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SUMMARY

Climate change is incompatible with the assumption of stationarity. This has lead to
a sharp increase in the detection and study of nonstationarity in hydro-meteorological
processes. Most hydro-meteorological processes are still analyzed by studying time se-
ries of observations.

From the perspective of statistical characteristics, a stationary time series does not
show significant changes. On the contrary, a nonstationarity time series often shows a
slowly increasing/decreasing trend or a sudden change. A sudden change or a change
point is a time point that a time series shows a great change in its statistical characteris-
tics, for instance in the mean or the standard deviation.

For stationary cases, hydrologists have a large number of statistical tools to analyse
these time series. These tools can not only help hydrologists to gain a deep insight into
time series, but they can also analyse the corresponding uncertainty. For nonstationary
cases, the detection of changes has drawn the majority of attention, however, the un-
certainty associated with the detection has still been rarely studied. Therefore, this PhD
research aims at bridging the gap between nonstationarity detection and the uncertainty
of detection. To be more specific the main scope is rooted in analysing the uncertainty
associated with detecting a change point in hydro-meteorological time series.

When it comes to representing uncertainties, a traditional choice is using a confi-
dence interval with a certain confidence level. In this research instead, the uncertainty
is represented by confidence curves because they are capable of capturing more infor-
mation by including all confidence intervals at all confidence levels and they visualize
uncertainty in a curve.

To verify the general applicability of a confidence curve in representing uncertain-
ties, both a discrete parameter and a continuous parameter are considered in this re-
search. The location of a change point is considered as a discrete parameter, and the
dependence parameter in copula models will be considered as a continuous one. Ad-
ditionally, in order to simplify the construction of a confidence curve, several new ap-
proaches have been presented in this research.

Based on results and findings, confidence curves have been proven to be more in-
formative and theoretically they can represent uncertainties of all types of parameter of
interest. With a confidence curve, hydrologists can easily read the uncertainty of the de-
tected change point and this would also provide decision-makers a better insight into
the nonstationarity of a time series of a hydro-meteorological observations.

xi





SAMENVATTING

Klimaatverandering is onverenigbaar met de aanname van stationariteit. Dit heeft geleid
tot een sterke toename van de detectie en bestudering van niet-stationariteit in hydro-
meteorologische processen. Het grootste deel van de hydro-meteorologische processen
wordt nog steeds geanalyseerd aan de hand van tijdreeksen van waarnemingen.

Vanuit het oogpunt van statistische karakteristieken vertoont een stationaire tijd-
reeks geen significante veranderingen. Een tijdreeks met niet-stationariteit daarentegen
vertoont vaak een langzaam stijgende/dalende tendens of een plotselinge verandering.
Een plotselinge verandering of een “change point” is een tijdstip waarop een tijdreeks
een grote verandering in zijn statistische kenmerken vertoont, bijvoorbeeld in het ge-
middelde of de standaardafwijking.

Voor stationaire gevallen beschikken hydrologen over een grote hoeveelheid statis-
tische hulpmiddelen om deze tijdreeksen te analyseren. Deze hulpmiddelen kunnen
hydrologen niet alleen helpen om een diep inzicht te krijgen in tijdreeksen, maar ook
om de bijbehorende onzekerheid te analyseren. Voor niet-stationaire gevallen heeft de
detectie van veranderingen de meeste aandacht getrokken, maar de onzekerheid die ge-
paard gaat met de detectie is nog steeds zelden bestudeerd. Daarom beoogt dit proef-
schrift een brug te slaan tussen de detectie van niet-stationariteit en de onzekerheid van
de detectie. Meer specifiek gaat het om de analyse van de onzekerheid die gepaard gaat
met de detectie van een veranderingspunt in hydro-meteorologische tijdreeksen.

Wanneer het erom gaat onzekerheden weer te geven, is een traditionele keuze het ge-
bruik van een betrouwbaarheidsinterval met een bepaald betrouwbaarheidsniveau. In
dit onderzoek wordt de onzekerheid daarentegen weergegeven door betrouwbaarheids-
curven, omdat deze meer informatie kunnen weergeven door alle betrouwbaarheids-
intervallen met elk betrouwbaarheidsniveau op te nemen en omdat zij de onzekerheid
visualiseren in een curve.

Om de algemene toepasbaarheid van een vertrouwenscurve bij de weergave van
onzekerheden te verifiëren, worden in dit onderzoek zowel een discrete parameter als
een continue parameter in aanmerking genomen. De plaats van een veranderingspunt
wordt beschouwd als een discrete parameter, en de afhankelijkheidsparameter in co-
pula modellen wordt beschouwd als een continue parameter. Om de constructie van
een vertrouwenscurve te vereenvoudigen, worden in dit onderzoek bovendien verschil-
lende nieuwe benaderingen voorgesteld.

Op basis van resultaten en bevindingen is bewezen dat betrouwbaarheidscurven in-
formatiever zijn en theoretisch kunnen zij onzekerheden van alle soorten parameters
van belang weergeven. Met een betrouwbaarheidscurve kunnen hydrologen de onze-
kerheid van het gedetecteerde veranderingspunt gemakkelijk aflezen en dit zou besluit-
vormers ook een beter inzicht verschaffen in de niet-stationariteit van een tijdreeks van
een hydro-meteorologische waarneming.
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1
INTRODUCTION

The book on confidence distributions
written by Tore Schweder and Nils Lid Hjort,

was given as a reference book to me.
Since then, it has been my go-to book all the time.

1



1

2 1. INTRODUCTION

1.1. THE IMPORTANCE OF UNCERTAINTY ANALYSIS
Uncertainty analysis can provide an overview of the error in model estimation and the
inaccuracies of measurements by using all available information [1]. The evaluation of
uncertainty can be helpful in decision making and it has to be taken into account when
interpreting the outputs of models [2]. Uncertainty analysis is also an aid for researchers
to solve environmental problems and conduct associated risk assessment [3]. Water-
related projects also rely on the estimation for the sake of safety, for instance hydrologists
design dikes/reservoirs/dams by considering of the magnitude of the design flood with a
specific return period. Government, insurance and real estate companies need to know
the uncertainty and risk to make investment decisions.

The uncertainty is mainly comprised of deterministic and stochastic components,
and there are many methods that can be used to estimate uncertainty, such as Monte
Carlo simulations [4], bootstrap [5], frequentist [6], and Bayesian analysis [7].

The uncertainty of environmental problems becomes more complicated as a result
of changes in land use, increasing urbanization and population and climate change [8–
13]. Given the inherent uncertainty of the future, predictions inevitably involve statistics,
and these statistics may or may not be influenced by changes in the environment. It is
widely accepted that statistical models are often used as tools to solve practical prob-
lems, but uncertainties are inevitable in statistical models. Therefore, it is necessary to
show the uncertainty in the outputs of statistical models.

1.2. TRADITIONAL TIME SERIES ANALYSIS BASED ON NULL HY-
POTHESIS STATISTICAL TESTS

The traditional way to conduct time series analysis is based on statistical inference. Statis-
tics developed for Null Hypothesis Statistical Testing (NHST) are very popular in a variety
of sciences. The concept of statistical significance can be traced back to Edgeworth [14],
and Fisher [15, first published in 1925] made it well known. It was originally a tool to
indicate when a result warranted further scrutiny. Neyman and Pearson [16] used statis-
tical significance to interpret the results of statistical inference, and hypothesis testing
based on significance level became widely used.

The NHST depends on a pre-set p−value threshold, and it is used as an aid to re-
port the significance of the statistical inference. However, the conclusions drawn from
a NHST are often biased [17] and a p−value can only provide quite limited information
about data and is very easily misinterpreted [18]. For instance, NHST only provides a
‘Yes’ of ‘No’ answer to whether to accept the null hypothesis or not, and it leaves no
room for uncertainty analysis. An increasing number of statisticians suggested users to
abandon the declaration of ‘statistical significance’ because the statistical significance
based on p < 0.05 is not informative [18–20].

According to Davidian and Louis [21], significance of statistics is ‘the science of learn-
ing from data, and of measuring controlling, and communicating uncertainty’. Wasser-
stein et al. [19] summarized that when it comes to statistical inference, it is recommended
to ‘Accept uncertainty. Be thoughtful, open and modest’. A confidence interval is a tradi-
tional way to show the uncertainty for a parameter of interest, but it only consists of two
bounds of an interval at a given confidence level. Clearly, it is more informative to use
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a distribution estimator than an interval estimator [22]. To better represent the uncer-
tainty in statistical inference and to construct a distribution estimator for a parameter of
interest, new statistical methods are needed. Statisticians encourage users to use confi-
dence distributions to represent the uncertainty for a parameter of interest [22–30]. Rat-
nasingam and Ning [31] said “It (A confidence distribution) also can provide confidence
intervals of all nominal levels for a parameter of interest through confidence curves.”

In this PhD research, confidence curves will be employed to represent the uncer-
tainty in statistical inference. A confidence curve is a variant of a confidence distribu-
tion, and it is based on an exact or approximate probability distribution of a deviance
function based on a sample [32]. According to Schweder and Hjort [29, page 66], a confi-
dence curve is a canonical graphical curve that can represent a confidence distribution,
and

cc(ψ) =
{

1−2C (ψ),

2C (ψ)−1,

ψ≤ ψ̂0.5

ψ≥ ψ̂0.5

where ψ is a parameter of interest; cc(ψ) is a confidence curve for ψ; and C (ψ) is a con-
fidence distribution for ψ. With a confidence curve, the uncertainty can be represented
graphically.

1.3. UNCERTAINTY ANALYSIS IN PARAMETER ESTIMATION
Uncertainty exists in almost all models and measurements, and in this research the fo-
cus will be on the uncertainty in estimating parameters. Generally, there are two types of
parameters, discrete and continuous parameters. Therefore, this study will aim at con-
structing confidence curves for both discrete and continuous parameters.

1.3.1. CONFIDENCE CURVES FOR DISCRETE PARAMETERS
There are many discrete parameters in the real world, and in this study, the location of a
change point in hydro-meteorological time series is taken as a parameter of interest. The
location of change point is a moment in time where there is an abrupt change in one or
more of the properties of the time series such as the mean, the median, or the standard
deviation [33, 34].

The first study of finding change points was in product quality assessment in man-
ufacturing [35]. With the development of change point detectors, finding change points
has been widely applied in many fields, for instance, oceanography [36], economics, fi-
nance [37], biology [38] and meteorology [39, 40].

It is clear that climate change affects the hydrological cycle [41], and there is an in-
creasing risk from extreme precipitation [42], floods [43], and heatwaves. When it comes
to finding change points in hydro-meteorological time series, abundant data is often
needed [44]. The number of change points can be single or multiple, but in this PhD the-
sis change point detection is conducted under the assumption of ‘At Most One Change’
(AMOC). It is noticeable that different detectors and different sample lengths might lead
to different results. The traditional change point relies on NHST, but the uncertainty in
the results still needs to be addressed and well represented.

For hydro-meteorological time series, the location of a change point is a discrete pa-
rameter which lies within the range of possible time. Currently, there is no theory that in-
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dicates the probability distribution of a deviance function for a discrete parameter [32].
However, a probability distribution based on deviance function, or in our case, an ap-
proximate confidence curve for discrete parameters can be constructed. According to a
previous study [32], it can be constructed by simulations to represent the uncertainty in
finding the location of a sudden change. Therefore, confidence curves for the location of
a change point constructed by Monte Carlo simulations will be considered.

1.3.2. CONFIDENCE CURVES FOR CONTINUOUS PARAMETERS

Continuous parameters play an important role in time series, for instance the design
flood with a given return period, the frequency of the occurrence of a certain magnitude
of rainfall. In this study, the dependence parameter in copulas is taken as a parame-
ter of interest. A copula is a joint distribution of multiple variables, and according to
Sklar [45], the joint behaviour of multiple random variables with continuous margins
can be described uniquely by a copula function. In hydrology, the joint behaviour exists
in many phenomena [46–49], for instance the duration and the intensity of precipitation,
the streamflow concentrated in the lower stream and streamflow from the upper stream,
surface drought and groundwater drought.

The uncertainty in continuous parameter estimation is often examined by Monte
Carlo simulation or bootstrap and represented by confidence intervals. As we discussed
in 1.2, compared to an interval estimator, a confidence curve is more informative and
confidence intervals with different confidence levels can be easily extracted from it. Ac-
cording to Wilks’ theorem, for continuous parameters, the probability distribution of a
deviance function can be approximated by the χ2

(1) distribution [32], and with a confi-
dence curve confidence intervals at all confidence levels can be extracted from it [29].
Therefore, compared to discrete parameters, the construction of confidence curves for
continuous parameters is simpler.

1.4. KNOWLEDGE GAP

Nowadays, uncertainty analysis is playing an increasingly important role in hydrological
time series analysis, but it is rare to find studies using confidence curves to represent
uncertainties. The concept of confidence curves has been known in statistics since Birn-
baum [50], and it is getting increasing attention in statistics [22, 24, 27, 29, 51]. However,
the application of it is rare. Therefore, this PhD research is an exploration of how to use
confidence curves to conduct uncertainty analysis in hydrological time series analysis.
Hydrological frequency analysis often assumes that observations are stationary [52–54],
and change point detection plays an important role in determining the stationarity of
hydrological observations. Cunen et al. [32] proposed a parametric method to construct
confidence curves for the change point problem, but there are some limitations of the
method. For instance, it is expensive computationally, and based on a parametric distri-
bution. It would be interesting to apply the method to construct confidence curves for
the location of a change point in hydrological time series. Modifications to the method
will improve the efficiency of the existing method and bridge the gap between the change
point detection in hydrological time series and the statistical development.
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1.5. OBJECTIVES AND OUTLINES
This PhD research aims to use confidence curves to represent uncertainty in hydrologi-
cal time series analysis. Two parameters are taken as parameters of interest, the location
of a change point and the dependence parameter in copulas.

Chapter 2 introduces traditional methods based on NHST to find the location of
change points, and three non-parametric change point detectors are studied: Pettitt’s
test, the Cramér von Mises (CvM) test and the CUSUM test. In addition, the proper-
ties of the aforementioned change-point detectors are analyzed and compared, a better
method is suggested. Traditional NHST methods give not enough flexibility for uncer-
tainty analysis, and a new technique to represent uncertainty in change point detection
is called for.

To represent uncertainty by confidence curves for the location of a change point, the
theoretical background of confidence curves is introduced in Chapter 3. In this chapter,
we will present how to construct confidence curves by a profile log-likelihood function
which is ‘method B’ proposed by Cunen et al. [32]. We then provide the steps needed to
follow to construct confidence curves for the location of a change point. We then show
how to examine the property of a confidence curve. Limitations of the method will also
be presented.

The method proposed by Cunen et al. [32] uses a two-stage maximum likelihood es-
timator (mle) to estimate nuisance parameters and the parameter of interest, which is
computationally expensive. The mle could be very difficult for many parametric distri-
butions, for instance, Generalized Extreme Value (GEV) distributions [55, 56]. Therefore,
Chapter 4 modifies the ‘method B’, and introduces how to use a pseudo maximum like-
lihood estimator (pmle) to construct confidence curves. We then provide the steps to
follow when constructing confidence curves by the modified approach. We then show
how to measure the similarity of two confidence curves by different methods and how to
quantify uncertainty level by confidence curves.

Moreover, the ‘method B’ proposed by Cunen et al. [32] assumes that the real para-
metric distribution of observations is known, which does not hold most of the time in
hydrology. Therefore, Chapter 5 will explore how to construct confidence curves for the
location of a change point by a non-parametric approach based on the approximate em-
pirical likelihood ratio [57–59] and bootstrapping. We then provide the steps to construct
confidence curves by this non-parametric approach. We then show the properties of
confidence curves, the similarity index between confidence curves, and the uncertainty
level by confidence curves using parametric and non-parametric approaches.

In Chapter 6, a confidence curve for the dependence parameter in copulas is con-
structed. Since the dependence parameter is continuous, the confidence curve for it will
be constructed according to Wilks’ theorem.

Chapter 7 summarizes the key contribution of this PhD research, the knowledge gen-
erated and the limitations and perspectives for future study.
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2
CHANGE POINT DETECTION BY

NULL HYPOTHESIS STATISTICAL

TESTS

The story of Null Hypothesis Statistical Tests starts with Ronald A. Fisher (1890-1962),
gets extended by Jerzy S. Neyman (1894-1981),

and it has become an indispensable tool in all scientific studies.

Parts of this chapter have been published in“Zhou, C., van Nooijen, R., Kolechkina, A., and Hrachowitz, M.
Comparative analysis of nonparametric change-point detectors commonly used in hydrology, Hydrological
Sciences Journal, Page: 1690-1710, 64(14), 2019. ”
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2.1. INTRODUCTION
Today environmental scientists are well aware of the changes that affect the systems they
study. Changes in land use, increasing urbanization and climate change combine to
complicate the process of predicting the future behaviour of these systems [1–3]. These
predictions are needed to answer practical questions like “How high should this dam
be to be functional for 50 years?” or “Can we safely develop this coastal area?”. Given
the inherent uncertainty about the future, predictions inevitably involve statistics, for
instance, the probability of certain amounts of precipitation or runoff. These statistics
may or may not be influenced by changes in the environment.

One type of change one may look for is a change point [4, 5] a moment in time where
there is an abrupt change in one or more of the properties of the time series such as the
mean, the median, or the standard deviation.

The art of finding change points was studied first to detect changes in product qual-
ity in manufacturing [6, 7]. One of the earliest papers that addressed this question by
developing and using a formal statistical test in a hydrological context was written by
McGilchrist and Woodyer [8]. They looked for change points in an 88-year-long series of
yearly rainfall at Walgett, New South Wales, Australia.

Change point analysis was initially restricted to univariate time series of indepen-
dent variables under the assumption of ‘At Most One Change’ (AMOC). It was extended
to series with multiple change points [9, 10] and to multivariate time series [11]. New
methods were developed to consider dependence within a series, or high-dimensional
multivariate time series [12–19]. Detecting change points in a series with trend was stud-
ied by analysing a two-phase regression model, see for example Lund et al. [14], Wang
[20] and Beaulieu et al. [21].

Hydrological processes are widely thought to have changing properties [22–24]. Many
types of human intervention may result in change points in hydrological time series, for
instance, construction of dams, changes in instrumentation or measurement protocol
and relocation of measurement stations.

Sometimes the potential cause of a change point in a time series is known, for ex-
ample, the relocation of a measurement station. These are referred to as ‘documented
change points’, where detected change points can be examined in context. But on other
occasions, there are no explicitly documented potential causes for change points and
only the outcome of the statistical change point analysis can be used to judge the relia-
bility of the result [25–28].

As in other areas of statistics, there are parametric and non-parametric (distribution
free) methods for change point detection. Parametric methods assume that observa-
tions are from a known parameterized family of distributions. A number of classical
parametric methods have been developed, see for example Chernoff and Zacks [29],
Kander et al. [30], Hawkins [31] or Gurevich and Vexler [32]. In practice, there is often
not enough information on the type of distribution of a hydrological sample to make
an informed choice for the distribution family and subsequently perform a parametric
change point detection analysis. Therefore, only nonparametric tests are studied in this
paper.

Previous studies have analysed the Pettitt’s method in terms of its ability to detect
the correct time of change for different distributions [33] and sensitivity for the gamma
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distribution [34], but comparative studies of multiple methods are rare.
Time series analysis of hydrological data is a complex topic due to dependence in

the time series and the complexities of multivariate data. This study considers only one
specific context: under ideal circumstances and for a time series containing only one
variable, can change point analysis be used for exploratory data analysis and what are its
limitations? Questions to be answered are:

• Can the probability of incorrectly signaling a change point be predicted?

• What is the probability of correctly detecting a change point?

• How close are the estimates to the correct location?

• What is the effect of time series length?

• Is there a relationship between the size of the change and the answers to the above
questions?

• Does it matter when our series starts or ends? In other words: is it safe to look at
parts of a time series that contain a given range of potential change points, but
have different start or end years?

The following change point detection methods are considered: the method described
in Pettitt [4], which we refer to as ‘Pet-CP’, a method based on the two-sample Cramér
von Mises test statistic, which we refer to as ‘CvM-CP’ [35, 36], and a method based on
CUSUM median statistics, which we refer to as ‘CUSUM-CP’ [8, 37, 38]. Xiong et al.
[36] used CvM-CP to detect the change point in multivariate time series, but this study
applies CvM-CP in the univariate situation.

2.2. METHODOLOGY AND DATA
This study contains two groups of experiments. The first uses synthetic data series to
examine how well the methods perform. The second takes four time series of the annual
maximum runoff and uses the methods to look for change points in the full series and
subseries with different start and/or end years. From a statistical point of view, a time se-
ries of hydrological measurements of length n can be seen as a vector of n observations
(x1, x2, . . . , xn) corresponding to one sample of a random vector (X1, X2, . . . , Xn). The vec-
tor components may or may not be independent, and they may or may not have the
same marginal distribution. The methods for change point analysis used in this study
have three components:

• a test statistic;

• an exact (or approximate) distribution of the test statistic under the null hypothe-
sis;

• an estimator τ̂ for the point in time τ where the change occurs (the change point).
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For these tests the null hypothesis is: There is no change point. To apply one of these
methods, first a significance level is set, next the statistic is calculated and, finally, if the
null hypothesis is rejected, then the estimator τ̂ is applied and the resulting change point
location is reported. All tests given here are described in a form suitable for independent
vector components and the presence of at most one change point, so either the n vector
components have the same distribution, or the first τ are from one distribution and the
remaining (n−τ) are from a second distribution. If the vector components are not inde-
pendent, then either adjustment of the distribution of the test statistic, or pre-processing
of the time series is indicated [39], and if there are multiple change points, then the tests
need to be extended; both are outside the scope of this chapter. Background information
on change detection can be found in Kundzewicz and Robson [39, 40].

2.2.1. CHANGE POINT DETECTION METHODS

(1) PET-CP METHOD

The Pettitt’s test was specifically designed to detect a single change point [4]. The follow-
ing two-sample test statistic is defined as

Uτ =
τ∑

i=1

n∑
j=τ+1

sgn(Xi −X j ) (2.1)

where sgn(·) is a sign function (see A.2). The Pettitt’s test statistic itself is given by

Kn = max
1≤τ<n

|Uτ| (2.2)

If the null hypothesis does not hold, then the estimator for the change point location is:

τ̂= min

(
argmax

1≤τ≤n
|Uτ|

)
(2.3)

According to Pettitt [4], the limit distribution of Kn for large n is given by:

Pr

(
Kn

√
3

n2 +n3 ≤α
)
= 1+2

∞∑
j=1

(−1) j exp
(−2 j 2α2) (2.4)

where the right-hand side represents the cdf of the Kolmogorov distribution and α is the

significance probability associated with Kn

√
3

n2+n3 . Most papers that apply this test use

this limit distribution (see [41], [34]), so it will be used here as well.

(2) CVM-CP TEST

The original Cramér von Mises (CvM) test was intended to determine whether all obser-
vations in a sample of n independent observations were drawn from a given probability
distribution [42]. A modification can be used to test whether or not two samples were
drawn from the same distribution [43]. Holmes et al. [35] developed a method on the
basis of the two-sample CvM test statistic to detect the change point within the multi-
variate series. This was a further development of the approach proposed by Gombay
and Horváth [44]. According to Bücher et al. [45], the method developed by Holmes et al.
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[35] performs much better than that based on the two-sample Kolmogorov-Smirnov test
statistic. Moreover, it is not only useful in detecting the change point within a univariate
time series, but can also be applied to get a change point in a multivariate hydrological
time series, such as multivariate series based on copla models [36]. The notation from
Xiong et al. [36] is used to describe the CvM-CP detection method. We refer to A.1, the
indicator function is J·K, so the empirical distribution function is:

Fτ(Xk ) = 1

τ

τ∑
i=1

JXi ≤ XkK (2.5)

For the part of the sample up to a potential change point, and the empirical distribution
function for the part of a sample after the potential change point:

F∗
n−τ(Xk ) = 1

n −τ
n∑

i=τ+1
JXi ≤ XkK (2.6)

For a time series of one variable, the CvM-CP test statistic is defined in terms of (n −1)
two-sample statistics:

Sτ = 1

n

n∑
k=1

(D(τ, Xk ))2 (2.7)

D(τ, Xk ) = τ(n −τ)

n
3
2

(Fτ(Xk )−F∗
n−τ(Xk )) (2.8)

The CvM-CP statistic is given by:
S = max

1≤τ<n
Sτ (2.9)

The distribution for this value under the null hypothesis is not known exactly and an
asymptotic distribution is not available. It was approximated empirically from a sample
of size 10 000 taken from the standard uniform distribution, as in Holmes et al. [35]. If
the null hypothesis does not hold, then the estimator for the change point location is:

τ̂= min

(
argmax

1≤τ<n
Sτ

)
(2.10)

The general approach of choosing the lowest index τ if there are multiple equal maxima
was proposed in Antoch et al. [46].

(3) CUSUM-CP METHOD

Page [7] was the first to suggest the use of a cumulative sum to find changes in a param-
eter of interest. McGilchrist and Woodyer [8] used it to detect a change point for even
sample lengths; this is the variant used in this study. Chiew and McMahon [37] used this
method to detect change in annual flow of Australian rivers.

The test is defined in terms of a one-sample test statistic for each potential change
point

Vτ =
τ∑

j=1
(2JK ≤ X j K−1) (2.11)
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In (2.11), K is a random variable corresponding to one of several quantities. We follow
McGilchrist and Woodyer [8], who used the sample median. The test statistic is

Tn = 2

n
max

1≤τ≤n
|Vτ| (2.12)

and the estimator for the change point location is

τ̂= min

(
argmax

1≤τ<n
|Vτ|

)
(2.13)

According to McGilchrist and Woodyer [8], under the null hypothesis the limit distribu-
tion of Tn for large n is the same as that of the Kolmogorov-Smirnov test statistic. It
follows that

Pr

(
Tn

√
n

4
< x

)
= 1+2

∞∑
j=1

(−1) j exp
(−2 j 2x2) (2.14)

where the right-hand side represents the cdf of the Kolmogorov distribution. Most pa-
pers that apply this test use this limit distribution, so it will be used here as well.

2.2.2. CRITERIA USED TO EVALUATE THE PERFORMANCE OF THE TESTS
The first property to be checked is the empirical type I error probability. For a signif-
icance level of 5% the test should reject the null hypothesis, H0, ‘There is no change
point’, for 5% of the synthetic time series without change point. To see how well the tests
do when detecting change points, we want to approximate the power of the test, which
is defined as the probability that a test correctly rejects H0 without considering the ac-
curacy of the estimate of the change point [47]. If, for a set of N samples with a change
point, the test rejects Nrej, then the empirical probability of correct rejection is:

power ≈ Nrej

N
(2.15)

While high power is desirable, it is also important that the estimate of the point in time
where the change takes place is accurate. A very strict measure of this is the ability of
a change point detection test. This is defined as the empirical probability that the test
will correctly reject the null hypothesis and correctly identify the location of the change
point [33]. If for Ncor out of N samples the null hypothesis is rejected and the change
point correctly identified, then this is given by:

ability ≈ Ncor

N
(2.16)

2.2.3. DATA SOURCES: SYNTHETIC AND OBSERVATIONAL

(1) GENERATION OF THE SYNTHETIC TIME SERIES

Each synthetic time series consisted of n observations of independent random variables
where n = 10,20, . . . ,100,200,500,1000. Homogeneous synthetic series were generated
by sampling M times from the same distribution and used to determine the rejection
rate of the null hypothesis ‘there is no change point’. Time series with exactly one change
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point τ, with τ = n
10 , 2n

10 , . . . , 9n
10 , were generated by sampling from a given distribution

type with mean µL, and the standard deviation σL for the left-hand part of the series up
to and including Xτ and and mean µR and standard deviation σR for the right-hand part
of the series. The following notation is used:

∆µ=µR −µL;∆σ=σR −σL

To study the sensitivity to a change in the mean, series were generated with µL = 0,σL =
σR = 1 and µR = 0.5,1,2,4,8. To study the sensitivity to a change in the standard devia-
tion, series were generated with µL =µR = 0,σL = 1 and µL =µR = 0,σR = 0.5,2,4,8.

To allow statistical analysis of the results for each specific combination of type of
distribution, ∆µ, ∆σ, change point location τ, and series length n we generated M syn-
thetic time series. For most combinations, M was equal to 10000, except for CvM-CP in
the case of series of length 200 and 500, where M = 1000 was used, and sample length of
1000, where M = 5000 was used, as CvM-CP turned out to be much more expensive to
calculate for long series than the other tests.

(2) TYPE OF DISTRIBUTION

Genralized Extreme Value disrtbutions (GEV) have been employed in many hydrological
time series analysis, for instance in [48] and [49], therefore in this study GEV distributions
will also be used. The following shows the four distribution types to be considered:

• normal distribution;

• generalized extreme value (GEV) distribution with shape−0.15, which corresponds
to the three-parameter reverse Weibull distribution with shape 20/3;

• GEV distribution with shape 0, which corresponds to the Gumbel distribution; and

• GEV distribution with shape 0.15, which corresponds to the three-parameter Fréchet
distribution with shape 20/3. The value 0.15 was chosen as representative for
thick-tailed GEV distributions [50].

