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Modeling Automated Driving in Microscopic Traffic
Simulations for Traffic Performance Evaluations:

Aspects to Consider and State of the Practice
Haneen Farah , Ivan Postigo , Nagarjun Reddy , Yongqi Dong , Clas Rydergren ,

Narayana Raju , and Johan Olstam

Abstract— The gradual deployment of automated vehicles on
the existing road network will lead to a long transition period in
which vehicles at different driving automation levels and capabil-
ities will share the road with human driven vehicles, resulting into
what is known as mixed traffic. Whether our road infrastructure
is ready to safely and efficiently accommodate this mixed traffic
remains a knowledge gap. Microscopic traffic simulation provides
a proactive approach for assessing these implications. However,
differences in assumptions regarding modeling automated driving
in current simulation studies, and the use of different terminology
make it difficult to compare the results of these studies. Therefore,
the aim of this study is to specify the aspects to consider for
modeling automated driving in microscopic traffic simulations
using harmonized concepts, to investigate how both empirical
studies and microscopic traffic simulation studies on automated
driving have considered the proposed aspects, and to identify the
state of the practice and the research needs to further improve
the modeling of automated driving. Six important aspects were
identified: the role of authorities, the role of users, the vehicle
system, the perception of surroundings based on the vehicle’s
sensors, the vehicle connectivity features, and the role of the
infrastructure both physical and digital. The research gaps and
research directions in relation to these aspects are identified and
proposed, these might bring great benefits for the development
of more accurate and realistic modeling of automated driving in
microscopic traffic simulations.

Index Terms— Microscopic traffic simulation, automated
driving, automated vehicles, traffic flow performance, mixed
traffic.

I. INTRODUCTION

OVER the years, embedding of automation systems and
communication technologies in automobiles has enabled
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them to evolve into automated vehicles. While the develop-
ment towards driving automation is progressing at full speed,
researchers, road operators, and the automotive industry have
realized that a wide deployment of automated vehicles on
existing road networks will be gradual [1], [2]. There are many
reasons for this, among others, the need to have a suitable
road infrastructure [3], [4], the acceptance and trust of the
users of these systems [5], [6], and the need to define suitable
regulations and legislation frameworks [7], [8]. A gradual
deployment will result in a reality of mixed traffic consisting of
vehicles at various levels of driving automation coexisting with
human driven vehicles. The questions that arise are whether
this mixed traffic can be safely accommodated on the existing
road infrastructure, and how it would affect traffic efficiency,
traffic safety, equity, and the environment.

Currently, there is limited possibility for field observations
on public roads regarding the performance of automated
vehicles and their effects on the traffic flow. Waiting until there
are enough vehicles at different levels of driving automation
operating on real roads to investigate their impact would be a
reactive and unethical approach given the safety risks, and
the risks of wasting significant budgets. Hence, alternative
proactive approaches should be taken to assess the effects
caused by the presence of automated vehicles.

Microscopic traffic simulation, henceforth also referred to as
traffic simulation, provides a proactive approach for assessing
the implications of mixed traffic on traffic efficiency, safety,
equity, and the environment. Many studies in the literature
have used traffic simulations to estimate the possible impacts
of automated vehicles on traffic efficiency and safety [9], [10],
[11], [12]. Nevertheless, it is difficult to compare the results
from different studies due to differences in assumptions,
and the use of different terminology [13], [14]. Since field
observations are limited, several assumptions are made for
modeling automated driving which are not always specified
nor described. Terminology related to driving automation is
sometimes used inconsistently and different terms related to
the same concepts can be found in the literature, adding
and extra dimension that complicates comparisons between
studies. Thus, there is a need to identify and structure how
different aspects that affect automated driving are considered
in traffic simulations using well-established terminology.

The aim of this study is first to specify aspects to con-
sider for modeling automated driving in microscopic traffic
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simulations using harmonized concepts. Empirical studies (i.e.,
field/road tests) on automated driving provide useful insights
and data for modeling and calibration of automated driving
in traffic simulation. Hence, the second aim is to investigate
how both empirical, and microscopic traffic simulation studies
on automated driving have considered the proposed aspects
and identify the state of the practice. The third aim is to
identify and highlight the research needs to further improve
the modeling of automated driving. In addition, the article also
aims to encourage the inclusion of a more detailed description
of aspects considered in future traffic simulation studies of
automated driving using harmonized concepts and definitions.
It is not the intent of this paper to provide a full literature
review, but rather to use the literature to identify the relevant
aspects for modeling automated driving in microscopic traffic
simulation for traffic performance evaluation, and the common
practices and research needs in this respect.

The focus of this study is on the modeling of automated
driving in traffic simulations. Although, accurate and realistic
modeling of the human driving behavior is of high relevance
and importance for evaluating the safety and efficiency of
mixed traffic, this is not addressed in this study. For studies
on the modeling human driving behavior the reader is referred
to [15], [16], [17], and [18].

The remaining sections of this article are structured as
follows; section II presents a list of terms and concepts used
to describe the proposed aspects to consider for modeling
automated driving which are presented in Section III. section
IV reviews how the proposed aspects have been considered
in both microscopic traffic simulation studies including auto-
mated vehicles as well as in empirical studies on automated
vehicles that entail useful information, either as input for
modeling or for setting up simulation experiments. In section
V we discuss the state of the practice and identify the research
needs. Lastly, section VI concludes the article by summarizing
the main findings and research needs.

II. TERMINOLOGY AND CONCEPTS

This section presents a short list of key terms and concepts
used throughout this article, for a more extensive list of
functional definitions and terms related to automated driving
the reader is referred to [19].

Automated vehicles are assumed to have some level of con-
nectivity ranging from simple navigation features to advanced
functions for cooperative driving, in this article we use the
term automated vehicle independently of the level of connec-
tivity. Additionally, an automated vehicle refers to a vehicle
capable of automated driving at any level of automation.

The Society of Automotive Engineers (SAE) defines five
levels of driving automation for on-road motor vehicles [19].
The five levels differ in the capabilities of the driving automa-
tion systems to handle the different dynamic driving tasks
(DDTs). The DDTs are defined as all the real-time operational
and tactical functions required to operate a vehicle which
include the lateral and longitudinal motion controls as well
as the object and event detection and response (OEDR), and
exclude the strategic functions such as the route selection.

The driving automation systems are those that handle spe-
cific DDTs at any SAE level of driving automation (e.g.,
an adaptive cruise control (ACC) system), in contrast, the
term automated driving system (ADS) refers to the system that
handles all of the driving functions and is reserved for SAE
levels 3, 4, and 5. At SAE level 1 the driver is responsible for
the OEDR and for either the lateral or the longitudinal motion
control of the vehicle. At SAE level 2 both the lateral and
longitudinal motion controls are automated while the driver is
still responsible for the OEDR. At higher levels of automation
(i.e., SAE levels 3-5), the ADS is responsible for all DDTs.
At SAE level 3, however, the ADS still requires the driver to
monitor the OEDR and eventually take control of the vehicle.
At SAE level 4, the ADS is able to safely handle all DDTs
without human intervention as longs as the vehicle is cruising
within its operational design domain (ODD). Vehicles at all
SAE levels of driving automation have a restricted ODD,
except at SAE level 5. In other words, only vehicles at SAE
level 5 of driving automation are capable of handling all types
of situations and conditions at all times.

The operational design domain (ODD) is defined by the
SAE as the operating conditions under which a given driving
automation system or feature thereof is specifically designed
to function, including, but not limited to, environmental,
geographical, and time-of-day restrictions, and/or the req-
uisite presence or absence of certain traffic or roadway
characteristics [19]. The ODD is specified by the original
equipment manufacturers (OEMs) and describes the specific
conditions under which the ADS can operate [20], [21].
Therefore, the performance of vehicles at the same SAE level
of driving automation can greatly differ since it depends on
the capabilities of the ADSs designed by specific OEMs.
Some comprehensive lists of criteria that should be contained
in the description of the ODD have been proposed in the
literature [21] [22], [23].

