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Phase Estimation for Distributed Scatterers in InSAR
Stacks Using Integer Least Squares Estimation

Sami Samiei-Esfahany, Joana Esteves Martins, Freek van Leijen, and Ramon F. Hanssen, Member, IEEE

Abstract—In recent years, new algorithms have been proposed
to retrieve maximum available information in synthetic aperture
radar (SAR) interferometric stacks with focus on distributed scat-
terers. The key step in these algorithms is to optimally estimate
single-master (SM) wrapped phases for each pixel from all pos-
sible interferometric combinations, preserving useful information
and filtering noise. In this paper, we propose a new method for
SM-phase estimation based on the integer least squares principle.
We model the SM-phase estimation problem in a linear form by
introducing additional integer ambiguities and use a bootstrap
estimator for joint estimation of SM-phases and the integer un-
knowns. In addition, a full error propagation scheme is introduced
in order to evaluate the precision of the final SM-phase estimates.
The main advantages of the proposed method are the flexibility
to be applied on any (connected) subset of interferograms and the
quality description via the provision of a full covariance matrix
of the estimates. Results from both synthetic experiments and a
case study over the Torfajökull volcano in Iceland demonstrate
that the proposed method can efficiently filter noise from wrapped
multibaseline interferometric stacks, resulting in doubling the
number of detected coherent pixels with respect to conventional
persistent scatterer interferometry.

Index Terms—Distributed scatterers (DS), integer least squares
(ILS), interferometric synthetic aperture radar (InSAR), phase
linking, phase triangulation, radar interferometry.

I. INTRODUCTION

S INCE the late 1990s, different methodologies have been
developed for processing interferometric synthetic aperture

radar (InSAR) data stacks, with applications in detecting and
measuring various ground deformation phenomena. A class
of time-series InSAR techniques, called persistent scatterer
interferometry (PSI), focuses on point targets with high phase
stability (persistent scatterers or PS) in the entire data stack,
which are minimally affected by temporal and geometrical
decorrelation [1]–[6]. Some other methodologies extract in-
formation also from targets that are affected by decorrela-
tion, called distributed scatterers (DS), which contain coherent
information only in some interferometric pairs, usually with
shorter temporal and spatial baselines. The first efforts to extract
information from DS were developed using the idea of stacking
and exploiting different subsets of interferograms [7]–[14],
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followed by the concept of small-baseline subsets (SB) [15],
[16]. In the latter, SB interferograms are selected to minimize
the effect of decorrelation and are multilooked (i.e., averaged
with neighboring pixels) to further reduce the decorrelation, and
then, they are spatially unwrapped. After unwrapping, a single-
master (SM) phase time-series (i.e., the phase differences with
respect to one acquisition called the master) for each pixel is
estimated from all of the unwrapped SB interferograms by least
squares or singular value decomposition. Clearly, this final SM-
phase estimation requires reliable phase unwrapping of every
single SB interferogram prior to the estimation.

More recent multimaster (MM) approaches [17], [18] pro-
posed to swap the sequence order, and they perform SM time-
series estimation before unwrapping. In other words, in the
first step, SM (wrapped) phase time-series are estimated from
wrapped MM interferograms, followed by (spatial, temporal,
or spatiotemporal) unwrapping of the estimated SM interfero-
gram stack. From a physical point of view, the preunwrapping
estimation of SM-phase filters out the decorrelation noise and
estimates the (wrapped) phase time-series corresponding to the
physical path differences between the targets and the sensor.
In this way, the signal-to-noise ratio of the pixels is improved,
yielding an improved unwrapping. The preunwrapping esti-
mation of SM-phases is called phase linking in [17], as the
estimated phases are results of linking (or joint processing)
all available interferometric phases, or phase triangulation in
SqueeSAR [18], as the estimation is done based on phase
consistency or triangularity condition (cf., Section III). We will
refer to “SM-phase estimation” in the remainder of this paper.

The current SM-phase estimation methods [17]–[21] are all
based on nonlinear optimization. These methods solve the
nonlinear problem either by iterative algorithms initialized by
subjective choice of initial values or by eigendecomposition of
full coherence/covariance matrix of a data stack. Some of these
algorithms are very demanding (especially in large stacks) by
requiring all of the interferometric phase combinations (or the
full complex coherence matrix for every pixel). In addition to
these algorithms, an alternative heuristic yet effective approach
called multilink InSAR [22] has been introduced. This approach
constructs versions of every SM interferogram using different
interferometric paths, combining them to obtain an estimate for
each SM interferogram. However, the selection of paths and
interferograms is still subjective. Regarding the quality descrip-
tion of the estimated SM-phases, although [17] has introduced a
generic presentation of highest achievable precision in the form
of lower Cramér–Rao bound (CRB), there is no formal quality
description in the form of a full covariance matrix of final phase
estimates.
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Fig. 1. Numerical demonstration of phase triangularity. (a) Three 3 × 3 phase interferograms (φom, φon, φnm) constructed from the 3 × 3 SLC phases
(∠(Po),∠(Pm),∠(Pn)) and the corresponding multilooked interferometric phases (φ̂om, φ̂on, φ̂nm). (b) Demonstration of the phase triangularity condition
for single-looked pixels. (c) Demonstration of the triangularity condition failing for multilooked pixels.

In this paper,1 we present a new method for SM-phase
estimation based on integer least squares (ILS) principle. ILS
is a geodetic estimation method, originally designed for GPS
applications [24]–[26], and later also applied to InSAR tempo-
ral phase unwrapping [3], [27]–[29]. We model the SM-phase
estimation problem as a system of linear observation equations
with some integer and real unknowns, and use ILS to estimate
unknown parameters. The advantage is that ILS considers all
of the mutual correlations between interferometric phases and
allows formal error propagation from the observations to the
final estimates. As a result, the full covariance matrix of the
estimated phases is provided. Furthermore, the model can be
applied to any subset of interferograms. This is beneficial
especially for large stacks where the computation of all possible
interferograms can be cumbersome.

This paper is organized as follows. We first describe
the general concept of phase triangularity (Section II), fol-
lowed by the proposed mathematical model (Section III). In
Section IV, we introduce the ILS estimator and its application
to SM-phase estimation. Practical considerations are given in
Section V. Synthetic experiments and real data results are
presented in Sections VI and VII, followed by the conclusion
in Section VIII.

