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Previous research shows that eating together (i.e., commensality) impacts

food choice, time spent eating, and enjoyment. Conversely, eating alone is

considered a possible cause of unhappiness. In this paper, we conceptually

explore how interactive technology might allow for the creation of artificial

commensal companions: embodied agents providing company to humans

during meals (e.g., a person living in isolation due to health reasons). We

operationalize this with the design of our commensal companion: a system

based on the MyKeepon robot, paired with a Kinect sensor, able to track the

human commensal’s activity (i.e., food picking and intake) and able to perform

predefined nonverbal behavior in response. In this preliminary study with

10 participants, we investigate whether this autonomous social robot-based

system can positively establish an interaction that humans perceive and

whether it can influence their food choices. In this study, the participants

are asked to taste some chocolates with and without the presence of an

artificial commensal companion. The participants are made to believe that

the study targets the food experience, whilst the presence of a robot is

accidental. Next, we analyze their food choices and feedback regarding

the role and social presence of the artificial commensal during the task

performance. We conclude the paper by discussing the lessons we learned

about the first interactions we observed between a human and a social robot

in a commensality setting and by proposing future steps and more complex

applications for this novel kind of technology.

KEYWORDS

computational commensality, social robot, artificial companion, nonverbal

interaction, commensality

1. Introduction

Eating together is a crucial social activity that is often referred to with the word

“commensality”, which means “the practice of sharing food and eating together in a

social group” (Ochs and Shohet, 2006). Social psychology has shown that being in a

commensality setting has several positive impacts. For instance, social eating is more

enjoyable than eating alone (Danesi, 2018), food choices are healthier (Fulkerson et al.,

2014) and time spent while eating is longer (Bell and Pliner, 2003). Commensality

may also strengthen social bonds, e.g., Giacoman (2016) shows that shared meals

strengthen the cohesion among the members of a group. At the same time, studies
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(Yiengprugsawan et al., 2015; Sainsbury, 2018) realized in

different parts of the world (UK, Thailand) show that eating

meals alone is one of the most important causes of unhappiness.

Moreover, it may cause several health consequences such as

obesity (Hammons and Fiese, 2011). Despite these research

results, current trends in industrialized societies are resulting

in reduced commensality. People consciously choose (e.g., by

eating in front of the TV) or are forced (e.g., by health reasons)

to eat alone. Other examples include the elderly or people

living away from family and friends due to work. It is expected

that such social isolation may increase in the coming decades,

bringing a further decline in commensality (Spence et al., 2019).

The role of interactive technologies in commensality settings

is quite ambiguous. On the one hand, they are often seen as a

cause of social distraction, for example, the stereotypical picture

of a couple using smartphones while eating together. In this line,

Dwyer et al. (2018) show that even the presence of the phone

on the table during eating may negatively impact the benefits

of social interactions. On the other hand, interactive technology

(e.g., embodied agents) can also contribute positively to solving

specific issues related to food consumption. For example, social

robots can be used to motivate people to improve their eating

habits or follow a diet (Baroni et al., 2014), or to assist people

with physical disabilities in eating (Park et al., 2020). However,

technology such as social robots, virtual agents, or chatbots

can also be used for entertainment purposes to enable/enhance

social interaction and conviviality, and, consequently, increase

personal well-being. It can, for instance, become a part of an

artistic performance (Breazeal et al., 2003) or a game buddy

(Shahid et al., 2014). It is used to address social isolation

(Toh et al., 2022), and humans may report a certain sense

of attachment, especially to robot companions (Banks et al.,

2008). Unfortunately, just a few works use these technologies

in a commensality setting. Consequently, it remains unclear

whether such technology may be used in an interaction rated

positively by human partners, makes the eating experience more

enjoyable, and increases the conviviality at the table. In order to

address these questions, we introduce and explore a prototype

of an interactive Artificial Commensal Companion (ACC): a

system in which an embodied artificial agent becomes an active

partner during eating, able to interact with a human partner and

influence their eating experience. We aim to measure the user’s

experience with this technology and the ACC’s ability to impact

human behavior in a commensality scenario. Specifically, in this

study, our ACC uses nonverbal behaviors to attempt to influence

a person’s food choice and perception of the food. By gaining

insights into how people respond to such technology, we hope

to learn how to develop more advanced artificial social agents

in the future whose role at the dining table better fits with that

of a human co-diner. Our long-term aims are to build ACCs

that can create rated-positively interactions with humans while

eating and to replicate with ACCs the benefits of human-human

commensality, e.g., to impact on meal duration.

2. Commensality and technology

Nowadays, technology is widely present at the dining

table. For instance, people texting with their smartphone

while eating, sharing photos of their plates on social media

(Ferdous et al., 2016), or even broadcasting themselves while

consuming food (Choe, 2019; Anjani et al., 2020). While these

technological activities impact social dynamics, other more

sophisticated technologies are envisioned to better integrate

social factors in food consumption. This is also one of the

main interests of the Human-Food Interaction (HFI) research

area. This emerging field looks at the intersection of human-

technology interaction and (social) food practices (Altarriba

Bertran et al., 2019). Niewiadomski et al. (2019) postulate that

interactive technology may be used to replicate, emulate, or

enable commensality. The idea behind this concept is that,

by properly designing and implementing computer interfaces

for allowing social interactions around eating activities, we

could provide users with the beneficial effects characterizing

human commensality in contexts that would otherwise force

them to dine alone. While eating together with other people,

in particular family members and friends, is something that is

easily missed when situations prevent co-dining (e.g., during

social distancing measures and lock-downs) and it is difficult

to replace, technological solutions could potentially help reduce

or mitigate the negative consequences of eating alone. However,

Spence et al. (2019) highlight that there is still a “limited

extent of research investigating how these approaches deliver

the same health/well-being benefits associated with physically

dining together with another person/other people.”