Formulas for the GEV can be found in, for instance, van Nooijen and Kolechkina [51]. B.1
provides arguments to limit the number of different parameter combinations in case of
location–scale distribution families such as those given above.

(3) SOURCE OF THE REAL-WORLD DATA

For a given location, the first and last year of a period for which suitable data is available
may depend on pre-processing, willingness to allow for missing data and access to recent
data. This raises the question whether or not change point detection results depend on
the choice of first and last year. To examine this in the context of real data, measurements
from the Yangtze River in China were used. The methods were applied to annual maxi-
mum runoff (AMR) observations from four gauge stations: Cuntan (1893–2014), Yichang
(1946–2014), Hankou (1952–2014) and Datong (1950–2014) collected by the Ministry of
Water Resources of the People’s Republic of China in corresponding periods. The loca-
tions of the measurement stations are shown in Fig. 2.1 and the four AMR time series
used are shown in Fig. 2.2. Over the last 70 years, the Yangtze River basin has been sub-
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Cuntan
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Yichang
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Datong

GZB

Esri, HERE, Garmin, (c) OpenStreetMap contributors, and the GIS user community
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Dams (TGD: Three Gorges Dam; GZB: Gezhouba Dam)

Figure 2.1: Location of four gauge stations and three dams on Yangtze River.

Table 2.1: Details on some of the dams on the Yangtze River and its tributary.

Dam name Danjiangkou Gezhouba Three Gorges

Orientation
111 ° 29’17”E 111 ° 16’20”E 111 ° 00’12”E

32 ° 33’22”N 30 ° 44’23”N 30 ° 49’23”N

Construction time 1958–1973 1970–1988 1993–2009

Capacity 900MW 2715MW 22500MW

Reservoir capacity 17.45 km3 1.58 km3 39.3 km3

Location In Hanjiang, up-

stream of Hankou

38 km upstream of

Yichang

44 km upstream of

Yichang

ject to large-scale human intervention [52]. Reservoir construction has resulted in the
building of over 10 000 dams since the 1960s [53]. Information on the largest two dams
in the Yangtze and one in its Hanjiang tributary is given in Table 2.1 (locations are shown
in Fig. 2.1).

For the Yichang, Hankou and Datong series, previous investigations suggest the se-
ries can be treated as uncorrelated [54, 55] at the 5% significance level. Zhang et al. [56]
used detrended fluctuation analysis to find the long-range correlation of three datasets
from the Yangtze River and concluded that the daily streamflow (1893-–2009) from Cun-
tan station showed no significant correlation.
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Figure 2.2: Annual Maximum Runoff of the four hydrological stations in Yangtze River.
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2.3. ANALYSIS OF THE PERFORMANCE OF THE TESTS FOR DIF-
FERENT INPUT DATA

The results of the experiments with synthetic data are followed by the results of the ex-
periments on the time series of observed AMR.

2.3.1. SYNTHETIC EXPERIMENT
For all tests the significance level was set to 0.05. In other words, it is allowed to incor-
rectly assume the existence of a change point in 5% of all applications of the test. If the
real rejection rate of the null hypothesis ‘there is no change point’ is higher than this
value, then change points will appear more likely than they are in reality, possibly lead-
ing to unnecessary efforts to allow for non-existent change. If the real rejection rate of
the null hypothesis is lower than this value, then change points will appear less likely
than they are in reality, possibly leading to a failure to allow for real change.

Figure 2.3 shows the rejection rates for the different methods and distributions as a
function of sample size.

Rejection rate of H0 as a function of sample size for each of the tests (significance
level α = 0.05). For sample lengths of 1000 and 5000, Monte Carlo simulations are ap-
plied for the CvM test.

We can see that Pet-CP and CUSUM-CP start well below the expected rejection rate,
while CvM-CP stays close to the chosen significance level. Given that the CvM-CP rejec-
tion rate was determined from an empirical distribution, it is not surprising that it does
so well; for the other tests we used a limit distribution to approximate the quantile. It is
clear that for small samples (n ≤ 100) the limit distributions are not sufficiently accurate,
and use of either the exact distribution or an empirical distribution would be preferable.
The traditional statistical remedy “use a larger sample” is not an option for time series
of extreme values where longer series are simply not available. An alternative traditional
remedy for this problem, “use an improved approximation of the distribution”, is sim-
ple in theory, but complicated in practice because calculation of the exact distribution,
or alternatively the generation of an approximate distribution by Monte Carlo methods
can be quite expensive.

2.3.2. ONE CHANGE POINT PRESENTS

(1) SENSITIVITY TO A CHANGE IN THE MEAN

The power and ability to correctly identify the change point are shown in Fig. 2.4 and
2.5, respectively.

We can see that for all tests both power and ability increase considerably with an
increase in the magnitude of the change ∆µ in the mean. The plots of power vs the
location of the actual change point τ are nearly symmetrical with respect to a vertical
line at τ = n/2. For Pet-CP and CvM-CP the power is higher than for CUSUM-CP when
∆µ≤ 1, except for GEV with k = 0.15 (see the bottom row in Fig. 2.4). For∆µ≥ 2, , all tests
have 100% power for τ= 20,30, . . . ,80. If we look at the ability as a function of the location
of the change point, then for Pet-CP and CvM-CP the function is nearly symmetrical with
respect to a vertical line at τ= n/2, and the highest abilities are reached when the actual
change point is near n/2. From Figures 2.4 and 2.5, it is clear that the power and ability
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Figure 2.3: Rejection rate of H0 as a function of sample size for each of the tests (significance level α = 0.05).
For sample lengths of 1000 and 5000 (not shown here), Monte Carlo simulations are applied for the CvM-CP
test.
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vary with location for each test; the ability tends to be more sensitive to the magnitude
of the change and the location of the change point. For instance, for Pet-CP, when the
magnitude of change is the same, the ability (Fig. 2.5, row 1, column 1) varies much more
than the power (Fig. 2.4, row 1, column 1). The differences in shape indicates the ability
of Pet-CP is much more sensitive to location of a change point than the power.

For all three methods, the abilities increase as |∆µ| increases and stabilize for |∆µ ≥
4|. When τ is near the middle of the series, the ability increases from less than 10% to
nearly 100% for increasing |∆µ|. When τ is near the ends of the series, the abilities stay
well below 100%. For a series of length 100, detecting a change in the first or last 20
elements of the series, there is a low probability of it being estimated correctly, regardless
of the size of the change.

(2) SENSITIVITY TO A CHANGE IN THE STANDARD DEVIATION

The results for power (Fig. 2.6) and ability (Fig. 2.7) show that Pet-CP and CUSUM-CP
cannot detect a change in the standard deviation.

While CvM-CP can detect a change in the standard deviation, its ability to do so is
much lower than in the case of a change in the mean. For a change of a factor of two in
the standard deviation, the power is low as well (see the first two columns in both Figs
2.6 and 2.7). The power and ability plots of CvM-CP are nearly symmetrical with respect
to a vertical line at τ = n/2, and they reach their highest point when the actual change
point is located near n/2. From the first two columns in Fig. 2.7, the abilities of Pet-CP
and CUSUM-CP stay below 1%. The CvM-CP method shows similar abilities for change
points at locations τ and (n −τ). For τ = 10 and τ = 90, its ability is near zero (see the
last column in Fig. 2.7). It seems that only for very large changes in standard deviation
(∆σ≥ 6) and only for the change points τ= 40 ∼ 60 near the midpoint of the series does
the ability rise above 50% (Fig. 2.7).

For Pet-CP, the lower sensitivity to a change in σ seems to be known [57], but the
reasoning behind this is difficult to find. One possible line of reasoning is given in B.2.
For CUSUM-CP, the original source states that it is intended for detection of changes in
the mean, so its failure for the standard deviation was perhaps to be expected.

(3) UNCERTAINTY OF THE ESTIMATORS FOR A CHANGE IN THE MEAN

The ability gives the empirical probability that the estimated change point coincides
with the actual change point. In cases where there is a large difference between power
and ability, additional information may be needed. The main question in that case is
whether the correctly detected, but incorrectly placed change points are clustered near
the correct value or not. Results for the normal distribution are presented in Fig. 2.8. For
all tests, the boxplots for change point estimates when the actual change point is at τ or
(n −τ) show very similar uncertainty.

For ∆µ= 0.5, the systematic error (bias) near the ends of the series and the spread in
the estimate are both too large for practical use. Take CvM-CP for example, and∆µ= 0.5
(Fig. 2.8, row 3, column 1): for synthetic series of length 100 with a change point at
position 10, the boxplot of the estimates has median near 42 and interquantile range of
about 22. For a change point at position 20, the boxplot of the estimates shows a median
near 32 with an interquartile range of about 18. Similar, but negative, biases occur for
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Figure 2.6: Power of all the tests for a change in the standard deviation (n = 100).
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Figure 2.7: Ability of all the tests for a change in the standard deviation (n = 100).
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change points near the end of the series. Similar bias and spread occur for the other
methods at ∆µ= 0.5.

For ∆µ = 1, the systematic error near the ends is still large. Moreover, the 95% con-
fidence interval is large even for the centre point of the series. For ∆µ= 2, there are still
problems with the systematic error near the end of the series, but in the case of CvM-CP
(see the last plot in the last row of Fig. 2.8, points between position 20 and position 80),
the distribution of the spread in the estimates approaches reasonable values.

The results presented here imply that change points near the end of the series, if de-
tected, will almost always result in a relatively large error in the estimated change point.

(4) UNCERTAINTY OF THE ESTIMATORS FOR A CHANGE IN THE STANDARD DEVIATION

Results for the normal distribution are presented in Fig. 2.9. For all tests, the boxplots for
change point locations k and n −k show very similar uncertainty. Take for example the
row of boxplots for τ̂ as found by Pet-CP in Fig. 2.9: when τtrue is located at k and (n−k),
the boxplots for Pet-CP have similar widths and the interquartile distances are close to
20. The wide interquartile ranges indicate considerable uncertainty for the location of
changes in the standard deviation.

For both Pet-CP and CUSUM-CP, it is clear from the systematic error and the 95%
confidence interval that the methods cannot be used to detect a change in standard de-
viation. The plots in the last row of Fig. 2.9 show that, for CvM-CP, the results improve
with increasing size of the change, but only reach usable levels for the changes ∆σ = 2.
The spread and bias in the estimated change point locations are illustrated by the box-
plot. Only for CvM-CP, ∆σ ≥ 2 and τ = 40 ∼ 60 is there any hope of getting a reliable
answer.

(5) INFLUENCE OF THE SAMPLE SIZE ON ABILITY

For the mean, the ability of the detectors first increases as sample size n increases from
10 to 100 (Fig. 2.10). When sample size exceeds 100, the ability of the detectors becomes
nearly constant, and the ability for n = 1000 is nearly the same as for n = 100. From the
first plot in the first row of Fig. 2.10, for all magnitudes of change, the ability of Pet-CP
equals 0 when the sample size is 10. Therefore, when the sample size is 10, Pet-CP is
not capable of finding a change point and it is visibly outperformed by CUSUM-CP and
CvM-CP.

Based on the first two plots in the bottom row of Fig. 2.10, the ability of both Pet-CP
and CUSUM-CP stays at very low levels. Accordingly, in the case of Pet-CP and CUSUM-
CP, a detection of a shift in the standard deviation is not possible, and the magnitude of
∆σhas no significant influence on their ability. For CvM-CP, the ability to detect a change
in standard deviation increases considerably as the sample size increases from 30 to 100
(Fig. 2.10, last row, third column). The ability found for length n = 1000 suggests this
increase continues more slowly between n = 100 and n = 1000. Therefore, compared to
Pet-CP and CUSUM-CP, CvM-CP is superior in finding a change point in the standard
deviation. Considering that the performance of CvM-CP is comparable to that of Pet-
CP and CUSUM-CP in detecting a change point in the mean, its better performance in
finding a change point in the standard deviation makes CvM-CP much more attractive
in change point detection.
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Figure 2.9: Boxplots of the error in the change point estimates based on 50 000 samples for a change in the
standard deviation. The whiskers are at 2.5% and 97.5%; the crosses show the estimates outside that range.
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Figure 2.10: Ability of the different tests for a change in the mean and standard deviation at the midpoint of
the series as a function of sample size n.

For change points near the start (or end) of the series, both power (Fig. 2.11 and
ability (Fig. 2.12) decrease with increasing series length. From the power and ability of
Pet-CP and CvM-CP shown in the first and third columns of Fig. 2.11 and 2.12, their per-
formance in finding a change point located near the start (or end) is very similar and it
stays constant till sample length 150; after that their performance decreases rapidly to a
relatively low level. But for CUSUM-CP, its power and ability start decreasing when the
sample length exceeds 20. For instance, in the middle column of Fig. 2.11, the power of
CUSUM-CP decreases from 100% to 40% when the sample size changes from 20 to 30 for
∆µ= 8. From the experiments, we have observed that ability and power for similar rela-
tive change point locations, for instance 2n/10, have similar values for different sample
sizes. In brief: adding points at the end of a series makes detection of change points at
the start of the series less likely. At the same time it makes detection of change points
that were near the end before the addition of points at the end more likely.

2.4. APPLICATION OF THE TESTS TO HISTORICAL DATA FOR THE

YANGTZE RIVER

2.4.1. EFFECT OF THE START AND END POINT OF THE SERIES

To investigate the influence of the time series length in practice, we took the longest
time series corresponding to Cuntan station (1893-2014) and looked for change points
in subseries. The starting year was varied from 1893 to 1957 and the end year from 1964
to 2014. The results are presented in Fig. 2.13, where a marker at a given pair of years
indicates whether or not a change point was found.
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Figure 2.11: Power of the different tests for a change in mean at location 10 as a function of sample size n
(number of samples M = 1000).
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Table 2.2: Change in the mean (µ) and standard deviation (σ) at each detected change point – Yichang station.

Change point
µ σ µL µR σL σR ∆µ/σ ∆σ/σ

m3/s - -
1962

49104 8642
55047 47101 4065 8876 -0.91 0.56

1966 54152 46896 4847 9038 -0.84 0.48

In Fig. 2.13, the different coloured points denote the different years of significant
change for Cuntan station for subseries of years with different start and end years. The
bottom plot shows that, depending on which subseries is used, CvM-CP may find three
different change points. Comparison of the top and bottom rows shows a similar pattern
of detection for subseries ending after 1995 for CvM-CP and Pet-CP. For series ending in
1980, Pet-CP detects 1966 as a change point for more starting years than the other two
methods.

For time series with different combinations of start/end year, 1944 and 1966 are found
as change points in some subseries by all three methods, but subseries with a significant
change point located at 1968 are only found by CvM-CP. It is clear that for all methods
the detection and location of a change point depend on the choice of subseries. In other
words, different combinations of start/end year will lead to different change point de-
tection results. The other time series showed similar effects.

As start and end year change, the change point appears, disappears and reappears,
possibly in a different year. This is a cause for concern. If two researchers have access to
datasets with different start and end points, then they may come to different conclusions
about the presence and location of change points. This is particularly unfortunate if, for
example, a design decision taken in 2020 on the basis of the absence of a change point
in a time series turns out to be invalid in 2030, when the time series – now extended with
data for the intervening years – shows a change point in 2010 that invalidates the analysis
made in 2020.

Time series of yearly maxima increase in length by one year each year. If this can
lead to the appearance or disappearance of change points far from the end of the series,
it calls into question the reliability of the results.

2.4.2. CHANGE POINT DETECTION
The results of the application of the methods to the entire AMR time series of four gauge
stations are as follows: Yichang station is the only one where change points are detected
at the 5% significance level (see Table 2.2). For that station Pet-CP and CvM-CP find a
change point in 1966 and CUSUM-CP finds one in 1962. The relative changes in mean
and standard deviation for the change points are given in Table 2.2.

Other studies have also looked for change points in various types of hydrological se-
ries in the Yangtze River basin. For example, Xie et al. [33] applied the Pettitt’s method
and found a change in 1962 in the series of annual maxima at Yichang station for the pe-
riod 1882–2010, with a p value of 0.0183. They also found a change in 1979 in the series
of annual maxima series for 1952–2000 at Hankou station, with a p value of 0.2131. Xiong
and Guo [55] studied the time series of mean annual flows at Yichang station and found a
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Figure 2.13: Plot of change points found in subseries of the Cuntan data by the three methods. A marker at a
given coordinate pair (x, y) indicates whether or not a change point was found for a series starting in yearx and
ending in year y .
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peak in the posterior distribution for the change point in 1968, close to the points found
in this study.

None of the methods found a significant change point at a measurement station in
the construction period of the dams upstream of that station. For the Three Gorges Dam
(TGD) project the non-detection of a change point after the start of construction is in line
with the analysis of the Yichang series of annual mean flows for the period 1882–2001 by
Xiong and Guo [55], who found a peak only in the posterior distribution for the change
point in 1968. However, this does not necessarily mean there is no change, Xiong and
Guo [55] wrote:

“As the change points for both the annual minimum and the annual
mean series occurred before 1993 (the year in which the Three Gorges
Project commenced), one can state that, since the construction of the
Three Gorges Project there have not been any significant changes in the
annual minimum or the annual mean series. However, it is very possi-
ble that the above conclusions might change with time, as the Three
Gorges Project will definitely exert some influences on the flow regime
of the Yangtze River at the Yichang hydrological station. Any change in
the characteristics of the hydrological time series of Yichang station in
the future could be a reason for modifying the initial construction and
operation plan for the Three Gorges Project.”

Our results for Yichang are consistent with those of earlier studies. To our knowledge,
no study has yet found definite physical causes for a change point near 1966. It would be
tempting to conclude that, between 1946 and 2014, the construction of the TGD project
has not had a significant influence on Yichang station, but filling of the reservoir started
only in 2003, so any change point resulting from dam operation would be very near the
end of the gauge station time series and therefore much less likely to be detected by the
methods used here.

2.5. CONCLUSIONS
The performance of several methods to detect an abrupt change in the statistical prop-
erties of synthetic and real times series was examined. The methods studied were Pet-
titt’s test (Pet-CP), a CUSUM-based test (CUSUM-CP) and a test based on the Cramér
von Mises two-sample test (CvM-CP). Based on experiments with synthetic data series
from four distribution families: normal, generalized extreme value (GEV) with shape
k =−0.15 (reverse Weibull), GEV with shape k = 0 (Gumbel) and GEV with shape k = 0.15
(Fréchet), it was found that the CvM-CP method had the best overall performance. How-
ever, all three methods have a serious short-coming: not only do they have great diffi-
culty in detecting changes near the start or end of the time series, but they also tend to
make large systematic errors in estimating the location of such changes.

The methods Pet-CP and CUSUM-CP could not detect a change in standard devi-
ation for any of the distributions. For CvM-CP, the probability of correctly signalling a
change in the standard deviation was much lower than for a change in the mean. The
tests showed that, for a change in the mean, test ability did not differ much for samples
from the different distributions.

For Pet-CP, CvM-CP and CUSUM-CP the power and ability to detect change points
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plotted as a function of the change point are roughly symmetrical relative to a vertical
line at n/2.

For the initial application of the tests to the annual maximum runoff time series from
four gauge stations on the Yangtze River, the methods found change points only in the
Yichang station series. Moreover, no change points were found after 1993, the start of
the Three Gorges Dam (TGD) project. This is in line with findings by Xiong and Guo [55]
for the period up to 2001, but the findings presented in this study on detection of change
points near the end of a time series suggest that this cannot be considered as evidence
that the TGD project did not cause an abrupt change in statistical properties of annual
maximum runoff.

With respect to the questions posed in at the start of this study we found the following
answers:

For the probability of incorrectly signaling a change point, it was found that, for CvM-
CP, where an empirical distribution of the test statistic was used, the false positive rate
was correct. For Pet-CP and CUSUM-CP, where a limit distribution of the test statistic
was used, this turned out not to be fully justified even when the total time series length
reached 100. For short series (less than 100 points) the asymptotic estimates of distri-
bution quantiles for Pet-CP and CUSUM-CP were too high, and the resulting null hy-
pothesis rejection rates were too low. We would recommend to either use special small
sample approximations of the distribution, or generate an empirical distribution by a
Monte Carlo method and use that as the test statistic distribution.

The probability of correctly detecting a change point for a change in the mean near
the start and end of a time series was low (less than 10% for a change in the mean cor-
responding to one times the standard deviation, 1SD, of the signal). For a change in the
standard deviation, only CvM-CP showed reasonable power.

When we considered all estimated change point locations, we found that estimates
of change points near the start and end of a time series have a large bias (97.5% of all
location estimates of a change at location 10 was beyond location 20 for a series with a
change in the mean corresponding to 1SD of the signal) and a large uncertainty in the
location estimate.

The effect of the length of the time series was twofold. For a change in the mean
and a change point located in the middle of the series, it seems that the detection rate
improves until a length of about 70 is reached. However, for a change point location at a
fixed distance from the end of the series, the ability and power will decrease as the series
length increases. This is particularly dramatic in case of a change point close to the start
of the series, say at year 10. For a change in the standard deviation and a change point
located in the middle of the series, only CvM-CP detects anything; and here detection
keeps improving up to at least series length 200.

As was to be expected, larger changes result in better detection results. However, it is
clear that relatively large changes are needed to get acceptable results.

Moreover, it mattered what start or end year was chosen for a time series. In other
words: it was not safe to look at parts of a time series that contain a given range of po-
tential change points, but had different start or end years. Application of the tests to real
data series showed that when different start and end years were used, different results
were indeed obtained. These experiments with detection of change points in subseries
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of annual maxima demonstrated that change points may seem to appear and disappear
when the end points of the series are shifted.

In summary, we found that, even under ideal circumstances of independent vari-
ables, no trend and, at most, one change point, the results of these methods need to be
interpreted with great care: a few years of additional data or missing data may change
the outcome of the detection experiment and change points near the start or the end of
the time series are likely to be either missed or reported in the wrong location. NHST
based method can only provide a ‘Yes/No’ result based on a pre-set significance level
and leaves no room for uncertainty analysis. A new way to conduct uncertainty analysis
to the change point detection should be proposed properly.
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BACKGROUND OF CONFIDENCE

CURVES

“ ... but here is a safe prediction for the 21st century:
statisticians will be asked to solve bigger and more complicated problems.

I believe there is a good chance that objective Bayes methods
will be developed for such problems, and that something like

fiducial inference will play an important role in this development.
Maybe Fisher’s biggest blunder will become a big hit in the 21st century!”

Bradley Efron (Caltech; Stanford University)
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3.1. DEFINITIONS OF CONFIDENCE CURVES
In the literature confidence curves have been defined in several different ways. The fol-
lowing definition provides a starting point, γ is used to denote a confidence level.

Definition 1. A confidence interval with confidence level (also known as confidence co-
efficient) γ for a statistic λ of a random sample X is an interval with random endpoints
u (X ) and v (X ) such that for the true value λ0

Pr(u (X ) ≤λ0 ≤ v (X )) = γ

For a confidence interval, the nominal coverage probability equals the confidence
level. If one of the assumptions used in the derivation of the endpoints does not hold,
then the actual coverage probability may well be different.

While very useful, traditional confidence intervals are somewhat restrictive. For in-
stance, if we have a bimodal distribution, then a combination of two intervals, each cen-
tred on a mode, may contain fewer values and therefore be more informative than any
single interval at the same confidence level. Therefore a more general concept was in-
troduced: the confidence set.

Definition 2. A confidence set with confidence level γ for a parameter λ is a random set
R (X ) such that

Pr(λ ∈ R (X )) = γ
Here γ is the nominal coverage probability of the set. In the calculation of γ assumptions
are made on the distribution of X that may or may not hold for a specific application. If
they do not hold, then it becomes necessary to distinguish between the nominal and the
actual coverage probability. The actual coverage probability of the set is the probability
that the parameter is in the set for a given application. It can be approximated by a Monte
Carlo experiment. If the actual coverage probability exceeds γ, then the true value lies
in the set with probability greater than γ. Usually, this means we will err on the side of
caution. In this case, the set is called conservative. If the actual coverage probability is
lower than γ, then the set is called anti-conservative or permissive.

Definition 2 contains an undefined term, namely ‘random set’. A general definition
can be found in, for instance, Molchanov and Molchanov [1]. For the purposes of this
study a definition by analogy is perhaps more helpful. Just like a random variable rep-
resents an aspect of an event as a real number, a random set represents an aspect of an
event as a set, for instance, a set of real numbers. Note, that a confidence interval is a
special case of a random set.

The confidence curve concept has evolved over time. An early definition was given
by Birnbaum [2] who defined a confidence curve as ‘a set of upper and lower confidence
limits, at each confidence coefficient from 0.5 to 1, inclusive’. As stated earlier, in some
cases it might be advantageous to use confidence sets instead of confidence intervals. To
that end, Schweder and Hjort [3, Definition 4.3] gave a more general abstract definition
of a confidence curve. Here we give a variation on that definition.
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Definition 3. Suppose X is a random sample of size n, and λ is a property of the under-
lying distribution with values in a value set V . A function g (λ, x) with range [0,1] that is
continuous in x for fixed λ is a confidence curve when:

1. There is a point estimator λ̂ for λ such that

min
λ∈V

g (λ, x) = g
(
λ̂ (x) , x

)= 0 (3.1)

for all realizations x of X .

2. For the true value λtrue of the property λ, the random variable g (λtrue, X ) has the
uniform distribution on the unit interval.

It is important to note that point 2 in Definition 3 means that the value of g (λtrue, X )
need not be the minimum of g (λ, x). It is not the minimum of the curve, but the curve as
a whole that is meaningful. The estimate λ̂ (x) is merely a reference point that, in the case
of a confidence curve with only one minimum, has a role similar to that of the median
in the case of a probability distribution for λ.
Example.1 If X is a sample of size n from the normal distribution then λ could, for in-
stance, be the mean or the variance, and the values of x, realizations of X , would lie in
Rn . If we take λ to be the mean, and the underlying distribution is a normal distribution
with unknown mean µtrue and known variance σ, then g could, for instance, be

g (λ; x) =


1−2Φ

(
λ− 1

n
∑n

i=1 xi

σ/
p

n

)
λ< 1

n

∑n
i=1 xi

2Φ

(
λ− 1

n
∑n

i=1 xi

σ/
p

n

)
−1 λ> 1

n

∑n
i=1 xi

whereΦ is the cumulative distribution function of the standard normal distribution and

λ̂ (x) = 1

n

n∑
i=1

xi

For the case with unknown σ, see, for example, Schweder and Hjort [3, page 73].

3.2. COVERAGE PROBABILITY OF CONFIDENCE SETS
If cc(·, ·) is a confidence curve according to Definition 3, then for fixed λ0, the function
cc(λ0, X ) is measurable and a random variable. Hence, we can speak of the distribution
of cc(λ0, X ). For a given confidence level γ ∈ [0,1] and a given property value λ, it is
possible to determine

Pr
(
cc(λ, X ) ≤ γ)

(3.2)

Next, define the sets
Rγ (x) = {

λ : cc(λ, x) ≤ γ}
(3.3)

If λtrue is the true value of the parameter, then according to Definition 3, the random
variable cc(λtrue, X ) is uniformly distributed on [0,1], and therefore

Pr
(
cc(λtrue, X ) ≤ γ)= γ (3.4)
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Next, consider the probability Pr
(
λtrue ∈ Rγ (X )

)
. By definition, λtrue ∈ Rγ (X ), if and only

if cc(λtrue, x) ≤ γ. It follows that

Pr
(
λtrue ∈ Rγ (X )

)= Pr
(
cc(λtrue, X ) ≤ γ)

(3.5)

Combined with the fact that cc(λtrue, X ) is uniformly distributed on [0,1], it now follows
that the Rγ (X ) is a confidence set with confidence level γ. This suggests that in prac-
tice one way to test the validity of a confidence curve is to obtain a large number m of
independent realizations of the sample X , say x(1), x(2), . . . , x(m) from a distribution with
known λ=λ0, and check that

1

m

m∑
j=1

r
cc

(
λ0, x( j)

)
≤ γ

z
−γ (3.6)

goes to zero as m increases, where J·K is the indicator function (A.1).
In the case of a change point in a time series of length n, the property of interest is the

location τ of the change which is an element of the set {1,2, . . . ,n −1}. This τ takes the role
of λ. There is only a finite number of subsets of V = {1,2, . . . ,n −1}, so only a finite num-
ber of possible choices for Rγ (x). Moreover, the sets Rγ (x) derived from a confidence
curve are nested, which further limits the number of available sets. As each subset will
correspond to one confidence level γ, and there are infinitely many confidence levels,
the best we can hope to achieve is Pr

(
cc(λtrue, X ) ≤ γ)≈ γ, so

Pr
(
cc(λtrue, X ) ≤ γ)−γ (3.7)

cannot be zero for all γ, and therefore (3.6) cannot go to zero for all γ, but should be
small.

Please keep in mind, that confidence curves represent confidence in an outcome,
and this is not the same as probability. That being said, if we have a small set with high
confidence, then the particular sample strongly suggests that we look for the change
point in that set.

One way to illustrate this relation is the following. If the series contains a change
point, and a set S of approximatelyγ (n −1) points is selected randomly from {1,2, . . . ,n −1},
then the probability that the actual change point τtrue lies in that set is approximately γ.
This suggests that a set Rγ (x) that contains more points than γ (n −1) indicates large un-
certainty at that confidence level, while sets Rγ (x) that are much smaller correspond to
low uncertainty at that confidence level. In such a way the size of the sets Rγ (xobs) for
the observed sample xobs can be linked to the uncertainty in the location of the change.