II. PHASE TRIANGULARITY

Assume that Pm, Pn, and P o are three coregistered single-
look complex (SLC) images (see Fig. 1 as a simplistic example)
in the form of

Pm = Am exp(jψ
m
) (1)

1Part of this work was presented at IGARSS 2013, Melbourne [23].

where j is the imaginary unit and Am∈R+ and ψ
m
∈[−π, π)

represent the amplitude and phase of Pm, respectively. Under-
lined letters (e.g., I) denote stochastic variables/vectors. The
single-look interferograms Iom, Ion, and Imn constructed from
these images can be written as

Iom = P oP
∗
m, Ion = P oP

∗
n, Inm = PnP

∗
m (2)

where ·∗ denotes the complex conjugate. It can be shown that
the phase of any of these interferograms can be obtained from
the other two, e.g.,

φ
nm

= W{φ
om

− φ
on
} (3)

where φ
nm

is the wrapped interferometric phase of Inm and
W{·} is the wrapping (modulo-2π) operator. The equality of (3)
is called the phase consistency or phase triangularity condition
[18]. Note that the phase triangularity condition always holds
by definition for single pixels, but it is not valid necessarily for
multilooked interferometric pixels (see Fig. 1 as a numerical
demonstration of the validity of the phase triangularity condi-
tion for single- and multilooked phases).

Under certain statistical conditions, the phase triangularity
condition for multilooked pixels can be expressed in terms of
phase expectation. Assuming a distributed scattering mecha-
nism (i.e., each SAR pixel is a superposition of contributions
from many elementary scatterers in a resolution cell), SLC pix-
els have a zero-mean multivariate circular Gaussian distribution
[30], [31]. Under this assumption, the expectation of complex
interferometric observations can be written as [32]–[34]

E{Inm} = S|γnm| exp (j(ϕn − ϕm)) (4)

where E{·} is the expectation operator, |γnm| is the ab-
solute value of normalized interferometric coherence, and
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S =
√
E{A2

n}E{A2
m}. The phase terms ϕn∈[−π, π) and

ϕm∈[−π, π) are the true phase values defined as the phase
contributions related to the physical path difference between the
target and the sensor (i.e., the phase contributions of deforma-
tion, topography, atmosphere, and orbital errors to the observed
wrapped SLC phases). We rewrite (4) by adding and subtracting
the true phase value of another image Po from the argument of
the complex interferogram Inm

E{Inm} =E
{
Anm exp(jφ

nm
)
}

=S|γnm| exp (j(ϕn − ϕo − ϕm + ϕo))

=S|γnm| exp (j(ϕom − ϕon)) (5)

where ϕom and ϕon are now the true phase values of the in-
terferometric phases and Anm is the interferometric amplitude.
If φ̂

nm
denotes the multilooked phase, under the assumption

that the signal components ϕ are constant within the averaging
window, we obtain [33]

E{φ
nm

} = E{φ̂
nm

} = W{ϕom − ϕon}. (6)

In contrast to (3), we call (6) as the expected phase triangularity
condition.

The term SM-phase estimation is defined as the estimation
of a set of consistent interferometric phases (i.e., where the
phase triangularity condition holds for every combination of
three interferograms) from a stack of inconsistent multilooked
interferograms. In other words, SM-phase estimation is the esti-
mation of a deterministic signal ϕ from stochastic multilooked
observations φ̂ constrained by the phase triangularity condition.

For simplicity, we omit the hat symbols φ̂, and we will use φ for
multilooked phase in the remainder of this paper.

III. MATHEMATICAL MODEL FOR SM-PHASE ESTIMATION

A. Functional Model

For each pixel, assuming N radar images, the observation
vector contains the available multilooked wrapped interfero-
metric phases. In the most generic case where all of the inter-
ferometric combinations are used, the observation vector is an
N(N − 1)/2 vector of all multilooked wrapped interferometric
phases φnm, where n and m are the radar image indices. The
unknown parameters are the true SM wrapped interferometric
phases ϕoi, where the o-index indicates the master acquisition.
Then, (6) can be regarded as an observation equation with φnm

as an observation and ϕon and ϕom as unknown parameters of
interest. We reformulate (6) and write the nonlinear wrapping
operator in a linear form by introducing an integer ambiguity
term anm as

E{φ
nm

} =

⎧⎪⎨
⎪⎩
ϕom − ϕon + anm(2π) if n,m �= 0

ϕom if n = 0

−ϕon if m = 0

(7)

where anm∈{−1, 0, 1}. Since the ϕ terms are wrapped phases,
the value of (ϕnm − ϕon) can only lie between −2π and 2π,

and therefore, the ambiguity terms can only be 1, −1, or 0. In
matrix notation, this linear system of observation equations is

E

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ
o1
...

φ
o(N−1)

...
φ
nm
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
y

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . 0
...

. . .
...

0 . . . 0

2π
. . .

2π

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A

⎡
⎢⎢⎣

...
anm

...

⎤
⎥⎥⎦

︸ ︷︷ ︸
a

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

1
...

−1 . . . 1
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
B

⎡
⎢⎣

ϕo1

...
ϕo(N−1)

⎤
⎥⎦

︸ ︷︷ ︸
b

(8)

where n,m = 1 . . . (N − 1). Although the most generic case is
presented here, in which all of the interferometric combinations
are used, the model is flexible and can be written for any subset
of interferograms. With model (8), we describe the SM-phase
estimation problem in a hybrid system of linear equations with
real unknowns ϕon and integer unknowns anm. The solution of
this system of equations is given by ILS estimation.

IV. ILS

A. Estimator

Consider a system of linear observation equations with n
integer and p real-valued unknown parameters

E{y} = Aa+Bb (9)

where E{·} is the expectation operator, y ∈ R
m is the vector of

observations, and a ∈ Z
n and b ∈ R

p are the vectors of integer
and real-valued unknown parameters, respectively. The matrix
[A B] is given and assumed to be a full column rank matrix.
Equation (9) is called the functional model as it describes the
functional relation between the observations and the unknown
parameters. The weighted ILS solution of (9) is

ǎ, b̌ = argmin
a∈Z,b∈R

‖y −Aa−Bb‖2W (10)

where W is the weight matrix and ‖ · ‖2W is a quadratic
norm defined as ‖ · ‖2W = (·)TW (·). The weight matrix W is
used to assign different weights to different observations. In
Section V-B, we discuss the implication of choosing a proper
weight matrix for ILS SM-phase estimation. To account for the
integer constraint of vector a, it is shown in [25] and [26] that
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the objective function (10) can be orthogonally decomposed
into the sum of three L2-norm components

‖y −Aa−Bb‖2W

= ‖y −Aâ−Bb̂‖2W︸ ︷︷ ︸
1

+ ‖â− a‖2Wa︸ ︷︷ ︸
2

+ ‖b̂|a − b‖2Wb︸ ︷︷ ︸
3

(11)

where â and b̂ are the real-valued unconstrained weighted least
squares estimates of a and b vectors, and b|a is the conditional
least squares estimates of vector b, conditioned on a. The
matrices Wb and Wa are defined as

Wb =BTWB (12)

Wa =FTWF (13)

where

F = A−B(BTWB)
−1
BTWA. (14)

Because of the orthogonality condition among the threeL2-norm
components, as soon as â and b̂ are computed using ordinary
least squares, the minimization problem (10) can be regarded
as two individual minimization problems of

ǎ =argmin
a∈Z

‖â− a‖2Wa
(15)

b̌ =argmin
b∈R

∥∥∥b̂|a − b
∥∥∥2
Wb

. (16)

As a consequence, the solution of (10) can be derived in three
steps as follows [24].