One up-and-coming technology in this regard is social

robots. In general, social robots emulate human social behaviors

to create natural interactions with humans. Such robots

may have different physical appearances (humanoid or non-

humanoid) and can use a variety of communication modalities

(e.g., voice, touch, or movement). They have been applied in

various settings and have been shown to affect perceived social

presence (Pereira et al., 2014) positively. Moreover, the recent

progress in automatic emotion and social signal detection (Hung

and Gatica-Perez, 2010; Trigeorgis et al., 2016; Beyan et al.,

2021) allow social robots to sense, recognize and adapt their

behavior to a human’s internal states and, as a consequence, to

create a natural multimodal interaction (Belpaeme et al., 2013).

However, it is currently not clear how social robots could, or

should, fit in social eating settings. In this paper, we see whether

social robots may become commensal companions.

3. Artificial commensal companions

An Artificial Commensal Companion (ACC) is a socially

intelligent agent (Lugrin et al., 2021), e.g., a virtual agent or

social robot designed to interact with humans during meal
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time. ACCs should be able to act autonomously, considering

the social dynamics occurring during a meal in a commensality

setting. Niewiadomski et al. (2019) propose a computational

commensality scenario, in which “human(s) interact with an

artificial companion during meal time. The companion uses

sensors and computational models of commensality to guide its

behavior toward the human interlocutor.” Ideally, ACC should

be able to create interaction rated positively by their human

interaction partners. It also means that agents must behave

appropriately by considering human behavior and the context,

e.g., when their human partners put food in their mouth or are

chewing, they should avoid staring at them.

Several attempts have been made to make artificial

companions present during meals. Khot et al. (2019) propose a

speculative design prototype called FoBo, which aims to create

playful and entertaining interactions around a meal. It may

“consume” batteries, perform sounds related to eating (e.g.,

burping and purring), and mimic some human behaviors. Liu

and Inoue (2014) propose a virtual eating companion being

at the same time an active listener when consuming virtual

food. The companion’s role is to support the generation of new

ideas during meals. Takahashi et al. (2017) develop a virtual co-

eating system allowing small talks and conversations related to

the food. A preliminary evaluation with five participants shows

positive outcomes of using this technology. Weber et al. (2021)

propose FoodChattAR—edible anthropomorphic virtual agents,

i.e., virtual creatures displayed on top of food. A smartphone

is used to scan a QR code and visualize an augmented version

of the food, and the human may interact with this version of

their food via text or voice. Fujii et al. (2020) propose a system

composed of a humanoid robot and a Mixed Reality headset.

Humans can see a robot putting food images into its mouth.

The evaluation shows that users enjoy their meals more when

the robot eats with them than when it only talks without eating.

However, none of the previous attempts are specifically designed

to study the social interaction between the ACC and the human

during mealtime.

Other works exploit virtual agents and/or robots to support

eating activity or food preparation, e.g., assistance for physically

impaired people. In this line, McColl and Nejat (2013) propose

an assistive robot to cognitively stimulate and engage the

elderly while eating. Their robot can detect the amount of food

intake while interacting with the user, both verbally and non-

verbally. Some of the robot utterances are directly related to

the eating itself (e.g., encouragements), while the others are

aimed at enhancing the interaction (e.g., greetings, telling jokes,

laughing). The robot described by Park et al. (2020) deliver

food from a bowl to the user’s mouth. It automatically estimates

the location of food, scoops it and places it inside the user’s

mouth. More common are systems that monitor and support

users in changing their eating habits. For example, in Gardiner

et al. (2017), a virtual assistant provides personalized dietary

suggestions and health information (e.g., food recipes) to the

human user, asking them food-related questions. Pollak et al.

(2010) use a mobile virtual pet to send daily reminders on

eating habits. Baroni et al. (2014) use a humanoid robot to

persuade children to eat more fruit and vegetables. Health-e-

Eater by Randall et al. (2018) comprises a sensor-equipped plate

and a simple robotic companion, which motivates and educates

children during healthy meals. Again, it is essential to notice

that the primary aim of all these systems is not related to social

interaction but to support commitment to healthier eating.

Building an ACC is an exciting challenge. When designing

the behavior of artificial companions to “replace” humans in

complex interactive scenarios, the most common approach is

replicating human behavior (Castellano et al., 2011). Usually, a

large corpus of human-human interactions is collected. Machine

learning or other techniques are used to model the companion’s

behavior using the data of human-human interactions. Such

data can be used to generate specific nonverbal behaviors (e.g., to

replicate sequences of facial actions or gestures) and appropriate

social signals (e.g., for turn-taking, expressing attention, social

attitudes, or interpersonal relations). Many examples exist in

the literature, for example, laughing interactive virtual agents

(Niewiadomski et al., 2013; Mancini et al., 2017) or actively

listening virtual characters able to display back-channels to the

human speakers (Bevacqua et al., 2010; op den Akker and

Bruijnes, 2012).

