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Chapter 1 - Introduction 

 Motivation 

More than half of the world’s population currently lives in urban areas, and by 2050, this 

percentage is expected to grow to 68% (United Nations, 2018). Most cities today struggle to 

improve mobility for their residents while minimizing congestion, accidents, and pollution 

(European Court of Auditors, 2014). Public transport1 serves as a possible solution to these 

problems, and forms the backbone of modern urban infrastructure. Besides contributing to 

economic benefits (Hensher et al., 2012), an efficient public transport system (along with 

walking and cycling infrastructure) can make a city more sustainable and livable by being more 

environmentally friendly, and potentially reducing inequality and social segregation, by 

providing accessibility to all (UITP, 2020; van Oort and Yap, 2021). However, as our cities 

continue to grow, transit agencies worldwide strive to make public transport more attractive for 

travelers by providing optimal services, often with limited budgets.  

 

Transit performance assessment is essential for identifying where improvements are most 

needed, and for measuring the impact of improvements once they are implemented. Service 

quality, measured in terms of frequency, travel times, transfers, crowding, reliability, comfort, 

etc., influences the way passengers perceive public transport, which is reflected in their travel 

behavior, and ultimately ridership (van Lierop and El-Geneidy, 2016). However, providing a 

higher service quality also implies a higher cost for the operator. The Transit Capacity and 

Quality of Service Manual (TCQSM) (Kittelson & Associates, 2013) recommends transit 

operators to “strike a balance between the quality of service that passengers would ideally like 

and the quality of service that a transit agency (a) can afford to provide or (b) would reasonably 

provide, given the demand for transit service.” Transit route choice research helps to understand 

the relationship between various transport network supply variables and the routes chosen by 

individual travelers. By providing a relative valuation of journey attributes by the travelers 

                                                        
1Public transport and transit have been used interchangeably throughout this document, and for the purpose of this 

dissertation refers to all modes of transportation available for use by the general public such as bus, tram and 

metro. 
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(including service quality and network characteristics), transit route choice models can support 

informed decision-making by identifying policies with the highest impact and predicting the 

changes in network outcomes because of changes to the supply variables. 

 

Traditionally, public transport performance assessment, as well as route choice modeling, relied 

primarily on data from surveys, travel diaries, and transit schedules (Bertini and El-Geneidy, 

2003; Kim et al., 2019; Zhao et al., 2020). However, for more than a decade now, automated 

systems have been introduced for public transport fare collection, providing access to a massive 

amount of passively collected data, as opposed to a small sample from the traditional data 

collection methods. Public transport smart cards are one of the most popular media for 

implementing Automated Fare Collection (AFC) systems. Smart card data can provide 

information on network-wide travel patterns at the most disaggregate spatial and temporal 

scales (Pelletier et al., 2011). When combined with Automatic Vehicle Location (AVL) data, it 

can enable a precise assessment of public transport performance including ridership and service 

quality measurement. In most cases, smart card data does not enable the identification of 

individual travelers or their demographic characteristics owing to privacy regulations. In such 

cases, it can potentially be combined with external sources of socio-demographic data to 

measure the distributive impacts of transport, enabling equity analysis at a network-wide scale. 

Moreover, the calculated service quality measures along with individual choices can be used to 

understand transit route choice behavior and reveal relative valuation of transit journey 

attributes, which can be further used to estimate route-shares in response to network changes.  

  

However, being relatively new, automated sources of transit data have still not been explored 

to their full potential, and the methods for performance assessment and route choice modelling 

used with this data source are often borrowed from past research based on traditional data 

sources. This dissertation aims to develop methods that leverage the key strengths of automated 

transit data to advance transit performance assessment and route choice modelling, while 

accounting for its limitations. The research is undertaken in the context of urban multi-modal 

transit networks. In doing so, it addresses multiple scientific gaps which are described in the 

next section. 

 Research gaps 

To improve the performance of a transit system, one first needs to measure its current 

performance in terms of the quality of service being offered as well as how it is being used. 

Once that is measured, this information can be used to study the impact of transit network 

supply on travel behavior. This study looks at these two steps sequentially and the subsequent 

sections describe the knowledge gaps in each of these subject areas, which this thesis attempts 

to address. 

 Transit performance assessment from a passenger perspective  

Transit performance has several dimensions and can be measured from (at least) two 

perspectives - the service providers’ and the passengers’. Transit Capacity and Quality of 

Service Manual (Kittelson & Associates, 2013), first published in 1999, defines a transit 

performance measure as “a quantitative or qualitative factor used to evaluate a particular aspect 

of transit service”. From the service providers’ perspective, automated data sources like AVL 

and Automatic Passenger Count (APC) can enable calculation of supply-oriented performance 

measures, such as average speeds, distance travelled by vehicles, number of trips, observed 

travel times etc. (see for examples Bertini and El-Geneidy (2003), Erhardt et al. (2017)). In 
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addition, smart card data can be used to provide information on the usage of the network 

relevant for the service provider, such as passenger-km, passenger hours and average trip length 

(such as in Trépanier et al. (2009)).  

 

When considering the impact on ridership or travel behavior, the performance from a passenger 

perspective becomes more relevant. Service quality is defined as “the overall measured or 

perceived performance of transit service from the passenger's point of view”, and ideally 

includes everything that could impact passengers’ decisions, including travel times, availability, 

service, delivery, safety and security, and maintenance and construction (Kittelson & 

Associates, 2013). However, since many of these cannot be quantified easily, service quality 

measurement is often focused on the ‘availability’ (including frequency, service span and 

access) and ‘comfort and convenience’ (including travel times, reliability, and crowding) 

dimensions. In this research, we focus on two specific gaps regarding transit performance 

assessment, primarily from a passenger perspective. We look at each of these subsequently in 

the following paragraphs. 

 

Travel time reliability forms an essential component of transit service quality, and its 

importance to customer satisfaction has been repeatedly highlighted in the literature (Gittens 

and Shalaby (2015); Jenelius (2015); Van Oort (2011)). For urban multimodal transit networks, 

passengers’ experience of reliability is based on the whole journey experience, including 

transfers. Although there are multiple passenger-oriented reliability indicators available (Chan 

(2007); Gittens and Shalaby (2015); Jenelius (2018); Uniman et al. (2010); Van Oort (2011)), 

the majority are restricted to single-leg journeys (without transfers) and do not consider 

different modes and their interactions. Some of the relatively recent work has looked at journeys 

with transfers but focuses primarily on the reliability of transfer time (Lee et al. (2014)) or travel 

time from the time the passenger boarded the vehicle (Bagherian et al. (2016)), ignoring the 

waiting time at the origin. Hence, there is a need for a methodology that can be used for travel 

time reliability measurement for multi-modal public transport journeys with transfers, which is 

sensitive to all travel time components. This leads to the following research gap: 

 

➢ Research Gap 1: Reliability quantification for multi-modal public transport 

journeys  

 

Along with operational efficiency, providing equitable access is often considered one of the 

primary goals of transit planning (Wei et al., 2017). Equity in this case is defined as the ‘fairness 

in distribution of resources’ (Litman, 2002). The importance of equity in transit planning is 

being increasingly recognized, and equity consideration during transport planning is, in many 

countries, required by legislation (Delbosc and Currie, 2011). These two goals of efficiency and 

equity are sometimes conflicting, and often there is no one perfect solution but many Pareto-

optimal ones. The best solution depends on the specific needs of the urban area and usually 

involves trade-offs between different goals. For example, during public transport network 

design, patronage and coverage goals are often conflicting (Walker, 2008). A transit authority 

looking to maximize financial returns may focus on having higher patronage while 

compromising on coverage. To make the optimal choice, decision-makers need information on 

what factors impact each of these goals and what trade-offs exist between them.  

 

There is a plethora of literature looking at the diverse perspectives and dimensions of equity in 

transit planning. Equity can be measured in terms of several different transport outcomes; some 

of the common ones include travel times, accessibility and fare paid. While there are plenty of 

studies analyzing equity in terms of these outcomes (such as Delbosc and Currie (2011), El-
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Geneidy et al. (2016), Guzman et al. (2017), Neutens et al. (2010)) limited attention has been 

paid to the equity of transit network design, and its role in determining these outcomes. The 

few studies that do include it do so by measuring equity in terms of transit coverage (for 

example in Camporeale et al. (2017) or Wei et al. (2017)). However, if we consider the eventual 

outcomes of travel times and fare paid, these are impacted not just by the coverage but also by 

the design of routes.  

 

Circuity is defined as the ratio of the network and Euclidean distances between an origin-

destination (OD) pair (Barthélemy, 2011) and is a measure of directness of transit networks. 

Circuity has been found to impact travel behavior in multiple ways, including mode and route 

choice decisions of travelers (Huang and Levinson, 2015; Kim et al., 2019; Raveau et al., 2014). 

Transit routes with higher circuity imply a longer network distance (i.e. a longer detour) for the 

same Euclidean distance covered. This impacts the passengers in two ways. Firstly, longer 

network distance implies longer travel times for the passengers, all else being equal. Secondly, 

for transit networks where the fare is calculated based on the network distance travelled, higher 

circuity directly impacts the fare paid. Essentially, travelers using highly circuitous routes will 

pay higher for a worse-off connection. Hence, an uneven distribution of circuity can contribute 

to the disparity in travel times, and fare paid, making circuity relevant from an equity 

perspective. However, there is limited research on the distribution of circuity observed within 

a transit network and its impact on travelers from different population groups. In sum, in this 

dissertation, we consider the following research gap: 

➢ Research Gap 2: Evaluation of transit circuity from an equity perspective 

 Transit route choice modelling  

Compared to traditional data sources like stated preference surveys and travel dairies, 

automated data sources have a significant advantage of providing network-wide travel choices 

and precise measurement of travel attributes experienced by the passengers, making them an 

attractive data source for route choice analysis. Another major advantage, generic to all revealed 

preference data sources is avoidance of response bias as in the case of stated preference data. 

Notwithstanding, the literature on transit route choice modelling using smart card data is scarce. 

Many of these studies are limited to one transit mode only, typically metro (like Guo and Wilson 

(2011), Hörcher et al. (2017), Kusakabe et al. (2010), Raveau et al. (2014), Tirachini et al. 

(2016), Zhao et al. (2017)). Only a few (namely Arriagada et al. (2022), Jánošíkova et al. (2014), 

Kim et al. (2019), Tan et al. (2015), Yap et al. (2020)) have analyzed a large-scale multi-modal 

transit network.  

 

In route choice modelling, capturing unobserved correlations between overlapping routes is a 

non-trivial problem. For road networks, this has been a well-researched topic with a consensus 

that overlapping routes are perceived to be similar by the travelers, leading to a reduction in 

their utility compared to completely independent routes (Bovy et al., 2008). However, for transit 

networks, research so far has been inconclusive on how this overlap should be defined and is 

perceived. Specifically, there are three gaps in knowledge on this topic. Firstly, there is no 

consensus on how travelers perceive overlap between routes – with some studies reporting a 

positive valuation (for example, Hoogendoorn-Lanser and Bovy (2007); Anderson et al. (2017)) 

while some others a negative valuation (for example Yap et al. (2020); Tan et al. (2015)). 

Secondly, when considering path overlap, it is not clear whether it should be defined in terms 

of overlapping links (i.e. part of the route between consecutive stops) (like in Tan et al. (2015)) 

or entire journey legs (like in Hoogendoorn-Lanser et al. (2005)). So far, none of the studies 

compare these two different ways of defining path overlap, and how each of them is perceived 
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by travelers. Lastly, for multi-modal transit networks, correlation between routes is not just 

restricted to path overlap but could also be because of common nodes, service, runs or modes 

(Hoogendoorn-Lanser et al., 2005). However, the studies for urban transit networks so far have 

only considered overlap in terms of path. This leads us to the following research gap: 

 

➢ Research Gap 3: Definition and valuation of different types of overlap for route 

choice models in case of urban transit networks 

 

Generally, the methods and models used for travel behavior research should be such that they 

highlight the strengths of the data source being used, while managing its limitations (Zhao et 

al., 2020). The route choice models currently in use were originally developed based on data 

actively collected for model estimation purposes (Zhao et al., 2020). Although smart card data 

provides several advantages over traditional data sources as discussed earlier, there are also 

some major shortcomings with regards to their application for transit route choice modelling. 

Firstly, no information is available on the trip purpose, journey origin location and often the 

time of arrival at the boarding stop, which requires assumptions to be made regarding 

consideration choice set and perceived travel attributes for route choice modelling. Secondly, 

due to privacy regulations, socio-demographic characteristics of card holders are not available 

in most cases. Hence, models estimated using smart card data cannot incorporate differences in 

travel behavior resulting from variation in individual characteristics. Lastly, privacy regulations 

often do not allow for a cardholder to be tracked across days, making it challenging to 

incorporate the panel structure of the data. Despite these differences between passively 

collected smart card data and other data sources, no research so far has assessed how stable are 

the estimates from models estimated based on such data and how applicable the models are for 

demand forecasting.  

 

When the selected model is close to reality, the estimated parameters are expected to be stable 

for a reasonable range of temporal and spatial conditions, and the model predictions are 

expected to resemble observed demand. Before the availability of automated data sources, 

getting detailed time-varying demand patterns was a challenge (Poon et al., 2003). This made 

it difficult to validate the transit route choice models once they had been estimated. With the 

availability of smart card data, the observed flows on each transit link are available and have 

been utilized to validate the flows obtained from schedule or frequency-based transit 

assignment models for the rail/metro modes (see Fung et al. (2005) or Poon et al. (2003)). On 

the other hand, many studies have used smart card data to estimate the route choice models 

(Hörcher et al., 2017; Kim et al., 2019; van Oort and Yap, 2021, amongst others), but, to the 

best of our knowledge, no study so far has undertaken such an external validation of these 

models. Hence, this dissertation seeks to address the following research gap: 

 

➢ Research Gap 4: External validation of transit route choice models estimated using 

smart card data 

 Research objective and questions 

Based on the research gaps identified in the previous section, the overarching research objective 

considered in this thesis is as follows: 

  

“To improve performance assessment and route choice modelling for urban multi-modal transit 

networks using smart card data”.  

 



6 Transit Performance Assessment and Route Choice Modelling Using Smart Card Data 

 

To fulfill this objective, we formulate four research questions that we intend to answer through 

this research: 

1. How can travel time reliability for multi-modal transit journeys from a passenger 

perspective be quantified? 

2. How can the effects of network design on distributional aspects of travel times and 

fare paid in the network be characterized? 

3. How can travelers’ perception of overlap between alternative routes be incorporated 

in models of transit route choice? 

4. How valid are models of transit route choice estimated using smart card data?  

 Research approach and theoretical foundation 

To answer the research questions, we divide our research into two steps, as shown in Figure 

1.1. The first part seeks to improve transit performance measurement and the second route 

choice modelling. The research is performed using the urban transit network of Amsterdam, the 

Netherlands, as a case study. However, the methods developed are applicable to other urban 

settings where a comparable data set is available. 

 

Figure 1.1 Overall research approach, including research gaps (RGs).  

As a first step, passenger journeys are inferred by fusing smart card and AVL data using existing 

destination and transfer inference algorithms (Gordon et al., 2013; Trépanier et al., 2007; M. D. 

Yap et al., 2017). This results in a network-wide passenger journeys database that can be 

aggregated at any spatial or temporal level for performance assessment. Using this database, a 

reliability metric is proposed, which is applicable for transit journeys with transfers, addressing 

Research Gap 1. Along with the reliability metrics, other service quality measures are also 

calculated for each journey including different components of travel times, number and type of 

transfers and circuity. The circuity and travel times, combined with the zonal level income 

distribution of the population is used to undertake an equity analysis for the network (Research 

Gap 2). A spatial regression analysis is undertaken to understand the relationship between 

income, circuity and distance covered by the travelers.  

 

In the second step, we use the service quality measures calculated in the first part of the research 

for understanding the route choice behavior of transit travelers. For this, discrete choice models 

based on the Random Utility Framework (McFadden, 1974) are used to obtain the valuation of 

mode-specific travel time and transfer attributes. Further, the definition and perception of three 

different types of overlap in the networks is explored – at the link, leg, and transfer node levels 
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(Research Gap 3). The underlying assumption here is that an overlap between alternative routes 

results in correlations between unobserved components of routes’ utilities, unless explicitly 

accounted for.  

 

Lastly, we examine how transferable are the developed models of route choice by undertaking 

an external validation using a real world case of introduction of a new metro line in the network 

(described in the subsequent section), addressing Research Gap 4. The model is estimated using 

data from before the network change, and is used to predict the impact of the network change 

on passenger shares. The parameters estimated for the travel attributes are also compared by 

estimating a similar model using the data from ‘after’ the network change.    

 

The research assumes the availability of smart card and AVL data, and focuses specifically on 

the challenges and opportunities when using these data sources for transit performance 

assessment and route choice modelling. Although the smart card data we use is from a closed 

AFC system (where both check-in and check-out information is available), the methods can 

also be applied to open AFC systems after inferring destinations using existing methods 

(Munizaga and Palma, 2012; Trépanier et al., 2007).  

 Research context 

The research presented in this dissertation was conducted in the context of the North South 

metro line research project initiated by the Municipality of Amsterdam, the Netherlands. The 

new north-south metro line was introduced in Amsterdam, the Netherlands on 22nd July 2018 

adding significant capacity to the existing metro, bus and tram network in the city. Along with 

the introduction of the new line, changes were made to the rest of the transit network including 

the removal or re-routing of existing transit lines, as shown in Figure 1.2.  

 

Figure 1.2 Public transport network of Amsterdam before (left) and after (right) opening 

of the north-south metro line. 

 

The North South metro line project was aimed at studying the impact of the new metro line on 

mobility patterns and behavior, socio-economic and spatial aspects, as well as quality of life. 

The project partners include two industry partners (Municipality of Amsterdam and 

Vervoerregio Amsterdam) and five academic partners (Delft University of Technology, 

University of Amsterdam (UvA), Vrije Universiteit Amsterdam (VU), Centrum Wiskunde & 
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Informatica (CWI) and The Amsterdam Institute for Advanced Metropolitan Solutions (AMS)). 

In addition, the Gemeentelijk Vervoerbedrijf (GVB), the public transport operator of 

Amsterdam, provided the public transport data used in this research and contributed to the 

discussion on network impacts.  

 

This PhD research is one of the main contributions of Delft University of Technology to the 

broader north-south metro line project (the final report of which is available at AMS (2021)), 

and aims to developing methods to assess the impact of the new metro line on the quality of 

public transport network and passenger ridership. The methods developed in this research were 

applied to undertake empirical analyses for the multi-modal urban transit network of 

Amsterdam. It also utilizes the network change to assess the applicability of transit route choice 

model estimations to predict the impact of changes in demand in response to major 

infrastructural changes. 

 

The addition of the new metro line has several impacts on the quality of public transport - not 

just on the affected corridor(s) but also on the rest of the network. Figure 1.3 shows one way 

of looking at these impacts, which are relevant for the North-South metro line project. The 

introduction of the new line impacts the travel times, travel time reliability, number and type of 

transfers, in-vehicle crowding, and the detours experienced by passengers between different 

OD pairs. The changes in such service quality attributes are expected to lead to a change in 

travel behavior in terms of public transport route choice, mode choice (including that between 

public transport and private modes), destination choice, departure time choice, or addition of 

new trips (induced demand). These changes result in a change in ridership for public transport, 

which in turn impacts some of the service quality attributes. This project focuses on the 

measurement of change in service quality attributes (or performance assessment) and their 

impact on public transport route choice. The project scope is shown with highlighted (orange) 

boxes in Figure 1.3. 

 

Figure 1.3. Project scope within the North-South metro line research project.  

 Research contributions 

This section summarizes the main contribution of the thesis, distinguishing scientific 

(theoretical and methodological) contributions, and societal contributions.  
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 Scientific contributions 

This dissertation attempts to advance the ways in which automated sources of transit data are 

currently used for public transport perforamance assessment and route choice modelling. A key 

theoretical contribution pertains to stitching together the existing methods offered in literature 

to establish their suitability for working with these new transit data sources. The specific 

scientific contributions of each chappter are described below: 

1. Developing a methodology for travel time reliability measurement from a passenger 

perspective for multi-modal transit journeys with transfers (Chapter 2) 

We extend the existing Reliability Buffer Time (RBT) metric (Chan, 2007; Uniman et 

al., 2010) to multimodal transit journeys with transfers and develop a methodology to 

calculate it using a combination of smart card and AVL data. The resulting metric 

enables comparison of reliability between different modes and routes, and is sensitive 

to the variability in all components of travel time experienced by a traveler including 

initial waiting time, in-vehicle times and transfer times for all journey legs. We 

demonstrate the methodology and some potential applications of the metric by applying 

it to the urban transit network of Amsterdam. The metric can also be used as an input to 

route choice models, particularly since it is calculated from a passenger perspective. 

 

2. Inestigating the relationship between circuity of public transport networks and its equity  

outcomes (Chapter 3) 

This study provides a new perspective on the role of public transport network design in 

determining its equity outcomes, and how it can be used to reduce existing inequities. 

Specifically, we disentangle the impact of land-use distribution and transit network 

design on the disparity in distance travelled by different income groups in case of urban 

transit networks. We further explore its implications on travel times and fare paid for 

networks with distance-based fare. We leverage the travel patterns obtained from smart 

card data to undertake a network-wide investigation. Smart card data is linked to 

aggregate-level income data to undertake the equity analysis.   

 

3. Evaluating the perception of different types of overlap during route choice modelling 

for urban transit networks (Chapter 4) 

The main contribution of this study is a better understanding how travelers perceive 

different types of overlap between alternate routes when making transit route choice 

decisions in case of urban transit networks. In addition to the traditional definition of 

overlap in terms of path (in the form overlapping links or legs), we also define the 

overlap in terms of transfer nodes. This study also adds to the limited literature using 

large-scale revealed preference data for understanding route choice behavior, and 

provides valuations of mode-specific travel time & transfer attributes using smart card 

data from Amsterdam, the Netherlands.  

 

4. Establishing the temporal transferability of transit route choice models estimated using 

smart card data (Chapter 5) 

This study adds to the scarce literature on the validation of travel demand models and, 

to the best of our knowledge, is the first to undertake an external validation of a transit 

route choice model. We use smart card data from before and after the opening of a new 

metro line in Amsterdam, the Netherlands for model estimation and validation, 

respectively. We examine the transferability of transit route choice models developed 

using smart card data, and how well they perform for forecasting changes in demand 

because of a network change. We also compare alternate specifications of the model to 
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empirically study the impact of adding/omitting relevant variables on model 

transferability. 

 Societal contributions  

This research proposes novel ways in which automated data sources can be used for improving 

transit planning which can be useful for transit service providers and policy makers. With the 

eventual aim of making transit more attractive as well as equitable, practitioners can apply 

methods developed in this research to improve transit performance monitoring as well as 

enhance their understanding of transit user behavior, as described in the subsequent sections.   

 

Improvements in transit performance assessment and monitoring 

Firstly, the reliability measure developed can be used by practitioners to evaluate the reliability 

of current services from a passenger perspective. Passively collected data sources can be used 

to calculate this metric on a regular basis, which can then be aggregated to identify trends in 

the reliability from the passenger’s perspective. The metric can also be used as an input to 

existing travel demand models to incorporate the impact of reliability on travel demand. 

Secondly, this research demonstrated how smart card data can be combined with aggregate-

level socio-demographic data to undertake an equity analysis of travel times and fare paid in 

the network. The proposed method can be used by practitioners to assess the contribution of 

transit network design toward the observed equity outcomes. The methodology for calculating 

travel times, transfers and reliability developed in this study has already been applied for 

undertaking an ex-post impact evaluation of the new north-south metro line in Amsterdam on 

transit ridership and service quality (see Brands et al. (2020), Dixit et al. (2019a)).  

 

Improvements in route choice modelling 

Our study presents the application of a transit route choice model on the network-wide smart 

card data for Amsterdam. First, the research provides behavioral insights into how overlap 

between alternate routes is perceived by travelers when making route choice decisions, which 

has implications for transit network design. Moreover, findings regarding the definition of 

different types of overlap can be used to enhance existing transit assignment and route choice 

models. Additionally, the relative valuation of different mode-specific attributes from the route 

choice models provides valuable input for improving the outcomes of transport models and 

evaluation methods such as cost benefit analyses. The research also presents a systematic 

validation methodology that can be used by practitioners for validating route choice models. 

Lastly, the results of the model validation analysis undertaken has implications for practitioners 

looking to apply these models for policy analysis.  

 Thesis outline 

The outline of this dissertation is shown in Figure 1.4. The dissertation is divided into two main 

sections. Smart card and AVL data are first used to calculate transit performance metrics. 

Thereafter, some of the calculated metrics are used as an input for route choice modelling, and 

the models are validated by using them for predicting the outcome of a network change.  

 

Chapter 2 presents a method to use raw smart card and AVL data to develop a passenger-

oriented reliability measure which considers multi-modal journeys with transfers (Research gap 

1). The application of the metric is demonstrated on a small sample of smart card data. In this 

chapter we also discuss the steps followed for pre-processing and fusion or smart card and AVL 

data to form a passenger journey database, which is used a base for all the further analysis in 
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this research. Next, in Chapter 3 we analyse the circuity experienced by travelers of different 

income groups, and its impact on the disparity in travel times, distance travelled and fare paid 

by them (Research gap 2). In doing so, we explore the role of network design on the equity 

outcomes for the network. Circuity measured in this study is also found to be a significant factor 

in explaining the transit route choice of passengers which is explored in Chapter 4. In addition 

to circuity, the outcomes of the route choice models include mode-specific travel time and 

transfer valuations, as well as how the overlap between alternate routes is perceived by travelers 

(Research gaps 3). Three types of overlap are considered and compared – overlap of links, 

journey legs and transfer nodes, and the implications of the results for network design are 

discussed. Finally, in Chapter 5, we explore how transferable are the models of transit route 

choice developed using smart card data (Research gap 4) using the data from before and after 

opening of the new metro line, thereby undertaking a validation assessment of the models 

estimated in Chapter 4. Finally, in Chapter 6 we summarize the main conclusions from our 

research and its implications for practice and future research.  

  

Figure 1.4. Thesis outline.  
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Chapter 2 - Passenger Travel Time Reliability 

for Multi-Modal Public Transport Journeys 

Travel time reliability is an important determinant of the service quality of transit networks. 

This chapter contributes to improving transit performance assessment by focusing on the 

quantification of travel time reliability for urban transit networks from a passenger perspective. 

Urban transit networks typically consist of multiple modes and the journeys may involve a 

transfer within or across modes. Hence, the passenger experience of travel time reliability is 

based on the whole journey experience including the transfers. Although the impact of transfers 

on reliability has been highlighted in the literature, the existing indicators either focus on uni-

modal transfers only or fail to include all components of travel time in reliability measurement.  

 

This chapter extends the existing ‘Reliability Buffer Time’ metric to journeys with multi-modal 

transfers and develops a methodology to calculate it using a combination of smart card and 

automatic vehicle location data. The developed methodology is applied to the data from the 

Amsterdam transit network and potential applications are demonstrated. The measure is 

calculated for each OD-route pair and can be aggregated to compare reliability between 

different routes, modes, transit stops, or time periods. The measure can also be used as an input 

for travel behavior models of mode, route, or departure-time choice.   

 

This chapter is based on the following article: 

 

Dixit, M., Brands, T., van Oort, N., Cats, O., Hoogendoorn, S. (2019) Passenger Travel Time 

Reliability for Multimodal Public Transport Journeys. Transportation Research Record, 

2673(2), 149–160, doi:10.1177/0361198118825459. 

© National Academy of Sciences: Transportation Research Board 2019  
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 Introduction 

 Multimodal service reliability 

Transit service reliability forms an important component of service quality and its importance 

to customer satisfaction has been repeatedly highlighted in the literature (Gittens and Shalaby, 

2015; Jenelius, 2018; Van Oort, 2011). From the operator’s perspective, improved reliability 

can reduce operational costs and increase revenue by potentially increasing the ridership and 

retention (Diab et al., 2015).   

 

Urban transit networks typically consist of multiple modes and passenger journeys may involve 

a transfer within or across modes. Hence, the passenger experience of reliability on such 

networks is based on the whole journey experience including the transfers. Although there are 

multiple passenger-oriented reliability indicators available (Chan, 2007; Gittens and Shalaby, 

2015; Jenelius, 2018; Uniman et al., 2010; Van Oort, 2011), the majority are restricted to single 

leg journeys (without transfers), and do not consider different modes and their interactions. 