1) The standard weighted least squares estimation is per-
formed by disregarding the integer constraint a∈Zn in
order to compute â and b̂[

â

b̂

]
=
(
[A B]TW [A B]

)−1
[A B]TWy. (17)

These solutions are called float solutions.
2) To solve the minimization of (15), integer unknowns in

vector ǎ are estimated by mapping the float solution
â to the corresponding integer (fixed) solution using a
mapping operator S : Rn �→ Z

n, i.e., ǎ = S(â). In this
mapping, the float solution vector â is mapped to the
nearest integer vector. However, nearest must be mea-
sured in the metric of matrix Wa in order to account for
the correlation among float solutions in vector â.

To estimate ǎ, there exist two common integer estima-
tors. The ILS estimator accounts for all of the correlation
among float solutions, and the integer bootstrapping (IB)
estimator considers some of the correlations among the
entries of â. Although the ILS estimator is more optimal,
its solution cannot be given in a closed form, and its
computational time is larger compared to the bootstrap-
ping method. Here, we use the bootstrapping approach. A
detailed explanation of these algorithms can be found in

[25] and [26]. We also briefly describe the bootstrapping
algorithm in Appendix A.

3) Solving the minimization (16) is the most straightfor-
ward as it is a well-determined problem (same number
of unknowns as equations). Therefore, in principle, the
solution is given as

b̌ = b̂|a. (18)

However, the true value a is unknown. Assuming that ǎ
is the correct estimation of a, we have a = ǎ. Based on
this assumption, once the fixed solution ǎ is obtained, the
fixed solution of real parameters b̌ is computed as

b̌ = b̂|â =
(
BTWB)−1BTW (y −Aǎ

)
. (19)

Assuming Qy as the covariance matrix of observation
vector y, the covariance matrix of the fixed solution b̌ can
be also obtained as

Qb̌=Qb̂|â =(BTWB)
−1
BTWQyWB(BTWB)

−1
. (20)

Note that, although we formulate the ILS problem with a
generic weight matrix W (not with W = Q−1

y ), however,
we use the phase covariance matrix in (20) to propagate
the dispersion of observations to the final estimates and
to obtain Qb̌, which is a full covariance matrix describing
the precision of the estimated phases.

V. APPLICATION OF ILS FOR SM-PHASE ESTIMATION

Having the functional model (8) for each pixel in an interfer-
ogram stack, the three ILS steps can be applied to estimate the
SM wrapped interferometric phases. For (17), (19), and (20),
two more ingredients are required: the covariance matrix of the
phase observations Qy and the proper weight matrix W . In the
following, we address these two elements with some more prac-
tical considerations. Note that the observation covariance ma-
trixQy is not needed for SM-phase estimation, and it is required
only for computation of the precision of the estimates via (20).

A. Covariance Matrix of Interferometric Phase Stack

The second central statistical moment of the interferometric
phases in vector y is described via the covariance matrix Qy

with a maximum size of N(N − 1)/2 when all possible inter-
ferometric pairs are used. Although the closed-form expression
of interferometric phase variances (i.e., diagonal elements of
Qy) for the single-looked interferograms was presented in [31]
and [34], there is no closed-form evaluation for multilooked
cases and for off-diagonal covariance elements in Qy . Here, we
propose a numerical Monte Carlo approach to evaluate the full
covariance matrix of an interferogram stack.

It is assumed, based on the central limit theorem, that the
real and imaginary values in an SLC stack have a multivariate
circular Gaussian distribution with zero mean, a zero corre-
lation between the real and imaginary parts, and a variance
proportional to the average radar cross section of the surface
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[32], [35]. Considering a stack of N SLC images, the vector of
real and imaginary values for pixel k is

yslck =
[
Re0k · · ·Re

(N−1)
k Im0

k · · · Im
(N−1)
k

]T
(21)

where yslck has a multivariate circular Gaussian distribution
with PDF [36]

pdfy
slck

(yslck) =
1

(2π)3D
1
2

exp

(
−1

2
yTslckD

−1yslck

)
. (22)

D is a 2N × 2N covariance matrix given by (assuming zero-
mean phase)

D =

[
C 0
0 C

]
(23)

where C is the N ×N absolute coherence matrix of yslck .
Note that, in this formulation, the amplitude of SLC images
is assumed to be normalized (i.e., E{A2

m} = 1). The ele-
ments of C are the absolute interferometric coherences (i.e.,
Cnm = |γnm|). If we assume that the coherence matrix C has
already been computed for each pixel, we generate a large
number (M × L) of samples y

(i)
slck

, i = 1, . . . ,M × L, from
pdfy

slck

(yslck), where L is the known number of looks and M is

the number of desired realizations of the phase observation vec-
tor. From this set of SLC samples, we compute M realizations
y
(i)
k , i = 1, . . . ,M , of the vector of multilooked interferometric

phases (i.e., for each realization, the multilooked vector yk is
computed from L samples of yslck ). The covariance matrix
Qyk

for the pixel k is estimated by averaging the M empirical
covariance matrices as [37]

Qyk
=

1

M

M∑
i=1

(
y
(i)
k − E{y}

)(
y
(i)
k − E{y}

)T

(24)

where E{y} is computed as the average of all y(i)k samples.
In this way, given the coherence matrix C, the full covariance
matrix Qy can be computed.

Assuming a large number of pixels, it is clear that this
approach is computationally expensive to be applied for every
pixel in large stacks. To solve this problem, we calculate once
the covariance values for all possible coherence combinations
and for all different multilooking factors, and store the results
in a multidimensional lookup table indexed by coherences and
multilooking factors. Therefore, in practice, instead of applying
the Monte Carlo simulation for each pixel, the elements of the
covariance matrix are taken from the lookup table.

B. Choice of Weight Matrix

The ILS problem has been conventionally formulated with
a weight matrix equal to the inverse of the covariance matrix
of the observations. This is logical for observations with a
Gaussian distribution because using W = Q−1

y provides the
maximum likelihood (ML) estimation. As the multilooked in-
terferometric phases are not normally distributed, their data
statistics cannot be explained fully by the phase covariance

matrix. Also, an accurate covariance matrix may not always
be available. Therefore, we express ILS with a generic weight
matrix W , increasing the flexibility of the method to digest
different kinds of weight matrices.

