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SUMMARY

For exploration and development of the earth, seismic surveys are acquired to provide in-
formation about the subsurface, within specifications of accuracy set by geologists and
engineers, and within business constraints on budgets and turn-around time for process-
ing and interpretation of the data. The case of seismic surveys that are acquired, partly or
entirely, in shallow water is relevant for the industry worldwide. However, the acquisition
and processing for shallow water seismic surveys requires considerable modifications of
standard procedures to meet the survey goals. In this work, the focus is on modifications
in processing and in particular with respect to the handling of multiply scattered energy,
assuming standard acquisition practices.

Multiple scattering is a significant wave phenomenon when seismic waves propagate
through the earth. Its corresponding energy, i.e., seismic multiples, are usually unwanted
due to the interference with primary reflections. The traditional seismic surface-related
multiple estimation and removal method is limited by both the unrecorded data recon-
struction (e.g., the missing near offsets and the data gap between the crosslines) and the
subsequent multiple adaptive subtraction performance. These issues become even more
severe for the shallow-water environment, which is typically defined as being around 50-
200 m within the exploration seismic frequency range (i.e., 2-120 Hz) in this thesis. Shal-
low water creates highly curved seismic reflection events with strong lateral amplitude
variations, and complex overlap between primaries and surface-related multiples. Con-
ventional data reconstruction methods fail to tackle the missing data in shallow water,
and are even more problematic in 3D. In addition, the dilemma between primary dam-
age and surface multiple leakage during the adaptive subtraction is very much present for
shallow-water data.

An integrated closed-loop surface-related multiple estimation (CL-SRME) and full-
wavefield migration (FWM) framework for better primary and surface-related multiple
estimation, which is able to support CL-SRME with good-quality near offsets in order to
avoid primary estimation failure that typically occurs in shallow-water environments, is
proposed to attack the unrecorded data reconstruction issue. We suggest to use multi-
ples to provide information on the missing near-offset data by using FWM, where pri-
maries and surface multiples together create an image of the shallow subsurface. Taking
advantage of FWM - with its closed-loop simultaneous primaries and multiples imaging
approach - as the data reconstruction method and feeding the reconstructed near off-
sets to CL-SRME are the most important components to tackle the shallow-water issues
in a physically consistent manner. This new integrated framework will have its main im-
pact on a full 3D implementation with coarse sampling. Therefore, a similar cascaded
framework for 3D surface-related multiple estimation in shallow-water scenarios, which
consists of a data reconstruction step via 3D FWM and a surface multiple estimation step
via a 3D SRME-type method, is also introduced in the thesis. Improvements on estimat-
ing surface multiples and primaries, due to good data reconstruction via FWM, have been

xi
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proved on both 2D and 3D synthetic data. Despite of lacking an accurate subsurface ve-
locity model for 2D field data, the FWM reconstructed near-offset water-bottom reflection
still improves the quality of the estimated surface multiples and primaries.

In order to mitigate the surface-related multiple adaptive subtraction dilemma, we
have also introduced a two-step framework for surface multiple leakage extraction in this
thesis, and thus extended our seismic multiple processing toolbox. The aforementioned
two-step framework based on local primary-and-multiple orthogonalization (LPMO) is
both versatile and efficient for leaked multiple extraction, therefore, primaries can be bet-
ter preserved without leaving much multiple energy. The initial estimation step usually
prefers SRME with a conservative adaptive subtraction or any conservative multiple esti-
mation method, and LPMO is followed to compensate the initial estimated primaries and
multiples. Promising multiple leakage extraction has been achieved on both synthetic
and field data sets. Although effective compared to standard subtraction, LPMO is slow
and computationally intensive. Therefore, a fast LPMO (FLPMO) using a scaled point-
by-point division, rather than the time-consuming shaping regularization-based iterative
inversion, is further introduced to accelerate the whole process. Results on two different
field data sets display a very similar multiple leakage extraction performance compared
to LPMO, while indicating that the scaled point-by-point division in FLPMO is approxi-
mately 40 times faster than the shaping regularization-based inversion in LPMO. More-
over, the complete FLPMO framework is approximately four times faster than the LPMO
framework, and thereby is now equivalent to the industry-standard L2 adaptive subtrac-
tion.

With the advance of deep learning (DL) technology, the aforementioned two issues in
shallow water can also be investigated via a U-Net based DL neural network (NN) frame-
work. More specifically, a DL-based de-aliasing NN is introduced for the initial surface
multiple estimation, where the strong data fitting power of DL can directly project the
aliased multiples, due to coarse sampling, to its corresponding unaliased target multiples.
Meanwhile, a DL-based adaptive subtraction NN is proposed with both total full wavefield
and the predicted multiples as two input channels to overcome the adaptive subtraction
dilemma. In this way, the robust physics, i.e., the estimated multiples, is used and the
synthetic primary labels can be helpful to the framework. Note that the data distribution
between training and test data plays a significant role on these U-Net based applications.
Training on field data and test on nearby field data shows the best performance due to a
similar data distribution.

Shallow water is very challenging for surface-related multiple estimation. Physics-
based deterministic approaches, e.g., FWM-based data reconstruction and LPMO, can
help geophysicists better understand and partially solve the essentials of the problem.
For poorly described deterministic problems, e.g., adaptive subtraction and multiple de-
aliasing, DL can find the underlying relationships that are not easily achievable by the
deterministic methods. Combination of deterministic methods and DL will result in an
optimal performance. This is where further research should concentrate on.



SAMENVATTING

Voor de exploratie en ontwikkeling van de aarde worden seismische onderzoeken verricht
om informatie over de ondergrond te verkrijgen, met inachtneming van door geologen en
ingenieurs vastgestelde nauwkeurigheidsspecificaties en met inachtneming van de zakeli-
jke beperkingen inzake budgetten en doorlooptijd voor de verwerking en interpretatie van
de meetgegevens. De situatie waarbij seismisch onderzoek geheel of gedeeltelijk in ondiep
water wordt verricht, is relevant voor de industrie in de hele wereld. De acquisitie en verw-
erking van seismisch onderzoek in ondiep water vereist echter aanzienlijke aanpassingen
van de standaardprocedures om aan de onderzoeksdoelstellingen te voldoen. In dit werk
ligt de nadruk op wijzigingen in de dataverwerking, in het bijzonder met betrekking tot de
behandeling van meervoudige reflecties, uitgaande van standaard acquisitiepraktijken.

Meervoudige verstrooiing is een significant golf fenomeen als seismische golven zich
voortplanten door de aarde. De overeenkomstige energie, d.w.z., seismische meervoudige
reflecties, zijn meestal ongewenst vanwege de interferentie met primaire reflecties. De
traditionele seismische oppervlakte-gerelateerde meervoudige reflectievoorspellings- en
verwi-jderings-techniek wordt gelimiteerd door zowel de reconstructie van niet-gemeten
data (zoals bijvoorbeeld vanwege een minimale bron-ontvanger afstand en het grote in-
terval tussen de kruislijnen) als de daaropvolgende prestatie van de zogenoemde meer-
voudige reflectie adaptive aftrekkingstechniek. Deze kwesties worden nog verergerd voor
situaties met ondiep water, wat typisch wordt gedefinieerd als een waterdiepte van 50–
200 m binnen de seismische exploratie frequentieband (d.w.z., 2–120 Hz) in deze thesis.
Ondiep water creëert sterk gebogen seismische reflectie-aankomsten met sterke laterale
amplitude variates, en complexe overlap tussen primaire en oppervlakte-gerelateerde meer-
voudige reflecties. Conventionele data reconstructie methoden schieten tekort voor mis-
sende data in ondiep water, en zijn nog problematischer in 3D. Daarbij is voor data in
ondiep water ook nog aanwezig het compromis tussen schade aan de primaire reflecties
en lekkage van oppervlakte-meervoudige reflecties tijdens het adaptive aftrekkingsproces.

Om de ongemeten data reconstructie kwestie aan te pakken is voorgesteld een geïn-
tegreerde, gesloten-kring, voorspelling van oppervlakte-gerelateerde meervoudige reflec-
ties (zogenaamde CL-SRME) en een zogenoemd volledig golfveld afbeelding, of full-wavef-
ield migration (FWM) raamwerk voor betere primaire en oppervlakte-gerelateerde meervo-
udige reflectie voorspelling, die CL-SRME kan ondersteunen met goede kwaliteit nabije-
afstand-sdata om de problemen met het voorspellen van primaire reflecties, dat typisch
optreedt in situaties met ondiep water, te omzeilen. Wij stellen voor om meervoudige
reflecties te gebruiken om informatie te leveren voor de missende nabije-afstandsdata
door FWM te gebruiken, waar primaire en meervoudige reflecties gezamenlijk een beeld
creëren van de ondiepe ondergrond. Gebruik maken van FWM met zijn gesloten-kring,
gelijktijdige primaire en meervoudige reflectie beeldvormingsaanpak als data reconstruc-
tie methode, en het doorvoeren van de gereconstrueerde nabije-afstanden naar CL-SRME,
zijn de belangrijkste componenten om de kwesties met ondiep water op een fysisch-consi-
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stente manier aan te pakken. Dit nieuwe, geïntegreerde raamwerk heeft de grootste im-
pact op een volledige 3D implementatie waarbij de metingen op een incompleet grid
verkregen zijn. Daarom wordt ook een vergelijkbaar, trapsgewijs raamwerk voor 3D opperv-
lakte-gerelateerde meervoudige reflectievoorspelling in situaties met ondiep water voorge-
steld in deze thesis, bestaande uit een data-reconstructie stap via 3D FWM en een oppervla-
kte-meervoudige voorspellingsstap via een 3D SRME methode. Verbeterde voorspellingen
voor oppervlakte-meervoudinge en primaire reflecties, veroorzaakt door de goede data re-
constructie van FWM, zijn bewezen voor zowel 2D als 3D synthetische data. Ongeacht het
ontbreken van een nauwkeurig ondergronds-snelheidsmodel voor 2D veld-data, verbetert
de FWM-gereconstrueerde nabije-afstands waterbodemreflecties nog steeds de kwaliteit
van de voorspelde oppervlakte-meervoudige en primaire reflecties.

Om het dilemma van oppervlakte-gerelateerde meervoudige adaptieve aftrekkingspro-
ces te verlichten, hebben we ook een tweetraps raamwerk voor oppervlakte-meervoudige
reflectie lekkage extractie geïntroduceerd in deze thesis, en daarbij onze gereedschap-
skist voor het verwerken van seismische meervoudige reflecties uitgebreid. Het bovenge-
noemde tweetraps raamwerk, gebaseerd op lokale primairen-en-meervoudige reflectie
orthogonalisatie (LPMO), is zowel veelzijdig als efficiënt voor gelekte meervoudige re-
flectie extractie, waardoor primaire reflecties beter worden behouden zonder veel meer-
voudige reflectieenergie over te laten. De voorkeur voor de initiële voorspellingsstap gaat
over het algemeen uit naar SRME met een conservatieve adaptieve aftrekking, of een an-
dere conservatieve meervoudige reflectievoorspellingsmethode, waarna LPMO volgt om
de initieel voorspelde primaire en meervoudige reflecties te compenseren. Veelbelovende
meervoudige reflectie-lekkage extractie is bereikt op zowel synthetische als veld-datasets.
Hoewel efficiënt in vergelijking met een standaard aftrekking, is LPMO langzaam en reken-
intensief. Daarom is een snelle LPMO (FLPMO) geïntroduceerd, gebaseerd op een gescha-
alde punt-per-punt deling, in plaats van de tijdsintensieve, shaping-regularisatie gebaseer-
de, iteratieve inversie, om zodoende het hele proces te versnellen. Resultaten voor twee
verschillende veld-datasets laten een zeer vergelijkbare meervoudige reflectie-lekkage ex-
tractie zien vergeleken met LPMO, terwijl de geschaalde punt-per-punt divisie in FLPMO
ongeveer 40 keer sneller is dan de shaping-regularisatie gebaseerde inversie in LPMO.
Daarmee is het complete FLPMO raamwerk ongeveer vier keer sneller dan het LPMO
raamwerk, waarmee het nu equivalent is aan de industriestandaard L2 adaptieve aftrekking.

Met de vooruitgang van deep-learning (DL) technologieën kunnen de bovengenoemde
twee kwesties in ondiep water ook onderzocht worden via een U-Net-gebaseerd, DL neu-
raal netwerk (NN) raamwerk. Specifiek wordt een DL-gebaseerd de-alias NN geïntro-
duceerd voor de initiële oppervlakte-meervoudige reflectievoorspelling, waar de sterke
data-fitting van DL direct de ge-aliasde meervoudige reflecties kan projecteren. Daar-
naast is een DL-gebaseerd NN voor adaptieve aftrekking voorgesteld met zowel het to-
tale golfveld en de voorspelde meervoudigen als twee ingangskanalen om het eerderge-
noemde adaptieve aftrekkingsdilemma te overkomen. Op deze manier wordt de robu-
uste fysica, d.w.z., de voorspelde meervoudige reflecties, gebruikt. Voor het trainen zijn
synthetische and velddata primaire reflectieresponsies als bekende uitkomsten gebruikt.
Merk op dat de data verdeling tussen training en test data een significante rol speelt in
deze U-Net toepassingen. Trainen op velddata en testen op nabije velddata laat de beste
prestatie zien, vanwege overeenkomsten in de dataverdeling.
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Ondiep water is heel uitdagend voor oppervlakte-gerelateerde meervoudige reflec-
tievoorspelling. Fysisch-gebaseerde, deterministische aanpakken, zoals FWM-gebaseerde
data reconstructie en LPMO, kunnen geofysici helpen om de essentie van het probleem
beter te begrijpen en deels op te lossen. Voor slecht omschreven deterministische prob-
lemen, zoals adaptieve aftrekking en meervoudige reflectie de-aliasering, kan DL de on-
derliggende relaties vinden, wat niet eenvoudig haalbaar is via deterministische meth-
odes. Het combineren van deterministische methodes en DL zal resulteren in een opti-
male prestatie. Dit is waar toekomstig onderzoek zich op zou moeten richten.





1
INTRODUCTION

1.1. OVERVIEW OF SEISMIC PROCESSING: ROLE OF PRIMARIES

AND MULTIPLES
Seismic exploration is one of the best-known methods for exploring the subsurface with
high resolution and large areal coverage, especially in the field of natural resource explo-
ration and underground storage monitoring. The dynamite or vibrator lorry on land or
the airgun at sea are used as a source to generate strong acoustic/elastic waves that can
propagate through the earth. These waves are reflected back when they hit the boundary
between layers with different physical properties, e.g., velocity and density. The reflected
energy is then recorded by receivers deployed on the surface. In this way, the recorded
seismic signals can be used to infer the structure of the subsurface and the properties of
the media, and scientists can reveal hidden natural resources or changes in the subsur-
face. [1–3].

When seismic waves propagate through the earth, they follow the physical rules of
acoustic/elastic waves, more specifically, acoustic waves in water and elastic waves in
solids. Multiple scattering is a significant wave phenomenon in which we are interested
in this thesis. Ideally, the energy that bounced back only once from the subsurface are
extremely important for the conventional seismic data processing methods and the sub-
sequent interpretation. This reflected energy is called seismic primaries. Current industry
seismic processing workflows are basically primary-oriented, which include direct wave
removal, random and swell noise removal, deghosting, wavelet deconvolution, multiple
removal, velocity analysis, imaging and characterization [2]. However, due to the physics
of multiple scattering, there always exists much energy that is reflected multiple times in
the recorded data. These multiple reflected energy are seismic multiples, which consists
of two categories [4]: surface-related multiples and internal multiples. Figure 1.1 demon-
strates a simple illustration of seismic primaries and multiples. Surface-related multiples
have bounced downward at the earth’s surface at least once. Thus, they are those multi-
ples that would disappear when the sea surface becomes transparent. Internal multiples
have all downward bounces below the surface. Alternatively, surface-related multiples

1
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(a) (b)

Figure 1.1: Simple illustration of seismic primaries and multiples using a layered model (a)
and its corresponding recorded original seismic data (b). Note that the seismic waves are
generated via the air-gun (i.e., the red star) and recorded via the receivers (i.e., the green tri-
angles) after propagation through the subsurface, where the white solid, the white dashed,
and the red dashed lines represent primaries, surface-related multiples, and internal mul-
tiples, respectively.

and internal multiples can be distinguished via the shallowest interface where a down-
ward reflection takes place as marked by the yellow circles. As indicated by the layered
velocity model in Figure 1.1(a), seismic primaries are represented by the white solid lines
while surface-related multiples are noted by the white dashed lines. Note that the red
dashed lines describe internal multiples, which are not the priority of this thesis. There-
fore, what we call “primaries” in this thesis also includes internal multiples. The cor-
responding recorded original seismic data including both primaries and surface-related
multiples are shown in Figure 1.1(b). For better understanding and comparison, Figure
1.2 displays the double-sided original total data, the ground truth primaries and surface-
related multiples (where the source is positioned in the middle of the receivers). In fact,
the goal is to estimate both primaries and surface-related multiples directly from the orig-
inal recorded total data (Figure 1.2(a)).