A similar approach may not be appropriate for ACCs. Let

us imagine two humans dining together: they continuously

switch their attention between their meal and interlocutor,

so their gaze constantly moves from the plate to the other

person, and vice-versa. However, ACCs do not need to gaze

at their plate (it is not clear yet whether they need one,

see our discussion in Section 5.5), and they should neither

continuously focus their attention on the (human) interlocutor’s

face (as looking at someone eating for too long will make the

observed person feel uncomfortable) nor on their plate. So, in

this case, instead of replicating the human behavior, e.g., by

producing generative models using a data-driven approach, as

it happens for other interaction types, e.g., Jin et al. (2019),

we need to design carefully new interaction models (e.g., using

procedural approach) that control behaviors of the agent in

the commensal setting and test these models empirically. The

user experience should be evaluated to see whether these new

interaction models would be acceptable for humans while

eating and would not be perceived as inappropriate, unusual,

or disturbing during food consumption. In the following

sections, we present a fundamental realization of this proposal:

a simple ACC interacts nonverbally with an eating human.

The interaction is not modeled on actual human data but

based on the state machine model designed ad hoc. Next,

the user experience and behavior are validated qualitatively

and quantitatively.

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2022.909844
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Niewiadomski et al. 10.3389/fcomp.2022.909844

4. System description

For this work, we utilize a myKeepon, a simple toy robot,

which was already exploited for research purposes (Kozima et al.,

2009). We decided to use a robot because, in our study, we

explore gaze behavior, which is a significant nonverbal behavior

in human-human interaction in general (Kleinke, 1986) and, as

a consequence, in commensality settings. Usually, the impact

of gaze behavior is more accessible to measure in human-robot

interactions than, e.g., in human-virtual agent interactions, due

to the robot’s physical presence (Ruhland et al., 2015). Despite

its simple design, the myKeepon robot can be programmed

to mimic proper gaze behaviors (i.e., aiming gaze at specific

locations in the real world). At the same time, we expect that

using a toy robot will reduce users’ expectations about what

the robot can do and the interaction complexity in general.

Consequently, even a limited repertoire of nonverbal behaviors

might be acceptable to a human user (Thórisson and Cassell,

1996). Lastly, its pet-like design may elicit positive reactions

in participants.

Figure 1 illustrates the system we developed. The user is

sitting on a chair facing the robot, and the robot is placed on a

dining table with 2 bowls containing food. The bowls are placed

at 2 pre-defined positions in the scene: Object 0 is on the left,

Object 1 is one the right of the user. As the positions of these two

objects are predefined, the robot can “detect” the user’s choice of

eating from either bowl by tracking the user’s hand position.

In the experimental scenario, both bowls contain the same

amount of food. The robot interacts with a human and aims to

get participants to eat more from the target bowl through gazing

patterns and other nonverbal behavior.

4.1. Robot

The myKeepon robot is not equipped with any sensing

ability. To track the human movement, we used a Kinect sensor

placed behind the robot (see Section 4.2 for more details). The

myKeepon’s behavior is controlled via Python code and an

Arduino board translating Python commands to I2C signals

that the robot’s controller can understand. The robot has three

degrees of freedom (left/right rotation, front/back, and left/right

leaning) and can perform stretching movements up and down.

The list of commands for the robot’s controller is available on

GitHub1. Despite using this relatively simple hardware setup, the

system is fully autonomous, and the human operator does not

control it (e.g., through a Wizard-of-Oz).

1 https://github.com/beatbots/mykeepon

4.2. User detection

The system utilizes a Kinect sensor through the Python

pyKinect2 wrapper to track the user’s position. Since the

user is sitting in front of the robot and there are no other

occlusions, tracking the user’s head and hands with Kinect

should provide good quality data. The wrapper returns a list

of body joint names, locations, and confidence scores in [0, 1].

The system detects the 2D position of 3 joints: Head, HandRight

and HandLeft.

The robot displays nonverbal feedback to the human (see

Section 4.3 for details) whenever the latter picks up some food.

These events are detected by determining the distance between

the user’s hand and the two bowls; for example, if this distance

becomes less than a certain threshold, the user picks up food.

4.3. Robot synthesis

A signal planner determines the nonverbal signals to

be displayed by the robot depending on the user’s tracked

behaviors. The planner is based on two components: a Gaze

Model and an Emotion Model.

Gaze Model. Gaze is a nonverbal cue with several functions

(Ruhland et al., 2015). In our system, the gaze is used to refer to

regions, features, and values of interest in the visual field (Tsotsos

et al., 1995). In particular, the robot can gaze at different regions

of interest: each of the 2 bowls containing food, the user’s head,

and the user’s hands. The gaze signals are generated by the state

machine depicted in Figure 2.