The road infrastructure can improve the performance of
the ADSs by providing additional information about the
traffic and the road environment conditions. In this respect,
a classification scheme with five levels of infrastructure sup-
port for automated driving (ISAD) has been proposed by
Carreras et al. [3]. ISAD level E refers to the conventional
infrastructure without any support for automated driving. The
availability of digital maps with static regulatory information
(e.g., speed limits) is assigned to ISAD level D. At ISAD
level C the infrastructure provides all dynamic and static
information fully digitalized. At ISAD level B the infrastruc-
ture is in addition, able to perceive detailed traffic situations
through dedicated sensors and provides this information to
the vehicles, enhancing their perception. At ISAD level A,
the infrastructure is capable of perceiving vehicle trajectories
and guiding automated vehicles individually or by groups,
optimizing the overall traffic efficiency.

III. ASPECTS TO CONSIDER FOR MODELING

AUTOMATED DRIVING

Several factors can influence how an automated vehicle
performs each DDTs under specific situations. OEMs need
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Fig. 1. Six aspects (A-F) to consider for modeling of automated driving in
microscopic traffic simulation.

to take these factors into account when developing ADSs
and defining the ODD of the vehicle. In traffic simulation,
including all factors affecting the operation of an automated
vehicle with high level of detail might not be feasible, and
would be neither practical nor necessary. This approach is not
unique for automated driving but applies also for the traffic
simulation of human driving, for example, the interaction
between the driver and the vehicle is commonly neglected,
and they are considered together as a driver-vehicle unit. It is
important to consider those factors that will have impacts
on the traffic flow dynamics, particularly when assessing the
implications on traffic efficiency and safety. Hence, as in the
modeling for human driving, traffic simulation models for
automated driving need to consider relevant aspects at an
adequate level of detail and include a clear description of the
assumptions considered.

Six aspects to consider for the modeling of automated
driving in microscopic traffic simulations are identified in this
article, as shown in Figure 1: the role of authorities, the role of
users, the vehicle system, the perception of surroundings based
on the vehicle’s sensors, the connectivity features, and the role
of the infrastructure both physical and digital. The last three
aspects determine the interpretation of the automated driving
context which comprises the information that an automated
vehicle perceives about its path and its surroundings in terms
of infrastructure elements, environmental conditions, fixed
and moving objects (including the surrounding traffic), and
the state of the driver. The automated driving context for
automated vehicles is equivalent to the situational awareness
for human driving. The situational awareness refers to what a
driver perceives that influences their driving behavior, while
the automated driving context refers to all the information an
automated vehicle perceives to perform each DDT.

The six identified aspects focus on the tactical and opera-
tional levels of the driving efforts as proposed in the structure
by Michon [24], and as in the definition of DDT by the

SAE. Additional aspects might be needed to include the
strategic driving efforts. It is important to highlight that the
identified aspects are not independent from one another, and
that interdependencies and overlaps between them do exist.
However, addressing these interactions is out of the scope of
this paper.

As shown in Figure 1, the six aspects together define the
operational and safety constraints for automated driving. These
constraints define if automated driving is possible for all or
some of the DDTs under the current context considering the
ODD. The automated driving and human driving boxes in
Figure 1 represent how each DDT is handled as a result of all
the considerations taken within each aspect. This can range
from that all DDTs are handled by the ADS (i.e., SAE level
3 or higher) to that all DDTs are handled by the human driver
and cases in which some DDTs are handled by the human
and some by a driving automation system (i.e., SAE level 1-
2). The range is indicated by the three arrows between the
Operational and Safety constraint box and the Automated /
Human Driving box in Figure 1.

With the exception of the vehicle system, the aspects
are location- and situation-specific, thus, how the DDTs are
handled will vary in time and space. Automated driving does
not have to be static, and could dynamically change along the
route depending on the conditions. The current driving context
can be perceived as unsafe or can be infeasible for which a
transition between driving modes (from automated driving to
human driving, or vice versa) might be necessary or desirable.
If automated driving is possible, the different aspects might
enforce constraints for safe operation and thereby influencing
the range of possible actions to handle the DDTs. These
constraints can be seen as a subset of the vehicle’s ODD
specification. In cases outside of the ODD a transition from
automated driving to human driving needs to occur, this
momentary transition has its own modeling approach. The
transition can be initiated either by the driver or by the ADS
if the operation of the vehicle is not perceived as safe or not
accepted for other reasons. At lower SAE levels of driving
automation (1-3) some DDTs are handled by a human while
others by a driving automation system, thus, it is possible that
both human driving and automated driving take place at the
same time each handling different DDTs.

Descriptions of the six aspects shown in Figure 1 are
presented in more detail in the following sub-sections.

A. Authorities

This aspect considers the laws, policies and norms that
regulate automated vehicles. These regulations could be as
explicit as restricting automated driving to certain areas or
certain lanes (i.e., geofencing the ODD), they could also be
detailed about how automated driving should take place, for
example, by restricting the maximum speed, the minimum
distances between vehicles, etc. Laws assigning responsibil-
ities to the OEMs and to the drivers could influence the
operation of automated vehicles as well as the compliance
of location-specific traffic regulations, both static (e.g., speed
limits) or dynamically controlled via traffic controllers or
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traffic management centers (TMCs) (e.g., variable speed limits
(VSLs)).

B. User Acceptance and Preferences

The user acceptance aspect is related to the trust, prefer-
ences, and comfort of the driver, passenger, owner, or fleet
manager of automated vehicles. Passengers might be able
to specify their preferences with respect to how they would
like to be driven. Similar to conventional vehicles, which
often offer different settings as sport driving or eco-driving,
automated vehicles might have pre-set driving styles. Some
features could be enabled or disabled based on preferences
for safety, for efficient power usage, or for comfort. More
advanced interfaces could allow the user to tweak or set
parameter values in the ADS as they most see fit (e.g., time-
headway, acceleration and speed settings). Users will be able
take back control from the ADS if they so prefer, or override
some driving automation systems, for example, by pressing
the gas pedal to increase the speed or overtake.

This aspect also considers the level of acceptance and
the interactions of other road users with automated vehicles.
Human drivers might adapt their driving behavior or change
their decisions for various maneuvers when they interact with
an automated vehicle. Automated vehicles might be equipped
with external human machine interfaces (eHMIs) which are
relevant when discussing behavioral adaptation as they allow
other road users (i.e., human drivers, cyclists, and pedestrians)
to identify an automated vehicle.

C. Vehicle System

The vehicle system aspect considers the characteristics and
technologies of the ADS and driving automation systems
of the vehicle. Also the type of vehicle, the SAE level of
automation, the physical appearance, the size, and the weight
of the vehicle. The ODD specification of the vehicle is a key
consideration of this aspect, which is defined by, among others,
the sensor system, braking system, steering system, suspension
system, tires, powertrain, and hardware and software of the
driving automation systems.

D. Vehicle Sensor-Based Perception

Some the most commonly implemented sensors in auto-
mated vehicles are cameras, radar, lidar, and ultrasound. This
aspect refers to the perception achieved by the sensors of the
vehicle, or the object and event detection part of the OEDR
done by different sensors, and not to the sensors themselves.
The ADS of automated vehicles at SAE levels 3 to 5 should
be able to perform all DDTs based entirely on the vehicle
sensor-based perception and is therefore critical for automated
driving.

The sensors track the relative position, the relative speed and
motion of surrounding vehicles or objects, and also recognize
what these objects are. Different sensors have different range
of detection, achieve different levels of accuracy, and operate
optimally under specific conditions. When conditions are not
ideal (e.g., heavy rain, fog, occlusion), the detection and

therefore the perception of the automated driving context
might not be accurate. Additionally, OEMs that equip vehicles
with the same set of sensors, may implement different software
solutions for interpretation, resulting in different performance
of the vehicle sensor-based perception.