1.2. MULTIPLE REMOVAL OR MULTIPLE IMAGING
Surface-related multiples have been regarded as coherent noise and are removed before
the subsequent processing workflows for decades [5–9]. Meanwhile, exploration geo-
physicists gradually realized that these multiples (note that we refer multiples to only
surface-related multiples in this thesis and the internal multiples are beyond the scope
of this research) are able to see through the earth multiple times and, therefore, carry
valuable physical information about the subsurface [4]. Multiples are nowadays treated
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(a) (b) (c)

Figure 1.2: (a) Repeated original total data, but double sided. Ground truth primaries (b)
and surface-related multiples (c) generated from the layered model in Figure 1.1(a).

as useful signals as well and can be directly included into imaging algorithms [10–15]. Al-
though full wavefield imaging (including both primaries and all types of multiples) can
be achieved, it is still desired to estimate primaries and multiples first and then image
them separately, due to the crosstalk of multiples during imaging [14, 16], the challenges
in shallow-water scenarios [17] and the benefits for conventional primary-oriented pro-
cessing.

1.2.1. SURFACE-RELATED MULTIPLE ELIMINATION

Surface-related multiple elimination (SRME) has already been proved to be a powerful
tool for multiple removal with the help of its data-driven engine and strong physics be-
hind [18, 19]. Specifically, SRME first predicts the multiples based on a multidimensional
convolution process from data itself without any prior knowledge about the subsurface,
and then adaptively subtracts the predicted multiples from the original data using the
minimum-energy criterion [7]. This is usually problematic in shallow water, and therefore,
a full waveform inversion-based primary and multiple estimation scheme was proposed
by [20, 21], which is known as estimation of primaries by sparse inversion (EPSI). [22]
further proposed a robust version of EPSI based on L1-norm minimization. Concretely,
the multiple prediction and adaptive subtraction process is replaced by a full waveform
inversion process, in which the primary impulse response and source wavelet are the un-
knowns. Another inversion approach called closed-loop SRME (CL-SRME) with different
parameterization, being primary and surface operator, was proposed by [23, 24], which
combines the robustness of SRME with EPSI. Although the inversion schemes enjoy more
physical consistency, they lack the computational efficiency, which is the bottle-neck for
wide industry applications. SRME, in many cases, will still be the preferable choice in
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terms of the computational cost.

Among all the difficulties for SRME, surface-related multiple leakage is a long-standing
problem for primary and multiple estimation [4]. The leaked multiple energy will un-
doubtedly damage the subsequent migration and interpretation accuracy. Furthermore,
this leaked energy is even more challenging for the already difficult shallow-water scenario
due to the strong impact of missing near offsets [17, 20, 21, 24–28]. Both multiple predic-
tion and adaptive subtraction parts are indispensable ingredients for SRME, and both of
them could lead to the multiple leakage issue. In fact, multiple prediction is the most ro-
bust part in SRME because of its fulfillment of strong physics, but it still requires densely
sampled data (near-offsets data for 2D situation and both under-sampling in crossline
direction and near-offsets missing for 3D data), which is always difficult to satisfy in the
real world [29]. Otherwise, the sampling issue results in both phase and amplitude errors
for the predicted multiples. Thus, with the inaccurate predicted multiple model, it is more
likely to limit the performance of adaptive subtraction and leave some amount of multiple
leakage afterwards. Lots of efforts on data interpolation are spent to feed densely sampled
data to SRME. [30] proposed to restore the missing offsets by parabolic Radon transform
based on partial normal moveout corrected common-midpoint gathers. With unrecorded
primary information hidden in the multiples, interferometric interpolation methods are
available and effective to extract these hidden information for most 2D data interpolation
cases [31, 32]. [20] also took advantage of the interferometry and presented an EPSI-based
approach to reconstruct near-offsets data by utilizing multiples. Rather than the sparse
constraint on the impulse response, [24] proposed to use the focal domain constraint to
interpolate the missing data within the CL-SRME framework. An extreme version of fo-
cal constraint with many focal points actually is migration, therefore, [28] proposed to
utilize the data reconstruction power of full wavefield migration as a better input for CL-
SRME. As for the 3D case, [33] introduced a sparse inversion interpolation approach for
3D surface-related multiple prediction. A more general 3D SRME industry application
with on-the-fly interpolation, which is called general surface multiple prediction (GSMP),
is described by [34] and reviewed by [35].

Beside accurate prediction, adaptive subtraction is another problematic step in SRME,
or other prediction and subtraction methods, due to its harsh assumption that primaries
and multiples should not correlate in local windows [36]. The multiple leakage happens
when primaries and multiples partially correlate, which is usually unavoidable. The core
of adaptive subtraction is estimating a matching filter to correct for the amplitude and
phase distortions. A dilemma between multiple leakage and multiple damage often oc-
curs during adaptive subtraction, in which data processing practitioners usually reluc-
tantly embrace the leakage rather than the damage that cannot be recovered anymore.
[37] indicated the pitfalls of the L2-norm adaptive subtraction process where some part
of the multiples is not orthogonal to the primaries. Many researchers have reported dif-
ferent approaches to improve the adaptive subtraction by relaxing its original assumption
or replacing it. [38] proposed to utilize L1-norm instead of L2-norm adaptive subtrac-
tion when the primaries are much stronger than the multiples. Building on the work of
[37], [39] showed on field data that the pattern-based subtraction method is less sensi-
tive to this overlap between primaries and multiples, however, this method has difficul-
ties when multiples and primaries are parallel to each other [4]. [40] proposed regularized
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nonstationary regression-based adaptive subtraction without breaking the data into lo-
cal windows. [41] introduced a nonlinear adaptive multiple subtraction method using
the amplitude-preserving high-order sparse Radon transform. [42] presented a sparse
curvelet-domain subtraction approach by iteratively shrinking the curvelet coefficients.
Attracted by its effectiveness, a number of extended curvelet-based techniques are pro-
posed [43–45]. However, the computational efficiency is currently the main drawback of
sparsity-driven curvelet-based methods, and they also suffer the risk of dimming the pri-
maries while removing multiples. In addition to the marine acquisition, [46] introduced
a very detailed and much more difficult application of the adaptive subtraction for land
seismic data.

Note that many non-SRME-type multiple removal approaches are also developed dur-
ing the last several decades, e.g., Radon domain demultiple, which is able to attenuate
multiples via the moveout difference between primaries and multiples [6], inverse-scatter-
ing series that can predict all possible internal multiples [8], Marchenko multiple elimina-
tion derived from projected Marchenko equations that can retrieve the primary response
without any model information or adaptive subtraction [47], model-based water-layer de-
multiple method that is capable of removing the most difficult and dominant water-layer
related multiples via modeling the Green’s functions [48], etc. In addition, due to the ad-
vance of deep learning (DL)-based technology on seismic data processing and interpreta-
tion, multiple adaptive subtraction dilemma can be partially alleviated with the help from
strong data fitting power of DL [49–51].

1.2.2. FULL-WAVEFIELD MIGRATION

A huge advantage of using surface-related multiples in imaging is extending the illumi-
nation for every single shot, which is able to overcome the limitations of the deployed
acquisition geometry [52]. Since the sea surface can be regarded as a strong reflector, the
surface-related multiples work as the secondary sources to better illuminate the subsur-
face via multiple scattering. More vertical propagation angles are achieved at the surface
for a fixed source-receiver pair, which can also improve the angle coverage of the imaging.
Meanwhile, more vertical multiple scattering rays are not only capable of enhancing the
vertical resolution, but also providing an extra sensitivity for velocity estimation [53, 54].
Besides, surface multiple imaging can be extremely helpful when primary illumination is
not enough, e.g., in the shadow zone.

Many efforts have been made to investigate the imaging with surface-related multi-
ples for the last three decades [10, 14, 55–60]. Based on the initial concept of imaging
multiples using up-down wavefield imaging principle proposed by [55], the early indus-
try implementations have been developed for practical applications. Generally, surface-
related multiples are migrated via re-injecting the recorded full wavefield as the illumi-
nating source wavefield [60, 61]. Still, the crosstalk from unrelated orders of multiples
becomes the most critical issue in imaging using surface-related multiples. To better deal
with the problematic crosstalk issue, the inversion-based least-squares migration/imaging
approach has been introduced to straightforwardly solve for the accurate solution [11,
12, 14, 16]. Despite the intensive computational cost, the inversion-based least-squares
migration is presently the most optimal method for addressing the crosstalk issue in the
imaging using surface-related multiples.



1

6 1. INTRODUCTION

(a) (b)

Figure 1.3: Imaging comparison between PWM (a) and FWM (b). Note that the crosstalk
comes from the multiple scattering energy.

Full-wavefield migration (FWM) is one of the aforementioned inversion-based least-
squares migration methods taking multiples into the imaging process, which is initially
proposed by [62]. Its robust capability for handling multiples comes from the core mod-
eling engine, i.e., full-wavefield modeling (FWMod) [63]. Both multiple scattering and
transmission effect are automatically taken into account via FWMod. [14] introduce the
practical FWM implementations using both surface and internal multiples, and various
imaging conditions and crosstalk attenuation mechanism are also discussed. [64] pro-
pose imaging with surface-related multiples via FWM to overcome large acquisition gaps,
in which the modeled full wavefield are re-injected in the forward modeling process. Note
that internal multiples can be automatically taken into consideration in FWM process,
and a detailed field data example is provided by [15]. Figure 1.3 shows a simple demon-
stration of FWM compared to the traditional primary wavefield migration (PWM) using
the same layered model from Figure 1.1(a). The crosstalk can be clearly observed from
the PWM image due to its incapability of taking multiple scattering into account. How-
ever, FWM can easily attenuate such crosstalk via its more advanced modeling engine as
shown in Figure 1.3(b).

1.3. INFLUENCE FROM WATER DEPTH

The water depth of the survey area is an extremely important factor on the option of mul-
tiple removal or/and multiple imaging. Seismic event curvature, the lateral amplitude
variation, the overlap between primaries and multiples, the effect of missing near offsets,
and the added benefits of multiple imaging are all related to water depth. Among them,
the seismic event curvature and its lateral amplitude variation strongly affects the perfor-
mance of the near-offset reconstruction required by SRME-type multiple estimation ap-
proaches. Note that the issue with missing near offsets is mainly caused by the practical
logistic reason during the acquisition step. In addition, the overlap between primaries and
multiples leads to severe difficulties for the multiple adaptive subtraction during the con-
ventional SRME methods. Figure 1.4 demonstrates a direct field shot record comparison
between a deep and shallow water environment. The corresponding zoom-in field shot
records can be found in Figure 1.5. It can be clearly observed that the seismic event cur-
vature, the lateral amplitude variation and the arrival time of surface multiples are their
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fundamental differences. Note that the missing near offsets appear in both scenarios. It is
extremely important to be aware of the fact that the water depth is simply a more straight-
forward and intuitive concept for helping us define our challenge. In fact, many different
factors are combined together to determine whether it is “shallow” or “deep” water for the
specific data. Such factors include the data frequency bandwidth, the size of the miss-
ing data gap and the medium contrasts. For example, 100 m water depth seems shallow
for seismic data with ∼ 100 Hz frequency bandwidth, however, it would be deep for high-
frequency data with ∼ 1000 Hz bandwidth.

(a) (b)

Figure 1.4: Seismic field shot records with missing near offsets from (a) deep water and (b)
shallow water environment. Please note the fundamental differences between deep and
shallow water environment, i.e., the event curvature, the lateral amplitude variation and
the arrival time of surface multiples.

1.3.1. MEDIUM-DEPTH AND DEEP WATER ENVIRONMENT
A medium-depth and deep water environment for seismic exploration frequency range
indicates that the water depth is usually more than 200 m. With such water depth, it is
fairly convenient and straightforward to implement multiple removal due to the relative
simplicity of the data. One example of seismic record from a deep water environment is
shown in Figure 1.4(a) and 1.5(a), which is from the Norwegian Sea with approximately
1300 m water depth. More specifically, we can easily see that the earlier seismic events
have relatively small curvature and their lateral amplitude variation is also small. The
aforementioned event features will result in almost perfect near-offset reconstruction that
is significant for SRME-type multiple estimation methods. Besides, due to the deep water
depth, the water bottom reflection are generated at around 1.7 s, and thus, the surface-
related multiples start to appear at around 3.5 s, which already have less influence on the
target events above. Less primary and multiple overlaps are also extremely helpful to the
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(a) (b)

Figure 1.5: The corresponding zoom-in field shot records indicated by the black boxes in
Figure 1.4.

adaptive subtraction process, in which the more aggressive subtraction can be applied
without worrying too much on primary damage. Note that in this part we broadly refer to
non-shallow water environment since “deep water” has its own definition and challenges.

1.3.2. SHALLOW WATER ENVIRONMENT AND CHALLENGES

A shallow water environment in this thesis refers to a water depth between 50 to 200 m
with respect to seismic exploration frequency range. The Nelson North Sea data used in
this thesis are regarded as shallow-water data due to the combined factors, i.e., 5-80 Hz
bandwidth, 225 m missing gap size, and 95 m water depth. Note that water depth smaller
than 50 m conventionally refers to ultra-shallow water environment, which is beyond the
scope of this research. As shown in Figure 1.4(b) and 1.5(b), the Nelson field seismic data
are recorded at the British North Sea with average 95 m water depth. Because of the shal-
low water depth, it can be observed that the seismic events are highly curved, which can
lead to strong stretching effects for the conventional near-offset reconstruction methods
that employ normal moveout correction as an intermediate step [30]. Meanwhile, strong
lateral amplitude variation displayed in the shallow water seismic data makes the data re-
construction even more difficult. In addition, we can notice that the surface-related mul-
tiples arrive much earlier (i.e., approximately 0.1 s) compared to the deep water scenario.
Thus, shallow water depth also results in more complex overlap between primaries and
multiples, which poses severe challenges for the adaptive subtraction process.

Sometimes in a shallow water environment, the multiples are so strong that they dom-
inate the data, while only providing limited extra information of the target area. Therefore,
primary and multiple separation is desired for shallow water environment. Two most im-
portant challenges for shallow water multiple estimation are introduced in detail:
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• Data coverage on multiple estimation
In a shallow water environment, the missing near-offsets have a strong negative ef-
fect on the ability of SRME-type methods to provide reliable results [4, 29]. Acquir-
ing such near-offsets is usually difficult due to the operational constraints. There
are many reports on acquiring near-offsets and decreasing crossline sampling in
3D. [65] introduce shooting over the seismic spread to record the important near-
offsets. [66] propose to also include the negative offsets in 2D for surface multi-
ple estimation. [67] demonstrate the shallow-water free-surface multiple attenua-
tion on multimeasurement data under dense crossline sampling. Optimizing ac-
quisition parameters for one-sided towed streamer in 3D is discussed by [68] and
[69]. The aforementioned efforts in acquisition illustrate clearly the concerns due
to near-offset gaps. However, when provided with accurately reconstructed near-
offset data, the SRME-based approaches are shown to provide more consistent mul-
tiple suppression results [70]. Therefore, alternatives for handling shallow water
multiples are being considered that rely on modeling/reconstructing the reverbera-
tions and water layer multiples with model-driven components to partly overcome
the incomplete data acquisition issue [48, 71–74]. Besides, [24] introduce an inver-
sion component by considering sparseness in the focal domain [75] as a constraint
for shallow water data interpolation. [35] introduce on-the-fly interpolation for 3D
SRME as an industry standard. Still, the data coverage remains as the most challeng-
ing issue for multiple estimation. With the help of imaging multiple scattering, FWM
might achieve an accurate data reconstruction (i.e., including both near-offsets and
crossline undersampling) using the FWM image as a strong constraint. This will be
proposed in this thesis.