Some of the recent work has looked at journeys with transfers, but focus primarily on the 

reliability of transfer time (Lee et al., 2014) or travel time from the time passenger boarded the 

vehicle (Bagherian et al., 2016), ignoring the waiting time at the origin.  

 

This study uses an existing indicator – Reliability Buffer Time (RBT, described by Chan (2007), 

Uniman et al. (2010)) – as a point of departure, and extends it to journeys with multiple legs 

and modes for urban, high-frequency transit networks using smart card and automatic vehicle 

location (AVL) data. The developed metric aims to 

 

• measure reliability for multi-modal public transport journeys; 

• enable the comparison of different transit modes and routes; 

• be sensitive to the variability in waiting time, in-vehicle time and transfer time for all 

legs of the journey 

 

The method developed is applied to a real-life case study of the Amsterdam transit network to 

demonstrate its implementation in practice. The methodology however is independent of the 

data system(s) in use and could be applied to any transit network where smart card and AVL 

data sources are available.  

 

By using a consistent method for all journeys using all available transit modes, reliability can 

be compared between any route for any OD pair in a multi-modal transit network. The 

developed metric can be used to study the reliability impacts of policies affecting multiple 

transit modes. Additionally, it could also be used as an input to behavioral models such as mode, 

route or departure time choice models.  

 

The rest of the chapter is structured as follows: first a background on reliability and the 

application of automated data for reliability measurement is presented. Section 2.2 then 

introduces the new metric and the methodology to calculate it using smart card and AVL data. 

The developed methodology is applied to the case study in Section 2.3, for which the results 

are discussed in Section 2.4. Lastly, Section 2.5 presents the conclusions and limitations of the 

study. 
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 Travel time reliability 

Reliability in this context is defined as ‘certainty of service aspects compared to the schedule 

(such as travel time (including waiting), arrival time and seat availability) as perceived by the 

user’ (van Oort, 2016). Traditionally measured in terms of service-oriented indicators (such as 

on-time performance, headway regularity (Kittleson & Associates et al., 2003)), lately there has 

been a shift towards passenger oriented measures, as they can better capture the effectiveness 

of reliability improvement strategies by including the end-user perspective (Bagherian et al., 

2016). A review of the existing passenger-oriented reliability measures can be found in Gittens 

and Shalaby (2015) and in Currie et al. (2012). 

 

Reliability may be measured in terms of travel time regularity (consistency of experienced 

travel times) or punctuality (deviation from the scheduled arrival time/travel time). Cats (2014) 

notes that in case of urban high-frequency services, passengers arrive randomly without 

consulting the schedule, making travel time regularity more relevant than punctuality. Our study 

is based on dense high-frequency urban transit networks, hence reliability has been measured 

in terms of regularity of travel time.  

 Reliability and automated data sources 

The smart card data source has been utilized repeatedly in the recent past for a range of 

applications in transport planning. Pelletier et al. (2011) provide a review of these applications 

of smart card data for strategic, tactical and operational levels of transport planning. For service 

reliability measurement also, much of the recent research utilizes smart card and AVL data 

sources (Chan, 2007; Uniman et al., 2010). In practice also, many transit agencies are moving 

towards such data sources due to lower data collection costs and better quality of data (Kittleson 

& Associates et al., 2003).  

 

The AVL data provides spatio-temporal information on vehicle movement, which can be used 

directly to calculate vehicle-oriented passenger reliability metrics (van Oort et al., 2015b). For 

estimating passenger-oriented metrics, AVL data can be used in combination with Automated 

Passenger Counts (APC) data to weigh the calculated metrics based on demand. Furth and 

Muller (Furth and Muller, 2006) used the observed headways from AVL data to obtain the 

waiting time distribution at origin stop for buses. Similar approach was also employed by 

Ehrlich (2010) to estimate the travel time (waiting time + in-vehicle time) distribution for bus 

journeys in London.   

 

Lee et al. (2014) highlighted the importance of including the impact of transfers on reliability 

assessment. Using AVL data, they estimate the additional delay due to transfer synchronization. 

Jenelius (2018) also used the AVL data to estimate the transfer times by tracing a virtual “probe 

traveler” undertaking the journeys between different OD pairs. Since AVL data does not 

directly provide any information on transfers, assumptions need to be made to estimate transfer 

time(s) experienced by the passengers. However, with AFC data, the total journey time 

including the experienced transfer time can be inferred precisely for each passenger. In addition, 

the number of transferring passengers for each OD pair can also be derived.  

 

Bagherian et al. (2016) used the AFC data for measuring regularity and punctuality for journeys 

with transfers. However, the travel time is measured from tap in at first stop to tap out of last 

stop of the journey, ignoring the waiting time at the origin stop.  
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Table 2.1 provides a summary of some of the notable studies using automated data sources for 

reliability measurement, in terms of the components of travel time reliability included and the 

type of journeys they are applicable to.  

Table 2.1. Existing travel time reliability measures using automated data sources. 

Study   Measure(s) developed 
Data 

used 

Travel time component included Modes 

applicable 

to 
In-vehicle 

time 

Waiting time 

(origin) 

Transfer 

time 

Furth and 

Muller 

(2006) 

Waiting cost AVL No Yes No All 

Uniman et 

al. (2010) 

Reliability Buffer Time, 

Excess Reliability Buffer 

Time 

AFC Yes Yes 
Only for 

metro 
Metro 

Van Oort 

(2011) 

Additional travel time, 

Reliability buffer time 
AVL Yes Yes No All 

Lee et al. 

(2014) 

Additional Travel Time, 

Reliability Buffer Time 

AVL, 

APC 
No No Yes 

Train and 

tram 

Gittens and 

Shalaby 

(2015) 

Journey Time Buffer 

Index  

AVL, 

APC 
Yes Yes No Bus 

Bagherian 

et al. 

(2016) 

Passenger Journey Time 

Variability, 

Passenger Schedule 

Deviation Reliability 

AVL,

AFC 
Yes No Yes Bus/ tram 

 

From a passenger perspective, the reliability of a journey should incorporate the variation in all 

the travel time components – the waiting time, in-vehicle time and transfer time. Although the 

various components of reliability have been addressed individually or combined in the existing 

literature, none of the existing indicators incorporate sensitivity to all components of travel time 

for multi-modal public transport journeys. Our research aims to fill that gap.  

 Methodology 

 Definitions 

In this study, the word ‘journey’ refers to the travel made by a passenger from an origin transit 

stop to a destination transit stop including transfers, if any. A ‘leg’ of a journey consists of the 

travel made using a single transit line, without any transfers. A journey may include multiple 

legs by same or different transit modes. The term Origin-Destination (O-D) pair is used to 

denote a combination of transit stops (a stop-stop pair). An O-D pair may be connected by more 

than one transit ‘route’ which refers to the combination of transit lines a passenger may choose, 

where each route may or may not include a transfer. 

 Reliability Buffer Time 

The Reliability Buffer Time (RBT), first introduced by Chan (2007) and later updated by 

Uniman et al. (2010), measures the variability in travel time as the absolute difference between 

an extreme Nth percentile and the 50th percentile travel times. The value of N is typically set to 

95 (Wood, 2015), where RBT can be interpreted as the additional time passengers have to 

budget for their travel to ensure on-time arrival one out of twenty times, a value considered 
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acceptable in the literature. RBT and its variations (such as individual RBT and platform to 

platform RBT (Wood, 2015)) are one of the popular ways of measuring travel time reliability. 

Besides being easy to compute, some of its key advantages include its representation of 

passenger perspective, ease of interpretation for non-experts and flexibility of calculation across 

time and space (Wood, 2015). Although originally developed for metro, RBT has also been 

applied for reliability evaluation of bus networks (Ehrlich, 2010). However, so far, the majority 

of applications of RBT have focused on unimodal journeys. Our study extends the calculation 

of RBT to multi-modal transit journeys. The RBT is calculated for each transit route alternative 

per OD pair, which may or may not include transfers.  

 

For a journey with multiple legs, the total travel time (of the transit part of a journey) includes 

the waiting time at the origin stop, the in-vehicle time for the first leg, the waiting times and in-

vehicle times for the subsequent legs of the journey, and the transfer (walking) times between 

each leg – shown in Figure 2.1 for a journey with two transit modes. Since the passenger 

experience of reliability is defined by the variation in all of these components of travel time, 

the ideal reliability metric should be sensitive to each of these components, where each 

component may be perceived differently by travellers. However, our research assigns equal 

value to the variability in each individual component of travel time, since, in the end, the travel 

time variability of the entire journeys is relevant for the traveler. Furthermore, these 

components may be correlated, i.e. the variation in in-vehicle time for the first leg of the journey 

could be absorbed by the waiting time at the transfer. Therefore, in our study we measure 

variability of the total travel time over the entire journey. 

  

Figure 2.1. Components of passenger experienced travel time for a transit journey with 

two legs. 

 

For each multi-leg journey, the following generic parameters are defined: 

 

𝑤𝑡𝑜,𝑑,𝑟,𝑙,𝑖     Waiting time for leg ‘l’ of journey ‘i’ using route ‘r’ between origin–destination 

pair o,d 

𝑖𝑣𝑡𝑜,𝑑,𝑟,𝑙,𝑖     In-vehicle time for leg ‘l’ of journey ‘i’ using route ‘r’ between o,d 

𝑥𝑜,𝑑,𝑟,𝑙,𝑖       Transfer time between leg ‘l’ and ‘l+1’ for journey ‘i’ using route ‘r’ between o,d 

𝑛𝑜,𝑑,𝑟         Number of legs in journey between o,d using route ‘r’ 

𝑡𝑡𝑜,𝑑,𝑟,𝑖        Total travel time for journey ‘i’ using route ‘r’ between o,d over all legs 

 

For each journey ‘i’, the total travel time is given as  

 

 𝑡𝑡𝑜,𝑑,𝑟,𝑖 = ∑ (𝑤𝑡𝑜,𝑑,𝑟,𝑙,𝑖 + 𝑖𝑣𝑡𝑜,𝑑,𝑟,𝑙,𝑖)
𝑛𝑜,𝑑,𝑟

𝑙=1 + ∑ 𝑥𝑜,𝑑,𝑟,𝑙,𝑖  
𝑛𝑜,𝑑,𝑟−1

𝑙=1   ∀𝑜, 𝑑, 𝑟, 𝑖      (2.1) 

   

The individual travel times are aggregated over all journeys that belong to a specific o-d pair 

and route combination, by calculating the median value and the 95th percentile value, given as  
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𝑡𝑡𝑜,𝑑,𝑟
55      50th percentile travel time over all journeys between origin–destination pair o,d 

𝑡𝑡𝑜,𝑑,𝑟
95      95th percentile travel time over all journeys between origin–destination pair o,d 

 

These values are used to calculate the RBT for each o-d pair for each route:  

 

 𝑅𝐵𝑇𝑜,𝑑,𝑟 =  𝑡𝑡95
𝑜,𝑑,𝑟 −  𝑡𝑡50

𝑜,𝑑,𝑟
 (2.2) 

 

The RBT measures the absolute difference (in minutes) in travel times, as opposed to the 

relative values. This has been consciously chosen for this study, because of three reasons: 

 

1. Different modes have different speeds, i.e. metro routes are expected to have a shorter 

travel time than trams for the same OD pair. Since one of the aims is to be able to 

compare reliability between modes, the relative values may underestimate the reliability 

of faster modes. 

2. For OD pairs very close to each other (for example next stop on metro), the ratio of 95th 

to 50th percentile travel times may be very high, since the waiting time component is 

large compared to the in-vehicle travel time. If the reliability is measured as a percentage 

of median travel times, this will lead to RBT values exceeding 100% which are difficult 

to compare.  

3. When using travel time variability in policy evaluation (using a value of travel time 

reliability) absolute values are preferred. 
 

The RBT can be measured for any selected time interval such as the peak hour or three hours, 

provided that enough data points are available. It is recommended to choose a time period where 

the frequency of services is consistent, since variation in frequencies can contribute to higher 

variation in waiting and transfer times, leading to a higher RBT. 

 RBT calculation using smart card data 

Since the aim is to measure variability in travel times, the large amount of observations provided 

by the smart card data allow for a realistic measurement (Uniman et al., 2010). For this study, 

data from the Dutch smart card system (see Van Oort et al. (2015a) for details) and AVL data 

(see Van Oort et al. (2015b) for details) has been utilized. The Dutch smart card requires tap-in 

and tap-out for all modes, implying both boarding and alighting locations and times are 

available. However, for systems where tap-out is not recorded (London buses, New York metro 

etc.), destinations can be inferred using a combination of smart card and AVL data (Trépanier 

et al., 2007; Zhao et al., 2007). Once the destination is available for all transactions, transfer 

inference is undertaken to combine individual transactions to journeys (Gordon et al., 2013; M. 

D. Yap et al., 2017).  

 

Depending on the system, the tap-in is either at the stop (e.g. most current metro systems, 

including Amsterdam) or on-board the vehicle (most current bus and tram systems, e.g. London 

bus and Amsterdam bus and trams). When tap-in is in the vehicle, the difference between tap-

in and tap-out times for each transaction correspond to the in-vehicle times only (t2-t1 and t5-t4 

in Figure 2.1), whereas in the station-based tap-in, this time also includes access/egress time to 

the vehicle, waiting time at the platform and the transfer time within the same mode (if 

applicable) (t2-t0 and t5-t3 in Figure 2.1). For the sake of simplicity, and assuming they form a 

small component of the overall travel time, the access and egress time to the vehicle from the 

fare gates is not explicitly included in the specification of the measure used in this study. It is 

assumed that this time is constant across passengers and hence does not contribute to reliability. 
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For Amsterdam, for journeys with metro as the first mode, the total travel time can be calculated 

directly from the smart card data as the difference between the last tap-out and first tap-in (t5-t0 

in Figure 2.1). Whereas for journeys with buses and trams as the first mode, the waiting time 

at the origin stop needs to be measured/estimated separately (only t5-t1 in Figure 2.1 is 

measured). This is represented as 

  

𝑡𝑡𝑜,𝑑,𝑟,𝑖 =  {
(𝜏𝑖,𝑙=𝑛𝑜,𝑑,𝑟

𝑜𝑢𝑡 − 𝜏𝑖,𝑙=1
𝑖𝑛 )                   𝑖𝑓 𝑚𝑜𝑑𝑒 𝑖𝑠 𝑚𝑒𝑡𝑟𝑜 𝑓𝑜𝑟 𝑙 = 1

(𝜏𝑖,𝑙=𝑛𝑜,𝑑,𝑟

𝑜𝑢𝑡 − 𝜏𝑖,𝑙=1
𝑖𝑛 ) + 𝑤𝑡𝑖,𝑙=1         𝑖𝑓 𝑚𝑜𝑑𝑒 𝑖𝑠 𝑏𝑢𝑠 𝑜𝑟 𝑡𝑟𝑎𝑚 𝑓𝑜𝑟 𝑙 = 1

  (2.3) 

 

Where, 

𝜏𝑖,𝑙
𝑖𝑛  Tap-in time for the leg ‘l’ of journey ‘i’ 

𝜏𝑖,𝑙
𝑜𝑢𝑡  Tap-out time for the leg ‘l’ of journey ‘i’ 

 

In this study, the waiting time at origin 𝑤𝑡𝑖,𝑙=1 is estimated for each individual (journey) and 

then added to the time measured by smart card data for journeys with bus or tram as the first 

mode.   

 

For short headway services, it has been known that passengers arrive at the transit stops without 

consulting the schedules (Furth and Muller, 2006; Kittelson & Associates, 2013). Hence, within 

this short interval of time between the arrivals of consecutive buses/trams, a uniform 

distribution of passenger arrivals can be assumed. Continuous random variables are then 

generated and sampled over the uniform distribution of [0, observed headway] to obtain waiting 

time for each individual journey. The observed headway is obtained from the AVL data. Since 

the waiting time is sampled over all the passengers arriving during an observed headway, this 

method captures the ramifications of uneven headways on passenger waiting times as more 

waiting times are sampled for the longer headways.  

 

Once the waiting time is assigned for journeys where the first mode is bus/tram, the total travel 

time is calculated for each journey (using Equation (2.1)) and aggregated to percentile values 

for each route for each stop-stop pair. Subsequently, RBT is calculated based on Equation (2.2). 

RBT can be compared between multiple routes for the same OD pair. It can also be aggregated 

for each mode or mode combination by using a demand weighted average, given by 

 

 𝑅𝐵𝑇𝑚 =  
∑ (𝑁𝑜,𝑑,𝑟 ∗ 𝑅𝐵𝑇𝑜,𝑑,𝑟)𝑜,𝑑,𝑟∈𝑅𝑚,𝑜,𝑑

∑ 𝑁𝑜,𝑑,𝑟𝑜,𝑑,𝑟∈𝑅𝑚,𝑜,𝑑

      ∀ 𝑚 (2.4) 

 

Where, 

𝑁𝑜,𝑑,𝑟  Total passengers travelling on route ‘r’ between origin destination pair o,d 

𝑅𝑚,𝑜,𝑑  Set of all routes on origin destination pair o,d using mode ‘m’ 

 

Using a similar approach, it can also be aggregated or segmented to other dimensions such as 

for the number of transfers involved, or for the whole population or groups of users within the 

population. Figure 2.2 summarizes the steps that can be followed to derive RBT for multi-

modal journeys using smart card and AVL data.  
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Figure 2.2 Analysis steps to derive RBT from raw smart card and AVL data. 

 Application 

 Case study description 

The proposed method is applied to a real-world case study consisting of bus, tram and metro 

lines operated by GVB – the urban transit operator of Amsterdam. The study area consists of 4 

metro lines, 15 tram lines and 25 bus lines spread over 1,282 stops, shown in Figure 2.3.  
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Figure 2.3 Amsterdam transit network (Source: GVB, 2018). 

 

The smart card and AVL data set used for the analysis are for two weekdays (1st and 2nd March 

2018), and consists of more than 750,000 transactions per day for each day spread over more 

than 80,000 OD pairs. The average frequency for metro in the dataset is 6-8 trains per hour per 

direction during 7am to 7pm. For bus, this number ranges between 4-10 and for tram between 

5-12 vehicles per hour per direction. Four bus lines (29, 231, 240, and 248) with a frequency of 

less than four vehicles per hour have been removed from the dataset used for the analysis.   

 

The planned headways for the lines are found to be homogenous throughout the day, and the 

RBT analysis for this study has been performed for the entire day (7am – 7 pm). From the 

realized headways it can be observed that in regular situations during transit operation in the 

study area vehicle bunching is not common. The OD/route combinations with less than twenty 

observations during this period have been excluded from the analysis. 

 

LEGEND 

Metro 
Tram 
Bus  

Scale (approx.) 

2.5 km 
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 Implementation 

Each record/transaction of the smart card data received from the operator consists of a 

combination of tap-in and tap-out, which in case of buses and trams includes one leg of the 

journey only (without transfers). For metro it may include transfers within the metro, because 

passengers transfer without using their smart card. Each record consists of boarding and 

alighting times, locations and the mode used. For bus and tram trips, the line number and vehicle 

number are also provided. The data however does not provide a smart card id due to privacy 

restrictions, implying that the transactions cannot be tracked within the day. Instead, a journey 

id is provided, which combines individual transactions based on the transfer inference criteria 

applied by the operator which identifies any transaction by the same user within 35 minutes of 

the previous transaction as a transfer.  

Data Cleaning  

The raw smart card and AVL data are first cleaned to remove erroneous or incomplete 

transactions such as unrealistic travel times, departure time before arrival time, missing origin 

and destination information etc. (7.4% in the dataset). For metro trips, some extreme values of 

travel times were observed in the data, possibly due to passengers taking the wrong train or 

waiting for a friend at the platform. To ensure that such passenger behavior does not lead to 

unrealistic reliability measurement, the following procedure was applied to identify and remove 

records with odd passenger behavior for metro, ensuring that large disturbances are retained: 

1. For each OD pair, select the records for which the travel time was more than double of 

the median travel time and which exceeded more than 15 minutes of the median travel 

time for that OD pair. This value was decided by observing the outliers in the data, 

taking into consideration both very short and very long metro journeys.  

2. For each selected record, check if there was another record in the smart card data that 

started after the tap-in and ended before the tap out of the selected record. If the 

difference between tap-outs of these two records is more than one headway (10 minutes) 

- the selected record is considered an outlier and removed from the data set. This resulted 

in the removal of 0.25% of metro trips.     

Data Fusion 

Next, the individual transactions in the AFC data are matched with the AVL data to obtain the 

actual vehicle arrival and departure times at stops for bus and tram trips. Since the smart card 

data for Amsterdam does not provide a vehicle trip number which can be matched directly to 

the AVL data, the matching is undertaken based on the vehicle number and boarding time and 

location. If a tap-in time lies between the arrival of a vehicle at the boarding stop and the arrival 

of the vehicle at the next stop on that line, the passenger trip is assigned to that vehicle trip id. 

For the first stop in a vehicle trip, a buffer time of 5 minutes before the departure of the vehicle 

is considered for assigning the passenger trip to that vehicle trip. With this algorithm, 92% of 

the bus and tram trips could be matched to a corresponding vehicle trip; 88% of which could 

be matched based on destination also. It is noted that there are other more rigorous methods 

available to match the remaining smart card data to AVL data (Luo et al., 2018), but since that 

is not the focus of this work, this was not undertaken. Instead, for the passenger trips where a 

corresponding vehicle trip could not be found in the AVL data, the tap-in and tap-out times 

have been considered as the trip start and end times. 

 

Although the Dutch smart card system requires tap-in and tap-out for all modes, ~3.5% of 

transactions have missing tap-outs for buses and trams. In the absence of the smart card id, it is 

not possible to infer destinations for these records, and they are hence removed from the data.  
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Transfer Inference 

Since the purpose of this study is reliability measurement, it is crucial that this step is carried 

out accurately as an incorrectly classified transfer may add extreme values of travel times, 

increasing thus the measured reliability. The transfer criterion of 35 minutes applied by the 

operator is very generous and may include some activities wrongly classified as transfers. 

Hence, this study applies four additional transfer inference criteria derived from (Gordon et al., 

2013; M. D. Yap et al., 2017): 

1. Two consecutive journey legs on the same line in either direction are not classified as a 

transfer. 

2. Only those legs are considered as a transfer where the passenger boarded the first vehicle 

which arrived after passenger reached the next boarding stop. This has been calculated 

by estimating the walking distance as √2 times the Euclidean distance between the two 

stops. The 2.5th percentile of walking speed (Hänseler et al., 2016) has been assumed to 

ensure that this criteria does not eliminate passengers with walking speed on the lower 

side. Additionally, a minimum transfer buffer time of 5 minutes is applied.  

3. Transfers occurring with an Euclidean distance of more than 750m (Gordon et al., 2013) 

between the two stops are not considered as transfers; and 

4. A circuity ratio of more than 2.5 is classified as an activity. This has been applied to 

prevent back and forth trips on different but parallel lines from being classified as a 

transfer.  

Waiting Time Distribution  

The waiting time for journeys with bus/tram as the first mode is estimated by assuming uniform 

arrivals over the observed headway for each vehicle trip for each stop. For the vehicle trips 

where the observed headway was not available (such as the first vehicle trip in the day), the 

headway was assumed as the average of the observed headways during the hour. Additionally, 

for the stops with headway longer than fifteen minutes for a line, such as when a stop was 

skipped during certain runs, the waiting times have been distributed over fifteen minutes 

(maximum planned headway) only.  

RBT calculation 

With all the components of travel time available for each journey, RBT is calculated for each 

stop-stop pair and route combination where a minimum of 20 observations (journeys) has been 

recorded. For Amsterdam, this represents 673,767 journeys spread over a total of 7,531 

OD/route combinations. 

 Results and discussion 

 Reliability per mode 

The RBT is calculated for each mode combination available in the data (Table 2.2) as the 

demand weighted average of RBT for each OD pair/route, as shown in Equation (2.4). Based 

on the observed data, journeys with only metro are found to be the most reliable, followed by 

the single leg journeys using bus or tram modes. Due to separate right-of-way and no 

disruptions observed during selected days, there is negligible variation in in-vehicle time 

component for metro journeys and the RBT is primarily contributed by the variation in waiting 

time component of the journey (including at transfers).  
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The tram network in Amsterdam serves the congested city center with mixed traffic, including 

bikes, and faces high passenger demand potentially causing lower reliability levels. Buses on 

the other hand, tend to run on less central streets with lower demand levels and hence less 

crowding variation, making them relatively more reliable for single leg journeys. However, the 

frequency of buses are typically lower – making the journeys with intra-modal transfers less 

reliable for buses than for trams. 

 

Journeys with inter-modal transfers do not show major variations between different mode 

combinations. The fact a transfer is involved increases RBT, with a lesser importance to the 

specific combination of bus, tram or metro between which the transfer is made. It should be 

noted here that since RBT is measured in absolute terms, it is expected to be higher for journeys 

with transfers due to typically longer journey lengths. 

  

Table 2.2. RBT for different mode combinations. 

Mode(s) used 
Number of 

journeys 

Number of OD 

pair/route combinations 

Median travel 

time (mins) 
RBT (mins) 

Unimodal 

Metro 

(+ Metro-Metro) 
235,287 1,189 14.7 5.9 

Tram 315,410 4,094 15.4 6.6 

Bus 104,495 1,703 14.8 6.2 

Tram-Tram 1,755 60 23.2 7.2 

Bus-Bus 130 5 20.5 9.1 

Multimodal 

Metro-Tram 7,588 213 25.0 7.6 

Metro-Bus 747 26 28.8 7.8 

Tram-Metro 6,665 179 26.3 8.3 

Tram-Bus 115 5 21.6 8.3 

Bus-Metro 1,336 48 28.7 8.5 

Bus-Tram 239 9 24.8 7.9 

 

Differences are also found in the distribution of RBT across OD pairs by mode(s) used (Figure 

2.4). Only the mode(s) with a minimum of 40 OD/route combinations have been presented here. 

It is observed that the spread of RBT values across OD pairs is much wider for journeys with 

transfers compared to the ones without a transfer, possibly due to longer journey lengths for 

transfer journeys. Routes connected by single leg bus journeys are found to have not only the 

lowest average RBT value but also the lowest variation of RBT across different routes. The 

largest spread of RBT is seen for the tram-tram transfer journeys. It is noted here that Table 2.2 

shows the RBT as the demand weighted average whereas Figure 2.4 shows the spread of RBT 

over OD pairs. Hence, although RBT for metro seems to be higher when looking at the 

distribution across OD pairs, more passengers seem to use the lower RBT metro routes, bringing 

down the overall RBT (Table 2.2).  
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Figure 2.4 Distribution of RBT across OD pair/route combination by mode(s) used. 

 Reliability of accessing transit hubs  

The developed RBT can be used to analyze the reliability of a transit stop to/from all other 

origins/destination transit stops, as obtained using Equation (2.2). Figure 2.5 shows the spatial 

distribution of RBT values for journeys from various transit stops to two major train stations 

(Amsterdam Central and Sloterdijk) by various modes. The size of the circles represents the 

RBT from that origin to the selected train station.  

 

The Sloterdijk station is situated outside the city center. Consequently, it can be reached in a 

relatively reliable way, from all directions and with all modes. In the South and in the Southeast 

of the city two metro branches can be observed that are less reliable, which makes sense since 

a transfer is needed to reach Sloterdijk from these branches. Also, the combined mode of tram 

and metro seems relatively less reliable for Sloterdijk. 

 

To and from the Central Station most destinations are reached without a transfer. The metro 

branches to the Southeast of the city as well as the buses to the North are found to be relatively 

reliable. Reliability by trams seems relatively lower except for tram line 26 to the East of the 

city which avoids the crowded city center.  
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5a. Amsterdam Sloterdijk Station 

5b. Amsterdam Central Station 

 

 

 

 Figure 2.5 Reliability to transit stops using different modes. 

 Reliability per route  

Next, the RBT for different routes for the same OD pair is investigated. Four route alternatives 

are available between the origin-destination pair of Station Sloterdijk to Boelelaan (Figure 2.6). 