E. Vehicle Connectivity
On board sensors provide information limited to line-

of-sight surroundings and with limited range. Information
received through wireless connectivity could provide informa-
tion about the entire route and an extra layer of perception for
all strategic, tactical and operational decisions.

Vehicles could communicate with other vehicles, with other
road users, and with the infrastructure (vehicle-to-everything
(V2X) communication). Depending on the information shared,
different applications like cooperative driving, extended per-
ception, and remote driving could be enabled. Vehicles could
for example share information about their capabilities, their
route, their intended maneuvers, or about their current per-
ception. Vehicles could receive information about weather
conditions, traffic states, emergency services, traffic signal
states, incidents, speed limits, map information, etc.

The protocol on which this information is transferred (e.g.,
Wi-Fi, LTE, NR), might affect coverage, error rates, and
latency. Depending on how the information is used, the error
rates and latency could influence the operation of the vehicle.

F. Physical and Digital Infrastructure
The physical infrastructure considers the geometric design

of the roads and the road environment (i.e., urban, rural, motor-
way). On motorways or major arterials with one directional
traffic, with absence of pedestrians and with few traffic signals,
vehicles deal mostly with keeping safe distances, staying
within the lane, and eventual lane changes and merging.
On urban roads, vehicles need to keep track of trees, parked
vehicles, bicycles, pedestrians, etc. The state of the physical
infrastructure (e.g., quality of lane markings, pavement quality,
visibility of traffic signals and traffic signs), can also influence
the operation of the vehicle.

The digital infrastructure considers the static and dynamic
digital representation of the physical world with which the
vehicle interacts. This includes high-definition maps, dynamic
traffic information, advanced advice related to optimum rout-
ing, sensors in the infrastructure, etc. [25]. The digital
infrastructure enables not only the transmission of detailed
information to vehicles, but also the required sensoring and
data collection of the information to be transmitted. Detailed
3D information of road geometry allows the vehicle to antici-
pate slopes and curves, plus HD maps and simultaneous local-
ization and mapping (SLAM) help the vehicle keep track of
its location. Furthermore, infrastructure at higher ISAD levels
allow for enhanced perception, and more accurate information
both static and dynamic, throughout the entire route.

IV. HOW HAS PREVIOUS WORK CONSIDERED

THE ASPECTS

In this section we present a literature review aimed to
identify how the proposed aspects have been considered in
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studies that have presented microscopic traffic simulations of
automated driving, as well as the effort from empirical studies
and field tests that have focused on automated driving.

A main benefit of conducting empirical investigations and
field tests is that they provide real data closest to the ground
truth. However, empirical work and field tests require a lot
of effort, resources, and often have a narrow scope. On the
other hand, investigations based on traffic simulations are less
expensive to conduct and provide large amounts of data. The
downside is that results obtained from simulations are only
as good as the mathematical models involved and as the
assumptions made behind them. Strategies to deal with the
attached uncertainties when modeling automated driving in
traffic simulations have been proposed in Mintsis [26] and in
Olstam et al. [27]. The proposed strategies are based on the
limited available empirical data and/or on recommendations
from OEMs. Therefore, investigations based on traffic simu-
lations not only greatly benefit from but also require findings
of empirical work.

The number of studies that have conducted field tests with
automated vehicles are fewer in comparison to the studies
that have used traffic simulations. Empirical work and field
test studies found in the literature have often used controlled
scenarios (i.e., a closed test track) to collect data, or took
place at operation research testbeds which are limited in
number around the world. If conducted in public roads, it has
been under several restrictions to guarantee the safety of
other road users. The findings of many empirical studies can
directly be related to some of the proposed aspects. The
studies have focused on the interactions between humans and
automated vehicles, on the performance of driving automation
systems in different environments, and on the implications of
connectivity.

The main focus of microscopic traffic simulation studies
found in the literature has been on assessing the effects caused
by automated vehicles with respect to traffic safety, traffic
efficiency and environmental impacts. The focus has mainly
been on investigating light vehicles (i.e., cars) cruising on
motorways and on urban roads. Some of the proposed aspects
have been considered more thoroughly than others, either by
including them in the model for automated driving, or in the
experimental setup of the simulations.

In the following sub-sections we present aspect by aspect
how each one has been commonly considered in studies that
have used traffic simulations, as well as related findings from
empirical studies.

A. Authorities

Investigations using traffic simulation of automated driving
have seldomly explicitly mentioned the role of the authori-
ties in their experiments. traffic management centers (TMCs)
which play the role of the authorities, are often assumed
to have detailed information about the state of the traffic,
about vehicles, about maneuver intentions, positions, current
speeds, desired routes, etc. Dynamic control strategies have
been investigated using traffic simulations based on this more
detailed information and beyond traditional traffic indicators.

Grumert et al. [28] and Han and Ahn [29] presented traffic
simulations on VSL systems including connected vehicles and
the assumption made was that vehicles always comply with
the VSL recommended speed. This was modeled by adjust-
ing the desired speed parameter according to the dynamic
strategy of the VSL during the simulation. Similarly, in Lee
et al. [30] automated vehicles accommodate their driving to
the level of aggressiveness allowed (or recommended) for
automated driving by the authorities based on the observed
state of the traffic. The change in aggressiveness is done
by changing gap-related and acceleration parameters in the
driving model, also during the simulation. Traffic simulations
on signal control schemes at urban intersections [31] and
on road hazard warning systems [32] included mixed traffic
and implemented specific responses for automated vehicles
during the simulations, such as change of speed, acceleration
or deceleration, or lane changes. In Khattak et al. [33] a
centralized cooperative driving strategy was investigated in
which connected vehicles were diverted into specific lanes
during the simulation based on the state of the traffic, again
assuming full compliance.

The role of the authorities has also been considered in the
experimental setup of the simulations and not just by making
changes in the model for automated driving. In Ramezani [34]
and in Ma and Wang [35], authorities define the areas where
automated driving is permitted (i.e., geofencing), in this case
automated vehicles were allowed only in specific lanes of the
motorway.

In empirical studies there is seldomly consideration of
the role of authorities. However, some have collected data
from field tests about dynamic regulations. Their findings
can be used to validate the findings from traffic simulation
studies. In Zhao et al. [36] vehicles connected to signalized
intersections in an arterial corridor receiving speed advise
had a significant reduction in fuel consumption and emissions
compared to non-connected vehicles. Qi et al. [37] conducted
a field test in an interstate corridor in the U.S. to evaluate
overall traffic conditions, safety and the operational impacts of
a VSL system on both connected and non-connected vehicles,
and found that the VSL system improved traffic operation even
at a low penetration rate of connected vehicles.

Testing with automated vehicles on public roads, and espe-
cially when new technologies are involved, requires the admit-
tance and approval of the relevant authorities. For example, the
Netherlands Vehicle Authority - RDW [38] and the Swedish
Transport Agency [39] have developed admittance procedures
for practical tests for vehicles with new technologies and
functionalities on public roads. The licensing authority may
approve testing of automated vehicles on only specific types of
roads, traffic conditions or weather conditions to guarantee the
safety of all road users. In such cases the automated vehicles
must adhere to the road regulations and the traffic rules.

B. User Acceptances and Preferences

The user acceptance or preferences is another aspect that is
not often considered in investigations using microscopic traffic
simulations including automated vehicles. A common implicit
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assumption is done by including scenarios with varying market
penetration rates of automated vehicles in the experimental
setup of the simulations [30] [40], [41], [42], [43]. An increas-
ing market penetration rate implies that automated vehicles are
adopted and accepted by other road users and the society.

