
cutter head did not have a sufficiently high sampling frequency to accurately visualise
the velocities due to the passing of the blades. To capture these velocities, the sampling
frequency should be in the order of 10 times the blade passing frequency.

Particle flow interaction
In these simulations the pieces of rock are assumed spherical. For a better representation
of the drag on the pieces of rock, a drag formulation for non-spherical particles should be
used like the one of Haider and Levenspiel (1989).

For the hindered settling the formulation of Di Felice (1994) is used in this dissertation.
This formulation computes a different hindered settling exponent with varying Reynolds
number and particle concentration. However, this relation is only valid for concentration
up to 20%. For higher concentrations an Ergun type of drag formulation should be used.
The relation of Gidaspow (1994) combines both the hindered settling behaviour for low
concentrations and for higher concentrations.

Collisions
Collisions are validated based on spherical collisions in viscous fluids. While the model
represents the data well, the collisions for irregular rock pieces will be different. Due to
their shape, they may collide multiple times which reduces the coefficient of restitution
drastically. Secondly, the direction in which they bounce will be stochastically. Both these
phenomena should be implemented and its sensitivity should be studied.

Modelling spillage in a cutter head
To model spillage the current model should be complimented with a breach and a method
for continuously feeding particles. Currently, it is not possible to insert large particles while
ensuring the inserted particles do not overlap the particles being present in the domain.
Such a model should be validated for the particles motion in the cutter head using new
experiments.

To get a method which can simulate spillage within a reasonable simulation time, the
method should be checked for scaling up. Likely, the diffusion method is better suitable
for scaling up than the kernel method. When simulating spillage in the cutter head using
the kernel method, the sliding mesh needing to be on a single core forms a limitation.
When this would be implemented for multi-core, the simulation can be parallelised over
more cores, reducing the simulation time.

When the simulation times cannot be shortened and it is not possible to simulate the
spillage from the scale simulations, one should look at less expensive simulations such as
an Euler-Euler modelling. Chauchat et al. (2017) presented such a model implemented
in OpenFOAM. Such a model has the down-side that is not possible to visualise particle
paths.
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A
Velocities in a cutter head
with uniform axial suction

Location of the measurements
Table A.1: Location of the velocity measurements in and around the cutter head performed by
Dekker (2001a).

position r [mm] α [◦] z [mm]

V 178 180 83
W 134 180 -72
X 222 180 -72
Y 178 180 -147
Z 134 180 -217

position r [mm] α [◦] z [mm]

A 400 0 -35
B 450 0 -35
D 400 0 -120
E 450 0 -120
F 400 0 -255
G 450 0 -255
H 280 0 -365
I 330 0 -365

The trigger for starting the time measurements is located at 0◦ (Dekker, 2001a, Velthoen
and Dekker, 2000).
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Figure A.1: Measurement locations in and around the cutter with uniform suction.
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Measured and modelled results
Measurements of Dekker (2001a) compared with the simulation results presented in this
dissertation.
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B
Velocities in a cutter head

with a backplate and a
suction mouth

Location of the measurements
Table B.1: Location of the velocity measurements in and around the cutter head performed by
Dekker (2001a)

position r [mm] α [◦] z [mm]

Ai 140 45 -227
Bi 190 45 -182
Ci 240 45 -137
Ei 140 300 -227
Fi 190 300 -182
Gi 240 300 -137
Ii 140 240 -227
Ji 190 240 -182
Ki 240 240 -137
Mi 140 135 -227
Ni 190 135 -182
Oi 240 135 -137

position r [mm] α [◦] z [mm]

Ao 400 45 -35
Bo 400 45 -110
Co 400 45 -255
Do 280 45 -365
Eo 400 300 -35
Fo 400 300 -110
Go 400 300 -255
Ho 280 300 -365
Io 400 240 -35
Jo 400 240 -110
Ko 400 240 -255
Lo 280 240 -365
Mo 400 135 -35
No 400 135 -110
Oo 400 135 -255
Po 280 135 -365

The trigger for starting the time measurements is located at 330◦ (Dekker, 2001a).
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Figure B.1: Measurement locations in and around the cutter a backplate and suction mouth.