3.3. CONFIDENCE CURVES FOR THE LOCATION OF A CHANGE

POINT BASED ON PARAMETRIC LOG-LIKELIHOOD AND DE-
VIANCE FUNCTIONS

This study introduces a new method to represent and analyse uncertainties in change
point (CP) detection. It should therefore present the background behind the method,
test its performance, and examine its application to real data. To be clear, a simple for-
mulation of the CP detection problem will be used. For details of the notation, see Ap-
pendix A.
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3.3.1. DESCRIPTION OF CHANGE POINT DETECTION PROBLEM
The formulation of method and the numerical experiments will be limited to the case
where there is At Most One Change (AMOC). All time series will be modelled as a vector
Y of n independent continuous random variables Y1,Y2, . . . ,Yn .

The null hypothesis H0 will be that the Yi are independent identically distributed
(i .i .d .) random variables. The alternative hypothesis H1 will be that there is an index
τ ∈ {1,2, ...,n −1} such that the original random vector is split into two sub-series: a sub-
series with i.i.d. random variables {Y1,Y2, ...,Yτ} and a sub-series with i.i.d. random vari-
ables {Yτ+1,Yτ+2, ...,Yn}, but the distributions of the variables in the two sub-series are
different. Furthermore, it is assumed that all distributions are from the same family, so
they differ only in the parameters used in the shared probability density function (pdf)
and cumulative distribution function (cdf). The cdf of Yi will be referred to as F (·;θ,ζ)
and the pdf as f (·;θ,ζ) where θ and ζ are vectors. Together the parameters in θ and ζ

fully determine the distribution. In the model only the parameters in θ change at the
CP. The parameter vectors for the left and the right sub-series will be θL and θR respec-
tively. The null hypothesis can now be expressed as θL = θR. That splits the series into
two sub-series: a left sub-series where Y1,Y2, . . . ,Yτ are i.i.d. random variables and a right
sub-series where Yτ+1,Yτ+2, . . . ,Yn are i.i.d. random variables, but the distributions of the
left sub-series and the right sub-series of the series are different. In the remainder of the
thesis y will represent a realization of Y , and yobs will represent the actual observed time
series.

Both the parametric and the non-parametric methods to construct confidence curves
for the location of CP need to sample from the sub-series to the left and to the right of the
change point; for short sub-series this is likely to cause problems. Intuitively it is clear
that parameter estimation for very small samples will be difficult. Some studies consid-
ering this are Lettenmaier and Burges [4], Delicado and Goria [5]. These suggest that for
short sub-series the results may vary considerably for sample to sample.

A minimum sub-series length nmin will therefore be used. As a result only a subset of
CP locations, given by

LCP = {nmin,nmin+1, ...,n −nmin} (3.8)

was considered, and no parameter estimates for sub-series shorter than nmin were car-
ried out. The choice of nmin is to a certain extent arbitrary. Here we take a minimum
sub-series length

nmin = ⌊
2logn

⌋
(3.9)

where the notation ⌊·⌋ denotes rounding down towards the nearest integer; nmin = 1 cor-
responds to considering all possible CPs.

One reason to consider trimming is that the variance in parameter estimates tends to
decrease with increasing sample size. As a result, a short sequence may lead too much
‘wilder’ parameter estimates than a long sequence [6]. This would seem undesirable
when looking for parameter changes.

Moreover, our non-parametric method which uses an approximate empirical likeli-
hood is related to the empirical likelihood method discussed in Zou et al. [7] where it is
stated that the empirical likelihood may not exist for short sub-series, and it is recom-
mended to consider only a subset of the possible change points. Finally, the approxima-
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tion we use for the empirical log-likelihood does not hold everywhere, but it does hold
for change points at nmin,nmin+1, ...,n −nmin.

3.3.2. CONFIDENCE CURVES BASED ON THE PROFILE LOG-LIKELIHOOD
Cunen et al. [8] presented a method to construct confidence curves (Definition 3) based
on the log-likelihood function ℓ. In the case of change point detection ℓ is given by

ℓ
(
τ,θL,θR,ζ; y

)= τ∑
i=1

log f
(
yi ;θL,ζ

)+ n∑
i=τ+1

log f
(
yi ;θR,ζ

)
(3.10)

As a first step in the derivation of the method, they introduce a profile log-likelihood.
In general, a profile log-likelihood is used when only part of the parameter vector is of
interest. For instance, a vector ν = (

λ,η
)

where only λ is of interest, η is a nuisance pa-
rameter. In such a case, one can take the supremum of the log-likelihood over all η,
which is then called the profile log-likelihood for λ. According to Murphy and Van der
Vaart [9], the ‘profile likelihood may be used to a considerable extent as a full likelihood’
for the parameter of interest. If an estimate for τ in (3.10) is needed, then τ is the param-
eter of interest and θL,θR,ζ are nuisance parameters. Therefore, they define the profile
log-likelihood by

ℓprof
(
τ; y

)= sup
θL,θR,ζ

ℓ
(
τ,θL,θR,ζ; y

)
(3.11)

The notation θ̂L
(
τ; y

)
, θ̂R

(
τ; y

)
and ζ̂

(
τ; y

)
is used to denote a combination of values of

θL, θR and ζ where ℓprof attains its global maximum, so

ℓprof
(
τ; y

)= ℓ(
τ, θ̂L

(
τ; y

)
, θ̂R

(
τ; y

)
, ζ̂

(
τ; y

)
; y

)
(3.12)

The value of τ for which ℓprof is maximal will be denoted by τ̂
(
y
)
. The values θ̂L

(
τ̂
(
y
)

; y
)
,

θ̂R
(
τ̂
(
y
)

; y
)
, and ζ̂

(
τ̂
(
y
)

; y
)

will be used as estimators for the parameters θL, θR, and ζ

respectively.
Next, the deviance function D is introduced

D
(
τ, y

)= 2
(
ℓprof

(
τ̂
(
y
)

; y
)−ℓprof

(
τ; y

))
(3.13)

This is then used to define random variables D (τ,Y ) with τ= 1,2, . . . ,n −1. For a given τ
its distribution is estimated by

∀r ∈R : Kτ (r ) = (3.14)

Pr
(
D (τ,Y ) < r | τ,θL = θ̂L

(
τ̂
(
y
)

; y
)

,

θR = θ̂R
(
τ̂
(
y
)

; y
)

,ζ= ζ̂(
τ̂
(
y
)

; y
))

In the case of a discrete parameter τ, no exact or approximate expression is known for
the distribution Kτ, so it needs to be approximated by simulation. Note that by definition
D

(
τ̂
(
y
)

, y
) = 0. Now for each sample there will be at least one k, namely k = τ̂

(
y
)

for
which D

(
τ, y

)= 0. As there are only a finite number of values that τ can take, this implies
that Pr(D (τ,Y ) = 0) = 0 cannot hold for all τ. Therefore, there is at least one τ′ with
Pr

(
D

(
τ′,Y

)= 0
)> 0, and so the distribution of D

(
τ′,Y

)
has a positive point probability at
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0. This implies that D
(
τ′,Y

)
is never uniformly distributed, but it is part of the definition

of a confidence curve that cc(τtrue;Y ) is uniformly distributed on [0,1] when τtrue is the
true value of τ. Nevertheless, as in Cunen et al. [8], D will be used to define the function
that will be referred to as a confidence curve

cc
(
τ; yobs

)= Kτ

(
D

(
τ, yobs

))
where yobs is the observed sample.

The simulations needed to obtain Kτ are performed as follows :

1. Obtain estimates of the distribution parameters τ, θL, θR, and ζ by determining
τ̂
(
yobs

)
, θ̂L

(
τ̂
(
yobs

)
; yobs

)
, θ̂R

(
τ̂
(
yobs

)
; yobs

)
, and ζ̂

(
τ̂
(
yobs

)
; yobs

)
respectively.

2. For each k ∈ {nmin,nmin +1, . . . ,n −nmin} and j = 1,2, . . . , N , generate a sample

y( j ,k) where the y( j ,k)
i with i = 1,2, . . . ,k are distributed with θ = θ̂L

(
τ̂
(
yobs

)
; yobs

)
,

ζ = ζ̂
(
τ̂
(
yobs

)
; yobs

)
, and the y( j ,k)

i with i = k + 1,k + 2, . . . ,n are distributed with

θ = θ̂R
(
τ̂
(
yobs

)
; yobs

)
, ζ= ζ̂(

τ̂
(
yobs

)
; yobs

)
; nmin is used to avoid calculation of pro-

file log-likelihoods based on a handful of points.

3. Approximate the curve cc
(
τ; yobs

)= Kτ

(
D

(
τ, yobs

))
by

Kτ,N
(
D

(
τ, yobs

))= (3.15)

1

N

N∑
j=1

r
D

(
τ, y( j ,τ)

)
< D

(
τ, yobs

)z
If the parameter of interest is continuous (λ), according to Wilks’ theorem, the proba-
bility distribution of deviance function D(·), K (D(·)) is approximately a χ2

1 [8], similar
suggestions can be found in Schweder and Hjort [3, Section 1.6, 2.4]. For continuous
variable for instance the dependence parameter in copulas, K (D(·)) is approximately
the distribution function of a χ2

1.

3.4. CONCLUSIONS AND REMARKS
From the ‘method B’ of Cunen et al. [8], if a parametric distribution of observations is
known, a confidence curve for a parameter of interest can be constructed based on a
parametric profile log-likelihood function. It provides a way to construct confidence
curves for a discrete parameter, for instance the location of change point τ, by deviance
function and Monte Carlo simulation. In the parametric likelihood function, only the
location of a change point is the parameter of interest, and parameters in parametric
distributions for real data are taken as nuisance. Therefore, it is a multi-parametric prob-
lem.

However, Cunen et al. [8] used a maximum likelihood estimator (mle) to estimate all
parameters in two steps. All nuisance parameters are estimated in the first step by the
mle. The estimated nuisance parameters are substituted into a profile log-likelihood
function and the location of a change point is estimated by the mle method. Given
the fact that estimating nuisance parameters by mle in the first step is often compu-
tationally expensive, a more efficient way to estimate all parameters in the framework
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of Cunen et al. [8] is using a pseudo maximum likelihood estimator (pmle) to estimate
nuisance parameters, then estimate a parameter of interest by maximizing the profile
log-likelihood function. Therefore, in Chapter 4, we compared confidence curves based
on two parametric methods. One is the method by Cunen et al. [8] and the other is the
newly proposed method based on pmle (including Method of Moments: MoM or Linear-
Moments: LMo).

Furthermore, the ‘method B’ presupposes that it is known to which family of distri-
butions the data points belong. This knowledge is used both in the formulation of the
deviance function and in a Monte Carlo (MC) procedure that draws from that family
to approximate the distribution of the deviance function. In hydrology, it is not always
clear which family should be chosen. In addition, the method also involves optimizing
a fairly large number of profile likelihoods. For some distribution families, this may be
costly. Clearly, a new method that depends on empirical frequency of samples is neces-
sary. Therefore, in Chapter 5 we proposed a new non-parametric method and compared
it with the parametric method by Cunen et al. [8]. One is the method by Cunen et al. [8],
and the other is a method based on an approximate empirical likelihood function.

To be clear, the method proposed by Cunen et al. [8] is called Confidence curve based
on profile likelihood, Maximum Likelihood and deviance function (CML) in Chapter 4
and 5. In Chapter 4, the confidence curve based on pmle (MoM or LMo) is called Con-
fidence curve by Method of moments (CMoM) or Confidence curve by Linear Moments
(CMLo). In Chapter 5, the non-parametric method is called confidence curve based on
Approximate Empirical likelihood and Deviance function and bootstrapping (AED).
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4
CONFIDENCE CURVES BASED ON

THE PSEUDO MAXIMUM

LIKELIHOOD METHOD

Pseudo likelihood, which is also called Quasi likelihood was
first introduced by Robert W.M. Wedderburn (1947-1975).

Now, it has been widely used, for instance fitting generalized linear models.

Parts of this chapter have been submitted as “Zhou, C., van Nooijen, R., and Kolechkina, A., Capturing the un-
certainty about a sudden change in the properties of time series with confidence curves, Journal of Hydrology,
under review, 2021.”.
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4.1. INTRODUCTION
Today, the need to take into account climate variability and the results of human inter-
ventions in water management and hydrology seems clear [1, 2]. To do so, it is necessary
to combine statistical information, obtained from hydrological and climatological time
series, with investigations of how the natural variations in the behaviour of the physical
system and human alterations of that system could result in changes in those time se-
ries, and link the changes suggested by statistics to physical causes [3]. While this will
often be a search for trends or periodic changes, the time series in question must also
be tested for abrupt changes, either to find real changes [3, 4], or to see whether it is
necessary to split a series into two parts for further analysis [5]. Beaulieu et al. [6] men-
tion that an abrupt change in the statistical properties of a time series could signal an
undocumented change in the measurement procedure. A general overview of change
detection is given in Kundzewicz and Robson [7].

In this chapter the emphasis is on abrupt changes. But please keep in mind that, for
instance, the initial filling of a reservoir may take several years, so it may look as a trend
on a daily scale and as a jump in the time series of annual maximum flows. There have
been many publications on the detection of an abrupt change, or change point (CP), in
hydrology and climatology [6, 8–10]. Theoretical work on CP detection in general was
done, for example, by Pettitt [11], Chen and Gupta [12], Chen and Gupta [13], or Brodsky
and Darkhovsky [14].

There are many statistical tools that can be used to detect the presence of CPs. Ide-
ally, such a tool should provide information on the uncertainty in the location of the CP.
The traditional tests, such as the one presented in Pettitt [11], focus on the acceptance or
rejection of the null hypothesis that there is no CP at a given significance level, a form of
Null-Hypothesis Significance Testing (NHST). If the null hypothesis is rejected, then the
CP is assumed to be at the location that results in the largest value for the test statistic.
Such a point estimate gives no indication of the probability that this is the true CP loca-
tion. Strictly speaking, the methods discussed in this chapter serve a different purpose
than NHST, and they are not designed to reject or not reject the null hypothesis. How-
ever, experiments showed that from the confidence curves a number may be calculated
that may serve the same purpose as the original p-value, namely to indicate data ‘wor-
thy of a second look’ [15]. This is of interest in situations where a large set of time series
is studied and it would not be feasible to analyse all confidence curves by eye. Different
thresholds for that value could then be used to separate the set into three groups: curves
that provide clear information on the location of a CP, curves that provide no information
on the location of a CP, and curves that need to be investigated further.

As in all of statistics, there are parametric and nonparametric methods. The non-
parametric methods avoid the choice of a distribution for the time series, but they tend
to specialize in detecting changes in either the mean or the standard deviation, not both
at the same time [16]. The parametric tests can look for changes in all parameters of the
underlying distribution. For hydrological, meteorological, or climatological time series
the distribution may or may not be known. Sheskin [17] states that while parametric
tests generally provide a more powerful test of the alternative hypothesis, they may lose
that advantage if the assumptions underlying the test are violated. It therefore makes
sense to examine both types of CP tests.
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An example of a nonparametric detection method using confidence curves can be
found in Zhou et al. [18]. The current chapter examines two parametric approaches.
While the emphasis is on detection of changes in the mean, additional experiments
showed that the same algorithm is equally sensitive to changes in the standard devi-
ation. Both parametric approaches belong to the domain of parametric statistics and
represent uncertainty by a confidence curve. Both use a likelihood where the location
of the CP, the distribution parameters to the left of the CP, and the distribution parame-
ters to the right of the CP are free variables. One then introduces a profile likelihood, the
other introduces a pseudo likelihood.

A method based on the first approach can be found in Cunen et al. [19] where it is
called ‘method B’. Method B is based on a calculation of the log-likelihood of the time
series for all possible CP locations. In this calculation, the parameters of the distribu-
tion to the left and to the right of the CP are so-called ‘nuisance parameters’; their values
are needed to calculate the log-likelihood, but are not of intrinsic interest. A profile log-
likelihood approach is used to calculate the log-likelihoods. The resulting log-likelihood
values for the potential CPs are used to construct a deviance function. Next, Monte Carlo
(MC) simulation is used to approximate the distribution of the values of the deviance
function for each potential CP. This approximate distribution is then used to build a
confidence curve. In the remainder of this study, this method will be referred to as Con-
fidence curve based on Maximum Likelihood estimates (CML). A potential problem with
this method is that it is very computationally intensive (refer to G for detailed computa-
tional costs.). Even in the case of just one CP, two optimizations of a log-likelihood need
to be done for each possible CP location determine the profile log-likelihood. Moreover,
a MC simulation is needed to determine an approximate distribution for each possible
CP location. This MC simulation needs to repeat the profile log-likelihood calculation
as often as is needed to obtain an approximate distribution. As shown in G, this leads
to a computational complexity linearly proportional to the number of samples in the
MC simulation and proportional to the cube of the time sample length. Run-times on a
desktop workstation by spftwares for instance MATLAB may take hundreds of seconds
for a single sample. Removal of the maximum likelihood estimator (mle) optimization
can reduce the computational cost considerably; this is the chief reason to examine the
second approach.

The current study presents two methods based on the second approach which uses
a pseudo maximum likelihood estimator (pmle). More information on pseudo likeli-
hood can be found in, for example, Gong and Samaniego [20]. Distribution parameters
are estimated by the Method of Moments (MoM) or L-Moments (LMo); this reduces the
computational cost of the likelihood calculations. Moreover, fast code for these meth-
ods is often easier to obtain than for log-likelihood optimization. These methods will
be referred to as Confidence curve based on Method of Moments parameter estimation
(CMoM) and Confidence curve based on Linear Moments (CLMo) respectively. As the ex-
perimental results for CMoM and CLMo were very similar, only CML and CLMo results
are reported in this study.

To verify that CLMo (CMoM) works, it should be demonstrated that the results ob-
tained are similar to those of CML. As hydrological time series are relatively short, asymp-
totic results on the performance of the methods may not be valid. Therefore, it is nec-
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essary to generate statistics on the performance of all methods through computer ex-
periments. In this study, this has been done for several two-parameter distributions
where the cost of the maximum likelihood calculations is still manageable: log-normal
(LN), gamma (GA), and Gumbel (GU). For ease of interpretation of the results, clarity of
method representation, and to keep the computing time needed down to a manageable
level, only the case of At Most One Change (AMOC) is considered.

The remainder of this chapter is organized as follows. First, the two approaches to
confidence curve construction are presented. Next, indicators are defined that can be
used to evaluate the method performance and compare the confidence curves. Then
the results of the application of the methods to synthetic data are analysed. After that,
the methods are applied to several hydrological and climatological time series for which
CP detection results are available in the literature. Finally, we discuss the results and
present our conclusions.

4.2. METHODOLOGY
All time series will be modelled as a vector Y of n independent random variables
Y1,Y2, ...,Yn . In the remainder of the chapter, y will represent a realization of Y , and yobs

will represent the actual observed time series.

The null hypothesis H0 will be that the Yi are independent identically distributed
(i.i.d.) random variables. The alternative hypothesis H1 will be that there is an index
τ ∈ {1,2, . . . ,n −1} such that the original random vector is split into two subseries: a sub-
series with i.i.d. random variables {Y1,Y2, ...,Yτ} and a subseries with i.i.d. random vari-
ables {Yτ+1,Yτ+2, ...,Yn}, but the distributions of the variables in the two subseries are
different. Furthermore, it is assumed that all distributions are from the same family, so
they differ only in the parameters used in the shared probability density function (pdf)
and cumulative distribution function (cdf). The cdf of Yi will be referred to as F (·;θ) and
the pdf as f (·;θ) where θ is a vector. The parameter vectors for the left and the right
subseries will be θL and θR respectively. The null hypothesis can now be expressed as
θL = θR.

Both approaches need to (approximately) solve maximum likelihood problems for
the subseries to the left and to the right of the change point τ. Intuitively it is clear that
parameter estimation for very small samples will be difficult. Some studies considering
this are Lettenmaier and Burges [21], Delicado and Goria [22]. These suggest that for
short sub-series the results may vary considerably for sample to sample. A minimum
sub-sample length nmin by (3.9) will therefore be considered. Therefore, candidates of
CP location will be within the subset given by (3.8).

4.2.1. A DESCRIPTION OF THE TWO APPROACHES

The starting point for both approaches is the log-likelihood function ℓ for a CP problem.
The value of ℓ for a CP τ, distribution parameter vectors θL and θR, and a realization y of
the time series is

ℓ(τ,θL,θR; y) =
τ∑

i=1
log f (yi ;θL)+

n∑
j=τ+1

log f (y j ;θR);τ ∈ {1,2, ...,n −1} (4.1)
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Here, θL and θR are vectors of nuisance parameters and τ is the parameter of interest. A
common way of dealing with nuisance parameters is the following. For each τ, take the
supremum (least upper bound) of (4.1) over all θL,θR; the resulting function is called the
profile log-likelihood

ℓprof(τ; y) = supθL,θRℓ(τ,θL,θR;y) (4.2)

For a closed bounded parameter set, the supremum coincides with the maximum. For a
given τ, let θ̂L

(
τ, y

)
and θ̂R

(
τ, y

)
stand for the values of θL and θR, respectively, for which

ℓ
(
τ,θL,θR; y

)
attains the maximum value. With this notation (4.2) is equivalent to

ℓprof(τ; y) = ℓ(
τ, θ̂L(τ, y), θ̂R(τ, y); y

)
(4.3)

In CML, θ̂L(τ, y),θ̂R(τ, y) are calculated whenever needed. The smallest value of τ ∈ LCP

for which ℓprof is maximal will be denoted by τ̂(y),

τ̂(y) = min
(
argmaxτ∈LCPℓ

(
τ, θ̂L(τ,y), θ̂R(τ,y);y

))
(4.4)

The minimum is taken to allow for the, highly unusual, case where there are multi-
ple maxima. In CLMo (CMoM), instead of a profile log-likelihood ℓprof, a pseudo log-
likelihood ℓpseu is used. To obtain ℓpseu, the LMo (MoM) estimates θ̃L

(
τ, y

)
and θ̃R

(
τ, y

)
of the nuisance parameters are inserted in (4.1)

ℓpseu(τ; y) = ℓ(
τ, θ̃L(τ, y), θ̃R(τ, y); y

)
(4.5)

These estimates are assumed to be acceptable approximations of the mle results. The
smallest value of τ ∈ LCP for which ℓpseu is maximal will be denoted by τ̃

(
y
)
,

τ̃(y) = min
(
argmaxτ∈LCPℓ

(
τ, θ̃L(τ,y), θ̃R(τ,y);y

))
(4.6)

From this point onwards, all methods follow the same path towards a confidence curve.
A deviance function for CML is defined as the deviance of ℓprof from the maximum value
it attains at τ̂(y)

Dprof(τ, y) = 2{ℓprof(τ̂(y); y)−ℓprof(τ; y)} (4.7)

and a deviance function for CLMo (CMoM) is defined as the deviance of ℓpseu from the
maximum value it attains at τ̃(y)

Dpseu(τ, y) = 2{ℓpseu(τ̃(y); y)−ℓpseu(τ; y)} (4.8)

For all τ ∈ LCP, the distribution of the deviance function for CML follows from

∀r ∈R : Kτ,prof(r ) =
Pr

(
Dprof(τ,y) < r|τ,θL = θ̂L(τ̂(y),y),θR = θ̂R(τ̂(y),y);y

) (4.9)

and for CLMo (CMoM) from

∀r ∈R : Kτ,pseu(r ) =
Pr

(
Dpseu(τ,y) < r|τ,θL = θ̃L(τ̃(y),y),θR = θ̃R(τ̃(y),y);y

) (4.10)

No exact or approximate expression for Kτ is available. Therefore, an MC simulation will
be used to approximate Kτ.
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In Cunen et al. [19] and in this paper, a confidence curve is defined using the distri-
bution of the deviance function

cc(τ,yobs) = Kτ(D(τ, yobs)) (4.11)

where yobs is an observation of the random sample Y . The MC approximation of Kτ is
obtained as follows:

1. Estimate parameters τ, θL, θR by first solving for τ∗(yobs), and then calculating
θ∗L (τ∗(yobs),yobs) and θ∗R(τ∗(yobs),yobs).

2. For each possible location τ ∈ {nmin,nmin+1, ...,n −nmin}, and j = 1,2, ..., N , draw

a new sample y ( j ;k) where the components y ( j ,k)
i (k = 1,2, ...,τ) are distributed ac-

cording to the distribution F (·;θ) with θ = θ∗L (τ∗(yobs),yobs) and the components

y ( j ;τ)
i (k = τ+1,τ+2, ...,n) are distributed according to the distribution F (·;θ) with
θ = θ∗R(τ∗(yobs),yobs).

3. Approximate the confidence curve cc(τ,yobs) = Kτ(D(τ, yobs)) by

Kτ,N
(
D(τ, yobs)

)= 1

N

N∑
j=1

q
D(τ, y ( j ,τ)) < D(τ, yobs)

y
(4.12)

where J·K is the indicator function; τ∗ is τ̂ for CML and τ̃ for CLMo (CMoM); and
θ∗is θ̂ for CML and θ̃ for CLMo (CMoM).

4.2.2. PROPERTIES OF CONFIDENCE CURVES FOR THE LOCATION OF A CHANGE

POINT
The performance of CML and CLMo (CMoM) methods will be examined and compared
by exploring some properties [18] of confidence curves constructed by the two methods.
They are:

• The cumulative frequency distribution of the τ̂(y) for CML and τ̃(y) for CLMo
(CMoM) based on synthetic data when the null hypothesis H0 (there is no CP)
holds. In this case, the distribution should be close to uniform. If it is not uni-
form, then it indicates that there is a bias for certain locations when a type I error
(incorrect rejection of the null hypothesis) occurs.

• The cumulative frequency distribution of the τ̂(y) and τ̃(y) for synthetic data when
the alternative hypothesis H1 (there is a CP) holds. While the point where the de-
viance function is zero is not necessarily the true CP, it is contained in all confi-
dence sets that follow from the confidence curve. If these sets are narrow, then
this point should be near the true CP.

• The actual versus nominal coverage probability for the confidence sets produced
by the curves at all confidence levels for synthetic data. The actual coverage prob-
ability at a given confidence level (nominal coverage probability) indicates the
probability of a confidence set containing the true value of the parameter of in-
terest. For detailed definitions of actual and nominal coverage probability, see 3.3.
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• A summary of the uncertainty about the CP associated with a confidence curve cc,
which is as follows

Un(cc) =
(∑n−nmin

k=nmin
Jcc(k) ≤ γmaxK

)
−1

n −2nmin
(4.13)

where

γmax = n −2nmin

n −2nmin +1
(4.14)

as defined in Appendix E.

• The similarity index is used to measure the similarity of two confidence curves. In
D.2 a derivation is given for

J̃ (cc,cc′) =
∑n−nmin

k=nmin
min

(
1−cc(k),1−cc′(k)

)
∑n−nmin

k=nmin
max(1−cc(k),1−cc′(k))

(4.15)

where cc and cc′ are a pair of confidence curves. This index was proposed in Zhou
et al. [18] and resembles the Ružička index [23]. It is one for identical curves and
smaller than one for curves that differ.

4.2.3. A CONFIDENCE CURVE BASED NULL HYPOTHESIS TEST
As mentioned in the introduction, it may be necessary to automatically split a set of
confidence curves into groups for further analysis. Here Un is proposed as a tool to do
so. One way to evaluate the suitability of Un is to compare its associated type I and type
II errors to a classical hypothesis test for the null hypothesis that no CP is present. For
this purpose, a comparison with the classical Pettitt’s test is performed.

4.2.4. SYNTHETIC TIME SERIES GENERATION AND EXAMPLES OF CONFIDENCE

CURVES
The CML and CLMo (CMoM) methods were implemented for three distributions (LN,
GA, GU). To evaluate the performance of CML and CLMo (CMoM), synthetic data were
generated from the underlying distributions. The distributions were selected because
they are commonly used in hydrology [24–27]. The pdfs and the relations between the
parameters and moments and L-moments are given in Appendix F. The change in statis-
tical properties of the synthetic data was a change in the mean µ for CML (CMoM) and a
change in the mean or in the standard deviation σ for CLMo.

For each distribution and each combination of a change in the mean ∆µ= 1,2,4 and
a sample length n = 40,100, a set of M = 1000 artificial time series of length n with stan-
dard deviation σ= 1, τ= n/4,n/2,3n/4, and a jump ∆µ in the mean between τ and τ+1
was generated. The location of the CP during sample generation will be referred to as
τtrue in this study. The mean of a specific distribution for the sub-series up to τ was
µL = 2, and the mean for the sub-series after τ was µR = µL +∆µ, where ∆µ= 1,2,4. Ex-
amples of synthetic data sets with ∆µ= 0,1,2 and the corresponding confidence curves
for CML and CLMo are given in Fig. 4.1(a-f).
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Figure 4.1: Synthetic GA distributed data sets with a change in the mean ∆µ or the standard deviation ∆σ, and
the corresponding confidence curves.
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Figure 4.2: The cumulative frequency distribution of CPs for n = 40,100 when H0 holds .

