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Purpose: To develop a physics-guided deep learning (PG-DL) reconstruction strat-
egy based on a signal intensity informed multi-coil (SIIM) encoding operator for
highly-accelerated simultaneous multislice (SMS) myocardial perfusion cardiac MRI
(CMR).
Methods: First-pass perfusion CMR acquires highly-accelerated images with
dynamically varying signal intensity/SNR following the administration of a
gadolinium-based contrast agent. Thus, using PG-DL reconstruction with a conven-
tional multi-coil encoding operator leads to analogous signal intensity variations
across different time-frames at the network output, creating difficulties in gener-
alization for varying SNR levels. We propose to use a SIIM encoding operator to
capture the signal intensity/SNR variations across time-frames in a reformulated
encoding operator. This leads to a more uniform/flat contrast at the output of
the PG-DL network, facilitating generalizability across time-frames. PG-DL recon-
struction with the proposed SIIM encoding operator is compared to PG-DL with
conventional encoding operator, split slice-GRAPPA, locally low-rank (LLR) regu-
larized reconstruction, low-rank plus sparse (L+ S) reconstruction, and regularized
ROCK-SPIRiT.
Results: Results on highly accelerated free-breathing first pass myocardial perfusion
CMR at three-fold SMS and four-fold in-plane acceleration show that the proposed
method improves upon the reconstruction methods use for comparison. Substantial
noise reduction is achieved compared to split slice-GRAPPA, and aliasing arti-
facts reduction compared to LLR regularized reconstruction, L+ S reconstruction
and PG-DL with conventional encoding. Furthermore, a qualitative reader study
indicated that proposed method outperformed all methods.
Conclusion: PG-DL reconstruction with the proposed SIIM encoding operator
improves generalization across different time-frames /SNRs in highly accelerated
perfusion CMR.
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1 INTRODUCTION

Myocardial perfusion cardiac MRI (CMR) is used for
functional assessment of stenoses in diagnosing coronary
artery disease.1–7 Clinically, myocardial perfusion CMR is
acquired using snap-shot imaging during the first pass
of an exogenous contrast agent, which results in limited
resolution and coverage.8–10 Low spatial resolution has
been associated with dark rim artifacts that can compro-
mise assessment of perfusion abnormalities.11 Addition-
ally, coverage is typically limited to three to four non-
contiguous slices,12 which may result in missed regions
in microvascular disease. Furthermore, limited temporal
resolution is associated with low contrast-to-noise ratios
and may produce cardiac motion artifacts.13 Therefore,
trade-offs between spatio-temporal resolution and cover-
age still remain a major challenge in myocardial perfusion
CMR, necessitating accelerated imaging techniques.

Parallel imaging has long been used in perfusion
CMR but is limited to two- to three-fold acceleration.12

Spatio-temporal reconstruction (k-t) methods14–16 have
been proposed, but their acceleration rates remained lim-
ited.17 Subsequently, compressed sensing, low-rank meth-
ods, and their combinations have been adopted to per-
fusion CMR reconstruction to enable higher acceleration
rates.18–40 These have enabled 3D whole heart myocar-
dial perfusion,41–49 although a recent study has shown
that 2D high resolution scans with smaller temporal foot-
print are more sensitive for detecting ischemia.50 Recently,
simultaneous multislice (SMS) imaging has gained inter-
est in CMR for improved coverage with minimal loss in
image quality and SNR.21,23,51–54 Yet, ultra-high accelera-
tion rates are still limited when SMS imaging is combined
with in-plane acceleration due to noise amplification.55