Measured and modelled results
Measurements of Dekker (2001a) compared with the simulation results presented in this
dissertation.
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C
Numerical settings used in

simulations

Case Advection scheme Turbulence model

Circular couette Linear -

Axial cutter Blended 90% - 95% linear, 5% - 10% upwind 1 Realizable k-ε

Cutter with a back-
plate and a suction
mouth

Blended 85%-90% linear, 10% - 15% upwind 1 Realizable k-ε

Single settling parti-
cle

Blended 70% linear, 30% upwind -

Hndered settling
(distributed)

linearUpwind Realizable k-ε

Hindered settling
(diffused)

Blended 70% linear, 30% upwind Realizable k-ε

Bouncing sphere
Gondret et al.
(2002)

Blended 50% linear, 50% upwind -

Particles in a rotat-
ing cutter

upwind Realizable k-ε

Table C.1: Advection scheme and turbulence model. 1: at specific locations the blend is different.
See the corresponding section for more information.
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Case pini p u Relax p Relax u

Circular Couette 1 · 10−3 1 · 10−11 1 · 10−11 0.5 0.7

Axial cutter 1 · 10−3 1 · 10−8 1 · 10−8 0.5 0.7
Axial cutter (lower
Pini)

5 · 10−4 1 · 10−8 1 · 10−8 0.5 0.7

Axial cutter (lower
residuals)

1 · 10−3 1 · 10−11 1 · 10−11 0.5 0.7

Cutter with a
backplate and a
suction mouth

1 · 10−3 1 · 10−8 1 · 10−8 0.5 0.7

Cutter with a
backplate and a
suction mouth
(lower Pini)

5 · 10−4 1 · 10−8 1 · 10−8 0.5 0.7

Cutter with a
backplate and a
suction mouth(lower
residuals)

1 · 10−3 1 · 10−11 1 · 10−11 0.5 0.7

Single settling
particle (kernel)

1 · 10−1 1 · 10−8 1 · 10−7 1.0 1.0

Single settling
particle (diffused)

1 · 10−5 1 · 10−12 1 · 10−9 0.3 0.3

Hndered settling
(distributed)

2 · 10−2 1 · 10−8 1 · 10−7 0.9 0.9

Hindered settling
(diffused)

2 · 10−2 1 · 10−8 1 · 10−7 0.9 0.9

Hindered settling
long simulation
(diffused)

2 · 10−2 1 · 10−8 1 · 10−7 0.7 0.7

Bouncing sphere
Gondret et al.
(2002) 7.2.1

1 · 10−2 1 · 10−9 1 · 10−9 0.4 0.5

Particles in a
rotating cutter

1 · 10−3 1 · 10−7 1 · 10−8 0.5 0.7

Table C.2: Convergence criteria of the performed simulations in this dissertation.



D
Scale laws for simulation time

The total computational time of a simulation (Tcomp) is proportional with the number of
cells and proportional with the number of time steps (NtimeSteps).

Tcomp ≈ NcellsNtimeSteps (D.1)

Froude scaling
When computing the simulation time for a prototype scale simulation from the model scale
simulation, both the number of cells and time steps should be scaled using the scaling laws.
In order to do so, these scale laws should be evaluated. den Burger (2003) showed that
for a cutter head the length scales can be scaled using geometric scaling and the velocities
using Froude scaling. This was explained in Section 2.3.1. The geometrical similarity
requirement is

nL = λ = Lp
Lm

(D.2)

Where: nL denotes the scale factor between the prototype scale and the model scale. A
value of 1 means that the quantity has the same value on model and prototype scale. For
the 1 to 4 model scale cutter nL equals 4.

Froude scale entails a constant Froude number when scaling:

nFr = Frp

Frm
=

Up√
gLp
Um√
gLm

= 1 (D.3)

Where: U is the velocity scale, L is the length scale. The subscript p denotes the quantity
at prototype scale (full-scale). The subscript m is used for denoting the model scale.