The goal of the robot’s gaze behavior is to establish and

maintain gaze contact with the user and to signal to the user

that the robot is interested in the food that is contained in the

2 bowls placed on the table. More in detail, we implemented the

command GazeAt(x,y), where (x, y) is the target location, in the

robot’s view space that must be gazed at by the robot. Assuming

that a camera is placed in the same location as the robot’s head,

the point (0, 0) is the bottom-left corner of the camera field of

view, while (1, 1) is the top-right corner. The x coordinate of the

target location is reached by rotating the robot on the horizontal

plane and by converting rotation values to linear values with

the equation:

rotH = arcsin (x− 0.5)

The same idea is applied to the vertical rotation:

rotV = arcsin (y− 0.5) ∗ 3.33

Emotion Model. Emotional feedback can be expressed by robots,

even by those withminimal degrees of freedom, as demonstrated

by Beck et al. (2012). For our robot, this consists of the nonverbal

signals produced by the robot to communicate its emotional

state in response to the nonverbal actions of the user (e.g.,
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FIGURE 1

Technical setup: the participant is seated at a dining table with two bowls with identical chocolates; the robot is placed on the table at an equal

distance from the bowls, performing nonverbal behaviors.

FIGURE 2

Robot’s nonverbal signals state machine. T is a time counter set to zero each time a new state is reached. Then, it is compared against 3

thresholds to determine state changes: TTA and TTB are the time thresholds for switching the robot’s gaze between the user’s dominant hand

and the food bowl on which the robot would like to attract the user’s attention; TTC is the time threshold for returning from the Happy or Sad

state to the Gaze state. D0 is the distance between the user’s dominant hand and the food bowl on which the robot would like to attract the

user’s attention, which is compared against 2 thresholds DTA and DTB, to know when the user has picked some food from the bowl (D0 < DTA)

and starts bringing food back to mouth (D0 > DTB). Similarly, D1 is the distance between the user’s dominant hand and the other food bowl,

which is compared against the same 2 thresholds DTA and DTB, to know, again, when the user has picked some food from the bowl (D0 < DTA)

and starts bringing food back to mouth (D0 > DTB). The dashed arrows in the Happy state indicate that one of the two nonverbal signals (jump,

head nod) is randomly selected.

picking some food from a bowl). Given the limited degrees

of freedom of myKeepon, only 2 “broad” classes of emotional

feedback are considered: positive feedback (e.g., joy, happiness)

and negative feedback (e.g., sadness or disappointment). By

producing emotional feedback after the user’s action, the robot

aims to “cheer on” the user or display disappointment. The

emotional display depends on the user’s choice of eating

from one bowl (i.e., the target one) or another (i.e., the

non-target bowl).

The emotion signals are:

• HeadNod - the robot produces a head nod by performing

two tilt movements in a row (starting from the centered

position), the first one of 25 degrees forward, the second
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one of 25 degrees backward (going back to the neutral

starting position);

• Bow - the robot bows forward by performing one tilt

movement, starting from the centered position of 45

degrees forward;

• Jump - the robot can “jump” by compressing and extending

its body in the vertical direction, a movement called “pon”

by the robot’s makers. The jump signal is implemented

by a sequence of “pon up” and “pon down” commands

(repeated 3 times).

4.4. Interaction

At its core, the robot behavior decision module can be

modeled as the state machine illustrated in Figure 2. The robot

“gazes” at the user’s dominant hand for a specific time, then it

“gazes” at the target bowl and returns to gazing at the user’s

dominant hand. If the user takes one chocolate from the target

bowl the robot randomly performs one of two positive emotional

feedbacks. However, if the user takes one chocolate from the

non-target bowl, the robot makes an “unhappy” sound and does

a long “forward bow.”

4.4.1. States

While being in the Gaze state, the robot’s gaze continuously

shifts between the user’s dominant hand, tracked by the Kinect,

and the location of Object 0 in the scene, depending on 2

time thresholds TTA and TTB, that were empirically set to 8

and 2 s, respectively. The Happy state (see Figure 2) triggers

the generation of two emotional signals of positive emotional

feedback: one in which the robot performs some quick up/down

movements, and another one in which it nods with its head, both

accompanied by cheering sounds. The Sad state (see Figure 2)

triggers the generation of an emotional signal of a negative

emotional state: the robot bows forward, accompanying the

movement with a low-frequency sound.

4.4.2. Transitions

Transitions between the states are conditioned by checking

the value of variables T, D0 and D1. Variable T is a timer

that is periodically reset to zero to make the robot’s gaze shift

between the user’s hand and Object 0, and to make the robot

return from theHappy and Sad states to theGaze state. Variables

D0 and D1 measure the distances between the user’s dominant

hand and Object 0 and Object 1, respectively. When D0 and

D1 become smaller than threshold DTA, the robot changes its

state to Happy and Sad, respectively. Since we want to produce

emotional feedback only when the user’s hand is retracting from

one of the two objects, in both states, we keep comparingD0 and

D1 with a different threshold DTB, this time to check weather

they have become greater than that. The states labeled with

emotional signals can be read as in the following example:

D0 > DTB : jumpT = 0 (1)

which means: “the value of D0 is continuously compared with

threshold DTB and, whenever it becomes greater than the

threshold, the jump signal is triggered, and the timer T is reset to

zero to wait a certain amount of time before transitioning back

to the state Gaze.”