The standard deviation for the left and right sub-series will be referred to as σL and
σR respectively. Additional experiments were done for CLMo with µR =µL,σR =σL+∆σ,
where ∆σ= 1,2,3. Examples of data series synthetic data sets with ∆σ= 0,1,2 are given
in Fig. 4.1(g-l). The effect of shifting (different µL) or scaling (different σL) a time series
is discussed in B.3.

4.3. RESULTS FOR SYNTHETIC DATA WITH A CHANGE IN THE

MEAN
The performance of the confidence curves produced by CML and CLMo as represented
by the properties listed in Section 4.2.2 are examined. For all methods, N = 1000 MC
simulations were used to generate the approximate confidence curve.

4.3.1. THE CUMULATIVE FREQUENCY DISTRIBUTION OF THE CHANGE POINT

ESTIMATE

(1) THE CUMULATIVE FREQUENCY DISTRIBUTION OF THE CHANGE POINT ESTIMATE WHEN

THE NULL HYPOTHESIS HOLDS

Figure 4.2 shows the cumulative frequency distribution of the CP estimates found by
CML and CLMo when the null hypothesis holds (no CP). In this case, estimating a CP
becomes an event of randomly picking a point from all possible candidates. The possible
candidates are the elements of the set LCP defined in (3.8). The black lines in Fig. 4.2
show the corresponding uniform frequency distribution. The experimental results do
not match this exactly, but do approximate it. For LN, GA, and GU the methods CML
and CLMo give similar results.

(2) THE CUMULATIVE FREQUENCY DISTRIBUTION OF THE CHANGE POINT ESTIMATE WHEN

THE ALTERNATIVE HYPOTHESIS HOLDS

Figure 4.3 shows the frequency distribution of detected CPs by the two methods when
the alternative hypothesis holds for ∆µ= 1,2, τtrue = n/4,n/2,3n/4, and n = 40,100. For
CML and CLMo, the points where the confidence curve is zero are spread around the true
CP. The spread decreases with increasing∆µ and n. For example, for∆µ= 1 and n = 100,
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Figure 4.3: The cumulative frequency distribution of CPs for n = 40;100 when there is a change in the mean.

about 90% of the estimates lie within ±10 points of the actual CP. For ∆µ= 2, the spread
reduces to ±5 points. For ∆µ = 4 the plot is not shown, but the spread was reduced to
about ±2 points. The frequency distributions found by all methods for synthetic time
series drawn from the three distributions are very similar.

4.3.2. ACTUAL VERSUS NOMINAL COVERAGE PROBABILITY

The difference between the actual and the nominal coverage of the confidence sets de-
fined by the confidence curve is quite important for their practical use. If the actual
coverage of a confidence set is lower than the nominal one, then it is permissive (see also
Section 3.1). This may cause problems, because it suggests too much certainty about the
CP location; if the set were a person, then that person would be overconfident. If the
actual coverage probability exceeds the nominal coverage, then the set is conservative;
while this is less problematical than permissiveness, it suggests too much uncertainty;
the set would please an overcareful person. The actual coverage was estimated as fol-
lows: synthetic time series with indices m = 1,2, ..., M were generated, and for each time
series m, the confidence curve and the confidence set Rγ,m at confidence level γ were
determined. Finally, the number k of sets for which τtrue ∈ Rγ,m was divided by M . In
Fig. 4.4, plots of the actual versus nominal coverage are shown.

When interpreting Fig. 4.4, it is important to recall that if a CP is present, then there is
only a finite number of possible locations for that CP. This in turn means that if the con-
struction method for the curve makes very good use of the information in the sample,
then it may result in confidence random sets that contain only one or two points, but
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Figure 4.4: Actual versus nominal coverage probability for a change in the mean when τtrue = n/2 and sample
length n = 100.

have a very high probability of containing the actual CP. This implies that for low confi-
dence levels the sets will be very conservative. This manifests itself in Fig. 4.4 where in
(a) the actual coverage is always above 37% for ∆µ= 1; it always exceeds 70% for ∆µ= 2
in (b), and in (c) it is higher than 90% for ∆µ = 4. It follows that in practice, only the
confidence sets with relatively high nominal confidence are of interest. The sets at low
confidence levels are much too conservative. The results for CML show that, all distri-
butions provide accurate actual coverage for nominal coverage above 90%. At∆µ= 4 the
method seems almost certain of the CP. The results for CLMo (CMoM) are nearly iden-
tical to those for CML. Results for n = 40 were generated as well, but the impact from
sample length on actual coverage probability was small, so they have not been included
here.

Table 4.1 shows details about actual versus nominal coverage for confidence curves
constructed by CML and CMoM/CLMo for confidence levels γ= 0.90,0.95,0.99.

An indication of the spread in actual coverage can be provided as follows. If the actual
coverage were equal to the nominal coverage, then the number k of M confidence sets
Rγ,m ,m = 1,2, ..., M , that contained the true change point would be distributed according
to a binomial distribution

Pr(k) =
(

M
k

)
γk (1−γ)M−k (4.16)

For the binomial distribution, the variance is Mγ(1−γ), so the standard deviation of
k/M is

√
γ(1−γ)/M . For M = 1000, the standard deviation of the distribution of k for

γ= 0.90 is 0.009; for γ= 0.95 it is 0.007, and for γ= 0.99 it is 0.003. When combining this
information with Table 4.1, please recall that the location of the CP is a discrete random
variable, so for some confidence levels it might not be possible to define a confidence
set with that exact coverage.

4.3.3. THE UNCERTAINTY IN THE CONFIDENCE CURVES
The value of Un for a confidence curve is calculated according to Appendix E. It summa-
rizes the uncertainty of a confidence curve.
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Table 4.1: The actual coverage of confidence sets by CML and CLMo. Cells with conservative coverage are grey.

Confidence level 0.9 0.95 0.99

Distribution ∆µ n CML CLMo CML CLMo CML CLMo

LN

1
40 0.855 0.860 0.919 0.922 0.980 0.981

100 0.879 0.876 0.935 0.940 0.990 0.989

2
40 0.880 0.885 0.927 0.934 0.974 0.976

100 0.892 0.895 0.957 0.957 0.990 0.991

4
40 0.954 0.953 0.960 0.962 0.982 0.981

100 0.933 0.934 0.951 0.951 0.984 0.986

GA

1
40 0.859 0.854 0.905 0.911 0.982 0.984

100 0.877 0.879 0.931 0.930 0.975 0.980

2
40 0.889 0.896 0.945 0.945 0.988 0.989

100 0.887 0.887 0.932 0.934 0.983 0.988

4
40 0.944 0.945 0.960 0.959 0.982 0.984

100 0.944 0.944 0.954 0.951 0.987 0.983

GU

1
40 0.864 0.868 0.925 0.929 0.985 0.984

100 0.890 0.882 0.934 0.932 0.985 0.985

2
40 0.881 0.882 0.937 0.943 0.985 0.985

100 0.886 0.886 0.951 0.952 0.993 0.993

4
40 0.959 0.958 0.961 0.961 0.979 0.983

100 0.954 0.953 0.956 0.957 0.985 0.985
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Figure 4.5: Cumulative frequency of Un when H0 holds.
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Figure 4.6: Cumulative frequency of Un for a CP in the middle of the series and a change in the mean.

(1) THE UNCERTAINTY IN THE CONFIDENCE CURVES FOR THE NULL HYPOTHESIS

The CML approach implicitly assumes that a CP is present, so it would seem that it
should be preceded by a test for the presence of a CP. However, if Un is calculated for
synthetic time series generated without a CP, then it turns out to be quite high in most
cases, near one for 80% (n = 40) to 90% (n = 100) of all curves, as shown in Fig. 4.5.
Examples of confidence curves for time series without a CP are shown in Fig. 4.1(a,g).
As high Un in the presence of a CP means that the method supplies only a very limited
amount of information on CP location, it is tempting to simply say that if Un exceeds a
certain bound, then either there is no CP or the method cannot reliably detect the CP
location. The viability of this approach depends on the distribution of Un in cases where
the alternative hypothesis holds.

(2) THE UNCERTAINTY OF CONFIDENCE CURVES FOR THE ALTERNATIVE HYPOTHESIS

Figure 4.6 shows the frequency distribution for Un when H1 holds and the CP lies in the
middle of the time series. The values of Un are very similar for CML and CLMo. If n = 100
and ∆µ= 1, then 95% of the values lie below 0.4 for LN and GU, while for GA the 95% of
the Un values lie below 0.5. For ∆µ = 2 these values are halved, while for ∆µ = 4 (not
shown), the Un is nearly zero. For n = 40 the distribution of Un is much more spread
out.
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Figure 4.7: Un versus type I and type II errors for a CP in the middle of the series and a change in the mean.

(3) UNCERTAINTY AS A TOOL TO SELECT CURVES AND DATA THAT NEED CLOSER INSPEC-
TION

There are two types of error that are of interest when testing a hypothesis. The rejection
of H0 when there is no CP (type I error) and the acceptance of H0 when there is a CP
(type II error). For example, for ∆µ = 1, n = 100, and distribution LN, Fig. 4.5(a) im-
plies that rejection of H0 for Un ≤ 0.2 would result in a very small type I error, while Fig.
4.6(a) implies that non-rejection of H0 for Un ≥ 0.5 would result in a very small type II
error. The subset of time series where 0.2 < Un < 0.5 would then need further study by
visual inspection or additional tests. If none of the original time series actually has a CP,
then the subset would be less than 5% of the original set of time series, while if all series
actually have a CP, then the subset would be about 30% of the original set.

Figure 4.7 is based on the frequency distribution of Un over the synthetic samples
sets and shows how a particular choice of a Un value as a bound for acceptance of H0

would translate into type I and type II errors for that set of samples. For different appli-
cations of the methods, the relative importance of the type I and type II error will differ.
The point marked ‘A’ corresponds to the Un value for which the type I and type II errors
are equal for n = 40. The point ‘B’ corresponds the Un value for which the type I and
type II errors are equal for n = 100. By plotting the value pairs of type I and type II errors
associated with a particular value of Un over a range of Un values, it is possible to visual-
ize the relation between the errors. To see how a null hypothesis test based on Un would
do when compared with the classical Pettitt’s test, the curve of error pairs is drawn for
both tests in Fig. 4.8. The results show that in principle Un could serve as the basis for a
hypothesis test.
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Figure 4.8: Comparison of the two null hypothesis tests where for H1 the CP is in the middle of the series.

4.3.4. THE SIMILARITY INDEX BETWEEN CONFIDENCE CURVES

To evaluate the similarity between confidence curves for the same synthetic time series,
the similarity index J̃ was calculated by (4.15) for∆µ= 1,2,4, τtrue = n/2, and n = 40,100.
Details on the calculation of J̃ and its properties can be found in Appendix D. Figure
4.9 shows the resulting cumulative frequency distributions of J̃ . The confidence curves
for synthetic data calculated as by CML are very similar to those calculated by CLMo
(CMoM). The similarity increases with increasing ∆µ and n. For the GU distribution
similarity seems lower. To provide a point of reference for the similarity values, J̃ was
calculated for 16000 random pairs of H0 confidence curves. The result was that 95% of
the pairs had a similarity below 0.7, for all sample lengths, distributions, and methods.
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Figure 4.9: The similarity index between confidence curves generated by the CML and CLMo methods.
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Figure 4.10: The cumulative frequency distribution of CPs for n = 40,100 when there is a change in the standard
deviation.

4.4. RESULTS FOR CLMO FOR SYNTHETIC DATA WITH A CHANGE

IN THE STANDARD DEVIATION

One advantage of a parametric method is that it looks for changes in all parameters at the
same time. To examine this further limited experiments were performed for synthetic
series with a change in the standard deviation.

4.4.1. THE CUMULATIVE FREQUENCY DISTRIBUTION OF THE CP ESTIMATE

WHEN THE ALTERNATIVE HYPOTHESIS HOLDS

Figure 4.10 shows the frequency distribution of detected CPs by CLMo when the alterna-
tive hypothesis holds for ∆σ = 1,2,3, τtrue = n/4,n/2,3n/4, and n = 40,100. The spread
decreases with increasing size of the change.
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Figure 4.11: Actual versus nominal coverage probability for a change in the standard deviation when τtrue =
n/2 and sample length n = 100.

4.4.2. ACTUAL VERSUS NOMINAL COVERAGE PROBABILITY
When interpreting Fig. 4.11, it is important to recall the earlier remark that, if a CP is
present, then there is only a finite number of possible locations for that CP. This implies
that for low confidence levels the sets will be very conservative. This manifests itself in
Fig. 4.11(a) where for LN, the actual coverage is always above 20% for ∆σ = 1; it always
exceeds 35% for ∆σ = 2, and it is higher than 45% for ∆σ = 3. For GA and GU the lower
bounds on the actual coverage are even higher. This in turn means that in practice, only
the confidence sets with relatively high nominal coverage, for example above 60%, are of
interest. The sets at low confidence levels are much too conservative.

4.4.3. UNCERTAINTY AS A BASIS FOR A NULL HYPOTHESIS TEST
Figure 4.12 shows the frequency distribution for Un when H1 holds and the CP lies in
the middle of the time series. For n = 100, ∆σ = 2 and the LN distribution, 95% of the
values lie below 0.35. For GA the 95% of the Un values lie below 0.2. For GU 95% of
the Un values lie below 0.2. For ∆σ = 3 these values are almost halved for LN, GA, and
GU. It should be noted that the scale parameter of GA equals the variance divided by the
mean, so for fixed mean it increases with the square of the standard deviation. For higher
standard deviations this leads to a distribution that tends to produce many low values
with a few very high values mixed in. Special care may be needed in the calculations for
low means and high standard deviation. If the standard Pettitt’s test is used for a change
in the standard deviation, then it is much less effective than for a change in the mean
(Fig. 4.14). A different test, specifically designed for the change to be detected, would be
needed. Here the test based on Un is not the most effective for a particular change, but
it is the one that will detect all parameter changes.
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Figure 4.12: The cumulative frequency of Un for a CP in the middle of the series and a change in the standard
deviation.
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Figure 4.13: Un versus type I and type II errors for a CP in the middle of the series and a change in the standard
deviation.



4.4. RESULTS FOR CLMO FOR SYNTHETIC DATA WITH A CHANGE IN THE STANDARD

DEVIATION

4

71

0.00 0.25 0.50 0.75 1.00
type I error

0.00

0.25

0.50

0.75

1.00

ty
 e
 II
 e
rro

r

(g)

LN (Δσ=3)

0.00 0.25 0.50 0.75 1.00
ty e I error

0.00

0.25

0.50

0.75

1.00

(h)

GA (Δσ=3)

0.00 0.25 0.50 0.75 1.00
ty e I error

0.00

0.25

0.50

0.75

1.00

(i)

GU (Δσ=3)
0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

ty
 e
 II
 e
rro

r

(d)

LN (Δσ=2)

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

(e)

GA (Δσ=2)

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

(f)

GU (Δσ=2)
0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

ty
 e
 II
 e
rro

r

(a)

LN (Δσ=1)

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

(b)

GA (Δσ=1)

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

(c)

GU (Δσ=1)

CLMoΔ n=40 CLMoΔ n=100 PettittΔ n=40 PettittΔ n=100

Figure 4.14: Comparison of the two null hypothesis tests for a change in the standard deviation when the CP is
in the middle of the series.
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4.5. CHANGE POINT DETECTION AND UNCERTAINTY IN REAL

HYDROMETEOROLOGICAL DATA
To examine the performance of the CML and CLMo methods on real world data, seven
time series of measurements were taken from previous publications by Conte et al. [8] -
case study 1, Zhou et al. [28] - case study 2, Jandhyala et al. [29] - case study 3, Reeves
et al. [30] - case study 4. The CPs found in the original studies are used as a reference,
see Table 4.2. Both methods were used to construct confidence curves for CPs with each

Table 4.2: Change points found in the hydrometeorological series and statistical properties of the series.

Time series from to τref σ
∆µ
σ

Tucumán 1884 1996 1956 18mm 0.76

Tuscaloosa 1940 1986 1957 0.61◦C −1.3

Itaipu 1931 2015 1971 2.5×103m3/s 1.3

Cuntan 1893 2014 not found 12×103m3/s −0.45

Yichang 1946 2014 1962, 1966 8.6×103m3/s −1.3

Hankou 1952 2014 not found 8.9×103m3/s −0.89

Datong 1950 2014 not found 11×103m3/s −0.76

of the three distributions: LN, GA, and GU. The uncertainties for the confidence curves
were determined as was the similarity between the CML and CLMo curve for each case.
The confidence set at confidence level 95% is also shown.

The details of the time series used for analysis are:

• Conte et al. [8] used the bootstrap Pettitt’s test to detect change points in the an-
nual average naturalized flow of the Itaipu Hydroelectric Plant in Brazil from 1931
to 2015. They found a significant change point for the naturalized flow in 1971.

• Time series of annual maximum run-off (AMR) for four stations on the Yangtze
River in China were analysed in Zhou et al. [28]. The four stations are of inter-
est because they are located on Yangtze River, a river that has gone through many
alterations over the past 100 years, notably the construction of the Three Gorges
project. The stations are: Cuntan (1893-2014) upstream of the Three Gorges dam,
and Yichang (1946-2014), Hankou (1952-2014), and Datong (1950-2014) down-
stream of the Gezhouba dam. In Zhou et al. [28] of the four stations only Yichang
station yielded change points. The paper applied three methods to this series: the
Pettitt’s method, a method based on the Cramér von Mises test, and a variant on
the CUSUM method. CUSUM found a change point in 1962 with ∆µ/σ = −0.91
and the other two methods found a change point in 1966 with ∆µ/σ=−0.84.

• The annual average rainfall data from Tucumán in Argentina for the years 1884 to
1996. The time series is well documented, and in Jandhyala et al. [29], a change
point in the time series was found near 1956 by a Bayesian method. Wu et al.
[31] also studied this series, and they state: ‘[C.] Lamelas [a meteorologist from
the Agricultural Experimental Station Obispo Colombres, Tucumán] believes that
there was a change in the mean, caused by the construction of a dam in Tucumán
from 1952 to 1962’.
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• The annual average temperature time series from a station in Tuscaloosa, Alabama
(USA). The time series in Tuscaloosa from 1940 to 1986 was selected because dur-
ing this period, there was only one documented reason for a change point resulting
from equipment changes or station relocation, namely in November 1957 [30]. All
eight methods used in that study found a change point in the year of 1957.

4.5.1. CASE STUDY 1
Conte et al. [8] found a significant CP in 1971 in the annual average naturalized discharge
of the Itaipu Hydroelectric Plant in Brazil from 1931 to 2015 by the bootstrap Pettitt’s test.
In this case the value of

∣∣∆µ∣∣/σ suggests the methods should do reasonably well. And so
they do: Un is low and J̃ is high. All give a 95% confidence interval of about three years
(Fig. 4.15).
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Figure 4.15: Confidence curves for CP in annual average naturalized discharge time series of Itaipu.

4.5.2. CASE STUDY 2
Four time series of annual maximum discharge on the Yangtze River in China were anal-
ysed in Zhou et al. [28]. The stations Cuntan, Yichang, Hankou and Datong along the
Yangtze River were selected to examine the impacts from the construction of the Three
Georges dam. Construction officially started in 1994. There followed a series of interven-
tions in the flow of the Yangtze River, first by partial damming, and then by the filling, in
stages, of the reservoir. Construction was completed in 2009, but the reservoir was not
yet completely filled at that point.

(1) CUNTAN

For Cuntan, which lies upstream of the Three Gorges dam, a time series of annual max-
imum flow from 1893 to 2014 was examined. Earlier studies did not find clear CPs. All
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confidence curves in Fig. 4.16(b-d) show that there is no clear indication of a CP. All Un
values are near one, this strongly suggests that there is no CP.

(2) YICHANG

For Yichang, which lies about 40 km downstream of the Three Gorges dam, a time series
of annual maximum flow from 1946 to 2014 was examined. An earlier study found a
possible CP in 1962 [9]. In Zhou et al. [28] CUSUM found a CP in 1962, while Pettitt’s
and Cramér-von Mises found a CP in 1966. All confidence curves in Fig. 4.16(f-h) show
that there is a clear CP near 1962. At the 95% confidence level the LN and GA based
methods provide a set with about 7 candidates, while for GU, CML selects 4 years and
CLMo selects 2 years. The value of

∣∣∆µ∣∣/σ at the CP in 1962 is near one.

(3) HANKOU

For Hankou, approximately 700 km downstream of the Three Gorges dam, a time se-
ries of annual maximum flow from 1950 to 2014 was examined. Earlier studies did not
find clear CPs. All methods, except for CLMo with GU, have Un close to one, see Fig.
fig:Confidence-curves-for Hankou(b-d). However, given the closeness of the lowest point
on the confidence curve to the end of the series and the narrowness of the 80% confi-
dence set, more data is needed to decide whether there is a CP near 2005 or not.

(4) DATONG

For Datong, about 1200 km downstream of the Three Gorges dam, a time series of annual
maximum flow from 1952 to 2014 was examined. Earlier studies did not find clear CPs.
Again, all methods have a Un that is nearly one, see Fig. 4.17(f-h). The shape of the
confidence curve suggests that more data is needed to decide whether or not there is a
CP near 2003.

4.5.3. CASE STUDY 3
In Jandhyala et al. [29] the annual average rainfall time series from 1884 to 1996 at Tu-
cumán] in Argentina was investigated, and a CP was found in 1956 by a Bayesian method.
The result was confirmed by Wu et al. [31]; they believed the change was caused by the
construction of a dam in Tucumán] from 1952 to 1962. Figure 4.18(a) shows the data
and the CP in 1956. In Fig. 4.18(b-d) the results of CML and CMoM/CLMo with different
distributions are shown.

The large Un value make it difficult to decide whether or not there is a CP. The con-
fidence curves suggest that there could well be a CP near 1956, but there is considerable
uncertainty about its precise location. Given the results on synthetic data series for rela-
tively small values of

∣∣∆µ∣∣/σ, this is not surprising.

4.5.4. CASE STUDY 4
The annual average temperature time series from 1940 to 1986 in Tuscaloosa of USA was
selected because there was only one documented reason for a CP during this period. The
time series was used in Reeves et al. [30], and a CP located at the year of 1957 was found
by eight different methods. Here the value of

∣∣∆µ∣∣/σ offers more hope of finding a CP.
Both LN and GA based methods find a reasonably precise confidence curve for the CP
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Figure 4.16: Confidence curves for CP in annual maximum discharge time series of Cuntan and Yichang.
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Figure 4.17: Confidence curves for CP in annual maximum discharge time series of Hankou and Datong.
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Figure 4.18: Confidence curves for CP in time series of Tucumán and Tuscaloosa.



4

78 4. CONFIDENCE CURVES BASED ON THE PSEUDO MAXIMUM LIKELIHOOD METHOD

Table 4.3: Different Gumbel based parameter estimates for left and right subseries at Tuscaloosa

CP Method left right log-likelihood
loc scale loc scale

1957
CML 17.48 0.7091 16.73 0.4636 -40.0

CMoM 17.53 0.4000 16.76 0.3417 -69.8
CLMo 17.56 0.3502 16.75 0.3580 -100

1975
CML 17.07 0.5896 16.65 0.5552 -45.4

CMoM 17.10 0.4662 16.68 0.4255 -49.8
CLMo 17.08 0.4938 16.67 0.4480 -47.7

with a 95% confidence interval of about 5 years. In this case GU is not doing as well as LN
and GA. Moreover, GU combined with CLMo seems to be confused by the sudden drop
in 1976 (Fig. 4.18(f-h)).

A possible explanation is the difference in parameters for the Gumbel distribution
found by the different methods. While one would hope that CML, CMoM, and CLMo
would give similar results, all parameter estimates are random variables and their vari-
ance may be quite large for small samples. Given the very different formulas used to ob-
tain the estimates, it should not be surprising that, without large samples to reduce the
variance, very different results can be found. This in turn may lead to different points
being selected as CP.

Table 4.3 gives the estimated parameters and the corresponding values of the log-
likelihood. It can be seen that a CP in 1975 results in a value for the profile log-likelihood
that is close to the minimum and that the pseudo log-likelihood values are close to the
profile log-likelihood value for 1975. For 1957, the CLMo and CMoM parameter approx-
imations of the location are close to the CML value, but the scale parameter estimates
are different, this results in a large deviation of the pseudo log-likelihood value from the
profile log-likelihood value for 1957.

4.6. CONCLUSION AND DISCUSSION
This study examined three parametric methods to construct confidence curves for change
points (CPs) in time series. The methods are able to detect changes in the mean and the
standard deviation. One method (CML) was based on Cunen et al. [19] and two faster
variations on that method (CLMo, CMoM), which were proposed in the current study.
All methods involve a choice of a distribution family that is used to define a likelihood
function for the CP. In this likelihood function the parameters of the distribution are
‘nuisance’ parameters. The CML method deals with the nuisance parameters by using a
profile likelihood; the CMoM and CLMo methods use a pseudo likelihood with param-
eter estimates based on moments and L-moments respectively. All methods define a
deviance function based on the likelihood for the possible CP locations. An MC calcu-
lation is then used to assign approximate probabilities to the deviance function values.
These approximate probabilities then define the confidence curve. The reason for the
introduction of CMoM and CLMo is that CML, which uses ML parameter estimates, can
be very costly in terms of computations and therefore in terms of time. Even for the
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gamma and Gumbel distributions, where the ML method is relatively cheap, the cost of
CML was at least 8 times that of CMoM, see Appendix G.

A statistical analysis of the results of a large number of synthetic data series of two
lengths, 40 and 100, showed that CLMo, CMoM and CML performed CP detection equally
well. Performance in terms of actual coverage of the associated confidence sets for high
confidence levels was satisfactory and nearly independent of sample length. Coverage
for lower confidence levels was very conservative due to the discrete nature of the CP
variable. For all distributions, the confidence curves produced by CLMo, CMoM, and
CML were very close to each other, so using CLMo or CMoM instead of CML does not
result in loss of quality.

The uncertainty in the information produced about the CP decreased with increasing
sample length and/or with increasing size of the change at the CP. In this chapter Un, a
summary of the uncertainty shown by a curve, was defined to serve as the basis for a test
for the null hypothesis of the absence of a CP. Preliminary findings suggest that a test
based on this measure may perform on a par with the classical Pettitt’s test as long as
the series are not too short and the change is large enough. This would combine in one
method a null hypothesis test and confidence set estimates of CP location at multiple
confidence levels.

When applied to measurement series from literature, all methods produced results
compatible with the results reported in the literature. In fact, in all cases where the liter-
ature reported one or more CPs, the lowest point on the confidence curve coincided with
one of those CPs. A somewhat surprising, but most welcome result was that the choice
of distribution (Gumbel, gamma, or log-normal) used to calculate the likelihood had
very little influence on the ability of the methods to recover information on a possible
CP from the measurement series. To see if this holds more generally, more experiments
with both synthetic data series and measurement time series are planned.

Both the experiments on synthetic data series and the results for measurement time
series suggest that the series should have a length of about 100 points; changes in the
mean are detected if they exceed one standard deviation. For changes in the standard
deviation more experiments are needed to see whether absolute or relative size of the
change determines the method sensitivity.

The two new methods, CLMo and CMoM, introduced in this article complement the
AED method from Zhou et al. [18]. The AED method has as advantage that it is non-
parametric and relatively fast, but it tends to generate confidence curves with somewhat
larger, and therefore less informative, confidence sets. Moreover, it needs an additional
calculation to properly detect changes in standard deviation. A viable approach would
be to start with AED, apply CLMo when the results are not conclusive or a change in
the mean is not expected, and finally use CML when the CLMo result still displays large
uncertainty.
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5.1. INTRODUCTION
While it is clear that climate change affects the hydrological cycle [1] and that there is an
increased risk of extremes in precipitation [2], discharge [3] and temperature, the effects
on a regional scale may vary considerably [4]. The analysis of time series of precipita-
tion, temperature, discharge and other variables is an important tool in the search for
and examination of such changes. However, in order to be effective, the analysis must
allow for non-stationarity. Roughly speaking, there are two types of non-stationarity in
hydrological processes to be considered: gradual change and abrupt change. The main
sources of these changes are human interventions and climate variability [5]. Detecting
change points contributes to detecting changes in the water cycle due to human and nat-
ural causes during the Anthropocene, a component of some important open questions
in hydrology [6]. The need for more hydrological data that is mentioned in McMillan
et al. [7] makes it more important than ever to determine whether or not known changes
have impacted system response. With a good understanding of the size of the impact,
better use can be made of long hydrological time series that otherwise would need to be
treated as two shorter series. To do so, it is necessary to establish whether or not a known
change has caused detectable impact, for instance, in the form of a change point.

The examination of changes in catchment behaviour is not a purely academic exer-
cise: future catchment behaviour is a major factor in all decisions on future water man-
agement. If one wishes to analyse non-stationarity, then a first essential step is finding
the abrupt changes, because any abrupt change will interfere with the search for grad-
ual changes and other statistical properties of the series. Therefore, this paper focuses
on the detection of abrupt changes in the hydrometeorological processes through the
analysis of time series.