Acknowledging that users can change settings on the driving
automation systems of the vehicle is another way this aspect
has been considered. In Kesting et al. [44] the model for
the ACC controller used in traffic simulations differenti-
ates between two parameters, a required acceleration and
a comfortable acceleration. This comfort setting could be
set by the passenger. Also dealing with passenger comfort,
Nguyen et al. [45] used microscopic traffic simulations to
investigate effects on travel delays for different passenger
comfort requirements in an automated public transport system,
by including changes in parameters on acceleration.

In traffic simulations that considered transitions of control
from automated driving to human driving [26], [46], the
transition is modeled by introducing a more erratic driving
during a defined short period, representing a driver becoming
aware of the situation until taking control of all driving
tasks.

With respect to the transition of control, Varotto et al. [47]
collected driver behavior data to analyze and quantify the
magnitude and duration of adaptations in driving behavior
characteristics (e.g., speed, acceleration, headway) during the
transition of control from a full-range ACC system, finding
significant changes in driver behavior characteristics and pro-
viding quantitative values. The frequency of transitions of
control, the driving conditions that lead to these transitions
of control, and the magnitude and duration of adaptations
in speed, acceleration, distance headway and relative speed
were investigated. When drivers deactivate the full-range ACC
system the speed decreased significantly and it increased
significantly after the system was overruled by pressing the gas
pedal. Findings indicate that drivers prefer to resume to manual
control at low speeds to avoid potentially safety-critical traffic
situations [48], when approaching a slower leader [49], [50],
and when changing lanes [51]. Drivers also tend to regulate
the driving speed when changing lanes [52], [53]. Studies
have also analyzed disengagement and accident reports of
commercial automated vehicles [54], [55]. Dixit et al. [54]
found the lack of trust to increase likelihood of the driver
to take control of the vehicle. Increase in traveled miles was
found to increase takeover reaction time suggesting increase
in trust on the vehicle.

Empirical studies have also investigated the interaction of
human drivers with automated vehicles. The trust on auto-
mated vehicles could affect these interactions [56], [57]. For
example, Rahmati et al. [56] found that the car-following
behavior significantly changes when following an automated
vehicle. Human drivers felt more comfortable following the
automated vehicle (i.e., drove closer to them and put less
weight on the crash risk). Additionally, the investigation
included a traffic simulation experiment with these findings
which highlight the importance of including the human behav-
ior adaptation when considering mixed traffic conditions.
Zhao et al. [57] and Wu et al. [58] found that significant

changes in driving behavior only occurred when automated
vehicles were identifiable.

Other studies have investigated how the inclusion of external
human machine interfaces (eHMIs) on automated vehicles
affect the behavioral adaptation of other road users [59], [60],
[61], [62]. They found that eHMIs can improve interactions
with automated vehicles and that some aspects of the eHMI
such as the color, the position on vehicle (e.g., bumper, roof,
windshield), and the type of interface (e.g., text, image), can
affect these interactions.

C. Vehicle System

The vehicle system aspect is perhaps the most explored
aspect in traffic simulation studies. Even though the ADS
refers to the hardware and software that are collectively capa-
ble of performing the entire DDTs on a sustained basis [19],
the ADS has been widely reduced to an ACC system or
a cooperative adaptive cruise control (CACC) system (i.e.,
ACC enhanced by vehicle-to-vehicle (V2V) communication).
In traffic simulation studies the ACC or CACC is commonly
considered as the main driving automation system. In Bose and
Ioannou [63], the ACC was modeled by a throttle and brake
controllers, while non-ACC vehicles were modeled using the
Gipps car-following model [64]. The impact of CACC on the
traffic flow was investigated in van Arem et al. [65] using
a parametric model. In Kesting et al. [44] and Kesting [66]
a traffic adaptive cruise control (TSA-ACC) was proposed
and was modeled by changing the parameters on the ACC
model during the simulations. In Xiao et al. [67] the CACC
that provided driving automation included a collision warning
system where a fallback to human driving would occur. Gáspár
and Németh [68] considered an ACC controller that adapted
to both the traffic state and the topographic information.
An evaluation of different ACC systems using traffic simu-
lations is presented in Goñi-Ros et al. [69]. In some traffic
simulation studies, automated vehicles are explicitly differenti-
ated between connected and non-connected automated vehicles
[70], [71], [72], [73], [74]. However, often this differentiation
only refers to either an ACC or CACC system.

Few of the aforementioned studies describe or mention
the lateral motion control. Nonetheless, examples of studies
investigating lateral motion control systems dealing with lane
changing and merging maneuvers of automated vehicles are
Luo et al. [75] and Sun et al. [76]. They rely on V2X commu-
nication for cooperative maneuvers, or on the assumption that
other vehicles are implemented with the same lateral motion
controllers. Often the lateral motion control models used for
automated driving is the same used for human driven vehicles,
a research gap highlighted in Do et al. [77] with respect to
how to model automated driving in traffic simulations.

Another approach to describe and model the vehicle
system in traffic simulations is based on the expected
differences between automated driving and human driving.
In Olstam et al. [27] conceptual descriptions of four dif-
ferent types of driving behavior for automated vehicles
(Rail-safe, Cautious, Normal and All-knowing) were devel-
oped and implemented by adapting parameters in the
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Wiedemann car-following model and lane changing mod-
els [78], based on field tests of vehicles with ACC and
CACC and on general expectations. Some expectations are
the capability of automated vehicles to perfectly handle the
DDTs, the capability of shorter reaction times and always
react in the same way to every event, showing little variations
resulting into more deterministic models. Other examples in
which automated driving was modeled by changing parameters
in behavioral models for human driven vehicles include [40],
[41], [79].

The vehicle system in terms of e.g. the heterogeneity in
ADS logic has also been considered on the experimental
setup of traffic simulations, by conducting experiments where
automated vehicles all had the same ADS [80], [81], by con-
sidering more than a one ADS but only one at a time [40],
or by considering mixes of different types of ADSs coexisting
[12], [26], [27], [71].

In some to model the vehicle system has been proposed.
In Hallerbach et al. [82] a hybrid simulation framework
was proposed that incorporated vehicle dynamics simula-
tion, traffic simulation and cooperation simulation to iden-
tify critical scenarios for automated vehicles. The vehicle
dynamics simulation provided a digital prototype of the vehi-
cle system including driving functions, sensor setup, etc.
In Olstam and Elyasi-Pour [83] a model including truck vehi-
cle dynamics and a fuel minimization ACC for trucks was
coupled with Vissim [84] to study effects on traffic perfor-
mance and energy efficiency for different penetration rates.
In Mullakkal-Babu et al. [85] a lower operational layer with
steering and acceleration control were integrated into a traffic
simulation framework. Adding the nanoscopic or submicro-
scopic operational layer contributed to better simulating lateral
maneuvers (e.g., curve negotiation, corrective steering, lane
change abortion), and provided additional operational state
variables (e.g., vehicle heading, wheel steering angle) com-
pared to microscopic traffic simulations. There are also studies
that tried to enhance vehicle longitudinal motion modeling,
as the MFC model [86] or the model in Rakha et al. [87] which
include simplified modeling of the powertrain integrated with
power-based vehicle fuel consumption and emission models.

Empirical work found in the literature has conducted field
tests focused mainly on evaluating the performance of ACC
and CACC as driving automation systems. The study by
Shladover et al. [88] was among the first field test studies
which collected empirical data to the assess the impact of
ACC and CACC on traffic performance. Relevant variables
for defining the car-following control algorithms for ACC
or CACC vehicles were identified and implemented in the
AIMSUN [84] microscopic simulator. The identified variables
were: speed of the vehicle, desired speed set by driver,
speed limit of road, speed error, acceleration, spacing between
vehicles, desired spacing, spacing error, and desired time
gap. In Milanés and Shladover [89] data was collected also
from vehicles with ACC and CACC to derive models useful
for microscopic traffic simulations which included the delays
associated with sensor signal processing or vehicles actuators.
Shi and Li [90] conducted a field test with commercial ACC
systems and tested different headway settings, estimated a car

following model, and models for safety and string stability.
Stern et al. [91] showed in a field experiment that a longitudi-
nal controller can dampen the traffic instability and stop-and-
go waves caused by human driving. In Makridis et al. [92],
[93] the response time of the ACC controllers were quantified,
the string stability investigated and doubts about the positive
impacts of ACC systems on traffic flow efficiency were raised.
Similarly, He et al. [94] and Ciuffo et al. [95] found that ACC
systems will possible lead to higher energy consumptions,
introduce safety risks, and lead to string instability.