• Adaptive subtraction dilemma
Despite all the efforts mentioned above to provide better reconstructed data for
multiple estimation, surface-related multiple leakage or primary damage after the
adaptive subtraction still can be seen in the results of SRME predicted primaries.
The reasons behind are simply because: first, the data reconstruction can never be
perfect, which leads to both phase and amplitude errors in the predicted multiples.
Second, the assumption of adaptive subtraction that primaries and multiples do not
correlate is often not met. Third, 2D prediction methods are applied on 3D data [4].
Essentially, the imperfections of adaptive subtraction directly lead to multiple leak-
age in the estimated primaries. It tends to be either underfitting or overfitting for the
subtraction step regardless of the forced constraint. Underfitting results in more se-
vere multiple leakage while overfitting can alleviate multiple leakage to some extent.
However, overfitting is unfortunately the main cause for primary energy damage, as
removing more multiples usually comes along with damaging primaries. This so-
called adaptive subtraction dilemma between multiple leakage and primary dam-
age usually occurs. The ability of least-squares adaptive subtraction strongly de-
pends on the size of local windows and the filter length [18]. A small window size and
a relatively long filter length, which is called “standard SRME” in this thesis, leads to
better multiple removal, but at the same time causes more primary damage. For the
primary-oriented processing, the best one can achieve during the trade-off is to pro-
tect the primaries as much as possible and, as a result, leave some amount of mul-
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tiple leakage. That is to say, the local windows for SRME should be relatively large
and the filter length for adaptive subtraction should be relatively short. We name
this type of SRME as the “conservative SRME”. More specifically, note that in this
thesis, conservative SRME indicates the L2-norm adaptive subtraction step in the
last iteration with large local windows or even global windows and a relatively short
filter length, in which the primaries are not damaged while surface-related multiple
leakage is more severe. In contrast, standard SRME means the L2/L1-norm adaptive
subtraction step in the last iteration with small local windows and a relatively long
filter length, in which the multiple leakage is alleviated while the primary damage
is more severe. Instead of solving the leakage issue within the SRME itself, it might
be much easier and more effective if another external multiple leakage extraction
step is included after the conservative SRME to compensate for the multiple leak-
age. Meanwhile, DL, with its strong data fitting ability, might also have the potential
to solve the adaptive subtraction dilemma.

1.4. RESEARCH QUESTIONS AND THESIS OUTLINE
Accordingly, the most important research questions that need to be investigated in this
thesis are listed below:

• Can we take advantage of multiple imaging to alleviate the data coverage problem,
especially the near-offset missing in shallow water, from all of the SRME-type ap-
proaches? (Chapter 2)

• Can we overcome the large computation cost and data storage of multiple imaging
for data reconstruction and the inversion-type SRME in real 3D acquisition? (Chap-
ter 3)

• Is there a fast, simple but effective recipe to relieve the multiple adaptive subtraction
dilemma in industry? (Chapter 4 & Chapter 5)

• How can DL-based technology help us solve the exact same issues mentioned above
from a very non-linear perspective? (Chapter 6 & Chapter 7)

Correspondingly, a list of our prime contributions is presented in advance before div-
ing into the remaining chapters:

• We propose an integrated CL-SRME and FWM framework for accurate surface-related
multiple estimation to tackle the unrecorded data reconstruction issue, which is fur-
ther extended to a 3D scenario for SRME-type methods.

• We introduce local primary-and-multiple orthogonalization (LPMO) and its fast ver-
sion for surface-related multiple leakage extraction, which mitigates the typical dilemma
between primary damage and multiple leakage for standard adaptive subtraction.

• We investigate DL neural network with both total full wavefield and predicted sur-
face multiples as two input channels to overcome the adaptive subtraction dilemma,
and introduce DL-based multiple de-aliasing to attack the data sampling issue.
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Finally, a general outline of the thesis will be given in the following:

• Chapter 2:
In this chapter, an integrated framework is proposed to partially overcome the data
coverage problem for the inversion-based CL-SRME. The crucial missing near off-
sets are reconstructed via FWM, which are combined with the original recorded data
to form the complete data for multiple estimation. Both 2D synthetic and field data
from the North Sea demonstrate the good performance of the integrated frame-
work for reconstructing more accurate missing near offsets and estimating surface-
related multiples in a shallow water environment.

• Chapter 3:
This chapter further extends the proposed integrated framework in chapter 2 to a re-
alistic 3D scenario. However, due to the limited data storage and computing power,
it is very difficult to reconstruct the full sampling data set in 3D. Inversion-based
CL-SRME also has a large computational cost. Based on our initial investigation,
GSMP with FWM-reconstructed near offsets seems to be the most feasible and af-
fordable solution. Two 3D synthetic examples are used to test the performance of
FWM-aided GSMP in shallow water.

• Chapter 4:
The multiple adaptive subtraction dilemma is first discussed and then alleviated
by a simple but effective framework in this chapter. Primary damage is more se-
vere than multiple leakage because the distorted primaries can hardly be recovered.
Accordingly, more conservative adaptive subtraction is preferred, which mainly re-
sults in multiple leakage. LPMO is then proposed to extract the leaked multiples
from the initially estimated primaries. This two step framework, i.e., first the initial
conservative primary/multiple estimation and then the multiple leakage extraction
via LPMO, is tested on two different synthetic examples with good accuracy. A 2D
field data on the North Sea further proves the effectiveness of the proposed LPMO
framework.

• Chapter 5:
This chapter introduces a fast version of the previous proposed LPMO framework
for higher efficiency. The original LPMO involves a large computational cost due to
many conjugate-gradient iterations within the shaping regularization-based inver-
sion framework. A scaled point-by-point division is used to avoid the iterative in-
version in the original LPMO, which is called fast LPMO (FLPMO) framework. Two
field data examples from the North Sea are used to prove the FLPMO performance
compared to the original LPMO.

• Chapter 6:
In this chapter, DL-based technology is brought forward to tackle the exact same
issue mentioned in chapter 4, i.e., the multiple adaptive subtraction dilemma, from
the perspective of a non-linear data mapping process. Due to the imperfections of
the estimated multiples, the adaptive subtraction becomes a highly non-stationary
and non-linear step, which is actually a very suitable task for DL. More specifically,
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the U-Net is one of the most stable and powerful image-to-image mapping tool
in the field of DL. Instead of directly mapping the full wavefield to the estimated
primaries via any advanced multiple estimation approach, both full wavefield and
the initially estimated multiples are used as two input channels, and the U-Net is
trained on synthetic modeled primaries only. By including the estimated multiples
in the second input channel of U-Net, the robust physics is taken into consideration
by the deep neural network. Besides, the synthetic modeled true primaries are ex-
tremely helpful to the training, and thus, the adaptive subtraction dilemma can be
partially overcome. Three different examples are used to demonstrate the perfor-
mance of DL-based adaptive subtraction.

• Chapter 7:
This chapter investigates another possibility of DL-based technology on helping
the data coverage issue mentioned in chapter 2. The multidimensional convolu-
tion process inside the SRME-type methods requires dense data sampling on both
source and receiver side. In real 3D marine acquisition, the source sampling is far
from ideal, which leads to strong aliasing effect in the estimated multiples. Thus, the
corresponding primaries are also severely affected. Instead of the nontrivial source
interpolation, dealiasing on the estimated multiples with limited number of sources
might be a potential alternative. DL is capable of handling this non-linear dealiasing
task. The neural network (i.e., U-Net) can be trained on the pairs of the aliased mul-
tiples and the corresponding non-aliased multiples. This proposed DL framework
is tested on a 2D field data from the North Sea.

• Chapter 8:
The final conclusions of this thesis and some further recommendations for the fu-
ture research are given in this chapter.

• Appendix A:
Appendix in the end introduces a technical study related to seismic internal mul-
tiples, which is beyond the scope of this surface multiples-related thesis. However,
the similar LPMO framework is applied on the FWM image as a post-processing step
to further reduce the leaked internal multiple crosstalk.
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2
CLOSED-LOOP SRME WITH

FWM-RESTORED NEAR OFFSETS

Reliably separating primary and multiple reflections in a shallow water environment (i.e.,
50 m to 200 m water depth) still remains a challenge. The success of previously published
closed-loop surface-related multiple estimation (CL-SRME) depends heavily on the data
coverage, i.e., the near-offset reconstruction. Therefore, we propose the integrated frame-
work of CL-SRME and full-wavefield migration (FWM). Multiples recorded in the data are
capable of helping reduce the acquisition imprint of the FWM image. With this image as
a strong constraint, we are able to reconstruct the data at near-offsets, which is essential
for better primary and multiple estimation during CL-SRME. FWM applied in a non-linear
way can avoid the negative influences from the missing data, and at the same time bring in
more physics between primaries and multiples. The FWM image of the top part of the sub-
surface is also used to back-project the information from multiples to primaries with the
physical constraint of all this information belongs to the same earth model, provided that a
good description of the source wavefield and a reasonable velocity model are available. The
proposed integrated framework first reconstructs near-offsets via the closed-loop imaging
process of FWM and then feeds the complete reconstructed data to CL-SRME for better pri-
mary and multiple estimation. A good performance is demonstrated on both 2D synthetic
and field data examples in a challenging shallow water environment.

This chapter is a slightly updated version of the published paper "D. Zhang and D. J. Verschuur, Closed-loop
surface-related multiple estimation with full wavefield migration-reconstructed near-offsets for shallow water,
Geophysics 86 (2021), pp. WC21–WC30".
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2.1. INTRODUCTION

Closed-loop surface-related multiple estimation (CL-SRME) is an inversion-based and
fully data-driven primary/multiple estimation method [1, 2], which still uses the core surface-
related multiple elimination (SRME) engine [3, 4], i.e., the robust physics between pri-
maries and multiples. Instead of updating the primary impulse response and source wavelet
in the previously published inversion-based method (i.e., estimating primaries by sparse
inversion (EPSI) [5]), CL-SRME directly estimates primaries and surface operator in a flip-
flop manner. Although many successful applications have been achieved, data sampling
still poses the biggest challenge for CL-SRME, especially the missing near-offsets for shal-
low water scenarios [6–9]. The definition of shallow water in this thesis ranges from 50
m to 200 m water depth for typical exploration seismic surveys. Note that what we call
“primaries" in this thesis also includes internal multiples.

Despite all the efforts, shallow water still remains challenging for CL-SRME due to data
coverage, and 3D shallow water will be even more challenging. More specifically, the ac-
quisition geometry with coarse crossline sampling and large near-offset gaps, the geolog-
ical discontinuities (e.g., small channels) and the highly-curved shallow seismic events
with strong lateral amplitude variation all create huge challenges for surface multiple es-
timation. Note that both aforementioned EPSI and focal CL-SRME, although successful
for 2D data, are difficult to extend to a 3D scenario due to their weak constraints and the
challenging sampling issue. Thus, we need a stronger constraint on data reconstruction to
help CL-SRME achieve a better primary and multiple estimation for a challenging shallow
water environment. Imposing sparseness in the focal domain with only a few depth levels
appears not enough for larger near-offset gaps [2]. Therefore, many more depth levels are
needed in the focal domain and a more accurate velocity model is also required for keep-
ing the reflection information close to the focal point. In the limit, with a focal domain
at every depth level, the focal transform becomes a least-squares imaging algorithm. To
further exploit data redundancy, simultaneous imaging of primaries and all multiples, the
full wavefield migration (FWM) [10], will use all available data information in a consistent
process. FWM belongs to the least-squares migration family, and its unique modeling
engine (i.e., full wavefield modeling (FWMod) [11]) allows it to account for both multi-
ple scattering and transmission effects. Many successful applications have been reported
to confirm the multiple imaging and data reconstruction power of FWM [12–15]. Among
them, the non-linear FWM is proposed to overcome the data with missing gaps [15]. Thus,
we propose the integrated framework of CL-SRME and FWM for shallow water, i.e., CL-
SRME with FWM-reconstructed near-offsets. Besides, in the proposed framework, we use
the image to back-project the information from multiples to primaries with the physi-
cal constraint of all information related to the same earth model, provided that a good
description of the source wavefield and a reasonable velocity model are available. This
image only functions as some transformed domain, and its main purpose is to support
a better near-offset reconstruction. However, the resulting image can also be seen as a
valuable by-product of this method, as it is known that multiples considerably enhance
the image of the shallow part of the subsurface [16, 17]. Thus, by accurately removing the
multiples from the data to enable clearer imaging of the deep structures and simultane-
ously obtaining a high-resolution image of the shallow subsurface, this approach yields a
strong dual output. By combining the primary estimation ability of CL-SRME [2] with the
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strong reconstruction power of FWM [13, 15] we should be able to obtain a better primary
and multiple estimation. The synthetic example in this chapter demonstrates the signif-
icant contribution of near-offset quality on primary and multiple estimation, while the
field data example shows the reconstructed missing water bottom reflections are sensitive
enough to steer the CL-SRME inversion process to a better primary/multiple separation.
Although the missing part of water bottom reflections seem small in the time-offset do-
main, it has large coverage in terms of reflection angles. Please note that this chapter aims
to confirm the proposed integrated CL-SRME and FWM framework on 2D cases, although
the future benefits lies in 3D.

This chapter is arranged as follows: a short introduction of CL-SRME and FWM will
be presented first. Then the proposed integration of CL-SRME and FWM framework will
be described in details. Results with a synthetic and a field example are demonstrated
to show the performance of the proposed framework. A discussion and conclusion will
finalize the chapter.

2.2. THEORY AND METHODOLOGY

2.2.1. REVIEW OF CL-SRME
We present a brief review of CL-SRME in this section, which was originally proposed by
[1]. Instead of estimating the primary impulse response and source wavelet in EPSI [5],
CL-SRME directly estimates the desired primaries. The core objective function can be
written as follows:

JCL-SRME =
∑
ω
∥P− P̂0(I+ ÂP)∥2, (2.1)

where P represents the total upgoing full wavefield, P̂0 indicates the estimated primaries,
Â is the estimated surface operator. Note that all the notations follow the detail-hiding
rules of [18], where the columns of the matrix represent monochromatic shot gathers.
The CL-SRME inversion process is strictly data-driven and does not use adaptive subtrac-
tion. Without adaptive subtraction, the output is compatible with the physics of wavefield
propagation. In CL-SRME, the recorded data are explained by the estimated parameters
P̂0 and Â, which are alternately updated via a descent method. Besides, an extra sparse-
ness constraint, e.g., focal domain constraint [2], can be imposed on the estimated pri-
maries to achieve more robust primary and multiple separation in terms of reducing mul-
tiple leakage. The updates in P̂0 are obtained by a multi-dimensional cross-correlation of
the data residual P− P̂0(I+ ÂP) and the input data. Note that primaries, surface multiples
and internal multiples are included in the input data, and the direct arrival are removed
during preprocessing steps.

2.2.2. NON-LINEAR FWM
FWM is an inversion-based imaging method that can effectively take internal multiples
and transmission effects into account due to its modeling engine [11], which is based on
the estimated image and a migration velocity model. That is, given a good velocity model
and a source wavefield description, FWM uses the reflectivity as the parameterization of
the medium for solving the one-way wave equation, which is different from the typical
two-way wave equation-based parameterization (i.e., velocity and density). FWM also be-
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longs to the category of least-squares based imaging methods, and its objective function
can be expressed in the following form:

JFWM = 1

2

∑
ω

∑
shot s

∥d−
obs(z0)−p−

mod(z0, r̂)∥2
2, (2.2)

where r̂ indicates the subsurface coordinate-related reflectivity to be estimated, p−
mod(z0, r̂)

denotes a single shot monochromatic modeled upgoing wavefield recorded at the surface
z0, and d−

obs(z0) represents the single shot monochromatic observed upgoing wavefield
recorded at the surface z0. An extra sparseness constraint can also be added to equation
2.2, and gradient-based methods can be used to minimize the aforementioned objective
function [13].

To better illuminate the subsurface, surface-related multiples can be straightforwardly
included in the FWM process by reinjecting the d−

obs(z0) [12]:

q+(z0) = s+(z0)+R∩(z0)d−
obs(z0), (2.3)

where R∩(z0) represents the downward reflection matrix at the sea surface, usually consid-
ered as R∩(z0) =−I, s+(z0) denotes the source wavefield, q+(z0) indicates the total down-
ward wavefield. In this way, the total downgoing wavefield is considered as the incident
wavefield for imaging, which is referred to regular/linear FWM. However, the required
high receiver coverage is not usually met in reality, and the problem occurs when there
exist acquisition gaps. Therefore, implementing FWM in a non-linear manner was pro-
posed [15]:

[q+(z0)]i+1 = s+(z0)+R∩(z0)[p−
mod(z0, r̂)]i , (2.4)

where i indicates the iteration number. In this way, the acquisition gaps can be alleviated
during FWM using surface multiples not by reinjecting measured data, but by using the
modeled upgoing wavefield after several roundtrips through the subsurface. The afore-
mentioned way of using FWM is referred to non-linear FWM. Note that due to the un-
recorded near-offset data we implement the non-linear FWM in our proposed integrated
CL-SRME and FWM framework to overcome the missing near-offsets. Due to the sensi-
tivity of non-linear FWM, good estimates of both source wavefield and velocity model are
required. FWM as it appears in the examples all refer to as non-linear FWM. More details
about non-linear FWM can be found in [15].

2.3. INTEGRATION OF CL-SRME AND FWM
CL-SRME itself is heavily influenced by the data coverage, especially by the missing near-
offsets. FWM has already demonstrated its robust data reconstruction performance [13].
More specifically, the estimated reflectivity during FWM is used to synthetically model
the complete data. Note that the estimated reflectivity makes use of both surface and in-
ternal multiples during imaging. Therefore, the integration of CL-SRME and FWM can
effectively solve the data coverage requirement for CL-SRME, and produce more accurate
estimated primaries. Our proposed workflow is presented in Figure 3.1. There are two
important components in this flow chart: the data reconstruction engine (FWM) and the
surface-related multiple estimation engine (CL-SRME). The general process works as fol-
lows: we first feed the incomplete recorded data (i.e., with missing near-offsets) into the
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Figure 2.1: The proposed framework for integration of CL-SRME and FWM.