The concept of an abrupt change is formalized as follows: a time series is said to have
a change point (CP) when the statistical characteristics of the series before and after the
CP show a significant difference. Finding CPs has attracted attention from many fields,
for instance, in oceanography [8], economics, finance [9], biology [10], and meteorology
[11, 12]. In hydrology, CP detection plays an indispensable role in homogeneity tests for
hydrological observations [13].

A number of methods have been developed to find change points; some require a
parametric description of the probability distribution of the data points in the time series
[9], others do not [14–17]. Traditional CP detection methods are often designed to accept
or reject the null hypothesis at a given significance level. If it is rejected, then a point
estimate of the location is obtained more or less as a by-product. This approach does
not offer much room for the communication of degrees of uncertainty. Moreover, its use
of the traditional p-value based approach is a potential weakness [18].

In some cases, CP detection may deliver unexpected results, for instance, when events
have taken place that lead hydrologists to expect a change, but for the given p-value the
null hypothesis is not rejected. To be more specific, one might find that the known in-
formation is that a dam or reservoir was constructed upstream of a gauging station at a
given year, but no CP is detected in the the time series beyond that point. With just a hy-
pothesis test no further insight is available. This is particularly problematical, because,
for some of the tests used in hydrology, results may change when different combinations
of starting and ending year are used [19], see Chapter 2 for more detailed information. It
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is therefore important to examine new methods for change point detection that provide
more information on the uncertainty of the results.

In the current study, a new method is developed that represents the uncertainty
about the location of a CP by providing confidence sets at all confidence levels. A con-
fidence set is a generalization of a confidence interval. Our method was inspired by the
work on confidence curves in connection with change point detection in Cunen et al.
[20]. Their ‘method B’, which constructs a confidence curve for the location of a CP by
using a parametric profile likelihood function to construct a deviance function, shows
considerable promise.

However, it presupposes that it is known to which family of distributions the data
points belong; this knowledge is used both in the formulation of the deviance function
and in a Monte Carlo (MC) procedure that draws from that family to approximate the
distribution of the deviance function (see CML in Chapter 3 and 4). In hydrology, it is
not always clear which family should be chosen. In addition, the method also involves
optimizing a fairly large number of profile likelihoods. For some distribution families,
this may be costly. The method presented in this paper avoids these potential drawbacks
by using an empirical likelihood ratio instead of a parametric profile likelihood function
and bootstrapping samples from the original sample. The new method is called Con-
fidence curve based on Approximate Empirical likelihood ratio, Deviance function and
bootstrapping (AED)

There are alternative approaches that can be used to represent the uncertainty in the
CP location. One is the use of confidence intervals instead of point estimates for a given
level of significance, but this still limits the available information to that for one level
of significance. Another approach would be to use Bayesian techniques. Bayesian tech-
niques are particularly attractive in hydrology [21, 22] because of the non-repeatability of
hydrological observations. An example of a Bayesian CP analysis method can be found
in Perreault et al. [23]. However, in addition to the need to find a proper distribution
family for hydrological records, Bayesian approaches also need to find a suitable prior.

The remainder of this paper is organized as follows: first two different methodologies
for confidence curve construction are presented, the parametric ‘method B’ from Cunen
et al. [20] and the non-parametric method proposed in this study, and indicators are
defined that can be used to evaluate and compare the performance of the curves. Then,
the results of the application of the methods to synthetic data are analysed. Next, the
non-parametric method is applied to several hydrometeorological time series and the
outcomes are compared to results found in the literature. Finally, we discuss the results
and present our conclusions.

5.2. METHODOLOGY OF THE EMPIRICAL LOG-LIKELIHOOD RA-
TIO METHOD

A change point detection problem has been introduced in Chapter 3, and in that chap-
ter CML method proposed by Cunen et al. [20] is also introduced in details. To show the
relations between CML and the method proposed in this study, it is necessary to make a
few intermediate steps. In Appendix C, the detailed intermediate steps from confidence
curves based on parametric likelihood to confidence curves based on approximate em-
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pirical likelihood are shown.
The methodology of the end result is that the role of the profile log-likelihood in the

deviance function used in the construction of the confidence curve is taken over by an
approximation ℓapn of the empirical log-likelihood given by (5.1).

ℓapn
(
τ; y

)= τ(n −τ)

n

( 1
τ

∑τ
i=1 yi − 1

n−τ
∑n

i=τ+1 yi
)2

1
n−1

∑n
i=1

(
yi − 1

n

∑n
j=1 y j

)2 (5.1)

To define the corresponding deviation function Dapn, we need to introduce τ̂apn
(
y
)
, the

value of τ for which ℓapn
(
τ, y

)
attains its maximum. Now Dapn is

Dapn
(
τ; y

)= 2
(
ℓapn

(
τ̂apn

(
y
)

; y
)−ℓapn

(
τ; y

))
(5.2)

To determine the distribution Kapn,τ (r ) of Dapn (τ;Y ), formally given by

Kapn,τ (r ) = Pr
(
Dapn (τ;Y ) < r

)
(5.3)

we use the following procedure:

1. Determine τ0 = τ̂apn
(
yobs

)
, and split yobs into a left part and a right part at τ0.

2. For each candidate position τ ∈ {nmin,nmin +1, . . . ,n −nmin}, use bootstrapping to

resample yobs and get N new samples y( j)
res ( j = 1,2, ..., N ). For each j , y( j)

res is com-
posed of a sequence of τ values drawn from the left part of yobs followed by a se-
quence of (n −τ) values drawn from the right part of yobs [24].

3. Approximate the curve cc
(
τ; yobs

)= Kapn,τ
(
Dapn

(
τ, yobs

))
by

1

N

N∑
j=1

r
Dapn

(
τ, y( j)

res

)
< Dapn

(
τ, yobs

)z
(5.4)

Here nmin which has been used in (3.9), is used to avoid calculation of approximate em-
pirical likelihoods based on a handful of points.

Thus the newly developed method is called confidence curve based on the Approxi-
mate Empirical likelihood ratio that is used in a Deviance function combined with boot-
strapping to calculate the confidence curves (AED).

5.2.1. DATA GENERATION
For each combination consisting of a distribution, a change point at τ= 25,50,75, and a
change in the mean∆µ= 1,2,4, a set of 1000 synthetic time series of length n = 100 were
generated. For the coverage analysis, an additional 1000 synthetic time series of length
n = 50 with a change at τ = 25 were generated for changes in the mean of ∆µ = 1,2,4.
The τ used in the generation of the time series will be referred to as τtrue.

The mean of the distribution for the sub-series up to τwill be denoted by µL, and the
mean of the distribution for the sub-series beyond τ will be denoted by µR. Similarly, σL

and σR will refer to the standard deviation of these distributions. For all series we have
σL =σR = 1, µL = 2, and µR = µL +∆µ. The scale of change is measured by ∆µ/σ, and in
our setup σL =σR = 1, therefore, for the synthetic data the relative size of the change in
the sample mean at a change point can be represented by ∆µ.
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5.2.2. AN EXAMPLE OF CONFIDENCE CURVES FOR THE LOCATION OF CHANGE

POINTS
Figure 5.1 shows four synthetic data sets (a, c, e, g) of length n = 100 drawn from the
log-normal distribution, and the corresponding confidence curves (b, d, f, h) for the dif-
ferent methods. To illustrate how uncertainty is represented by confidence curves, the
95% confidence sets for AED are shown in Fig. 5.1(b, d, f, h). Series (a) was generated
with ∆µ = 0; series (c, e, g) were generated with a change in the mean of ∆µ = 1,2,4
respectively at τ = 50. Note that Fig. 5.1 shows information for just four data sets, so
it cannot be used to draw conclusions about the relative performances of the methods.
Figure 5.1(b) suggests that when the null hypothesis H0 holds, the confidence sets are
much larger than when the null hypothesis does not hold, see Fig. 5.1(d, f, h). When
∆µ is small, in general when ∆µ/σ is small, both methods find larger confidence sets at
the higher confidence levels. It is important to keep in mind that confidence intervals
at levels below 0.5 are of limited usefulness as they need only contain the true CP in less
than half of all experiments.

5.3. COMPARISON OF CONFIDENCE CURVES BY PARAMETRIC AND

EMPIRICAL METHODS FOR SYNTHETIC DATA
In order to evaluate the performance of CML and AED, synthetic time series from three
different distributions are generated: the log-normal distribution, the gamma distribu-
tion, and the Fréchet distribution with a constant shape parameter. Moreover, three
variants of CML will be considered. One using the log-normal pdf (LN-CML), one using
the gamma pdf (GA-CML), and one using the Fréchet pdf (F-CML). The parametric dis-
tribution functions of the three distributions can be found in F. Notice that in this study,
the shape parameter of the Fréchet distribution is fixed to avoid over-fitting to hydrom-
eteorological data.

The properties of confidence curves and similarity for confidence curves from the
two different methods are analyzed according to Chapter 4.3. The results for confidence
curves by the two methods are shown as follows.

5.3.1. ACTUAL VERSUS NOMINAL COVERAGE PROBABILITY OF CONFIDENCE

CURVES
For synthetic data, the actual coverage probability will be examined as well as the dis-
tribution of the estimate of the CP both when the null hypothesis H0 holds and when it
does not hold. The uncertainty measure Un (see E) of the confidence curves for the null
and the alternative hypothesis will be examined respectively as well. These properties
will be used to determine the relative merits of the methods. Finally, the similarity of the
curves generated by CML and AED will be examined.

Figure 5.2 presents plots of both confidence set size and actual coverage as a function
of confidence level. Plots (c, f, i) show clearly that for certain coverage levels there is no
corresponding set with an actual coverage close to the nominal coverage. This can be
explained as follows. The change point location is an integer, therefore, the smallest
non-empty confidence set is a set that contains just one point. For a one point set, the
confidence level of the set can never be lower than the probability that this point is the
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Figure 5.1: Confidence curves for CP location in synthetic data from a log-normal distribution.
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Figure 5.2: Actual coverage probabilities and confidence set size as a function of nominal coverage probabilities
for synthetic data.

change point. Plots (c, f, i) show that for ∆µ= 4 this probability is often above 90%. For
∆µ= 1,2 and confidence levels of 80% or higher, both CML and AED deliver reasonable
actual coverage probabilities.

For the nominal coverage probabilities γ = 0.90,0.95,0.99, estimates of the actual
coverage probability of the confidence curves constructed by the CML variants and AED
are listed in Table 5.1. For ∆µ= 1, the actual coverage probabilities are somewhat lower
than the nominal coverage probabilities, so the sets are permissive. For ∆µ = 4, the ac-
tual coverage for γ = 0.90 and γ = 0.95 is often higher than the nominal coverage, the
corresponding sets are conservative (see Chapter 3). Actual coverage tends to be closer
to the nominal value for longer time series.

When combining this information with Table 5.1, please keep in mind that the loca-
tion of the CP is a discrete random variable, so for some confidence levels it might not
be possible to define a confidence set with that exact coverage.
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Table 5.1: Actual coverage probability for given confidence levels (conservative coverage is marked by a grey
background).

Confidence level 0.9 0.95 0.99

Distribution ∆µ n CML AED CML AED CML AED

gamma

1
50 0.880 0.845 0.935 0.907 0.992 0.966

100 0.880 0.887 0.935 0.937 0.991 0.982

2
50 0.877 0.871 0.933 0.925 0.991 0.958

100 0.877 0.886 0.937 0.937 0.985 0.975

4
50 0.937 0.956 0.953 0.964 0.993 0.976

100 0.928 0.936 0.943 0.955 0.982 0.980

log-normal

1
50 0.873 0.850 0.933 0.898 0.983 0.959

100 0.889 0.858 0.951 0.916 0.987 0.963

2
50 0.873 0.871 0.928 0.919 0.990 0.955

100 0.886 0.872 0.942 0.918 0.989 0.962

4
50 0.933 0.946 0.944 0.956 0.981 0.970

100 0.928 0.923 0.949 0.943 0.988 0.972

Fréchet

1
50 0.884 0.849 0.931 0.912 0.980 0.970

100 0.893 0.861 0.911 0.906 0.927 0.954

2
50 0.882 0.876 0.942 0.923 0.991 0.951

100 0.898 0.888 0.958 0.937 0.990 0.965

4
50 0.973 0.954 0.975 0.962 0.990 0.973

100 0.981 0.941 0.981 0.955 0.990 0.977
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Figure 5.3: Frequency distribution of the CP estimate for the different methods applied to log-normal samples
when H0 holds.

5.3.2 THE FREQUENCY DISTRIBUTION OF THE ESTIMATED CHANGE POINTS WHEN THE NULL

HYPOTHESIS HOLDS

Figure 5.3 shows the frequency distribution of the CP estimates when the null hypothesis
H0 holds (∆µ= 0) for all methods. Results are shown for log-normal samples; the results
for other sample types are very similar. For both CML and AED, the frequency distribu-
tion is close to uniform, except near the endpoints of the series. Moreover, under the
null hypothesis, the type of parametric distribution used in the CML method has little or
no effect on the outcome for the distributions considered here.

5.3.2. THE FREQUENCY DISTRIBUTION OF THE ESTIMATED CHANGE POINTS

WHEN THE ALTERNATIVE HYPOTHESIS HOLDS

Figures 5.4 and 5.5 show the frequency distribution of the CP estimates when the alter-
native hypothesis holds for the different methods for∆µ= 1 and∆µ= 4 respectively. The
plots for ∆µ= 2 were omitted as the curves lie between those for ∆µ= 1 and ∆µ= 4. The
results are very similar for all three change point locations (τ= 25,50,75). Moreover, the
frequency distributions of τ̂apn

(
y
)

for the AED are very close to τ̂
(
y
)

for the CML variant
based on the distribution that matches the data source.

When we compare Figures 5.4 and 5.5, it is clear that LN-CML, GA-CML, and AED
perform very well for ∆µ = 1 and ∆µ = 4 on all data, while F-CML struggles with data
from the log-normal and the gamma distributions even for∆µ= 4. Because we expected
this effect, samples were taken from two distributions with a shared fixed support [0,∞),
namely the log-normal and the gamma distributions, and one distribution with a pa-
rameter dependent support, the Fréchet distribution.

5.3.3. SIMILARITY OF CONFIDENCE CURVES

The similarity of CML and AED confidence curves was measured by the similarity index
J̃ (see D). Figure 5.6 shows examples of the resulting frequency distribution. The sam-
ple length has very limited influence on the similarity index, but the size of the change
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Figure 5.4: Frequency distribution of the CP estimate for the different methods under the alternative hypothe-
sis H1 with τ= 25,50,75 and with magnitudes of change ∆µ= 1.
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Figure 5.5: Frequency distribution of the CP estimate for the different methods under the alternative hypothe-
sis H1 with τ= 25,50,75 and with magnitudes of change ∆µ= 4.
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Figure 5.6: Similarity index J̃ between confidence curves constructed by CML and AED.

strongly influences the result. When ∆µ = 1, for half of the time series the similarity in-
dex is below 0.25 and according to Fig. 5.6, this is very low. When ∆µ= 4, for most of the
time series, the similarity index is above 0.8, which indicates that both methods obtain
very similar results. For∆µ= 2 results vary, for 30% of the time series the similarity index
exceeds 0.7.

5.3.4. THE UNCERTAINTY IN THE CONFIDENCE CURVES
The uncertainty measure Un for a confidence curve is calculated according to Appendix
E. It reflects the relative uncertainty of a confidence curve.

(1) THE UNCERTAINTY OF CONFIDENCE CURVES FOR THE NULL HYPOTHESIS

The method based on approximate empirical ratio assumes that there is a CP. This it has
in common with the CML and CMoM/CLMo methods mentioned in Chapter 4. There-
fore, it is necessary to know the characteristics of the uncertainty measure when the null
hypothesis holds for synthetic data. From Fig. 5.7, when synthetic data are generated
without a CP, then the value of Un turns out to be quite high. The cumulative frequency
distribution for Un have medians nearly one. For 80% (n = 50) and 90% (n = 100) of all
curves. As an example of confidence curves for synthetic data without a CP is shown
in Fig. 5.1(b) a high Un value often means a method could provide limited information
about the location of a CP, therefore, if Un exceeds a certain bound, then either there is
no CP or the method cannot reliably detect the CP location. The Un for synthetic data
when there does exist a CP can give a better understanding about the viability of the
methods.

(2) THE UNCERTAINTY OF CONFIDENCE CURVES FOR ALTERNATIVE HYPOTHESIS

Figure 5.8 shows the cumulative frequency for Un when the alternative hypothesis holds,
and there exists a CP lies in the middle of a time series. The value of Un by the two meth-
ods decreases explicitly when H1 holds, but it shows some differences between Un by
the two methods. For the same sample size, CML method tends to provide lower uncer-



5.4. ANALYSIS RESULTS FOR HYDROMETEOROLOGICAL DATA

5

95

0.0 0.2 0.4 0.6 0.8 1.0
Uncertainty

0
10
20
30
40
50
60
70
80
90

100

Cu
m
ul
at
iv
e 
fre

qu
en

cy
 (%

) (a) gamma

0.0 0.2 0.4 0.6 0.8 1.0
Uncertainty

0
10
20
30
40
50
60
70
80
90

100
(b) log-normal

0.0 0.2 0.4 0.6 0.8 1.0
Uncertainty

0
10
20
30
40
50
60
70
80
90

100
(c) Frechet

AED (n=50)
CML (n=50)

AED (n=100)
CML (n=100)

5% confidence level

Figure 5.7: Uncertainty measure when null hypothesis holds.

tainty than AED method. This is as expected since CML is a method based on parametric
distributions, and AED is a non-parametric one. The sample length influences the value
of Un, and with the increase of n, the Un drops significantly. Besides, the impacts of size
of change ∆µ is negligible. For n = 100 and ∆µ = 1, nearly 60% of the uncertainty lies
below 0.5 for GA-CML and AED. For n = 100 and ∆µ= 2, the value of uncertainty halved
and for n = 100 and ∆µ= 4, the uncertainty is nearly zero.

5.4. ANALYSIS RESULTS FOR HYDROMETEOROLOGICAL DATA
The results of AED for synthetic data series are promising. The next step is the appli-
cation of the method to hydrometeorological time series that have been examined in
previous studies and the comparison of our results with those of previous studies.

5.4.1. DATA SOURCE

To examine the performance of the AED and CML methods on real world data, seven
time series of measurements were taken from previous publications by Jandhyala et al.
[25] (case study 1), Reeves et al. [26] (case study 2), Conte et al. [27] (case study 3) and
Zhou et al. [19] (case study 4). The detailed information of each time series can be found
in Chapter 4.5. The CPs found in the original studies are used as a reference. The change
in the mean at the reported change is given in terms of ∆µ/σ, see B.3. Both methods
were used to construct confidence curves for CPs with each of the distributions.

5.4.2. ANALYSIS RESULTS

For the Tucumán, Tuscaloosa, and Itaipu, time series shown in Fig. 5.9(a, b, e), the confi-
dence curves generated by AED are shown in Fig. 5.9(c, d, g). These curves show that, for
each of time series, the uncertainty measure for each confidence curve Un = 0.32,0.16,0.07,
which is low. Table 5.2 lists the CPs τref found in the references, τ̂apn

(
yobs

)
for AED, and

the uncertainty Un of the confidence curve found by AED. For Tuscaloosa and Itaipu,
the estimate τ̂apn

(
yobs

)
coincides with the point found in the references. For Tucumán

τ̂apn
(
yobs

)
is off by one year, but well within the 95% confidence set.
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Figure 5.8: Uncertainty measure when the alternative holds.
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Figure 5.10: Change point analysis of annual maximum discharge time series in Yangtze River.
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Table 5.2: Change points found in the hydrometeorological series and statistical properties of the series by
AED.

Time series from to τref σ
∆µ
σ Un τ̂apn(yobs)

Tucumán 1884 1996 1956 18mm 0.76 0.33 1955

Tuscaloosa 1940 1986 1957 0.61◦C −1.3 0.16 1957

Itaipu 1931 2015 1971 2.5×103m3/s 1.3 0.07 1971

Cuntan 1893 2014 not found 12×103m3/s −0.45 1.00 n/a

Yichang 1946 2014 1962, 1966 8.6×103m3/s −1.3 0.40 2005

Yichang ‘short’ 1946 2010 n/a 8.3×103m3/s −0.87 0.98 n/a

Hankou 1952 2014 not found 8.9×103m3/s −0.89 1.00 n/a

Datong 1950 2014 not found 11×103m3/s −0.76 1.00 n/a

For Cuntan, Zhou et al. [19] did not find a significant CP. This agrees with the results
of AED: the shape of the confidence curve in Fig. 5.9(h) and the Un = 1 suggests there
is little or no reliable information on the change point location. The difficulty in finding
a change point might also be due to the relative smallness of the putative change, see
Table 5.2.

For Yichang station, AED strongly suggests that there is a CP near 2005, see Fig.
5.10(a). For this station, the Un is 0.40, which is acceptable, according to Fig. 5.10(c)
or Table 5.2, but the discrepancy between the current and the earlier study is intriguing.
To further examine it, a sub-series of the time series was analysed. Figure 5.10(g) shows
that for the time series from 1946 to 2010 (Yichang ‘short’) AED found a CP in 1962, but
the uncertainty measure Un of confidence curve is 1, which indicates there is no CP in
the ‘short’ Yichang time series. The size of the change is also smaller. To see whether
there might be a second CP, years were successively dropped from the series. It turned
out that 2005 was selected until it was masked by nmin (which was 8 in this case). Ta-
ble 5.2 shows that when 2005 was masked, 1962 was found, but with a much wider 95%
confidence set and therefore uncertainty is very high.

For Hankou, downstream of Yichang, Fig. 5.10(d) suggests there may be a CP in 2005.
The uncertainty measure Un = 1, which indicates there is no CP in the time series. The
putative change is a bit smaller, which may explain part of the additional uncertainty
(Table 5.2). The methods used in the reference did not find a significant CP at this sta-
tion.

Further downstream lies Datong station, but, while there is a drop in the confidence
curve around 2003, the confidence curve with uncertainty measure Un = 1 (Table 5.2) is
completely uninformative, see also Fig. 5.10(h). The methods used in the reference did
not find a significant CP at this station.

From Table 5.2 and Fig. 5.10(d, g, h) it would seem that, if the construction of the
dam did indeed cause changes in extreme discharges, then these are less visible further
downstream.
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5.5. CONCLUSION
This study provides a distribution-free way to construct confidence curves for CPs. The
method is based on an approximation of the empirical likelihood function, which is used
to construct a deviance function. The bootstrap method is used to construct an approx-
imate probability distribution of the deviance function (AED). The method introduced
by Cunen et al. [20] is used as an alternate source of confidence curves. It combines
a parametric likelihood function with a deviance function and Monte Carlo simulation
(CML). Both methods intrinsically provide confidence sets at all confidence levels that
quantify the uncertainty in the results of CP detection. This is an advantage over classical
CP detection methods (see Chapter 2 for details) that do not have this feature. Bayesian
methods do provide a representation of uncertainty, but they need a prior distribution.
The advantage of AED over CML is that it is non-parametric. This frees the user from the
need to select of a distribution family for the time series.

Simulations with synthetic data show that the confidence curves can correctly rep-
resent the uncertainty in results of CP detection. Moreover, the performance of the AED
is similar to that of CML. The similarity between confidence curves constructed by AED
and CML is very high when the jump in the mean is large. For the experiments done in
this paper, the sample length does not have much influence on the similarity between
two confidence curves. For both parametric and non-parametric methods, uncertainty
of the CP results decreases with increasing series length. In the experiments with syn-
thetic data, the uncertainty also decreases as the ratio of the change in the mean to the
standard deviation increases.

Experiments with real data show that the AED is applicable for hydrometeorological
data, but as most non-parametric methods, it may be somewhat less effective than a
parametric method with the correct underlying distribution, see Chapter 4 for detailed
results. The AED results for the AMR series for the stations Yichang and Hankou along
the Yangtze river are among the first that show a possible CP due to the Three Gorges
dam on the AMR, after the first generator became operational in 2003. From the results
of the real data, it seems that there might be multiple change points in a time series.
Therefore, we plan to extend the distribution-free method to a multiple CP problem in a
future study.
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6
CONFIDENCE CURVES FOR THE

DEPENDENCE PARAMETER IN

COPULAS

The term of ‘copulas’ was first introduced by Abe Sklar (1925-2020).
Now copulas have been a wide spread tool in multivariate analysis.

Parts of this chapter have been submitted as “Zhou, C., van Nooijen, R., Kolechkina, A., Gargouri-Ellouze, E.,
and van de Giesen, N., Using confidence curves to capture the uncertainty in dependence structure in copula
models, Hydrological Sciences Journal, under review, 2021.”

103



6

104 6. CONFIDENCE CURVES FOR THE DEPENDENCE PARAMETER IN COPULAS

6.1. INTRODUCTION
The modelling of the interdependence of hydrological time series and the communica-
tion of the uncertainty of the results of hydrological studies are two major challenges
that face modern hydrology. Conveying information on uncertainty is even mentioned
as one of a list of twenty-three unsolved problems in hydrology [1]. An important tool
to address the first challenge is the copula concept, introduced by Sklar [2]. This simpli-
fies working with multivariate distributions by decomposing them into marginals and
a dependence structure given by a copula. Until the year of 2000, hydrology and wa-
ter management studies mostly used multivariate versions of univariate distributions.
Examples are articles, that model the relation between the intensity and duration of a
storm when investigating the probabilistic structure of runoff [3], model extreme rainfall
[4], study floods [5], or model low flow events [6].

In fact, most of the mathematical literature was limited to such distributions until
about 1980. The reason for this is the high complexity of multivariate distributions. This
problem was at the same time illustrated and partially solved by Sklar [2]. He showed that
any n-dimensional multivariate distribution can be constructed by providing the cumu-
lative distribution function (cdf) for each of its n marginals and then combining these
using a copula, a function from the unit hypercube [0,1]n to the unit interval [0,1] that
satisfies a specific set of conditions (see Appendix I). The generality of these conditions is
such that the number of possible multivariate distributions is overwhelming even with-
out taking into account all the possible combinations of marginal distributions, but at
the same time copulas make it possible to fit and study the marginal distributions and
the dependence structure separately. For a modern overview and hydrological examples
see, for instance, Salvadori and De Michele [7, 8], Favre et al. [9], or Genest and Favre [10].
As a result, copulas are now used in many hydrological studies. In De Michele and Sal-
vadori [11], Zhang and Singh [12], and Gargouri-Ellouze [13] bivariate copulas are used
as a model for the joint distribution of rainfall parameters. Shiau [14], Kwon and Lall [15]
model the joint distribution of drought duration and severity with copulas. Gartsman
et al. [16] consider flood risk at different sites that are linked through shared processes
and use copulas to model the joint risk. Bárdossy [17] uses copulas to model dependence
between different ground water parameters. Debele et al. [18] studied the depednence
between seasonal peak flood and annual maxima design quantiles in San River basin by
copula. In Grimaldi and Serinaldi [19], bivariate and trivariate copulas are used to study
drought properties.

In this chapter, a new combination of fitting method and uncertainty representation
is proposed, studied and applied to hydrological data. The fitting method used estimates
the copula parameter directly without fitting the marginals Genest et al. [20], and uncer-
tainty in the copula parameter is then represented by a confidence curve. While Ko and
Hjort [21] also use copulas and confidence curves, the fitting method used there is differ-
ent. They compare two options: maximum likelihood to the fit marginals and the copula
at the same time, or fitting the marginals first and then fitting the copula. Apart from the
difference in fitting methods, the main difference between this chapter and Ko and Hjort
[21] is that they emphasize the study of the fitting method and in particular the effects of
fitting the wrong model, whereas this chapter emphasizes the study of the properties of
the confidence curve and its possible applications in hydrology.
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With regards to the second challenge mentioned earlier, confidence curves for pa-
rameters, as originally proposed by Birnbaum [22] and later amended and extended by
Schweder and Hjort [23], may well offer a way of not only communicating, but also
studying uncertainty in statistical results. A confidence curve provides a collection of
confidence intervals for a given parameter at all confidence levels. Such curves provide
a useful overview of the tradeoff between confidence and confidence interval size, but
they are not yet in common use in hydrology. Once a confidence curve is constructed for
the copula parameter, that curve can be used to construct confidence curves for quan-
tities derived from the copula such as Kendall’s τ, or, perhaps even more important, for
the relation between specific return periods for the marginal distributions and the cor-
responding bivariate return periods [24].

In hydrology, the time series under study are often relatively short, so the number
of parameters that can realistically be estimated is limited. It is therefore not surprising
that in hydrology one parameter copula families are often used. Of these the Clayton,
Frank and Gumbel-Hougaard copula families were selected for use in this chapter.

This chapter is organized as follows. First the method is presented. Next, some cri-
teria are selected to evaluate the performance of the method. Then the results of the
application of the method to synthetic time series are analysed. Once the validity of the
method has been established, it is applied to two hydrological problems. The depen-
dence between time series of annual maximum daily discharge of the Rhine and its trib-
utaries was examined. The aim was to see to what extent the different subcatchments are
likely to have extreme events in the same year. Next rainfall-runoff from a karst region in
Tunisia was analysed to determine the probable delay between precipitation and runoff.
Finally, we discuss the results and present our conclusions. Notations, definitions, and
some background on copulas are provided in the appendices.