Physics-guided deep learning (PG-DL) techniques
have recently gained substantial interest in accelerated
MRI, showing improved reconstruction quality at high
acceleration rates compared to parallel imaging or com-
pressed sensing.56–63 These PG-DL techniques use a
forward encoding operator incorporating MRI physics,
while the proximal operation associated with regulariza-
tion is solved implicitly by neural networks.61 However,
PG-DL networks have several challenges that hamper
their applicability in perfusion CMR. A 2D implemen-
tation processing slices/time-frames individually is a
natural choice from an implementation perspective, and
for avoiding temporal blurring. However, signal inten-
sity changes across time-frames hinder the utility of such
PG-DL networks, which have exhibited generalizabil-
ity issues with such variations.64 An alternative way to
train PG-DL reconstruction for perfusion CMR would
be using a spatio-temporal network, yet this has its own
challenges including memory limitations65 and difficulty

of procuring high-quality training databases due to dif-
ferences in contrast uptakes/breathing patterns among
subjects. Thus, application of PG-DL reconstruction to
perfusion CMR has been difficult, and existing DL meth-
ods for perfusion CMR reconstruction have been limited
to data-driven image enhancement networks,66–68 which
are trained in a supervised manner using conventional
compressed sensing reconstruction outputs as reference
images. While this line of work improves reconstruction
speed, the reconstruction quality is inherently limited
by the conventional reconstruction used as reference
for supervised training, which in turn hinders the true
potential of DL reconstruction for perfusion CMR.

In this study, we propose to use a signal inten-
sity informed multi-coil (SIIM) encoding operator in
PG-DL networks to improve highly accelerated perfusion
CMR reconstruction. The proposed SIIM encoding oper-
ator is inherently aware of contrast/SNR changes across
time-frames, leading to a uniform/flat signal level at the
output of the network, which in turn assists the generaliz-
ability of PG-DL methods. Proposed SIIM encoding oper-
ator was compared with PG-DL using conventional oper-
ator, and conventional reconstruction methods, including
split slice-GRAPPA,69 locally low-rank (LLR) regulariza-
tion,34,70 regularized ROCK-SPIRIT71 and a low-rank plus
sparse (L+ S) reconstruction35 for free-breathing first-pass
perfusion with three-fold SMS and four-fold in-plane
acceleration. Results show that PG-DL reconstruction with
the proposed SIIM encoding operator improves upon the
other methods by reducing noise and residual artifacts.

2 METHODS

2.1 PGDL reconstruction

The inverse problem for MRI reconstruction is formulated
as an optimization problem

x̂reg = arg min
x
‖
‖

yΩ − EΩx‖
‖

2
2 +(x), (1)

where yΩ is the acquired multi-channel k-space, Ω is
the in-plane undersampling pattern, EΩ is the multi-coil
encoding operator, x is the image of interest, and n is mea-
surement noise. At high acceleration rates, this system is
typically ill-conditioned. The first quadratic term enforces
the data fidelity (DF) with acquired k-space points, and the
second term (⋅) is a regularizer. This objective function
may be solved using a multitude of techniques,72 which
decouple the DF and regularizer terms into a series of
sub-problems, including variable splitting with quadratic
penalty,61 described in detail in Supporting Information
Figure S1, which is available online.
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2.2 Conventional multi-coil encoding
operator

The encoding operator EΩ in Eq. [1] is given as:

EΩ =
⎡

⎢

⎢

⎢
⎣

FΩS1

⋮

FΩSC

⎤

⎥

⎥

⎥
⎦

,

where FΩ is a sub-sampled Fourier operator sampling the
k-space locations specified by Ω, and Sc is a diagonal
matrix representing the cth coil sensitivity map. In prac-
tice, Sc are estimated via ESPIRiT,73 and inherently encode
B−1 , which remain fixed across time-frames. Therefore, the
solution of Eq. [1] presents varying signal intensities across
time-frames, which mirror SNR variations in acquired
k-space across time-frames.

2.3 SIIM encoding operator

We propose to encode dynamically-varying signal inten-
sity in the encoding operator for PG-DL reconstruction. Let
L be a diagonal matrix whose entries are the pixel values
of an image that contains the signal intensity informa-
tion of a given time-frame. We define the SIIM encoding
operator as:

HΩ = EΩ ⋅ L, (3)

where the inherent signal intensity variation across
time-frames is encoded into encoding operator via L. Note
that for perfusion CMR, we indeed have multiple Lt

, t ∈
{1, · · · ,T } where T is the number of time-frames, but for
ease of notation, we use L for a given time-frame of inter-
est. Consequently, the inverse problem for SIIM encoding
operator is:

x̂SIIM = arg min
x
‖
‖yΩ −HΩx‖‖

2
2 +(x). (4)

In the absence of a regularizer, it is easy to show74

x̂reg =
(

E∗ΩEΩ
)−1E∗ΩyΩ

=
((

L−1)∗H∗
ΩHΩL−1)−1(L−1)∗H∗

ΩyΩ
= L

(

H∗
ΩHΩ

)−1H∗
ΩyΩ

= L ⋅ x̂SIIM, (5)

where * is the Hermitian transpose. Thus, the underlying
signal intensity information is restored by multiplication
with the corresponding signal intensity informed images.