5. Preliminary study

In this study, we investigate whether the presence of an

interactive ACC is preferred over eating alone; and whether an

ACC affects humans while eating, and more specifically, their

food choice and food experience. Regarding the first question,

according to our knowledge, while some interesting works exist

(see Section 3), there are no previous studies evaluating the social

acceptance of an artificial companion interacting with a human

while eating. Additionally, by answering the second question,

we can see whether the ACC’s nonverbal behavior may have a

tangible impact on its human interaction partner and whether

the ACC is not ignored. For these reasons, we qualitatively and

quantitatively explore the role of a simple interactive robot able

to display certain nonverbal behavior in the context of food

consumption. We learn about participants’ impressions of the

ACC and what directions for research those insights will direct

us toward.

5.1. Participants

A convenience sample of participants recruited from the

University College Cork was asked to participate in a chocolate

testing study. According to the “cover story” presented in writing

to the participants, a food company was to launch a new type of

chocolate in the coming months. The participants were asked

to try and rate the taste of four kinds of chocolates made with

slightly different ingredients. They would compare two of these

chocolate types at a time by picking chocolates from two bowls

in front of them. They would have about 3 min to choose from

any of the bowls any number of chocolates they wanted (all

instructions are presented in Appendix 1). Before participating

in the study, all participants signed the informed consent,

allowing them to withdraw from the study at any time. They

were also warned about possible food allergens. Importantly, the

participants were not informed about the possible presence of a

robot during the experiment.

The study took place in a University College Cork building.
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5.2. Conditions

The study consists of 2 conditions: a Baseline condition and

an Active condition (i.e., with a robot). In the cover story, we did

not reference the robot’s presence. In the Baseline condition,

the robot is not present: the subject is seated alone at a dining

table with two bowls in front of them, each containing 10

identical chocolates. The chocolates were a cheaper version of

Nestle’s Smarties, so they were all equal in shape and size but

different in color. In the Active condition, the subject is seated

at an identical table with two new bowls in front of them, each

containing 10 chocolates of the same type as the ones in the

other condition, but this time the robot is placed on the table

in front of them, as illustrated in Figure 1. The robot interacts

with the human and gives nonverbal feedback, as described in

the previous section.

5.3. Data

First, we performed the qualitative evaluation through

Interaction Questionnaire. For this purpose, we administered a

survey with open-ended questions to determine the participants’

impressions on this specific interaction with a robot (R1, R4),

opinions on the chocolates (R2-R3), using robots as ACCs in

general (R5, R7), possible improvements (R8), and applications

of this technology (R9-R10). We also checked whether the cover

story was believable and whether the participants suspected the

study’s real goal (R6). The questionnaire was composed of 10

questions, and participation was not obligatory. Participants

filled it in online after the experiment. The open-ended

questions were:

• R1. What did you think of the overall experience/setup?

• R2. What did you think about the chocolates?

• R3. Overall, which chocolate was your favorite?

• R4. What was your impression of the robot? (Like/Dislike)

• R5. Did you prefer having a robot companion over no

companion at all?

• R6. Did you think the robot had a specific purpose, if so,

what did you think it was?

• R7. Would you ever consider a robot as a dinner table

companion? Why/Why not?

• R8. What else should the robot be able to do to be more

useful for you?

• R9. (Optional) Who could benefit from such a

robot companion?

• R10. (Optional) Do you have any other comments to share

with us?

Second, the participants were asked to provide detailed

impressions of the chocolates and whether they would

recommend them or not (Chocolate Evaluation). This

questionnaire was used to give credibility to the cover

story and check whether the robot influences the participants’

perception of the consumed food. The previous works show

that other types of interactive technology can, in fact, influence

taste and flavor perceptions, e.g., Bruijnes et al. (2016) and

Huisman et al. (2016). More specifically, participants were asked

to express their opinions about the tasted chocolates in terms of

texture (C1 - from soft to hard), taste (C2 - from bad to good),

texture in the mouth (C3 - from sticky to smooth, and C4 - solid

to melted) as well as the residual sensation (C5 - from “sticky

after swallowing” to “not sticky after swallowing”) using 9-point

scales. The chocolate evaluation questionnaire was inspired

by Lenfant et al. (2013). Additionally, we asked participants

whether or not they would recommend the chocolates from

each cup (binary answer Yes/No). The participants filled this

questionnaire immediately after each condition.

Third, we measured the Chocolate Intake in both conditions

by counting, after each trial, the number of remaining chocolates

in each bowl. At the beginning of each trial, the same number of

chocolates, i.e., ten, was in each bowl.

5.4. Results

5.4.1. Qualitative analysis

Ten students (8 males, 2 females) participated in the study.

All of them performed both conditions. Due to external factors

(i.e., the COVID-19 outbreak), we could not complete the study,

which was initially planned to involve 40 participants testing the

two conditions in a different order.

Six persons filled out the questionnaires. Their general

impressions were positive (question R1). The participants

reported that they enjoyed the experience. Regarding R2, the

participants reported that they liked all proposed chocolates.