Central 

Station 

AMSTERDAM 

Sloterdijk 
Station 

AMSTERDAM 
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6a. Metro 50 + Metro 51 

6b. Metro 50+Tram 16/ 24/ Bus 62 

One could either take a metro (with a transfer at Amsterdam Zuid station), or take the metro till 

Amstelveenseveg station and from there bus 62 or trams 16 or 24 could be taken.  

 

 
   
 

 
 

 

Figure 2.6 Observed passenger routes from Sloterdijk to Boelelaan Station. 
 

Based on the data, it is seen that RBT is in this case in fact the highest for metro and lowest for 

the route with metro and bus together (Table 2.3). This example highlights that aggregating 

RBT across routes/modes/OD pairs ignores the variations observed between different areas and 

routes. Measuring RBT at a route level gives more detailed and actionable results of reliability.   
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It is also noted that the number of journeys are least for the metro-metro route. This is expected 

as not only the RBT but the median travel time is also the highest for this route. Tram routes 16 

and 24 overlap, which is also reflected in the similar travel times and RBT for these routes.   

Table 2.3. RBT per route for station Sloterdijk to Boelelaan. 

Journey 

Origin 

Journey 

Destination 
Route 

Number of 

journeys 

Median 

(min) 

95th Percentile 

(min) 
RBT 

Sloterdijk Boelelaan 

Metro-Metro 25 26.0 36.8 10.8 

Metro-Bus 62 66 22.4 27.8 5.4 

Metro-Tram 16 217 23.1 32.2 9.1 

Metro-Tram 24 105 22.9 31.4 8.6 

 

Looking at the journey time distribution for different routes (Figure 2.7), it is noted that the 

route with metro and bus services has a steep slope of travel time indicating a more reliable 

service. The metro route on the other hand has a jump in travel time just before the 90th 

percentile value –potentially due to the passengers missing the metro at the transfer station and 

having to wait another headway (10 minutes).   

 

 

Figure 2.7. Journey time distributions and RBT for different routes from station 

Sloterdijk to Boelelaan. 

 Conclusions 

This research proposes a new metric for travel time reliability measurement, considering 

multimodal transit journeys, including waiting and transfer times for all legs of the journey. The 

developed metric can be calculated using a combination of smart card and AVL data, which 

was demonstrated by applying it to the Amsterdam transit network. Since the chosen smart card 

data does not measure the waiting time for bus and tram journeys, a method to estimate the 

waiting time for each journey starting with these modes was proposed, based on the observed 
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headway from AVL data. Based on the semantics of the smart card system applicable, the 

method can be modified and applied to other networks.  

 

Since the reliability metric is developed at a very disaggregate level (i.e. for each OD pair/route 

combination), it provides flexibility of aggregation across various dimensions depending on the 

goal. The case study demonstrated its application by aggregating across three dimensions – 

mode, transit stop and routes.  

 

Aggregating the RBT at a larger scale such as at the mode level provides with an overall picture 

of reliability. This can for example be used for reliability impact analysis of policies affecting 

one or more transit modes. In the Amsterdam case study, it was observed that for single leg 

journeys, trams in the city centre are the least reliable. For multiple legs however, a bus to bus 

transfer was found to be the least reliable of all, possibly due to the longer headways and 

consequently longer transfer times due to missed connections. 

 

However, aggregating at such a large scale ignores the variations in reliability between different 

OD pairs and routes. For example, in the case study it was seen that for the journeys from 

Sloterdijk to Boelelaan station, the RBT was highest for the route with metro only compared to 

the other three routes consisting of metro in combination with either bus or trams. This type of 

information can be used to address specific unreliability issues for a particular route/OD pair. 

Route level RBT can also be used as a direct input to behavioral models such as route choice 

models.    

 

The RBT can also be compared for different origin/destinations from a selected transit stop/hub. 

This can for example be used to analyse from which locations and using which modes is the 

unreliability largest, providing policy makers with information on urgency of reliability issues 

across the city.  

 

The case study demonstrated some of the potential applications of the developed method. 

However, due to the low sample size (only two days), the analysis was undertaken for a longer 

time period within the day (7am to 7pm). As future work, this method could be applied to a 

larger dataset enabling analysis at an hourly level. The RBT can then be used to compare 

progress in performance over time or between different time periods during the day.  

 

Based on the available data, simplifications were made leading to some limitations of the work. 

Firstly, it was assumed that the passengers boarded the first vehicle that arrived in case of bus 

and tram modes. In case of overcrowded vehicles (for example due to vehicle bunching) in 

reality passengers may prefer to take the next arriving vehicle. However, for metro the time 

measured by smart card already includes the potential delay due to denied boardings. 

Additionally, this study did not consider the impacts of availability of real-time information on 

passenger arrivals and their waiting time distribution. Although only short headway services 

were considered, it is common for passengers to consult the real time arrival information before 

arriving at the transit stop. Further research could focus on addressing these limitations of the 

analysis.  
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Chapter 3 - Examining Circuity of Urban 

Transit Networks from an Equity Perspective 

 

In chapter 2, we focused on travel time reliability and developed a measure using smart card 

data that can be applied to multi-modal transit networks. In this chapter, we explore another 

service quality aspect – the circuity of transit networks. Defined as the ratio of the network to 

Euclidean distance traveled, circuity has been known to influence travel behavior. In addition 

to the longer time spent in travel, for networks where the fare is based on distance traveled, 

higher circuity also means higher fare for the same Euclidean distance. This makes circuity 

relevant from an equity perspective.  

 

Using a case study of the urban transit network of Amsterdam in the Netherlands, this chapter 

explores the role of transit circuity on the disparity in distance traveled by travelers’ income 

profiles and its implications on travel times and costs for networks with distance-based fares. 

This enables us to characterize the contribution of transit network design in determining the 

equity outcomes in a network, and how it could exacerbate or reduce the existing disparities in 

distance traveled in the network.  

 

This chapter is based on the following article: 

 

Dixit, M., Chowdhury, S., Cats, O., Brands, T., van Oort, N., Hoogendoorn, S. (2021) 

Examining circuity of urban transit networks from an equity perspective. Journal of Transport 

Geography, 91.  

© 2021 The Authors. Published by Elsevier Ltd. 



32 Transit Performance Assessment and Route Choice Modelling Using Smart Card Data 

 

 Introduction 

Transit networks are often optimized to maximize directness and minimize transfers (Zhao and 

Ubaka, 2004) while minimizing costs and travel times. Circuity2 is defined as the ratio of the 

network and Euclidean distances between an origin-destination (OD) pair (Barthélemy, 2011), 

and is a popular measure to quantify the directness of road and transit networks. Circuity of 

transit networks has been found to influence travel behavior at various decision-making levels. 

Lee et al. (2015) studied five Korean cities and found evidence of a strong relationship between 

circuity and transit ridership. At a long-term decision level, Levinson and El-Geneidy (2009) 

found in their study of twenty US cities that people tend to locate themselves in areas with 

smaller circuity for home-work trips – with the circuity of used routes being smaller than 

randomly selected routes in the network. At a short-term level, Huang and Levinson (2015) 

found that circuity can explain the mode choice of commuters in Minneapolis-St. Paul, 

Minnesota – a low transit mode share was found to be associated with higher circuity. Transit 

circuity was also found to explain transit route/path choice in some studies (Kim et al., 2019; 

Raveau et al., 2014). Such a direct relationship with travel demand makes circuity an important 

transit performance measure.  

 

In the case of transit routes that follow the road network, circuity is a function of the street 

network layout. In addition to the circuity of individual transit lines, service network structure 

and transfer locations also impact the circuity of journeys experienced by passengers. For 

example, radial networks are expected to have a higher circuity for journeys between two 

suburbs that require transferring in the core compared to tangential or ring networks that may 

provide a direct connection. Sometimes transit agencies intentionally design routes with high 

circuity to maximize coverage, even though it may discourage ridership on those routes (Huang 

and Levinson, 2015).  

 

It is common for transit networks to be designed based on efficiency and demand, without 

explicitly focusing on the equity aspect (Soltani and Ivaki, 2011). Such a design may end up 

favoring a particular section of the population (high income) over others. This is particularly 

true for mono-centric European cities where low-income residents typically live away from the 

city center in areas with lower population density, leading to more circuitous routes. Transit 

routes with higher circuity imply a longer (network) distance traveled for the same Euclidean 

distance covered. The impact of this on passengers is two-fold. Firstly, longer network distance 

results in longer travel times for passengers, all else being equal. Secondly, for transit networks 

where the fare is calculated based on network distance traveled (such as in Amsterdam, and 

Beijing metro), circuity directly impacts the fare paid by travelers. Essentially, travelers using 

highly circuitous routes end up paying more for a worse-off connection. Hence, in such 

networks, an uneven distribution of circuity can result in an uneven distribution of both travel 

times and fare paid per Euclidean distance covered. Both aspects make circuity relevant from 

an equity perspective. However, to the authors’ knowledge, there is limited research on the 

distribution of circuity observed within a transit network, and its impact on travelers from 

different population groups.  

 

This study investigates the role of transit circuity on the disparity in distance traveled, and its 

implications in terms of travel times and costs for three income levels. This is done by 

                                                        
2 Circuity is similar to the road ‘detour factor’ as introduced by Cole and King (1968). However, in transit 

literature, Circuity is a more prevalent term. Hence we have used the term ‘Circuity’ in this dissertation.  
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undertaking an empirical assessment of circuity for the urban transit network of Amsterdam 

using a combination of anonymized smart card data (which contains automatic fare collection 

(AFC) data), and automatic vehicle location (AVL) data. Based on the information on circuity 

for all transit journeys made within the network (by metro, tram, and bus), the study addresses 

the following questions for the case study system: 

➢ Do travelers from lower income areas have more circuitous transit journeys? 

➢ What is the contribution of circuity to the distribution of distance traveled by different 

income demographics? 

➢ What implications does this have on the travel times and fare paid by them? 

 Literature review 

Transport equity is a complex topic with multiple definitions and interpretations. For this study, 

one of the commonly used definition in transportation studies, the ‘fairness in distribution of 

impacts’, is adopted (Litman, 2002). Martens et al. (2019) highlight three key components of 

a transport equity analysis: defining what impacts (burdens or benefits) are considered, which 

population or social groups are they distributed over, and what constitutes as being fair. The 

literature so far has included a wide range of impacts associated with transport provision: road 

and transit network supply (Ahmed et al., 2008; Delbosc and Currie, 2011), environment and 

health externalities (Feitelson, 2002), travel costs, taxes and subsidies (El-Geneidy et al., 2016; 

Eliasson and Mattsson, 2006; Pucher, 1981), and access to jobs and other opportunities 

(Guzman et al., 2017; Neutens et al., 2010a). Further, there are a range of groups emphasized 

in equity analyses, including but not limited to genders, income classes, and spatially, mentally 

or physically disabled groups. Litman (2002) classifies equity in two types - horizontal and 

vertical. Horizontal equity refers to fairness between individuals of the same ability, income 

and social class. Vertical equity includes fairness between individuals across different abilities, 

income and social classes.  

 

Accessibility has been one of the most common impacts (benefit) of transport that is subject to 

a transport equity analysis. This is because any change in policy or intervention has an impact 

on accessibility, both short and long term. While most of the research on accessibility focuses 

on travel times or distances, travel cost has also been recognized as an important barrier to 

transport access (Foth et al., 2013; Kaplan et al., 2014; Pritchard et al., 2019). Hence, it is 

typically included in equity evaluations, either exclusively (El-Geneidy et al., 2016), or along 

with other factors (Currie, 2004).  

 

Several studies (Bandegani and Akbarzadeh, 2016; Brown, 2018; Farber et al., 2014; 

Rubensson et al., 2020) have investigated how fare is distributed across population groups, and 

evaluated the impact of alternate fare policies on equity. In Utah, Farber et al. (2014) found 

that lower socio-economic groups tend to travel shorter distances with high ridership – making 

distance-based fare policy more vertically equitable than zonal fares. Similarly, in Toronto, 

Foth et al. (2013) found that residents in lower socio-economic areas had shorter travel times 

due to proximity to city center. In contrast, Rubensson et al. (2020) noted that for Stockholm, 

lower income travelers made a higher proportion of longer journeys, for which distance-based 

fare was vertically inequitable. As highlighted by them, the equity outcome of a fare policy is 

dependent on the geographical distribution of income levels, land-use and travel patterns.  

 

In many European cities, the city center typically has better access to amenities, which 

increases land value in close proximity to it. This results in a decline in income with increasing 

distance from the center (Brueckner et al., 1999). With this pattern of income distribution, low 
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income residents need to travel longer (Euclidian) distances to reach the city center, where 

most opportunities are located. In addition, the disparity in (network) distance traveled could 

be either alleviated or exacerbated by differences in circuity of transit routes serving different 

areas. The variation in distance traveled is expected to be a combination of these two effects.  

 

Figure 3.1 shows the relationship between the land-use patterns, transit network design and 

the outcomes of fare paid and travel times observed in the network. The socio-demographic 

characteristics of a person impact the need for travel. Observed travel behavior in the network 

is a function of both land-use and transport network. Examining the factors separately can help 

to provide tailored solutions for addressing each of these issues based on their respective 

contributions. However, the literature to date has primarily focused on the contribution of land-

use patterns to distance traveled, and not enough attention has been given to the contribution 

of transit network design. Our study aims to address this gap by examining the contribution of 

circuity in the distribution of distance traveled and in turn the fare paid and travel times. 

 

Figure 3.1. Relationship between circuity of a network, travel times and fare paid. 
 

A key question underlying all equity analysis is how fairness is defined. Carleton and Porter 

(2018) emphasize that most transport equity studies measure the level of equality. To move 

from equality to equity, it is paramount to define what is considered fair, for which several, 

often conflicting theories of justice exist. Pereira et al. (2017) provide a detailed review of these 

theories in the context of transport. We start by measuring the levels of equality in the current 

distribution of circuity in the network, and its contribution to the (in)equality of distance 

traveled in the network. We specifically focus on measuring vertical equity by investigating 

whether the distribution favors an income group. Next, by the means of Gini index, horizontal 

equity of distribution of circuity in the network is analyzed. However, we refrain from giving 

absolute judgements on equity, with respect to suggesting appropriate corrections for 

mitigating inequity concerns, which will depend on the specific theory of justice chosen to be 

followed. 
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 Method 

 Transit Circuity 

Transit circuity of a (passenger) journey is calculated as the ratio between the network distance 

traveled and the Euclidean distance between the origin and destination of the journey. A 

journey may or may not include transfer(s) within or across transit modes. A route is defined 

as the combination of transit lines and transfer stops used by a passenger in his/her journey. 

Mathematically, it can be expressed as,   

 

 𝐶𝑜,𝑑,𝑟 =
∑ 𝑥𝑙

𝑛𝐿𝑜,𝑑,𝑟
𝑙=1

 + ∑ 𝑥𝑙,𝑙+1
𝑡𝐿−1

𝑙=1  

𝑥𝑜,𝑑
𝑒      ∀𝑜, 𝑑, 𝑟     (3.1) 

 

Where,  

 

𝐶𝑜,𝑑,𝑟     is the circuity for a journey between origin-destination transit stops o,d using route r; 

𝑥𝑙
𝑛   is the network distance traveled on leg l of route r between o,d; 

𝑥𝑙,𝑙+1
𝑡    is the transfer distance between leg l and l+1 of route r between o,d; 

𝑥𝑜,𝑑
𝑒    is the Euclidean distance between o,d; and 

𝐿𝑜,𝑑,𝑟     is the number of legs in the journey between o,d using route r. 

 

Figure 3.2 shows a schematic representation of it.  

 

Figure 3.2. Schematic representation of circuity measurement for a two-leg transit 

journey. 

 

The term ‘realized transit circuity’ is used to indicate the circuity that is obtained based on the 

actual routes used by the journeys made in the network (as opposed to potential ones based on 

shortest path between an O-D pair). The information on journeys made in the network is 

obtained from smart card data. The subsequent sections first describe the case study network, 

followed by how the smart card data is processed to obtain the realized transit circuity, and 

how it is linked to the income data to facilitate an equity analysis. 
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 Introduction to case study network and data sources 

The analysis is performed for the urban transit network of Amsterdam (Figure 3.3), and 

includes all bus, metro and tram lines operated by GVB, the transit network operator of 

Amsterdam. The time period for analysis is spring 2018 (28th May – 1st July). During this time, 

41 bus lines, 15 tram lines and 4 metro lines were operational. The city center of Amsterdam 

is served by a dense network of tram lines, mainly connecting the center with large residential 

areas. The metro provides connections between the south-eastern suburbs and the city center, 

and a ring line to the west of the city. The bus completes the network, mainly to and from the 

northern part of the city, as feeder links to the metro, and some tangential and some radial 

services where tram and metro services are missing. 

 

Figure 3.3. Urban transit network in Amsterdam.  

 

This study uses a combination of anonymized smart card data and automatic vehicle location 

(AVL) data to obtain information on the routes used for all transit journeys made in the 

network. The Dutch smart card (called OV-chipkaart) records information on both check-in 

and check-out for all modes (for more information see van Oort et al. (2015a)). For the urban 

transit network of Amsterdam, it provides approximately 675,000 transactions per day on 

average for the study period. The AVL data is publicly available for all transit modes in the 

Netherlands (see van Oort et al. (2015b) for more details). 

 

The smart card data used in this study does not provide any information on the socio-

demographic characteristics of the traveler or the type of fare paid. Hence, we use the income 
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data from Central Bureau of Statistics (CBS) Netherlands (2020a), where this information is 

available at a neighborhood level (with 470 neighborhoods in Amsterdam). Two relative 

income indicators per neighborhood have been used for this study: the share of persons 

belonging to the top 20% or the bottom 40% of the national personal income distribution 

(Bresters, 2019). 

 Data processing steps  

The first step in data processing is to convert raw (anonymized) smart card transactions to 

linked trips (or passenger journeys). This process is described as below:   

 

1. Data cleaning: The smart card and AVL data were first cleaned to remove incomplete, 

invalid or unrealistic records (~3.3%).  

2. Destination Inference: This was carried out for records with missing check-outs (4.2% 

in the data) using the method detailed in Zhao et al. (2007).  

3. Assigning journey length: For buses and trams in Amsterdam, the check-in and check-

out happen inside the vehicle, and the information of the transit line used is recorded in 

the smart card data. Based on the origin, destination and transit line used, the network 

distance traveled is added for each bus and tram trip. For metro, the check-in and check-

out happen at the station entrance/exit, and the information on transit line(s) used is not 

directly available from the smart card data. For the purpose of this research, the network 

distance corresponding to the shortest path is used for these trips.     

4. Transfer inference: Individual smart card transactions (trips) are matched with the 

corresponding AVL data to identify transfers using existing algorithms (for more 

details see Dixit et al. (2019b)). For each journey, the network distance and transfer 

distance for each leg of the journey is recorded.  

 

After processing the data and accounting for transfer inference, over 500,000 journeys per day 

were obtained. Once the origin, destination and route are known, circuity of each journey is 

calculated as the ratio of the sum of traveled (network) distance and transfer distance, and the 

Euclidean distance between the origin and destination stops of the journey, as expressed in 

Equation (3.1). Journey level circuity values are then aggregated by mode(s) used, distance 

traveled and origin transit stop by taking an average across all journeys. 

 

Some journeys in the network might include unnecessary detours which are made by choice. 

Such detours are more likely to happen for leisure trips than for commute trips. Restricting the 

time period to the weekday morning peak period is expected to minimize the proportion of 

leisure trips. In addition, only origin-destination and route pairs with a minimum of 20 journeys 

over the study period have been considered, to ensure only reasonable routes are included. With 

this threshold, we retain 87% of the journeys made in the network.  

 Linking income with travel data  

To study the relationship between income and circuity, the next step is to link the neighborhood 

level income data to the observed circuity data from smart card. Since the residential location 

is not directly available from the smart card data, it is assumed that the travelers reside in the 

catchment area of the transit stop from which they start their transit journey during the weekday 

morning peak period. Accordingly, the income characteristics of the catchment area of the 

transit stop have been used as a proxy for income profiles of the travelers using the transit stop 

during the morning peak period. An (area) weighted average of all neighborhoods within the 

catchment area (400 m radius) of a transit stop has been used for this. For this reason, only the 
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journeys starting in the morning peak period (7AM to 10AM) on weekdays are considered for 

this study, which constitute approximately 16% of the total journeys in the processed data.  

 

Figure 3.4 shows the resulting spatial distribution of the share of low-income persons by transit 

stop. The areas in the north, and south-east and west peripheries of the city have a higher than 

average share of low-income residents. The city center of Amsterdam has a relatively lower 

concentration of low-income residents. However, unlike the typical pattern of a European 

mono-centric city, some higher-income areas are also located further away from the city center 

in southern and eastern peripheries of the city.  

 

Figure 3.4. Share of people in the bottom 40% of the national personal income 

distribution.  

 Equity analysis 

Once the income profile is assigned to each transit stop, the distribution of Euclidean distance, 

circuity and network distance by income is analyzed to identify patterns. Next, a multiple 

regression is conducted to disentangle the impact of income on circuity, while controlling for 

the Euclidean distance covered in the journey. First, an Ordinary Least Squares (OLS) 

regression was conducted, and the residual errors were tested for spatial autocorrelation. For 

defining neighbors, a distance based weights matrix with inverse distance weighting was used. 

After testing different options of distance, a threshold of 600 m was identified as providing the 

best results. Using the resulting weights matrix, Moran’s I statistic was applied to detect the 

presence of spatial autocorrelation in the data. On identifying the presence of spatial auto-
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correlation, the Lagrange Multiplier (LM) tests were conducted to identify the appropriate 

spatial model. Based on the test results, Spatial Error Model (SEM) was chosen for this 

analysis. For more details on spatial autocorrelation and spatial models, the readers are referred 

to Anselin (1988) and LeSage (2008).       

  

Finally, the equity of fare paid and travel times is evaluated using Gini coefficient (Gini, 1912). 

Gini coefficient quantifies the horizontal (in)equity of an outcome (an equity indicator such as 

accessibility), and has been a popular measure for horizontal equity analysis in transport 

(Delbosc and Currie, 2011; Rubensson et al., 2020). It varies between 0 and 1, with 0 signifying 

perfect equality, and 1 the perfect inequality where the entire outcome is concentrated with one 

individual. 

 Results 

 Transit Circuity in Amsterdam 

The majority of transit trips in Amsterdam in the morning peak have a circuity of 1.4 or lower 

(Figure 3.5), with an average circuity of 1.28 for the entire network. A large share of trips 

(38%) in the study period are made exclusively by metro, where the network distance between 

subsequent stops is close to the Euclidean distance, resulting in circuity values close to 1 for 

shorter distances. Large circuity values also occur for metro (for longer distances) which makes 

the average circuity value for metro as 1.21. The circuity of bus trips is found to be 1.54, which 

is the highest amongst the three modes. A reason for this is that they typically run in low density 

areas of the city which often have indirect routes to maximize coverage. Trams on the other 

hand have a dense network in the city center with relatively less detours (average circuity of 

1.18).  

 

Figure 3.5. Realized transit circuity in Amsterdam. 
Note: Circuity for metro includes metro-to-metro transfers 
 

Figure 3.6 shows the spatial distribution of circuity, measured as the average circuity of all 

transit trips originating from a certain stop. The size of the bubbles indicates the relative number 
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of trips originating from the respective stop. The areas to the north of the river (known as 

Amsterdam Noord) show distinctly higher values of circuity, with the majority of stops having 

a circuity of 1.6 and above. This is expected as the only transit connection from the Noord to 

the city center in the study period was via buses that used a single tunnel to cross the river 

(Figure 3.3). In addition to Noord, all higher circuity stops are found in the peripheral areas of 

the city, whereas most stops in the city center have an average circuity of 1.4 or lower. 

However, it is worth noting that many of the peripheral areas of the city also have a low circuity, 

for example those in the south-east parts of the city, due to the presence of direct metro and 

tram lines. 
  

 

Figure 3.6. Spatial distribution of transit circuity in Amsterdam by origin transit stop. 

  

The realized circuity increases marginally with Euclidean distance traveled for journeys 

without transfers, especially for metro and tram (Figure 3.7). On the other hand, it decreases 

with increasing Euclidean distance for journeys with transfers. The circuity for tram journeys 

is largely unaffected by journey length. As expected, metro journeys have the lowest circuity 

for shorter distances. The steep increase in circuity after 3 km and the drop around 8 km could 

be due to the circumferential nature of the metro lines in the (relatively small) network. In line 

with Figure 3.5, bus is found to be the most circuitous of the modes (including transfer trips), 

regardless of the distance covered, with an overall increasing trend for longer distances. Most 

of these larger distances traveled are to and from Amsterdam Noord. The trends for bus and 

metro modes are in contrast with those reported by Huang and Levinson (2015) for 

Minneapolis–St. Paul region, where circuity was found to decrease with increasing Euclidean 

distance. As discussed, this contrast could be attributed to the geometry of metro and bus routes 

in Amsterdam. 
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Note: Circuity for metro includes metro-to-metro transfers 

Figure 3.7. Circuity by Euclidean distance covered and mode used.  
 

As discussed earlier, we measure the ‘realized’ instead of ‘potential’ circuity in this study. 

However, this could lead to a selection bias. For example, a traveler could have chosen a route 

with sub-optimal circuity due to other desirable characteristics such as lower travel times or 

less crowding. We further investigate this by comparing the observed circuity values with the 

shortest-path circuity for each observation in our data. The results show that for 96% of 

journeys, the difference between circuity of observed routes and the shortest path circuity is 

less than 0.01 units. This means that the observed circuity distribution is close to the potential 

circuity distribution in our case, and we therefore conclude that our data contains minimal 

selection bias. 

 Circuity, income and distance traveled 

Next, the relationship between the income, circuity and distance traveled is explored. As 

described in section 3.3.4, transit journeys have been assigned the income profile of their origin 

transit stops. For this analysis, the transit stops have been divided into three categories based 

on their share of low income residents, roughly corresponding to the mean ± standard deviation 

in the study area: 

 

➢ Group 1 with a share of low-income residents of less than 30% 

➢ Group 2 with a share of low-income residents between 30 and 50% 

➢ Group 3 with a share of low-income residents of more than 50% 

 

We first establish how far the travelers from each of these three groups travel by transit, as 

measured by the Euclidean distance of their journeys (Figure 3.8). This gives an indication of 

the proximity of travelers to various opportunities they need to access. It is noted that travelers 

from predominantly low-income areas (group 3) have a much higher proportion (52%) of 

longer journeys (>4km) compared to the rest of the travelers, for whom this proportion is only 

~34%. The results support the amenity-based theory (Brueckner et al., 1999) that higher income 

persons locate themselves in places with greater proximity to amenities, with travelers from 

Group 3 traveling longer Euclidean distances (median distance of 4.1 km), compared to the 

rest (median distance between 2.8 and 3 km). The difference in distribution between areas of 

low to medium share of low-income people (group 1 and 2) is less pronounced. 
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Figure 3.8. Distribution of Euclidean distance covered by income profile of transit stops. 

If the circuity is the same across all journeys made in the network, the distribution of network 

distance will follow the distribution of Euclidean distance. However, the uneven distribution 

of circuity could either reduce or exacerbate the differences in journey length distribution in 

the network. To investigate this, we plot next the circuity distribution for the three income 

groups (Figure 3.9). Circuity is found to have the highest median value (1.24) for 

predominantly low-income areas (group 3). However, the spread of circuity distribution is also 

found to be the widest for this income group, with 25% travelers having circuity values of less 

than 1.05 – the lowest between the three groups. The least amount of detours are experienced 

by travelers from Group 2 with a median circuity value of 1.19 for this group. Even though the 

distribution of Euclidean distance is comparable for group 1 and 2, the relatively favorable 

circuity distribution of group 2 is expected to reduce the network distance travelled by this 

group. Concurrently, the higher circuity values for low-income areas may worsen the disparity 

in distance traveled for this group compared to the rest of the population.    