FWM engine provided that a source wavefield and a given migration velocity are avail-
able, from which the estimated image can be obtained. Note that a least-squares proce-
dure is contained inside FWM, therefore, reflectivity is updated in the adjoint/migration
stage, and the modeled data are generated in the forward modeling stage. Based on the
estimated image, we can simultaneously demigrate the complete modeled data (i.e., with
near-offsets included) during FWM. After we combine the recorded part from the original
data and the reconstructed part from the modeled data, the combined data are fed into
the CL-SRME to have a better estimated primaries and multiples. Note that due to the
consistent waveform inversion during FWM the modeled data have matched well with
the recorded data. Therefore, there is no need to apply an extra amplitude matching step,
which might be necessary for other conventional approaches. The combination process
can be expressed as follows:

d−
CL-SRME(z0) = d−

obs(z0)+M ◦p−
mod(z0, r̂), (2.5)

where d−
CL-SRME(z0) indicates the final combined data that are fed into CL-SRME for pri-

mary estimation, M represents the sampling operator that contains the coordinates of
the missing traces, and ◦ indicates the entry-wise product. In this workflow, the image
only acts as a strong constraint for the modeled complete data. The FWM image may not
be perfect and still contain cross-talk. However, it can still serve as a basis for data recon-
struction, which is our main purpose for the FWM step.

2.4. RESULTS

To demonstrate the performance of the proposed integrated surface-related multiple esti-
mation framework for shallow water, we will show one synthetic and one field data exam-
ple. Both examples illustrate difficult shallow water scenarios with missing near-offsets.
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(a) (b)

Figure 2.2: Synthetic data example. (a) Velocity model. (b) Reflectivity model.

2.4.1. SYNTHETIC DATA EXAMPLE

We first test the proposed framework on the synthetic model as shown in Figure 2.2, which
consists of a shallow water layer, an anticline structure, several tiny faults and two deep
target layers. The water depth is 80 m. We model the fixed-spread streamer-type data with
136 sources and 136 receivers. Both source and receiver interval is 20 m. Note that the full
wavefield modeling (FWMod) [11] is used to generate the synthetic data for demonstrat-
ing the best performance of the proposed framework. Both velocity model (Figure 2.2(a))
and reflectivity model (Figure 2.2(b)) are required for FWMod. The modeled ground truth
data are shown in Figure 2.3. Surface-related multiples are clearly visible in modeled full
wavefield in Figure 2.3(a). Due to a shallow water depth, the water bottom reflection event
is highly curved and displays relatively strong energy; it is crucial for CL-SRME-based pri-
mary and multiple estimation [19]. From the primaries in Figure 2.3(b), a weak event re-
lated to an internal multiple can be observed around 0.3 s, which can be used as QC for
comparing primary estimation results.

First, Figure 2.4 is dedicated to demonstrate the importance of the near-offsets for
surface-related multiple estimation. The decimated data with missing near-offsets as shown
in Figure 2.5(a) are directly fed to CL-SRME. The missing gap is 320 m (i.e., 160 m offsets
to both sides and 15 missing traces in total). From the poorly estimated multiples in Fig-
ure 2.4(b) it is clear that only small potion of the later multiple events can be somehow
predicted, and seems disastrous for the earlier events. Consequently, the corresponding
primaries in Figure 2.4(a) are still severely interfered by the multiples, where very few mul-
tiples are removed. Therefore, accurate data reconstruction is necessary for good multi-
ple estimation. Figure 2.5 demonstrates the data reconstruction performance compari-
son. The missing near-offset gap completely hides the curvature information of shallow
event and makes data reconstruction extremely difficult. The parabolic Radon transform
(PRT) is commonly used for near-offsets reconstruction in industry [20], and is regarded
as a benchmark in this chapter. PRT reconstructed data and their corresponding recon-
struction errors are shown in Figure 2.5(b) and 2.5(e), respectively. PRT achieves a good
near-offset reconstruction performance in the later part of data. However, we can ob-
serve strong reconstruction errors in the shallow part, especially the water bottom re-
flection, due to the stretching effects during normal moveout correction (NMO) that is
required in PRT-based reconstruction. Figure 2.5(c) and 2.5(f) present the FWM recon-
structed data and their corresponding reconstruction errors, respectively. FWM recon-
structed near-offsets are quite close to the ground truth from visual comparison. Further-
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(a) (b) (c)

Figure 2.3: Modeled ground truth data via FWMod. (a) Full wavefield. (b) Primaries. (c)
Surface-related multiples. Note that both full wavefield and primaries also contain internal
multiples, which are considered as “primaries" by CL-SRME. Similarly, data in Figure 2.3(c)
are (presumably) full data without primaries and their internal multiples, i.e., free-surface
multiples and their internal multiples.

(a) (b)

Figure 2.4: The effect of leaving out near-offsets on CL-SRME-based primary and multiple
estimation. Estimated primaries (a) and multiples (b) without any near-offsets reconstruc-
tion, respectively.

more, the FWM reconstruction errors are much smaller compared with PRT reconstructed
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data, which indicates a better reconstruction performance of FWM compared to PRT. For
a better comparison, a single trace comparison at distance 1360 m is also provided. Note
that black solid, red solid and blue dashed lines denote ground truth, PRT reconstructed
and FWM reconstructed near-offset trace, respectively. It is clear that FWM reconstructed
near-offsets are very close to the ground truth while the PRT reconstructed near-offsets
have larger errors at the shallow part. It can be observed that shallow events are usually
more curved, makes them more difficult to reconstruct by PRT.

The effect of data reconstruction on CL-SRME-based primary and multiple estimation
for this synthetic example is shown in Figure 2.6. Estimated primaries and multiples from
ground truth data are presented in Figure 2.6(a) and 2.6(d), respectively. Comparing with
the ground truth primaries and multiples in Figure 2.3, CL-SRME achieves almost perfect
performance. Estimated primaries and multiples from PRT reconstructed data are shown
in Figure 2.6(b) and 2.6(e), respectively. As seen in Figure 2.6(b), many leaked multiples
are visible in the estimated primaries indicated by the arrow, which prevents interpreters
seeing the real structure. From estimated multiples in Figure 2.6(e), it seems that the first-
order surface multiple from the water bottom reflection is much weaker than the ground
truth. Estimated primaries and multiples from FWM reconstructed data are shown in Fig-
ure 2.6(c) and 2.6(f), respectively. We observe that the estimated primaries and multiples
from FWM reconstructed data are very similar to the ideal case, which indicates the FWM
reconstructed near-offsets are accurate enough for CL-SRME. Note that the internal mul-
tiple event in Figure 2.6(c) is noticeable, as internal multiples are considered as primaries
in CL-SRME. The missing water bottom reflection at near-offsets are so crucial that it can
steer the primary and multiple estimation to a physical-consistent direction. Note that the
gap might be small in terms of space-time window, but it is not small in terms of reflection
angles or amplitudes of the waveforms.

2.4.2. FIELD DATA EXAMPLE

The Nelson data set from the North Sea is used for demonstrating the proposed framework
on primary and multiple estimation. The Nelson data set are originally extracted from a
2D streamer survey line with 25 m original source spacing. We can obtain a fixed-spread
data set via reciprocity and source interpolation, arriving at 201 sources and 201 receivers.
Both source and receiver intervals are 12.5 m. More details descriptions about the prepro-
cessing steps, the original acquisition geometry and the survey background can be found
in [21] and [22]. The maximum water depth is 95 m (90 m on average). The double-sided
near-offset gap is 225 m (i.e., 17 missing traces in total), which is smaller than that of the
synthetic data. Due to a good performance of PRT on the later part of the data, we only
compare the data reconstruction performance on the shallow events, which only requires
a constant water velocity. From the decimated data in Figure 2.7(a), it is worth mentioning
that the deep part of the missing near-offsets are reconstructed by PRT. Figure 2.7(b) and
2.7(d) present PRT and FWM reconstructed data, respectively. The reconstruction differ-
ences from the shot gather are difficult to see. Therefore, we provide a single trace compar-
ison in Figure 2.7(c) for convenience. Note that red solid and blue dashed lines denote the
PRT reconstructed and the FWM reconstructed near-offset trace, respectively. The FWM
reconstructed near-offset trace has stronger amplitude than its PRT counterpart, which
agrees with the conclusion of the synthetic test. Besides, the PRT gives a slightly distorted
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(a) (b) (c)

(d) (e) (f)

Figure 2.5: Data reconstruction performance comparison. (a) Decimated data with missing
near-offsets. (b) & (e) PRT reconstructed data and their corresponding reconstruction er-
rors, respectively. (c) & (f) FWM reconstructed data and their corresponding reconstruction
errors, respectively. (d) Single trace comparison at Distance 1360 m. Note that black, red
and blue lines denote ground truth, PRT reconstructed and FWM reconstructed near-offset
trace, respectively.

wavelet due to the stretching effect of the involved NMO correction. Note that for the
very critical shallow part of the data, we only use the FWM reconstructed water bottom
reflection, while the rest is taken from the PRT reconstructed data.

Next, we evaluate the effect of data reconstruction on CL-SRME-based primary and
multiple estimation. Figure 2.8(a) and 2.8(c) show the estimated primaries and multiples
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(a) (b) (c)

(d) (e) (f)

Figure 2.6: The effect of data reconstruction on CL-SRME-based primary and multiple esti-
mation. (a) & (d) Estimated primaries and multiples from ground truth data, respectively.
(b) & (e) Estimated primaries and multiples from PRT reconstructed data, respectively. (c)
& (f) Estimated primaries and multiples from FWM reconstructed data, respectively.

from PRT reconstructed data, respectively. Figure 2.8(b) and 2.8(d) show the estimated
primaries and multiples from FWM reconstructed data, respectively. From the estimated
primaries, we can observe that there are visible multiple leakages indicated by the arrows
from the PRT reconstructed data. Those two first-order multiple leakages can be easily
confirmed. However, the same leakages are suppressed by using the FWM reconstructed
data. Meanwhile, the estimated multiples using the FWM reconstructed data are slightly
stronger than using PRT reconstructed data. Thus, the small update in the water-bottom
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(a) (b)

(c) (d)

Figure 2.7: Data reconstruction comparison for the Nelson field data set. (a) Decimated
data with top part of missing near-offsets. (b) & (d) PRT and FWM reconstructed data,
respectively. (c) Single trace comparison at Distance 1250 m. Note that red and blue lines
denote PRT reconstructed and FWM reconstructed near-offset trace, respectively.

reflection can drive the CL-SRME to a different solution.

Figure 2.9 presents the stacked section comparison, which shows the differences more
clearly. The original full wavefield stacked section is shown in Figure 2.9(a). Visible surface
multiples can be observed in the original full wavefield stack. Estimated primary stacked
sections using PRT and FWM reconstructed data are displayed in Figure 2.9(b) and 2.9(c),
respectively. Compared to the original stack, both results greatly attenuate the surface
multiples. However, the primary stack using FWM reconstructed data presents less resid-
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(a) (b)

(c) (d)

Figure 2.8: The effect of data reconstruction on CL-SRME-based primary and multiple esti-
mation. (a) & (c) Estimated primaries and multiples from PRT reconstructed data, respec-
tively. (b) & (d) Estimated primaries and multiples from FWM reconstructed data, respec-
tively. Note that arrows indicate the location of residual multiples.

ual multiples compared to the primary stack using PRT reconstructed data, especially for
the first-order multiples indicated by the arrows. Note that a slight primary dimming is
present in the deep part of Figure 2.9(c), probably due to 3D effects.
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(a) (b) (c)

Figure 2.9: Stacked section comparison. (a) Original full wavefield. (b) Estimated primaries
using PRT reconstructed data. (c) Estimated primaries using FWM reconstructed data.

2.5. DISCUSSION
Velocity information is essential for the integration of CL-SRME and FWM framework. Pri-
maries typically need to be reconstructed from deeper reflectors than the water bottom,
which is a function of near-offsets, geology and velocity. The data reconstruction power
lies in FWM, however, FWM requires a decent velocity model and a good source wave-
field description to function well. For example, we use the smoothed version of the true
velocity in the synthetic example. To make most of the proposed framework, velocity esti-
mation is usually necessary, where joint migration inversion (JMI) [23] can handle this, as
it is based on the same foundations as FWM. Conventional velocity estimation methods
usually require demultipled data beforehand, while JMI is able to take both surface and
internal multiples into consideration. Missing data will pose difficulty on JMI for velocity
estimation, however, most important velocity information come from far-offsets. Besides,
conventional near-offsets reconstruction can be applied first, and then fed to JMI for bet-
ter performance. Recently proposed pseudo-time JMI is more stable in terms of the veloc-
ity estimation [24]. In practice, only the shallow part of near-offsets need to be carefully
described by FWM and the deep part can be solved by PRT. Therefore, shallow velocity
estimation is a key pre-processing step for the proposed integrated framework. At least, it
is important to have a correct water speed for field data application. As for the source es-
timation, we know the true source wavefield for synthetic data. Although it is challenging
for field data, FWM is flexible on the source assumption. FWM is not limited by a point
source, and in fact it can accommodate any source wavefield as long as the temporal and
spatial properties are known. The more accurate the description of the source, the better
the source estimation. In this chapter, we use EPSI to estimate the source signal for the
Nelson field data. The merging of synthetic data estimated by FWM and the field data
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requires consistency of the wavelets in the two data sets, with wavelet here including not
only the source signature but also residual ghosts and effects from the (rough) sea surface
reflection. Note that all kinds of source estimation methods utilize the consistency be-
tween primaries and multiples. More assumptions and ways to validate the assumptions
are described in [25].

(a) (b)

Figure 2.10: The by-product images from the proposed integrated CL-SRME and FWM
framework for the synthetic example (a) and the field data example (b).

The proposed integrated CL-SRME and FWM framework can provide a high-resolution
shallow subsurface image as by-product. Figure 2.10 shows two FWM images correspond-
ing to the previous examples. In fact, the by-product image in Figure 2.10(a) is quite ac-
ceptable with minimum crosstalks, and its estimated reflectivity is close to the true model
in Figure 2.2(b). However, residual crosstalk for the field data is still visible as shown in
Figure 2.10(b). It is probably due to applying a 2D method to real (3D) data, which creates
some amplitude inconsistencies, mostly because of the 3D geometric spreading. Note that
we do not need a perfect image for data reconstruction purpose; actually the crosstalk is
required to build the correct amplitudes for data reconstruction. The interdependence
between preprocessing (multiple estimation included), image estimation and velocity es-
timation makes processing of shallow water data challenging and distinct from the con-
ventional scenarios, where these processing steps can be effectively separated. We show
benefits by combining treatment of multiple estimation and subsurface imaging, given
preprocessing and a velocity model.

At the same time, we need to mention that for 2D field data the primary model that has
the least multiple leakage may not be the best model for primary amplitude preservation
in the deeper area due to the fact that 3D data can never be perfectly represented by a
2D theory. The energy loss in the deeper area for the field example is probably due to the
balancing process inside the CL-SRME inversion scheme. Therefore, the correct physics
is difficult to retain in a 2D world, and sometimes it is acceptable to break the physics for
achieving better performance. For the 2D data in shallow water, the main challenge is the
near-offsets gap, which can be reconstructed with reasonable accuracy via EPSI, focal CL-
SRME and the proposed method [2, 26, 27]. However, for the challenging 3D scenario (i.e.,
only 2% recorded data in a shallow water environment), both EPSI and focal CL-SRME
will fail due to their weak constraint on the solution space. In other words, both EPSI
and focal CL-SRME can not be easily scaled to the 3D case to handle near-offsets gap and
large crossline undersampling. Conversely, FWM will be beneficial in the 3D case because
of its much stronger constraints in the image. More specifically, the sparsity constraint
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in EPSI is limited, and thus, focal constraint was introduced to help with more curved
events. FWM achieves even stronger constraint via the image to be able to reconstruct the
exact shape of highly curved events with strong lateral amplitude variation. Therefore, all
methods (i.e., EPSI, focal CL-SRME and the proposed framework) can obtain acceptable
results in 2D, while only the proposed integrated CL-SRME and FWM framework has the
potential to overcome the extreme challenging 3D world.

FWM has already shown strong interpolation power for the missing near-offsets re-
construction although it requires acceptable model information. However, the undersam-
pling issue is much more severe in reality, e.g., large source spacing and receiver side sub-
sampling. Figure 2.11 demonstrates the FWM reconstruction performance on the same
synthetic example with both source (1:5) and receiver (1:2) undersampling. It can be seen
that FWM could still perform effectively with large parts of missing data. Thus, the main
advantage of the proposed framework will be achieved in a full 3D scenario. Also there
we can expect larger missing near-offset data, such that the PRT will perform very poorly.
However, both CL-SRME and FWM consume heavy cost in 3D, which is still under re-
search. Currently, an affordable solution is the 3D FWM-aided general surface multiple
prediction approach (GSMP), in which FWM is only used to reconstruct near-offsets and
GSMP solves the crossline undersampling issue [28].