Signal intensity variations for a given time-frame
can be captured with a low-resolution image, generated
from central k-space, as the diagonal entries of L. In
the context of parallel imaging, a similar concept was
used, where low-resolution images from central k-space
were used as coil maps, without normalizing them by
their root-sum-squares image,74 and the signal inten-
sity information was restored by multiplication with
the root-sum-squares image, as in Eq. [5]. In this work,
we instead use the formulation in Eq. [3], since this
enables a more synergistic combination with ESPIRiT
map estimation.

There are two major differences between SIIM and
conventional encoding operators. First, there are numeri-
cal differences in solving the objective functions in Eqs. [1]
and [4], which was also noted for the unregularized case in
parallel imaging.74 Thus, the SIIM formulation may over-
come numerical instabilities at high acceleration rates.
Second, in the regularized setup, the SIIM encoding oper-
ator has the additional benefit that the solutions of Eq. [4]
have more uniform/flat signal intensity across time-frames
of varying SNR, as depicted in Figure 1A. This in turn
assists the regularizer to work with consistent signal inten-
sity regardless of the physiological process associated with
a time-frame. Hence, the use of the SIIM operator may lead
to improved generalizability for PG-DL reconstructions,
which have been shown to be affected by SNR variations of
the underlying solutions. Schematics of unrolled networks
using conventional and proposed SIIM encoding operators
are shown in Figure 1B.

2.4 Imaging experiments

Free-breathing first-pass myocardial perfusion CMR
was acquired on a 3T Siemens Magnetom Prisma
(Siemens Healthineers) in eight subjects (six men, two
women, age:39± 18 y). This study was approved by
our institutional review board, and written informed
consent was obtained before each examination. A
saturation-prepared GRE sequence was used, with rele-
vant imaging parameters: FOV = 360× 320 mm2; spatial
resolution = 1.7× 1.7 mm2; slice thickness = 8 mm; tem-
poral resolution = 116 ms; SMS factor = 3 (1/3 FOV shifts
with CAIPIRINHA [75]); in-plane acceleration = 4 (uni-
form undersampling, no ACS) and partial Fourier = 6/8
(overall 16-fold acceleration).55 Non-prepared GRE
calibration scans were acquired at a lower spatial resolu-
tion = 1.7× 5.6 mm2 individually for all 9 slices. Details of
the imaging sequence are given in Supporting Information
Table S1.
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(B)(A)

F I G U R E 1 (A), Unregularized least squares estimate of a representative slice using: (i) conventional encoding and (ii) proposed SIIM
encoding operator. Signal intensity changes are visible across time-frames in (i). A more uniform/flat signal level is observed across
time-frames using proposed SIIM encoding operator in (ii). (iii) Corresponding low-resolution images (L) for the slice of interest for right
ventricular uptake (RV), left ventricular uptake (LV), and a late phase are shown. The product of middle and bottom rows yields similar
contrast to top row, as given in Eq. [9]. (B), A schematic of PG-DL reconstruction network with (i) conventional multi-coil encoding operator
using ESPIRiT maps and (ii) proposed SIIM encoding operator. The network outputs are different between the two encoding operators, with
the latter showing a flatter signal intensity. The product of the network output for the SIIM operator with low resolution images (L) yields
similar contrast to the network output for the conventional operator.