 

Arguably, people with higher income are likely to locate themselves in areas with higher 

proximity to opportunities due to which they need to travel shorter (Euclidean) distances 

(Figure 3.8). In addition, these areas may also be served by a denser transit network with direct 

routes to most destinations, because of which they benefit from smaller detours, leading to 

lower circuity values. To isolate the relation between high-income areas and circuity, a 

regression analysis is conducted with Euclidean distance as a control variable to represent the 

proximity to opportunities for different income groups. The analysis is carried out on data 

aggregated for each origin stop with the natural logarithm of average circuity as the dependent 

variable and share of high-income residents as one of the independent variables. Additionally, 

all stops in Amsterdam Noord have systematically higher circuity values (Figure 3.6). To 

control for these differences due to the structure of the city, a dummy variable for transit stops 
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located in Amsterdam Noord is added. First an OLS regression was undertaken and based on 

the tests for spatial autocorrelation as described in section 3.5, a Spatial Error Model was 

implemented to incorporate the spatial dependence in the data. Table 3.1 shows the results of 

the Spatial Error model.  

  

Figure 3.9. Distribution of circuity by income profile of transit stops. 

Table 3.1. Spatial error model estimation results.  

Variable Coefficient Std. error Probability 

Dependent variable = Log (Circuity) 

Constant 0.474 0.029 0.000 

Percentage share of high-income persons -0.003 0.001 0.001 

Dummy for Amsterdam North 0.185 0.029 0.000 

Average Euclidean distance (km) -0.032 0.004 0.000 

Spatial coefficient on errors (Lambda) 0.536 0.040 0.000 

Number of observations = 472 

Log likelihood = 347.77 

AIC = -687.55 (AIC for OLS = -587.87) 

 

All dependent variables are found to be statistically significant. As expected, transit stops in 

Amsterdam Noord have 20.3% (=exp (0.185)-1) higher circuity on average compared to the 

rest of the city, all else being equal. The average Euclidean distance traveled for a transit stop 

represents the proximity to opportunities of the transit stop. For every km increase in Euclidean 

distance, the average transit circuity of a stop decreases by 3.2% – implying the longer transit 
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routes tend to be more direct. However, even when controlling for the Euclidean distance, stops 

in higher income areas are associated with lower circuity values. For every percent increase in 

share of high-income residents, the circuity decreases by 0.3%, all else being equal. The share 

of high-income residents within the study area ranges between 3% and 54%, implying a 

maximum circuity difference of up to 14% between neighborhoods due to income effect.  

 

The regression analysis confirms that the transit routes being used by travelers from high-

income areas indeed have lower circuity for the same Euclidean distance covered, even when 

controlling for Amsterdam Noord and spatial dependence. This could be a result of two 

contributing factors. Firstly, the circuity of routes serving high-income areas could be low. But 

it could also be that the destinations of travelers from high-income areas have more direct 

routes. Although both scenarios highlight the underlying inequity, different solutions are 

needed for each. To confirm if there are differences in the types of destinations visited, we 

analysed the distribution of destinations for each of the three income groups. However, no 

substantial differences were found between travelers from the three groups, suggesting that the 

differences in circuity by income observed in the data are primarily due to the routes serving 

these areas as opposed to the differences in destinations.   

 Impact on travel times and fare paid 

As a combined effect of the distribution of circuity and Euclidean distance, travelers from 

predominantly low-income areas in Amsterdam do indeed have longer transit journeys on 

average compared to the rest of travelers (Figure 3.10). The share of longer journeys (>8.5 

km) is found to increase with the share of low-income residents. Moreover, substantial 

difference is found in the median journey length for group 3 (4.9 km), compared to group 1 

(3.9 km) and group 2 (3.6 km). Overall, the differences between group 1 and 2 are found to be 

less pronounced than those of either of them with group 3, as in case of the distribution of 

Euclidean distance.  

 

Transit fare in Amsterdam is calculated based on the network distance traveled, with the fare 

increasing linearly with distance. The journey length distribution in Figure 3.10 hence implies 

that travelers from lower income areas travel longer on average, and in turn pay a higher fare 

per trip, before accounting for redistribution measures such as special subscriptions and 

concessions. The circuity of transit networks is a function of the network design. It can be 

argued that for a horizontally equitable distribution of transit services, every traveler in the 

network should pay the same fare per Euclidean distance covered, which means equal 

distribution of circuity over the network. Here we evaluate the horizontal equity of the network 

in terms of circuity using Gini coefficient. Figure 3.11 shows the Lorenz curve with the share 

of accumulated circuity by share of population, and the Gini coefficient. The Gini coefficient 

of 0.11 indicates that the fare paid per Euclidean distance traveled is slightly unevenly 

distributed in the network. In relative terms, it is not possible to comment on how fair this 

distribution is, as such an analysis of circuity has not been undertaken for any other network 

yet. 
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Figure 3.10. Distribution of journey lengths by income category. 

  

Figure 3.11. Lorenz curve and Gini coefficient for distribution of transit circuity in the 

network. 

 

Transit circuity is expected to also impact the observed travel times. To analyze this 

relationship, we normalize the travel time by the Euclidean distance covered. Figure 3.12 

shows the distribution of this metric with the realized transit circuity across the network. In the 
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absence of congestion effects, as the circuity of journey increases, longer time is spent on 

average to cover the same Euclidean distance, which is found to be the case for Amsterdam 

network.  

  

Figure 3.12. Travel time per Euclidean distance and realized transit circuity. 

 

However, when we examine the distribution by income categories (Figure 3.13), the travel 

time per Euclidean distance covered does not follow the trend of circuity distribution, with 

group 2 having the highest median value (4.2 min/km), followed by group 1 and group 3 (4.0 

and 3.8 min/km, respectively). Perhaps for group 1 and 2, although the circuity of routes is 

lower, other network characteristics such as shared right-of-way, on-road congestion and 

crowding compensate for the reduced travel time. Similarly, on routes with higher circuity 

serving lower income areas, the vehicle speeds may be higher. In the case of Amsterdam, tram 

services have lower speed in the historical core which is characterized by higher income levels. 

In contrast, low income areas are often located in proximity to tram corridors with a designated 

right-of-way or metro lines - especially the high circuity categories (>2) have a large share of 

metro (see Figure 3.4), and therefore high speeds.  
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Figure 3.13. Travel time per Euclidean distance by income category. 

 Discussion 

The circuity of transit networks has an impact on the distance traveled in the network. For 

Amsterdam network, the distribution of circuity favors the higher income groups, exacerbating 

the differences in distance traveled by income groups. This directly impacts the fare paid by 

the travelers. The Gini coefficient quantifies the equity of distribution of fare paid for every 

km of Euclidean distance covered under the current distance based fare structure. The circuity 

patterns observed in a network are a function of network design, which is often derived from a 

city’s natural terrain and evolution of urban form. By improving the circuity of transit routes 

serving low income areas, the distribution of fare paid per Euclidean distance covered can be 

made more vertically equitable. This may however come at the cost of compromising other 

network planning considerations. Alternatively, with an egalitarian perspective, fares could be 

charged based on the Euclidean distance covered instead of network distance to address equity 

concerns.  

 

This study highlighted the contribution of network design to the inequity of fare paid in a 

network, and how it can be used to address equity concerns. Camporeale et al. (2017) highlight 

that equity concerns have traditionally been ignored during network planning, and have been 

“in the best cases an afterthought during service provision”. The process and analysis used for 

this study can be adapted for different network configurations (in combination with the fare 

structures) to assess the equity of a system. Where it is not possible to reduce circuity, other 

mitigation measures could be applied to compensate for the disparity caused by circuity of 

routes, such as different fare structures (based on Euclidean distance or flat fare). A key 

advantage of measuring equity using circuity is that such an analysis not only highlights the 

problems, but also provides insight on possible solutions. Incorporating equity concerns at the 

network design stage can lead to improved equity of outcomes such as fare paid and travel 

times.  

 

Ridership and coverage are considered two of the primary goals of public transport, which are 

often opposing (Walker, 2008). Lower circuity is typically associated with shorter travel times 
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(as also in the case of our study) leading to higher ridership, but lower coverage. Conversely, 

higher circuity can provide more coverage but it comes at the cost of longer travel times which 

can negatively impact ridership. Coverage goals are often social ones relating to serving the 

needs of disadvantaged population, or providing geographic equity of transit provision 

(Walker, 2008). However, as shown in our study, the higher circuity required to fulfil these 

goals can result in inequity of distance travelled and fare paid. Eventually, these trade-offs need 

to be weighed against each other based on the planning goals for the network under 

consideration. To that end, it will be useful to have more empirical research looking at these 

trade-offs in greater detail in the future.  

 

Although smart card data enabled an extensive analysis of circuity by providing information 

on all journeys undertaken in the urban network, some limitations cannot be ignored. Firstly, 

the smart card data used in this study does not distinguish between tourists and residents. This 

may impact some results of the study as tourists are more likely to travel in the higher income 

areas in the city center, and tend to make shorter journeys. This might have overestimated the 

number of shorter trips associated with high income residents in our analysis. However, the 

proportion of such journeys is expected to be small, especially in the AM peak period (Central 

Bureau of Statistics (CBS) Netherlands, 2020b). Secondly, since our data is restricted to only 

the urban transit network of Amsterdam (excluding regional buses/trains), we cannot 

differentiate between travelers coming into Amsterdam from neighboring regions and trips 

originating within the case study network. People travelling to Amsterdam by train or regional 

bus services are now assigned to the income levels associated with the station where the traveler 

transfers to the urban network. Since people who need trains or regional bus services to reach 

Amsterdam have larger travel distances (and therefore higher fares), this assumption may have 

underestimated journey lengths. Thirdly, we have used a commonly used catchment area radius 

of 400m (El-Geneidy et al., 2014) for assigning income and our results are subject to this 

assumption. The analysis could be improved with a more precise value of this catchment area 

obtained from additional data sources. Lastly, our analysis was restricted to morning peak 

period due to the unavailability of income information for evening/off-peak journeys. 

However, considering that low-income persons often travel during off-peak periods, including 

such time periods can provide a more comprehensive picture of equity and could be undertaken 

as further research. This would however require additional data sources to estimate the income 

levels for off-peak journeys.   

 Conclusion 

This study examined the contribution of transit circuity to the disparity in distance traveled 

between different income groups in a network. Furthermore, its implications on the travel times 

and the fare paid in a distance-based fare system were discussed. This was done for the case 

study of the multi-modal urban transit network of Amsterdam, using the demand data from 

smart card paired with the neighborhood level income data.  

 

Travelers from predominantly lower income areas in Amsterdam were found to have more 

circuitous journeys compared to the rest of the travelers. For the same Euclidean distance 

covered and residential location with respect to the river (north/south), circuity was found to 

decrease with an increasing share of high-income residents, when controlled for spatial-

autocorrelation. This exacerbated the already existing differences in Euclidean distance 

traveled between the income groups. As a result, travelers from lower income areas need to 

travel longer distances and pay a higher share of the fares in the network. The Gini coefficient 

also indicates a horizontal inequity in the distribution of fare paid per Euclidean distance. 
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However, the differences in travel time (per Euclidean distance) were in favor of lower income 

areas (3.7 min/km as opposed to 4-4.2 min/km for other areas). These are presumably 

compensated in the Amsterdam case by the various network characteristics experienced by the 

respective groups.   

 

Overall, this study highlighted the role of transit network design in determining the equity 

outcomes of travel time and fare paid in a network. The equity outcomes in a network depend 

on the specific interaction between the land-use distribution, transit network design, and the 

fare policy employed. As further research, it will be valuable to compare the results obtained 

in this study with those for other cities, and could be utilized to compare different network 

structures or fare policies in terms of equity.





 

51 

Chapter 4 - Perception of Overlap in Multi-

modal Urban Transit Route Choice 

The previous two chapters focused on service quality measurement for urban transit networks. 

In this chapter, we aim to understand the impact of such service quality and network design 

attributes on the transit route choice decisions of travelers. In doing so, we contribute to the 

scarce literature on modeling transit route choice using network-wide data for large-scale 

multi-modal transit networks, and use mode-specific travel attributes to incorporate the 

differences in perceptions of different modes. In addition, it also particularly focuses on 

exploring how travelers perceive overlap between alternate transit routes that lead to 

unobserved correlations between them. Capturing this unobserved correlation between 

overlapping routes is a non-trivial problem in route choice modeling. For urban transit 

networks, research so far has been inconclusive on how this overlap is perceived by travelers. 

We estimate a series of path size correction logit (PSCL) models to account for alternative 

specifications of route overlap in the context of multi-modal urban transit networks. In addition 

to the conventional path-based overlap of links or complete journey legs, an alternative 

definition of overlap in terms of transfer nodes is proposed for multi-leg journeys. A better 

understanding of how the overlap is perceived and should be incorporated into transit route 

choice models is expected to improve the accuracy of transit route choice models as well as 

provide more realistic behavioral insights.  

 

 

 

This chapter is based on the following article: 

Dixit, M., Cats, O., Brands, T., van Oort, N., Hoogendoorn, S. (2021) Perception of overlap in 

multi-modal urban transit route choice. Transportmetrica A: Transport Science, DOI: 

10.1080/23249935.2021.2005180 

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
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 Introduction 

Public transport plays an important role in making cities more sustainable and liveable. To that 

end, policy makers and transit agencies are always striving to make transit more attractive to 

its users. Understanding how travellers choose between alternate transit routes is useful when 

planning and designing systems. It can help improve transport models and their predictions, 

and better assess interventions and network improvements, eventually leading to an increased 

transit usage.  

 

Route choice models were traditionally developed for road networks, but the last decades have 

seen a rise in its applications to transit networks. Until recently, these models were mainly 

based on stated preference data sources, which although valuable in its own right, suffers from 

a common drawback of discrepancy between stated and actual behaviour (Yap, Cats, and van 

Arem 2018). Smart card provides a rich data source for analysing route choice by providing 

information on the actual choices made in the network, as well as the observed travel times at 

a high spatio-temporal resolution. Yet, only a handful studies have used it on a large scale 

multimodal transit network – namely Jánošíkova et al.(2014), Kim et al.(2019), Tan et 

al.(2015), and Yap, Cats, and van Arem (2020). The aim of this study is to leverage the large 

revealed preference dataset provided by the smart card to improve transit route choice 

modelling, by investigating in-particular the perception of travellers regarding overlap between 

routes.  

 

Unless explicitly accounted for, the overlap between alternative routes results in correlations 

between the unobserved components of routes’ utilities For road networks, it is widely 

accepted, and has been shown empirically, that this overlap is valued negatively by travellers 

(Bovy et al., 2008). However, this is not necessarily true for transit networks, where the 

negative perception of overlapping routes may be masked by the positive utility of having an 

improved level-of-service (e.g. shorter waiting time on a shared corridor) or more alternatives 

available in case of disruptions. Overlap between transit routes has been argued to add to the 

robustness of the trip (Anderson et al., 2017), which is further improved when complemented 

with coordinated schedules (van Oort and van Nes, 2009). The research on how overlap is 

perceived by travellers during transit route choice is inconclusive so far, with some studies 

reporting a positive valuation (Anderson et al., 2017; Hoogendoorn-Lanser and Bovy, 2007), 

while others reporting a negative valuation ( Yap, Cats, and van Arem 2020; Tan et al. 2015). 

In this chapter, we investigate this issue further by analysing the different specifications of 

consideration of overlap between transit alternatives, to identify the circumstances and 

underlying reasons for its impact on passengers’ route choice. 

 

Similar to road networks, transit routes can have a partial overlap with one or more links being 

shared by multiple routes. Moreover, for routes that involve a transfer, there could be an overlap 

of entire journey leg(s). Hoogendoorn-Lanser et al.(2005) defined the overlap in terms of 

number of legs overlapped, as opposed to the links overlapped for road networks. In Tan et 

al.(2015), the authors used link-level overlap, but proposed additional definitions in terms of 

travel time of overlapped links, also incorporating the frequency of overlapped routes. In case 

of urban transit networks, it is not yet clear how each of these types of path overlap (link and 

leg) is perceived by travellers, as, to the best of our knowledge, these have not been compared 

in the literature so far.  
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Furthermore, literature so far has defined and considered overlap exclusively in terms of paths 

(or path-based overlap). In this study, we propose an additional definition of overlap between 

routes in terms of common transfer nodes (or transfer stops). From a traveller’s perspective, 

each transfer node is a decision point, where he/she can choose between alternative transit lines. 

The expectation is that there are utility benefits associated with routes that share a transfer 

node, because of the multiple transit options it provides to the travellers, making the overlapped 

routes more robust compared to independent routes. This alternative definition of overlap is 

compared against the usual definition based on overlapped links and legs. Further, we 

distinguish between the valuation of overlap of paths versus nodes, by considering them 

separately as well as together.  

 

The main contributions of this study are twofold. Firstly, it adds to the handful of empirical 

studies using large-scale revealed preference (smart card) data for estimating multi-modal 

transit route choice models. In doing so, it provides RP-based valuations of mode-specific travel 

time and transfer attributes, which to our knowledge are not available at such granularity in the 

literature so far. Secondly, it undertakes a comprehensive investigation of overlap between 

transit routes by defining overlap in terms of both the path (links and legs) and transfer nodes. 

We report results from our application of route choice models using the smart card data for the 

urban transit network of Amsterdam, the Netherlands. 

 

We start with a Multi Nomial Logit (MNL) model of route choice that includes mode-specific 

in-vehicle and waiting times; number and type of transfers; transfer time; circuity of routes; 

and mode-specific constants. The base MNL model is then compared against the alternate 

formulations of Path Size Correction Logit (PSCL) models defining overlap in terms of links, 

legs, and transfer nodes. Lastly, the path-based and node-based PSCL formulations are 

considered together to investigate the relative contribution of each of these to the utility of 

overlapping routes.  

 

The rest of the chapter is organized as follows: Section 4.2 describes the approach used for 

quantifying and incorporating overlap in route choice models. In Section 4.3, the steps followed 

for processing and preparing smart card data are described including the model specifications. 

Section 4.4 presents and discusses the results of model estimation and validation, followed by 

the conclusions in Section 4.5. 

 Overlap in transit route choice 

 Definitions 

In this study, a transit journey refers to the travel made by an individual from an origin transit 

stop to their destination transit stop, using a route that may involve transfer(s) within or across 

different transit modes, such as bus, tram or metro. A journey may contain multiple legs. A leg 

represents a part of the journey undertaken using a single transit vehicle. A transfer node is 

defined as the transit stop where the traveller transfers between multiple legs of a journey. Each 

leg may consist of multiple links which refer to the physical path connecting two consecutive 

transit stops on the route. 

 Background 

Both traffic and transit route choice typically consist of overlapping route alternatives, resulting 

in correlation between unobserved characteristics of the overlapping routes. In the case of road 
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networks, overlap between routes results in the utility of the overlapping routes being 

overestimated. This is because the routes with an overlap may not be perceived as being distinct 

from the perspective of a traveller, and are hence less likely to be chosen compared to 

comparable independent routes. The basic MNL formulation assumes the unobserved 

characteristics of alternatives to be independent, i.e. Independence of Irrelevant Alternatives 

(IIA) property. To incorporate the overlap between alternatives, there are two common 

approaches – either explicitly modelling it by making assumptions on the correlation between 

error terms (such as in error component logit model), or adding a deterministic term in the 

utility function to approximate the correlation (such as in C-logit (Cascetta et al., 1996) or path-

size logit (Ben-Akiva and Bierlaire, 1999)). This study follows the latter approach, which can 

be more directly specified and interpreted, and is commonly adopted in practice (Frejinger and 

Bierlaire, 2007).    

 

Approaches such as C-logit, path-size logit (PSL) and path-size correction logit (PSCL) aim to 

reduce the utility assigned to overlapping routes, thus resulting in a lower probability compared 

to completely independent routes (Prato, 2009). The reduction in utility in these models is often 

proportional to the length (Cascetta et al., 1996) or cost/time (Ramming, 2002) of overlapping 

links. This is intuitive in case of road networks – the higher the proportion of the route 

overlapped, the more they are expected to be considered alike by travellers. C-logit model has 

been found to be generally outperformed by the PSL, because of which most recent studies use 

path size based models (Prato, 2009). In terms of performance PSL and PSCL have been found 

to yield similar results (Bovy et al., 2008). We choose to use PSCL in this study owing to its 

stronger theoretical foundation(Bovy et al., 2008; Tan et al., 2015).  

 

Under the PSCL model, as defined by Bovy, Bekhor, and Prato (2008), the expression for 

probability of a route alternative ‘i’ is given by 

 

 𝑃𝑖 =
exp (𝑉𝑖 + 𝛽𝑃𝑆𝐶𝑃𝑆𝐶𝑖)

∑ exp (𝑉𝑗 + 𝛽𝑃𝑆𝐶𝑃𝑆𝐶𝑗)𝑗∈𝐶
 (4.1) 

Where  

𝑉𝑖  = deterministic utility of route alternative i,  

𝑃𝑆𝐶𝑖 = path size correction term of route alternative i,  

𝛽𝑃𝑆𝐶 = parameter for the PSC term to be estimated, and 

𝐶 = choice set of all alternative routes.  
 

The path size correction (PSC) factor in its original form is given by,  

 
𝑃𝑆𝐶𝑖 = − ∑ (

𝑙𝑎

𝐿𝑖
𝑎∈𝛤𝑖

 𝑙𝑛 ∑ 𝛿𝑎𝑗

𝑗𝜖𝐶

) (4.2) 

Where 

𝑙𝑎 = length of link a within alternative route i, 

𝐿𝑖 = total length of alternative route i, 

𝛤𝑖 = set of all links for route i,  

𝐶 = set of all routes between the chosen origin-destination pair, and 

𝛿𝑎𝑗 = link-route incidence between link a belonging to alternative route j.  
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The PSC term has a maximum value of 0 for completely independent routes and decreases as 

the overlap between routes increases, with a theoretical lower bound of -∞. For road networks, 

𝛽𝑃𝑆𝐶 associated with the PSC term is typically positive, resulting in a reduction of utility for 

overlapped routes (since PSC itself is negative for such routes).  

 

While for road networks, there is a consensus on how the route overlap is defined and perceived 

by travellers, in case of transit networks the answer is not as clear. Hoogendoorn-Lanser, van 

Nes, and Bovy (2005) were the first to incorporate overlap in case of transit route choice. They 

defined overlap in terms of number of journey legs, travel time, and distance on those legs, and 

found that the overlap is valued negatively for all of these definitions (i.e. overlapped routes 

are less likely to be chosen). Contrastingly, Hoogendoorn-Lanser and Bovy (2007) found that 

the overlap in the train-leg of the multi-modal inter-urban journey was valued positively by the 

travellers, unlike the access and egress parts which were valued negatively. For urban transit 

networks also, there is evidence of a positive valuation of overlap (Anderson et al., 2017). As 

argued by Hoogendoorn-Lanser, van Nes, and Bovy (2005), the negative perception of 

overlapping routes in case of transit networks may be compensated by their contribution to 

robustness of the routes in case of disruptions.  

 

One of the important questions in case of transit networks is how the overlap should be defined 

and formalized mathematically. The formulation in Equation (4.2) was developed for road 

networks, and is often directly adopted for transit networks by defining overlap in terms of 

common physical links and their properties (for example in (Anderson, Nielsen, and Prato 

(2017)). Tan et al.(2015) proposed a formulation based on travel time on the overlapping links 

and frequency of services, rather than the link length. Proposing a different approach, 

Hoogendoorn-Lanser, van Nes, and Bovy (2005) defined overlap in terms of common trip legs 

(as opposed to links) for inter-urban multi-modal transit routes. They found that the overlap 

defined in terms of number of trip legs explained the observed choices better, as opposed to 

travel times or distances on those legs. None of the studies so far have compared the alternative 

ways for defining and quantifying path overlap (link and leg) in the context of urban transit 

route choice.  

 

Further, as per Hoogendoorn-Lanser, van Nes, and Bovy (2005), apart from physical path, 

overlap between routes can also be defined in terms of nodes, services, runs or modes. 

However, applications so far have been limited to path overlap only. We argue that in case of 

transit route choice, decision points are pertaining to transfer nodes where you may 

interchange, as opposed to links in case of road networks, where each intersection is a decision 

point. Hence, in this study, we include both path (link & leg) overlap and transfer node 

(decision point) overlap.  

 

Based on the literature reviewed, we conclude that the following two questions remain 

unanswered regarding the perception of overlap in transit route choice: 

➢ Is the overlap between alternate transit routes perceived positively or negatively by the 

travellers? 

➢ Which way of defining overlap - link, leg or transfer node - best captures the perception 

of travellers for urban multimodal transit route choice? 

In the next sub-section we describe the approach adopted in this study for addressing the 

abovementioned questions. 
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 Research approach 

We now discuss the different possibilities of such overlaps in case of urban multi-modal route 

choice, and our approach for addressing overlap in the form of common links, journey legs, 

and/or transfer nodes. We start with journeys without transfers (i.e. single leg journeys), and 

subsequently extend the approach to journeys with transfers. Figure 4.1 shows the possible 

overlaps for transit route alternatives without a transfer (single leg journeys), which could 

either be a partial or complete overlap of physical paths of the transit lines. Routes A and B/C 

have a partial overlap of physical paths with only two of the links overlapping, whereas Routes 

B & C have a complete overlap.  

 

Figure 4.1. Overlap between transit routes without a transfer. 

 

In Amsterdam, where we perform our case study, a map showing physical path of transit lines 

is displayed at the transit stops, providing travellers with information to choose an alternate 

overlapping transit line. Moreover, real-time passenger information systems are provided at the 

majority of stops, showing the next arriving transit vehicle(s). Hence, in this study, we assume 

that completely overlapping transit lines using the same mode are perceived as being the same 

by travellers. Accordingly, for such lines, the effective waiting time at the origin stop is 

calculated based on the combined observed headway of overlapped lines, as derived from the 

Automatic Vehicle Location (AVL) data. For the other case when there is a partial overlap of 

transit lines (Routes A and B/C), a link-based overlap is considered. In some cases, there may 

be a complete overlap of physical path but different modes are used – bus and tram in our case. 

For such cases, a leg-based overlap (and no link-based overlap) is considered.  

 

Next, we consider routes with multiple legs. For such routes, in addition to link and leg based 

overlap, there could be a common (or overlapping) transfer node amongst the alternatives. 

Figure 4.2 shows an example of leg and transfer node overlap for routes with one transfer. 

Alternative E & F share overlapped leg 1, and all alternatives share an overlapped transfer 

node. Note that it is possible for routes to have no overlap of path (link or legs), but still have 

an overlap of transfer node(s) (alternatives D and E/F in Figure 4.2).  
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Figure 4.2. Overlap between transit routes with one transfer. 
 

For all such possibilities of overlap, the unobserved characteristics of overlapping routes may 

be correlated. Hence, the utility is modified to take into consideration such overlap. We specify 

and analyse four PSC formulations for such routes - one each for link and node based overlap, 

and two for leg-based overlap: 

 

1. Link-based PSC: This follows the traditional definition of PSC, as presented in 

Equation (4.2), and is based on the length of overlapping links as proportion of the 

total route length.  

 

2. Leg-based PSC - number of overlapped legs: The hypothesis here is that travellers 

perceive the overlap in terms of number of overlapped legs, rather than the travel 

times or distance on those legs. In Hoogendoorn-Lanser, van Nes, and Bovy (2005), 

a similar definition was used for calculating the path size logit term for inter-urban 

transit travel. The path-size correction term in this case is given by: 

𝑃𝑆𝐶𝑖
𝐿 = − ∑(

1

𝑁𝑖
𝑙∈𝛤𝑖

 𝑙𝑛 ∑ 𝛿𝑙𝑗

𝑗𝜖𝐶

) (4.3) 

Where 

𝑁𝑖 = Number of journey legs in route i, 

𝛤𝑖 = set of all legs for route i,  

𝐶 = set of all routes between the chosen origin-destination pair, and 

𝛿𝑙𝑗 = leg-route incidence between leg l belonging to alternative route j. 