Some of the participants explicitly remarked having difficulties

in finding any difference between them, e.g.:

“The chocolates were tasty. In the first round, I thought

they tasted similar, but in the second round with the robot, I

thought they tasted the same.”

However, when they were asked to express their preference by

picking one bowl out of four (question R3), four out of six

participants indicated to prefer the chocolates in the target bowl

(i.e., the one suggested by the robot).

When responding to question R4, all participants indicated

to like the robot. One participant commented on the nature of

the robot’s behavior:

“I thought it was fun playing with gestures and seeing

the robot’s reactions, both physically and verbally. The robot

also seemed really curious about my actions.”
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Two participants mentioned that they appreciated the

robot’s presence while they were tasting the chocolates,

remarking that it was enjoyable and made them feel

less alone:

“I liked the robot, made it comfortable to eat as I didn’t

feel I was all by myself.”

“I liked the robot. He made eating the chocolate

more enjoyable.”

When asked whether participants preferred tasting the

chocolates alone or with the robot companion (question R5), all

participants indicated preferring the tasting in the presence of

the robot companion. One participant remarked:

“I preferred the robot companion, it made it less

awkward than being alone and eating in public.”

Regarding question R7, a majority of participants (four

out of six) responded that they would consider the robot an

alternative to eating alone. Participant remarked:

“Yeah, I think it would be a fun experience if the robot

was part of a group, but if it was a one-on-one situation I’m

not sure if I would enjoy it.”

The other two said:

“I would consider it instead of eating on your own.”

and

“Yes, it made eating alone a lot more enjoyable.”

Participants could also suggest (question R8) how to make

the robot more useful. Adding verbal communication was the

main suggestion made by participants. For example:

“On the subject of conscious eating it would be cool

for the robot to tell you how much you ate, like how many

chocolates or how many portions of a meal. It would make

people more responsible with regards to over-eating.”

The robot’s potential to reduce loneliness was underlined

when participants were asked who could benefit from the robot’s

presence (question R9). Half of the participants suggested that

people living alone could benefit from such a companion (the

elderly were given as an example). We also asked participants

what they thought the robot’s purpose was (question R6).

Interestingly, only one participant out of six commented that the

robot attempted to “force you to pick a certain cup of chocolate.”

Half of the participants indicated they thought the robot was

their purely for entertainment, e.g.;

“Rough idea about making people laugh while eating

was my initial thought.”

Interestingly, one participant thought the robot tried to

encourage more mindful eating:

“[...]with someone staring at me it caused me to eat

fewer chocolates because I felt like I was being judged

or something.”

Finally, one participant thought the robot was there to make

participants feel more at ease when eating alone.

To estimate the overall users’ impression, we applied a

sentiment analysis tool called Vader2 (Hutto and Gilbert, 2014)

to the participants’ answers. The tool evaluates the emotional

valence of the text and provides, for each sentence, positive,

neutral, and negative scores. In Figure 3 average scores are

reported for questions that focus on the robot (we skipped

questions R2 and R3 as they are about chocolate, and R9 and

R10 as they were optional). This Figure shows strong numerical

supremacy of non-negative scores over negative ones. It means

that the comments tend to be positive or neutral. In particular,

the highest positive score was obtained for the question R4,

which directly evaluates the robot.

5.4.2. Quantitative analysis

The Chocolate Evaluation questionnaire was filled by all

ten participants. No significant differences were observed in the

chocolate evaluation between the four bowls computed with

repeated measures ANOVA: F(3, 27) = 0.399, p = 0.76 for C1,

F(3, 27) = 0.234, p = 0.87 for C2, F(3, 27) = 1.667, p = 0.72

for C3, F(3, 27) = 0.856, p = 0.48 for C4, and F(3, 27) = 0.683,

p = 0.57 for C5. Next, we computed the absolute difference of

the C1–C5 scores between the left and right bowls in Baseline

and Active conditions, and the results are in Figure 4. The

more significant differences would be expected in the Active

condition than in the Baseline condition if the robot influenced

the perception of some chocolates’ features, such as texture. All

the results are non significant measured with paired 1-tailed T-

test: t(9) = −0.643, p = 0.27 for C1, t(9) = −0.418, p = 0.34 for

C2, t(9) = 0.231, p = 0.41 for C3, t(9) = 1.060, p = 0.16 for C4,

and t(9) = −0.287, p = 0.39 for C5.

Regarding the last question of the Chocolate Evaluation

questionnaire, in the Active Condition, the same number of

participants recommended the chocolates from the target and

non-target bowl. These results suggest that the robot behavior

2 https://github.com/cjhutto/vaderSentiment
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FIGURE 3

Average values of positive, neutral, and negative scores obtained with sentiment analysis tool for robot-related questions. The scores represent

probabilities, so the positive, neutral and negative scores per question always sum to 1. For each question, we report the probability that the

corresponding answers have a positive, neutral, or negative a�ective content.

FIGURE 4

Absolute average di�erences of the scores C1–C5 given to

chocolates places in two bowls per condition.

did not influence the perception of the chocolates’ features. In

the first questionnaire, 4 out of 6 participants indicated the

target bowl by answering question R3 (which chocolate was your

favorite). This may suggest that their preferences do not depend

on the specific features of the chocolates (all the chocolates were

identical in taste).