Focusing on the fundamental difference between non-
Gaussian random variables (such as interferometric phases) and
Gaussian variables: while, for the latter, the variance/dispersion
is truly the measure of information loss (as the PDF of Gaussian
variables can be completely characterized by the dispersion or
the covariance matrix in multivariate cases), for interferometric
phases, the variance is always bounded and is not representative
of information loss. In fact, a zero coherence interferometric
phase conveys no information (corresponding to information
loss of ∞), while its variance is equal to (2π)2/12, which is
the variance of uniformly distributed phase between −π and π.

In the case of SM-phase estimation, a reasonable choice for
weighting the observations is the coherence of each interfero-
metric phase in vector y. In this case, W is defined as a diagonal
matrix in which the weight of an observation φ

mn
is defined as

wφ
mn

= γmn (25)

where γmn is the absolute coherence value.
Another weighting strategy is based on the information con-

tent of interferometric multilooked phases. A common measure
of information content of a random variable about an unknown
parameter is the Fisher information index [38]. If we consider
ϕmn to be the expected interferometric phase of the multi-
looked observation φ

mn
, the amount of information included

in φ
mn

about ϕmn can be quantified by the Fisher information
index of interferometric phase as [39]

Iφ
mn

{ϕmn} =
2Lγ2

mn

1− γ2
mn

(26)

which results in zero information for γmn = 0 and maxi-
mum information of infinity when γmn = 1. In other words,
Iφ

mn
{ϕmn} accounts for the loss of information about ϕmn

due to the noise and decorrelation. Therefore the diagonal
elements of a Fisher-information-based W matrix is defined as

wφ
mn

= Iφ
mn

{ϕmn}. (27)

In Section VI-B3, we compare the influence of different weight-
ing strategies on the efficiency of ILS SM-phase estimation.

C. Practical Considerations

With the functional model of (8), the covariance matrix
of (24), and the weight matrix of (27), we have all of the
required ingredients to apply ILS. Here, we list some practical
considerations for the proposed SM-phase estimation.

1) Float solution: In (8), if all of the SM interferograms
are included in the observation vector y, the numbers
of equations and unknowns are equal, and hence, the
solution of the first ILS step (i.e., float solution) can be
simply computed as[

â

b̂

]
= [A B]−1y. (28)
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However, if we use a smaller subset of interferograms and
if this subset does not include all of the SM interfero-
grams, the number of unknowns will exceed the number
of equations, and the float solution is not computable
as the matrix [A B] is rank deficient and not invertible.
As a consequence, the limitation of the proposed model
is that the subset should always include all of the SM
interferograms. If some of the SM interferograms are not
available, pseudo-observations can be introduced in the
model to overcome rank deficiency.

2) Statistical homogeneity of the averaging area: The mul-
tilooked phases in vector y are computed by spatial av-
eraging over statistically homogeneous pixels (SHPs). In
order to satisfy the homogeneity condition, we use a spa-
tially adaptive averaging window. In [18], a space adaptive
filtering algorithm has been introduced in order to, for each
pixel, define a brotherhood area including neighboring
SHP based on Kolmogorov–Smirnov test. Alternative ap-
proaches with different tests and implementations are also
given in [40]–[44]. To reduce the influence of nonhomo-
geneous pixels (outliers) in the averaging areas, the con-
cept of robust coherence estimation can be also used [45].

3) Signal consistency in the averaging area: Another as-
sumption in the computation of multilooked phases y for
each pixel is that the signal components of ϕ are constant
in the averaging area. This assumption is reasonable for
relatively small areas with spatially correlated signals.
However, if a high spatial variation of signal components
is expected, this phase variation should be removed be-
forehand. Examples of variable signals are high topog-
raphy gradient or orbital errors. These kinds of spatially
variable signals can be removed by different kinds of phase
flattening or low-pass filters such as the adaptive multires-
olution defringe algorithm in [41], [43], and [46], patch
detrending in [31] and [47], or low-pass filtering in [5].

4) Posterior assessment: After SM-phase estimation, the
quality of the estimated phase values should be assessed.
In [18], an extended temporal coherence γ̂PTA has been
introduced as a goodness-of-fit measure for SM-phase
estimation. This parameter can be written in our model
notation as

γ̂PTA =

∣∣∣∣ 1

Nifgs
HT exp

(
j(y −Bb̌)

)∣∣∣∣ (29)

where j is the imaginary unit, Nifgs is the number of
interferograms in the stack, and H is an all-ones column
vector with a length of Nifgs. If all of the possible inter-
ferometric combinations are used, Nifgs = N(N − 1)/2.
The coherence γ̂PTA is used for the final selection of DS
with reliable phase estimation.

VI. SYNTHETIC DATA PROCESSING

In order to validate the ILS SM-phase estimation and eval-
uate its performance, we test it on a set of synthetic datasets.
Here, we describe the simulation settings, followed by results
and discussion.

Fig. 2. Coherence matrices of the synthetic data for two scenarios. (a) Expo-
nential decay Ce. (b) Seasonal decay Cs. The images are ordered based on their
acquisition dates equidistantly spaced in time with a revisit time of 35 days.

A. Simulation Setting

We generated two radar data stacks with different noise
behaviors. Each dataset included 24 SLC images with a revisit
time of 35 days. A deformation signal was simulated by as-
suming a simple Gaussian deformation bowl with a maximum
line-of-sight (LOS) deformation rate of 3 cm/year at the center
and a radius of 600 m. We assumed a flat area, resulting in a
zero topographic signal. The atmospheric signal was simulated
by assuming the power law behavior presented in [48]. A crop
of 1000 × 1000 m, a radar wavelength of 56 mm, and a pixel
size of 20 × 20 m were also assumed. For noise simulation, we
assume that all of the pixels have the same statistics. The noise
components are simulated based on the assumption of a zero-
mean multivariate circular Gaussian distribution. In this way,
for noise simulation, only a coherence matrix is required [see
(22)]. In this paper, we have assumed two arbitrary scenarios
for temporal decorrelation: exponential decay and seasonal
decay. The coherence matrices are constructed for the two
scenarios as explained in Appendix B and shown in Fig. 2. The
noise time-series of each pixel is simulated by generating a
random vector of complex numbers which have a multivariate
zero-mean circular Gaussian distribution with the associated
coherence matrix. The noise-free and noisy simulated datasets
are visualized in Figs. 4 and 5(a) and (b), respectively.

B. Simulation Results

We first analyze the overall results before diving into specific
aspects that influence the simulation results.

1) Overall Analysis: We applied the ILS SM-phase estima-
tion on the two simulated datasets. In order to construct the
observation vector y for each pixel, the simulated phases were
multilooked by coherent phase averaging over 5 × 5 windows.
As discussed in Section V-C, to meet the signal consistency as-
sumption in the averaging windows, the spatially variable signal
within an averaging area should be removed by a defringing/
detrending algorithm. In this simulation, in order not to be
affected by the suboptimality of detrending algorithms, the
spatially variable signal (or the trend) in the averaging windows
is computed and corrected based on the known noise-free sim-
ulated signal. The weight matrix for each dataset is constructed
using the Fisher information of multilooked phases computed
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Fig. 3. Example of baseline configurations used in the synthetic experience. (a) Single master (SM). (b) STBs. (c) SB subset (SB). (d) All interferometric
combinations.