 

3. Leg-based PSC - travel times on overlapped legs: The PSC term in this case is 

calculated based on the travel time on the overlapping leg as a proportion of total 

travel time of the route, as proposed by Tan et al. (2015):  

𝑃𝑆𝐶𝑖
𝑇 = − ∑(

𝑡𝑙

𝑇𝑖
𝑙∈𝛤𝑖

 𝑙𝑛 ∑ 𝛿𝑙𝑗

𝑗𝜖𝐶

) (4.4) 

Where  

𝑡𝑙 = travel time for journey leg l in route i,  

𝑇𝑖 = total travel time for route i, 

𝛤𝑖 = set of all legs for route i,  

𝐶 = set of all routes between the chosen origin-destination pair, and  

𝛿𝑙𝑗 = leg-route incidence between leg l belonging to alternative route j. 
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4. Transfer Node-based PSC: This factor captures the overlap in terms of number of 

decision points for multi-leg journeys, and is given by: 

𝑃𝑆𝐶𝑖
𝑋 = − ∑ (

1

𝑋𝑖
𝑛∈𝐾𝑖

 𝑙𝑛 ∑ 𝛿𝑛𝑗

𝑗𝜖𝐶

) 
(4.5) 

Where  

𝑋𝑖 = Number of transfer nodes in route i,  

𝐾𝑖 = set of all nodes for route i,   

𝐶 = set of all routes between the chosen origin-destination pair, and 

𝛿𝑛𝑗 = node-route incidence between node n belonging to alternative route j.  

 

The models incorporating above PSC factors are tested against the MNL model to establish 

how the addition of each of the PSCs impact the model fit. Table 4.1 summarizes the different 

possibilities of path and node overlap in our data, and the PSC formulations applied in each 

case. 
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Table 4.1 Types of overlap considered. 

Journey type Type of overlap Example 

Link-

based 

PSC  

Leg-

based 

PSC   

Transfer 

node-based 

PSC  

No transfer 

(single leg)  

Complete overlap of path using the 

same mode  

 

Assumed to be perceived as the 

same alternative  

Complete overlap of path using 

different modes  
- ✓ - 

Partial overlap of path using same or 

different modes   
✓ - - 

With transfer 

(multi-leg) 

  

Complete overlap of one or more legs 

using same or different modes 
 

- ✓ ✓ 

Partial overlap of one or more legs 

using same or different modes 
 

✓ - - 

Different transfer nodes but using the 

same route 
 

✓ - - 

Same transfer node but 

different/partially overlapped routes 
 

if 

applicable 
- ✓ 
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 Data Preparation 

We perform our analysis on the urban transit network on Amsterdam, consisting of bus, tram 

and metro modes. The time period of analysis is 28th May to 29th June 2018, during which 41 

bus lines, 15 tram lines and 4 metro lines were operational in the network. Figure 4.3 shows a 

map of the transit network during our analysis period. The metro network forms a part-ring 

structure around the city centre, with two of the lines providing direct connections from the 

south-eastern and southern peripheries of the city to the city centre. The tram lines have a dense 

network in the city centre, while also serving as feeders to the metro network. The bus network 

mainly serves the outskirts of the city with relatively lower density areas, but provide some 

important connections, especially from the areas in the North to the city centre.  

 

Figure 4.3. Amsterdam transit network. 

 

We use (anonymized) smart card data for our analysis, which captures (nearly) all journeys 

made in the network. On an average day during our study period, over 675,000 smart card 

transactions were recorded in the network. We restrict our analysis to weekday AM peak period 

(7 am to 10 am), in order to maximize the proportion of commuters and regular travellers in 

the data, who are expected to be more familiar with the route options, thereby making an 

informed route choice decision. The following subsections describe the steps undertaken to 

convert the raw smart card data to the required format for route choice analysis.   
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 Trips to journeys 

The Dutch smart card system provides information on both boarding and alighting transit stops 

and times (for an overview of the Dutch smart card system see van Oort, Brands, and de Romph 

(2015a)). Each transaction in the raw smart card data represents a check-in and check-out made 

by a passenger. For the route choice analysis, it is required to trace the entire journey of the 

travellers from their origin transit stop until their destination transit stop. For this, we combine 

individual smart card transactions to form passenger journeys by identifying transfers. For 

Amsterdam, a maximum time threshold of 35 minutes is applied by the operator to classify 

consecutive trips by an individual as transfers. However, we apply additional criteria to ensure 

that trip generating activities conducted within the 35-minute criteria are not wrongly classified 

as transfers. We do this by fusing the smart card data with AVL data, and applying the transfer 

inference algorithm as proposed in Gordon et al. (2013) and Yap et al. (2017). For more details 

on how the algorithm is applied to our case study network, the readers are referred to Dixit et 

al. (2019b). The transfers made within the metro network are not directly available from the 

smart card data, since the travellers do not need to check-in and out within the metro system. 

Hence, we have inferred the number of transfers using a shortest path (time-wise) approach for 

such journeys. The Amsterdam metro network consists of only 4 lines with no loops, and all 

the origin-destination pairs within the network can be reached with a maximum of one transfer. 

In case of origin-destination pairs where more than one transfer stop is possible (due to parallel 

lines), we have assigned the transfer stop corresponding to the shortest travel time (calculated 

as the sum of in-vehicle and expected transfer waiting times). 

 

After performing transfer inference, the journeys were filtered to remove those with any 

missing route attribute (such as observed headway from the AVL data). Further, in 

Amsterdam’s network, almost all origin-destination pairs can be reached with a maximum of 

two transfers. Hence, for our analysis, we excluded journeys with more than 2 transfers 

(<0.01% of all journeys), to minimize irrational traveller behaviour in our data. After applying 

all the filters, this resulted in a dataset of 2.9 million journeys for the whole study period 

(weekday AM peak).  

 Aggregating transit stops  

Smart card data does not provide any information on where passengers actually began or ended 

their journey - only the origin and destination transit stops are known. Further, the smart card 

data used for this study is anonymized, and the users cannot be tracked across multiple days. 

Hence, no information is available from the smart card data on which transit stops were 

considered by the traveller while making their route choice decision. A simplistic assumption 

is to restrict a traveller’s route choice set to all the route alternatives available at his/her 

boarding stop and alighting stop only. However, such an assumption greatly reduces the 

number, and diversity of alternatives considered in the choice set. More importantly, it is an 

unrealistic assumption for a city like Amsterdam, where the median walking feeder distance 

for bus stops is more than 300m (Brand et al., 2017), while the distance between neighbouring 

transit stops may be as low as 100m in transit dense areas. Therefore, assumptions are needed 

regarding passenger’s access/egress stop choice set. For example, Kim et al. (2019) aggregated 

all transit stops at an intersection into a node. We follow a similar approach of clustering 

neighbouring stops together, by means of agglomerative hierarchical clustering. In this method, 

starting with each transit stop forming its own cluster, the closest clusters are merged until a 

maximum distance threshold of 500m between any two stops within a cluster is achieved. The 

500m distance threshold is chosen to achieve compact clusters, as measured by the silhouette 

score. 651 transit stops resulted in 279 stop clusters. The resulting clusters are shown in Figure 

4.4 where each dot corresponds to a transit stop and the transit stops belonging to the same 
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cluster are shown in the same color. Once the transit stops are aggregated, all the routes 

connecting the traveller’s origin and destination stop clusters can be included in his/her choice 

set. 

 

Figure 4.4. Clustering of transit stops in Amsterdam.  

 Route definition and choice set preparation 

A route between an origin and destination stop cluster (further on referred to as O-D) is defined 

as a combination of the physical path(s) followed by the transit line(s), and the transfer stop 

cluster(s) used for each leg of the journey. The choice set in this study is based on the observed 

routes taken by the travellers in the data. This eliminates the need for assumption on the 

feasibility of non-observed routes. Further, it allows us to calculate the route attributes (such 

as in-vehicle and transfer times) purely based on the observations from the smart card data.  

To make a realistic representation of the available route choices, we split the study period 

(weekday AM peak) into 6 half hour time slices and calculate the expected value of route 

attributes during each time slice. For example, a traveller starting their journey anytime 

between 7:00 to 7:30 am is assumed to have in his/her choice set the route alternatives that 

were used between that time window only. Accordingly, the expected value of route attributes 

is calculated by taking the median over all observations using the O-D route during the chosen 

time slice. Although seemingly large, the half hour time slice is intended to maximize the 

number of observed journeys to have reliable estimates of route attributes. For that, only those 

routes with a minimum of 20 journeys in the time slice (over all days) were used for the 
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analysis. Further, only those O-D pairs with a minimum of two route alternatives were 

included. Majority (91%) of O-D pairs had only two route alternatives, with a maximum of 

four alternatives for any O-D pair. Overall, the busiest time period within the morning peak 

was between 08:00 to 08:30 am, capturing 25% of all journeys. Figure 4.5 shows the number 

of distinct OD pairs used in the data for each time slice, and of those how many include an 

overlap in at least of the alternative routes. The proportion of OD pairs with at least some type 

of overlap varies between 56% and 67% for each time-slice. Of these, majority have an overlap 

of link (only), which ranges between 42% and 49% of all O-D pairs for each time-slice.  

 

Figure 4.5. Number of unique O-D pairs in the data by type of overlap.  

 Route attributes and model specification 

The way travel time is measured is different for bus and tram versus metro in Amsterdam. For 

buses and trams, the smart card is tapped in/out inside the vehicle, whereas for metro, this 

happens at the station. Because of that, the in-vehicle travel time for metro journeys is not 

directly available from smart card data. Hence, for this study, we derive the in-vehicle, waiting 

and transfer times (if applicable) for metro journeys based on the AVL data. While the average 

in-vehicle time between all O-D pairs is directly available from the AVL data, the effective 

waiting and transfer times are derived based on the observed headway at each origin and 

transfer stations.  

 

The following route attributes are populated for each O-D route and time-slice combination, 

which are subsequently used in our choice model specification: 

1. In-vehicle time by bus and tram (𝑰𝑽𝑻𝒃𝒖𝒔 and𝑰𝑽𝑻𝒕𝒓𝒂𝒎): These correspond to the total 

in-vehicle time by bus and tram modes summed over all legs in a journey. 

2. Expected waiting time for bus and trams (𝑾𝑻𝒃𝒕): This is calculated for the first leg 

of the journeys starting with bus and trams. For common lines, this is calculated based 

on their combined headway.  

3. Metro time (𝑻𝑻𝒎𝒆𝒕𝒓𝒐): This includes in-vehicle time, and effective waiting time at the 

origin metro station.  

4. Number and type of transfers (𝑻𝒓𝒂𝒏𝒔𝒃𝒕 , 𝑻𝒓𝒂𝒏𝒔𝒃𝒕𝒎 and 𝑻𝒓𝒂𝒏𝒔𝒎): Transfers made 

are distinguished as being within bus/tram network (which includes bus-bus, tram-tram 

and bus-tram transfers); transfers between metro and bus/tram; and transfers within the 

metro network.  
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5. Transfer time (𝑻𝒓𝑻): This includes the transfer time for all types of transfers. 

6. Circuity (𝑪𝒊𝒓𝒄): This quantifies the detours made in the route, and is calculated as the 

ratio of network to Euclidean distance of the route. It ranges from a minimum of 1 (for 

very short routes), to approximately 4 in our dataset.  

7. Mode-specific constants for bus, tram and metro (𝑴𝑺𝑪𝒃𝒖𝒔, 𝑴𝑺𝑪𝒕𝒓𝒂𝒎 

and𝑴𝑺𝑪𝒎𝒆𝒕𝒓𝒐): These incorporate the preferences for a particular mode that is not 

captured by any of the above attributes. 
 

A total of six route choice models are estimated. We start with an MNL model, the systematic 

utility of which is specified in Equation (4.6). All β represent the coefficients of the attributes 

which are estimated.  

𝑉𝑀𝑁𝐿 = 𝛽𝑖𝑣𝑡𝑏𝑢𝑠
∗ 𝐼𝑉𝑇𝑏𝑢𝑠 + 𝛽𝑖𝑣𝑡𝑡𝑟𝑎𝑚

∗ 𝐼𝑉𝑇𝑡𝑟𝑎𝑚 + 𝛽𝑤𝑎𝑖𝑡𝑏𝑡
∗ 𝑊𝑇𝑏𝑡 + 𝛽𝑡𝑡𝑚𝑒𝑡𝑟𝑜

∗ 𝑇𝑇𝑚𝑒𝑡𝑟𝑜 +  𝛽𝑡𝑟𝑎𝑛𝑠𝑏𝑡
∗ 𝑇𝑟𝑎𝑛𝑠𝑏𝑡 + 𝛽𝑡𝑟𝑎𝑛𝑠𝑏𝑡

∗ 𝑇𝑟𝑎𝑛𝑠𝑏𝑡𝑚

+ 𝛽𝑡𝑟𝑎𝑛𝑠𝑚
∗ 𝑇𝑟𝑎𝑛𝑠𝑚 + 𝛽𝑇𝑟𝑇 ∗ 𝑇𝑟𝑇 + 𝛽𝐶𝑖𝑟𝑐 ∗ 𝐶𝑖𝑟𝑐 + 𝑀𝑆𝐶𝐵𝑢𝑠

+ 𝑀𝑆𝐶𝑇𝑟𝑎𝑚 + 𝑀𝑆𝐶𝑀𝑒𝑡𝑟𝑜 

 

(4.6) 

Taking the above utility function as a basis, we add the path size correction term to the utility 

function (as shown in Equation (4.1) earlier) and estimate five PSCL models. PSCL Models 1 

to 4 define the overlap based on link (Equation (4.2)), number of legs (Equation (4.3)), travel 

time on legs (Equation (4.4)) and number of transfer nodes (Equation (4.5)), respectively. 

Lastly, we combine the leg-based and node-based models to account for the contribution of 

each of those elements to the perception of route overlap. Different combinations of such model 

specifications were tried, and the best one is presented in PSCL Model 5.  

 Results and Discussion 

 MNL Model without overlap 

The five PSCL models along with the MNL model as described in the previous section were 

estimated using the BIOGEME estimation package (Bierlaire, 2020). Table 4.2 shows the 

results of the estimation. For all models, we present the final log-likelihood, rho-square-bar 

and likelihood ratio statistic (LRS) with respect to MNL for comparison. 

  

All parameters are found to be significant at p<0.01 level, and the signs are as expected. All 

observed travel attributes being the same, there is a preference amongst travellers for using 

routes with metro over tram and bus. This is expected owing to the higher reliability the metro 

lines provide. Additionally, the simplicity of the metro network, weather protection at the 

stations, and a more comfortable waiting environment could be some other factors contributing 

to this preference. After metro, tram is found to be preferred by travellers over bus. Moreover, 

the in-vehicle time of bus is valued more negatively compared to tram, in line with findings 

from other studies reporting a ‘tram bonus’ in the Netherlands (Bunschoten et al., 2013). For 

buses and trams, one minute of waiting time at the origin stop is valued as much as 1.8 minutes 

of bus in-vehicle time, which is comparable with the values reported by Yap, Cats, and van 

Arem (2020) for The Hague, the Netherlands (1.5 -1.6 minutes).  
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Table 4.2. Model estimation results 

Description 
MNL 

Model 

Link-based  Leg-based  Node-based  Combined 

PSCL Model 

1 - links 

PSCL Model 2  

- number of 

legs 

PSCL Model 

3 - travel time 

PSCL Model 4  

- transfer node 

PSCL Model 5  

– travel time 

+transfer node 

Number of observations 382,295 382,295 382,295 382,295 382,295 382,295 

Estimated parameters 11 12 12 12 12 13 

Final log likelihood -233,892 -233,767 -233,714 -233,764 -233,513 -233,473 

Rho-square-bar 0.178 0.178 0.178 0.178 0.179 0.179 

Likelihood Ratio Statistic (compared to MNL) - 249.6 355.6 256.2 759.0 838.6 

Parameter estimates* 

Mode-specific constant for bus <fixed> 0.00 0.00 0.00 0.00 0.00 0.00 

Mode-specific constant for tram  0.49 0.48 0.50 0.50 0.51 0.50 

Mode-specific constant for metro  0.84 0.84 0.86 0.88 0.90 0.90 

Bus in-vehicle time (mins) -0.11 -0.11 -0.10 -0.11 -0.11 -0.11 

Tram in-vehicle time (mins) -0.09 -0.09 -0.09 -0.09 -0.09 -0.09 

Effective wait time bus/trams (mins) -0.19 -0.19 -0.19 -0.19 -0.19 -0.19 

Metro time1 (mins) -0.09 -0.09 -0.09 -0.09 -0.10 -0.10 

Number of transfers between bus & tram2 -1.24 -1.24 -1.18 -1.26 -1.37 -1.41 

Number of transfers between metro and bus/tram -2.38 -2.40 -2.42 -2.47 -2.62 -2.65 

Number of transfers within metro -1.50 -1.50 -1.42 -1.44 -1.47 -1.51 

Transfer time (mins) -0.25 -0.25 -0.25 -0.24 -0.23 -0.23 

Circuity -0.43 -0.41 -0.43 -0.42 -0.39 -0.39 

Path size correction – link - -0.53 - - - - 

Path size correction – leg - - -0.90 -0.63 - 0.52 

Path size correction – transfer nodes - - - - -1.02 -1.39 

*p<0.01 for all estimates 

1includes in-vehicle time and origin waiting times.  
2includes bus-bus, tram-tram and bus-tram transfers
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The pure transfer penalty between bus/tram modes, which is valued at 11.5 (= -1.24/-0.11) 

minutes of bus in-vehicle time in the MNL model, is found to be much higher than the one 

reported by Yap, Cats, and van Arem (2020) for the buses and trams for The Hague (3.8-5.2 

minutes), perhaps owing to Amsterdam’s larger network with relatively longer transfer 

distances. Amsterdam also has a relatively higher share of tourists that may prefer direct routes. 

Although on the higher end, our transfer penalties are found to be comparable to other values 

reported in the literature, such as those observed by Garcia-Martinez et al. (2018) for the multi-

modal transit network of Madrid, Spain (15.2-17.7 minutes), or by Anderson, Nielsen, and 

Prato (2017) for the regional multi-modal transit network of Greater Copenhagen Area (14.1-

17.9 minutes). Between the different types of transfers made in the network, the ones between 

metro and bus/tram are the least preferred. This is expected, since in case of Amsterdam, 

transferring to metro from bus/tram typically involves walking a longer distance and climbing 

(deep) stairs. In comparison, the transfers within the metro network are more convenient as 

metro stations are relatively small and transfers are often cross-platform and do not involve 

long passageways or multiple level changes. The transfer waiting times are also more reliable 

in case of metro, because many of these transfers are synchronized during operation. However, 

the most preferred transfers are within the bus/tram network which are usually at the same 

level. 

 

In addition to the pure transfer penalty, travellers also have a strong dis-preference for transfer 

time compared to the corresponding in-vehicle time. Detour of a route, as measured by the 

circuity, is also found to play a role in explaining the route choice of travellers, with a trade-

off of 4 minutes of bus in-vehicle travel time for 1 unit change of circuity. The part-ring 

structure of the metro network results in some O-D pairs having high circuity. Moreover, 

having a distance-based fare system implies that higher circuity also results in higher fares 

being paid. Despite that, our parameter value for circuity is found to be much lower than that 

reported by Kim et al. (2019) for the transit network of Seoul, which to our knowledge is the 

only other study that includes circuity in multi-modal transit route choice. They report a value 

of about 22 minutes of IVT for 1 unit change of circuity, possibly due to the larger scale of the 

network. 

 Incorporating overlap 

Next, we examine how travellers perceive different aspects of overlap between alternate transit 

routes, looking at each type of overlap individually (PSCL Models 1 to 4). Firstly, all PSCL 

models offer an improvement of model fit compared to the MNL model, as demonstrated by 

the LRS=249.6 for the worst performing PSCL model (PSCL Model 1), exceeding the critical 

χ2 value of 6.6 at 1% significance level (df=1).  

 

Secondly, the sign of the PSC parameter for all models considering overlap individually (PSCL 

models 1 to 4) is significant (at p<0.01 level) and negative, implying that the overlap between 

transit routes is perceived positively by the travellers in general, and the utility of overlapping 

routes is underestimated by the MNL model. This means that the travellers prefer routes having 

an overlap between alternatives, over completely distinct transit routes – be it an overlap of 

links, legs or transfer nodes. This result contradicts with the findings from analysis of route 

overlap in road networks (such as in Bovy, Bekhor, and Prato (2008)), as mentioned earlier in 

section 2.2. However, it is in line with some studies for transit route choice (Anderson et al., 

2017; Hoogendoorn-Lanser and Bovy, 2007), and is perhaps explained by the claim of 

Anderson, Nielsen, and Prato (2017) that the PSC “can be seen as a measure of robustness of 

the trip by the traveller”. 
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From the three path based PSCL models (PSCL Models 1 to 3), using a PSCL based on number 

of journey legs (PSCL Model 2) explains the travellers’ route choice better than the link-based 

or travel time-based ones, as demonstrated by the final log-likelihood and LRS (with the same 

number of parameters in the three models). However, out of the four proposed PSC 

formulations, the one based on transfer nodes (PSCL Model 4) is found to have the highest 

final log-likelihood, meaning that it best explains the observed data, significantly better than 

any of the path-based PSCL models. As with the path-based PSC parameters, travellers are 

more likely to choose a route that includes a transfer stop that is shared by other routes for the 

OD pairs, implying more options of travelling to their destination stop, which could also be 

considered to be more robust. It is also noted that once the node-based overlap is added, the 

transfer penalty is found to increase steeply for transfers within bus/tram and from bus/tram to 

metro. This implies that when such overlap is ignored, the positive utility derived for routes 

with a transfer node overlap is captured by the transfer penalty instead, leading to an 

underestimation of the disutility induced by the number of transfers. Simultaneously, the 

transfer time parameter is found to decrease marginally, further implying that travellers dislike 

transferring irrespective of the transfer time. 

 Combining path and node-based overlaps 

As shown in Table 4.1, the notions of overlap in terms of transfer nodes and overlap in terms 

of journey legs are distinctive, i.e. there can be routes where there is an overlap of transfer 

nodes, but no overlap of journey legs and vice-versa. Notwithstanding, often the overlap of 

transfer nodes and legs occurs simultaneously, leading to a high correlation between them 

(correlation ~0.7). In that case, omitting one of these factors may result in endogeniety. To 

understand and isolate the valuation of overlap of transfer nodes versus overlap of journey legs 

in more depth, we include them simultaneously. Different combinations of model formulations 

were estimated, and the best combination of parameters is presented (PSCL Model 5).  

 

Estimating a model that includes both the leg-based and node-based PSC results in a slightly 

better model fit compared to the model with node-based PSC alone. In the combined model, 

the PSC parameters for overlap of transfer node is found to follow similar signs as in the 

individual model. However, surprisingly, the results indicate that once the overlap of transfer 

nodes is accounted for, subsequent overlap of journey legs is valued negatively. This means 

that travellers ideally prefer routes which have an overlap of transfer nodes, i.e. decision points, 

rather than of journey legs per se. The latter is perceived negatively once overlap in transfer 

nodes is accounted for. The main argument explaining the positive perception of route overlap 

for transit networks is the availability of alternate travel options in case of disruptions. From 

that perspective, having a common transfer point but distinct journey legs between routes meets 

the objective. On the other hand, having the overlap in journey legs, i.e. the same travel option 

before or after transfer for the two overlapping routes, does not help in case of disruptions, and 

is hence found to reduce the attractiveness of overlapped routes, compared to completely 

distinct routes. This could also be interpreted as the routes with a complete overlap of legs 

being considered similar (rather than as two distinct routes).  

 

Conversely, the partial overlap of journey legs (in the form of links), is found to be valued 

positively implying that routes with partial overlap, i.e. some but not all common links, are 

preferred over completely independent journey legs. This is expected as routes with some 

common links could provide more options for at least a part of the journey-leg(s) in case of 

disruptions. Moreover, the routes with partial overlap are more likely to be situated in transit-

dense city centre areas as opposed to outskirts. This could contribute to the preference towards 

them, everything else being the same, due to feelings of familiarity to the route, safety, 
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preferred surroundings (especially for tourists in the case of Amsterdam), and perhaps a better 

level of service. The overall impact of route overlap depends thus on the relative values of link, 

leg and node overlap.  

 Cross-validation and sensitivity analysis 

We undertook out-of-sample validation for each of our models using a cross-validation 

approach. Each model was re-estimated on (randomly selected) 80% of the data (305,836 

observations), and the remaining 20% of the data (76,459 observations) was used as a 

validation dataset. This process was repeated five times (with replacement) for each model, 

and the average probability of chosen routes across all validation runs is presented in Table 

4.3. In terms of prediction performance also, the node-based overlap model is found to perform 

better than the link or leg-based models for our data. The best performance of all is found to be 

for the combined node and leg-based model, marginally better than the node-based model.  

Table 4.3. Cross-validation results.  

Description 

 

MNL 

Model 

Link-

based  
Leg-based  

Node-

based  

Combined 

PSCL 

Model 1  

- links 

PSCL 

Model 2  

 - number 

of legs 

PSCL 

Model 3 

- travel 

time 

PSCL 

Model 4  

- transfer 

node 

PSCL  

Model 5  

- travel time 

+transfer 

node 

Average log-likelihood 

of validation data 
-46,778 -46,753 -46,743 -46,753 -46,703 -46,695 

Average probability of 

chosen route for 

validation data 

58.89% 58.91% 58.92% 58.91% 58.96% 58.97% 

 
Next, we perform a sensitivity analysis of our results to the choice set size. In this study, we 

use the ‘observed’ choice set as opposed to a synthetic choice set generation method. To ensure 

reliable estimates of travel attributes, only those routes with a minimum of 20 journeys in the 

half hour time slice (over all days) were used for the analysis. However, this results in many 

less frequently used routes being excluded from our analysis, reducing our choice set size. In 

case of choice models, it is well known that choice set size and composition may greatly impact 

results (Prato and Bekhor, 2007). For models that include route overlap (such as the PSCL), 

including irrelevant alternatives has been found to bias the results, hence it is advised to include 

the attractive routes only in the choice sets (Bliemer and Bovy, 2008; Bovy et al., 2008). 

However, one could argue that routes with less than 20 observed journeys in the time period of 

our analysis (specially in the outskirts of the city) could still be considered ‘relevant’. Hence, 

we test the sensitivity of our conclusions to choice set size by reducing the threshold of 

minimum journeys needed to include a route in our analysis. As we lower the threshold on the 

number of journeys, more ‘less preferred’ routes are included in the data set. In general, these 

‘less preferred’ routes have more overlap between them – with 74% of OD pairs having some 

type of overlap with a threshold of 5 journeys, as compared to 63% for a threshold of 20 

journeys. 

 

Table 4.4 shows the model estimation statistics and path size factors for our best performing 

model (PSCL Model 5) for different journey thresholds. As expected, the model fit statistics 
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improve as the number of observations increase. The PSC parameters are still found to be 

significant and with the same signs irrespective of the sample size, although their magnitudes 

decrease with reducing threshold. Amongst other parameters, the transfer related parameters 

and circuity were found to be sensitive to the composition of choice set, whereas the in-vehicle 

and waiting times were observed to be relatively stable. Similar to Ton et al. (2018), this study 

has undertaken a data-driven choice-set generation approach. The impact of choice-set size 

when using this approach on model estimates remains a topic for further research. 

Table 4.4. Model sensitivity to choice set size 

Description 
Minimum 20 

journeys  

Minimum 10 

journeys 

Minimum 5 

journeys 

Number of observations 382,295 538,696 756,467 

Maximum number of alternatives 4 6 7 

Estimated parameters 13 13 13 

Likelihood Ratio Test  

(compared to respective MNL) 
838.6 987.2 988.6 

Rho-square-bar 0.179 0.227 0.304 

Parameter estimates* 

PSC – travel time 0.52 0.48 0.16 

PSC – transfer nodes -1.39 -1.10 -0.61 

*p<0.01 for all estimates  

 Discussion 

Our findings highlight the importance of transfer hubs for passenger route choice decisions. 

The perception of overlap is found to refer to decision points such as interchange locations. 

Having routes with common transfer locations that offer distinctive travel options to and from 

transfer locations is ideal from the perspective of travellers. Network topology analysis has 

demonstrated that having multiple (back-up) links in transit networks increases the robustness 

of a transit network in case of disruptions (Jenelius and Cats, 2015). Our findings imply that 

this also translates into increased attractiveness of overlapping routes compared to independent 

routes due to their contribution to journey-level robustness.  

 

The analysis performed in this study can be extended to access stop choice. The models used 

in this study attempt to capture the value of robustness of routes with overlapping links or 

transfer nodes. More generally, this preference for more robust routes may also be reflected in 

case of the transit travellers’ access stop choice. However, in most existing models of route or 

access stop choice, this impact is not considered. The dataset used in this study does not provide 

information on door-to-door journeys, hence it is not possible to observe the preferences of 

travellers on their choice of origin transit stop. However, it is an interesting research direction 

to check for this using a data set (such as travel diary) which will allow for such an examination.  