We recognize that the computational cost of the proposed integrated framework of
CL-SRME and FWM is a challenge. It is not easy to give a direct number for the cost,
however, we can provide a rough idea compared to the standard SRME process. That is,
CL-SRME roughly approximates to 50 times of SRME, while FWM is at least 1000 times. It
is certainly not cheap, but we are currently pursuing a noticeable improvement on shallow
water multiple estimation with a high-resolution shallow imaging result as a by-product.
Besides, the utilized FWM algorithm is not fully optimized as it was implemented in Mat-
lab, which leaves room for further reducing the cost in the future. In general, both FWM
and CL-SRME cost increases linearly with source and/or receiver numbers. To limit com-
putational costs, we realize that PRT is able to give acceptable results for time later than
0.3 s, and FWM is only applied for the top part of shallow subsurface. Note that in terms of
iteration number used in this chapter, we apply 20 CL-SRME iterations for both synthetic
and field examples. As for FWM, we use 80 iterations for the synthetic model because we
would like to achieve the best possible performance. However, it is usually sufficient for
field examples to use 20 FWM iterations.

Near-offset reconstruction performance using PRT depends on several parameters.
The near-offset gap size and the water depth are the most important ones [2]. Both param-
eters heavily influence the curvature of the reflection data. Shallower water depth leads
to higher curvature of water bottom reflection, which generates more severe stretching
effects. Larger gap size results in missing curvature information, which leads to poorer
reconstruction. In this chapter, the PRT reconstruction performance seems better for the
field data example compared to the synthetic data. This is partly because of the smaller
gap size (225 m) and the somewhat larger water depth (95 m) compared to the synthetic
model (320 m and 80 m, respectively). An extra experiment of the proposed framework on
the same synthetic model with 50 m water depth has been implemented in Figure 2.12.
In this case, we can observe shorter time difference between primaries and its first-order
multiples. Although there are slightly more reconstruction errors than the 80 m case, the
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(a) (b) (c)

(d) (e) (f)

Figure 2.11: FWM reconstruction performance on the same synthetic example with both
source (1:5) and receiver (1:2) undersampling. (a) Decimated shot gather with missing re-
ceivers and near-offsets. (b) & (c) FWM reconstructed shot gather and their correspond-
ing reconstruction errors, respectively. (d) Decimated common-receiver gather with missing
sources and near-offsets. (e) & (f) FWM reconstructed common-receiver gather and their
corresponding reconstruction errors, respectively.

overall FWM reconstruction is acceptable. For the given bandwidth we expect that perfor-
mance will decrease further with shallower water depth. Thus, combination of MWD [8]
for extreme shallow and FWM for medium shallow might be a solution.

When the water depth is shallower than 50 m, the source array effect and the direct
arrival might have seriously negative effects on the imaging process. Point-source approx-
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(a) (b) (c)

Figure 2.12: FWM reconstruction performance on the same synthetic example with shal-
lower water depth (i.e., 50 m). (a) Decimated data with missing near-offsets. (b) FWM
reconstructed data and (c) their corresponding reconstruction errors.

imation in imaging and demultiples are not valid anymore. Nevertheless, we can always
take array effects into account when defining the source field during forward modeling.
Note that a good estimate of source wavefield is required for the sensitive non-linear FWM.
Extreme shallow water creates another big problem, being that the source signal and data
interfere with each other. Thus, the proposed framework will break down as soon as we
cannot get a good estimate of the source wavefield. In extreme shallow water scenarios
(0-30 m), we suggest a combination of detailed high-resolution shallow subsurface model
inversion for the very shallow part and our proposed framework for the medium shallow
part. Note that this scenario is challenging and requires further research.

We always prefer the most logical reconstructed data, which can represent the physics.
One of the advantages of FWM is its good link between primaries and multiples, and this
is the physics that needs to be used and retained. In general, FWM has more physics and
more flexibility without the danger of over-parameterization. Still, the shallow water en-
vironment is too complicated to be solved by a single approach. Alternatively, an even
more integrated framework including refraction analysis, multiple estimation, and a ded-
icated near-surface model building/inversion might contribute to an ideal solution. We
need these combinations of algorithms to maximally utilize the physical relations to solve
the challenging shallow water problem.

2.6. CONCLUSIONS

We have proposed a new integrated CL-SRME and FWM framework for better primary
and multiple estimation, which can support CL-SRME with good-quality near-offsets in
order to avoid primary estimation failure that typically occurs in shallow-water environ-
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ments. Using FWM - with its closed-loop simultaneous primaries and multiples imaging
approach - as the reconstruction method and feeding the reconstructed near-offsets to
CL-SRME are the key components to success. A 2D synthetic and a 2D field data example
have shown the good performance of the proposed integrated framework for a shallow
water environment. These 2D demonstrations will pave the road for a full 3D implemen-
tation with coarse sampling, where the proposed integrated framework will have its main
impact.
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3
3D FWM-AIDED SRME

Industry standard 3D surface-related multiple elimination (SRME) still faces challenges in
shallow-water scenarios. Full wavefield migration (FWM) using surface-related multiples
possesses a strong reconstruction power, especially for near-offsets, by using the image as
a constraint. Therefore, we propose a 3D FWM-aided surface-related multiple estimation
framework for shallow water, which includes a data reconstruction step via 3D FWM and
a multiple estimation step via 3D SRME or general surface multiple prediction (GSMP).
Specifically, the FWM reconstructed data are combined with the observed data as input for
the 3D multiple estimation engine for better primary prediction. Application on data from
a 3D synthetic model demonstrates a good reconstruction accuracy of 3D FWM and a good
performance of the proposed framework for the challenging shallow-water scenario.

This chapter is an extended version of proceeding "D. Zhang and E. Verschuur, 3D Surface-related multiple esti-
mation for shallow water aided by full wavefield migration, in EAGE Conference and Exhibition Online Expanded
abstracts, (European Association of Geoscientists & Engineers, 2020)".
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3.1. INTRODUCTION
3D surface-related multiple elimination (SRME) is an industry standard data-driven pri-
mary estimation method, which requires fully-sampled data set. To overcome the most
difficult data sampling issue in 3D case, many efforts have been spent in both industry
and academia. [1] proposed a sparse inversion interpolation approach on the multiple
contribution gathers along the crossline direction after the inline summation. General
surface multiple prediction (GSMP) using on-the-fly interpolation is described by [2] and
reviewed by [3], which later became an industry standard for 3D due to its strong flexibil-
ity regarding the acquisition geometry. Generally, all the aforementioned methods work
well for the deep-water scenarios, however, problems occur in the shallow-water towed-
streamer scenarios. Both crossline undersampling and missing near-offsets are very com-
mon while at the same time there typically exist strong surface-related multiples. Espe-
cially, the highly-curved near-offsets missing data are extremely hard to reconstruct, while
they actually contribute significantly to the prediction of surface-related multiples [4–7].

Currently, 3D multiple estimation for shallow-water scenario still remains very chal-
lenging although a lot of studies have been done in this particular field [8–13]. Therefore,
more accurate data reconstruction approaches, especially for near-offsets, are desperately
needed. [7] proposed the integration of closed-loop SRME and full wavefield migration
(FWM) to solve the sampling issue for 2D shallow-water scenario, in which the FWM im-
age is regarded as a strong constraint to better reconstruct the near-offsets data. The
reason why we still prefer SRME to separate primaries and multiples is that data-driven
methods in principle are more accurate than model-driven methods [14]. The FWM-
based reconstruction method can be extended to 3D straightforwardly while, however,
3D inversion-based SRME currently is still not practical in terms of the computational
efficiency. Therefore, in this chapter, we propose a 3D FWM-aided surface multiple es-
timation framework which consists of two cascaded steps: data reconstruction step via
3D FWM and multiple estimation via 3D SRME or GSMP. By integrating the strong data
reconstruction power of 3D FWM and multiple estimation ability of 3D SRME or GSMP,
we are able to obtain a better primary estimation even in a shallow-water scenario. A 3D
synthetic model example is used to demonstrate our proposed framework.

3.2. 3D SRME AND GSMP
The 2D SRME concept can be extended to the 3D case straightforwardly. Assume seismic
data with full coverage in sources and receivers at the surface, the desired multiple esti-
mation can be achieved via summing all contributions for one source-receiver pair [4]:

M(xr , yr , xs , ys ,ω) =−∑
yk

∑
xk

P0(xr , yr , xk , yk ,ω)P (xk , yk , xs , ys ,ω), (3.1)

where P0(xr , yr , xk , yk ,ω) indicates the monochromatic primary wavefields from a source
location at (xk , yk , z = 0) to a receiver location at (xr , yr , z = 0) and P (xk , yk , xs , ys ,ω) de-
notes the monochromatic total upgoing wavefield from a source location at (xs , ys , z = 0)
to a receiver location at (xk , yk , z = 0). Essentially, the 3D SRME process for estimating
multiples M can be regarded as a multi-dimensional convolution between a 3D common
receiver gather P0 and a 3D common shot gather P in a pre-defined aperture, i.e., the do-
main of integration. Note that in practice P0 is unknown and, therefore, it is replaced by P
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in the first iteration. Equation 3.1 is adequate for the discussion in this chapter with focus
on the spatial sampling of the data and the kinematics of the predicted multiples.

In reality, a major sampling issue (both in crossline and missing near-offset data) pre-
vents 3D SRME from being successfully applied. Therefore, intensive data interpolation
is highly demanded to overcome the sampling problem. GSMP, a flexible 3D SRME algo-
rithm [2], incorporates on-the-fly interpolation within its multiple prediction framework,
where every desired source-receiver pair combination is created from the existing traces
[3]. These selected traces are then corrected via some form of differential NMO before
they are fed into the prediction process. The fundamental difference between 3D SRME
and GSMP is in the preprocessing, where the former is precomputing and storing all the
required data, and the latter is fetching the required data on-the-fly. Although GSMP is
very flexible on handling any acquisition geometry, it still suffers from the interpolation
accuracy especially for near-offset reconstruction in shallow water.

3.3. FWM FOR DATA RECONSTRUCTION
With the help of surface-related multiples FWM is capable of better imaging and illu-
minating the shallow subsurface [15–17]. In order to achieve this, the total downgoing
wavefield Q+(z0) as the incident wavefield for 3D migration, which is in the detail-hiding
notation [18] with data matrices, where column vectors represent monochromatic shot
records, should be modified as:

Q+(z0) = S+(z0)+R∩(z0, z0)P−
obs (z0), (3.2)

where S+(z0) contains the source wavefields, R∩(z0, z0) represents the downward reflectiv-
ity usually considered as R∩ =−I and P−

obs (z0) denotes the observed wavefields with all of
them at the acquisition surface after receiver deghosting. The total downward wavefields
Q+(z0) are then forward extrapolated at every depth level zm given by:

P+(zm , z0) = W+(zm , z0)Q+(z0), (3.3)

while the recorded total upgoing wavefields are inverse extrapolated to every depth level
zm by:

P−(zm , z0) = [W−(z0, zm)]−1P−
obs (z0) ≈ [W+(zm , z0)]∗P−

obs (z0), (3.4)

where W+ and W− are downgoing and upgoing propagation operators, respectively. Re-
flectivity is then extracted by the imaging condition, which is the cross-correlation of
P+(zm , z0) and P−(zm , z0) shot by shot. In this way, the primaries and multiples are mi-
grated simultaneously. Nevertheless, direct imaging by cross-correlation is not accurate
enough, which can be improved by the inversion approach in FWM [16]. More specifi-
cally, FWM aims at explaining the full recorded data by the modeled one in terms of the
predicted reflectivity. Therefore, the objective function can be described as:

J =∑
ω
∥P−

obs (z0)−P−
mod (z0)∥2

2, (3.5)

where P−
mod (z0) is the modeled upgoing wavefield based on the estimated reflectivity at

each depth level in the subsurface.
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Note that using equation 3.2 requires a high receiver coverage and density, which is of-
ten not met in reality, due to missing near-offsets, coarse cross-line sampling and obstruc-
tions like a big platform gap. Therefore, we suggest using the surface-related multiples in
a non-linear way [19]:

[Q+(z0)]i = S+(z0)+R∩(z0, z0)[P−
mod (z0)]i−1, (3.6)

where i is the iteration number and [P−
mod (z0)]i−1 indicates the modeled upgoing wave-

field from previous iterations.

Figure 3.1: The proposed 3D FWM-aided SRME workflow for shallow water.

Using the migrated image as a constraint, FWM demonstrates a strong data recon-
struction power [7]. Specifically, FWM uses the image to back-project the information
from multiples to primaries with the physical constraint of all information belonging to
the same earth model. Figure 3.1 demonstrates the proposed workflow for 3D FWM-aided
SRME. The reconstructed data from [P−

mod (z0)]i−1 are combined with the observed data
P−

obs (z0) to form the final complete data that will be fed into 3D multiple estimation en-
gine, e.g., 3D SRME or GSMP. In this way, we propose a 3D FWM-aided surface-related
multiple estimation framework to better estimate primaries for shallow-water scenarios.

3.4. EXAMPLE ON 3D LAYERED MODEL
We test our proposed FWM-aided surface-related multiple estimation framework on a 3D
synthetic layered model shown in Figure 3.2(a), which includes a 80 m shallow water layer,
a dipping plane and a deep horizontal plane. Figure 3.2(b) indicates the data acquisition
details, where receivers are along the green lines with inline interval of 20 m and crossline
interval of 100 m, and sources are along the red dotted lines with inline interval of 20
m and crossline interval of 200 m. For this 3D synthetic model, all numerical data are
generated using full wavefield modeling (FWMod) [20]. Figure 3.3 shows the reference
ground-truth 3D shot gathers at one specific source location (inline=1000 m, xline=900
m) for the full wavefield, primaries and multiples, respectively. Note that these complete
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data are modeled on a full grid with 20 m in/crossline interval. Due to a coarse acquisi-
tion shown in Figure 3.2(b), the very limited data are actually recorded as shown in Figure
3.4(a). Note that all the near-offsets within a 200 m gap are also taken into account and
removed. From the decimated data, it is obvious that less than 20 percent of the full grid
is recorded because of the crossline undersampling and near-offsets missing. In order to
fulfill the sampling requirement for 3D SRME, the recorded data need to be reconstructed
before multiple prediction. In shallow-water scenarios, most data-driven reconstruction
methods are not valid anymore due to highly-curved events, while FWM could still pro-
vide decent reconstruction results [7]. Figure 3.4(b) shows the complete reconstructed
full-grid data via 3D FWM. The reconstruction errors are displayed in Figure 3.4(c), which
demonstrates a good reconstruction performance.

(a)

20
00

 m

2000 m

1000 m

1000 m

Inline

Xl
in

e

(b)

Figure 3.2: 3D synthetic layered model. (a) Velocity model. (b) Top view of data acquisition
geometry with green lines representing receivers and red lines representing sources.

(a) (b) (c)

Figure 3.3: Reference ground-truth 3D shot gathers. (a) True full wavefield. (b) True pri-
maries. (c) True multiples.

We then investigate the influence of data sampling issue on both 3D SRME and GSMP.
Note that only one source line (Xline=900 m) ranging from 500 to 1500 m in the inline
direction is compared in this study. To put better emphasis on the sampling issue, one
iteration of multiple prediction and global adaptive subtraction with a short filter length
are used for both the 3D SRME and GSMP process. All the results could be improved with
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(a) (b) (c)

Figure 3.4: 3D FWM reconstruction performance. (a) Decimated data with only original
existing traces. (b) FWM reconstructed data. (c) Reconstruction errors compared to Figure
3.3(a).

more iterations. Figure 3.5 shows the final comparison results for 3D SRME and GSMP by
using the proposed 3D FWM-aided surface-related multiple estimation framework. True
multiples and primaries are shown in Figures 3.5(f) and 3.5(l) for reference purpose. Mul-
tiples and primaries in Figures 3.5(e) and 3.5(k) are estimated via using the complete true
full wavefield data in 3D SRME, which is considered as a benchmark in our study. This is
theoretically the best result for 1 iteration.

We first feed original existing traces without any reconstruction to both 3D SRME and
GSMP. Figures 3.5(a) and 3.5(g) show the estimated multiples and primaries for 3D SRME.
These extremely poor results demonstrate the importance of data sampling for 3D SRME.
Figures 3.5(b) and 3.5(h) show the estimated multiples and primaries for GSMP, which
is slightly better than 3D SRME due to its on-the-fly interpolation engine. However, the
missing near-offsets cannot be well approximated by on-the-fly interpolation based on
differential NMO correction and still remain a challenge for GSMP. We then insert only
the 3D FWM reconstructed near-offsets into the existing traces and feed them into GSMP,
which gives much better estimated multiples and primaries as shown in Figures 3.5(c) and
3.5(i). Therefore, FWM reconstructed near-offsets are accurate enough to boost the qual-
ity of the overall GSMP results. Finally, we use the full 3D FWM reconstructed data demon-
strated in Figure 3.4(b) as the input for 3D SRME to overcome the sampling challenges for
both crossline direction and near-offsets missing. Figures 3.5(d) and 3.5(j) display the fi-
nal estimated multiples and primaries, which are very similar to our benchmark results in
Figures 3.5(e) and 3.5(k). These results also indicate a good reconstruction performance
for 3D FWM. Although FWM-aided 3D SRME can overcome the sampling issue and pro-
vide the closest result to the benchmark, it requires more computational resources and
data space than FWM-aided GSMP that could also provide an acceptable result.