6.2. METHODOLOGY OF CONSTRUCTING CONFIDENCE CURVES

FOR THE DEPENDENCE PARAMETER IN COPULAS
In this chapter, copulas will be fitted to time series of two dimensional random vectors
Z = Z1, Z2, ..., Zn . Each series Z has two associated time series of random variables that
correspond to the components of the random vectors Xi = Zi ,1 and Yi = Zi ,2. It is as-
sumed that the Xi are independent identically distributed (i.i.d.) random variables (RVs)
Xi and Yi are not necessarily independent and that their joint distribution does not de-
pend on the value of i . The joint cdf will be denoted by H . In the remainder of the
chapter X will stand for the random sample X1, X2, ..., Xn ; x will represent a realization
x1, x2, ..., xn of that sample, and xobs will stand for a specific series of observations. The
same holds for Y , y and y obs.

6.2.1. THE COPULAS
According to Sklar [2], the joint distribution of n random variables is fully specified by
the combination of an n−dimensional copula and n one dimensional marginal distribu-
tions. Therefore, if X ,Y are RVs, then their joint cdf H can be described by the marginal
cdfs F and G for X and Y respectively and a copula C

H(x, y) =C (F (x),G(y)) (6.1)
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Figure 6.1: The shape of the pdf of different copulas for τ=0.1,0.5,0.9.

Table 6.1: Parameter ranges and the relation between θ and Kendall’s τ, where D1(θ) is the first Debye function
[25].

Copula family Parameter range Relation between θ and Kendall’s τ

Frank θ ̸= 0 τ= 1− 4(1−D1(θ))
θ

Gumbel 1 ≤ θ ≤∞ τ= 1− 1
θ

Clayton −1 ≤ θ ≤∞ τ= θ
θ+2

Details about the Frank, Clayton, and Gumbel copulas are given in Appendix I.

For the three copulas, the parameter range and the relation between the copula pa-
rameter θ and Kendall’s τ is given in Table 6.1. The relation provides a way to examine
the uncertainty about the parameter on a common scale. Clayton and Frank copulas
can model positive and negative correlation without limitations. However, for a Gumbel
copula τ ≥ 0, which implies that a Gumbel copula can only model positive correlation.
The shape of the pdfs of the copulas for different values of τ can be seen in Fig. 6.1. For
τ= 0.1 (Fig. 6.1(a,d,g)) the copula are relatively close to the pdf of a uniform 2D distribu-
tion; this can be seen most clearly in Fig. 6.1(a). All three copulas are symmetric around
the u = v axis. The Frank copula (6.1(a-c)) has an additional symmetry relative to the line
u = 1− v , while Clayton (6.1(d-f)) has a peak at (0,0) and Gumbel (6.1(g-i)) has a peak at
(1,1).
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6.2.2. COPULA PARAMETER ESTIMATION
In most cases, the parametric distribution of the observations is unknown; this com-
plicates parameter estimation. Therefore, Genest et al. [20] use a pseudo log-likelihood
approach. A rescaled version of the empirical cumulative distribution function (ecdf) is
used for the marginals. The rescaled ecdfs for X and Y are

Û (x) = n
n+1

1
n

∑n
i=1 JXi ≤ xK V̂ (y) = n

n+1
1
n

∑n
i=1 JYi ≤ yK (6.2)

As pseudo log-likelihood Genest et al. [20] take

ℓ̂(θ) =
n∑

i=1
log

(
c
(
Û (Xi ),V̂ (Yi );θ

))
(6.3)

They then introduce
θ̂ = argmaxθℓ̂(θ) (6.4)

the pseudo maximum likelihood estimator (pmle) for θ and show that it is a consistent
and asymptotically normal estimator. Chen and Fan [26] show this even holds under
model misspecification. For a given set of observations, the calculation is performed as
follows. The value of τ corresponding to the pmle θ̂ is denoted by τ̂. For a given set of
observations, the calculation is performed as follows

ui = 1

n +1

n∑
i=1

Jxobs,i ≤ xi K ; vi = 1

n +1

n∑
i=1

Jyobs,i ≤ yi K (6.5)

ℓ(θ) =
n∑

i=1
log(c(ui , vi ;θ)) (6.6)

which results in the estimate
θ̂ = argmaxθℓ(θ) (6.7)

for the copula parameter θ.
Note that the use of ui and vi instead of xi and yi implies that we can apply any

strictly increasing function wx or wy to the xi or the yi respectively without changing
the ui and vi . In fact, we could even replace xi by its rank in the sorted sequence of the
xi . This implies, for instance, that for the marginals of the copula, u = 0.25 corresponds
to the bound of the first quartile of the distribution of X .

6.2.3. THE CONSTRUCTION OF APPROXIMATE CONFIDENCE CURVES
The definition of a confidence curve is given in Chapter 3. Construction of an exact
confidence curve is quite difficult, because, like the construction of confidence distribu-
tions, it is not (yet) a question of applying a simple standard approach. However, there is
a standard method to construct an approximate confidence curve for a parameter θ [23].
It assumes that a log-likelihood function is available. Here the pseudo log-likelihood de-
fined earlier will be used instead. The construction of the approximate cc uses a function
D , defined by

D(θ) = 2
(
ℓ(θ̂)−ℓ(θ)

)
(6.8)
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and which they refer to as the deviance function. For θ = θ̂, this function assumes its
minimum value, which is zero. The cdf for D(θ) is

Kθ(λ) = Pr{D(θ) ≤λ)} (6.9)

If ℓwere a true likelihood, then according to Wilks’ theorem, the deviance function D(θ)
is approximate χ2

1 distributed. As Chen and Fan [26] have shown that the limit distri-

bution for the estimator θ̂ is approximate normal, one might hope a version of Wilks’
theorem could be proved for the current deviance, see also Schweder and Hjort [23]. To
avoid the additional computation time needed for an MC approximation of Kθ , it will be
approximated by a χ2

1 distribution.

6.2.4. PROPERTIES OF CONFIDENCE CURVES
To allow for proper comparison between copulas, the confidence curves for θ have been
translated into confidence curves for τ using Table 6.1. The following properties of these
confidence curves will be examined:

• Actual versus nominal coverage probability of confidence intervals: As introduced
in Chapter 3, the actual coverage probability of a confidence curve should be close
to the nominal coverage probability. If the actual coverage probability is lower
than the nominal one, then a confidence curve has a permissive coverage; it is too
optimistic about finding the parameter in the interval. If the actual coverage prob-
ability is higher than the nominal one, then the confidence curve has conservative
coverage, so it is unnecessarily pessimistic about finding the parameter in the in-
terval.

• The width of the confidence interval. For a given confidence level, a confidence
interval can be extracted from a confidence curve. The width of a confidence in-
terval at a given confidence level shows the uncertainty level of the estimate of τ.
If a confidence interval is small, then the estimate has low uncertainty. Since a
confidence curve is comprised of confidence intervals at all confidence levels, the
shape of it will be helpful for understanding the uncertainty in τ̂, and the narrower
confidence intervals at high confidence levels, the less uncertain τ̂ is. Note that if
a confidence interval for τ corresponding to confidence level λ and contained in
[-1,1] is wider than 2λ, then does not provide any information.

• The difference between τ̂ and τtrue, where τtrue is the Kendall’s τ for the copula
from which the synthetic time series was drawn.

6.3. EVALUATION OF THE METHOD WITH SYNTHETIC DATA
In order to evaluate the method, synthetic data sets from the three copulas (Frank, Gum-
bel, Clayton) were generated. As the aim is to study and compare the properties of the
confidence curves for all three copulas, only samples from copulas with positive τ were
used. Because the different copulas have different parameter ranges and because those
parameter ranges all extend to positive infinity, it would be difficult to directly compare
results for confidence intervals for different copulas. Fortunately, for all three copulas
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Table 6.2: The dependence structure described by Kendall’s τ ∈ [0,1].

Copulas Kendall’s τ 0.1 0.3 0.5 0.7 0.9

Frank

θ

0.91 2.9 5.7 11.4 38

Gumbel 1.11 1.43 2 3.33 10

Clayton 0.22 0.86 2 4.67 18

there is a strictly increasing function that maps the copula parameter to a Kendall’s τ
value (Table 6.1). This allows display of the results for the copula in terms of τ.

6.3.1. SYNTHETIC TIME SERIES GENERATION

To determine the statistical properties of the method, synthetic time series of length
n = 50,100,200 were generated by drawing from Clayton, Frank, and Gumbel copulas
for τ= 0.1,0.3,0.5,0.7,0.9. For each combination of copula family, length, and τ a set of
N = 1000 time series was generated. For each set, the resulting 1000 confidence curves
were used to analyse the coverage of the associated confidence intervals, the frequency
distribution of τ̂, and the width of the confidence intervals at a given level. The corre-
sponding value of θ for each copula was calculated using the formula from Table 6.1 and
is listed in Table 6.2. The parameter value that was used to generate a specific series will
be denoted by θtrue and the corresponding Kendall’s τ by τtrue.

6.3.2. EXAMPLES OF SYNTHETIC DATA

Some examples of synthetic samples are shown in Fig. 6.2. When τ= 0.9 (Fig. 6.2(c,f,i)),
the correlation between u and v is clearly visible. For τ = 0.1 (Fig. 6.2(a,d,g)), a plot of
the (ui , vi ) pairs does not show a clear pattern. From Fig. 6.2b, the Frank copula (τ= 0.5)
shows correlation over the whole range, but with peak of equal height in the lower left
and the upper right corner. For Gumbel with τ= 0.5, the plot in Fig. 6.2(e) displays some
correlation over the whole range, somewhat stronger in the lower left corner, and very
strong correlation in the upper right corner. For Clayton with τ = 0.5, the role of the
corners is reversed (Fig. 6.2(h)). See also Fig. 6.1.

The approximate confidence curves for τ for the bivariate copula samples in Fig. 6.2
are shown in Fig. 6.3. A confidence curve reaches its lower point, cc(τ) lines in (0,1]. A
traditional 95% confidence level is presented in a dashed line in each plot, and one can
extract a nominal confidence interval for τtrue with a confidence level of 95% from each
confidence curve.

Figure 6.3 shows that in principle, a confidence curve for τ contains more informa-
tion than one confidence interval for a single confidence level. It also shows that, as τtrue

increases, the widths of the confidence intervals that make up the curve decrease. How-
ever, Fig. 6.5 shows that the actual coverage for high τtrue is permissive, so part of the
decrease may be due to an underestimation of the interval width. Figure 6.4 shows that
some of the decrease is real.
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Figure 6.2: Scatter plots of a sample from a copula with τ= 0.1,0.5,0.9 and n = 100.
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Figure 6.3: Example of confidence curves for τ for one of the synthetic samples for each copula with τtrue =
0.1,0.5,0.9 and n = 100.
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Figure 6.4: Boxplots of τ̂−τtrue for different copulas and different sample sizes.

6.3.3. SPREAD IN THE ESTIMATED KENDALL’S τ

The box plots in Fig. 6.4 show that for τ̂−τtrue both the spread of the outliers and the
interquartile distance decrease with increasing sample length for all copulas. The spread
of the outliers and the interquartile distance for τ̂−τtrue also decrease with increasing τ.

6.3.4. ACTUAL COVERAGE PROBABILITY FOR KENDALL’S τ

The actual coverage of the confidence interval associated with the confidence curve was
examined for all confidence levels. The actual versus nominal coverage probability for
random copula samples is shown in Fig. 6.5, and the coverage at the 95% confidence
level is listed in Table 6.3. According to the results shown in Fig. 6.5, sample length
has little effect on the actual coverage probability up to τ = 0.5 and the actual coverage
probability does not change much when n increases from 50 to 200. For τ = 0.9, the
sample length has a visible effect on the actual coverage probability for the Frank and
Gumbel copulas but not for the Clayton copula (Fig. 6.5(g-i)).

The dependence level strongly influences the coverage. If the bivariate samples are
weakly dependent, for instance τ = 0.1 (Fig. 6.5(a,d,g)), the actual coverage probability
is close to the nominal. For samples with high dependence, for instance τ = 0.9 (Fig.
6.5(c,f,i)) the actual coverage probability is lower than the nominal. For bivariate sam-
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Figure 6.5: Actual coverage probability versus the nominal one for τ in copulas.
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Table 6.3: Actual coverage probability of a confidence curve with a nominal coverage probability of 95%.

Bivariate random copulas
Actual coverage

Nominal coverage: 0.95

Kendall’s τ 0.1 0.3 0.5 0.7 0.9

Frank

n = 50 94.2 92.6 93.1 91.5 73.0

n = 100 95.0 93.2 92.6 92.0 84.6

n = 200 94.4 94.6 93.3 93.6 86.5

Gumbel

n = 50 94.3 90.6 87.2 84.1 72.1

n = 100 94.0 90.2 87.4 85.5 74.6

n = 200 94.7 89.8 88.0 84.6 78.1

Clayton

n = 50 92.0 86.5 85.1 78.5 62.3

n = 100 92.1 86.2 83.7 81.5 63.4

n = 200 93.1 88.1 82.6 79.4 64.1

ples from a Frank copula with τ = 0.9 and nominal coverage probability of 95%, the ac-
tual coverage probability is only 73% for n = 50, 84.6% for n = 100, and 86.5% for n = 200.
Results are similar for the other copulas (Table 6.3).

The statistics for τ̂−τtrue in Fig. 6.4 show that the error in the estimate of τ decreases
with increasing τtrue. The results in Fig. 6.4 are in line with this, but Fig. 6.5 shows that
the interval widths for high τ are overly optimistic. So, while strong independence is
associated with lower uncertainty, the approximate confidence curves calculated by the
current version of our code are too optimistic for values of τ close to 1.

6.3.5. THE WIDTH OF 95% CONFIDENCE INTERVALS FOR THE DEPENDENCE

PARAMETER IN COPULAS

Information on the distribution of the widths of confidence intervals for the 95% con-
fidence level is shown in Fig. 6.6. The figure shows that the effect of the sample length
n are significant and that the interval width decreases as n gets larger. Therefore, the
uncertainty about τ̂ decreases as the sample length gets larger. These results are in qual-
itative agreement with those shown in Fig. 6.4.

6.3.6. EFFECTS OF THE MISSPECIFICATION OF COPULA

If we use the Clayton or Gumbel copula to fit a sample from one of the other copula
families and calculate τ, then this results in a biased estimate. The Frank copula does
much better in this respect. Box plots of the difference between the true value and the
estimate of τ in the synthetic experiments are given in Fig. 6.7.

6.4. TWO EXAMPLES OF THE USE OF THE METHOD ON OBSERVED

HYDROLOGICAL TIME SERIES
In practice, the method can be used to examine the uncertainty about dependence be-
tween time series and the effects of this uncertainty on an analysis based on that de-
pendence. Two examples are given. The first example considers the correlation between
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Figure 6.6: Box plots of the width of confidence intervals for a 95% confidence level.
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Figure 6.7: Box plots of the difference between the true value and the estimate of τ in the synthetic experiments
with n = 200.
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yearly extremes for several measurement stations on the Rhine and its tributaries. The
second example investigates estimation of the lag between rainfall and runoff for a karst
area and the uncertainty in that estimate.

6.4.1. DEPENDENCE STRUCTURE FOR EXTREME FLOWS IN TRIBUTARIES OF

THE RIVER RHINE
In a river with many tributaries, such as the Rhine, the timing of high discharges in the
main river and the different tributaries determines the resulting discharge in the main
river. The risk of a flood in the main river would therefore depend strongly on the timing
of high discharges in the tributaries. If timing of the peak discharges is such that they
arrive at the same point in the main river at the same time, then they will reinforce each
other. One way to assess this risk is to consider time series of known periods of high
flows and check for cross correlation. However, travel times will depend on flood wave
size and the state of the river bed, so future events may not display the behaviour seen
in past events. At the same time, the tributaries of the catchments might change more
slowly and therefore results linked to the catchment might be less variable in time. Now,
for flood waves to cause a problem, a necessary condition is that for different tributaries
flood waves with high return periods tend to occur in the same year. As the return peri-
ods are linked to the tributary catchment as a whole, this might be something that varies
less than flood wave travel times. This results in the following question: do discharges
with the same return period tend to occur in the same year? This question can be an-
swered by determining a copula for the time series of return periods for the different
tributaries.

METHODOLOGY

As was noted in 6.2.2, the preparatory step for the fitting method used in this chapter
means that first mapping discharges to return periods will not change the result of the
fitting process. This implies that using the fitting method to determine the copula pa-
rameters for the three different copulas and the associated uncertainty will tell us some-
thing about the dependence structure of the return periods. More specifically, are high
return periods correlated and if yes, then how? For the corresponding copula, this would
mean that there should be a peak in the pdf in the upper right hand corner of the (u, v)
plane. The uncertainty in the dependence structure can be examined by looking at the
copula corresponding to the estimated parameter and the difference between that cop-
ula and copulas corresponding to the lower or upper bound of a confidence interval for
a given confidence level.

As the time series are series of annual maxima, a copula package by Hofert et al. [27]
was used to extend the collection of one parameter copulas applied to the series with ad-
ditional copulas specifically suited for extreme values: Galambos and Huesler-Reiss (see
I.4). Of the other extreme value copulas, the Tawn copula was not considered because its
Kendall’s τ cannot exceed 0.418, and the t-EV copula was not considered because it has
two parameters. To allow for high correlation both for low and for high return periods,
the copulas that have different correlation structure for low and high parameters (Clay-
ton, Gumbel, Galambos, Huesler- Reiss) were tried both in their standard orientation
and after a 180 degree rotation, the rotated copula will be denoted by, for instance, Gum-
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Figure 6.8: Locations of station on the Rhine River.

bel 180°. As in the rest of this chapter, the uncertainty in the parameter is represented
by a confidence curve for the Kendall’s τ . For a given τ, the shape of the Galambos and
Huesler-Reiss copulas is very close to that of the Gumbel copula.

Time series of annual daily maximum flows for several stations for the Rhine and one
station each for the Mosel and the Main were obtained from from the Global Runoff Data
Center [28]. The stations are shown in Fig. 6.8.

RESULTS AND DISCUSSION

To illustrate the type of results that would be obtained, four pairs of measurement sta-
tions were selected that were expected to have different dependency structures. For each
pair the discharge at a station downstream of the confluence point was determined. The
pair Andernach and Koeln serves as a test case. For these stations a near perfect corre-
lation was expected because no major tributaries enter the river between the stations.
Figure 6.9(a) confirms this. Figure 6.9(b) shows that high discharges at the downstream
station tend to be correlated as well. Values of the parameter θ and Kendall’s τ values can
be found in Tables 6.4 and 6.5 respectively. The other station pairs combine a station on
a tributary with a station on the Rhine River upstream of the confluence. All pairs show
definite correlation as the bounds of the confidence intervals up to 99% are well away
from zero (Fig. 6.9(b-d)). For all pairs the best fit was obtained with the 180°rotated ver-
sion version of Gumbel, Galambos or Huesler-Reiss. Given the shape of the pdf of these
copulas, with a peak in the lower left quadrant, this could suggest stronger correlation
for short return periods than for long return periods. However, the scarcity of points
in the upper right corner could also have caused this preference for the rotated version
(Fig. 6.9(f-h)). In the scatter plots (Fig. 6.9(e-h)) colour is used to show the discharge
at a station downstream of the confluence of tributary and main river. An illustration of
the variation in the shape of the pdf of a copula over a 95% confidence interval can be
found in Fig. 6.10 for the pair Cochem and Kaub. For example, for the Frank copula Fig.
6.10(a) shows the pdf for θ̂, Fig. 6.10(f) shows the difference between the pdf at θ̂ and the
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Table 6.4: Dependence parameters between time series and width of the 95% confidence intervals for the
estimate of dependence parameter.

Time series pair
Frank Clayton Gumbel 180° Galambos 180° Huesler-Reiss 180°

τ width τ width τ width τ width τ width

Andernach & Koeln 59.0 21.7 20.3 7.8 14.7 5.1 14.0 5.1 16.4 5.0

Cochem & Kaub 8.0 3.8 2.3 1.3 2.5 0.9 1.8 0.9 2.2 0.8

Cochem & Worms 5.4 3.2 1.5 1.0 1.9 0.7 1.2 0.6 1.7 0.7

Worms & Frankfurt 4.6 3.8 1.2 1.1 1.7 0.7 1.0 0.7 1.5 0.8

Table 6.5: Kendall’s τ values between time series and width of the 95% confidence intervals.

Time series pair
Frank Clayton Gumbel 180° Galambos 180° Huesler-Reiss 180°

τ width τ width τ width τ width τ width

Andernach & Koeln 0.93 0.02 0.91 0.03 0.93 0.02 0.93 0.02 0.93 0.02

Cochem & Kaub 0.60 0.14 0.53 0.14 0.60 0.14 0.60 0.14 0.58 0.13

Cochem & Worms 0.48 0.19 0.43 0.16 0.48 0.18 0.48 0.18 0.47 0.16

Worms & Frankfurt 0.43 0.26 0.37 0.22 0.42 0.25 0.42 0.24 0.42 0.23

pdf at the lower bound of the confidence interval, and Fig. 6.10(k) shows the difference
between the pdf at θ̂ and the pdf at the upper bound of the confidence interval. Similar
plots are shown for the other copulas.

The confidence curves can serve to explore the variation in a copula over a given
confidence interval and therefore give a better insight into the effect in the area of inter-
est. While the whole upper quadrant ([0.5, 1] × [0.5, 1]) would be of interest, limitations
deriving from viewing 3D information in 2D usually lead to examination of exceedance
frequencies or, equivalently, return periods. The relation between return periods and
copulas is discussed in Salvadori and De Michele [8]. For instance, the probability that
the discharges in both rivers are in the top 10% of return periods corresponds with the
integral of the pdf of the copula over the rectangle [0.9,1]× [0.9,1], which corresponds to
the value C (1−0.9,1−0.9) where

C (u, v) = u + v −1+C (1−u,1− v)) (6.10)

which relates to a return period by µT /C (1−0.9,1−0.9) where µT is the the mean inter-
arrival time, one year for annual maxima. We can now relate the copula to return periods
for combined µT /(1−u) , µT /(1− v) floods. The confidence curve allows us to pick a
copula parameter range associated with a given confidence level. As a result we get a
confidence interval for the return period of the combined floods.

6.4.2. DEPENDENCE STRUCTURE BETWEEN RAINFALL AND DISCHARGE FOR

A KARST AREA
Rainfall onto and runoff out of a catchment are clearly related, but the relation is rarely
purely causal. Unknown factors can and do cause variations in the relation. The sim-
plest possible model would be a one in which the runoff is a shifted and scaled version
of the rainfall. A slightly more complex model would assume that the joint distribution
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Figure 6.9: Confidence curves and scatter plots for pairs of stations, discharge at the downstream station is
indicated by the colour of the dots in the scatter plots.
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Figure 6.10: The pdfs for copulas for the station pair Cochem and Kaub.
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Figure 6.11: The Djebel Zaghouan region

of a shifted version of the runoff and the rainfall has a non-trivial dependence structure.
The dependence would be strongest for a shift that best corresponds to the mean delay
between rainfall and runoff. To see whether such an approach can deliver useful infor-
mation, it was be applied to data from the Djebel Zaghouan region in Tunisia.

GEOLOGICAL CONTEXT

The Djebel Zaghouan is the most important Jurassic formation of the Zaghouan massif
and it is located at about fifty kilometers from Tunis (Tunisia). This massif is consti-
tuted from monoclinals of limestone overlapping each other. It is also contains marls of
the Cretaceous and Eocene [29]. The Djebel Zaghouan is characterized by the presence
of southern and transverse faults that have created individualized blocks [30]. These
faults allow the infiltration. The Zaghouan karst aquifer covers an area of approximately
19.6km2 (see Fig. 6.11). It has an eastern part where conditions are favourable for the
storage of seepage water, whereas in its western part marl deposits strongly decrease the
storage coefficient [31].

CLIMATE, HYDROLOGY, AND DATA

The Zaghouan region is located between two kinds of climate: upper semi-arid and sub-
humid. It is characterized by an average annual rainfall of 467 mm with a heterogenous
spatial and temporal distribution of values ranging from 245 to 625 mm. The discharge
series used, which was recorded from 1915 to 1943, falls within the natural flow period. It
was measured at Nymphée spring. The time series contains two years of unusual flows: a
very wet one during the hydrological year running from September 1920 to August 1921
and a relatively dry one during 1926-1927. These resulted in total volumes of 6.5×106m3
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and of 1.9×106m3 respectively flowing from the springs. These observations are consis-
tent with the natural flow of the resurgences during this period. The original discharge
series were recorded in graphical form with irregular time steps. To extract information,
we proceeded by graphics digitalization. This digitalization allowed us to obtain a com-
plete continuous regular discharge series on a weekly scale. The discharge on a daily
and monthly scale were obtained by linear interpolation. Today, the aquifer is fully ex-
ploited to provide drinking water to the city of Zaghouan, and this overexploitation has
prevented the natural resurgence of springs for decades.

METHODOLOGY

The lag between rainfall and runoff was estimated by fitting copulas to the rainfall time
series and a version of the runoff series that was shifted by m steps for m ranging from
0 up to mmax. A fixed window size was chosen equal to the length of the runoff series
minus mmax to avoid artefacts due to different time series lengths for different lags. Dif-
ferent copulas were fitted to see if this made an appreciable difference in the results. The
estimate of the copula parameter for lag m will be denoted by τ̂(m) and the correspond-
ing τ by τ̂(m). The lag was estimated as

m̂ = argmaxm θ̂(m) (6.11)

The pmle is asymptotically normal [20]. An estimate of the standard deviation of this
normal distribution was obtained by taking the 95% confidence interval and translating
this into a standard deviation for the normal distribution. For selected values this was
checked against calculations using the R copula package, which gave very similar results,
but took much longer to produce results and sometimes ran into problems when the
procedure did not converge. This estimate can be used to get bounds on the lag as fol-
lows. First determine an interval [m0,m1] around m̂, for instance, the lags around m̂ for
which θ̂(m) is strictly positive. Next, for all m ∈ [m0,m1] draw nR random values from
the normal distribution N (θ̂(m),σ(m)) with mean θ̂(m) and standard deviation σ(m).
This resulted in nR × (m1 −m0 +1)) values θi , j with corresponding values τi , j . For each
i , the τi , j were then considered as alternatives to τ̂( j ) for j = m0,m0 +1, ...,m1; for each
i , the lag corresponding to the maximum value of τi , j was labelled mi . The cumulative
frequency distribution of the mi was then used to determine the bounds of a confidence
interval for the lag. This procedure ignores the constraint that the curve should have
exactly one local maximum in [m0,m1] and is therefore probably on the conservative
side.

RESULTS AND DISCUSSION

Figure 6.12 shows daily rainfall and runoff for the karst area. In addition a line is plotted
representing the runoff shifted backward in time over a number of days corresponding
to the estimated lag. The lag was estimated based on the Frank copula because of the
results discussed in 6.3.6. The confidence curve for τ̂(m̂) is shown in Fig. 6.13(a,c,e) for
time steps of one day, one week, and one month respectively. The curve of τ̂(m) versus
the lag m is shown in Fig. 6.13(b,d,f) for time steps of one day, one week, and one month
respectively. Please note that the Gumbel copula can only model positive correlations,
so a result of zero was returned when the dependence would result in a negative τ . The
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Figure 6.12: Daily rainfall, runoff, and shifted runoff.

Table 6.6: Table of lags and confidence intervals.

copula time step τ̂(m̂) m̂ 90% interval 95% interval

Frank
day 0.114 115 [86.0, 131.0] [83.0, 133.0]

week 0.149 18 [13.0, 20.0] [12.0, 21.0]
month 0.233 3 [3.0, 5.0] [2.0, 5.0]

Clayton
day 0.081 116 [85.0, 136.0] [82.0, 141.0]

week 0.122 18 [13.0, 21.0] [12.0, 22.0]
month 0.156 4 [3.0, 5.0] [3.0, 6.0]

Gumbel
day 0.074 87 [79.0, 125.0] [75.0, 128.0]

week 0.140 17 [11.0, 19.0] [11.0, 20.0]
month 0.229 3 [2.0, 4.0] [2.0, 5.0]

Frank copula consistently delivered the highest τ values. Table 6.6 provides values for
the lags for different copulas and time steps. The lags found confirm and support the re-
sults found in rainfall-runoff modelling of the KARMA project, both with the conceptual
KarstMod model [32] and with neural networks.