Last but not least, we counted the number of chocolates

remaining in each of the four bowls (two bowls in the

Baseline and two in the Active condition). Next, we computed

the averages of the participants. We performed two different

statistical analyses of these data. First, the repeated measures

ANOVA did not show differences between 4 bowls [F(3, 27) =

0.587, p = 0.629]. Additionally, we counted, per participant and

condition, the difference between the number of chocolates that

were left in the right and left bowl. Using paired 1-tailed T-test

we conclude that there was no significant difference between

Baseline and Active conditions [t(9) = 1.049, p = 0.16].

While there is no statistically significant difference between the

bowls and conditions, in Baseline Condition, the participants

left nearly the same quantity of chocolates in each bowl (left

bowl: M = 5.8, SD = 1.31, right bowl: M = 5.9, SD = 0.99). In

the Active condition, however, they left fewer chocolates in the

target bowl, i.e., the bowl on which the ACC was directing the

attention of the user by providing positive feedback;M = 5.3, SD

= 2.21), and more in the non-target bowl (M = 6.1, SD = 1.73).

The standard deviations are higher in the Active condition,

and a few participants left only 1–2 chocolates in the target

bowl. The reason for these substantial differences between the

participants in the Active condition needs to be better explored

in future studies. In total, slightly more chocolates were eaten

in the Active condition. Even if this result is not statistically

significant, it suggests that the social and interactive artificial

companions might affect the intake quantity (similarly to how

human commensal companions affect the intake quantity).

5.5. Discussion

Results from our qualitative survey indicate that the

presence of an interactive and social robot is preferred over

eating alone. At the same time, the subjects would like to

have a robot displaying more active social behaviors. They also

expressed the desire to have a more interactive, emotive, and

expressive robot companion in the future. According to the

participants, the robot’s presence resulted in a more enjoyable

eating experience, indicating that this technology can be helpful

to create commensality. The subjects identified the groups of

people who would benefit the most from the development of

such ACC: the elderly and people who live alone, two of the

groups we expect to be most at risk of social isolation, lacking

the experience of commensality.
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We speculate that the ACC may influence food choices

and intake. While previous research showed that artificial

agents could, in general, be persuasive (Poggi et al., 2008;

Chidambaram et al., 2012), in the particular context of changing

the eating habits using robots, they focused mainly on verbal

communication, e.g., Baroni et al. (2014), while our work used

on the nonverbal communication only. Interestingly, while

the participants could not find differences, e.g., in taste or

texture, they still showed some preference toward the chocolates

suggested by a robot companion. They also ate more chocolates

from that bowl.

This study inspires several questions relating to

commensality and ACCs. For example, the current

implementation uses a toy robot, but it is unknown what

is the most appropriate embodiment for an ACC. Does an

ACC need to have a human-like appearance or not? On the one

hand, a human-like appearance might raise human expectations

regarding the communicative and social skills of the robot,

eventually evoking the Uncanny valley effect. On the other

hand, measuring preferences in the health care context between

1) anthropomorphic, 2) zoomorphic, and 3) mechanomorphic

robots, 4) able to speak, 5) generate no-speech sounds, or 6)

communicate by written text only, anthropomorphic, and

speaking robots were preferred (Klüber and Onnasch, 2022).

Importantly, in that study, the robots were not only performing

social but also functional tasks, e.g., providing medications,

assisting with serving meals, etc. ACCs are mainly social

partners; thus, the expectations regarding their embodiment

might be different.

Independently from the fact whether the ACCs are human-

like or not, it is not clear whether they should simulate the

food intake during the interaction. Some preliminary works,

in this line, exist that use both virtual agents (Liu and Inoue,

2014) and robots (Fujii et al., 2020), and report interesting

results (see Section 3 for details). Unfortunately, the solution

proposed in the latter paper requires additional technology (a

headset), which makes the experience less natural. However, we

believe that to become positively rated social partners, artificial

companions do not need to replicate all human behaviors at the

table, including food intake.

The other open question related to the “human-likeness”

issue, is the use of verbal communication. From our

questionnaires, it seems that our participants would prefer to

be able to communicate verbally with the artificial companions.

Adding the possibility of verbal communication may, however,

again potentially raise the participants’ expectations regarding

this type of technology. The topics of the discussions at the

table may vary a lot, which can be a challenge even for the

most advanced existing AI systems. Additionally, conversations

at the table usually do not have predefined leaders; the

partners exchange the roles of speakers and active listeners,

and this task is not trivial for AI. Other issues need to be

addressed to build more complex and natural interactions.

The automatic recognition of commensal activities, i.e., the

activities commensal partners perform at the table (such as

food intake, speaking, chewing, etc.), is another open challenge.

The first datasets (Ceccaldi et al., 2022) and computational

models detecting, e.g., chewing and speaking in a video data

were only recently proposed (Hossain et al., 2020; Rouast

and Adam, 2020). Such models are, however, indispensable to

building human-robot verbal interaction in the commensal

setting. The robot needs to know when to take the conversation

turn and not to interrupt the human speaking, etc. The

inappropriate modeling of turn-taking make bring rather

negative consequences (ter Maat et al., 2010).