Gravity is a constant when scaling, resulting in the scaling law for velocity:

nU = Up
Um

=
√
Lp
Lm

=
√
λ (D.4)
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The Reynolds number scales with:

Re = UL
ν

nRe = nU nL
1 =

√
λλ (D.5)

Since the Reynolds number scaling is not unity, it means that the Froude scaling leads to
a scaling error for terms dependant on Reynolds numbers, such as viscous and turbulent
terms.

Scaling of the number of mesh cells
The simulation of the cutter head uses a boundary fitted mesh. In order to get similar
results in the shear layer around the walls for the model and prototype scale, the mesh
should be scaled to the boundary layer thickness δ. The thickness of the boundary layer
is a function of Reynolds number as described in Schlichting and Kestin (1979).

δ ∼ l√
Re

nδ = nL√
nRe

= λ

λ
3
4

= λ
1
4 (D.6)

The cell sizes in the whole computational domain depend on the cell size at the boundary.
When these cells are much smaller, the cell sizes in the rest of the domain will be much
smaller as well. The number of cells can be related to the cube of the boundary layer
thickness and the geometric scaling of the geometry, since the refinement is uniform over
the domain and stretches in three dimensions.

Ncells ∼
(
L
δ

)3

nNcells =
(
nL
nδ

)3

=
(
λ

λ
1
4

)3

= λ
9
4 (D.7)

The number of cells in the simulation scales with nNcells = λ
9
4 when the boundary layer

needs to be resolved in a similar accuracy.

No boundary layer scaling
However, when the flow is assumed to be pressure driven instead of shear driven, the correct
simulation of the boundary layer is not very important. A cutter head could be argued
to be pressure driven; the blades displace the fluid by pushing through it and the flow is
also determined by the suction flow. When this is the case the same number of cells would
suffice nNcells = 1.

Scaling of the number of time step
The stability of the simulation is determined by the Courant number. This determines
the maximum time step of the simulation. The Courant number should be equal in both
model and prototype simulation.

Co = U ∆T
∆x nCo = nU

n∆T

nδ
= 1 (D.8)
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The minimal mesh size ∆x is linearly proportional the boundary layer thickness δ. Keeping
the Courant number constant for the simulations leads to a time step scaling of:

n∆T = nδ
nU

= λ
3
4
√
λ

= λ
1
4 (D.9)

The simulated time is determined by the number of revolutions to be simulated. A simula-
tion of a rotating machine is typically in a statistically steady state after a certain number
of revolution. This does not change with scale.

nNumrevolutions = Tsim
Tround

= Tsim
2π
ω

= 1 (D.10)

Which leads to a scaling for the simulation time:

nTsim ≈
1
ω
≈ T = LU = λ√

λ
= λ

1
2 (D.11)

The number of time steps scales with:

NtimeSteps = Tsim
∆T nNtimeSteps = nTsim

n∆T
= λ

1
2

λ
1
4

= λ
1
4 (D.12)

No boundary layer scaling
When the boundary layer does not need to be well-captured and mesh will be geometrically
scaled using the same number of cells, this leads to the following scaling of the time step:

n∆T = n∆x

nU
= λ√

λ
=
√
λ (D.13)

The number of time steps scales with:

NtimeSteps = Tsim
∆T nNtimeSteps = nTsim

n∆T
= λ

1
2

λ
1
2

= 1 (D.14)

Computational time scaling
When the boundary layer is scaled with the Reynolds number, the computational time
scales with:

Tcomp ≈ NcellsNtimeSteps nTcomp = nNcells nNtimeSteps = λ
9
4 λ

1
4 = λ2.5 (D.15)

When the mesh is kept constant, the computational time scales with:

Tcomp ≈ NcellsNtimeSteps nTcomp = nNcells nNtimeSteps = 1 · 1 = 1 (D.16)

This means the simulation time stays the same when scaling up if the mesh is kept the
same for the model scale and the prototype scale. The shear layer is resolved less accurate.
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