Fig. 4. Synthetic example (exponential-decay scenario). (a) Simulated signal
(deformation and atmosphere) for SM interferograms using the first acquisition
as the master image. (b) Interferograms after adding decorrelation noise. (c) SM
interferograms after multilooking. (d) Reconstructed SM interferograms from
consecutive multilooked STB interferograms. (e) Results of the ILS method
using all interferograms. (f) Residuals of the ILS method [i.e., the difference
between subfigures (a) and (e)].

from the true coherence values based on (27). To provide a
generic comparison with conventional ad hoc phase retrieval
methods, we also examined the SM-phase construction by mul-
tilooking the original (SM) interferograms [Fig. 3(b)] and by
consecutive integration of the temporally adjacent multilooked
interferograms, denoted as the small temporal baseline (STB)
configuration [see Fig. 3(b)]. The results are summarized in
Figs. 4 and 5 for the two scenarios. Figs. 4 and 5(a) and (b) show

Fig. 5. Synthetic example (seasonal-decay scenario)—simulated data results.
(a) Simulated signal (deformation and atmosphere) for SM interferograms
using the first acquisition as the master image. (b) Interferograms after adding
decorrelation noise. (c) SM interferograms after multilooking. (d) Recon-
structed SM interferograms from consecutive multilooked STB interferograms.
(e) Results of the ILS method using all interferograms. (f) Residuals of the ILS
method [i.e., the difference between subfigures (a) and (e)].

the noise-free and noisy simulated SM-phases, respectively.
Figs. 4 and 5(c) show the reconstructed phases computed by
multilooking the original SM-phases, and Figs. 4 and 5(d) show
the reconstructed phases from STB interferograms. The results
of ILS SM-phase estimation using all of the interferograms
[i.e., the baseline configuration in Fig. 3(d)] are presented in
Figs. 4 and 5(e). Finally, the difference between the original sim-
ulated signal and the ILS estimates is plotted in Figs. 4 and 5(f).
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Fig. 6. Empirical standard deviation of the residuals for three different reconstruction approaches (the multilooked SM stack, the STB reconstructed stack, and the
ILS SM-phase estimation for the two simulation scenarios). (a) Exponential decay. (b) Seasonal decay. For comparison, we also plotted the theoretical standard
deviation computed as square root of the diagonal elements of Qb̌ and also the lower CRB of SM-phase estimation. In both scenarios, the results of the ILS
SM-phase estimation outperform the STB and SM reconstruction methods. There is a good agreement between the theoretical and empirical standard deviations.
The empirical standard deviations are close to CRB, indicating the efficiency of the ILS SM-phase estimation.

Fig. 7. Effect of the nonstationary signal within averaging windows on the empirical standard deviation of the residuals for (a) exponential decay and (b) seasonal
decay. For comparison, we also plotted the lower CRB of SM-phase estimation.

Initial qualitative evaluation shows that, in both scenarios,
ILS can effectively filter out noise and is able to reconstruct the
original signal. The results indicate better phase reconstructions
than SM and STB methodologies, demonstrating the generic
added value of using the SM-phase estimation procedure. In
both scenarios, the residuals between the ILS-reconstructed
signal and the true signal have a zero mean, indicating an
unbiased estimation.

Fig. 6(a) and (b) provides a more quantitative evaluation.
We calculated the standard deviation of the residuals (i.e., the
difference between the constructed interferograms and the true
values) for the multilooked SM, the STB reconstructed, and
the ILS estimated stacks. For comparison, we also computed
the theoretical standard deviations of ILS results from diagonal
elements ofQb̌ [see(20)]. To assess the efficiency of the ILS esti-
mator, we also calculated the lowest achievable standard devia-
tion as the square root of the CRB for SM-phase estimation [17].

In both scenarios, we see that the results of ILS SM-phase
estimation outperform the STB and SM reconstruction meth-
ods. The residual standard deviations of the STB reconstruction
increase with temporal baseline because of the accumulation of
noise in the reconstruction process. For SM multilooking, as

expected, the standard deviations are variable and dependent
on the coherence level; the higher the coherence, the lower the
phase standard deviation. For ILS, there is a good agreement
between the theoretical and empirical standard deviations. Note
that, in general, for Gaussian observations, least squares is a
minimum-variance estimator, and its variance is equivalent to
the CRB. However, interferometric phases are not Gaussian,
and empirical standard deviations are hence compared with the
analytical CRB. In both scenarios, the empirical standard devia-
tions approach the CRB with an average difference of ∼0.07 rad
or 4◦ (equivalent to 0.3 mm for C-band), which is negligible
compared to the standard deviation expected for high-SNR
point targets. The closeness to the CRB is an indicator of the
efficiency of the ILS estimator.

2) On the Influence of the Nonstationary Signal Within
Averaging Windows: As mentioned before, we computed and
corrected for the spatially variable signal (trend) in the mul-
tilooking windows using the known noise-free simulated sig-
nal. To evaluate the effect of the trend on the efficiency of
SM-phase estimation, we applied the ILS estimation on both of
the detrended dataset and the one with the trend included. The
results are summarized in Fig. 7. We observe that trend removal
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Fig. 8. Effect of assigned weights on empirical standard deviation of the residuals for (a) exponential decay and (b) seasonal decay. For comparison, we also
plotted the lower CRB of SM-phase estimation.

Fig. 9. Effect of coherence bias and using interferogram subsets for two simulation scenarios. (a) Exponential decay. (b) Seasonal decay.

reduces the standard deviation of the residuals significantly.
The ratio between the CRB and the standard deviations is ap-
proximately two times smaller for the detrended datasets. This
indicates the importance of applying a defringing/detrending
algorithm during the multilooking/averaging process.

3) On the Influence of Assigned Weights: We applied ILS
SM-phase estimation on the two simulated scenarios with
four different weighting strategies (see Section V-B): setting
W as the inverse of the observation covariance matrix (i.e.,
W = Q−1

y ), with diagonal elements as inverse variance, co-
herence, and Fisher information index, respectively. The re-
sulting effects on the precision of the phase estimation are
summarized in Fig. 8. We observe that the Fisher-information-
based weight matrix is the most efficient. This demonstrates
that the dispersion-based weighting strategies (i.e., the inverse
of the covariance matrix or the inverse of the variances) are
not optimal for multilooked phase observations, which have a
non-Gaussian distribution. In other sections of this paper, we
only show the results of ILS estimation based on the Fisher
information weighting strategy.