3.5. EXAMPLE ON EAGE 3D OVERTHRUST MODEL
The proposed 3D FWM-aided GSMP framework has already been demonstrated on a sim-
ple layered 3D model, in which a promising multiple estimation result has been achieved
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 3.5: 1st iteration 3D SRME and GSMP comparison based on the proposed 3D FWM-
aided surface-related multiple estimation framework. (a) & (g) 3D SRME Estimated multi-
ples and primaries, respectively, using decimated data. (b) & (h) GSMP estimated multiples
and primaries, respectively, using original existing traces. (c) & (i) GSMP estimated multi-
ples and primaries, respectively, using existing traces together with 3D FWM reconstructed
near-offsets. (d) & (j) 3D SRME estimated multiples and primaries, respectively, using 3D
FWM reconstructed data. (e) & (k) 3D SRME estimated benchmark multiples and primaries,
respectively, using complete true full wavefield. (f) & (l) Reference true multiples and pri-
maries, respectively.

[21]. However, on the one hand, the previous model is not general enough. On the other
hand, we wish to reduce the number of sources so that it is closer to reality. We thus ap-
plied our proposed framework on a part of EAGE 3D Overthrust model to further investi-
gate its performance. The velocity model is shown in Figure 3.6(a). The size of the model
is 4000 m by 4000 m in both inline and crossline direction, and the depth is 1000 m. We
manually add a water layer on top of the model with 100 m water depth, thus, a shallow
water environment is created. Figure 3.6(b) presents the acquisition geometry, in which
the red stars represent sources and the black dashed lines represent receivers. Note that
there are only three source lines for this geometry, and the crossline source spacing is 420
m. The inline source spacing is 100 m, and the inline receiver spacing is 20 m ranging
from 1000 m to 3000 m. Each source line includes 9 receiver lines with 100 m crossline
spacing, which is one patch. There are three patches overlapping in total. The number of
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sources are 63, which is quite limited. Note that the near-offset gap is 120 m, and the data
are modeled via FWMod [20].

(a) (b)

Figure 3.6: EAGE 3D Overthrust model. (a) Velocity model. (b) Acquisition geometry with
three patches (red stars representing sources and black dashed lines representing receivers).

(a) (b) (c)

Figure 3.7: Reference ground-truth shot gathers (one middle shot slice from a center 3D shot
gather). (a) True full wavefield. (b) True primaries. (c) True multiples.

For convenience, we only demonstrate one middle slice of a 3D center shot for com-
parison. Figures 3.7(a), 3.7(b) and 3.7(c) show the original full wavefield, the true pri-
maries and the true multiples, respectively. Note that the weak primary event around 0.25
s in Figure 3.7(b) completely overlaps with the first order water-bottom related surface
multiple, as shown in Figure 3.7(a). Data from the receiver side are reconstructed (both
missing near-offsets and undersampled crossline direction) by 3D FWM. More specifi-
cally, the recorded data are first fed to FWM. Constrained by the images (or the image can
be regarded as a transform domain), FWM are capable of reconstructing all the missing
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data at the receiver side. The reconstruction performance and its accuracy have been dis-
cussed in [21].

(a) (b) (c) (d)

Figure 3.8: GSMP estimated multiples based on (a) a full receiver coverage, (b) a real world
receiver coverage, (c) a FWM reconstructed full receiver coverage, and (d) a real world plus
FWM reconstructed nearoffset receiver coverage. Crossline source sampling is 420 m in all
these tests.

After 3D FWM-aided reconstruction, the fully sampled receiver side data can be ob-
tained. A set of different input data scenarios are implemented for GSMP, and the re-
sults are shown in Figure 3.8. The current ideal situation indicates a full receiver coverage,
therefore, we feed the original full sampled (only receiver side) data to GSMP. Note that
this "ideal" situation is still not perfect, as sources are still undersampled. First, Figure
3.8(a) shows the full receiver coverage estimated multiple model without adaptive match-
ing, which resembles to the true multiples. Next, a real world receiver coverage, which is
the worst scenario, is fed to GSMP. The corresponding result is displayed in Figure 3.8(b).
It can be seen that due to the missing near-offsets and undersampling along the crossline
direction the estimated multiples have much weaker amplitude and wrong phase (event
indicated by the arrow), which could lead to a failed subtraction. Next, we feed FWM re-
constructed full receiver coverage to GSMP, which results in the estimated multiples in
Figure 3.8(c). Visually it is very similar to the full receiver coverage result for the shallow
part, however, there might be some errors for the deeper part. In the end, we only feed the
FWM reconstructed near-offsets plus the recorded data to GSMP, and the estimated multi-
ples are shown in Figure 3.8(d). FWM reconstructed near-offsets are crucial for improving
the shallow multiples compared to the worst case in Figure 3.8(b) although it performs
worse than the FWM reconstructed full receiver coverage.

Figure 3.9 presents the corresponding primaries after a global adaptive subtraction of
the estimated multiples in Figure 3.8. Compared to Figure 3.7(b) it is clear that all results
show residual multiples as this is the first SRME iteration and sources are still undersam-
pled. More iterations and inversion-type 3D multiple estimation is our further research. It
can be noticed the multiple leakage for the real world scenario indicated by the arrows is
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(a) (b) (c) (d)

Figure 3.9: Post-subtraction primaries based on (a) a full receiver coverage, (b) a real world
receiver coverage, (c) a FWM reconstructed full receiver coverage, and (d) a real world plus
FWM reconstructed nearoffset receiver coverage.

much worse than the rest. The FWM reconstructed full receiver case (Figure 3.9(c)) is the
closest to the ideal full receiver case (Figure 3.9(a)), while the near-offsets are crucial for
less multiple leakage.

3.6. DISCUSSION
In this chapter we mainly investigate the influence of the receiver side data reconstruc-
tion on multiple estimation. We recover the receiver side by FWM and use GSMP for the
source side due to logistics, i.e., large data storage. In theory, we prefer a full sampling
data in both receiver and source sides, and then full 3D SRME is even available. We tested
this ideal sampling case for the first simple and smaller 3D layered model, and full 3D
SRME is still feasible. In the presented 3D Overthrust example, however, both memory
and computational cost surge significantly for data reconstruction oriented 3D FWM (i.e.,
the proposed application), which is our current dilemma. Therefore, we only utilize 63
shots for efficiency, which is also close to real world. Still, more shots are preferred, and at
least double the number of sources along crossline direction is our next step.

As for the reconstruction accuracy, it is very promising for the simple 3D layered model.
However, as for the 3D Overthrust model, we noticed that due to the model complexity
FWM performs worse for the deep part, which could lead to a undesired multiple estima-
tion. The limited number of sources might also degrade the FWM performance despite of
taking multiples into account. Therefore, it would be more robust to apply the proposed
framework on the shallow part of the data.

3.7. CONCLUSIONS
We have proposed a cascaded framework for 3D multiple estimation in shallow-water sce-
narios, which includes a data reconstruction step via 3D FWM and a multiple estimation
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step via 3D SRME or GSMP. The strong data reconstruction power of FWM is crucial for
better near-offset reconstruction and the subsequent multiple prediction. 3D FWM has
demonstrated its strong data reconstruction power through two different shallow-water
3D synthetic data sets. Besides, FWM-aided 3D SRME could deliver the best primary and
multiple estimation due to fully taking advantages of the FWM reconstruction power. Nev-
ertheless, FWM-aided 3D SRME is currently not affordable due to the huge data storage
issue and the intensive computational cost. FWM-aided GSMP only utilizes partial recon-
struction power of FWM (i.e., near-offset reconstruction), however, it can provide accept-
able results with less computational resources. Application on two different 3D synthetic
data demonstrate the good performance of the proposed framework in a shallow-water
scenario.
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4
LOCAL PRIMARY-AND-MULTIPLE

ORTHOGONALIZATION

Accurate multiple removal remains an important step in seismic data processing sequences.
Most multiple removal methods, like surface-related multiple elimination (SRME), consist
of a multiple prediction step and an adaptive subtraction step. Due to imperfect circum-
stances (e.g. coarse data sampling) or built-in assumptions (e.g. 2D method versus 3D
data), multiple leakage is commonly observed in the results. More aggressive adaptive mul-
tiple subtraction can reduce the leakage problem, for example, by using small local windows
and a long filter length, but at risk of severely damaging the primaries due to overfitting. In
contrast, conservative adaptive subtraction with large or global windows and a short fil-
ter length can preserve most primary energy while tending to have more multiple leakage
because of underfitting. Assuming that the primaries and multiples do not correlate lo-
cally in the time-space domain, a proposed solution to this problem is to extract the leaked
multiples from the initially estimated primaries using local primary-and-multiple orthogo-
nalization (LPMO) rather than restoring the damaged primaries. The proposed framework
consists of two steps: an initial primary estimation step and a multiple leakage extraction
step. The initial step corresponds to conservative SRME (or equivalent method) that pro-
duces the initially estimated primary and multiple models. The second step is based on
LPMO to retrieve the leaked multiples from the estimated primaries via a time- and space-
varying weight function that is estimated from the local correlation of predicted multiples
and residual multiples in the estimated primaries with the help of shaping regularization.
In this way we can obtain a better primary model that has much less leaked multiple en-
ergy and less primary damage at the same time. We demonstrate a good performance of this
proposed framework via two synthetic data examples and one field data example.

This chapter is a slightly modified version of the published paper "D. Zhang, D. J. Verschuur, S. Qu, and Y. Chen,
Surface-related multiple leakage extraction using local primary-and-multiple orthogonalization, Geophysics 85
(2020), pp. V81–V97". Note that all figures have been replotted in a consistent manner to other chapters.
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4.1. INTRODUCTION
Surface-related multiples have been regarded as coherent noise and removed before the
subsequent processing workflows for decades [1–5]. Meanwhile, exploration geophysi-
cists gradually realized that these multiples (note that we refer multiples to only surface-
related multiples in this thesis and the internal multiples are beyond the scope of this
research) are able to see through the earth multiple times and, therefore, carry valuable
physical information about the subsurface [6]. Multiples are nowadays treated as use-
ful signals as well and can be directly included into the imaging algorithms [7–12]. Al-
though full wavefield imaging (including both primaries and all types of multiples) can be
achieved, it is still desired to estimate primaries and multiples first and then image them
separately, due to the crosstalk of multiples during imaging, the challenges in shallow-
water scenarios and the benefits for conventional primary-oriented processing.

Surface-related multiple elimination (SRME) is the standard tool for primary and mul-
tiple estimation for decades. However, dilemma between primary damage and surface-
related multiple leakage usually occurs due to the inaccurate data reconstruction and the
overlapping events. Despite all the efforts mentioned in Chapter 1, surface-related multi-
ple leakage still can be seen in the results of SRME predicted primaries. The reasons be-
hind are simply because: first, the data reconstruction can never be perfect, which leads
to both phase and amplitude errors in the predicted multiples. Second, the assumption
of adaptive subtraction that primaries and multiples do not correlate is often not met.
Essentially, the imperfections of adaptive subtraction directly lead to multiple leakage in
the estimated primaries. It tends to be either underfitting or overfitting for the subtrac-
tion step regardless of the forced constraint. Underfitting results in more severe multiple
leakage while overfitting can alleviate multiple leakage to some extent. However, overfit-
ting is unfortunately the main cause for primary energy damage, as removing more mul-
tiples usually comes along with damaging primaries. The ability of least-squares adaptive
subtraction strongly depends on the size of local windows and the filter length. A small
window size and a long filter length, which is called standard SRME in this thesis, lead
to better multiple removal, but at the same time causes more primary damage. For the
primary-oriented processing, the best one can achieve during the trade-off is to protect
the primaries as much as possible and, as a result, leave some amount of multiple leak-
age. That is to say, the local windows for SRME should be relatively large and the filter
length for adaptive subtraction should be relatively short. We name this type of SRME
as the conservative SRME. More specifically, note that in this thesis, conservative SRME
indicates the L2-norm adaptive subtraction step in the last iteration with large local win-
dows or even global windows and a short filter length, in which the primaries are not dam-
aged while surface-related multiple leakage is relatively more severe. In contrast, standard
SRME means the L2/L1-norm adaptive subtraction step in the last iteration with small lo-
cal windows and a long filter length, in which the multiple leakage is alleviated while the
primary damage is relatively more severe. Instead of solving the leakage issue within the
SRME itself, it might be much easier and more effective if another external extraction step
is included after the conservative SRME to compensate for the multiple leakage.

To this end, multiple leakage can also be seen as one type of signal leakage if we tem-
porarily treat multiples as our useful signal. Signal leakage is a long-standing problem
in the field of random noise attenuation [13, 14]. Most studies try to propose more ad-
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vanced denoising algorithm by introducing more solid assumptions. However, the fact
that signal leakage always exists should be kept in mind regardless of the algorithms. An
extra external step to compensate for the signal leakage might therefore be preferable. [15]
proposed to extract the leaked signal from random noise using an extra local signal-and-
noise orthogonalization step and showed very promising results, in which traditional f-x
deconvolution is used as the initial denoising operator. In addition, successful applica-
tions on removing ground-roll noise and blending noise based on local orthogonalization
are reported [16, 17]. Inspired by the concept of local orthogonalization, we propose a new
framework for primary estimation and surface-related multiple leakage extraction using
local primary-and-multiple orthogonalization (LPMO) to complement the conservative
SRME. This local orthogonalization assumption is equivalent to assuming that the pri-
maries and multiples do not correlate locally in the time-space domain. In this chapter,
we focus on both standard and conservative SRME with least-squares adaptive subtrac-
tion. The proposed framework mainly consists of two steps: an initial primary estimation
step and a multiple leakage extraction step. The initial step corresponds to the conser-
vative SRME (or equivalent method), which produces the initially estimated primary and
multiple models. The second step is based on LPMO to extract the leaked multiples from
the estimated primaries via a time- and space-varying weight function that is estimated
from the local correlation of predicted multiples and residual multiples in the estimated
primaries with the help of shaping regularization, which can be regarded as an external
remedy for correcting the initially predicted primaries and multiples from the conserva-
tive SRME. Thus, we can obtain better primary and multiple models for subsequent pro-
cessing steps. Preliminary results are shown in [18]. Fair comparisons with standard SRME
are also provided to display their different behaviors in this chapter. We demonstrate a
good performance of our proposed two-step framework on two synthetic and one field
data set. Above all, the proposed framework could make the conventional adaptive sub-
traction process easier to parameterize and also be beneficial for the subsequent quality
control (QC) step.

We organize this chapter as follows: First, we present a brief review of SRME and some
important aspects for the adaptive subtraction. The LPMO is then introduced in detail,
which together with a conservative SRME primary estimation approach forms our pro-
posed two-step framework. Two synthetic examples are provided to describe and com-
pare the proposed approach with the standard SRME. In addition, a comprehensive in-
vestigation on shallow-water field data is presented to demonstrate the effectiveness of
the proposed framework. A discussion part on the important aspects of the algorithm is
also included at the end.

4.2. REVIEW OF SRME
SRME or specifically iterative SRME is briefly reviewed in this section. Let P represent the
monochromatic total upgoing wavefields from all sources recorded at the surface, and P0

denote primary wavefields. Both P0 and P are in the detail-hiding notation [19], where
vectors (the columns of the matrix) represent monochromatic shot records. The core en-
gine used for all SRME-based algorithms can be expressed as follows:

P0 = P−P0AP = P−M, (4.1)
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where A is the surface operator, being defined as S−1R∩, i.e., the surface reflectivity from
below combined with the inverse source properties. Surface multiples M can be predicted
based on P0AP. The traditional SRME based on equation 4.1 is an iterative approach [20]
in the way that Pk+1

0 = P−Pk
0 Ak+1P, where k represents the iteration number, which is

typically 2 or 3.
The adaptive subtraction step for SRME is implemented in the time domain using a

minimum-energy constraint:

E = ∑
t ,xr ,xs

[p(t , xr , xs )−a(k+1)(t )∗m̂(k+1)(t , xr , xs )]2, (4.2)

where p(t , xr , xs ), m̂(k+1)(t , xr , xs ) and a(k+1)(t ) represent the estimated primaries, the un-
adapted multiples (i.e. −P0P) and the surface operator in the time domain, respectively.
The length of the surface operator is also known as the filter length, which is capable of
controlling the trade-off between underfitting and overfitting. xr and xs are the source
and receiver locations of seismic data. For the standard SRME, the predicted multiples are
first matched and subtracted in a global window during the first 1 or 2 iterations. Small
local windows and a long filter length are then utilized for adaptive subtraction in the last
iteration to better remove the multiples [3]. It is worth noting that small local windows
and a long filter length for standard SRME can damage the primaries though more multi-
ples are removed due to overfitting. On the other hand, for conservative SRME when the
last iteration of adaptive subtraction is still implemented in a global window or large local
windows with a short filter length, it leads to a more conservative result with much less
primary damage and relatively more multiple leakage due to underfitting. However, we
suggest and utilize the conservative SRME for primary-oriented processing to avoid hurt-
ing the primaries although there are more multiple leakage. Then, the leaked multiples
can be further extracted by the algorithm discussed in the next section.