2.5 SIIM encoding operator formation

Coil maps (SC) were generated via ESPIRiT using cen-
tral 24× 24 regions of the calibrations scans of the
corresponding slices.73 Low-resolution images (L) for
each time-frame and slice were generated from the
central 24× 24 k-space region reconstructed using split
slice-GRAPPA.69 Note that this intermediate reconstruc-
tion step was necessary due to the lack of individual
k-spaces for the slices of individual time-frames result-
ing from SMS encoding, and would not be necessary for
single-slice/volume imaging. Subsequently, a Blackman
filter was applied for ringing,76 followed by taking the
magnitude of the SENSE-1 combination of individual coil
images.77 Finally, SIIM encoding operator HΩ was gen-
erated by multiplying EΩ by L, whose diagonal entries
were the intensity values of the aforementioned magni-
tude SENSE-1 image, as in Eq. [3]. Further implementa-
tion details for SMS encoding are provided in Supporting
Information Figure S2.

2.6 Network and training details

Due to lack of fully-sampled reference data in this highly
accelerated SMS perfusion CMR acquisition, the recently

proposed self-supervised learning via data undersam-
pling (SSDU) was used for training.61,78,79 Details of the
multi-mask version of SSDU80 are given in Supporting
Information Figure S3. PG-DL training with multi-mask
SSDU was performed on 4 subjects using the last 35
time-frames out of 40, for all three sets of SMS acquisi-
tions per subject for a total number of 420 SMS-encoded
k-spaces. Training and network details are provided in
Supporting Information Table S2 and Figure S4. Two sep-
arate trainings were performed using the same network
architecture, one with conventional and other with pro-
posed SIIM encoding operator. Implementation of the pro-
posed method will be provided online (https://imagine.
umn.edu/research/software).

Testing was performed on 4 different subjects not used
in training. Outputs of PG-DL network with SIIM encod-
ing were multiplied with the corresponding low-resolution
images (L) as shown in Figure 1B to restore the under-
lying signal intensity. Comparisons were made to split
slice-GRAPPA, LLR regularized reconstruction, L+ S
reconstruction and regularized ROCK-SPIRiT, whose
hyperparameters were tuned empirically. Further imple-
mentation details are provided in Supporting Information
Table S3.

Additionally, a numerical perfusion phantom81

was used to evaluate the performance of different

https://imagine.umn.edu/research/software
https://imagine.umn.edu/research/software
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F I G U R E 2 Representative perfusion CMR results across three different time-frames on a test subject, acquired with a 3-fold SMS and
4-fold in-plane acceleration along with 6/8 partial Fourier (overall 16-fold acceleration). Split slice-GRAPPA (top row) shows aliasing-free
reconstruction albeit at substantial noise amplification, while LLR-regularized reconstruction (second row) and L+ S reconstruction (third
row) reduce the noise but suffer from aliasing artifacts (yellow arrows). Regularized ROCK-SPIRiT (fourth row) and PG-DL with
conventional encoding (fifth row) also show reduced noise albeit with blurring and aliasing artifacts (yellow arrows), respectively. Proposed
PG-DL reconstruction with SIIM encoding operator (bottom row) improves upon all techniques showing higher image quality by suppressing
noise amplification and aliasing artifacts.

reconstruction methods, using in-vivo trained models.
The details and results of these numerical experiments
are presented in Supporting Information Tables S4 and S5
and Figures S5 and S7.

2.7 Image analysis

Qualitative image quality assessment was performed by an
experienced cardiologist (15 y of experience). The reader
was blinded to the reconstruction methods, orders of
which were randomized. Four test subjects (nine slices, all
dynamics) were evaluated on a 4-point ordinal scale, for
overall image quality (1:excellent; 2:good; 3:fair; 4:poor),
blurring (1:none; 2:mild; 3:moderate; 4:severe) and per-
ceived SNR (1:high SNR; 2:minor noise with moderate
SNR; 3:major noise but not limiting clinical diagnosis;
4:poor SNR and nondiagnostic). Wilcoxon signed-rank test
was used to evaluate the scores with a significance level of
P< 0.05.