4) On the Influence of Coherence Bias and Interferogram
Selection: It may be observed that all of the aforementioned
weighting strategies require coherence values for calculating
W . The coherence values for each pixel can be practically

computed from interferograms by spatial coherent averaging
[39], [48]. It has been shown that the estimated coherence is bi-
ased, particularly for low coherence and small averaging areas
[31], [34], [47]–[51]. Increasing the number of looks reduces
this bias. Here, we evaluate the effect of the coherence bias
on estimation precision. We applied ILS SM-phase estimation
using the Fisher-information-based weight matrix computed
both from the true (i.e., the one used in the simulation) and
estimated coherence values. The results are shown in Fig. 9(a)
and (b). In addition to using all of the interferometric combina-
tions, we also applied the ILS estimation on an SB subset (SB)
of interferograms. Fig. 3(c) and (d) demonstrates the baseline
configuration for SB and all interferograms, respectively. We
notice that, in both scenarios, using all of the interferograms
with the true coherence gives the best results. When using
all of the interferograms with the estimated coherences, the
precision deteriorates (approximately with a factor of 2) due
to the biased coherence estimation. However, in case of SB,
there is no significant difference between using the true or
estimated coherences in the weight matrix. This is because we
only use interferograms with relatively high coherence (i.e., a
low bias in the coherence estimation), and hence, the results
are minimally affected by the coherence bias. We also observe
that, in the exponential-decay scenario [Fig. 9(a)], using the
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Fig. 10. Empirical standard deviation of the residuals for different SM-phase estimation methodologies. (a) Exponential-decay scenario with true coherence
values. (b) Seasonal-decay scenario with true coherence values. (c) Exponential-decay scenario with estimated coherence values. (d) Seasonal-decay scenario
with estimated coherence values. For comparison, the lower CRB of SM-phase estimation is also plotted. (a) Exponential decay—using true γ. (b) Seasonal
decay—using true γ. (c) Exponential decay—using estimated γ. (d) Seasonal decay—using estimated γ.

SB subset provides results with the same precision as using
all of the interferograms with the true coherences. This is,
in fact, expected because, in this scenario, the large temporal
baseline interferograms have zero coherence and do not con-
vey any information and hence do not have any added value
on the estimation efficiency. This is an important conclusion:
for SAR stacks with a large number of images, where the
computation of all of the interferometric combinations can be
cumbersome, using an SB subset of interferograms can provide
the same phase precision for SM-phase estimation as using the
set of all of the interferograms. It should be noted, however,
that selecting the most informative subset of interferograms
is a challenging task and no generic methodology exists, as
it requires a priori knowledge on the coherence behavior of
DS targets.

5) Comparison With Other SM-Phase Estimation Methods:
In this section, we compare the results of the ILS method with
the results obtained by application of three other SM-phase
estimation methodologies on the two synthetic datasets. These
three methodologies are the following:

1) the ML SM-phase estimation used in the phase-linking
method [17] and SqueeSAR [18];

2) the SM-phase estimation methods based on eigenvalue
decomposition (EVD) of the full complex coherence
matrix, as in the CAESAR algorithm [20] and in [21];

3) the SM-phase estimation method based on the minimiza-
tion of the weighted circular variance of the complex
interferometric residuals, presented in the framework of
an improved-SBAS (ISB) algorithm [19].

The first two methods (ML and EVD) exploit the full complex
coherence matrix, and hence, they use all of the interferometric
combinations. For a fair comparison, we use all of the interfero-
metric combinations for both ILS and ISB as well. To study the
influence of biased coherence estimation on the efficiency of
different methods, we apply all of the methods both with the
true absolute coherences and with the estimated coherences.
Fig. 10 shows the results of this comparison. Using the true
coherence values [Fig. 10(a) and (b)], all of the methods show
comparable performance. Using the true coherence values, the
ML method gives the most efficient results, approaching the
CRB. The ILS and ISB methods show comparable efficiency,
which is slightly lower than the ML estimation, and EVD
provides the lowest efficiency. However, when we look at the
results based on the estimated coherences [Fig. 10(c) and (d)],
the results vary significantly, showing different sensitivities of
the methods to the biased estimation of coherence values. The
ML estimator is affected the most by the biased coherences.
This is logical as the ML is the only estimator that requires the
inversion of the coherence matrix, and hence, small numerical
biases in coherence estimation are amplified during the matrix
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TABLE I
COMPARISON OF THE COMPUTATION TIME (IN SECONDS) OF

DIFFERENT SM-PHASE ESTIMATION METHODS APPLIED

ON THE TWO SIMULATION SCENARIOS

inversion and severely affect the estimation efficiency. In fact,
it has been discussed in the SqueeSAR algorithm that the
estimated coherence matrix is not, in general, positive definite
and is ill-conditioned, requiring the use of a pseudoinverse
or a damping factor before the matrix inversion [18]. In our
implementation of ML estimation, we use the pseudoinverse.
Among other methods, when using estimated coherences, ILS
and ISB show comparable results, and once again, EVD pro-
vides a relatively low efficiency.

To summarize, the results show that the ILS and ISB methods
provide comparable efficiency, and they are less sensitive to
the biased estimation of coherence values. Even though the
ML estimation is theoretically the most efficient method, it is
severely affected by biased coherence estimation and numerical
instabilities in the matrix inversion. Generally, EVD shows a
lower efficiency than the ILS and ISB methods. However, EVD
has an additional functionality compared to the other methods.
In case of DS with multiple scattering mechanisms, recent
studies have showed that EVD is capable of decomposing the
contribution of different mechanisms [20], [21], [52]. However,
in our specific simulation based on a single scattering mecha-
nism, the efficiency of EVD is lower than the other methods.

In addition to the different estimators considered in our
simulation, a relatively new mathematical framework has been
introduced for robust parameter estimation in InSAR stacks
[45]. This approach has added value for non-Gaussian data
which are also contaminated with outliers. In principle, the
proposed robust framework can be applied on all of the afore-
mentioned SM-phase estimators, including ILS. This study
aims to introduce a new estimator and provide a proof of con-
cept for ILS SM-phase estimation; further comparison between
different estimators and their robust implementation is beyond
the scope of this study.

Regarding computational time of different methods, it is
difficult to give an accurate and fair analysis as it strongly
depends on the implementation of the different methods. An
indication of the relative computational times of different esti-
mators applied on the simulation of this study is summarized
in Table I. We see that the main drawback of ILS with respect
to other estimators is its high computational time, which is ap-
proximately seven times higher than the ML and ISB methods
in our implementation. In this context, recent advances in the
implementation of fast ILS estimation algorithms, e.g., [53],
can be considered.