4.3. LOCAL PRIMARY-AND-MULTIPLE ORTHOGONALIZATION
The proposed LPMO should directly follow the initial primary and multiple estimation
step and can be regarded as an external remedy for correcting the initially predicted pri-
maries and multiples from the conservative SRME. Now, we rewrite the initial estimated
primary and multiple relation in the time domain using the vector notation:

p = p0 +m, (4.3)

where p is total upgoing wavefield. p0 and m represent the initial estimated primaries and
multiples using any prediction method (conservative SRME in this thesis), respectively.
Based on the assumption that the final estimated primaries p̃0 and multiples m̃ should be
orthogonal, we are capable of orthogonalizing them by:

m̃ = m+w◦m, (4.4)

p̃0 = p0 −w◦m, (4.5)

where w is the LPMO weight and ◦ denotes the Hadamard product (i.e. sample-by-sample
multiplication). This local orthogonalization assumption is equivalent to assuming that
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the primaries and multiples do not correlate locally in the time-space domain:∑
p̃0 ◦m̃ ≈ 0. (4.6)

The LPMO weight can be estimated by solving the following unconstrained minimization
problem:

min
w

∥
p0︷ ︸︸ ︷

p−m−w◦m∥2
2. (4.7)

The above minimization problem utilizes weighted multiples to match the leaked mul-
tiples in the initially estimated primary model in a least-squares sense. By forcing a smooth
constraint to the unconstrained minimization problem in equation 4.7, we thus obtain a
constrained optimization problem:

ŵ = argmin
w

∥p0 −M w∥2
2 +S(w), (4.8)

where M = di ag (m) and S(w) denotes a smooth constraint operator. Furthermore, with
the power of shaping regularization [21] we are able to solve the least-squares problem:

ŵ = [λ2I+T (M T M −λ2I)]−1T M T p0, (4.9)

where λ is a scaling parameter and T represents a triangle smoothing operator that fulfills
the role of smooth constraint operator S(w). [·]T denotes matrix transpose. In order to
make our solution more stable and to avoid unphysical results, we apply an additional
thresholding operator and median filter to the estimated LPMO weight:

w̄ = FT(ŵ), (4.10)

where T is a thresholding operator that forces the weight to have values within 0 to 1, and
F is a median filtering operator. The current LPMO weight range is very robust and more
detailed description will be shown in the discussion part. Therefore, we can substitute our
final estimated weight w̄ back into equations 4.4 and 4.5 to obtain the final results.

4.4. RESULTS
We have investigated our proposed two-step framework on two synthetic data sets and
one field data set. For all the examples, a conservative SRME followed by the LPMO is
applied to obtain the best result. In contrast, we also provide the standard SRME results
as the comparison.

4.4.1. LENS-SHAPED SYNTHETIC DATA EXAMPLE
We first test our proposed two-step framework, namely conservative SRME followed by
LPMO, on a 2D synthetic lens-shaped model, which consists of a water layer, a high ve-
locity lens-shaped body overlying a target layer. Sources and receivers are placed covering
the whole surface with a lateral interval of 20 m. For this 2D synthetic model, full wave-
field numerical data are produced using full wavefield modeling (FWMod) [22] based on
the velocity model in Figure 4.1(a) and the reflectivity model in Figure 4.1(b). Figure 4.2
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(a) (b)

Figure 4.1: 2D lens-shaped synthetic model. (a) Velocity model. (b) Reflectivity model.

(a) (b) (c)

Figure 4.2: Modeled reference data. (a) True full wavefield. (b) True multiples. (c) True
primaries.

presents the modeled ground-truth wavefields, in which the true multiples and primaries
are used as reference data.

Initially predicted multiples and primaries using conservative SRME with a global sub-
traction window are displayed in Figures 4.3(a) and 4.3(b), respectively. The filter length
for the global adaptive subtraction is 28 ms. Note that due to some overlapping energy be-
tween multiples and primaries and global window adaptive subtraction, there exists obvi-
ous multiple leakage in the initially estimated primary model shown in Figure 4.3(b). Also,
the amplitude of the estimated multiples in Figure 4.3(a) is weaker than the true multiples
in Figure 4.2(b) due to this leakage. However, these leaked multiples can be well detected
by the proposed LPMO where in this example the smoothing radii of the triangle smooth-
ing operator is 2 time samples, the thresholding ranges from 0 to 1, and the size of the
median filter is 5 time samples ∗ 5 traces. The final estimated LPMO weight according to
equation 4.10 is shown in Figure 4.3(c). We can clearly recognize the shape of leaked mul-
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(a) (b) (c)

Figure 4.3: Initially predicted multiples (a) and primaries (b) using conservative SRME with
a global subtraction window. (c) The estimated LPMO weight based on (a) and (b). Surface-
related multiple leakage can be effectively detected by the LPMO weight.

tiples from the estimated weight. Thus, we utilize the estimated LPMO weight to extract
these leaked multiple energy. After LPMO, the final estimated multiples and primaries are
presented in Figure 4.4. Figures 4.4(a) and 4.4(b) are exactly the same conservative SRME
results as Figures 4.3(a) and 4.3(b), and are only used for better comparison. The most ob-
vious multiple leakage spots indicated by the arrows are successfully extracted in the final
primary model as shown by Figure 4.4(e). At the same time, we can also observe the final
estimated multiples in Figure 4.4(d) extract back their leaked energy, and thus, they are
now more accurate and close to the true multiples in Figure 4.2(b). In order to test the im-
provement of our proposed framework, we propose to utilize the so-called local similarity
map [23] as an effective measure to evaluate surface-related multiple leakage extraction
performance. After calculating the local similarity between estimated primaries and mul-
tiples before and after LPMO, we are able to better judge whether the surface-related mul-
tiple leakage is extracted or not. A high similarity value means high correlation between
the two data sets. From the local similarity maps, shown in Figures 4.4(c) and 4.4(f), it can
be concluded that the leaked multiple energy around 0.2 s and 0.6 s has been successfully
extracted due to the low similarity observed around these areas after LPMO. At the same
time, it is worth noting that there still exist some high similarity areas between the final
predicted multiples and primaries after the proposed LPMO step in Figure 4.4(f). The rea-
son behind is that these high similarity areas indicate the local overlapping areas between
multiples and primaries. Although the overlapping areas cannot be solved due to the vi-
olation of the initial assumption, they are well protected from damage by the proposed
method through the thresholding process and the smoothing operator. We also provide a
single trace comparison at offset -60 m in Figure 4.5. The black line denotes the modeled
true primaries. The green and the red lines represent the conservative SRME primaries
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and its primaries after LPMO, respectively. It is clear that the leaked multiples visible in
the green line are effectively extracted and the red line is closer to the true primaries.

(a) (b) (c)

(d) (e) (f)

Figure 4.4: (a) & (b) Initially predicted multiples and primaries using conservative SRME
with a global subtraction window, respectively. (d) & (e) Final estimated multiples and
primaries after LPMO, respectively. (c) & (f) Local similarity maps before and after LPMO,
respectively. The arrows indicate where the leaked multiples are extracted.

Next, we will introduce a fair comparison between the proposed framework and the
standard SRME. In detail, we provide two standard SRME results: L2-norm standard SRME
with 240 ms ∗ 25 traces local subtraction window size and L1-norm standard SRME with
240 ms ∗ 25 traces local subtraction window size [24]. The filter length for local subtrac-
tion windows is 28 ms. Although this filter length is the same with the global subtraction
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Figure 4.5: Single trace comparison before and after LPMO. The black line denotes the true
modeled primaries, the green line denotes the conservative SRME primaries, and the red
line denotes the proposed primaries after LPMO.

window case, it is actually much more powerful due to the utilization of small local win-
dows. The estimated primary results are shown in Figures 4.6(a) and 4.6(b), respectively.
For comparison, the final estimated primaries from the proposed framework is also dis-
played in Figure 4.6(c). From Figure 4.6 we can see that compared to the proposed pri-
maries, both L2-norm and L1-norm standard SRME results exhibit more multiple leakage
indicated by the arrows and at the same time more primary damage indicated by the rect-
angles. Note that the L1-norm result seems to be slightly better than the L2-norm result
in terms of preserving primaries, and also better at extracting multiple leakage at around
0.2 s and 0.6 s. Essentially, small local subtraction windows and a long filter length in
standard SRME lead to more primary damage for the adaptive subtraction although the
multiple leakage of standard SRME is better than the conservative SRME result. The pro-
posed two-step framework to extract surface-related multiple leakage, however, exhibits
both less primary damage and less multiple leakage.

4.4.2. COMPLEX SALT SYNTHETIC DATA EXAMPLE

The second synthetic example is a more complex salt model, which has 201 shots and 201
receivers with a lateral interval of 15 m. The velocity model is shown in Figure 4.7 and it
consists of a shallow water layer, shallow layers, a high velocity salt layer and deep target
layers. The data set is generated by acoustic finite difference modeling. Figures 4.8(a) and
4.8(b) show the true full wavefield and the reference primaries, respectively. It is obvious
that the surface-related multiples are strong and the deep primaries are severely interfered
by the multiples. Note that the amplitude of the primaries in the full wavefield is slightly
smaller than the reference primaries due to the deghosting process that was applied to the
full wavefield.

The proposed two-step framework is applied to this data set. Initially estimated mul-
tiples and primaries by the conservative SRME with a global subtraction window are dis-
played in Figures 4.9(a) and 4.9(b), respectively. The filter length is 40 ms. Compared to the
reference primaries in Figure 4.8(b), the multiple leakage is very obvious in the initially es-
timated primary model. Figure 4.9(c) demonstrates the final estimated LPMO weight that
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(a) (b) (c)

Figure 4.6: Comparison with the standard SRME. (a) L2-norm standard SRME primaries
with 240 ms ∗ 25 traces local subtraction window size. (b) L1-norm standard SRME pri-
maries with 240 ms ∗ 25 traces local subtraction window size. (c) The proposed primaries
after LPMO (for comparison purpose). The arrows in (a) and (b) denote the more severe
multiple leakage compared to (c). The rectangles in (a) and (b) denote the primary damage
compared to (c).

Figure 4.7: Complex salt velocity model.

shows good correlation with the leaked multiples. In this example, the smoothing radii of
the triangle smoothing operator is 2 time samples, the thresholding ranges from -0.5 to
0.8, and the size of the median filter is 5 time samples ∗ 5 traces. Interestingly, the nega-
tive weight in this example means that there exist phase-shift errors during conservative
SRME, and therefore, this part of the leaked multiple needs to be extracted by negative
weights. Figure 4.10 displays the surface-related multiple leakage extraction results be-
fore and after LPMO. The conservative SRME predicted multiples and primaries shown in
Figures 4.10(a) and 4.10(b) are only displayed for better comparison. The final estimated
primaries after LPMO are presented in Figure 4.10(e), in which the leaked multiples are
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(a) (b)

Figure 4.8: Modeled reference data. (a) True full wavefield after deghosting. (c) Reference
primaries.

(a) (b) (c)

Figure 4.9: Initially predicted multiples (a) and primaries (b) using conservative SRME with
a global subtraction window. (c) The estimated LPMO weight based on (a) and (b). Surface-
related multiple leakage can be effectively detected by the LPMO weight. Note that the neg-
ative weights come from phase-shift errors during conservative SRME.

extracted indicated by the arrows. The rectangles indicate the extracted multiple leakage
with phase-shift errors. Also, the final estimated multiples in Figure 4.10(d) show restora-
tion of leaked energy compared to Figure 4.10(a). Similarly, the local similarity maps in
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Figures 4.10(c) and 4.10(f) are used to better demonstrate the multiple leakage extraction
improvement before and after LPMO. Moreover, a single trace comparison at offset 0 m as
shown in Figure 4.11 is provided to display the effect of the proposed framework in detail.
The black line indicates the reference primaries, the green line indicates the conservative
SRME estimated primaries, and the red line indicate the primaries from the proposed two-
step framework. It can be seen that these primaries (red line) are closer to the reference
primaries (black line) and the larger amplitude of the leaked multiples (green line) around
0.6 s can be easily misinterpreted as primary energy.

A fair comparison with the standard SRME is carried out in Figure 4.12. L2-norm and
L1-norm standard SRME primaries with 320 ms ∗ 25 traces local subtraction window size
are shown in Figures 4.12(a) and 4.12(b), respectively. The filter length for both L2 and L1-
norm cases is 56 ms, which is longer than the global subtraction case. For better compar-
ison reason, the proposed two-step framework primaries are presented in Figure 4.12(c).
Compared to the proposed primaries, the arrows indicate more leaked multiples in Fig-
ures 4.12(a) and 4.12(b). However in terms of the amount of multiple leakage, the stan-
dard SRME results all seem better than the conservative SRME result in Figure 4.10(b) due
to overfitting. Meanwhile, the rectangles in standard SRME results denote more primary
damage than the proposed primaries, which is the main drawback of the standard SRME.
Still, we can find that the L1-norm standard result seems better than the L2-norm standard
result with respect to the primary preservation.

4.4.3. FIELD DATA EXAMPLE

We present an example of the proposed two-step framework applied to a North Sea data
set from the Nelson field as shown in Figure 4.13, and a comprehensive investigation is
shown in this section. The data are extracted from a 2D dual-sensor towed-streamer line
with 25 m source spacing and 12.5 m receiver spacing. From the dual-sensor data the
upgoing wavefield was obtained [25]. By using reciprocity, shot interpolation and near-
offset reconstruction [26], a split-spread dataset is obtained, from which a fixed-spread
subset is selected with 201 sources and 201 receivers. Both source and receiver spacing
are 12.5 m, where sources were interpolated from the original 25 m grid. The water depth
is around 100 m, which is relatively shallow. The same data were used in [27] for inversion-
type SRME. From Figure 4.13, it can be seen that the surface-related multiples are clearly
present and the primaries are strongly interfered by the multiples.

Initially predicted multiples and primaries using conservative SRME with large local
subtraction windows (500 ms ∗ 80 traces) are displayed in Figures 4.14(a) and 4.14(b), re-
spectively. The filter length is 20 ms. Due to the fact that 3D data can never be perfectly
represented by a 2D theory and given unavoidable interpolation errors, surface-related
multiple leakage is obvious in the initially predicted primary model. Besides, the shallow-
water scenario makes the problem even more difficult. The proposed LPMO weight is dis-
played in Figure 4.14(c), in which we are able to effectively detect the shape and position of
the leaked multiples. In this example, the smoothing radii of the triangle smoothing oper-
ator is 2 time samples, the thresholding ranges from 0 to 1, and the size of the median filter
is 3 time samples ∗ 3 traces. After LPMO, the final estimated multiples and primaries are
presented in Figures 4.15. We are confident about the first-order surface-related multiple
leakages indicated by the arrows. Therefore, the most obvious multiple leakages around
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(a) (b) (c)

(d) (e) (f)

Figure 4.10: (a) & (b) Initially predicted multiples and primaries using conservative SRME
with a global subtraction window, respectively. (d) & (e) Final estimated multiples and pri-
maries after LPMO, respectively. (c) & (f) Local similarity maps before and after LPMO, re-
spectively. The arrows indicate where the leaked multiples are extracted, and the rectangles
indicate where the phase-shift leaked multiples are extracted.

0.7 s are effectively extracted in the final primary model shown in Figure 4.15(e), while
we can also observe the final estimated multiples retrieved some of their leaked multi-
ple energy shown in Figure 4.15(d). Here, we also utilize local similarity maps to measure
whether the leaked multiples are extracted or not. From the local similarity maps shown
in Figures 4.15(c) and 4.15(f), it can be seen that we have successfully extracted the leaked
multiples especially around 0.7 s. A detailed single trace comparison at 87.5 m is shown
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Figure 4.11: Single trace comparison before and after LPMO. The black line denotes the
reference primaries, the green line denotes the conservative SRME primaries, and the red
line denotes the proposed primaries after LPMO.