3 RESULTS

Figure 2 shows reconstructed slices from an SMS slice
group for right and left ventricular (RV/LV) uptakes, and

a late phase, representing three different signal intensi-
ties/SNRs. Split slice-GRAPPA has no residual aliasing
but suffers from high noise amplification especially in
late phases with depleted SNR. LLR-regularized and L+ S
reconstructions reduce noise amplification, but exhibit
residual aliasing artifacts. ROCK-SPIRiT also reduces
noise but suffers from blurring during LV uptake. PG-DL
with conventional encoding operator using ESPIRiT maps
has reduced noise, but visible aliasing and inter-slice leak-
age. Regularized PG-DL with proposed SIIM encoding
successfully removes aliasing and reduces noise, leading
to improved image quality. Difference images between var-
ious reconstructions and linear baseline reconstruction
split slice-GRAPPA are depicted in Supporting Informa-
tion Figure S8. Proposed method shows noise-like differ-
ences with respect to split slice-GRAPPA, whereas residual
artifacts are seen in all other regularized reconstructions.
Videos of two subjects are included in Supporting Infor-
mation Videos S1–S2.

Figure 3 depicts five slices from a different subject,
with all nine slices depicted in Supporting Information
Figure S9. Split slice-GRAPPA shows noise amplification
throughout the heart. LLR-regularized reconstruction,
L+ S reconstruction and PG-DL with conventional encod-
ing show reduced noise but visible residual artifacts, while
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F I G U R E 3 Reconstructions across five slices for a representative time-frame from another subject. Split slice-GRAPPA (top row) shows
noise amplification across the heart, while LLR-regularized reconstruction (second row) and L+ S reconstruction (third row) have visible
residual aliasing artifacts lowering the image quality. On the other hand, regularized ROCK-SPIRiT (fourth row) shows blurring, and PG-DL
with conventional encoding (fifth row) has visible residual aliasing artifacts especially in the myocardium. Proposed PG-DL with SIIM
encoding operator (bottom row) shows improved image quality with reduced noise and no residual artifacts, as well as a clear delineation of
the blood-myocardium interface. All nine slices using three SMS groups covering the whole heart is depicted in Supporting Information
Figure S10.

regularized ROCK-SPIRiT shows blurring. PG-DL with
SIIM encoding eliminates residual aliasing while reducing
noise amplification, showing better image quality.

Figure 4A shows different time-frames of a slice. Dom-
inant noise amplification is seen with split slice-GRAPPA,
but without residual aliasing. LLR-regularized recon-
struction, L+ S reconstruction and PG-DL with conven-
tional encoding reduce noise, but suffer from residual
inter-slice aliasing. Similarly regularized ROCK-SPIRiT
shows reduced noise, but exhibits blurring in LV uptake
and aliasing in earlier time-frames. PG-DL with SIIM

encoding shows improved image quality, suppressing
noise and aliasing artifacts. Figure 4B,C show low-pass
filtered82 signal intensity curves in the LV blood pool
and septal myocardium, averaged over respective ROIs.
Split-slice GRAPPA and proposed method show good tem-
poral agreement in myocardial uptake, with differences
only prior to contrast injection, where split-slice GRAPPA
exhibits a higher noise floor in the low SNR regime, as
expected. The other reconstructions show misestimation
of the uptake curve due to residual and blurring arti-
facts, consistent with earlier results. Myocardial signal
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(A)

(B) (C)

F I G U R E 4 (A), Different time-frames of a slice of a perfusion CMR scan reconstructed with the different reconstruction methods.
Dominant noise amplification is seen across all time-frames with split slice-GRAPPA, although no residual aliasing is observed.
LLR-regularized reconstruction, L+ S reconstruction and PG-DL with conventional encoding reduce noise, but suffer from residual
inter-slice aliasing across time-frames. ROCK-SPIRiT shows reduced noise with aliasing artifacts in the earlier time-frames with blurring,
especially in left-ventricular uptake. PG-DL with SIIM encoding operator shows improved image quality upon all methods, suppressing noise
and aliasing artifacts, while maintaining a good image quality. (B), Low-pass filtered signal intensity curves in the left ventricular blood pool
averaged over an ROI in one subject. Split slice-GRAPPA, regularized ROCK-SPIRiT, and proposed PG-DL with SIIM encoding operator
show good temporal agreements during contrast uptake, where the averaging across pixels in the ROI reduces the overall effect of noise
amplification in the split-slice GRAPPA curves. (C), Low-pass filtered signal intensity curves averaged in an ROI in septal myocardium.
Split-slice GRAPPA and proposed PG-DL with SIIM encoding operator show good temporal agreement in the myocardium uptake curve. The
only major differences are observed in the part of the curve prior to contrast injection, where split-slice GRAPPA exhibits a higher noise floor
in the low SNR regime, as expected. On the other hand, PG-DL with conventional operator, LLR-regularized reconstruction and L+ S
reconstruction show severe misestimation of the uptake curve with respect to these two techniques due to dominant residual artifacts in the
myocardium. Although regularized ROCK-SPIRiT follows proposed PG-DL with SIIM encoding operator during the first half of the
time-frames, it drifts away in later phases due to blurring that distorts the myocardium blood-interface.