Other empirical work has focused on investigating the
effects of platoons which is an application of automated
driving. Knoop et al. [96] conducted a field test with vehicles
platooning and studied the string stability and fuel con-
sumption. Tiernan et al. [97] tested vehicles platooning and
proposed a control structure to suppress intra-platoon errors
in position and speed, and increase platoon stability without
compromising safety.

Recently, an open-access database (OpenACC) of different
experiments with vehicles equipped with state-of-the-art com-
mercial ACC systems has become available allowing to further
investigate the effects and properties of ACC systems [98].
In Gunter et al. [99] vehicles with ACC systems from different
OEMs were tested, in addition to investigating the string sta-
bility and disturbances, the data collected has also been made
available. Other open datasets of commercial projects such as
those by Waymo [100] and Lyft [101], [102] also provide
valuable data that can be used to better model automated
driving.

D. Vehicle Sensor-Based Perception

The sensor-based perception is commonly considered in
microscopic traffic simulations through parameters on detec-
tion range of other vehicles and objects. In Kesting [66]
the proposed ACC model considered radars with a range
of detection of 200 m, limited to detect only one vehicle
in front and track its speed every 0.1 seconds (10 Hz),
the model assumes sensors with negligible detection errors.
Rahmati et al. [56], Mahmassani [70], and Talebpour and
Mahmassani [74] described sensor systems with a detection
range of 90 m±2.5%, capable of tracking 64 objects every
50 ms (20 Hz) with a horizontal angle of view of 35 degrees,
automated vehicles were described to have six of these radars,
two facing the front, two facing the back, and one facing each
side of vehicle, however, in the included simulations only one
vehicle in front was detectable within the 90 m range and only
vehicles in the immediate adjacent lanes. Beyond the detection
range automated vehicles were forced to assume the existence
of an obstacle, which forced them to limit their speed. The
inclusion of ±2.5% in the detection range considers some
variability in the performance of the sensors, although perfect
detection was still assumed. The detection range considered
in Olia et al. [72] was set at 150 m after showing that if set
below 100 m the decelerations required would be very high if
obstacles are assumed beyond the detection range. In a similar
way, Ye and Yamamoto [103] considered the detection range
of the sensors at 120±2 m but enhanced the perception to
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300 m by assuming V2V communication. Bahram et al. [80]
included a four-lane motorway and limited the lateral detection
of vehicles to the adjacent lane and indicated that conflicts may
emerge if cutting in vehicles coming from the second lateral
lane were not detected.

Knauss et al. [104] did an investigation collecting data
from focus groups and interviews, as well as studying exist-
ing research publications to answer the question about the
challenges to be addressed for testing automated vehicles.
They found that the challenge related to sensors and sensor
models (used to simulate sensors) is among the top major
challenges. Berk et al. [105] states, however, that validating
sensor perception reliability with standard empirical tests is
very challenging and impractical due to the large required
test efforts, and the need for ground truth references to
identify potential errors. Nevertheless, some studies focused on
investigating the reliability of sensor systems can be found in
the literature. Wang and Li [106] analyzed data from Califor-
nia’s Autonomous Vehicle Disengagement Report Database to
establish a relationship between the cause of disengagements
from ADSs and the number of sensors on the vehicle. Their
findings indicated that to prevent disengagements, at least
5 radar sensors and 3 lidar sensors should be implemented
while the number of cameras could be based on the prefer-
ences of OEMs. Similarly, Boggs et al. [107] utilized data
from the California Department of Motor Vehicles (DMV)
manufacturer-reported disengagement to relate an array of
attributes (e.g., location, cause, ADS maturity) to disengage-
ments from ADSs. Their results illustrated that perception
discrepancies are not a significant cause for disengagements,
in other words, the sensor systems are very reliable.

Some field tests that focused mainly on driving automation
systems also contribute valuable insights to the sensor-based
perception aspect. Milanés and Shladover [89] calibrated their
proposed ACC model with data obtained from a radar to track
the speed of the vehicle in front and Lidar to track the distance,
and included the delays associated with the performance of
these sensors in their model. The results of the study on a
CACC system by Lu and Aakre [108], showed a reasonably
robust and stable performance for constant speed and distance
tracking. The error for speed tracking was within 0.1 m/s
and 0.3 m for distance tracking. Cafiso and Pappalardo [109]
conducted a field test to evaluate vision-based systems in
detecting lane markings and found that lane keeping system
(LKS) functioned in over 97% under optimal conditions.
Similarly, Reddy et al. [110] evaluated the performance of
detecting lane markings of a LKS under different visibility
and speed conditions. Their findings showed that the best
performance was achieved in dark, dry conditions without
streetlights, while the lowest performance was during wet, dark
conditions with streetlights.

E. Vehicle Connectivity

The terms ‘connected’ and ‘non-connected’ automated vehi-
cles are commonly found in studies using traffic simulations
[70], [73], [74]. The approach to include communication
between vehicles (V2V) is different than the approach to

include communication with the infrastructure (vehicle-to-
infrastructure (V2I)).

Modeling of the communication (e.g., V2V, V2I) in traffic
simulation have commonly been done either by changes in
the parameters or driving behavior models or by coupling a
traffic simulation model with a wireless network simulator
[111], [112], [113]. An overview of simulators for vehicular
ad-hoc networks (VANETs) is given in [111] and examples of
simulation platforms that combines the wireless network and
traffic simulators can be found in [112] and [113].

In Olia et al. [72] V2V communication was included in
the automated driving model by allowing automated vehicles
to keep shorter gaps and also allowing them to perform
cooperative maneuvers for merging and for lane changes,
improving road capacity. In the CACC model of Milanés
and Shladover [89] vehicles keep shorter gaps between them
since the information about the motion state of the lead-
ing vehicle is transmitted and not estimated, allowing for
smoother reactions and solving string instability issues of
ACC systems. In van Arem et al. [65] vehicles with CACC
were also modeled by keeping shorter gaps between them,
additionally they state that V2V should not be restricted to
the longitudinal motion control. In Zhang and Orosz [114] the
effects of various heterogeneous connectivity structures and
information delays on the longitudinal dynamics of connected
vehicle systems (CVSs) with mixed traffic of conventional
vehicles and CACC vehicles were studied. They proposed
a motif-based approach for modular and scalable design of
CVS. They also tested the CACC mechanism and assessed the
plant stability as well as head-to-tail string stability in selected
conditions using numerical simulations.

The use of V2V communication for lateral motion con-
trol has been the focus on recent studies. Rios-Torres and
Malikopoulos [115] included vehicles with V2V which could
perceive other V2V-enabled vehicles and share information
about their speed and position to calculate an optimal acceler-
ation in a merging zone. Williams et al. [116] took the same
V2V approach to overcome the line of sight limitation due
to sensor ranges, and proposed a strategy for an anticipatory
lane change maneuver. Luo et al. [75] and Sun et al. [76]
also proposed cooperative lane change maneuver strategies
on highways, based on V2V communications modeled by
allowing vehicles to interact with vehicles located further
downstream, the connectivity is explicitly described as without
loss or delays.