Lastly, our results show that depending on the types of modes between which the transfers are 

occurring, some transfers are preferred over others, in line with the findings from Garcia-

Martinez et al. (2018) for intermodal transfers. Transfer penalty is expected to be a function of 

the transfer environment, such as level difference, number of crossings, shelters, availability of 

information, etc. In the case of Amsterdam, as with many other transit networks, many bus/tram 

lines are intended to serve as access/egress modes for the metro which is limited to major 
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corridors. However, the higher transfer penalty for such transfers (as opposed to transfers 

within the bus/tram network) indicates that more attention should be given to making such 

intermodal transfers more seamless, thereby reducing the associated transfer penalty and 

making such journeys more attractive.  

 

Finally, our study is subject to three main limitations. Firstly, crowding was not included as an 

attribute in any of our models. Even though the Amsterdam transit network is not very crowded, 

in some contexts crowding may have an impact on other attributes. Secondly, while the PSCL 

models used in this study allowed for capturing the correlation between alternatives, they do 

not capture the heterogeneity amongst travellers or the correlation due to the panel 

characteristic of the data. While the former could be explored using other model structures such 

as the mixed-logit, the latter is not possible given the characteristics of the dataset which does 

not contain panel information. Lastly, this study compared the alternate specifications of route 

overlap, including the new node-based overlap, using PSCL model only. It might be interesting 

to explore how these alternate definitions of overlap perform under other model structures used 

to incorporate overlap, such as the C-Logit, the PSL or more complex ones like the Paired 

Combinatorial Logit or Cross Nested Logit. 

 Conclusion 

The main contribution of this study is that for the first time, we provide insight into how 

travellers perceive different types of overlap between routes while making urban transit route 

choice decisions. An empirical analysis by means of choice modelling was conducted for the 

urban multi-modal transit network of Amsterdam using smart card data. We defined route 

overlap in terms of overlapping links, journey legs, and transfer nodes. Overall, incorporating 

route overlap resulted in a significant improvement in model fit compared to the basic MNL 

model.  

 

Our findings support the argument of Anderson, Nielsen, and Prato (2017) and Hoogendoorn-

Lanser and Bovy (2007) that having multiple options of travel enhances the attractiveness of 

routes that have an overlap. On the one hand, our results show that the partial overlap of routes 

with some links overlapping is found to be preferred by travellers, presumably because it 

provides more options for travel in case of disruptions. Further, travellers ideally prefer routes 

that have common transfer locations, but not completely overlapping journey legs. This is 

intuitive, as having multiple (distinct) travel options at a transfer location adds to the robustness 

of their route choice decision. On the other hand, completely overlapping journey legs does not 

add any value in terms of robustness, and is hence found to reduce the attractiveness of 

overlapped routes, compared to distinct ones.  

 

The majority of studies in the literature that consider transit route overlap measure it in terms 

of path only. In this study, not considering the overlap in terms of transfer nodes led to the 

contrasting conclusion of a positive valuation of overlapped legs by travellers. Hence, a key 

take-away from our results is that for transit route choice, it is important to define the overlap 

in terms of both path and nodes.  

 

Overall, this study contributed to advancing the understanding of travellers’ perception of 

overlap during transit route choice. It also added to the limited studies that empirically analyse 

route choice behaviour for large-scale multi-modal transit networks using smart card data. The 

results show differences in perceptions of travel times and transfer penalties by mode(s) used. 

The trade-off values between different route attributes obtained in this study also provides 
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behavioural insights to transit planners and policy makers. Moreover, the methodology 

proposed to incorporate route overlap could be adopted for other transit networks to improve 

the performance and accuracy of route choice models, leading to better predictions.   





 

73 

Chapter 5 - Validation of a Transit Route 

Choice Model Using Smart Card Data 

Validation of travel demand models, although recognized as important, is seldom undertaken. 

This chapter contributes to advancing transit route choice models by undertaking an out-of-

sample validation of the models estimated in Chapter 4. Specifically, the estimated models are 

used to predict changes in travel demand in response to a major network restructure that 

included the introduction of a new metro line, and the predicted travel behavior is compared 

with the observed behavior. The smart card data from before and after the network change is 

used for estimation and validation, respectively. First, the MNL model with mode-specific 

travel attributes is estimated using data from each of the two time periods, and the estimated 

parameters are compared for stability. Next, the predictive ability of the model estimated on 

the data before the network change is evaluated by comparing it against the observed demand 

at different aggregation levels. Lastly, two alternate specifications of the model including the 

best performing model from Chapter 4 are compared in terms of their predictive ability. By 

conducting a posterior validation analysis we derive insights for improving future transit route 

choice models, specifically the ones estimated based on smart card data.  

 

 

 

 

This chapter is based on the following article: 

 

Dixit, M., Cats, O., van Oort, N., Brands, T., Hoogendoorn, S. (Under review) Validation of a 

Multi-Modal Transit Route Choice Model Using Smart Card Data. 
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 Introduction 

The last few decades have seen substantial research into discrete choice models of transit route 

choice (Bovy and Hoogendoorn-Lanser, 2005; Guo and Wilson, 2011; Liu et al., 2010). These 

models aid in understanding transit riders’ preferences by revealing the relative valuation of 

various travel attributes, often specifically focusing on service quality characteristics such as 

those related to transfers (Garcia-Martinez et al., 2018; Guo and Wilson, 2011; Nielsen et al., 

2021), crowding (Hörcher et al., 2017; Kim et al., 2015; Yap et al., 2020) or reliability 

(Swierstra et al., 2017). The relative valuations obtained from these models can be used for 

predicting passenger flows in response to changes in policy, enabling the comparison of 

alternative policy scenarios. When the selected model is close to the true representation of 

reality, the estimated parameters are expected to be stable for a reasonable range of temporal 

and spatial conditions, and the model forecasts are expected to resemble the observed demand. 

However, the process of model validation is only seldom undertaken, and model selection is 

typically made based on goodness-of-fit statistics such as log-likelihood and rho-squared 

(Parady et al., 2021). Although useful in their own right, models with high goodness-of-fit may 

not necessarily be well-specified and hence may not be transferable (Koppelman and Wilmot, 

1982). Issues like overfitting, endogeniety, omission of variables, measurement errors, incorrect 

model structure or incorrect theoretical assumptions about the travel behaviour could lead to a 

misspecified model, which may still have an acceptable goodness-of-fit statistic.     

 

Model validation can be defined as “the evaluation of generalizability of a statistical model” 

(Parady et al., 2021) and includes both internal validation or reproducibility and external 

validation or transferability. External validation can be further divided into spatial 

transferability, temporal transferability, and methodological transferability (Parady et al., 

2021). Although recognised as important, external validation is rarely undertaken in the case of 

travel demand models, probably due to the lack of suitable data. Parady et al. (2021) highlight 

that only 4% of transport academic literature published between 2014 and 2018 conducted an 

external validation.  

 

In recent years, revealed preference data in general, and smart card data, in particular, has 

become increasingly available for inferring route choices of transit travellers (see for example 

Hörcher et al. 2017; Jánošíkova et al. 2014; Kim et al. 2019; Yap et al. 2020). Depending on 

the penetration rate amongst transit riders, smart card data can provide information on almost 

all journeys made in the network at a highly disaggregated level. However, no information is 

available on the intention of the travellers, their origin location, and in many cases the time of 

arrival at the origin stop. Due to these limitations, several assumptions need to be made along 

the modelling process, specifically regarding the travellers’ consideration choice set and the 

perceived level of service values. However, to the best of our knowledge, none of the studies 

that elicits route choice preferences from smart card data has attempted to validate their 

performance. This study aims to address this gap in the literature by undertaking an external 

validation of a transit route choice model using smart card data and thereby provide valuable 

insights on how transferable such models are and how we can facilitate their transferability.  

 

A model of transit mode-route choice was developed for the urban transit network of 

Amsterdam, where a new North-South metro line was added to the existing bus, tram, and metro 

network in July 2018. Along with the addition of the new line, significant changes were made 

to the rest of the network (see Brands et al. (2020) for details). This major network change 

provides an opportunity to perform an ex-post evaluation of the route choice model developed 
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based on data before the network change. Two types of validation tests are undertaken. First, 

we compare the model parameters estimated for the ‘before’ model with the locally estimated 

model developed based on the data ‘after’ the network change. The two data sets used are ~3 

months apart. Second, the demand changes estimated using the ‘before’ model are compared 

with the observed demand after the network change. The results aim to establish the validity of 

route choice models estimated using smart card data for predicting the change in travel 

behaviour because of a major network change.   

 

The rest of the chapter is structured as follows: we start with reviewing the literature on external 

validation of travel demand models in Section 5.2. Section 5.3 describes the study setting and 

the various statistical tests used for model validation, along with the model specifications. 

Section 5.4 presents the results of the validation tests undertaken on our data, and Section 5.5 

discusses the main conclusions.  

 External Validation of Travel Demand Models  

External validation of models, or transferability, implies the ability of a model developed in one 

context to be useful in another context. Transferability is implicitly assumed when models are 

used to predict change in demand in response to a policy change. Some of the earliest literature 

on (external) model validation dates back to Atherton and Ben-Akiva (1976) and Train (1978). 

Since then, most work in this area has focused on the temporal transferability of models over 

long time horizons (often more than 10 years) and/or their spatial transferability. The primary 

motivation for such studies was to reduce costs of data collection and model development by 

using an existing model for a comparable region or during a different time period for the same 

region. Parady et al. (2021) provide a comprehensive review of the recent literature on the 

validation of discrete choice models in transportation. Here we summarise the main issues 

considered in external validation studies and the corresponding learnings from them.  

 

A fundamental theoretical assumption behind any model transferability is the consistency of 

underlying behavioural theory in both contexts. Koppelman and Wilmot (1982) highlight that 

model transferability is a “property of the estimation and application contexts, as well as the 

specification of the model”. Naturally, a model with highly context-specific variables will not 

be transferable to a new context. Sometimes the ASCs are updated based on the application 

context to account for average changes in unobserved variables between the two contexts 

(Atherton and Ben-Akiva, 1976; Badoe and Miller, 1995; Sanko and Morikawa, 2010). While 

the updated ASCs capture the mean contribution of the unobserved terms, there could also be 

differences in the variance of these unobserved terms. Hence, before transferring a model, the 

scale for the transferred model needs to be updated to match the scaling differences between 

the two contexts (Swait and Louviere, 1993). In cases where the estimation and application 

contexts are widely different, one could implement a partial model transfer with varying transfer 

scales for different sub-groups of variables (Gunn et al., 1985). This is especially applicable 

when some parameters are more transferable than others. For example, Fox et al. (2014) found 

the level of service parameters to be more transferable than cost parameters in their study of 

mode-destination choice models.  

 

Multiple studies have noted that, generally, an improved model specification improves 

transferability (Badoe and Miller, 1995; Fox et al., 2014; Rossi and Bhat, 2014). However, 

some others also highlight the risk of overfitting which may reduce the transferability of 

models. For example, Fox (2015) found that although incorporating taste heterogeneity in time 

and cost parameters improved model fit for their base data, it did not necessarily result in 
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enhanced transferability. Badoe and Miller (1995) also report a similar finding where over-

specification led to reduced transferability. Overall, it is noted that a good fit in the estimation 

context may not be sufficient.  

 

Another issue of concern is the ability of a model to capture causal relationships. As clearly 

highlighted by Atherton and Ben-Akiva (1976): “To be transferable, then, it is not enough that 

the model merely fit existing data; it must also explain why travel behaviour changes as 

conditions change. Rather than simply correlating existing travel behaviour with socioeconomic 

characteristics and transportation level of service, the model specification must represent the 

causal relationships between these variables. Thus, the causal specification of a model is a 

precondition to its consideration for transferability.” For example, Chorus and Kroesen (2014) 

argue against the transferability of hybrid choice models for predicting policy outcomes, as 

these models (theoretically) cannot capture the causal relationship between the latent variable 

and the travel choice.   

 

The only way to empirically establish whether a model is under/over specified or if it captures 

the causal relations required for transferability is to undertake a posterior analysis of 

transferability. Nonetheless, as Koppelman and Wilmot (1982) note, such posterior analyses of 

transferability are undertaken with the intent to provide insights that can be helpful for (future) 

prior transferability studies. This study aims to get such insights for the case of transit route 

choice models, specifically the ones estimated based on smart card data.  

 

So far, most validation studies in the literature have been for mode or mode-destination choice 

models. In the case of route choice models, some studies undertake an internal validation (see 

for examples Lai and Bierlaire (2015); Mai (2016)), but very few undertake an external 

validation. Bekhor and Prato (2009) were the first to consider the issue of transferability of 

route choice models. They undertook a spatial transferability assessment of traffic route choice 

models based on two independent revealed preference survey data sets, one each for Boston 

and Turin networks. In addition to assessing the transferability of the route choice models, they 

also evaluated the transferability of path generation techniques. In their case, the transferability 

of route choice model parameters could not be verified, partly due to the dissimilarity in 

characteristics between the two networks.  

 

To the best of our knowledge, none of the studies so far have undertaken an external validation 

of a transit route choice model. This study addresses this gap by undertaking a transferability 

analysis across two closely spaced time periods for the same urban area, which allows for many 

exogenous factors to be controlled for, including any major changes in the underlying 

population. Specifically, the following issues are investigated using the smart card data from 

before and after a major network change: 

 

1. How transferable are models of transit route choice estimated using smart card data, and 

can they be used for forecasting the changes in demand because of network changes? 

2. How does omitting/adding relevant variables (determined based on improved goodness 

of fit measures in the base context) impact models’ prediction performance? 
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 Method 

 Case study context  

In July 2018, a new metro line (the north-south line) was introduced in the urban transit network 

of Amsterdam, the Netherlands, adding significant capacity to the existing network of metro, 

bus and tram lines. The new metro line runs through the dense historical city centre, and 

connects the northern part of the city with the centre – a connection which was made earlier via 

buses with highly circuitous routes. The opening of the new metro line was accompanied by 

changes to the existing bus and tram network, including the addition of new feeder routes and 

re-routing or removal of duplicate routes. The new metro line differs from the existing ones in 

a few aspects – some of the stations (especially the ones in the city centre) are deeper than the 

existing metro stations implying a longer access time to the metro. In addition, the frequency 

for the new line is higher than the frequencies offered on the other metro lines (see Brands et 

al. (2020) for details).  

 

This significant change in public transport supply provides an opportunity to undertake a 

transferability analysis for the transit route choice models developed for the network using the 

two time periods corresponding to ‘before’ and ‘after’ the opening of the new north-south 

metro, as shown in Figure 5.1. Although the time periods used in this study are very close apart, 

the major changes to the transit network supply cause significant changes to the flow patterns 

(as shown in Brands et al. (2020)), making this case study ideal for undertaking a model 

transferability analysis.  

 

Figure 5.1. The time period for validation analysis. 

 Validation assessment 

We divide the validation metrics into three categories, similar to those defined in Koppelman 

and Wilmot (1982). The first category relates to the stability of estimated parameters, while the 

next two assess the predictive ability of the model. Figure 5.2 shows this classification, and the 

sets of metrics used for each category. Subsequent sections elaborate on each of the metrics 

used.  
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Figure 5.2. Validation assessment metrics used 

Model parameter equality    

The first test of transferability consists of comparing the parameters estimated for the base and 

transfer contexts (the before and after situations in our case). This helps establish whether some 

parameters are more transferable than others. Since the two datasets are from different time 

points, we first check for differences in scale parameters between the two. For this, the two 

datasets are pooled together and the scale parameter is estimated relative to the ‘before’ dataset.  

 

After adjusting for scale differences, the parameters estimated for the two cases are compared. 

For each estimated parameter, the relative error measure (REM) is calculated as: 

𝑅𝐸𝑀𝛽𝑘
=

𝜇𝛽𝑘
𝑎𝑓𝑡𝑒𝑟

− 𝛽𝑘
𝑏𝑒𝑓𝑜𝑟𝑒

𝛽𝑘
𝑏𝑒𝑓𝑜𝑟𝑒

 (5.1) 

       

Where, 

µ          is the scale parameter to account for differences in error variance between the two cases, 

𝛽𝑘
𝑎𝑓𝑡𝑒𝑟

 is the parameter for attribute ‘k’ estimated for the after case, and  

𝛽𝑘
𝑏𝑒𝑓𝑜𝑟𝑒

 is the parameter for attribute ‘k’ estimated for the before case.  

 

Next, we check for statistical significance of the differences in each of the model parameters 

by means of a t-test, as described in Fox (2015). The t-statistic, in this case, is given by, 

𝑡(𝜇𝛽𝑘
𝑎𝑓𝑡𝑒𝑟

− 𝛽𝑘
𝑏𝑒𝑓𝑜𝑟𝑒

) =
𝜇𝛽𝑘

𝑎𝑓𝑡𝑒𝑟
− 𝛽𝑘

𝑏𝑒𝑓𝑜𝑟𝑒

𝜎(𝜇𝛽𝑘
𝑎𝑓𝑡𝑒𝑟

− 𝛽𝑘
𝑏𝑒𝑓𝑜𝑟𝑒

)
 (5.2) 

 

The denominator 𝜎 corresponds to the standard error of the difference in parameters. In our 

study, although the two datasets were collected a few months apart, we do not link individual 

Validation assessment 
measures

Model parameter equality
Relative error measure 

(REM) and t-test for each 
parameter

Meaures of disaggregate 
prediction

Transferability test statistic 
(TTS)

First preference recovery 
(FPR)

Brier score (BS)

Measures of aggregate 
prediction

Mean Absolute Error (MAE) 
for route flow prediction

Mean Absolute Error (MAE) 
for link flow prediction

Mean Absolute Percentage 
Error (MAPE) for mode-

share prediction

Measures of predictive 
performance 



Chapter 5 - Validation of a Transit Route Choice Model Using Smart Card Data 79 

 

observations collected in different periods. When the covariance is assumed to be zero, the 

standard error of difference is given by,  

𝜎(𝜇𝛽𝑘
𝑎𝑓𝑡𝑒𝑟

− 𝛽𝑘
𝑏𝑒𝑓𝑜𝑟𝑒

) =  √(𝜇𝜎[𝛽𝑘
𝑎𝑓𝑡𝑒𝑟

])2 + (𝜎[𝛽𝑘
𝑏𝑒𝑓𝑜𝑟𝑒

])2 (5.3) 

 

Where, 

(𝜎|𝛽𝑘
𝑎𝑓𝑡𝑒𝑟

|)2  is the standard error of 𝛽𝑘
𝑎𝑓𝑡𝑒𝑟

, and 

(𝜎|𝛽𝑘
𝑏𝑒𝑓𝑜𝑟𝑒

|)2  is the standard error of 𝛽𝑘
𝑏𝑒𝑓𝑜𝑟𝑒

. 

Disaggregate measures of predictive ability 

Next, we assess how well the ‘before’ model can predict the outcome of the network change. 

For this, the model parameters estimated based on the ‘before’ data are used to estimate the 

probabilities for the ‘after’ situation. The outcomes obtained using the transferred model are 

then compared to those from the locally estimated model (i.e. model estimated with same the 

specification but using the ‘after’ data). In this section, we discuss the methods for comparing 

the performance for individual-level predictions. As there is no agreement in the literature on 

the best metric for this, we use multiple metrics, each providing a different perspective on it, as 

described below: 

 

➢ Transferability Test Statistics (TTS): The TTS statistic is similar to a likelihood ratio 

test undertaken between transferred and the locally estimated model, both applied to the 

‘after’ data. It is a strict pass/fail test and is chi-squared distributed with degrees of 

freedom equal to the number of model parameters. This has been used by Atherton and 

Ben-Akiva (1976) and Koppelman and Wilmot (1982) among others to test model 

transferability.  

 

𝑇𝑇𝑆𝑎𝑓𝑡𝑒𝑟(𝛽𝑏𝑒𝑓𝑜𝑟𝑒) = −2 ∗ (𝐿𝐿𝑎𝑓𝑡𝑒𝑟(𝛽𝑏𝑒𝑓𝑜𝑟𝑒) − 𝐿𝐿𝑏𝑒𝑓𝑜𝑟𝑒(𝛽𝑏𝑒𝑓𝑜𝑟𝑒)) (5.4) 

 

Although commonly noted, it has been observed that almost all models fail this strict 

test of transferability (Badoe and Miller, 1995; Fox, 2015).  

 

➢ First preference recovery (FPR): Also referred to as ‘percentage of correct 

predictions’, this shows the percentage of choices correctly estimated by the model, 

given by: 

𝐹𝑃𝑅 =
100

𝑁
∑ 𝑦𝑖

𝑝 = 𝑦𝑖
𝑜

𝑁

𝑖=1

 (5.5) 

 

Where, 

𝑦𝑖
𝑝
 is the predicted choice for individual ‘i’, and  

𝑦𝑖
𝑜 is the observed choice for individual ‘i’, and 

𝑁 is the number of individuals (observations) in the data.   

 

As opposed to TTS, the FPR provides an indication on the degree of transferability and 

can be used to compare alternative models in terms of how well they can predict 

individual choices. It can also be useful when comparing the results with similar studies 

in the literature. However, a major limitation of this measure is its inability to 

differentiate between the range of probabilities assigned to the chosen alternatives (de 

Luca and Cantarella, 2016). Hence, we look at another measure – Brier score - of 
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disaggregate predictive performance that considers the probabilities assigned to the 

chosen and non-chosen alternatives. 

 

➢ Brier score (BS): Brier score (Brier, 1950) is an absolute measure used to quantify the 

accuracy of probabilistic predictions. For each alternative in each observation, the 

predicted probability of choosing it is subtracted by the actual outcome. The square of 

this value is summed across all alternatives for each observation, and averaged across 

all observations. Mathematically, it is given by: 

𝐵𝑆 =
1

𝑁
∑ ∑(

𝑅𝑖

𝑟=1

𝑁

𝑖=1

𝑃𝑖𝑟 − 𝑦𝑖𝑟)2 (5.6) 

 

Where,  

𝑃𝑖𝑟 is the predicted probability an individual ‘i’ chooses alternative route ‘r’ 

𝑦𝑖𝑟 is equal to 1 is alternative route ‘r’ is chosen by individual ‘i’ and 0 otherwise,  

𝑅𝑖 is the number of alternative routes available to individual ‘i’, and 

𝑁 is the number of individuals (observations) in the data.   

 

The Brier Score has a minimum value of 0 for perfect predictions, and a maximum value 

of 2 for the worst possible prediction.  

Aggregate measures of predictive ability 

Next, we compare the aggregate shares estimated by the models. To do this, individual 

probabilities are summed to calculate the market shares for each alternative route for each OD 

pair. The aggregate predictions are assessed using three metrics addressing different levels of 

aggregation, as discussed below:  

 

➢ Predictions per route - Mean Absolute Error (MAE): The predicted shares 

(passenger flows) are then compared to the observed ones, and the Mean Absolute Error 

(MAE) for each origin-destination (OD) pair is calculated as: 

𝑀𝐴𝐸𝑜𝑑 =
1

𝑅
∑|𝑆𝑟

𝑝 − 𝑆𝑟
𝑜|

𝑅

r=1

 (5.7) 

Where,  

𝑆𝑟
𝑝
 is the predicted flows for alternative route ‘r’ for origin-destination pair ‘o-d’,  

𝑆𝑟
𝑜 is the observed flows for alternative route ‘r’ for origin-destination pair ‘o-d’, and 

𝑅 is the number of available routes for origin-destination pair ‘o-d’. 

The MAEod is then averaged across all ODs to get an average MAE per route. 

 

➢ Predictions per link - Mean Absolute Error (MAE): The passenger flows per route 

are aggregated to calculate flows for each link. A link here refers to the path connecting 

two consecutive transit stops, which may be used by multiple transit routes. Similar to 

the route level, MAE is calculated for each link, and a mean MAE over all links is 

reported. The percentage error in predicting the flow on each link is also visualized to 

identify patterns.  

 

➢ Predicted modal shares – Mean Absolute Percentage Error (MAPE): The predicted 

passenger flows on each route are further aggregated to calculate the market share for 

each of the mode combinations. This is specifically relevant in our case as we would 

like to know how well the model performs when estimating the impact of the network 
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changes on the public transport mode-shares. The observed and predicted mode shares 

are compared, and the Mean Absolute Percentage Error (MAPE) is calculated for each 

mode as, 

𝑀𝐴𝑃𝐸𝑚𝑜𝑑𝑒𝑠 =
1

𝑀
∑ |𝑃𝑚

𝑝 − 𝑃𝑚
𝑜|

𝑀

m=1

 (5.8) 

 

Where,  

𝑃𝑚
𝑝
 is the predicted mode-share for mode (combination) ’m’,  

𝑃𝑚
𝑜  is the observed mode-share for mode (combination) ’m’, and 

𝑀 is the number of mode (combinations). 

 Data preparation and model specification  

We use a combination of smart card and Automated Vehicle Location (AVL) data for the route 

choice model estimation and validation analysis (see van Oort et al. (2015a) for an overview of 

the Dutch smart card system). The raw data is processed by undertaking cleaning, destination 

inference and transfer inference to form a journey database (see Dixit et al. (2019b)) for more 

details on these steps). For undertaking route choice analysis, we use only the morning peak 

period for our model estimation, as it is expected to have a higher share of commuters during 

this time, which are typically more regular travellers making their travel choices more conscious 

(Fox and Hess, 2010). The choice set is derived based on observed routes in the data set. Transit 

stops in close proximity are clustered together to form a more realistic consideration choice set, 

and a threshold of minimum 20 journeys for each route in the before period is applied to ensure 

only reasonable routes are included (see Dixit et al. (2021) for more details on this). After 

applying all filters, a dataset of 382,295 observations for the before period and 563,210 for the 

after period is obtained which is used for estimation and validation of the model, respectively.   

 

We specify and test three models of transit route choice. We start with an MNL model with 

mode-specific travel attributes, with the deterministic component of utilities as specified in 

Equation (5.9). 

 

𝑉𝑀𝑁𝐿_𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 = 𝛽𝑖𝑣𝑡𝑏𝑢𝑠
∗ 𝐼𝑉𝑇𝑏𝑢𝑠 + 𝛽𝑖𝑣𝑡𝑡𝑟𝑎𝑚

∗ 𝐼𝑉𝑇𝑡𝑟𝑎𝑚 + 𝛽𝑤𝑎𝑖𝑡𝑏𝑡
∗ 𝑊𝑇𝑏𝑡 + 𝛽𝑡𝑡𝑚𝑒𝑡𝑟𝑜

∗ 𝑇𝑇𝑚𝑒𝑡𝑟𝑜 +  𝛽𝑡𝑟𝑎𝑛𝑠𝑏𝑡
∗ 𝑇𝑟𝑎𝑛𝑠𝑏𝑡 + 𝛽𝑡𝑟𝑎𝑛𝑠𝑏𝑡

∗ 𝑇𝑟𝑎𝑛𝑠𝑏𝑡𝑚 + 𝛽𝑡𝑟𝑎𝑛𝑠𝑚

∗ 𝑇𝑟𝑎𝑛𝑠𝑚 + 𝛽𝑇𝑟𝑇 ∗ 𝑇𝑟𝑇 + 𝛽𝐶𝑖𝑟𝑐 ∗ 𝐶𝑖𝑟𝑐 + 𝑀𝑆𝐶𝐵𝑢𝑠 + 𝑀𝑆𝐶𝑇𝑟𝑎𝑚

+ 𝑀𝑆𝐶𝑀𝑒𝑡𝑟𝑜 

(5.9) 

 

Where, 

𝐼𝑉𝑇𝑏𝑢𝑠 and 𝐼𝑉𝑇𝑡𝑟𝑎𝑚 are the in-vehicle times by bus and tram in minutes, respectively,  

𝑊𝑇𝑏𝑡 is the initial waiting time for bus and tram modes, 

𝐼𝑉𝑇𝑚𝑒𝑡𝑟𝑜 is the travel time by metro including the initial waiting time at the platform, 

𝑇𝑟𝑎𝑛𝑠𝑏𝑡 , 𝑇𝑟𝑎𝑛𝑠𝑏𝑡𝑚 and 𝑇𝑟𝑎𝑛𝑠𝑚 are the numbers of transfers made within the bus/tram 

network (which includes bus-bus, tram-tram and bus-tram transfers); transfers between metro 

and bus/tram; and transfers within the metro network, respectively, 

𝑇𝑟𝑇 is the transfer time in minutes, 

𝐶𝑖𝑟𝑐 is the circuity of the route measured as the ratio of network to Euclidean distance, and 

𝑀𝑆𝐶𝑏𝑢𝑠, 𝑀𝑆𝐶𝑡𝑟𝑎𝑚 and𝑀𝑆𝐶𝑚𝑒𝑡𝑟𝑜 are the mode-specific constants for bus, tram and metro. 
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Next, to analyse the impact of omitting variables, instead of mode-specific in-vehicle time and 

transfer penalties, we use generic ones. The deterministic utility function in this case is shown 

in Equation (5.10). 