intensity curves for six AHA sectors are shown in Support-
ing Information Figure S10.

Figure 5 summarizes the reader study. Proposed
PG-DL with SIIM encoding operator shows the best
overall image quality among the methods, significantly

improving on split slice-GRAPPA, LLR-regularized recon-
struction, L+ S reconstruction and PG-DL with conven-
tional encoding. Similarly, the proposed method shows
the least amount of blurring and highest perceived SNR
among all methods.



8 DEMIREL et al.

F I G U R E 5 The clinical reader study results for the test data sets. Bar plots show average reader scores and their SD across the test
subjects for all six reconstruction methods. Statistical testing was performed using Wilcoxon signed-rank test, and * shows significant
statistical difference with P< 0.05. The proposed PG-DL with SIIM encoding shows the highest overall image quality scores among all
methods with significant improvement upon split-slice GRAPPA, LLR-regularized reconstruction, L+ S reconstruction and PG-DL with
conventional encoding. The proposed method also has the least amount of blurring among all methods, and significantly improves upon split
slice-GRAPPA and LLR-regularized reconstruction in terms of blurring. Among all methods, LLR-regularized reconstruction, L+ S
reconstruction and PG-DL with conventional encoding show the least amount of perceived SNR, whereas the proposed method shows the
highest perceived SNR meanwhile significantly improved upon them.

4 DISCUSSION

In this study, we proposed SIIM encoding operator for
PG-DL reconstruction of image series with varying con-
trast across time-frames, and applied it to highly accel-
erated myocardial perfusion CMR. The main advantage
of using SIIM encoding operator is a uniform/flat signal
level across different time-frames at the unrolled neural
network output. This in turn facilitates generalizability of
PG-DL reconstruction. The proposed approach improved
upon multiple regularized reconstructions, showing bet-
ter image quality, and reduced noise amplification and
aliasing.

Conventional and SIIM encoding have two main dif-
ferences. First, the solution of Eq. [1] using conventional
encoding is adversely affected by ill-conditioning at high
accelerations.83 As noted earlier, a similar concept to SIIM
encoding was proposed in74 to improve numerical stabil-
ity for parallel imaging. The proposed SIIM encoding in

Eq. [3] aims for a similar improvement, while enabling
a synergistic combination with ESPIRiT, thus not neces-
sitating a different coil map generation process as in.74

Second, and more importantly, in the PG-DL setup, SIIM
encoding provides a more uniform contrast at the neu-
ral network outputs across time-frames. The output signal
intensity of PG-DL with conventional encoding operator
fluctuates across time-frames, and the regularization in
the unrolled network needs to work with dramatically
different signal levels. On the other hand, SIIM encod-
ing operator maintains a uniform output in terms of sig-
nal level. Thus, regularization operates on more uniform
SNRs in image space, for the corresponding outputs x̂SIIM,
which empirically generalizes better across time-frames.
Even though this intermediate solution has more uniform
signal intensity, the final reconstruction is generated by
multiplying with the corresponding low-resolution image
for that time-frame, restoring the original signal intensity,
as indicated in Eq. [2]. Thus, the use of SIIM encoding
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operator should not affect quantification in myocardial
perfusion, consistent with conclusions from the uptake
curves. Finally, on a first look, Eq. [5] may resemble pre-
conditioners in other MRI reconstruction problems,84–86

which are used to reduce the number of iterations for
data fidelity. However, such preconditioners do not change
the output signal intensity, thus solution of the precon-
ditioned system coincides with that of the objective in
Eq. [1]. Hence, SIIM operator is distinct from this typical
use of preconditioning, leading to a more uniform signal
intensity across time-frames.