In both Zhang et al. [117], [118], a hybrid approach
using MATLAB, Simulink and SimEvents [84] to include
V2I communication is proposed, automated vehicles receive
traffic control information with an included communication
delay. Similarly, in Li and Wagner [119], a hybrid simulation
approach is proposed for dynamic control strategies where
SUMO and MATLAB [84] are coupled to include V2I com-
munication, and used this approach to evaluate a VSL system.
In Wang [120] the V2I communication is included by changing
parameters on the ACC controller during the simulation based
on the traffic state, while in McConky and Rungta [121]
automated vehicles change their speed parameters based on the
state of the traffic signal. In Talebpour and Mahmassani [74]
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automated vehicles update their desired speed during the
simulation which is provided from a TMC.

In Talebpour et al. [73] a hybrid simulation framework to
include the flow of information of V2V and V2I communi-
cations is proposed, they concluded that signal interference
reduces the efficiency of the communications, and with that,
also the performance of control strategies. This issue was
also brought up in Mahmassani [70], and mentioned that
studies investigating the flow of information unfortunately
have focused more on the network topology and not on the
effect of connected environments on traffic operations.

Regarding empirical studies, Ge et al. [122] proposed a
longitudinal controller design for connected automated vehi-
cles and experimentally evaluated the performance of their
proposed connected cruise controllers utilizing beyond-line-
of-sight information via V2X on real vehicles (two human-
driven vehicles and one connected automated vehicle) under
several driving scenarios and different communication network
topologies. Their results demonstrated that a connected auto-
mated vehicle is able to avoid a severe braking maneuver and
mitigate the cascade of braking events propagating from vehi-
cles downstream by using V2X communication to get motion
information of multiple vehicles ahead. Avedisov et al. [123]
studied the effects of V2V connectivity on freeway traffic
patterns, and adopted the empirical data fitted models from
their test to study traffic dynamics with partial penetration of
connected automated vehicles in a 100-car network by simula-
tion. Their results indicate the long-range feedback can benefit
the freeway traffic flow, and increasing the penetration of
connected human-driven vehicles would enable the connected
automated vehicles (even at a low penetration) to significantly
improve the traffic efficiency.

A recent study by Ma et al. [14] conducted a field tests
to investigate the impact of a connected environment on
traffic performance. An integrated set of CACC platooning,
cooperative merge, and speed harmonization applications were
implemented in a fleet of five vehicles. The results of this study
showed an improved traffic flow string stability. It was also
found that the observed traffic performance was quite different
from the expectations based on traffic simulations. The authors
explain this difference due to additional factors that may
impact the platoon performance, such as road geometry and
communication quality.

Other empirical work has focused on investigating the
effects of a connected environment on human driving behavior.
Farah et al. [124] used empirical data collected from a field
test to evaluate the impact on car-following behavior caused
by a dedicated short range communication (DSRC)-based V2I
co-operative system for intelligent road safety (COOPERS).
The authors found that the system harmonized the behavior of
drivers, reduced reaction times and also the range of acceler-
ation and deceleration differences among them. Additionally,
they found that V2I safety messages affected significantly the
lane-changing and car-following behavior and calibrated the
car-following model when using the system and compared it
to the baseline scenario when not using the system. These
calibrated models were later implemented in the microscopic
traffic simulation tool PTV VISSIM [84] to assess the impact

on traffic performance [125]. Farah and Koutsopoulos [126]
also found that V2I warning systems were generally acceptable
and useful from a driving safety aspect. Qiao et al. [127] used
a RFID-based V2I to warn drivers approaching work-zones
and observed that drivers took earlier action to reduce speeds.
Yu et al. [128] found that when drivers receive speed rec-
ommendations through a DSRC-based V2I when approaching
a signalized intersection, their reactions could be predicted
with high accuracy at a distance of over 80 m away from the
intersection, and also that the majority of drivers complied
with the speed recommendations. These results indicate that
V2I significantly affects driver behavior and as a result traffic
flow efficiency and safety.

F. Physical and Digital Infrastructure

The physical infrastructure is commonly considered in the
simulation setup of traffic simulations in terms of which
type of roads environments are investigated. The type of
road is not exclusive to the research of automated driving
and depends on the purpose of each investigation. However,
traffic simulations on motorway environments including auto-
mated vehicles is more common than urban environments.
Few microscopic traffic simulation tools have the capability
to assess the impact of the physical infrastructure on the
longitudinal and lateral behavior of vehicles. Some examples
are traffic simulation tools for rural roads (e.g., RuTSim [129],
[130], TWOPAS [131]), in which speed adaptation to the
road geometry is generally more important than for urban
roads. An exception for urban roads is Kharrazi et al. [132]
which presented a speed adaptation model (implemented in
SUMO [84]) that consider curvature based on GPS-data.

Many traffic simulations focusing on traffic control strate-
gies explicitly state as assisted by the digital infrastructure
[30] [33], [120], with different ISAD levels of digitalization
assumed. In Khattak et al. [33] a cooperative lane con-
trol application for automated vehicles considered a digital
infrastructure at ISAD level A. The assistance provided by
the infrastructure was implemented in the microscopic traffic
simulator PTV VISSIM [84] by replacing the driver behavior
with a dynamic link library (DLL) that included the algo-
rithm for lane control and a CACC logic. In [120], a digital
infrastructure at ISAD level B is considered, the role of the
infrastructure was captured in the simulation by changes in
gap-related parameters during the simulation. In traffic simu-
lations that aren’t explicit about the role of the infrastructure,
a digital infrastructure ISAD level D can be considered as the
most common assumption, which provide digital maps and
static regulatory information to assist automated vehicles.

Research based on empirical data has studied the impact
of the physical infrastructure on the performance of differ-
ent driving automation systems. García et al. [133] found
that the horizontal curvature of roads limited the maximum
speed that vehicles could attain without disengaging the ADS.
Reddy et al. [110] and García and Camacho-Torregrosa [134]
found that the lane width affected the ability of LKSs to detect
the lane markings, 2.5 m was the maximum width which
always required the intervention of the driver.
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Empirical work that considered the role of digital infrastruc-
ture has investigated the effects on human driving behavior
when receiving messages from the infrastructure through
road-side units (RSUs). These studies have been presented in
the previous subsection under the connectivity aspect since
V2I communication relates directly with the digital infrastruc-
ture [124], [125], [126], [127], [128].

V. DISCUSSION

In this section we present the main findings with respect
to each of the proposed aspects. In addition, we discuss the
implications and limitations of the common approaches taken
in microscopic traffic simulation studies, and motivate the need
for more empirical work and field tests. Specific research needs
regarding each aspect were identified and are proposed. Each
of the proposed aspects has been explored to a different extent
in the literature, and it is challenging to extract the assumptions
and conditions considered regarding each one of them because
they have mostly been considered indirectly.

Road authorities at the national level encourage research
on the implications of automated driving on traffic safety
and efficiency and the infrastructural adaptations needed for
its deployment on public roads. However, in order to collect
data from field tests and given the existing uncertainties with
respect to the safety implications, the public acceptance, and
the performance of the automated driving system (ADS);
road authorities currently provide guidelines to safely test
and operate automated vehicles on public roads. Their main
concerns relate to changes in liability and to the regulation
of automated driving. The focus of studies that considered
the role of road authorities has been mostly on dynamic
regulation strategies (e.g., variable speed limit (VSL) systems,
geofencing), and their implications on traffic flow. Most, if not
all, traffic simulation studies of automated driving assume
full compliance with present traffic rules and regulations.
Authority decisions on e.g., liability requirements regarding
the compliance of automated vehicles to both static and
dynamic road regulations as well as privacy concerns regarding
the sharing of information between vehicles influence how
automated driving is operated. Hence, future studies using
traffic simulations need to consider decisions already taken
by the authorities or consider the potential uncertainty with
respect to such decisions. Results of these simulations can
then inform road authorities under which conditions automated
driving can be admitted on public roads without compromising
traffic safety and efficiency.