6) On the Posterior Assessment of the Results: Fig. 11 shows
the temporal coherence γ̂PTA [see (29)] for both simulation
scenarios. A low value of γ̂PTA indicates a large disagreement
between the observations and the estimated parameters and
so unreliable SM-phase estimation. The source of these large
residuals can be related to the erroneous estimation of ambi-
guities in the second step of ILS SM-phase estimation. When

Fig. 11. Temporal coherence γ̂PTA for the two simulation scenarios:
(a) exponential decay and (b) seasonal decay, over the simulated area of
50 × 50 pixels.

Fig. 12. Effect of the exclusion of unreliable estimates with γ̂PTA < 0.7 on
the final precision of ILS SM-phase estimation for the two simulation scenarios.
(a) Exponential decay. (b) Seasonal decay. By excluding the unreliable pixels,
the standard deviations are reduced and approaching the CRB, confirming that
the extended temporal coherence γ̂PTA can be used effectively for the final
selection of DS with reliable phase estimation.

ambiguities are mapped to the wrong integers, the quality of the
final estimation will be lower, and it will result in a low γ̂PTA.
Therefore, by excluding the pixels with low γ̂PTA, we can
remove unreliable pixels with erroneous SM-phase estimation.
Fig. 12 shows the effect of this exclusion on the final precision.
The threshold of γ̂PTA < 0.7 was used to exclude unreliable
estimates. We can see that the standard deviations were reduced
and they approach the CRB. These results confirm that the
temporal coherence γ̂PTA can be used effectively for the final
selection of DS with reliable phase estimation.
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Fig. 13. (Right) Study area over Torfajökull volcano, Iceland. Torfajökull is located at the Eastern Volcanic Flank Zone (EVFZ). The black dashed rectangle is
the location of the Envisat SAR scenes, while the black solid rectangle is the 40 × 26 km crop used in this study. (Left) Google Map view of the 40 × 26 km area
of interest in radar coordinate system.

Fig. 14. Distribution of temporal and perpendicular baselines of the radar
images used in the case study over Torfajökull volcano.

VII. CASE STUDY

We applied the ILS SM-phase estimation method to a stack
of 20 Envisat SAR images (track 324), covering the period be-
tween September 03, 2003, and July 28, 2010, over Torfajökull
volcano, Iceland (see Fig. 13). Torfajökull’s latest eruption
was in the 15th century, but the volcano caldera has been
subsiding at linear rates in recent years [54]. We coregistered
all slave images to an SM (July 04, 2007), which was chosen
to minimize the average value of perpendicular and temporal
baselines. The distribution of both temporal and perpendicular
baselines of the radar images is depicted in Fig. 14. The
crop used in the study is approximately 40 × 26 km wide
(see Fig. 13).

The multilooked phases for each pixel are computed by
spatial averaging over SHPs detected by Kolmogorov–Smirnov
test, cf., [18]. The weight matrix was constructed based on
estimated coherence values, using (27). In order to reduce
the spatially variable signal within the multilooking areas, the
topographic phase component is computed and subtracted from

Fig. 15. Temporal coherence γ̂PTA for all pixels over the Torfajökull area.
Higher values (≥ 0.7) indicate pixels with reliable SM-phase estimation. These
pixels are selected as candidate coherent DS.

all of the interferograms, using a 25-m digital elevation model
from the national land survey of Iceland. We also apply the
defringe algorithm presented in [43] during the multilooking
step. After SHP selection and multilooking, we applied the
ILS SM-phase estimation using all of the interferometric com-
binations. Then, for pixels with more than 50 SHP (in order
to have a large number of looks), we replaced the phase of
the original SM interferograms with the phase estimates of
ILS SM-phase estimation. In order to evaluate where the SM-
phase estimation is more effective, we plotted the γ̂PTA for all
pixels in Fig. 15. The higher values (e.g., γ̂PTA≥0.7) indicate
pixels with reliably estimated SM-phases, hence candidates to
be selected as coherent DSs. Fig. 16 shows four examples of re-
constructed interferograms compared with the original single-
looked interferograms. Visual investigation of these examples
shows that SM-phase estimation can significantly improve the
coherence by effectively filtering the noise components.
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Fig. 16. Four examples of reconstructed interferograms by ILS SM-phase estimation (bottom row) compared with the original single-looked interferograms
(top row). These examples show that the SM-phase estimation can significantly improve the coherence by effectively filtering the noise components.

Fig. 17. Comparison between the velocity map applying StaMPS PS process-
ing using (a) original single-look SM interferograms and (b) SM interferograms
after ILS SM-phase estimation. The average velocity of the whole crop was
used as a reference. The white rectangle shows the main subsiding area. The
density of points improved from 32 000 to 72 000 (3300 to 13 000 in the
deforming area). The deformation time-series of points P1 and P2 are plotted
in Fig. 18(a) and (b).

In order to evaluate the added value of SM-phase estimation,
we compare the results with the results with standard PSI
processing when no SM-phase estimation is applied. For PSI
processing, the StaMPS software was used [55], [56]. Both
methods estimate a deformation of ∼10 cm in seven years.
Within the volcano caldera, the surface is subsiding with a rate
of ∼15 mm/year (attributed to a possible crystallization of a
magma reservoir [54]). In order to have fair comparison, the
same processing setup and selection criteria were used for both
methods, except that, for the processing with SM-phase estima-
tion, we also used an additional selection criterion, i.e., γ̂PTA ≥
0.7, on pixels with a number of SHP larger than 50. The final
results are shown in Fig. 17, where the LOS velocity maps are
plotted. These velocities are relative with respect to the average
velocity of the whole crop. Using the standard method with
single-looked interferograms, ∼32 000 coherent pixels were

identified in contrast with ∼72 000 identified coherent pixels
via ILS SM-phase estimation. Over the main deforming area
(the white rectangles in Fig. 17), the number of coherent pixels
improved from 3300 to 13 000. Improvements in point density
increase redundancy, leading to better precision, enhance the
quality of the phase unwrapping and atmospheric removal, and
allow the detection of spatially high-frequency deformation
signal. Moreover, a higher density in the deforming areas can
introduce more constraints in geophysical interpretation and
subsurface modeling.