DL reconstruction has gained interest in perfusion
CMR, but has been limited to data-driven image enhance-
ment approaches that learn a mapping between aliased
and artifact-free images.66–68 PG-DL approaches, which
have been shown to outperform image enhancement
methods62,87,88 have remained elusive for perfusion CMR.
One of the main challenges for PG-DL techniques has
been related to generalizability with SNR changes,64 lim-
iting the use of such reconstructions across perfusion
time-frames, which is the main issue tackled in this
study. Another challenge for DL reconstruction in per-
fusion CMR has been the lack of gold-standard refer-
ence data. Aforementioned data-driven DL methods66–68

were trained using supervision with compressed sensing
reconstructions, limiting the performance of DL recon-
struction. On the other hand, PG-DL methods enable
self-supervised training from undersampled k-space data
only,61,78,80,89,90 without a reference image. Thus, the com-
bination of SIIM encoding and self-supervised learning
for PG-DL, as in this study, has the potential to fur-
ther improve the utility of DL reconstruction for perfu-
sion CMR.61 Finally, PG-DL reconstruction can be trained
with fewer datasets compared to data-driven DL meth-
ods, and the number of k-spaces used for training in this
work was in line with earlier PG-DL works that used
∼200-to-360 k-spaces,56–61,64,91,92 and was gathered using
only four subjects. We note that the performance gap
between the DL methods may change with a substantially
larger training database, but this could not be investigated
with our current cohort size.

The use of SMS encoding in this study required sev-
eral design choices related to calibration data. First, since
central k-space data were not available for individual slices
for each time-frame, an initial split slice-GRAPPA recon-
struction was used to generate L, which suppresses alias-
ing but shows noise amplification. However, since only
a limited central k-space region, containing high-SNR
low-frequency k-space points, was used to generate L, SNR
reduction effects from split slice-GRAPPA were observed
to be minimal in subsequent processing. We emphasize
that this step was only needed because of SMS encoding,

and is not necessary for conventional 2D/3D encoding,
where central k-space can be fully-sampled. Furthermore,
Blackman filtering was used to avoid ringing, and the
reader study did not report any dark rim artifacts associ-
ated with the use of L. Second, calibration data for SMS
reconstruction were acquired separately in free-breathing,
which may be in different respiratory/cardiac motion
states than perfusion data. Previously, it was shown that
there were no differences between using free-breathing
and breath-held calibration in another SMS CMR appli-
cation in healthy cohorts.93 Furthermore, ESPIRiT uses
only a 24× 24 central region, leading to smooth maps,
where motion-related artifacts in coil estimation may
be non-severe for most cohorts. However, evaluation
of these pre-acquired calibration scans warrants further
investigation, especially in patient populations with phar-
macologically induced stress. Finally, uniform under-
sampling was used in combination with SMS, since it
allows easier integration in clinical sequences, and enables
comparisons with clinically-used split slice-GRAPPA
reconstruction. We note that compressed sensing meth-
ods are often used with random undersampling, thus
their performance with uniform undersampling may be
deteriorated.

This study has several limitations. All acquisitions in
this study were prospectively accelerated. Therefore, there
is no gold-standard reference for image quality assess-
ment. Since it is difficult to acquire first-pass perfusion
on subjects multiple times due to need for repeated con-
trast injection, a conventional low-resolution perfusion
scan with limited coverage was not performed, excluding
a more typical clinical baseline for comparison. Addition-
ally, no stress imaging data were available, which is clin-
ically imperative for perfusion diagnostics. A pixel-wise
mapping of myocardial blood flow (MBF) estimation94

may be performed for quantitative assessment,95 but such
analyses typically require modifications to the imaging
protocol, such as administering dual doses96,97 or using
dual sequences.98–101 Thus, MBF estimation could not be
reliably performed with our acquisition protocol. Further
clinical studies are warranted to assess full potential of the
proposed method, and its diagnostic value in patients with
suspected coronary artery disease.