The user acceptance and preferences could determine how
the ADS handles the dynamic driving tasks (DDTs). Although
at lower SAE levels of automation the driver is responsible
for the DDT fallback, the driver could take over control of all
or some of the DDTs if they so prefer regardless of the SAE
level of automation. Empirical studies on transitions of control
have largely focused on drivers taking over the longitudinal
motion control from an ACC system, and some have even
proposed mathematical models to be implemented in traffic
simulations. Unfortunately, most traffic simulation studies
have not considered this, instead of including the interaction

between the driver and the ADS during the transitions, there
has been a ’jump’ between automated and human driving.
Transition of control can have significant impacts on traffic
flow efficiency and safety. Thus, it is crucial to incorporate
them in traffic simulations and further research is needed on
how to model and implement transitions of control in traffic
simulation models and their implications on traffic safety
and efficiency. This is of particular interest when considering
vehicles at lower SAE levels of automation with a restricted
operational design domain (ODD), mixed traffic conditions,
and in geofenced environments where automated driving is
restricted to defined areas and an eventual transition of control
is mandatory. There is however, still need for empirical studies
and research focusing on transitions of control from lateral
motion control systems (e.g., LKS).

The willingness to use automated vehicles and the adapta-
tion of other road users to the presence of automated vehicles
are additional dimensions of user acceptance and prefer-
ences. Microscopic traffic simulation studies have considered
varying market penetration rates of automated vehicles in their
experiments, but market penetration rates do not necessarily
capture the actual use of ADSs. Socio-economic characteristics
and driving preferences of users have been found to play
a significant role in the attitude towards automated driving.
Moreover, both lateral and longitudinal control systems could
allow for users to choose or define parameters for a safer or a
more comfortable operation, and if so, data regarding preferred
settings should also be collected. Disengagements by drivers
were found to be affected by their trust in the vehicle, which
seemed to increase with the distances driven. Additionally,
traffic simulation studies of automated driving in mixed traffic
have largely overlooked the possibility that other road users
might adapt their behavior due to the presence of automated
vehicles. This behavioral adaptation is likely to be different
depending on the penetration level. external human machine
interfaces (eHMIs) of automated vehicles also play a role in
the behavioral adaptation of other road users and could also
be accounted for in microscopic traffic simulations. Future
research, therefore, could take several directions. It could study
the preferences of drivers with respect to the longitudinal and
lateral driving parameter settings such as time gap and speed
in different driving contexts. Moreover, the driving behavior of
human-driven vehicles in the presence of automated vehicles
is vastly unexplored. Research on this could investigate the
effect of factors such as recognizability and different auto-
mated driving styles. Incorporation of the effects of eHMIs in
this respect, particularly in traffic simulation, also has many
research possibilities.

The characterization of the vehicle system done in traffic
simulation studies by using an ACC/CACC model has been a
helpful simplification of ADSs to investigate effects caused
by longitudinal dynamics of automated vehicles. Empirical
works have provided valuable insights for developing, calibrat-
ing, validating and improving ACC models. However, ACC
systems deal only with the longitudinal motion control, the
lateral motion control of automated vehicles has not been
considered as much and often is not even mentioned. Hence,
a more elaborate approach to characterize the vehicle system
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is required, which should include other driving automation
systems, the logical hierarchy and the dependencies between
them. There is only very limited publicly available data
from OEMs. Thus, field studies should focus on collecting
data about the performance of ADS beyond the longitudinal
motion control. The performance could vary depending on the
conditions of testing and also between different OEMs even
at the same SAE level of automation and ODD. This data
would allow to better capture the variability between different
ADSs, and to avoid that all automated vehicles in traffic
simulations show the same response under a given situation.
Traffic simulation experiments including automated driving
need, to a larger extent than today, to capture the heterogeneity
in ADS and their driving behavior since the heterogeneity
influences many traffic phenomena (e.g., traffic stability and
hysteresis). Lastly, both traffic simulation studies and empirical
works on automated driving should include a more detailed
description of the ODD considered in their investigations. The
vehicle system has a specific ODD and findings should be
framed within the considered ODD elements.

The vehicle sensor-based perception is a safety-critical
aspect of automated driving. In the absence of external aides
for perception, it is critical for both the object and event detec-
tion and response (OEDR) and for the correct operation of lon-
gitudinal and lateral motion control systems. Nevertheless, this
aspect has not been explored in-depth in neither microscopic
traffic simulation-based studies nor in empirical works. With
the burgeoning technical advancements on sensor systems,
investigations about sensor-based perception become even
more complex. Microscopic traffic simulation models used for
both human and automated driving include parameters on the
detection range of other vehicles and objects, and a perfect
perception is in principle always assumed. The difference has
been on the parameter values used. The assumption of perfect
perception is questionable. There has been some empirical
work on the performance of some driving automation systems
(e.g., ACC, LKS), which utilize different sensors to function.
However, it can be dangerous to investigate sensor perception
reliability in real life, and thus it is not always practical to val-
idate findings with standard field tests. With the advancement
of ADS simulation platforms (e.g., CARLA, SVL Simulator,
Voyage DeepDrive), detailed simulation of sensors including
combination of sensor suites and sensor errors, can be imple-
mented at a nanoscopic level. Such simulations platforms can
provide valuable insights for the development of perception
models that can be included in microscopic traffic simulations.
It is even possible to implement these nanoscopic simulation
platforms into microscopic traffic simulation tools, but at high
computational cost and restricted to scenarios with a limited
number of vehicles. Additionally, the sensor-based perception
does not only depend on the reliability and specifications of the
different sensors but also on the algorithms and computational
capabilities of the computers on board. Therefore, it is also
important to investigate and quantify the possible sources of
delay in the interpretation of the automated driving context.

The vehicle connectivity is considered in traffic simu-
lation by including changes in the models for automated
driving and/or by running the simulation in combination with

a wireless network simulator. Changes in the models for
automated driving aim to portray the expected differences
between connected and non-connected automated vehicles,
and to assess implications of specific V2V applications (e.g.
platooning, cooperative driving). Wireless networks simulators
are used to portray V2I communication and to assess more
centralized applications (e.g., VSL systems). The common
assumptions are a 100% communication success rate and zero
latency, both which are far from being accurate. Therefore,
effects of communication failure or compromised connectiv-
ity should be further investigated in future research. Details
are not yet clear about the range in which vehicles can
communicate nor about the information that vehicles will
exchange (with respect to e.g., privacy and proprietary issues).
More empirical studies are required on vehicle connectivity
performance with focus on coverage, latency, range, and reli-
ability, as well as on automated driving applications enabled
by vehicle connectivity. Some effort on this has come from
the telecommunications industry, but not under real traffic
conditions with high density of vehicles. Therefore, future
traffic simulation models should incorporate findings from
empirical studies on vehicle connectivity performance and/or
endogenous models for vehicle connectivity.

The physical infrastructure in traffic simulation studies
has been mostly differentiated between urban roads (e.g.,
intersections) and motorways with limited considerations on
effects of geometric road design. There is a need for further
research to also include the implications of the geometric
road design (e.g., lane width, road curvature, vertical slopes),
as well as infrastructure quality (e.g., road surface condition,
lane markings) in traffic simulation models. These details
become important when describing ODD considered in the
investigations. Speed adaptation, acceleration and deceleration
when approaching curves can have an effect on the overall traf-
fic flow. Recent empirical studies have demonstrated the effect
of some aspects of the physical infrastructure on the operation
and performance of automated vehicles. The performance
depends on the specification of the ADS and on different
OEMs. Field tests with systems from different OEMs are
needed to reach comprehensive conclusions. Future empirical
studies should focus on identifying edge cases stemming from
the infrastructure side which are vital for the safe operation
of automated vehicles.