6.5. CONCLUSIONS AND DISCUSSION

Multivariate distributions and therefore copulas are an essential tool in modern hydrol-
ogy. Given that the importance of taking into account uncertainty in univariate distribu-
tion parameters is clear, it is therefore logical to assume that the same applies to copula
parameters. In this chapter, a new method was developed that uses confidence curves
as a means to represent the uncertainty in the estimate of the copula parameter. Three
Archimedean copulas were considered: Clayton, Frank and Gumbel. A pseudo max-
imum likelihood estimator (pmle) was used to estimate θ for synthetic and real data.
For the copulas used here, there is a one-to-one correspondence between the copula
parameter θ and Kendall’s τ that respects ordering, therefore it is possible to transform
parameter θ of each copula into the corresponding τ. This allows better comparison be-
tween results of different copulas and a more convenient interpretation, the parameter
θ of each copula was transformed into the corresponding τ.
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Figure 6.13: Kendall’s τ for different lags and confidence curve for selected lag (CI = confidence interval).
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Confidence curves have the advantage that they offer much more information than
just one confidence interval. In fact they offer about the same amount of information
as a posterior Bayes distribution, but without the need of first finding the correct prior.
In hydrology, such information is especially important because the decisions based on
hydrological analyses usually have a large impact, and the questions posed can rarely
be adequately answered with a simple yes or no. A confidence curve allows an explo-
ration of a range of answers based on different levels of confidence. A large number
of experiments with synthetic time series were performed. The results showed that the
pmle gave good parameter estimates and that confidence curves provided good confi-
dence intervals for copulas with low positive Kendall’s τ. For the Frank copula coverage
was good up to τ = 0.5; results of Clayton and Gumbel up to τ = 0.5 showed increasing
permissiveness of the coverage. For τ = 0.9 the confidence curves for all three copula
types were permissive. This may be due to the use of the chi-square distribution as an
approximation to the distribution of the deviance. The actual coverage probability did
not change significantly with the increase of sample length. The accuracy of the pmle of
Kendall’s τ improved and the spread decreased both with increasing sample length and
with increasing Kendall’s τ. The results for synthetic time series also showed that fitting
the Frank copula to a time series generated from a Clayton or Gumbel copula gave good
results for τ, while fitting Clayton or Gumbel to time series generated by another copula
resulted in a biased estimate.

Two examples of applications of the method were given:

• An examination of the dependence structure of annual maximum daily flows for
several pairs of measurement stations located in the German part of the Rhine
River basin. That dependence structure provides joint return times for pairs of
single station return times. The confidence curve then provides the uncertainty in
those return times.

• An examination of the lag between rainfall and runoff for a Tunisian karst region.
The confidence curves formed the basis for an estimate of a confidence interval
for the lag for a given confidence level.

For the Rhine River, two results stand out. Firstly, all extreme value copulas fit best
when rotated 180°, and secondly, the parameter estimate and the confidence curve for
Kendall’s τ delivered by the Frank copula are very close to the estimates and the confi-
dence curves corresponding to the extreme value copulas. This suggests that the effect
observed for synthetic data, namely that Frank seemed to give good results for Kendall’s
τ even when the time series was drawn from another copula, may well extend to real
time series.

For the Tunisian karst region the pmle was mapped to a τ value and this was used
to estimate the lag between rainfall and runoff. The confidence curve for the τ corre-
sponding to the chosen lag served as an initial check on the relevance of the correlation.
The confidence curve was also used to approximate the distribution of the points on the
curve of the estimated τ̂(m) versus the lag m. This in turn allowed generation of alter-
native curves and an estimate of a confidence interval for the lag. The lag found was in
accordance with results of earlier research. When calculating τ for the different lags, the
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Frank copula gave values that were larger in magnitude than the Clayton and Gumbel
copulas. As the Gumbel copula cannot model negative correlations, this copula gave no
results when the actual correlation was negative.

In both cases, the confidence curves for the copula parameter allowed simple prop-
agation of the uncertainty in the parameter to quantities of direct hydrological signifi-
cance, and in both cases, the Frank copula gave the highest estimate for Kendall’s τ. All
results show that confidence curves for copula parameters are a valuable addition to the
hydrological tool set and can be used in a wide variety of hydrological settings. Earlier
work already showed the value of confidence curves for change point analysis [33]. In
certain cases, confidence curves may provide an alternative to Bayesian methods, for
instance, in Cunen et al. [34], "it is apparent that confidence distribution by Method B
based on the deviance and its distribution does a much better job than the Bayesian ap-
paratus when it comes to delivering confidence intervals with correct coverage". Further
research is planned to see whether the coverage can be corrected either by a correction
factor as suggested for a more general case in Schweder and Hjort [23] or through the
use of Monte Carlo simulation to generate an approximate probability distribution for
the deviance.
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7.1. KNOWLEDGE GENERATED

To conduct uncertainty analysis by constructing confidence curves for the parameter of
interest, in this PhD research traditional time series analysis based on NHST methods
have been explored.

7.1.1. TRADITIONAL NHST BASED CHANGE POINT DETECTORS

Traditional time series analysis depends on NHST methods, and the results of change
point detection are often a ’Yes’ or ’No’ answer to accept the null hypothesis at a given
significance level. There are two types of change point (CP) detectors, parametric and
non-parametric detectors. Compared to parametric detectors, nonparametric ones do
not need the assumption that the parametric distributions of hydrological observations
are known. Therefore, three non-parametric detectors were considered: Pettitt’s, Cramér
von Mises (CvM) and CUSUM tests, and their performances were analyzed and com-
pared according to the properties of each detector. From the power and ability of the
three detectors we conclude that the CvM test outperforms its two counterparts.

However, when different start or end year of a time series is considered, traditional
detectors tend to give different locations of a CP. Clearly, NHST methods leave no room
for further uncertainty analysis. This calls for methods to represent the uncertainty in
finding the location of a CP.

7.1.2. CONSTRUCTING CONFIDENCE CURVES FOR THE LOCATION OF A CHANGE

POINT

To represent uncertainty in finding a change point, confidence curves should be con-
structed. Previous studies provided a parametric method to construct Confidence curves
based on profile likelihood, deviance function and Monte Carlo simulations. All param-
eters are estimated by Maximum Likelihood estimate (CML) to construct confidence
curves. In this research, two new methods were developed by using pseudo maximum
likelihood estimator (pmle), for instance Linear Moments method (LMo) and Method
of Moments (MoM), instead of standard maximum likelihood estimator (mle) for es-
timating the nuisance parameters of the log-likelihood function (CLMo/CMoM). With
the profile log-likelihood function, a parameter of interest can be estimated and a con-
fidence curve for the parameter can be constructed based on a deviance function and
Monte Carlo simulation. The second one is a confidence curve based on the Approxi-
mate Empirical log-likelihood ratio, Deviance function and bootstrap (AED).

From the results of two new methods (CLMo/CMoM and AED) and the CML, the con-
fidence curves constructed by the three methods have comparable performances. The
two new methods are simpler and more efficient than CML. With confidence curves, not
only the potential location of a CP can be seen, but also confidence sets at each confi-
dence level can be extracted. The methods were applied to real hydro-meteorological
time series, and the uncertainty in finding the location of a CP could graphically be rep-
resented.

The methods proposed in this research could provide some new insights into CP de-
tection and uncertainty representation for discrete parameters.
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7.1.3. CONSTRUCTING CONFIDENCE CURVES FOR THE DEPENDENCE PARAM-
ETER IN COPULAS

Also, confidence curves for continuous parameters were constructed in this research.
For this, the dependence parameter in copulas were considered. Copulas are widely
used to describe multivariate phenomena, that can be commonly found in hydrologi-
cal processes. According to Wilks’ theorem, the probability distribution of the deviance
function based on observations for continuous parameters can be approximated by a
chi-square (χ2

1) distribution. Therefore, the confidence curve for the dependence pa-
rameter can be constructed by calculating the probability distribution of deviance func-
tion with a χ2

1 distribution.
The use of confidence curves for the dependence parameter in copulas can be help-

ful for studies that concentrate on the uncertainty analysis of continuous parameter es-
timation.

7.1.4. ANALYSING PROPERTY OF A CONFIDENCE CURVE AND SIMILARITY BE-
TWEEN CONFIDENCE CURVES

The uncertainty in time series represented by confidence curves can be read and ex-
tracted, but some metrics are still needed to measure the properties of a confidence
curve and measure the similarity between confidence curves. When the parameter of
interest is discrete, for instance the location of a CP, the property of a confidence curve
can be measured by the actual versus nominal coverage probability, the actual found lo-
cation of a CP when the null hypothesis holds, the actual found location of a CP when
the null hypothesis fails, and the uncertainty measure (Un) of confidence curves.

When the parameter of interest is continuous, such as the dependence parameter in
copulas, the property of a confidence curve can be measured by the actual versus nom-
inal coverage probability, the estimated dependence parameter versus the true depen-
dence parameter, and the width of confidence intervals with a given confidence level.

The similarity between confidence curves can be measured by the similarity index,
which shows the overlap between two curves. The measure considered in this research
could provide some guidance for studies which need to consider the properties of curves.
The uncertainty measure (Un) can explicitly show the uncertainty of CP detection by a
given method, and if the value of uncertainty is close to 1, it indicates there is no useful
information about the location of CP.

7.2. LIMITATIONS AND RECOMMENDATION FOR FUTURE RESEARCH

7.2.1. LIMITATIONS
The confidence curve for a parameter of interest utilized, as proposed in this PhD dis-
sertation, relies heavily on parameter estimation and sampling from relative short sub-
series. This will be problematic because parameter estimation and sampling are often
affected by the sample length. For a time series with a short sample length, the confi-
dence curves for the location of CP might have large uncertainty. For instance, when a
time series is short, and if bootstrapping is considered to draw new samples from sub-
series, there will be many duplicated samples.

The CP is detected for the change in the sample mean, which is not often true in
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reality. The change may occur in standard deviation, or other statistical characteristics.

7.2.2. RECOMMENDATION FOR FUTURE RESEARCH

CONFIDENCE CURVES FOR QUANTILES WITH A GIVEN RETURN PERIOD

Quantiles are the magnitude of a design flood or rainfall, and they are of great impor-
tance in hydological frequency analysis. A design flood/precipitation T−year return pe-
riod is a continuous parameter, and there are many methods to estimate it, includ-
ing parametric or non-parametric methods. If a log-likelihood function for the T−year
quantile is derived, then a confidence curve for the quantile can be approximated by
following the same steps as for constructing confidence curves for the dependence pa-
rameter in copulas. With confidence curves for quantiles, the uncertainty of frequency
analysis can be graphically represented by confidence curves. This could provide some
insights into the uncertainty of design quantiles. For instance confidence intervals for
a 100-year annual maximum design quantile can be extracted from a confidence curve
with specific confidence levels, therefore a confidence curve will be very informative
about the uncertainty of the final design quantile.

CONFIDENCE CURVES FOR PARAMETERS IN PARAMETRIC DISTRIBUTIONS

Parameter estimation in parametric models plays an indispensable role in statistical
models, and the estimates of parameters based on observations determine the output
of the model. If a deviance function can be derived for parameters, with simulations or
referring to Wilks’ theorem, approximate confidence curves for parameters can be con-
structed.

Parametric distributions are the basis of hydrological frequency analysis, and param-
eters in distributions are blocks to estimate the quantile. Compared to quantiles, param-
eters in parametric distributions are often taken as nuisance parameters, but their esti-
mates will greatly influence the estimation of quantiles directly. Therefore, conducting
uncertainty analysis to nuisance parameters can provide a better understanding to the
uncertainty in quantile estimation.

CONFIDENCE CURVES AND HYPOTHESIS TESTING STATISTICS

The confidence curves can also be constructed by using hypothesis testing statistics, for
instance the ’Method A’ in Cunen et al. [1]. If a statistics for the hypothesis testing prob-
lem and a confidence level are given, one can use sampling to rebuild confidence sets for
the null hypothesis with the given confidence level. According to Schweder and Hjort [2],
a confidence curve is a collection of confidence sets at all confidence levels.

CONFIDENCE CURVES IN OTHER FIELDS

As a statistical tool, a confidence curve is based on a frequentist framework and it can
be used in many other fields to analyze the distribution of any parameter of interest, for
instance, in financial, and medical fields.

CONFIDENCE CURVES FOR CHANGING WORLD

In a changing world, the hydrological processes are intensified by human activities and
climate change. The uncertainty in the prediction for future events should be considered
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seriously. Therefore, it is useful to analyze uncertainty before taking measures to adapt to
the environment. It would be more informative to quantify the uncertainty in a graphical
way, for instance in the form of confidence curves.
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A
NOTATIONS

There is a wide range of notations in use in statistics. Here, the notation and terminology
used in this paper are specified. Random variables are denoted by capital letters and
realizations of random variables by the corresponding lower case letters. Parameters of
distributions are denoted by lower case Greek letters. If E is an event then

Pr(E)

denotes the probability of that event. A sequence of n independent identically distributed
random variables X1, X2, . . . , Xn is a random sample of size n. The sample as a whole may
be referred to as X .

The probability density function (pdf) of a member of the distribution family will be
referred to as f (·; ·), and the cumulative distribution function (cdf) will be denoted by
F (·; ·).

A.1. INDICATOR FUNCTION

Traditionally, probability theory and statistics make use of the indicator function of a set,
which is a function that takes the value one on points in the set and zero elsewhere. For
a set A it is traditionally written as 1A and defined by

1A(x) =
{

0 x ∉ A

1 x ∈ A

There is a simpler and more general approach to translating expressions such as x ∈ A
that evaluate to true or false into numbers. It was proposed by Knuth [1], who in turn
cited Iverson [2] as the original source of the idea. This approach uses special brackets
to translate an expression that is false or true into 0 or 1 respectively. Here J·K are used.
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Examples are:
J1 ≤ 4 ≤ 3K= 0
J1 ≤ 2 ≤ 3K= 1

J1 ≤ x ≤ 3K=


0 x < 1

1 1 ≤ x ≤ 3

0 x > 3

(A.1)

The indicator function of a set A applied to a variable x can now be written as Jx ∈ AK.
The empirical cumulative distribution function (ecdf) is based on the set membership
functions for sets of the form {r ∈ R : r ≤ t }. Bracket notation simplifies the notation of
such functions

1{r∈R:r≤t }(x) = Jx ∈ AK

With this notation the ecdf Fn of a random sample of size n can be written as

Fn (t ) = 1

n

n∑
i=1

JXi ≤ tK

Please note that for each fixed value of t the expression Fn (t ) is itself a random vari-
able.In this study the properties of statistical methods will be examined as follows. A
given method for change point detection will be applied to a large number of time series
generated pseudo-randomly. Certain aspects of these outcomes, for instance, a point
estimate of the change point location or the width of a specific confidence interval will
then be calculated for each time series. The results will be reported graphically by plots
of the cumulative frequency of, for instance, the reported change point. These cumula-
tive frequencies will be reported in percentages of the total number of observations.

A.2. SIGN FUNCTION
The sign function is defined as

sgn(x) =


−1 i f x < 0

0 i f x = 0

1 i f x > 0

(A.2)

The sign function is used to define the Pettitt statistic [3]. Note that the sign function can
be expressed in terms set membership:

sgn(Xi −X j ) = JX j ≤ Xi K− JXi ≤ X j K (A.3)



B
TRADITIONAL CHANGE POINT

STATISTICS AND SENSITIVITY TO

SCALE CHANGES

B.1. CHANGE-POINT STATISTICS UNDER SCALING AND SHIFT-
ING

For CvM-CP, the calculation of the change point statistic of a sample (x1,x2,. . . , xn) de-
pends only on the values of Jxi ≤ x j K for all pairs i , j = 1,2, . . . ,n with i ̸= j . Shifting the
entire sample does not change the value of these expressions, and neither does scaling
the entire sample by a strictly positive value. As a result, the value of the statistic does
not change if we shift and scale the entire sample. For Pet-CP we can use (A.3) to express
the sign function, and then the same reasoning holds. For CUSUM-CP the calculation of
the change point statistic of a sample depends only on Jc ≤ x j K for all j = 1,2, . . . ,n and
c the sample median. Again, shifting the entire sample does not change the value of this
function, and neither does scaling the sample by a strictly positive value. As a result, the
value of the statistic does not change if we shift and scale the entire sample.

Now, suppose that the random variables in the time series are from the same dis-
tribution family, and that this family is a location-scale family F (ξ,ζ), with location pa-
rameter ξ and scale parameter ζ. In that case Xh = ζh Hh +ξh , with Yh the independent
identically distributed (i.i.d.) random variables for h = 1,2, . . . . ,n. We see that, for all
three test statistics, the statistics for a series where Xi has parameters (ξL ,ζL) for i ≤ τ

and (ξR ,ζR ) for i > τ is equivalent to a series with location zero and scale one up to τ,
but location (ξR −ξL)/ζL and scale ζR /ζL beyond that point. This implies that, for a lo-
cation scale family, the distribution of the test statistic, when a change point is present,
depends only on the properties of Yh and the quantities (ξR −ξL)/ζL and ζR /ζL For the
normal distribution, the mean is the location parameter, and the standard deviation is
the scale parameter.
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For the GEV distributions and a change in the mean, the distribution of the test statis-
tic when a change point is present will depend only on (µR −µL)/σL . If there is a change
in the standard deviation while the mean value stays the same, then this corresponds to
a change in both the scale and the location of the original distribution. After scaling, it
turns out the change in the location is constant, and the change in distribution depends
on this constant and σR /σL .

B.2. SENSITIVITY OF THE PETTITT TEST STATISTIC TO SCALE

CHANGES
Suppose that the random variables in the time series are from a location-scale family
that is symmetric with respect to the median, such as the normal distribution. In that
case, it is possible to show that the probability distribution of the sign function for the
difference of two of different random variables taken from the series does not depend on
the scale. This can be done as follows.

Suppose i ̸= j and that at the change point only the scale changes. Shifting all ran-
dom variables in the series to place the median of at zero does not change the distribu-
tion of any of the random variables. Now, for i , j ≤ τ or i , j > τ, we have fi = f j , so:

Pr{Si j = 1} = Pr{Xi ≤ X j } = ∫ ∞
x j =−∞

∫ x j
xi=−∞ fi (xi ) f j (x j )d xi d x j

= ∫ ∞
x j =−∞

∫ x j
xi=−∞ fi (x j ) fi (x j )d xi d x j

= ∫ ∞
x j =−∞ fi (x j )

∫ F (x j )
y=0 d yd x j

= ∫ ∞
x j =−∞ fi (x j )Fi (x j )d x j

= ∫ 1
z=0 zd z = 1

2

For i ≤ τ< j (similar reasoning holds for j ≤ τ< i ) the following holds:

Pr{Si j = 1} = Pr{Xi ≤ X j } =
∫ ∞

x j =−∞

∫ ∞

xi=−∞
JXi ≤ X j K fi (Xi ) f j (X j )d Xi d X j

We split the integration into the four quadrants to obtain:

Pr{Si j = 1} = ∫ ∞
x j =0

∫ x j

xi=0 JXi ≤ X j K fi (xi ) f j (x j )d xi d x j

+∫ 0
x j =−∞

∫ 0
xi=−∞ JXi ≤ X j K fi (x j ) fi (x j )d xi d x j

+∫ 0
x j =−∞

∫ xi=0
x j =−∞ JXi ≤ X j K f (xi ) f j (x j )d xi d x j

+∫ ∞
x j =0

∫ 0
x j =−∞ JXi ≤ X j K f (x j )Fi (x j )d x j

For all xi and x j within the integration bounds of the fourth integral, the function JXi ≤ X j K
in the integrand equals equals one. In the third integral on the right hand side JXi ≤ X j K
equals zero. This allows us to write:

Pr{Si j = 1} = ∫ ∞
x j =0

∫ ∞
xi=0 JXi ≤ X j K fi (xi ) f j (x j )d xi d x j

+∫ 0
x j =−∞

∫ 0
xi=−∞ JXi ≤ X j K fi (x j ) fi (x j )d xi d x j

+∫ ∞
x j =0

∫ ∞
x j =0 fi (x j ) fi (x j )d xi d x j
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Next, we introduce a new integration variable yi = −xi whenever there is a negative in-
tegration boundary:

Pr{Si j = 1} = ∫ ∞
x j =0

∫ ∞
xi=0 JXi ≤ X j K fi (xi ) f j (x j )d xi d x j

+∫ ∞
y j =0

∫ ∞
yi=0 J−yi ≤−y j K fi (−yi ) f j (−y j )d yi d y j

+∫ ∞
x j =0

∫ ∞
yi=0 fi (−yi ) f j (x j )d yi d x j

We use symmetry around zero to replace fi (−yi ) by fi (yi ) in the second and third inte-
grals and rewrite the inequality in the second integral to obtain:

Pr{Si j = 1} = ∫ ∞
x j =0

∫ x j

xi=0 JXi ≤ X j K f (xi ) f j (x j )d xi d x j

+∫ ∞
y j =0

∫ ∞
yi=0 Jyi ≤ y j K f (yi ) f j (y j )d yi d y j

+∫ ∞
x j =0

∫ ∞
yi=0 fi (yi ) f j (x j )d yi d x j

We then rename the integration variables yi and y j to obtain:

Pr{Si j = 1} = ∫ ∞
x j =0

∫ ∞
xi=0 JXi ≤ X j K f (xi ) f j (x j )d xi d x j

+∫ ∞
y j =0

∫ ∞
yi=0 Jxi ≤ x j K fi (xi ) f j (x j )d xi d x j

+∫ ∞
x j =0

∫ ∞
yi=0 fi (yi ) f j (x j )d yi d x j

By combining the first and second integral we obtain:

Pr{Si j = 1} = ∫ ∞
x j =0

∫ x j

xi=0 JXi ≤ X j K fi (xi ) f j (x j )d xi d x j

+∫ ∞
x j =0

∫ ∞
yi=0 fi (yi ) f j (x j )d yi d x j

By symmetry, both remaining integrals equal 1
4 , so Pr{Si j = 1} = 1

2 irrespective of the
change in scale. While this does not prove that the distribution of the test statistic is
independent of the scale change, it does indicate that any recoverable information on a
change in scale can only be in the correlation structure between the Si j .

B.3. THE EFFECT OF SCALING OF SHIFTING OR SCALING THE

TIME SERIES ON THE CONFIDENCE CURVE

B.3.1. LOCATION-SCALE DISTRIBUTION FAMILIES
If the pdf f (x,θ) with θ = (ξ,ς) is of the form

f (x,θ) = 1

ς
g

(
x −ξ
ς

)
(B.1)

where ξ is the location and ς is the scale, then for the CML method it can be shown
that the deviance function Dprof(τ, ay +b) is equal to Dprof(τ, y). For the AED based on
MoM and LMo methods, a similar equality holds for Dpseu under the condition that the
estimates of the parameters satisfy

ξ̃(ay +b) = aξ̃(y)+b (B.2)

ς̃(ay +b) = aς̃(y) (B.3)

If D(τ, ay +b) = D(τ, y), then tests on synthetic time series with θL = (0;1) while varying
θR are representative for the performance of the method.
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B.3.2. DISTRIBUTION FAMILIES WITH A SCALE PARAMETER
If the pdf f (x,θ) with θ = (ς,η) is of the form

f (x,θ) = 1

ς
g

(
x

ς
;η

)
(B.4)

where ς is the scale and η is a shape parameter, then for the CML method it can be shown
that Dprof(τ; ay) = Dprof(τ; y). For the CLMo(CMoM) method a similar equality holds for
Dpseu under the condition that the estimates of the parameters satisfy

ς̃(ay) = aς̃(y) (B.5)

η̃(ay) = η̃(y) (B.6)

If D(τ, ay) = D(τ, y), then tests on synthetic time series with θL = ςL = 1 while varying
the other parameters are representative for the performance of the method.



C
FROM CONFIDENCE CURVES BASED

ON PARAMETRIC LIKELIHOOD TO

CONFIDENCE CURVES BASED ON

APPROXIMATE EMPIRICAL

LIKELIHOOD

To show the relations between the method proposed by Cunen et al. [4] and the method
proposed in this study, it is necessary to make a few intermediate steps. The first step is
to relate the deviance function to the log-likelihood ratio.

C.1. THE LOG-LIKELIHOOD RATIO
It is useful to start with the log-likelihood ratio for the parametric case, which is also used
in change point detection [5]. The likelihood ratio for the AMOC problem is given by

Λτ
(
y
)= supθ,ζ

∏n
i=1 f

(
yi ;θ,ζ

)
supθL,θR,ζ

∏τ
i=1 f

(
yi ;θL,ζ

)∏n
i=τ+1 f

(
yi ;θR,ζ

) (C.1)

Note, that the numerator represents the null hypothesis of no change, and the denomi-
nator represents one of n −1 alternative hypotheses, namely the one where the change
occurs at τ.

Csörgö and Horváth [5] state that it is now natural to consider

Zn
(
y
)= max

τ=1,2,...,n−1
−2logΛτ

(
y
)

(C.2)
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CURVES BASED ON APPROXIMATE EMPIRICAL LIKELIHOOD

and reject the null hypothesis of no change when this is large. From (3.10) and (C.1) it
follows that

−2logΛτ
(
y
)= 2

(
sup
θL,θR,ζ

ℓ
(
τ,θL,θR,ζ; y

)− sup
θ,ζ

ℓ
(
τ,θ,θ,ζ; y

))
or, using (3.11),

−2logΛτ
(
y
)= 2

(
ℓprof

(
τ; y

)− sup
θ,ζ

ℓ
(
τ,θ,θ,ζ; y

))
The value of

sup
θ,ζ

ℓ
(
τ,θ,θ,ζ; y

)
is independent of τ, so

−2logΛτ̂(y)
(
y
)+2logΛτ

(
y
)

= 2
(
ℓprof

(
τ̂
(
y
)

; y
)− supθ,ζℓ

(
τ̂
(
y
)

,θ,θ,ζ; y
))

−2
(
ℓprof

(
τ; y

)− supθ,ζℓ
(
τ,θ,θ,ζ; y

))
= 2

(
ℓprof

(
τ̂
(
y
)

; y
)−ℓprof

(
τ; y

))= D
(
τ, y

) (C.3)

One problem that needs to be addressed is that for τ close to the start or end of the
series, the optimization problem may not have a solution. It is therefore necessary to
avoid calculations near the start or end of the series.

C.2. CONFIDENCE CURVES BASED ON THE EMPIRICAL LIKELI-
HOOD RATIO

The parametric form of the distribution underlying an environmental time series is not
known, therefore, the approach based on the profile likelihood always involves a choice
of distribution family. There is an alternative: an approach based on the empirical likeli-
hood [6, 7]. For a change point in the mean, such an approach is presented, for instance,
in Zou et al. [8] and Shen [9]. In Hall and La Scala [10] the empirical likelihood for a dis-
tribution property λ is defined as follows. Suppose X1, X2, . . . , Xn form a random sample
of size n. To define the empirical likelihood we need the set

S =
{

p ∈ [0,1]n :
n∑

i=1
pi = 1

}

of all probability mass functions on the set {1,2, . . . ,n}. Now suppose λ̂
(
p, x

)
is an es-

timator for λ when x1, x2, . . . , xn is a sample from a discrete distribution, where xi has
probability of occurrence pi . The empirical likelihood L for a given value λ0 of λ is de-
fined as

L (λ0, x) = max
p∈S

{
n∏

i=1
pi : λ̂

(
p, x

)=λ0

}
The empirical likelihood ratio is derived by dividing L by

max
p∈S

n∏
i=1

pi
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which is achieved at p1 = p2 =, . . . ,= pn = 1/n, this follows from the arithmetic geometric
mean inequality. Therefore, the empirical likelihood ratio is

Λemp (λ0, x) = max
p∈S

{
n∏

i=1
npi : λ̂

(
p, x

)=λ0

}

Suppose the distribution property of interest is the mean. In that case

λ̂
(
p, x

)= n∑
i=1

pi xi

and

L (λ0, x) = max
p∈S

{
n∏

i=1
pi :

n∑
i=1

pi xi =λ0

}
with likelihood ratio

max
p∈S

{
n∏

i=1
npi :

n∑
i=1

pi xi =λ0

}
For the change point problem with a change in the mean, Zou et al. [8] proposed the
empirical likelihood ratio

Λemp
(
τ; y

)= supp∈Sτ

{∏n
i=1 pi :

∑τ
i=1 pi yi =∑n

i=τ+1 pi yi
}

supp∈Sτ

∏n
i=1 pi

(C.4)

where

Sτ =
{

p ∈ [0,1]n :
τ∑

i=1
pi = 1;

n∑
i=τ+1

pi = 1

}
As in the parametric case, the numerator represents the null hypothesis of no change,
and the denominator represents one of n − 1 alternative hypotheses, namely, the one
where a change occurs at τ.

The optimization problem in the denominator of (C.4) has as its solution p1 = p2 =
, . . . , pτ = 1/τ and pτ+1 = pτ+2 =, . . . , pn = 1/(n −τ). Note, that the optimization problem
in the numerator is solvable only if the convex hull of

{
y1, y2, . . . , yk

}
and

{
yk+1, yk+2, . . . , yn

}
overlap.