One of the main advantages of the ILS method is that it
provides the precision or the full covariance matrix (i.e., Qb̂) of
the inverted interferometric phases via (20). These matrices can
be used as a proper weight matrix in further postprocessing or
geophysical modeling of time-series InSAR results. Fig. 18(a)
and (b) demonstrates two deformation time-series associated
with the two pixels P1 and P2 identified with white dots in
Fig. 17(b). The coherence matrix and the full covariance matrix
of the inverted phases of these two pixels are visualized in
Fig. 18(c)–(f), respectively. We should note that the Qb̂ in
(20) is a function of the baseline configuration used in the
estimation (via B matrix), the weight matrix (W ), and the
covariance matrix of multilooked interferometric phase (Qy);
the latter itself is a function of the target coherence matrix (C)
and the number of looks (L). The difference in the covariance
matrix of the inverted phases for pixels P1 and P2 is due to
the different coherence matrices and different number of looks,
which are 113 and 76 for P1 and P2, respectively. The higher the
number of looks is, the smaller the variances are. The variable
coherence structures and number of looks among detected DS
result in deformation time-series with variable quality in time
and space. Consequently, with DS, we are dealing with a set
of deformation estimates with highly variable precision in time
and apace. This important fact should be considered in further
interpretation of the DS results.
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Fig. 18. Two example deformation time-series associated with (a) point P1 and
(b) point P2 identified with white dots in Fig. 17(b). The coherence matrices
of these two pixels are visualized in (c) and (d), and their full covariance
matrices are visualized in (e) and (f), respectively. The phase covariances in
(e) and (f) have been converted to square centimeters. The master image for
construction of covariance matrices in (e) and (f) is the master image indicated
in Fig. 14. (a) P1 deformation time-series. (b) P2 deformation time-series.
(c) P1 coherence CP1. (d) P2 coherence CP2. (e) P1 covariance Qb̌P1

.
(f) P2 covariance Qb̌P2

.

VIII. CONCLUSION

We have proposed a new method for estimating the SM
interferometric phases from MM interferogram stacks, based
on the ILS principle. The main advantages of ILS SM-phase
estimation are the flexibility to be applied on any subset of
interferograms and the quality description via the provision
of a full covariance matrix of the estimates. The obtained
covariance matrices can be further propagated to other InSAR
derived parameters and can play an important role in the further
postprocessing or geophysical modeling of time-series InSAR
products. Via a simulation study, we have shown that the ILS
SM-phase estimator is unbiased, and the closeness of the vari-
ance of its residuals with the lower CRB demonstrates the ef-
ficiency of the proposed approach. We have also demonstrated
and discussed the influence of different factors such as detrend-
ing, weighting, and coherence bias on the efficiency of the ILS
method. We have proposed a weighting strategy based on the

Fisher information index of multilooked interferometric phases
and have demonstrated its efficiency. We have also compared
the efficiency of the ILS with alternative estimators. The results
show comparable or higher precision and efficiency for ILS
compared to other estimators. The main drawback of the ILS
approach is its high computational time, which needs to be
improved. The proposed method has been successfully applied
to a stack of interferograms over Torfajökull volcano in Iceland,
resulting in double the number of detected coherent pixels with
respect to conventional PSI.

APPENDIX A
IB ESTIMATOR

IB is an estimator to solve integer minimization problems
with the form of

ǎ = argmin
a∈Z

‖â− a‖2Wa
(30)

where

â = [â1â2 . . . ân]
T . (31)

If Wa is a diagonal matrix, the solution of this minimization
can simply be computed by rounding the entries of â to their
nearest integer. However, in case of a full Wa, the nearest
integer should be searched considering the mutual correlation
among entries of â, represented by off-diagonal elements in
Wa. In order to do so, the IB estimator uses the concept of
sequential conditional rounding, and the solution is computed
as follows. First, the first entry â1 is rounded to its nearest
integer. After that, all other elements of â are corrected based on
their correlation with the first entry. Then, the second corrected
entry is rounded to its nearest integer, etc. This sequence
of corrections and roundings can be written mathematically
as [57]

b̌B =

⎡
⎢⎢⎢⎣
b̌B,1

b̌B,2

...
b̌B,n

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

nint(â1)
nint

(
â2 − l21(â1 − b̌B,1)

)
...

nint

(
ân −

n−1∑
i=1

lni
(
âi|I − b̌B,i

))

⎤
⎥⎥⎥⎥⎥⎦ (32)

where nint(·) is the nearest-integer rounding operator. The no-
tation âi|I stands for the ith real-valued entry obtained through
a conditioning on the previous I = 1, . . . , i− 1 sequentially
rounded entries. The elements lji are entries of a unit lower
triangular matrix L computed from an LDLT -decomposition
of Wa = LDLT .

APPENDIX B
CONSTRUCTION OF COHERENCE MATRICES

For the construction of the coherence values, four decorrela-
tion sources were assumed.

1) Thermal or system decorrelation: the influence of thermal
noise on system coherence depends on the signal-to-noise
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(SNR) as [58]

γthermal =
1

1 + SNR−1 . (33)

The value for SNR is dependent on system parameters
and radar scene’s radar cross section (SCR), the latter
varying subject to terrain characteristics. In this paper, we
have assumed the system parameters of the ERS satellite
(as reported in [48] and [59]) and an SCR of −14 dB,
resulting in an SNR of 12 dB and a γthermal of 0.92.

2) Coregistration-induced decorrelation: this is mainly a
function of the accuracy of image coregistration. As-
suming subpixel coregistration accuracies of σcoreg,a and
σcoreg,r in azimuth and range directions, the decorrelation
induced by coregistration γcoreg is computed as [33], [48]

γcoreg = sinc(σcoreg,a)sinc(σcoreg,r). (34)

For the noise simulation here, we have assumed a coreg-
istration accuracy of 0.1 resolution cell in both azimuth
and range directions, resulting in γcoreg = 0.96.

3) Geometric decorrelation: The geometric or baseline
decorrelation is a result of different incidence angles
between the two radar paths at the Earth’s surface. For
an interferometric pair of two radar images, geometric
decorrelation is defined as [48]

γgeom = max

(
1− |B⊥|

B⊥max

, 0

)
(35)

where B⊥ is the perpendicular baseline between two im-
ages and B⊥max

is the critical baseline. In this simulation,
the critical baseline is assumed as 1.1 km, which is equal
to the ERS critical baseline for flat terrains. Perpendicular
baselines are simulated randomly as normally distributed
with zero mean and standard deviation of 300 m.

4) Temporal decorrelation: As the range of physical mech-
anisms causing temporal decorrelation is too wide, there
is no single analytical model to evaluate coherence loss
induced by this effect. In this paper, we have assumed
two arbitrary scenarios for temporal decorrelation: expo-
nential decay and seasonal decay. In case of exponential
decay, the temporal coherences are modeled as [60]

γtemp = e
BT
τ (36)

where BT is the temporal baseline and τ is the decor-
relation rate, assumed here to be 200 days. For the
seasonal-effect scenario, it is assumed that the coherence
is exponentially decreasing but has also some seasonal
variation. This is realistic for areas with some degree of
coherence during winter but very low coherence during
summer or vice versa. Such behavior has been observed
by [61] in pasture areas.

After computing all of the aforementioned coherences, the total
simulated coherence (γsim) is derived as

γsim = γthermalγcoregγgeomγtemp. (37)

By computing the γsim for all of the interferometric com-
binations and for the two temporal decorrelation scenarios,
we construct the two coherence matrices Ce and Cs for the
exponential-decay and seasonal-decay scenarios, respectively,
visualized in Fig. 2.
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