The digital infrastructure has been considered in traffic
simulation studies that focus on assessing dynamic traffic reg-
ulations or in cases in which the infrastructure provides some
level of support (e.g., cooperative maneuvers, enhanced vehi-
cle perception). This has been done by changing parameters
related to the perception, or by dynamically changing driving
parameters during the simulation depending on the state of
the traffic. There are some limitations in these approaches.
How the digital infrastructure estimates the state of the traffic
in reality, and the expected accuracy of this estimation is not
considered. The nature of the messages transmitted from the
digital infrastructure (e.g., mandatory or advisory) is not differ-
entiated and automated vehicles are assumed to always comply
with them. A recommended practice for traffic simulations is
to explicitly state the assumptions made with respect to the
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digital infrastructure, and also include how these assumptions
affect automated driving. A suggestion is to at least state the
level of infrastructure support for automated driving (ISAD)
considered. Edge cases (e.g., poor visibility conditions, dete-
riorated quality of road infrastructure elements) could also be
examined as the digital infrastructure could aid the perception
outside immediate field of view. In some field tests the effect
of safety messages and speed advisories from V2I systems
on human drivers was investigated and found that they signif-
icantly affect the observed lane-changing and car-following
behaviors. In a similar way, how ADSs would respond to
such messages in respect to the lateral and longitudinal motion
control, and processing delays could be investigated in future
field tests.

The situational awareness of human drivers and the per-
ception and interpretation of the automated driving context
by automated vehicles, is commonly simplified and modeled
at very low level of detail in microscopic traffic simula-
tions. Vehicles are assumed to perfectly perceive all rele-
vant information (e.g., relative position, relative speed) about
surrounding vehicles and objects, and about the infrastruc-
ture. This assumption is not realistic even under optimal
conditions. Errors in perception are rarely considered even
though methods to model human errors in estimating distances
and speeds of other vehicles do exist. Models for automated
driving should include performance deficiencies in the per-
ception and interpretation of the automated driving context.
Such approach should consider the expected performance of
sensors, of connectivity, and the level of support from the
digital infrastructure; with focus on quality, range, latency, and
processing delays for both interpretation and response.

The deployment of automated vehicles will have many
different implications. Traffic safety, traffic efficiency, traffic
control strategies, environmental impacts are some examples
of the areas being investigated. The proposed aspects will be
of different relevance depending on the end goal of each area
of research. User preferences on how the ADS should operate
have a big impact on traffic safety and traffic flow efficiency.
The vehicle system and the physical infrastructure are per-
haps more relevant to environmental concerns. Connectivity
and the support from the digital infrastructure could enable
applications that could improve safety for other road users, and
enable new applications for traffic control strategies. Examples
are vast, and considering some of the aspects as more relevant
depending on the application is expected. Nevertheless, we can
conclude from this discussion section, that all aspects will
influence the operation of automated vehicles, and should be
considered at some level regardless of the area of research.

Calibration studies of traffic simulation models including
automated driving are few since real world data on automated
driving is limited and/or proprietary data. Hence, when more
data on automated driving becomes freely available, future
research should focus more on calibration and validation and
less on model development.

Finally, since the assessment of automated vehicles’ benefits
and drawbacks are inferred based on the relative compar-
ison with simulation results for human driving, this calls
for improving current microscopic traffic simulations that
are mostly collision-free, and incorporate a more realistic

and accurate modeling of human behavior. Furthermore, it is
important that traffic simulation of mixed traffic capture the
essential differences in e.g. perception and behaviour between
human and automated driving in a consistent way.

Various microscopic traffic simulation software have dif-
ferent capabilities and limitations with respect parameters’
adaptation of the inbuilt models versus interfacing of external
models [13], [135]. Therefore, a meta-analysis of the results
from these different microscopic traffic simulation software is
recommended for future research.

VI. CONCLUSION

The level of coverage found in the literature with respect
to each aspect differs greatly. Empirical studies have put
more effort on investigating user preferences around specific
driving automation systems (e.g., ACC) of the vehicle system.
The observed performance of the sensor-based perception, the
impacts of sharing of information through vehicle connectivity,
and the impact of either the physical and digital infrastructure
on automated driving performance have not been the general
focus of empirical studies. Microscopic traffic simulation
studies have mostly been based on assumptions to model auto-
mated driving, and as discussed in section IV, with limited use
of insights from field tests or empirical findings. The focus has
mostly been on the expected driving performance of the ADS
of the vehicle system, and on the effects under different road
environments (physical infrastructure). The inclusion of digital
infrastructure to enable dynamic traffic control strategies and
to improve traffic flow dynamics has also been focused to some
extent. More attention is needed in investigating the role of
authorities, the user preferences and include models consistent
for the vehicle sensor-based perception and the performance
of vehicle connectivity which not as explored using traffic
simulations.

We have motivated and discussed why each aspect could
determine how automated vehicles operate, and therefore, why
considerations regarding each aspect need to be taken into
account in models for automated driving in microscopic traffic
simulations. The inclusion of mixed traffic, varying penetration
rates, user preferences, transitions of control, heterogeneity
of ADSs at different SAE levels of automation, description
of considered ODD, and assumptions with respect to the
behavioral adaptation of other road users; should be included
in microscopic traffic simulation-based investigations in order
to have scenarios that may soon become a reality and for the
sake of scientific sound comparison between investigations.

The following is a summary of the research needs iden-
tified to develop and implement more accurate and realistic
models for automated driving in microscopic traffic simula-
tions. Data about the preferences of use of different driving
automation systems (e.g., preferred safety settings, comfort
settings, willingness to use) under different driving conditions
is needed in order to forecast the heterogeneity of ADSs.
The expected behavioral adaptation of other road users to the
presence of automated vehicles, and the use of external human
machine interface (eHMI) should be further investigated to
be included in traffic simulations of mixed traffic. Empirical
work on transitions of control from lateral motion control
systems will extend and enhance the current proposed models
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for transitions of control. Field observations on maneuvers
apart from car-following behavior will help develop, calibrate
and validate models beyond car-following. Evaluations of the
performance and identification of edge cases (with respect to
e.g., road conditions, weather conditions, time of the day) of
different driving automation systems from different OEMs,
with particular focus on the performance of different types
of sensors which are critical for the safe operation of the
ADS, will help include variations on the models for automated
driving and determine specific ODD requirements. Hybrid
simulation approaches, which propose the use of different
simulators (e.g., nanoscopic platforms, vehicle simulators,
wireless network simulators) in combination with traffic sim-
ulators, will be useful as tools to gather synthetic data that
otherwise might be too costly or unsafe to obtain. Lastly,
inclusion of the expected performance of connectivity features
and of sensor systems (i.e., range, latency, quality) as well
as the implications of the physical infrastructure (i.e., road
geometry design) on the perception models for automated
driving is essential in order to capture key differences with
human perception in microscopic traffic simulations. Future
work focusing on these research needs will help to develop,
enhance, calibrate and validate models for automated driving.

Modeling automated driving in microscopic traffic simu-
lations involves different aspects as explained in this paper.
Different stakeholders (e.g., authorities, transportation plan-
ners, OEMs, environmental agencies) may have a greater
interest in one or a few of these aspects, depending on their
study objectives. This could cause a high level of attention
to be paid to those specific aspects while the intricacies
involved with the other aspects may be partly or completely
ignored. It is important for stakeholders to be aware of the
existence of the other aspects and the nature of the roles they
play. Such an understanding is possible with cross-domain
knowledge exchange and through close collaborations between
the stakeholders. The aspects proposed in this article i.e., the
role of authorities, the user preferences, the vehicle system,
the vehicle sensor-based perception, the vehicle connectivity
features, the physical and digital infrastructure should help
carry out investigations with a broader perspective and also
should help to identify areas that might be easier to develop or
implement, and which would bring greater benefits. Moreover,
they will improve the use of microscopic traffic simulation as
a tool to assess the traffic implications of automated driving.

Finally, this paper discussed the effect of each of the
proposed aspects on the operational and safety constraints
ignoring the possible interdependencies and overlaps between
them. Such interdependencies, for example between user pref-
erence and vehicle system or between authorities and physical
and digital infrastructure, do exist and should be further
investigated in future studies.
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