 

𝑉𝑀𝑁𝐿_𝑔𝑒𝑛𝑒𝑟𝑖𝑐 = 𝛽𝑖𝑣𝑡 ∗ 𝐼𝑉𝑇 + 𝛽𝑤𝑎𝑖𝑡𝑏𝑡
∗ 𝑊𝑇𝑏𝑡 +  𝛽𝑡𝑟𝑎𝑛𝑠 ∗ 𝑇𝑟𝑎𝑛𝑠 + 𝛽𝑇𝑟𝑇 ∗ 𝑇𝑟𝑇

+ 𝛽𝐶𝑖𝑟𝑐 ∗ 𝐶𝑖𝑟𝑐 + 𝑀𝑆𝐶𝐵𝑢𝑠 + 𝑀𝑆𝐶𝑇𝑟𝑎𝑚 + 𝑀𝑆𝐶𝑀𝑒𝑡𝑟𝑜 
(5.10) 

 

Where, 

𝐼𝑉𝑇 corresponds to the in-vehicle time in minutes, and 

𝑇𝑟𝑎𝑛𝑠 is the number of transfers made within or across modes. 

 

Lastly, we test the model which incorporates the overlap between alternative routes. For this, 

we use a Path Size Correction Logit model which includes overlap of path and transfer nodes. 

The path size correction terms for journey legs (𝑃𝑆𝐶𝑖
𝑇) and transfer nodes (𝑃𝑆𝐶𝑖

𝑋) are as defined 

in Dixit et al. (2021), given by 

 

𝑃𝑆𝐶𝑖
𝑇 = − ∑ (

𝑡𝑙

𝑇𝑖
𝑙∈𝛤𝑖

 𝑙𝑛 ∑ 𝛿𝑙𝑗𝑗𝜖𝐶 )   and    𝑃𝑆𝐶𝑖
𝑋 = − ∑ (

1

𝑋𝑖
𝑛∈𝐾𝑖

 𝑙𝑛 ∑ 𝛿𝑛𝑗𝑗𝜖𝐶 ) 
 

(5.11) 

 

Where, 

 𝑡𝑙 = travel time for journey leg l in route i, 

𝑇𝑖 = total travel time for route i, 

𝛤𝑖 = set of all legs for route i,  

𝐶 = set of all routes between the chosen origin-destination pair,  

𝛿𝑙𝑗 = leg-route incidence between leg l belonging to alternative route j, 

𝑋𝑖 = Number of transfer nodes in route i,  

𝐾𝑖 = set of all nodes for route i, and 

𝛿𝑛𝑗 = node-route incidence between node n belonging to alternative route j.  

 

The path size correction terms defined above are added to the deterministic utility function with 

mode-specific travel attributes as defined in Equation (5.9).  

 Results and Discussion 

We first evaluate the validity of the MNL model with mode-specific travel attributes as 

described in Equation (5.9) using the measures discussed in Section 5.3.2. Then, the impact of 

variable omission is examined by testing the validity of the two alternate model specifications. 

 Model parameter equality 

We start with examining the stability of the estimated model parameters across the before and 

after time periods. Before comparing the parameters, the two models were checked for 

differences in scale parameters. The scale difference was found to be significant with a value 

of 0.92 for the ‘after’ model relative to the ‘before’ model, implying a lower variance in the 

unobserved parameters for the ‘after’ case as compared to the ‘before’ case.  

 

Table 5.1 shows the parameters estimated from the two models after scaling and the 

corresponding REM and t-test statistic for each. The relative error measure is the highest for 

the mode-specific constants, implying a significant difference in the average effect of 

unobserved (excluded) variables specific to each mode between the two contexts. This could 
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include attributes like comfort, safety, cleanliness, reliability, weather protection at stations, 

availability of information, ease-of-navigation or any other inherent preference/dispreference 

for any particular (public transport) mode. Some of these attributes are expected to change after 

the introduction of the new line. For example, deeper stations of the new metro line may reduce 

the attractiveness of the mode. On the other hand, the higher frequency and more options for 

travel may lead to it being more attractive. Amongst the rest of the parameters, circuity is found 

to have the highest change (an increase of 45% in magnitude), followed by the number of 

transfers within the metro which is found to decrease in magnitude by 19%. Although the REM 

values for all other parameters are approximately 10% or less, the null hypothesis of the 

parameters being identical across the two cases is rejected for most of them (with a 95% 

confidence interval). Only the travel time by metro, number of transfers between bus and tram, 

and the transfer time are found to be stable across the two time periods as per the t-statistic.  

Table 5.1. Model parameter comparison between models estimated on ‘before’ and 

‘after’ datasets. 

Parameter* Before After** REM 
t-

statistic 

Significantly 

different? 

Mode-specific constant for bus 

<fixed> 
0.00 0.00 - - 

- 

Mode-specific constant for tram 0.49 0.25 -48.5% -13.90 Yes 

Mode-specific constant for metro 0.84 0.37 -56.0% 15.04 Yes 

Bus in-vehicle time (mins) -0.11 -0.12 10.4% 4.97 Yes 

Tram in-vehicle time (mins) -0.09 -0.10 11.1% 6.54 Yes 

Effective wait time bus/trams (mins) -0.19 -0.20 5.6% 4.48 Yes 

Metro timea (mins) -0.09 -0.10 3.6% 1.22 No 

Number of transfers between bus & 

tramb 
-1.24 -1.21 -3.1% 0.80 No 

Number of transfers between metro 

and bus/tram 
-2.38 -2.19 -9.0% 6.83 Yes 

Number of transfers within metro -1.50 -1.22 -19.3% 6.30 Yes 

Transfer time (mins) -0.25 -0.25 0.2% 0.07 No 

Circuity -0.43 -0.63 45.1% 9.17 Yes 

*p<0.01 for all estimates 

**the reported estimates are after adjusting for scale differences  
aincludes in-vehicle time and origin waiting times.  
bincludes bus-bus, tram-tram and bus-tram transfers. 

 

There could be several reasons for the differences in estimated parameters between the two 

contexts. Firstly, there could be contextual factors that are not captured by the observed 

variables that could differ between the two contexts. Secondly, the underlying population may 

have changed – some travellers may have stopped using transit after the network change while 

other new travellers may have been added. Also, some existing travellers may have 

reduced/increased their travel frequencies. A related point is the possible presence of 

endogeniety, especially since our study is based on observational data. The models assume the 

explanatory variables to be exogenous, which may not be true. This could be due to multiple 

reasons, including omitted variables. For example, the new metro line has newer, cleaner and 

more aesthetically pleasing trains and stations – contributing toward comfort, which is not 

included in our model(s). Concurrently, the new metro line provides direct routes with lower 

circuity values compared to the rest, making the circuity correlated with the unobserved 
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attribute of comfort. When using a model to predict the demand in response to changes in 

policy, it is important to have a model capturing the causal relationship between them. The 

smart card data used for this study does not provide the origin (home) location of the travellers. 

The missing attributes (such as access/egress distance or time, comfort levels, reliability, and 

accessibility of modes among others) and/or endogeniety may hamper the establishment of a 

causal relationship. Lastly, one cannot theoretically rule out that our model may have been 

misspecified (wrong model structure or non-linear relationships between variables), or that the 

behavioural theory is altogether inconsistent with the observed behaviour. Irrespective of the 

reasons behind the instability of model parameter values, our results imply that one should be 

cautious when making inferences on the relative valuation of travel time or service quality 

attributes from such models, specifically if they have not been thoroughly validated. 

 Predictive performance 

Disaggregate measures 

Next, we test the predictive ability of the model by forecasting the impact of the network change 

at an individual, route, link and mode level. The predictions are compared with the predictions 

from a locally estimated model (i.e. model estimated with same the specification but using the 

‘after’ data) to benchmark the performance. We start with the measures of predictive 

performance at a disaggregate level, which are shown in Table 5.2. The TTS, compared against 

the chi-squared distribution for 11 degrees of freedom, strongly rejects the hypothesis that the 

two sets of parameters are equal. However, as many other studies note, most models fail this 

test of model transferability, but may still be good in their predictive abilities (see for example 

Badoe and Miller (1995); Forsey et al. (2014); Fox (2015)). 

Table 5.2. Disaggregate measures of predictive ability for locally estimated and 

transferred models. 

Statistic 
Locally estimated 

model 

Transferred 

model 
Difference 

Log-likelihood -328,646 -330,299 0.5% 

TTS - 3,306  

First preference recovery 71.7% 71.5% 0.7% 

Brier score 0.370 0.372 -0.3% 

 

The FPR of over 70% is found to be rather high compared to values reported for other route 

choice models in the literature, where this percentage ranges between 51% and 73% for some 

of the recent studies (Parady et al., 2021). Moreover, both FPR and the Brier score of the 

transferred models are found to be very close to the locally estimated models (<1% difference), 

with the FPR being slightly higher and the Brier score marginally lower in the case of 

transferred models. Hence, although many of the parameter estimates differ for the two periods, 

the predicted choice probabilities of the transferred model at an individual level are found to be 

close to the locally estimated model.  

Aggregate measures 

Disaggregate measures like FPR and Brier score are often used for assessing the models in 

terms of their ability to predict individual-level choices in the new context. However, in most 

applications, one is more interested in the predictions at the mode, route, or link levels. Hence, 
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we analyse the performance of the ‘before’ model to predict the market shares at each of these 

levels.  

 

First, we use the MAE to compare the local and transferred models in terms of their predictions 

at the route level (Table 5.3). The MAE for the transferred model shows an average error of 45 

journeys per route for the transferred model as compared to 43 for the locally estimated model. 

Examining the predicted flows at a link level, we observe an MAE of 328 passengers per link 

over the entire morning peak period when predicted using the transferred model, ~8.6% higher 

than that those obtained by the locally estimated model. 

 

Table 5.3. Aggregate measures of predictive ability for locally estimated and transferred 

models. 

Statistic 
Locally estimated 

model 

Transferred 

model 
Difference 

MAE per route  43.2 45.4 5.0% 

MAE per link (AM peak) 302.2 328.2 8.6% 

 

Figures 5.3 and 5.4 show the error in flow prediction at the link level by the local and 

transferred models, respectively. The width of the lines corresponds to the observed flow on 

the link. A positive error implies that the model overestimated the flow on the link, while a 

negative error means an underestimate of observed flow. The maps show that the link-level 

flow predictions using the two models are overall similar, implying that using the ‘before’ data 

set for estimation of the model is not a problem per-se, compared to the inherent estimation 

errors when using such a model. The maps can give an indication of the possible causes of such 

errors. For example, close to the central station, there are two parallel tram routes with one 

showing an underestimation while the other an overestimation of flows (highlighted with a red 

circle in the maps). This could be attributed to the assumptions made regarding the 

consideration choice set for the model. The smart card data does not provide information on the 

origin (home) location of the travellers. Hence, stops within a maximum distance of 500m were 

clustered together to form the consideration choice set for travellers (for more details on the 

clustering process see Dixit et al. (2021)). In the absence of the actual origin location, all routes 

between the origin-destination stop-clusters are assumed to be equally accessible for the 

travellers. However, for the origin-destination pairs such as the one highlighted where the 

distance travelled is very short, travellers are likely to choose the transit stop closest to them as 

opposed to the one with the shortest generalized cost that is predicted by the model. Hence, in 

such cases the link-level predictions can be erroneous, and should be used with caution.  

 



86                      Transit Performance Assessment and Route Choice Modelling Using Smart Card Data 

 

 

Figure 5.3. Percentage error in prediction per link for the locally estimated model. 

 

Figure 5.4. Percentage error in prediction per link for the transferred model. 

 

 Next, we compare the market shares of each transit mode combination in the data (Table 5.4). 

The predicted and observed shares are found to be close to each other with a difference of less 
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than 1 percent for most mode combinations for both local and transferred models. As expected, 

the MAPE is found to be slightly higher for the transferred model than for the local model. 

Overall, the transferred model is found to perform close to the local model in terms of mode-

share predictions as well. 

Table 5.4. Observed and predicted mode shares 

Mode 

combination 

Observed 

share 

Predicted share Error 

Local 

model 

Transferred 

model 

Local 

model 

Transferred 

model 

Bus only 18.4% 18.6% 18.1% 0.2% -0.3% 

Tram only 31.8% 31.6% 31.4% -0.2% -0.4% 

Metro only 37.8% 37.8% 37.7% 0.0% -0.1% 

Bus+tram 0.4% 0.4% 0.4% 0.0% 0.0% 

Bus+metro 3.3% 3.1% 3.1% -0.2% -0.2% 

Tram+metro 8.2% 8.4% 9.3% 0.2% 1.1% 

All modes 0.0% 0.0% 0.0% 0.0% 0.0% 

MAPE 0.1% 0.3% 

 Impact of omitted variables 

In this section, we analyse the impact of omitting/adding one or more variables on the model’s 

predictive performance (Table 5.5). We test two scenarios: 

 

1. Generic MNL: Generic travel time and transfer parameters as opposed to mode-

specific ones as specified in Equation (5.10).  

 

2. Including overlap: Path size correction logit (PSCL) model including path size 

correction terms as defined in Equation (5.11) to incorporate the impact of overlap 

between alternate routes. 

 

Both in the estimation (‘before’) and the prediction (‘after’) contexts, the model with generic 

travel time and transfer parameters has the worst fit for the data, as shown by the respective 

log-likelihood values (even when adjusted for the number of parameters). The predictive 

performance is also found to suffer significantly when generic attributes are used. Conversely, 

when overlap is incorporated, the model fit is improved significantly in the estimation context 

(Likelihood ratio statistic of 838.6 exceeding the critical χ2 value of 9.2 at 1% significance level 

(df=2)), but the log-likelihood for the prediction context is found to be lower than the mode-

specific MNL model. In terms of predictions, there is a marginal improvement in the FPR and 

MAE for route-level prediction. However, the Brier score and the predictions at mode level are 

slightly worse.  
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Table 5.5. Predictive measures of transferability for alternate transferred model 

specifications. 

Statistic 
Generic 

MNL 

Mode-specific  

MNL 

Including 

overlap 

(PSCL) 

Local model 

(Mode-specific 

MNL) 

Number of parameters 7 11 13 11 

Log-likelihood of estimation 

(‘before’ context) 
-234,899 -233,892 -233,473 - 

Log-likelihood of prediction 

(‘after context’) 
-335,470 -330,299 -330,598 -328,646 

First preference recovery 71.2% 71.5% 71.6% 71.7% 

Brier score 0.379 0.372 0.372 0.370 

MAE per route 48.2 45.4 45.2 43.2 

MAPE (mode-share) 0.60% 0.30% 0.34% 0.14% 

 

When inferring route choice using revealed preference data sources in general, and smart card 

data in particular, the analyst does not have any ‘direct’ information on which attributes were 

considered by the decision-maker when making the choice. Hence, the selection of attributes to 

be included in the model depends heavily on the judgement of the analyst, and often data 

availability. It is known that the omission of a relevant variable can impact the model 

transferability (Koppelman and Wilmot, 1986), especially when the missing variable is a 

confounding one. Conversely, if a simple model with fewer variables can perform just as well, 

then excluding variables can make the data collection as well as estimation easier. In our case, 

generic travel time and transfer parameters negatively impact the predictive ability of the 

transferred models. In contrast, including overlap does not offer a clear improvement in the 

predictive ability. In the end, the optimal selection of attributes depends on the purpose for 

which it is intended to be used. For predicting passenger flows in the regions where the tram 

was replaced by the new metro line, all attributes that distinguish a metro from a tram should 

ideally be included in the model. The mode-specific MNL shows that the travel time and 

transfer parameters are different for different modes. Hence, using generic travel time and 

transfer parameters impacts the predictive performance of the model significantly. On the other 

hand, correcting for route overlap typically leads to an improvement in model fit in the case of 

route choice models (like in our case for the estimation context). However, our results seem to 

suggest that it may not necessarily increase the transferability of the models, and the overlap 

term(s) may be context-specific and hence not as transferable.   

 Conclusion 

This study adds to the scarce literature on the validation of travel demand models and is the 

first to undertake an external validation for a transit route choice model. The model was 

developed based on smart card data for the urban transit network of Amsterdam and was used 

to predict the impact of a significant network change (i.e. the introduction of a new metro line) 

on the route choice behaviour of travellers. Validation was conducted by comparing the 

parameter values and a series of statistical performance indicators for the predictions with the 

observed behaviour after the network change.  

 

Our results are overall in agreement with existing literature: the conclusion regarding model 

transferability depends on the (statistical) test used (Koppelman and Wilmot, 1982). In our case, 
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model parameter equality failed for most attributes, implying care should be taken in directly 

inferring behavioural insights from the parameter values from models such as those used in this 

study, specifically if they have not been thoroughly validated. However, the predictive 

performance of the transferred model was found to be close to the locally estimated model. 

When compared with the observed choices at an individual level, the model performed 

satisfactorily with a First Preference Recovery of 71.5%. Moreover, the predicted mode-shares 

were close to the observed ones, with a MAPE of 0.3%. When used for route and link level 

predictions, the errors were relatively larger, but the performance of the transferred model was 

similar to the local model (less than 10% error increase). 

 

We also investigated the impact of omitting relevant variables on predictive performance. When 

the mode-specific travel time and transfer parameters were replaced by generic ones, the 

performance suffered significantly. Conversely, including overlap in the model specification 

did not offer a clear improvement in model predictions, even though it had a better fit for the 

base data. This suggests that overlap definition may be context specific and could perhaps be 

excluded when using a route choice model for predictions in favour of a parsimonious model.  

When using smart card data for travel demand modelling, several assumptions are made 

regarding travellers’ consideration choice set and perceived travel attributes. Visualizing link-

level prediction errors can help indicate potential causes of errors. In our case, the assumption 

regarding consideration choice set may be responsible for some of the prediction errors, which 

are consistent between local and transferred models.  

 

“All models are wrong, but some are useful” (Box, 1976). To establish how wrong a model 

needs to be to stop being useful, we need more studies undertaking validation analysis for 

different networks and policy scenarios. Guidelines and standards on what is considered 

acceptable in terms of the various transferability statistics remain yet to be defined. In the past, 

the cost of undertaking a model validation was high primarily due to data collection costs. The 

abundance of passively collected data such as the smart card provides an opportunity to validate 

transit route choice and assignment models at relatively low additional costs. Hence, validation 

must become an integral part of the development process for such models, and should be 

considered non-negotiable when using them for deriving any policy recommendations.
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Chapter 6 - Conclusion 

 

With an overall objective of improving public transport planning using automated sources of 

transit data, the research presented in this dissertation contributed to advancing transit 

performance assessment and route choice modeling in the context of urban multi-modal transit 

networks. Methods were developed with the intention of leveraging key strengths of such data 

sources, namely having network-wide journey data at a high spatio-temporal granularity, while 

adjusting to its limitations on the depth of information available such as the intention of 

travelers, time of arrival at the origin stop and socio-demographic characteristics. It utilized 

data from the multi-modal transit network of Amsterdam for developing and applying these 

methods. In this chapter, we synthesize the key findings from the research, implications for 

practice, and directions for future research. 

 Main Findings 

Based on the research undertaken, we provide answers to the four research questions formulated 

in Section 1.3 and summarize the scientific contribution of our work. 

 

Research Question 1: How can travel time reliability for multi-modal transit journeys from a 

passenger perspective be quantified? (Chapter 2) 

 

For measuring travel time reliability from a passenger perspective, the metric used needs to be 

sensitive to the variations in all components of a transit journey experienced by passengers 

including waiting, in-vehicle, and transfer times for all journey legs. Moreover, it should be 

comparable across different modes to enable its application in multi-modal transit networks. To 

achieve these requirements, we extended the existing metric Reliability Buffer Time (RBT) 

(Chan, 2007; Uniman et al., 2010) to include journeys with transfers. The developed metric can 

be calculated based on observed travel times using a combination of smart card and AVL data, 

which was demonstrated by applying it to the urban transit network of Amsterdam. First, we 
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extracted the passenger journeys from raw smart card data by linking individual transactions to 

identify transfers. The chosen smart card system did not measure waiting time at the origin for 

journeys starting with bus and tram modes, unlike for those starting with metro where this was 

measured by having the smart card check-in at the station as opposed to the vehicle. Hence, a 

method was proposed to estimate the waiting time at the origin for journeys starting with these 

modes using the observed headway from AVL data and assuming random arrivals of passengers 

at the origin transit stops. This made the travel time measurements comparable across all modes. 

The RBT was then calculated for each transit route for each Origin-Destination pair in the data.  

 

The proposed metric can be aggregated at multiple dimensions depending on the requirement 

of the analyst. We demonstrated its application at the route, transit stop, and mode level. 

Aggregation at a large-scale such as at a mode level can be used to analyze the impact of policies 

affecting one or more modes on reliability. For example, in the case of Amsterdam, the tram 

was found to be the least reliable for single-leg journeys. For journeys with transfers, bus to bus 

transfer was found to be the least reliable of all transfers. However, aggregating the reliability 

metric at large scale averages the variations present at the route level. Analyzing reliability at a 

disaggregated level such as for a specific transit stop or route can help identify at which stops 

or routes are the reliability improvements most needed.  

 

Research Question 2: How can the effects of network design on distributional aspects of travel 

times and fares paid in the network be characterized? (Chapter 3) 

 

Circuity of transit networks is the ratio of the network to Euclidean distance travelled by transit 

riders from their origin to their destination transit stop, and is a measure of directness of transit 

routes. The circuity of transit networks, which is a function of network design, impacts the 

(network) distance traveled by transit riders, and ultimately the travel times experienced by 

them. In the case of networks with distance-based fares, it also directly impacts the fare paid by 

them. Hence, to answer the research question, we analyzed how the circuity of transit routes is 

distributed in the network and what is its impact on travel times and fares paid. First, the circuity 

of all transit journeys in the network was calculated by combining the travel patterns from smart 

card data with the circuity of observed routes from the transit network data. Next, the 

neighborhood-level income data was used to assign an income profile to each transit stop. 

Lastly, the interactions between network design and land-use patterns on the disparity in travel 

times and fare paid were explored.  

 

Our results revealed that in Amsterdam, the higher the share of high-income people living in 

proximity to a transit stop, the lower the circuity of journeys from the stop when controlled for 

the Euclidean distance covered, residential location with respect to the river, and spatial auto-

correlation. The uneven distribution of circuity was found to exacerbate the disparity in distance 

traveled, and hence the fare paid between the income groups. Essentially, travelers from 

predominantly lower-income areas tended to travel longer distances and paid a higher share of 

fares in the network. However, the travel time per Euclidean distance favored the lower-income 

areas, presumably due to the circuitous routes serving these areas being compensated by higher 

travel speeds. 

 

Traditionally, transit networks were designed based on efficiency and demand, while ignoring 

equity concerns (Soltani and Ivaki, 2011). This study highlighted the role of transit network 

design in determining its equity outcomes and emphasized the importance of considering equity 

during route and fare planning. In the case of Amsterdam, the transit network design 

exacerbated the disparity in fares paid. Conversely, the circuity of transit routes serving low-
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income areas could be improved to achieve a more (vertically) equitable distribution of fares 

paid. However, this may not be in line with other network planning considerations such as 

maximizing the ridership within a limited budget. Alternatively, changes could be made to the 

fare policy to compensate for the disparities in distance traveled and travel times.  

 

Research Question 3: How can travelers’ perception of overlap between alternative routes be 

incorporated into models of transit route choice? (Chapter 4) 

 

To understand and incorporate travelers’ perception of overlap between alternate transit routes, 

we compared three different types of overlap between routes and analyzed empirically how 

each of them is perceived by travelers. In addition to the standard definition of overlap in terms 

of path (including the overlap of some links, and of entire journey legs), we also proposed a 

definition of overlap in terms of common transfer points. Path Size Correction (PSC) Logit 

models (Bovy et al., 2008) were used to incorporate the three types of overlap. The path and 

node-based overlaps were considered separately as well as together to isolate the valuation of 

each of them. In addition to the path size correction terms, mode-specific travel times and 

transfer parameters were used to ensure mode-based overlap is also taken into account.  

 

The overlap between transit routes was found to be valued positively when incorporated using 

either link-based, leg-based or transfer node-based PSC individually, with the transfer node-

based PSC resulting in the best model fit for our data. When considered simultaneously, the 

overlap of transfer nodes was valued positively by the travelers, but the subsequent overlap of 

journey legs was valued negatively, implying that travelers prefer having multiple (distinct) 

travel options at common transfer locations. Our results indicate that there are utility benefits 

associated with routes having a common transfer point that can provide multiple options to the 

travelers, adding to the robustness of their choices. However, in the case of Amsterdam, and 

perhaps also in other large-scale networks, transfer stops with multiple lines are also typically 

larger, more aesthetically pleasing, have more amenities and a better access to real time 

information for travelers, which could have also contributed to their increased attractiveness to 

travelers.  

 

This study contributed to advancing transit route choice modelling by improving our 

understanding of how overlap can be defined and is perceived by transit travelers. Majority of 

studies in the literature on transit route choice define overlap in terms of path only. Our results 

for the case of Amsterdam public transport network indicate that when estimating transit route 

choice models, overlap should be defined in terms of both path and transfer nodes, as skipping 

the latter may result in contrasting conclusions about the former.  

 

Research Question 4: How valid are models of transit route choice estimated using smart card 

data? (Chapter 5)  

 

To answer this question, we used the model(s) developed in Chapter 4 to predict the change in 

travel demand in response to a major network change, i.e. the introduction of a new metro line. 

The new metro line was added to the network in 2018, along with the restructure of some 

existing transit lines. The data from before and after the network change (~3 months apart) was 

used for model estimation and validation, respectively. The model validation was undertaken 

based on two types of tests. First, the model parameters estimated based on the data before the 

opening of the new metro line were compared with those estimated on the data after the opening 

of the new line. Second, the predictive ability of the model was tested for individual predictions, 
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as well as aggregate predictions at route, link, and mode levels. The predictions were also 

benchmarked against locally estimated models based on the data from after the network change.  

 

Amongst all the attributes used in the model, only the parameters for travel time by metro, 

number of transfers between bus and tram, and the transfer time were found to be stable between 

the two contexts. There could be multiple reasons behind the differences in parameters, 

including change in underlying population, failure of the model to capture the causal 

relationship (due to presence of endogeniety and/or missing attributes) and misspecification of 

model. Irrespective of the reasons behind differences, our results highlight that care should be 

taken when deriving behavioral conclusions from such models in the absence of a thorough 

validation.   

 

Despite the instability of most parameters, the predictive performance of the model at all levels 

was similar to the locally estimated model. Moreover, individual choices and transit mode-share 

predictions were found to be close to the observed ones, with a First Preference Recovery of 

over 70%. The errors were relatively larger for the link and route-level predictions, some of 

which could be attributed to the assumptions made regarding the consideration choice set given 

as input to the model. Visualization of prediction errors for each link in the network helped 

identify potential causes of errors. In our case, the aggregation of transit stops to form 

consideration choice set was possibly responsible for some of the prediction errors.  

 

On comparing alternative model specifications, using generic instead of mode-specific travel 

attributes lead to a strong degradation in predictive performance. Conversely, a model 

incorporating overlap between routes, with a better model fit in the base period, did not offer a 

clear improvement in prediction performance, suggesting that overlap definition may be context 

specific, and not as transferable.  

 

The conclusion regarding model validity would depend on the purpose for which the model is 

to be used. The type of validation test and corresponding test statistics should be selected 

accordingly, as our results show that depending on the aggregation level, the predictive 

performance can vary. Nonetheless, our study stressed the importance of validating transit route 

choice models before using them for deriving policy recommendations, especially in this data-

rich age in which it can often be undertaken at a relatively low additional cost. 