Another question is related to the interaction’s aim. When

we invite, e.g., a friend at home to eat dinner together, our

motivations are, probably, to experience conviviality and make

the activity (i.e., eating) more enjoyable (Phull et al., 2015). Even

being aware of the health benefits of the commensality (see

Section 1 for some examples), we would not prepare dinner for a

friend for these reasons. By analogy, we believe the ACCs should,

first of all, make the experience more enjoyable and convivial.

One of the means to obtain this is to introduce the playfulness

(Altarriba Bertran et al., 2019) and humor (Mancini et al., 2017;

Shani et al., 2022) to the behavior of the ACCs. In this line,

the previous works, e.g., Khot et al. (2019) and Weber et al.

(2021), focus on entertainment and new forms of interactions

with human partners at the table.

Last but not least, the question of whether a robot or virtual

agent provides a more appropriate ACC is relevant. The same

interaction scenario discussed in the paper could be applied to a

virtual agent (e.g., in an augmented reality setup). The advantage

of the interaction model proposed in Figure 2 is that it can

be easily implemented on different platforms, permitting cross-

platform comparison. Using virtual agents makes it easier to

eventually simulate the food intake; on the other hand, physical

robots are more persuasive and perceived more positively (Li,

2015). They can enter into physical contact with food, plates,

e.g., by passing or taking away food, which creates a possibility

for social but also playful interactions.

5.6. Limitations and future works

Several limitations of this work should also be mentioned.

The number of participants and the duration of the interaction

were limited, and the novelty of the experience could have a

positive effect on our participants. It would be essential to repeat

the interaction after some time with the same participants (that

was impossible due to pandemia). The number of nonverbal

behavior displayed by this robot is also limited, which might

negatively impact the user’s experience if the interaction was

longer. The number of “positive” Vs. “negative” behaviors

was not balanced, and they were not validated in terms of

perceived meaning. Another factor that might influence the
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agent’s perception, which was not considered in this experiment,

is the type of food consumed. Some types of food may require

more attention (e.g., fish, some sauces), and in such cases, the

robot’s behavior might be perceived as distractive. Moreover, the

type of food used in this experiment, i.e., chocolates, could create

a bias and positively influence the perception of the interaction

and robot, as chocolates are usually liked by most humans.

Thus, other-taste food (e.g., sour, acid) or food of neutral taste

should added in a form of additional experimental conditions

in the future. Finally, the within-subject design used in this

study also has some limitations. The participants performed

two conditions on the same day. Even if the task in both

conditions was the same, after consuming some chocolates in

the first condition, the participants might not be willing to

consume as many chocolates in the second condition, e.g.,

because they believed that they ate them toomuch at once. Thus,

we recommend splitting the conditions into two or more days.

In future works, alternative interaction models should be

tested using the same robot platform and questionnaires to see

whether the model described in Figure 2 is optimal or can be

improved. The other extensions of the current setup regard

the interaction with food. A more advanced robot could be

used to perform social signals, e.g., by passing (or refusing to

pass) the food to the human interaction partners. Last but not

least, our participants agree that this technology could benefit

the elderly and lonely people. Thus, future validations could

be performed directly on these sub-populations. It might be

fascinating to test it with a specific category of older adults keen

to use new technologies.

6. Conclusions

In this paper, we advocate for the creation of Artificial

Commensal Companions, i.e., embodied systems able to create

positively-perceived social interactions with eating humans.

Such agents should be, first of all, social actors that make

the eating experience more enjoyable and convivial. Their

role is not assistance (e.g., feeding) or therapy (e.g., diet

control). In other words, the ACCs are, instead, convivial

partners than digital nurses or virtual coaches. We also proposed

implementing this idea—a system composed of a programmable

toy robot and a Kinect camera that can communicate

nonverbally with the human partner. Our ACC can simulate

gaze and produce emotional feedback responses based on the

user’s actions.

We analyzed the impressions of first users of this technology

and drew several interesting conclusions. The positive reaction

of the participants to the Active condition indicates that most

individuals are comfortable with the idea of eating with an ACC

in place of or in addition to eating with others in a commensality

setting. At the same time, we cannot show that the robot

has a significant impact on the food intake, and experiments

with more participants are needed to address this issue. The

limitations of the current setup were also indicated, including

the limited communicative skills of the robot. Finally, the idea of

using a food tasting scenario as a cover story to study the human

attitudes toward ACC seems successful. Thus we plan to reuse it

in future experiments.

We believe that there is excellent potential for ACC

technology. For example, soon, such systems could make

repetitive meals (e.g., in a hospital setting) more enjoyable or

used by persons who, due to some social phobias, e.g., Ruch

et al. (2014), avoid social interactions. However, some risks

may also be associated with introducing ACCs at the dining

table. Like other media, ACCs might distract eating humans,

contributing to mindless eating and increasing unwanted calorie

intake. ACCs, especially when poorly designed, could disrupt

social interactions that already exist during commensal settings,

reducing any positive effects in such settings. All these factors

should be carefully analyzed in future works.

We see the work presented in this paper as a first step toward

ACCs. Our work provides some suggestions on how to build

better ACCs. We hope it will foster further research into the

potential benefits and risks of ACCs.
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