5 CONCLUSIONS

The proposed PG-DL reconstruction with SIIM encod-
ing operator generalizes well across time-frames/SNRs,
and substantially improves upon several existing recon-
struction methods for highly accelerated perfusion
CMR.
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SUPPORTING INFORMATION
Additional supporting information may be found in the
online version of the article at the publisher’s website.

Video S1. Movie of the perfusion images reconstructed
with all techniques of a test subject (shown in Figure 2).
Video S2. Movie of the perfusion images reconstructed
with all techniques of another test subject.

Figure S1. Details of variable splitting for solving the
inverse problem.
Figure S2. Details of implementation for SMS encod-
ing (A) SMS forward model for the acquisition where
ySMS
Ω is the acquired multi-channel SMS k-space, E[i]Ω is

the multi-coil encoding operator of the ith slice, x[i] is
the underlying image corresponding to the ith simultane-
ously excited slice, and nslice is the number of SMS-excited
slices. (B) The notation in (A) can be condensed by
concatenating simultaneously excited slices,

{

x[i]
}nslice

i=1 ,
along the readout direction, as xSMS which yields a com-
pact form of multi-coil and multi-slice operator ESMS

Ω =
[

E[1]Ω · · · E[nslice]
Ω

]

.5–7 (C) For the SIIM encoding operator,
we let LSMS be a block diagonal matrix whose entries are
also diagonal matrices, L[i] that encode the signal varia-
tions in the ith SMS-excited slice, such as a low-resolution
image, defined as LSMS. Note that, as before, for ease of
notation, we simply use L[i], but there are T ⋅ nslice dif-
ferent low-resolution images with Lt

[i], t ∈ {1, · · · ,T }, i ∈
{1, · · · ,nslice } ,when different time-frames are considered.
Finally, SIIM encoding operator for SMS imaging is given
as HSMS

Ω = ESMS
Ω LSMS

Figure S3. Details of self-supervised deep learning imple-
mentation
Figure S4. (A) The ResNet structure consisted of 15 resid-
ual blocks with skip connections which were used to facil-
itate the information flow during training and each block
has two convolutional layers.11 (A) The ResNet struc-
ture consisted of 15 residual blocks with skip connections
which were used to facilitate the information flow during
training and each block has two convolutional layers.9 (B)
First layer of the residual block was followed by a rectified
linear unit (ReLU) and the latter was followed by a con-
stant multiplication corresponding to 0.1.9 All layers in the
network had kernel size of 3× 3 and 64 channels, for a total
of 592 129 trainable parameters which were shared across
unrolled iterations. The three SMS slices were concate-
nated along the readout direction prior to being input to
the ResNet with proper FOV shifts to reorient the CAIPIR-
INHA phase cycling and avoid boundary artifacts.5,6

Figure S5. Representative numerical phantom results for
myocardial perfusion CMR simulated with a 3-fold SMS
and 4-fold in-plane acceleration along with outer volume
suppression.
Figure S6. The error images between full-sampled ref-
erence images and all reconstruction methods for the
numerical phantom experiments.
Figure S7. Signal intensity plots of left ventricular contrast
uptake and 6 AHA segments of myocardial contrast uptake
for all methods.
Figure S8. Difference images between split slice-GRAPPA
and all the regularized reconstruction methods.
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Figure S9. All 9 slices for a representative time-frame, cov-
ering the whole heart using 3 SMS groups of 9 slices from
another subject shown in Figure 3.
Figure S10. Low-pass filtered signal intensity curves of
hand-drawn 6 AHA sectors in myocardium.
Table S1. Free-breathing first-pass myocardial perfusion
CMR imaging sequence details.4
Table S2. Implementation details of the PG-DL networks
used in this study.
Table S3. Implementation details of comparison recon-
struction methods. All thresholding values were empiri-
cally tuned to maximize visual image quality.
Table S4. Implementation details of the numerical phan-
tom.

Table S5. Image quality assessment scores using PSNR
and SSIM for all reconstruction methods using the numer-
ical phantom.
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