 Implications for practice 

Public transport agencies have traditionally relied on costly and unreliable data sources such as 

surveys for evaluating and understanding the performance of their systems (Wilson et al., 2009). 

Automated data collection systems have been in use for more than a decade now, and their 

prevalence is expected to grow further in the coming years as its potential in improving transport 

planning becomes increasingly recognized (ITF, 2021). In this dissertation, we further 

highlighted the value of such data sources by proposing several improvements to the way they 

can be used by transit practitioners to derive actionable insights. We demonstrated the real-

world application of these improvements by applying it to the network-wide data from urban 

public transport network of Amsterdam. Based on our results, several implications for public 

transport service providers and policy makers emerge, which are described below: 

 

Implications for transit performance assessment 

The reliability measure proposed in this thesis (Chapter 2) can be used by transit agencies to 

get a better understanding of travel time reliability from a passenger perspective, specifically 
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for multi-modal transit networks. Based on the smart card semantic in use, the methodology 

can be modified and applied by transit authorities to analyze and compare reliability of different 

routes, lines, modes or transit stops. The calculation can be automated to enable monitoring of 

changes at different temporal or spatial resolutions.  

 

Implications for transit network design 

Our study has three main implications for transit network design which touch upon both 

efficiency and equity goals of transit networks. First, as demonstrated in Chapter 3, transit 

agencies can link automated transit data with aggregate level socio-demographic data to analyze 

and identify the existing inequities in travel times and fare paid in the network. The study further 

highlighted how network design, and specifically the circuity of routes, can be used to alter the 

equity outcomes. An analysis of the current disparities can enable agencies to come up with 

solutions to mitigate the disparities, and be able to measure the impact of any mitigations 

implemented.  

 

Second, our results stress the importance of transfer hubs in making a transit network more 

attractive to travelers, potentially increasing its ridership. In larger networks, it is often not 

possible to provide direct routes for each origin-destination pair. In such cases, routes with 

common transfer locations but multiple distinct travel options are ideal from a travelers’ 

perspective (Chapter 4). We saw that such transfer hubs not only increase the robustness of 

networks in case of disruptions, but also add to the attractiveness of the routes from the 

perspective of travelers.  

 

Third, the mode-specific transfer penalties obtained in Chapter 4 highlight that travelers prefer 

some transfers over others. Specifically, intermodal transfers within bus/tram network or within 

the metro network were found to be preferred over the ones between metro and bus/trams. In 

the case of Amsterdam, as with many other large transit networks, many bus and tram lines are 

intended to serve as feeders to the metro lines. However, the high transfer penalty for intermodal 

transfers to and from the metro indicates that more attention is needed to make these transfers 

more attractive to travelers.  

 

Implications for travel demand modelling 

Lastly, the results of this study could also be used for improving travel demand modelling in 

practice in a few ways. The passenger-oriented reliability measure proposed in Chapter 2 can 

be used as an input to existing travel demand models of mode and route choice, to incorporate 

the impact of travel time reliability on passenger decision making and potentially improve the 

accuracy of such models.  

 

Chapters 4 and 5 of this thesis were particularly dedicated to improving transit route choice 

models. Our insights on the definition and perception of overlap of three different types during 

transit route choice can be used by practitioners to improve the fit of such models in practice. 

Currently, overlap between alternate transit routes is considered in terms of path only. Our 

findings show that travelers also consider the overlap of transfer points, which should be 

accounted for when estimating these models. However, when using such route choice models 

for predictions, overlap between alternate routes could be omitted in favor of parsimony, as it 

did not lead to a major improvement in predictive performance in our case. The validation 

exercise also cautions practitioners on using models of transit route choice based on smart card 

data for deriving conclusions on relative valuation of travel attributes. The stability of estimates 

must be checked by undertaking an external validation before using them for policy analysis. 

However, our results show that even if the parameter estimates are unstable, such models could 
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still have reasonable accuracy for making prediction of demand changes in response to network 

changes.    

 

Implications for use of big data in transport planning 

In addition to smart card data, other ‘big’ data sources in transport such as the mobile phone 

network and smart card app data are becoming increasingly available for use for estimating OD 

flows, and understanding and forecasting travel behavior. Although gaining popularity, there is 

still a wide variation in how transit agencies in different countries currently use these big data 

sources for transport planning (ITF, 2021). The privacy regulations around using such data, for 

example the General Data Protection Regulation (GDPR) in Europe, make the agencies more 

cautious in utilizing them for deriving insights for improving transport planning and 

management. The privacy regulations also limit the type of analysis that can be conducted with 

the data. Although this dissertation focused on smart card data, many of the challenges, 

specifically regarding privacy concerns and lack of personal information are common to other 

big data sources in transit. To that end, the research presented in this dissertation demonstrates 

the potential of such data sources, and in particular smart card data for transit performance 

assessment (Chapter 2), equity analysis (Chapter 3) and travel behavior analysis and 

predictions (Chapter 3 & 4), without compromising on privacy concerns.  

 

The lack of socio-demographic information is a major limitations of using smart card data for 

transit planning. It is one of the many reasons why it is argued that it cannot replace traditional 

survey data as of now (Bonnel and Munizaga, 2018; ITF, 2021). However, collecting survey 

data costs time and money, and hence cannot be undertaken often whereas these new data 

sources can give immediate results and can be validated more often. However, to extract the 

most out of such data, it is recommended to have a standardized format of collecting and storing 

the data, which will make the methods developed for one network easily transferable to another, 

also enabling comparison and validation of methods used and results obtained.  

 Future research directions 

In addition to the future research directions already discussed toward the end of each chapter 

(in the discussion and conclusion sections), we identify here a few key areas, based on our 

overall findings, in which we believe further research could be useful. These are described 

below:  

 

Augmenting smart card data with survey data for travel behavior analysis 

As demonstrated in this dissertation, smart card data can provide valuable insights for transit 

performance assessment and route choice modelling, often at a lower cost than traditional data 

sources. However, as discussed in Chapters 1 and 5, it also has several limitations that restrict 

its applications for transit planning. For some of these limitations, survey data could be used to 

augment smart card data by filling in missing information and correcting for any bias present 

in the data. Two such limitations are discussed here. First, from smart card data we do not know 

the intention behind the choices made, and assumptions need to be made in this regard. For 

example, because of the lack of information on origin location, we do not know which access 

stops were considered by the travelers when making route choice decisions. In this dissertation, 

we used hierarchical clustering to arrive at the access stop choice set of travelers. In this case, 

survey data from a limited sample can be used to provide insights into the access stop choice 

which can then be used to work backwards and formulate more accurate access stop choice set 

from observational data. Similarly, smart card data does not distinguish between the routes 

chosen intentionally or due to limited network knowledge/for leisure purposes/by mistake. For 
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such cases also, survey data could be used to inform boundary conditions for identifying 

irrational travel behavior such as journeys with very high circuity or beyond a maximum 

transfer walking distance. Another major limitation of smart card data is the lack of socio-

demographic characteristics of travelers. For this, more research could focus on the ways to 

associate socio-demographic information with the travel data without compromising the 

privacy of users. A possibility could be to obtain consent from a sample of willing users and 

then developing methods to derive insights for the population. More research on using survey-

data to fill in the gaps in information from smart card data will enable improvement in 

assumptions and ultimately the developed models.  

 

Comprehensive investigation of relationship between network design and transit equity  

The findings of Chapter 3 show that network design can impact the equity outcomes in more 

than one way. The coverage of transit networks directly impacts the transit availability for 

different residents, but providing a higher coverage at the cost of higher travel times (and fares) 

can lead to inequity in accessibility experienced by them. Hence, our work in this regard 

provides only one piece of the larger puzzle of how transit network design could be optimized 

to reduce inequity in the network. In reality, all these different parts of the puzzle, namely 

different aspects of network design, land-use distribution, fare structure, budgets and equity 

need to be evaluated simultaneously to arrive at their optimal combination based on a transit 

authority’s goals. More research could be undertaken to understand the trade-offs between these 

different factors and build a comprehensive model capturing the various interdependencies.  

 

Examining relationship between transit network design and overlap perception 

Our study was the first to define overlap in terms of transfer stops for transit route choice 

modelling (Chapter 4). For the case of Amsterdam, our results show that travelers prefer routes 

with common transfer stops but multiple distinct travel options. However, such transfer stops 

are also likely to be bigger with more amenities, better availability of information, and more 

aesthetically pleasing. As an extension to our work, one can investigate and isolate the impact 

of such factors on overlap perception. In our study, we also found that between the link-based 

and leg-based definition of path overlap, the latter explains transit users’ route choices better. 

However, being relatively smaller, Amsterdam transit network has limited routes with 

overlapping paths. Hence, it will be interesting to perform similar research for larger networks 

to explore how case-specific our results are, and more broadly, how the network design and 

topology impact the perception of overlap by travelers. In this direction, at least two research 

questions could be explored. First, one could examine how the network representation on a map 

impacts the travelers’ perception of overlap. In addition, impact of factors related to network 

topology (including network knowledge) as studied by Raveau et al. (2011) could also be 

investigated. Such an analysis can have implications for design of transit networks as well as 

their representation in maps. Second, one could investigate how the perception of overlap varies 

by the type of overlapping transit lines. Specifically, the distinction between modes where the 

transfer between overlapping paths is easy versus harder could be explored. For example, bus 

routes running on the same path can be transferred between easily, but two parallel metro lines 

may be grade separated making it harder to transfer.  

 

Causal models for travel demand modeling 

For accurately predicting response to a policy, the travel demand model in use must be able to 

capture the causal relationship between the variables that the policy impacts and the decisions 

of travelers. In Chapter 5, we used the model based on the data from before the opening of a 

new metro line to predict changes in demand after its opening. The results showed that the 

predictive performance of the model was on the higher side. This could be partly because the 
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changes in the network, although significant from an infrastructure perspective, were not 

beyond what passengers were already familiar with. For example, the new metro line was added 

to the exiting metro network of four other lines, with the attributes of the new line (travel times, 

frequencies etc.) being within the range of what travelers had experienced before. Hence, it was 

reasonable to assume that the perception of travelers toward the new line would be similar to 

their perception toward the existing ones. This may not be the case when the policy change 

involves something travelers have not experienced before, for example the introduction of a 

new transit mode. Another key point is that the estimation and validation contexts were only 

three months apart, during which the underlying population is unlikely to have changed 

significantly. However, when forecasting for a longer time horizon or for a different 

geographical region, omitting the impact of individual characteristics on the choices is expected 

to have a significant impact on the prediction performance. As a minimum requirement for 

building predictive models, it is necessary to include all the relevant and confounding variables 

for the relationship being modelled. In sum, the correct predictions in this study could be 

because the forecast context was quite similar to the estimation context. However, this may not 

be the case for other policy scenarios. In order to build models that can be used for forecasting 

under different policy scenarios, it is essential to build a model that can capture the causal 

relationships between different input and output variables. However, as of now, there is limited 

research on how to go about building a causal model for travel demand modelling (Brathwaite 

and Walker, 2018). Hence, more research in this area is needed, specifically when using 

observational data such as the one used for this study.  

 

Comparing revealed preference with stated preference data for travel demand modelling  

Several studies in the past have highlighted that the willingness to pay values estimated based 

on revealed preference (RP) data differ from the corresponding values based on stated 

preference (SP) data (Brownstone and Small, 2005; Li et al., 2020; M. Yap et al., 2017). When 

deriving behavioral insights, one would like to know the true value of these, especially when 

using them for cost-benefit analysis for large investments. This difference between the SP data 

and RP data, commonly referred to as the ‘hypothetical bias’ (Hensher, 2010), varies from 

positive to negative across studies, and sometimes between different modes within the same 

study (Li et al., 2020). Although RP data is typically assumed to be free of this hypothetical 

bias, it is limited by the variation already present in the data and cannot reveal the true value of 

willingness outside the range of attributes already present in the data. Moreover, in the data 

such as the one used in this study, the attributes considered by the traveler when making a 

decision are not directly known, and with the limited information available, it is possible to 

miss a relevant variable in the model specification. In such cases, the estimates from RP could 

be biased as well due to model misspecification. Hence, more research undertaking a cross-

sectional comparison of SP and RP data is needed with the aim to examine and establish the 

bias in each of these data source.
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Summary 

By 2050, 68% of the world population will live in urban areas (United Nations, 2018). With 

growing urbanization, cities today struggle to provide efficient transportation to their citizens 

amidst growing demand, while minimizing congestion, accidents, and pollution (European 

Court of Auditors, 2014). Public transport offers a potential solution for many of these 

problems. However, a common challenge for transit authorities is making public transport more 

attractive for its travelers, within budget limitations. To improve public transport services, it is 

important to understand what is the current state of the service, and where are the improvements 

most needed. Service quality has been known to impact users’ perception of public transport, 

and ultimately their choices. 

 

Public transport smart card has been implemented for more than a decade now, providing access 

to a massive amount of passively collected data on network usage, as opposed to a limited 

sample from the traditional data collection methods such as surveys. When combined with 

Automatic Vehicle Location (AVL) data, it can also enable an accurate measurement of service 

quality from a passenger perspective at a relatively lower cost. Together, they can be used to 

understand how travelers undertake public transport route choice decisions, giving insights into 

the relative valuation of different service quality characteristics. However, these data sources 

have not yet been explored to their full potential, and the methods in use are often borrowed 

from past research using more traditional data sources. Hence, the overarching aim of this PhD 

dissertation is to improve performance assessment and route choice modeling for urban multi-

modal transit networks using smart card data. We use the case study of the Amsterdam public 

transport network to undertake this research and make several scientific and practical 

contributions to fulfill our overall aim, which are summarized below. 

 

In the first part of this dissertation, we focus on transit performance assessment and address two 

specific gaps in the scientific literature in this domain. First, we develop a methodology for 

measuring travel time reliability for multimodal transit journeys from a passenger perspective 

using smart card data. We do so by extending the existing Reliability Buffer Time (RBT) to 
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incorporate journeys with transfers and include all components of the journey experienced by 

a passenger including the waiting time at the origin transit stop, in-vehicle times, and transfer 

waiting and walking times. In the case of Amsterdam, the travel time by smart card data is 

measured differently for different systems. Our method makes it comparable, and finally, we 

have a route level RBT that can be compared between routes, transit stops, and modes. The 

metric can be used by transit authorities to undertake continuous and even real-time monitoring 

of changes to reliability and a disaggregate level, and identifying routes/times that need 

improvement. It can also be used as an input to travel demand models such as mode, route or 

departure time choice.  

 

As a second contribution toward transit performance assessment, we leverage smart card data 

for understanding the impact of transit network design on the equity outcomes of travel times 

and fares paid in a network. Circuity of a transit journey is defined as the ratio of the network 

to Euclidean distance traveled. Everything else being equal, a higher circuity implies longer 

travel times for the same Euclidean distance. Moreover, for transit networks such as Amsterdam 

where the fare is calculated based on the (network) distance traveled, higher circuity also means 

higher fare for the same Euclidean distance. This makes circuity relevant from an equity 

perspective. This study explores the role of transit circuity on the disparity in distance traveled 

by travelers’ income profiles and its implications on travel times and costs for networks with 

distance-based fares. The analysis is based on travel patterns from smart card data for bus, tram, 

and metro modes, combined with neighborhood-level income data. Results reveal that in 

Amsterdam, the higher the share of high-income people living in proximity to a transit stop, the 

lower the circuity of journeys from the stop when controlled for the Euclidean distance covered 

and spatial auto-correlation. The uneven distribution of circuity exacerbates the disparity in 

distance traveled, and hence fare paid between the income groups. However, the travel time per 

Euclidean distance favors the low-income group, possibly due to the circuitous routes serving 

these areas being compensated by higher travel speeds.  

 

In the second part of this dissertation, we attempt to improve models of transit route choice 

estimated using smart card data. The contributions in this area are described below. 

 

First, we comprehensively investigate how different types of overlap between alternate transit 

routes are perceived by travelers. We propose a new definition of overlap in terms of common 

transfer nodes, which is particularly relevant for large-scale urban transit networks. We 

compare this new definition with the traditionally used definition of overlap in terms of the path 

(both in the form of links and entire journey legs). Path size correction (PSC) logit models are 

used to incorporate each of these types of overlap. The results indicate that the overlap between 

transit routes is valued positively when incorporated using either link-based, leg-based or 

transfer node-based PSC individually, with the transfer node-based PSC resulting in the best 

model fit. When considered simultaneously, the overlap of transfer nodes is valued positively 

by the travelers, but the subsequent overlap of journey legs is valued negatively, implying that 

travelers prefer having multiple (distinct) travel options at common transfer locations. This 

study contributes to advancing transit route choice modeling by improving our understanding 

of how overlap can be defined and is perceived by transit travelers. 

 

Lastly, we undertake an external validation of the transit route choice models developed in the 

previous step. For this, we use smart card data from before and after the opening of a new metro 

line in Amsterdam, the Netherlands for model estimation and validation, respectively. The 

estimated parameters are checked for stability between the two time periods, and predictive 

ability are evaluated at different aggregation levels. Although most model parameters were 
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found to be unstable between the two contexts, the predictive performance at aggregation levels 

was similar to the locally estimated model. Moreover, individual choices and transit mode-share 

predictions are found to be close to the observed ones. The errors were relatively larger for the 

link and route-level predictions, some of which could be attributed to the assumptions made 

regarding the consideration choice set given as input to the model. On comparing alternative 

model specifications, using generic instead of mode-specific travel attributes lead to a strong 

degradation in predictive performance. Conversely, a model incorporating overlap between 

routes, with a better model fit in the base period, did not offer a clear improvement in prediction 

performance. This study adds to the scarce literature on the validation of travel demand models 

and, is the first to undertake an external validation of a transit route choice model. Our results 

highlight the need to validate transit route choice models before using them for deriving policy 

recommendations, especially in this data-rich age in which it can often be undertaken at a 

relatively low additional cost. 

 

Overall, this dissertation leverages smart card data to make advances in transit performance 

assessment and route choice modeling, specifically in the context of urban multi-modal transit 

networks. The prevalence of Automated data collection systems for transport planning is 

expected to grow further in the coming years as its potential in improving transport planning 

becomes increasingly recognized. In this dissertation, we further highlight the value of such 

data sources by proposing several improvements for attaining both scientific and practical 

implications.  
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Samenvatting 

 

Tegen 2050 zal 68% van de wereldbevolking in stedelijke gebieden wonen (United Nations, 

2018). Gezien de groeiende verstedelijking worstelen steden vandaag de dag met het bieden 

van efficiënt vervoer aan hun burgers, terwijl ze congestie, ongevallen en vervuiling tot een 

minimum proberen te beperken (European Court of Auditors, 2014). Openbaar vervoer biedt 

een potentiële oplossing voor veel van deze problemen. Een veelvoorkomende uitdaging voor 

vervoersautoriteiten is echter om het openbaar vervoer aantrekkelijker te maken voor reizigers 

binnen het vastgestelde budget. Om het openbaar vervoer te verbeteren, is het belangrijk om te 

begrijpen wat de huidige staat van de dienstverlening is, en waar de verbeteringen het meest 

nodig zijn. Het is bekend dat de kwaliteit van de dienstverlening een invloed heeft op de 

perceptie van ov-gebruikers, en uiteindelijk ook op hun keuzes. 

 

Data van smartcards in het openbaar vervoer wordt nu al meer dan tien jaar gebruikt en biedt 

toegang tot een enorme hoeveelheid passief verzamelde gegevens over het netwerkgebruik, in 

tegenstelling tot steekproeven die uitgevoerd worden middels traditionele 

dataverzamelingsmethoden zoals enquêtes. In combinatie met data over de automatische 

plaatsbepaling van voertuigen (Automatic Vehicle Location, of AVL) kan de kwaliteit van de 

dienstverlening vanuit het oogpunt van de passagier nauwkeurig worden gemeten tegen een 

relatief lagere kostprijs. Samen kunnen ze worden gebruikt om te begrijpen hoe reizigers 

beslissingen nemen over de keuze van hun ov-traject, en om inzicht te krijgen in de relatieve 

waardering van verschillende servicekwaliteitskenmerken. Het potentieel van deze databronnen 

wordt echter nog niet ten volle benut, en de gebruikte methoden zijn vaak ontleend aan 

onderzoek uit het verleden waarin traditionele databronnen werden gebruikt. Het 

overkoepelende doel van dit proefschrift is dan ook het verbeteren van prestatiebeoordeling en 

routekeuze-modellering voor stedelijke multimodale ov-netwerken met behulp van smartcard-

data. We gebruiken de case study van het Amsterdamse openbaar vervoernetwerk om dit 

onderzoek uit te voeren en leveren verschillende wetenschappelijke en praktische bijdragen om 

ons algemene doel te bereiken. Deze bijdragen worden hieronder samengevat.  
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In het eerste deel van dit proefschrift richten we ons op de beoordeling van de prestaties van 

het openbaar vervoer en pakken we twee specifieke openstaande vraagstukken in de 

wetenschappelijke literatuur op dit gebied aan. Ten eerste ontwikkelen we een methodologie 

voor het meten van reistijdbetrouwbaarheid voor multimodale ov-reizen vanuit het 

passagiersperspectief met behulp van smartcard-data. We doen dit door de bestaande Reliability 

Buffer Time (RBT) uit te breiden naar reizen met overstap en houden daarnaast rekening met 

alle componenten van de reis die een passagier ervaart, inclusief de wachttijd bij de halte van 

vertrek, de tijd in het voertuig, en de wacht- en wandeltijden bij de overstap. In het geval van 

Amsterdam wordt de reistijd aan de hand van smartcard-data voor verschillende systemen 

verschillend gemeten. Onze methode maakt het mogelijk om te vergelijken, en daarnaast 

hebben we een RBT op trajectniveau die kan worden vergeleken tussen routes, doorvoerhaltes, 

en modaliteiten. De RBT kan worden gebruikt door ov-autoriteiten om continu en zelfs real-

time monitoring van betrouwbaarheidsverandering op een uitgesplitst niveau uit te voeren. 

Daarnaast stelt het men in staat om routes en tijden te identificeren die verbetering behoeven. 

Het kan tevens worden gebruikt als input voor vraagmodellen, zoals modaliteit-, route- of 

vertrektijdkeuze. 

 

Als tweede bijdrage aan de beoordeling van ov-prestaties gebruiken we smartcard-data voor het 

begrijpen van de impact van het ontwerp van het ov-netwerk op de rechtvaardigheid van 

reistijden en tarieven in het netwerk. Circuity van een ov-traject wordt gedefinieerd als de 

verhouding van het netwerk tot de Euclidische afgelegde afstand. Als al het andere gelijk blijft, 

impliceert een hogere circuity langere reistijden voor dezelfde Euclidische afstand. Bovendien 

betekent een hogere circuity voor ov-netwerken zoals Amsterdam, waar de ritprijs wordt 

berekend op basis van de afgelegde (netwerk)afstand, tevens een hogere ritprijs voor dezelfde 

Euclidische afstand. Dit maakt circuity relevant vanuit het perspectief van rechtvaardigheid. 

Deze studie onderzoekt de invloed van circuity op het verschil in afgelegde afstand door de 

inkomensprofielen van reizigers en de implicaties daarvan op reistijden en kosten voor 

netwerken met afstand-gebaseerde tarieven. De analyse is gebaseerd op reispatronen van 

smartcard-data voor bus, tram en metro, gecombineerd met inkomensgegevens op buurtniveau. 

De resultaten in Amsterdam laten zien dat hoe hoger het aandeel van mensen met een hoog 

inkomen die in de nabijheid van een halte wonen, hoe lager de circuity van reizen vanaf de halte 

wanneer gecontroleerd wordt voor de Euclidische afgelegde afstand en ruimtelijke 

autocorrelatie. De ongelijke verdeling van de circuity vergroot het verschil in afgelegde afstand, 

en daarmee de betaalde ritprijs tussen de inkomensgroepen. De reistijd per Euclidische afstand 

is echter in het voordeel van de lage-inkomensgroep, mogelijk doordat de omslachtige routes 

die deze gebieden bedienen worden gecompenseerd door hogere reissnelheden.  

 

In het tweede deel van deze dissertatie proberen we modellen van ov-routekeuze, geschat met 

behulp van smartcard-data, te verbeteren. De bijbehorende bijdragen worden hieronder 

beschreven. 

 

Ten eerste onderzoeken we uitgebreid hoe verschillende soorten overlap tussen alternatieve ov-

routes worden waargenomen door reizigers. We stellen een nieuwe definitie van overlap voor 

in termen van gemeenschappelijke transfernodes, die relevant is voor grootschalige stedelijke 

ov-netwerken. We vergelijken deze nieuwe definitie met de traditioneel gebruikte definitie van 

overlap in termen van het pad (zowel in de vorm van links als volledige trajecten). Path size 

correction (PSC) logit-modellen worden gebruikt om elk van deze vormen van overlap op te 

nemen. Uit de resultaten blijkt dat de overlap tussen ov-routes positief wordt gewaardeerd 

wanneer gebruik wordt gemaakt van op links, trajecten of transfernodes gebaseerde PSC, 

waarbij de op transfernodes-gebaseerde PSC resulteert in de beste modelmatch. Wanneer 
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gelijktijdig beschouwd, wordt de overlap van transfernodes positief gewaardeerd door de 

reizigers, maar de daaropvolgende overlap van trajecten wordt negatief gewaardeerd, wat 

impliceert dat reizigers de voorkeur geven aan meerdere (verschillende) reismogelijkheden op 

gemeenschappelijke overstaplocaties. Deze studie draagt bij aan de vooruitgang van 

routekeuzemodellering in het openbaar vervoer door het verbeteren van de definitie van overlap 

en hoe deze wordt ervaren door ov-reizigers. 

 

Tenslotte voeren we een externe validatie uit van de routekeuzemodellen ontwikkeld in de 

vorige stap. Hiervoor gebruiken we smartcard-data van voor en na de opening van een nieuwe 

metrolijn in Amsterdam voor respectievelijk de schatting en validatie van het model. De 

geschatte parameters worden gecontroleerd op stabiliteit tussen de twee tijdsperiodes, en het 

voorspellend vermogen wordt geëvalueerd op verschillende aggregatieniveaus. Hoewel de 

meeste modelparameters instabiel bleken tussen de twee contexten, was de voorspellende 

prestatie op aggregatieniveaus vergelijkbaar met het lokaal geschatte model. Bovendien bleken 

de voorspellingen van de individuele keuzes en het aandeel van de vervoerwijzen dicht bij de 

waargenomen keuzes te liggen. De fouten waren relatief groter voor de voorspellingen op link- 

en routeniveau, waarvan een deel zou kunnen worden toegeschreven aan de aannames die zijn 

gemaakt met betrekking tot de keuzeset die als input voor het model is gebruikt. Bij het 

vergelijken van alternatieve modelspecificaties, leidt het gebruik van generieke in plaats van 

modaliteitsspecifieke reisattributen tot een sterke verslechtering van de voorspellingsprestaties. 

Omgekeerd leverde een model dat overlap tussen routes integreert, met een betere model fit in 

de basisperiode, geen duidelijke verbetering van de voorspellingsprestaties op. Deze studie 

vormt een bijdrage aan de schaarse literatuur over de validatie van reisvraagmodellen en is de 

eerste die een externe validatie uitvoert van een ov-routekeuzemodel. Onze resultaten 

benadrukken de noodzaak om routekeuzemodellen voor het openbaar vervoer te valideren 

alvorens ze te gebruiken voor het afleiden van beleidsaanbevelingen, vooral in dit data-

gedreven tijdperk waarin dit vaak kan worden gedaan tegen relatief weinig moeite en kosten. 

 

In deze dissertatie wordt smartcard-data gebruikt om de evaluatie van ov-prestaties en 

routekeuzemodellen te verbeteren, specifiek binnen de context van stedelijke multimodale ov-

netwerken. De aanwezigheid van geautomatiseerde dataverzamelingssystemen voor 

transportplanning zal naar verwachting verder toenemen in de komende jaren, omdat het 

potentieel ervan binnen dit gebied steeds meer erkend wordt. In dit proefschrift benadrukken 

we verder de waarde van dergelijke gegevensbronnen door verschillende verbeteringen aan te 

dragen voor het bereiken van zowel wetenschappelijke als praktische doelen. 
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