They define the empirical log-likelihood ratio as

ℓemp
(
τ; y

)=−2logΛemp
(
τ; y

)
and their statistic is

Zemp = max
1≤τ<n

ℓemp
(
τ; y

)
The link between 2logΛτ

(
y
)

and D
(
τ, y

)
in the parametric likelihood case now suggests

that it might be possible to build a confidence curve by taking τ̂emp
(
y
)

to be the value
of τ for which ℓemp

(
τ; y

)
attains the maximum value, and then defining an empirical

deviation function

Demp
(
τ, y

)= 2
(
ℓemp

(
τ̂emp

(
y
)

; y
)−ℓemp

(
τ; y

))
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C. FROM CONFIDENCE CURVES BASED ON PARAMETRIC LIKELIHOOD TO CONFIDENCE

CURVES BASED ON APPROXIMATE EMPIRICAL LIKELIHOOD

But this leaves a problem: determining the distribution function Kemp,τ of Demp (τ,Y )
that is the values of

Kemp,τ (r ) = Pr
(
Demp (τ,Y ) < r

)
If we approximate Kemp,τ by repeated sampling, then this involves solving many opti-
mization problems that may or may not have a solution. This makes it attractive to
search for an alternative to ℓemp. Shen [9] derived the following approximation formula
for the logarithm of the empirical likelihood ratio for scalar yi

−2logΛemp
(
τ; y

)= τ(n −τ)

n

( 1
τ

∑τ
i=1 yi − 1

n−τ
∑n

i=τ+1 yi
)2

1
n−1

∑n
i=1

(
yi − 1

n

∑n
j=1 y j

)2 +Op
(
n−1/2

tr

)
for nmin < τ < n −nmin where nmin tends to infinity as n tends to infinity. The approx-
imate formula holds under the assumption that the higher-order moments of Y exists:
E∥Y ∥3 <∞ (∥ · ∥ is the Euclidean norm). The term Op

(
n−1/2

min

)
is present because the ap-

proximation does not hold for τ near the start or the end of the series. We will use nmin as
given by Chapter 3. For the distributions used in the tests in this research the condition
on the third moment is always satisfied for the log-normal and the gamma distribution;
for Fréchet as parametrized in (F.40) it holds because ξ= 0.139 < 1/3.

We felt it would be interesting to see what would happen if we introduced the ap-
proximation ℓapn of ℓemp given by

ℓapn
(
τ; y

)= τ(n −τ)

n

( 1
τ

∑τ
i=1 yi − 1

n−τ
∑n

i=τ+1 yi
)2

1
n−1

∑n
i=1

(
yi − 1

n

∑n
j=1 y j

)2

One reason to assume that this might work is that a similar formula is given as the basis
for a test statistic for change point detection in Csörgö and Horváth [5, page 85].



D
SIMILARITY INDEX BETWEEN

RANDOMLY GENERATED

CONFIDENCE CURVES

If different methods are applied to the same data, it can be of interest to compare the
resulting confidence curves. This is of special interest for the case of real data. For the
real time series, we wish to know whether the methods agree or not: that is how similar
the confidence curves are. As a starting point, we take the Jaccard index, see Schubert
and Telcs [11] who in turn refer to Jaccard [12]. For two sets, A = {

a1, a2, ..., anA

}
and

B = {
b1,b2, ...,bnB

}
, the Jaccard index is given by

J (A,B) = #(A∩B)

#(A∪B)
(D.1)

where #S denotes the number of elements in a finite set S.
For two confidence curves cc(., .) and cc′ (., .) and a fixed γ this index can serve to

compare the sets Rγ =
{
τ : cc

(
τ, yobs

)≤ γ}
and R ′

γ =
{
τ : cc′

(
τ, yobs

)≤ γ}
as follows

Rγ∩R ′
γ =

{
τ : max

(
cc

(
τ, yobs

)
,cc′

(
τ, yobs

))≤ γ}
and

Rγ∪R ′
γ =

{
τ : min

(
cc

(
τ, yobs

)
,cc′

(
τ, yobs

))≤ γ}
One way to extend this to the entire curve is to integrate over γ. For Rγ∩R ′

γ this results
in ∑1

γ=0 #(Rγ∩R ′
γ) = ∫ 1

0 #
(
Rγ∩R ′

γ

)
dγ

= ∫ 1
0 #

{
τ : max

(
cc

(
τ, yobs

)
,cc′

(
τ, yobs

))≤ γ}
dγ

= ∫ 1
0

∑n
τ=1 Jmax

(
cc

(
τ, yobs

)
,cc′

(
τ, yobs

))≤ γKdγ
=∑n

τ=1

∫ 1
0 Jmax

(
cc

(
τ, yobs

)
,cc′

(
τ, yobs

))≤ γKdγ

145



D

146 D. SIMILARITY INDEX BETWEEN RANDOMLY GENERATED CONFIDENCE CURVES

Table D.1: Quantiles of similarity index J̃ for random pairs of curves for different sample lengths.

γ

n
10 20 30 40 50 60 70 80 90 100

0.9 0.62 0.59 0.57 0.56 0.55 0.55 0.55 0.55 0.54 0.54

0.95 0.66 0.61 0.59 0.58 0.57 0.57 0.56 0.56 0.55 0.55

0.99 0.72 0.66 0.63 0.61 0.6 0.59 0.59 0.58 0.57 0.57

where the summation could be moved through the integral because the individual terms
in the sum under the integral are integrable, so linearity of integration could be used. A
single integral in this expression can be rewritten as follows∫ 1

0 Jmax
(
cc

(
τ, yobs

)
,cc′

(
τ, yobs

))≤ γKdγ
= ∫ 1

max(cc(τ,yobs),cc′(τ,yobs)) dγ

= 1−max
(
cc

(
τ, yobs

)
,cc′

(
τ, yobs

))
and

1−max(a,b) = min(1−a,1−b)

so
1∫

0

#(Rγ∩R ′
γ)dγ=

n∑
τ=1

min
(
1−cc

(
τ, yobs

)
,1−cc′

(
τ, yobs

))
A similar approach can be applied to the denominator, and we get the following similar-
ity index

J̃ =
∑n
τ=1 min

(
1−cc

(
τ, yobs

)
,1−cc′

(
τ, yobs

))∑n
τ=1 max

(
1−cc

(
τ, yobs

)
,1−cc′

(
τ, yobs

)) (D.2)

which will be used to compare the similarity of pairs of confidence curves. It is similar
to the Ružička index [11]. This index is one for identical curves and smaller than one for
curves that differ.

To get an impression of how the value of similarity index (D.2) relates to similarity, the
following experiment was performed. For n = 10,20, ...,100 we generated 5000 pairs of
i.i.d. samples of size n drawn from a uniform distribution on [0,1]. While such a sample
may not bear much resemblance to a confidence curve, they share domain and range.
The distribution of J̃ for these pairs provides some indication of the range of values of J̃
that may occur for curves that were constructed to be unrelated to each other.

Figure D.1 shows the cumulative frequency distribution of J̃ for different sample
lengths n. For a larger n, the distribution of J̃ approaches a step function. Figure D.2
shows the 90%, 95%, and 99% quantiles for J̃ as a function of sample size. To aid in the
interpretation of Fig. D.2, Table D.1 is provided. For instance, if we have two random
data sets with sample length n = 100, then the 95% quantile of the similarity index J̃ is
0.55. The actual similarity index J̃actual between two confidence curves with a sample
length n = 100 follows from (D.2). If J̃actual is higher than 0.55, then we can be reasonably
confident that the curves are similar.
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Figure D.1: Cumulative frequency for values of similarity index J̃ for pairs of randomly generated curves for
different sample lengths.
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Figure D.2: Quantiles for values of similarity index J̃ for pairs of randomly generated curves for different sample
lengths.





E
A MEASURE OF TOTAL

UNCERTAINTY FOR A CONFIDENCE

CURVE

To have a reference for the size of confidence sets for change points we introduce the fol-
lowing notation. For a set S with a finite number of elements, let #S denote the number
of elements and let Choice(k;S) denote a random set obtained by drawing k elements
from S at random without replacement and with equal probability of selection for each
element. Now for a given fixed element s0 ∈ S, n = #S and a given value 0 ≤ γ ≤ 1, the
following equations hold

Pr(s0 ∈ Choice(k;S)) = k

n
(E.1)

Pr
(
s0 ∈ Choice(

⌈
γn

⌉
;S)

)= ⌈
γn

⌉
n

≥ γ (E.2)

where ⌈r ⌉ = min{k ∈Z : k ≥ r }.
Visual inspection of a confidence curve cc can give a subjective impression of the

location of the CP and its uncertainty, but a more objective measure would be needed
for automated analysis of large sets of time series. In the case that the CP is restricted to

SCP = {nmin,nmin +1, ...,n −nmin} (E.3)

where nmin is the minimum sub-series length, it is easy to define random sets such that
the probability that the true CP lies in the set is approximately, independently of the
properties of the sample. Simply take

ℜγ = Choice
(⌈
γ(n −2nmin +1)

⌉
;SCP

)
(E.4)

which has a coverage probability of

Pr(τtrue ∈ℜγ(X )) =
⌈
γ(n −2nmin +1)

⌉
n −2nmin +1

≥ γ (E.5)
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For a realization Rγ of a confidence set with confidence level γ for a CP restricted to SCP,
we take as a measure of relative uncertainty

Un(Rγ) = #Rγ−1

γ(n −2nmin)
(E.6)

Now for large n, the value of Un(Rγ) is zero for a one point set, approximately one for a
realization of Rγ and larger than one for very uninformative sets. This measure is useful
for a set at a given confidence level, but for automated analysis of a confidence curve a
level needs to be selected. The highest confidence level for which a non-trivial Rγ can be
constructed for which the equals sign holds is

γmax = n −2nmin

n −2nmin +1
(E.7)

so that is the level that will be used. We take

Un(cc) =
∑n−nmin

k=nmin
Jcc(k) ≤ γmaxK−1

n −2nmin
(E.8)



F
PARAMETRIC DISTRIBUTION

FUNCTIONS AND ESTIMATORS

The probability density functions of the three distributions: log-normal, gamma and
Generalized Extreme Value distributions are given together with the relation between the
distribution parameters and the mean and the standard deviation of the distributions.

F.1. PARAMETER ESTIMATES: METHOD OF MOMENTS AND LIN-
EAR MOMENTS METHOD

The definitions of the mean, the variance, and their unbiased estimators are well-known,
which is often called Method of Moments (MoM). The same might not hold for the def-
initions of the Linear-moments (L-moments) and their estimators. Therefore, the def-
initions for the mean, the variance, the first two L-moments, and their estimators are
included here.

µX =E [X ] (F.1)

and the unbiased estimator for a sample Xi , i = 1,2, . . . ,n is

µ̂ (X ) = 1

n

n∑
i=1

Xi (F.2)

The variance is
varX =E

[(
X −µX

)2
]

(F.3)

with unbiased estimator for a sample Xi , i = 1,2, . . . ,n

v̂ar (X ) = 1

n −1

n∑
i=1

(
Xi − µ̂ (X )

)2 (F.4)

The estimates for a given sample x1, x2, . . . , xn are

µ̂ (x) = 1

n

n∑
i=1

xi (F.5)
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v̂ar (x) = 1

n −1

n∑
i=1

(
xi − µ̂ (x)

)2 (F.6)

We will also use the notation
σX =p

varX (F.7)

σ̂ (x) =
√

v̂ar (x) (F.8)

Note that for yi = axi + b the relations µ̂
(
y
) = aµ̂ (x) + b and σ̂

(
y
) = aσ̂ (x) hold. In

connection with the behaviour of the Gumbel distribution, two more concepts are of
interest, namely the skewness [13] and excess kurtosis [14]. For the Gumbel distribution,
these two statistics are constant and independent of the parameters. Usually skewness
refers to the standardized third moment,

E
[(

X −µX

σX

)3]
(F.9)

kurtosis refers to

E
[(

X −µX

σX

)4]
(F.10)

and excess kurtosis refers to

E
[(

X −µX

σX

)4]
−3 (F.11)

Skewness is usually estimated by

n

(n −1)(n −2)

n∑
i=1

(
xi − µ̂ (x)

σ̂ (x)

)3

while excess kurtosis is often estimated by

n (n +1)

(n −1)(n −2)(n −3)

n∑
i=1

(
xi − µ̂ (x)

σ̂ (x)

)4

− 3(n −1)2

(n −2)(n −3)

[15].
In Hosking [16], L-moments, a form of power weighted moments, are defined in

terms of the order statistics X1:n ≤ X2:n ≤ ·· · ≤ Xn:n of a random sample of size n drawn
from X . The r -th L-moment is given by

λr = r−1
r−1∑
k=0

(−1)k

(
r −1

k

)
E [Xr−k:r ] (F.12)

so
λ1 =E [X1:1] =µ (F.13)

λ2 = 1

2
(E [X2:2]−E [X1:2]) (F.14)

The estimates for the first two L-moments for a given sorted sample x1:n , x2:n , . . . , xn:n are

l1 (x) =
n∑

i=1
xi :n (F.15)
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l2 (x) = 1

2

1(n
2

) n∑
i=1

i−1∑
j=1

(
xi :n −x j :n

)
(F.16)

Note that for yi = axi +b the relations l1
(
y
)= al1 (x)+b and l2

(
y
)= al2 (x) hold.

F.1.1. THE GUMBEL DISTRIBUTION
For the Gumbel distribution, the pdf is

f (x;ξ,ς) = 1

ς
exp

(
−x−ξ

ς
−exp

(
−x−ξ

ς

))
(F.17)

where ς is the scale parameter, and ξ is the location parameter. The meanµ and variance
σ2 are

µ= ξ+ςγEM; σ2 = π2

6
ς2 (F.18)

where γEM (≈ 0.577) is the Euler-Mascheroni constant. The parameters can be expressed
in terms of the moments as follows

ξ=µ−γEM

p
6

π
σ; ς=

p
6

π
σ (F.19)

If the estimates

ξ̃ (x) = µ̂ (x)−γEM

p
6

π
σ̂ (x) ; ς̃ (x) =

p
6

π
σ̂ (x) (F.20)

are used, then ξ̃ (ax +b) = aξ̃ (x)+b and ς̃ (ax +b) = aς̃ (x). According to Hosking [16],
the first two L-moments are

λ1 = ξ+ςγEM; λ2 = ς log2 (F.21)

so

ξ=λ1 −γEM
1

log2
λ2; ς= 1

log2
λ2 (F.22)

If the estimates

ξ̃ (x) = l1 (x)−γEM
1

log2
l2 (x) ; ς̃ (x) = 1

log2
l2 (x) (F.23)

are used, then ξ̃ (ax +b) = aξ̃ (x)+b and ς̃ (ax +b) = aς̃ (x).

F.1.2. THE LOG-NORMAL DISTRIBUTION
For the log-normal distribution, the pdf is

f (x;ς,η) =
0 x ≤ 0

1
xη

p
2π

exp

(
− (log(x/ς))2

2η2

)
x > 0

(F.24)

The mean µ and variance σ2 are

µ= ςexp

(
η2

2

)
; σ2 = ς2 (

exp
(
η2)−1

)
exp

(
η2) (F.25)
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The parameters can be expressed in terms of the moments as follows

ς= µ√
σ2

µ2 +1

; η=
√

log

(
σ2

µ2 +1

)
(F.26)

If the estimates

ς̃ (x) = µ̂ (x)√(
σ̂(x)
µ̂(x)

)2 +1

; η̃ (x) =
√

log

((
σ̂ (x)

µ̂ (x)

)2

+1

)
(F.27)

are used, then ς̃(ax) = aς̃(x) and η̃(ax) = η̃(x). According to Hosking [16], the first two
L-moments are

λ1 = ςexp

(
η2

2

)
; λ2 = ςexp

(
η2

2

)
erf

(η
2

)
(F.28)

where erf is given by

erf(z) = 2p
π

z∫
t=0

exp(−t 2)d t (F.29)

The parameters are related to the L-moments as follows

ς= λ1

exp(η
2

2 )
; η= 2erf−1(

λ2

λ1
) (F.30)

If the estimates

ς̃ (x) = l1 (x)

exp

(
[η̃(x)]2

2

) ; η̃ (x) = 2erf−1
(

l2 (x)

l1 (x)

)
(F.31)

are used, then ς̃ (ax) = aς̃ (x) and η̃ (ax) = aη̃ (x).

F.1.3. THE GAMMA DISTRIBUTION
For the gamma distribution, the pdf is

f (x;ς,η) =
{

0 x ≤ 0
1

Γ(η)ςη xη−1 exp
(

x
ς

)
x > 0

(F.32)

The mean µ and variance σ2 are

µ= ης; σ2 = ης2 (F.33)

The parameters can be expressed in terms of the moments as follows

η= µ2

σ2 ; ς= σ2

µ
(F.34)

If the estimates

η̃ (x) =
(
µ̂ (x)

σ̂ (x)

)2

; ς̃ (x) = (σ̂ (x))2

µ̂ (x)
(F.35)
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are used, then η̃ (ax) = η̃ (x) and ς̃ (ax) = aς̃ (x). According to Hosking [16], the first two
L-moments are

λ1 = ης; λ2 = 1p
π
ς
Γ

(
η+ 1

2

)
Γ

(
η
) (F.36)

Now the function fη defined by

f −1
η

(
η
)= 1p

π

Γ
(
η+ 1

2

)
ηΓ

(
η
) (F.37)

is needed to express the parameters in terms of the L-moments

ς= λ1

η
; η= fη

(
λ2

λ1

)
(F.38)

To obtain parameter estimates, fη is approximated as in Hosking [16]. If the estimates

η̃ (x) = fη

(
l2 (x)

l1 (x)

)
; ς̃ (x) = l1 (x)

η̃ (x)
(F.39)

are used, then η̃ (ax) = η̃ (x) and ς̃ (ax) = aς̃ (x).

F.1.4. FRÉCHET DISTRIBUTION AND THE GENERALIZED EXTREME VALUE

DISTRIBUTION
For Generalized Extreme Value (GEV) distribution, the value of the shape parameter de-
cides the type the distribution. According to Tyralis et al. [17], when GEV distribution is
used to model annual streamflow maxima, shape parameter mostly depends on climatic
indices.

f (x,m, s,α) =


0 x ≤ m
1
s (1+α( x−m

s ))−α−1exp
(−(1+α( x−m

s ))−1/α
)

x > m,α ̸= 0
1
s exp

(−exp(− x−m
s )− x−m

s

)
x > m,α= 0

(F.40)

where α is the shape parameter, s is the scale parameter, m is the location parameter,
the mean (µ) and standard deviation (σ). The immediate relations between sample mo-
ments and parameters in parametric distributions arem =µ−σ Γ(1−α)−1p

Γ(1−2α)−Γ2(1−α)
; s =σ αp

Γ(1−2α)−Γ2(1−α)
x > m,α ̸= 0

m =µ− γ
p

6
π σ; s =

p
6
π σ x > m,α= 0

(F.41)

When the shape parameter k = 0, the GEV is a standard Gumbel distribution; when k < 0,
the GEV is a reverse Weibull distribution; when k > 0, the GEV is a Fréchet distribution.
Because when the shape parameter k ̸= 0, Fréchet and reverse Weibull distributions have
three parameters.

In Chapter 2, GEV distribution with shape parameter equals to –0.15 (the three-parameter
reverse Weibull distribution with shape 20/3); GEV with shape 0 (the Gumbel distribu-
tion); and GEV with shape 0.15 (the three-parameter Fréchet distribution with shape
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20/3) are used. The value 0.15 was chosen as representative for thick-tailed GEV distri-
butions.

In Chapter 4, the Gumbel distribution is considered for study the performance of
the two parametric methods (CML and CLMo) in constructing confidence curves for the
location of a CP, where maximum likelihood estimate (mle) and pseudo maximum like-
lihood estimate (pmle) are used. In CLMo, the pseudo maximum likelihood is combined
the LMo method for the estimation of nuisance parameters and maximum likelihood
estimate for the parameter of interest.

In Chapter 5, Fréchet distribution with a constant shape parameter is used to gen-
erate synthetic data to explore properties of confidence curves based on approximate
empirical likelihood ratio method. In Koutsoyiannis [18], the suggested value for the
shape parameter in type II or GEV distribution “is expected to belong to a short range,
approximately from 0 to 0.23 with confidence level 99%” for the global extreme precipi-
tation observations. After that Ragulina and Reitan [19] extended that research and they
suggested to use 0.139 as the shape parameter for Fréchet distribution. Therefore, for
Fréchet distributions, the suggested shape parameter k = 0.139 is used in Chapter 5.



G
THE COMPUTATIONAL COST OF THE

PARAMETRIC METHODS

For a time series of length n, with N MC runs for distribution approximation, all three
methods (CML, CLMO, CMoM) need (1+N ) (n −2nmin +1) deviance calculations. Each
deviance calculation needs 2(n −2nmin +1) parameter estimates and (n −2nmin +1)×n
calculations of the logarithm of the pdf. Each pair of mle parameter estimates will need
at least n calculations of the logarithm of the pdf. The costs of a pair of MoM or LMo pa-
rameter estimates may be lower, but will still be on the order of n arithmetic operations.
A relatively big difference in cost occurs for those distributions where the mle needs to
solve a minimization problem, while MoM and LMo provide explicit formulas. For all
methods the total number of operations for one sample will be

O
(
(1+N ) (n −2nmin +1)2 n

)
(G.1)

where O stands for ’on the order of’. The difference in cost between the methods
does not show up in the O notation, because it arises from multiplication factors that do
not depend on n. A MoM or LMo parameter estimate involves on the order of n addi-
tions and multiplications plus a constant number of more complex operations. An mle
estimate where the solution is not available in explicit form will involve solving a mini-
mization problem; this in turn may involve between 5 and 20 evaluations of expressions
derived from the log-likelihood. While these evaluations are order n in the operations
count, they are likely to be more costly (perhaps a factor of 2 to 10) than the order n
addition and multiplication operations needed by MoM and LMo. So, in theory the mle
may well take anywhere from 10 to 200 times as long. For GU and GA, where the mle
problems correspond to a one dimensional search for the point where a nonlinear func-
tion is zero, in practice the cost of the mle was between 8 and 11 times that of CMoM.

With n = 100 and N = 1000, the computational cost is not negligible. When one of
these methods is itself analysed statistically, for instance, by studying M ≥ 1000 time
series, this becomes a major problem. For nmin = 1, n = 100 and M = N = 1000 the cost
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exceeds O
(
1012

)
calculations of the logarithm of the pdf. In practice, for one series taken

from the GA distribution with n = 100, nmin = 9 and N = 1000, a CML curve for one series
took 314 seconds and CMoM took 37 seconds. Counting flops is complicated by the
presence of the log and Gamma functions. Calculating flop rates is difficult because the
current implementation is in Matlab®, not in C or Fortran. Moreover, runs for different
parameter sets were done in parallel. The calculations were performed on a six core
Intel® Xeon® W-2133 at 3.60 GHz. A rough estimate of the code performance would
be between 0.04 (CLMo) and 0.4 (CML) GFlops per core; Intel [20] gives an Adjusted
Peak Performance (APP) of 160 GFlops, so about 27 GFlops per core. In theory, there is
room for improvement, but to verify this, an optimized implementation in a compiled
language would be needed.



H
AN UNINFORMATIVE CONFIDENCE

INTERVAL FOR KENDALL’S τ

It is known that τ = [−1,1]. Now suppose that γ ∈ (0,1) and there is no a-priori infor-
mation on the location of τ. If a point y is selected at random in the interval [-1, 1-2γ],
then

Pr(τ ∈ [y, y +2γ]) = ∫ 1
x=−1

∫ 1−2γ
y=−1 Jy ≤ x ≤ y +2γK 1

2 d x 1
2−2γd y

= 1
4(1−γ)

∫ 1−2γ
y=−1

∫ 1
x=−1 Jy ≤ x ≤ y +2γKd xd y

= 1
4(1−γ)

∫ 1−2γ
y=−1

∫ min(y+2γ,1)
x=y Jy ≤ x ≤ y +2γKd xd y

(H.1)

so
Pr(τ ∈ [y, y +2γ]) = 1

4(1−γ)

∫ 1−2γ
y=−1

∫ y+2γ
x=y d xd y

= 1
4(1−γ)

∫ 1−2γ
y=−1 2γd y

= 1
4(1−γ) 2γ(2−2γ) = γ

(H.2)

This implies that, as long as there is no a-priori reason to assume the parameter has a
certain value, it is possible to obtain a confidence interval at level γ without using the
sample, as long as an interval length of (at least) 2γ is allowed.
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COPULAS

Before stating the conditions that a function must satisfy to be a copula and how such
functions relate to multivariate distributions it is helpful to state the analogous condi-
tions and facts for a univariate cumulative distribution function (cdf).

I.1. THE ONE DIMENSIONAL CUMULATIVE DISTRIBUTION FUNC-
TION

According to, for instance, Klenke [21], if F (x) is the cdf of a real-valued random variable
X , then F (x) = Pr(X ≤ x) and F has the following properties

1. If x1 < x2, then F (x1) ≤ F (x2 (F is non decreasing)

2. limx↓x0 = F (x0)

3. limx→−∞ = 0

4. limx→∞ = 1

Moreover, for any function with these properties there is a random variable for which it is
the cdf [21, 22]. Please note that, while F (x) = Pr(X < x) instead, in which case condition
2 should be changed to limx↑x0 = F (x0) (F is left continuous).

I.2. THE TWO DIMENSIONAL CUMULATIVE DISTRIBUTION FUNC-
TION

To keep the notation as simple as possible, only the two dimensional (2D) case is de-
scribed. Vectors will be denoted by bold italic letters. The following shorthand will be
used: a < b means that a1 < b1 and a2 < b2. Now by definition

Pr(a < X ≤ b) = Pr(X ≤ b)−Pr(X ≤ (a2,b1))−Pr(X ≤ (a1,b2))+Pr(X ≤ a) (I.1)
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This can be used to define a function that assigns a ’volume’ to a bounded rectangle

B = (a, b] = {(x, y) : a1 < x ≤ b1, a2 < y ≤ b2} (I.2)

for any G :R→R by setting

VG (B) =G(b)−G(a2,b1)−G(a1,b2)+G(a) (I.3)

This volume function is used to define 2-increasing functions as functions that satisfy
VG (B) ≥ 0 or all rectangles. The definition of a volume function in n dimensions follows
the same principle, but requires a more complex notation.

If F is the joint cdf of a 2D real-valued random vector X = (X1, X2), then F (x) =
Pr(X1 ≤ x1, X2 ≤ x2).

1. F is 2-increasing

2. limx1↓a1 F (x1, a2) = F (a) and limx2↓a2 F (a1, x2) = F (a) (F is right continuous for
each vector component)

3. limx1→−∞F (x1, a2) = 0; limx2→−∞F (a1, x2) = 0

4. limx→(∞,∞)F (x) = 1

According to Joe [22] these conditions are also sufficient for F to be a bivariate cdf.

I.2.1. A TWO DIMENSIONAL COPULA

An 2D copula is a function C from [0,1]2 to [0,1] that is continuous and non-decreasing
such that

1. C is 2-increasing

2. C is right continuous

3. C (x1,0) = 0;C (0, x2) = 0

4. C (x1,1) = x1;C (1, x2) = x2

A shorter definition can be formulated by using the definition of a 2D cdf: a 2D copula is
a 2D cdf on the unit square with uniform marginals. The central theorem about copulas
(stated for the 2D case) is the following

Theorem 4. If H is an 2D cdf with marginal distributions F1,F2 then there exists a copula
C such that

H(x1, x2) =C (F1(x1),F2(x2)) (I.4)

and if F1,F2 are cdfs and C is a 2D copula, then C (F1(x1),F2(x2)) is a 2D cdf [22, 23].
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I.3. SOME ARCHIMEDEAN COPULAS

I.3.1. FRANK
The cdf for the Frank copula is

CF(u, v ;θ) =−1

θ
log

[
1+

(
exp(−θu)−1

)(
exp(−θv)−1

)
exp(−θ)−1

]
(I.5)

where −∞< θ < 0 or 0 < θ <∞. The pdf for the Frank copula is

cF(u, v ;θ) = θ(1−exp(−θ))exp(−θ[u + v])(
exp(−θ)−exp(−θu)−exp(−θv)+exp(−θ[u + v])

)2 (I.6)

I.3.2. CLAYTON
The cdf for the Clayton copula is

CC(u, v ;θ) = [max(u−θ+ v−θ−1,0)]−1/θ (I.7)

where −1 ≤ θ <∞, The pdf for thr Clayton is

cC(u,v ;θ) =


0

0

(1+θ)u−1−θv−1−θ(u−θ+ v−θ−1)−2−1/θ

u−θ+ v−θ−1 < 0

u−θ+ v−θ−1 = 0,−1 < θ < 0

u−θ+ v−θ−1 > 0
(I.8)

I.3.3. GUMBEL
The cdf for the Gumbel copula is

CG(u, v ;θ) = exp
(
−[−(−logu)θ+ (−logv)θ]1/θ

)
(I.9)

where −1 ≤ θ <∞. The pdf for the Gumbel copula is

cG(u, v ;θ) = CG(u, v ;θ)

uv
(logulogv)θ−1

(
(−logu)θ+ (−logv)θ

)1/θ−2 ((
(−logu)θ+ (−logv)θ

)
1/θ+θ−1

)
(I.10)

I.4. SOME EXTREME VALUE COPULAS
A bivariate extreme value copula is a copula that satisfies

C (ut , v t ) =C t (u, v) (I.11)

The Gumbel copula described earlier is an extreme value copula.

I.4.1. GALAMBOS
The cdf for the Galambos copula is

CGa(u, v ;θ) = uvexp
(
[(−logu)−θ+ (−logv)−θ]−1/θ

)
(I.12)

where 0 ≤ θ <∞.
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I.4.2. HUESLER-REISS
The cdf for the Huesler-Reiss copula is

CHR(u, v ;θ) = exp

[
(logu)Φ

(
1

θ
+ θ

2
log

(
logu

logv

))
+ (logv)Φ

(
1

θ
+ θ

2
log

(
logv

logu

))]
(I.13)

whereΦ is the cdf of the univariate standard normal distribution.
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