(a) (b) (c)

Figure 4.12: Comparison with the standard SRME. (a) L2-norm standard SRME primaries
with 320 ms ∗ 25 traces local subtraction window size. (b) L1-norm standard SRME pri-
maries with 320 ms ∗ 25 traces local subtraction window size. (c) The proposed primaries
after LPMO (for comparison purpose). The arrows in (a) and (b) denote the more severe
multiple leakage compared to (c). The rectangles in (a) and (b) denotes the primary dam-
age compared to (c).

in Figure 4.16. The blue line denotes the full wavefield, the green line denotes the conser-
vative SRME primaries and the red line denotes the primaries from the proposed frame-
work. We can clearly see that the conservative SRME primaries (green line) around 0.7
s contain strong leaked multiples which can be easily misinterpreted as primaries. After
LPMO, the proposed primaries (red line) around 0.7 s become much smaller than the con-
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Figure 4.13: Field data shot record with surface-related multiples.

(a) (b) (c)

Figure 4.14: Initially estimated multiples (a) and primaries (b) using conservative SRME
with large subtraction windows. (c) The estimated LPMO weight based on (a) and (b).
Surface-related multiple leakage can be effectively detected by the LPMO weight.

servative SRME primaries (green line). Similar observations can be made when selecting
the -150 m common-offset gathers as presented in Figure 4.17. All the arrows in Figures
4.17(b) and 4.17(c) represent the improvement of the leaked multiples for the proposed
framework. Moreover, a stacked section comparison before and after LPMO is provided
in Figure 4.18 to demonstrate the effectiveness of the proposed method. Compared to the
stacked section of the full wavefield shown in Figuer 4.18(a), the conservative SRME pri-
maries in Figure 4.18(b) have already removed lots of multiple energy, but some amount
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of leaked multiples indicated by the arrows are still there. After LPMO, the proposed pri-
maries in Figure 4.18(c) display much less multiple leakage, which is better for accurate
interpretation.

(a) (b) (c)

(d) (e) (f)

Figure 4.15: (a) & (b) Initially predicted multiples and primaries using conservative SRME
with large subtraction windows, respectively. (d) & (e) Final estimated multiples and pri-
maries after LPMO, respectively. (c) & (f) Local similarity maps before and after LPMO,
respectively. The arrows indicate where the leaked multiples are extracted.

We also demonstrate the advantages of the proposed framework by providing a fair
comparison with both standard SRME shot gathers and stacked sections in Figures 4.19
and 4.20. The local subtraction window size is 160 ms ∗ 25 traces for standard SRME and
a longer filter length 44 ms is used. From the shot gather comparison, it can be seen that
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Figure 4.16: Single trace comparison at offset 87.5 m before and after LPMO. The blue line
denotes the full wavefield, the green line denotes the conservative SRME primaries, and the
red line denotes the proposed primaries after LPMO.

(a) (b) (c)

Figure 4.17: Common-offset gather comparison at offset -150 m. (a) Common-offset gather
of the input. (b) Common-offset gather of the initially predicted primaries by the conserva-
tive SRME with large subtraction windows. (c) Common-offset gather of the final estimated
primaries after LPMO.

both standard L2-norm SRME primaries in Figure 4.19(a) and L1-norm SRME primaries
in Figure 4.19(b) display slightly more multiple leakage than the proposed primaries in-
dicated by the arrows. Because of the small local subtraction windows and a long filter
length, they are definitely better than the conservative SRME primaries shown in Figure
4.14(b) in terms of multiple leakage. Furthermore, the obvious primary damage indicated
by the rectangles in both L1 and L2 norm standard SRME results reveals the overfitting
of standard SRME, which can severely affect the subsequent imaging and interpretation
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(a) (b) (c)

Figure 4.18: Stacked section comparison. (a) Stacked section of the input. (b) Stacked sec-
tion of the initially predicted primaries by the conservative SRME with large subtraction
windows. (c) Stacked section of the final estimated primaries after LPMO.

accuracy. The standard SRME stacked sections in Figures 4.20(a) and 4.20(b) show the
negative influences of the damaged primaries as indicated by the rectangles, in which
the primary energy is dimmed in general compared to the proposed primaries in Figure
4.20(c). Besides, the multiple leakage in the standard SRME results are still slightly more
than the proposed result, as indicated by the arrows, although they are already better than
the conservative SRME.

4.5. DISCUSSION

The essential differences between a one-point matching filter and the proposed LPMO
step is more broadly discussed here including the computation of weights subject to smooth-
ing, scaling, thresholding and median filtering. First, the proposed framework can be con-
sidered as a one-point non-stationary matching filter, which is capable of adapting to the
complex non-stationary seismic data. Second, obtaining a one-point non-stationary filter
requires solving a highly under-determined inverse problem. For this type of inverse prob-
lem, the shaping regularization is able to control the smoothness and deliver a fast con-
vergence, which is indicated by equation 4.9. The smoothing radii used in the constraint
operator S(w) contributes to the final resolution of the estimated weights. Furthermore,
the scaling parameter λ usually can be set as ∥M T M∥2. Both the thresholding and me-
dian filtering operators in equation 4.10 are especially designed for the multiple leakage
extraction problem, which is not needed for the random noise removal case. Threshold-
ing of the estimated LPMO weights is highly necessary, due to the complex behavior of
multiples and primaries, while median filtering is purely for obtaining more stable result
and avoiding outliers.
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(a) (b) (c)

Figure 4.19: Shot gather comparison with the standard SRME. (a) L2-norm standard SRME
primaries with 160 ms ∗ 25 traces local subtraction window size. (b) L1-norm standard
SRME primaries with 160 ms ∗ 25 traces local subtraction window size. (c) The proposed
primaries after LPMO (for comparison purpose). The arrows in (a) and (b) denote the more
severe multiple leakage compared to (c). The rectangles in (a) and (b) denote more primary
damage compared to (c).

The thresholding range is the very key parameter in the proposed framework. In the
theory part, we mention that after shaping regularization we obtain the estimated LPMO
weights and then we apply a thresholding operator T on the weights to force them to usu-
ally have values within 0 to 1. The logic behind it is shown in Figure 4.21. The yellow
line indicates the estimated multiples from the conservative SRME. Usually, we can safely
assume that the amplitude of the leaked multiple should be smaller than that of the esti-
mated multiple, which means the estimated weights should be smaller than 1. As men-
tioned before, the overall LPMO can be seen as a one-point non-stationary matching fil-
ter [15] and the objective function only cares about the minimum energy after matching
and subtraction. More importantly, the algorithm itself cannot tell the difference between
leaked multiples and primaries. Therefore, there is a tendency for the algorithm to use
estimated multiples to match the primaries, which will result in quite large weights (i.e.
w > 1) due to the fact that primaries usually have much higher amplitude than the esti-
mated multiples. Thus, a thresholding operator can help the algorithm focus on the inter-
ested leaked multiple energy. It is necessary to be aware of other special situations regard-
ing the thresholding operator. First, as mentioned in the complex salt model example,
the estimated LPMO weight introduces some negative values as shown in Figure 4.9(c).
This is because of the phase-shift errors when predicting the multiple model. Thus, in this
case, the multiple leakage and the estimated multiple model might have opposite polarity,
which can be compensated by introducing negative weights. Secondly, real data always
have some sampling issues (e.g. near offsets missing and crossline under-sampling). Even
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(a) (b) (c)

Figure 4.20: Stacked section comparison with the standard SRME. (a) Stacked section of
the L2-norm standard SRME primaries with 160 ms ∗ 25 traces local subtraction window
size. (b) Stacked section of the L1-norm standard SRME primaries with 160 ms ∗ 25 traces
local subtraction window size. (c) Stacked section of the final estimated primaries after
LPMO. The arrows in (a) and (b) denote more severe multiple leakage compared to (c). The
rectangles in (a) and (b) denote more primary damage compared to (c).

the most advanced interpolation approaches still bring some reconstruction errors to the
data, and then those errors might result in the relatively weaker amplitude of the predicted
multiples. Therefore, combined with phase-shift errors and 2D/3D effects, there might
be a chance that the estimated multiples are weaker than the multiple leakage. Weights
larger than 1 can then be tested to see its performance. Based on our experiences, the
robust range for the thresholding operator T is between 0 and 1. When there are still some
obvious phase-shift multiple leakage left, the range can be revised to between -0.5 and 1.
For the field data set, the upper limit of the thresholding operator should be smaller than
2 based on our experiences.

Smoothing is also an important part in shaping regularization. In this chapter, the
triangle smoothing operator is utilized in the shaping regularization based inversion. The
sampling in time for both lens-shaped model and field data is 4 ms while the sampling
for complex salt model is 8 ms. The smoothing radii of triangle smoothing operator for all
the examples is set as 2 time samples for higher resolution. The range for smoothing radii
based on our experiences can range from 2 to 10 time samples depending on the desired
resolution.

The proposed framework is still based on the basic assumption that the primaries and
multiples should not correlate. Thus, it is worth noting that some red areas in the local
similarity maps are unchanged before and after LPMO. These high similarity areas indi-
cate where the multiples and primaries are highly correlated and overlapped, which vio-
lates the initial assumption of most adaptive subtraction methods. Therefore, most meth-
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Figure 4.21: Single trace comparison before and after LPMO from the lens-shaped synthetic
model. The black line denotes the true modeled primaries, the green line denotes the con-
servative SRME primaries, the red line denotes the proposed primaries after LPMO, and the
yellow line indicates the estimated multiples from the conservative SRME.

ods in the literature fail to correctly extract the leakage if it exists in these areas. For our
proposed approach, its multiple leakage extraction power is within the limitation of the
orthogonal assumption. However, if the conservative primary estimation (e.g. the con-
servative SRME) is used and followed by LPMO in our proposed framework, the primary
damage can be kept to a minimum compared to other standard methods.

As for the computational time consumption, it depends on the actual situations and is
relatively difficult to compare. In general, most time consumption for the standard SRME
comes from the parameter tuning of the adaptive subtraction. Practitioners have to test a
set of different window sizes and filter lengths to find the desired optimal setting, which
usually is a tedious process. Besides, some amount of time is required to compare dif-
ferent results and the trade-off between multiple leakage and primary damage has to be
decided by the practitioners. Therefore, all the parameter tuning related time consump-
tion is hard to estimate. As for the proposed framework, the LPMO definitely takes some
extra time for inversion (e.g. around ten times more expensive for the field data example),
but it saves practitioners time from fine-tuning parameters. Above all, you could also con-
sider the LPMO as an extra QC step to evaluate whether the multiple energy is leaked or
not.

From almost-perfect-world synthetic examples, the leaked surface-related multiples
may not seem to have strong influences on primaries due to its relatively small ampli-
tude. However, real-world field data with both 2D/3D effects and interpolation errors al-
ways tend to show much more obvious and severe surface-related multiple leakage. The
proposed two-step framework, thus, can be a quite helpful toolbox to attack the multiple
leakage without damaging primaries. Meanwhile, it can also be regarded as another tool
in the toolbox of various multiple prediction and subtraction techniques.

For very complex field data, extracting leaked multiples in the shot domain might not
be enough, therefore, multi-domain LPMO is suggested [28]. The common-offset domain
is an appropriate choice, in which we might observe the leakage with less efforts. The
whole framework is exactly the same as the shot-domain extraction based on LPMO. The
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only difference is to sort the data to common-offset domain in advance.
Our proposed two-step framework based on LPMO aims to solve the surface-related

multiple leakage problem for all the existing primary and multiple estimation approaches.
That is to say, as long as there is multiple leakage in the estimated primary model, our pro-
posed LPMO can be attached to any primary estimation approach. For example, more ad-
vanced inversion-based CL-SRME or EPSI is, to some extent, able to alleviate the multiple
leakage problem, but may still suffer from such multiple leakage, especially for complex
coarsely sampled field data with 2D/3D effects. Therefore, we can regard either CL-SRME
or EPSI as our primary estimation engine for the initial step, and then the second step,
LPMO, as a remedy can be applied to extract the leaked multiples. Moreover, model-
driven multiple prediction approaches (e.g. model-based water-layer demultiple [29])
can also be attached by the proposed LPMO step as long as the adaptive subtraction is
involved.

Currently, there is no requirement of broadband data for our proposed framework.
In terms of the leakage as a function of frequency, a possible solution might be: the low-
frequency components can be processed with large local windows in the adaptive subtrac-
tion, while the high-frequency components can be processed with smaller local windows.
The proposed LPMO step could be further applied to both low and high-frequency com-
ponents with different parameter settings. Future research is needed to investigate this
issue in detail.

4.6. CONCLUSIONS
We have introduced a new two-step framework for surface-related multiple leakage ex-
traction, and thus obtain a better estimated primary model. This two-step framework
using local primary-and-multiple orthogonalization (LPMO) is highly efficient for leaked
multiple extraction and can work for various multiple prediction methods. A conservative
SRME is used as the initial estimation step followed by the LPMO as the remedy to correct
the estimated primaries and multiples in this chapter. Applications to two synthetic data
sets and one field data set demonstrate a good performance of the proposed framework
for primary estimation compared with the standard SRME results.
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5
FAST LPMO

Usually adaptive subtraction cannot fully correct for surface-related multiple leakage with-
out primary damage. Local primary-and-multiple orthogonalization (LPMO) is recently
proposed to partially mitigate the surface multiple leakage, by multiplication of the esti-
mated primaries with a weight function that scales down residual multiples while preserv-
ing primaries. The weight function is determined by shaping regularization followed by
thresholding and median filtering. Although effective leakage extraction can be achieved,
LPMO requires a large computational cost due to many conjugate-gradient iterations within
the shaping regularization-based inversion framework. A spatially-constrained scaled point-
by-point division can be used to avoid the iterative inversion within the LPMO method.
Based on this, we propose a fast LPMO (FLPMO) for surface-related multiple leakage esti-
mation and extraction. Applications on two different field data sets demonstrate the very
similar surface multiple leakage extraction performances for both LPMO and FLPMO, while
showing that the scaled point-by-point division in FLPMO is around 40 times faster on real
data sets than the shaping regularization-based inversion in LPMO.

This chapter is an extended version of the published paper "D. Zhang, D. J. Verschuur, and Y. Chen, Fast local
primary-and-multiple orthogonalization for surface-related multiple leakage estimation and extraction, Geo-
physics 86 (2021), pp. V353–V360".
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5.1. INTRODUCTION
Due to its solid physical foundation and data-driven property, surface-related multiple
elimination (SRME) has become one of the standard surface multiple removal methods
[1–3]. Coarse data sampling or overlapping primaries and multiples still make the appli-
cations of SRME workflows challenging, especially for shallow water scenarios [4]. The
resulting surface-related multiple leakage can easily cover the real geology and convey
fake information to interpreters [5, 6]. To overcome the long-standing and commonly-
seen surface multiple leakage problem, the exploration seismology community has made
lots of efforts on attacking both the sampling issue and the adaptive subtraction dilemma
[7–10].

In this chapter, we focus on an alternative solution for the adaptive subtraction given
the multiple prediction results. Traditionally, a more aggressive adaptive subtraction (i.e.,
small processing windows) might solve the leakage issue to some extent, however, it tends
to distort or dim the primaries. In contrast, a more conservative adaptive subtraction (i.e.,
large processing windows) is capable of preserving primaries, while it leaves more resid-
ual multiples. The classic trade-off between a more conservative SRME and a more ag-
gressive SRME needs careful attention in practice. Recently, [11] proposed a new local
primary-and-multiple orthogonalization (LPMO) framework based on local signal-and-
noise orthogonalization [12] to partially mitigate the aforementioned adaptive subtrac-
tion dilemma, where initial surface multiples and primaries are estimated in a more con-
servative manner, followed by an extra surface multiple leakage extraction step without
hurting primaries. Note that the conservative adaptive subtraction used for LMPO frame-
work is based on matching filters designed in large overlapping windows with short filter
length. The logic behind LPMO is that the troubling surface multiple leakage issue can be
considered as a typical signal leakage problem if multiples are temporarily regarded as the
signal and primaries as the noise. With the help of shaping regularization-based inversion
framework, LMPO utilizes the initial estimated multiples to match the leaked multiples
contained in the initial primaries. Therefore, LPMO is capable of extracting the leaked
multiples without hurting primaries. Mathematically, the idea behind LPMO is that a local
weight function to be applied to the multiples can be determined, based on a shaping reg-
ularization process that takes as a priori input a local coherency length in time and space
at which primaries and multiples can be considered orthogonal. The weight-determining
process is augmented by some non-linear steps. Note that primaries and multiples are
not orthogonal on sample by sample basis but only when considering a certain window
length, which is the local coherency length.

Instead of pursuing a more complex assumption for adaptive subtraction, we assume
the simple local orthogonality assumption holds, and we also bring in some non-linear
element (i.e., thresholding on the LPMO weights) in case the assumption fails to be met.
LPMO has been demonstrated with both synthetic and field data to work well when its
assumptions of orthogonality between primaries and multiples are met and that in ar-
eas where the assumptions are not met (overlap of primaries and multiples) the use of
the non-linear element (i.e., thresholding and median filtering) prevents damage to pri-
maries. Although effective, the computational cost of LPMO remains a challenge. Due
to many conjugate-gradient iterations inside the shaping regularization-based inversion
framework of LPMO and the large data size itself, LPMO could cost at least several times
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more than the least-squares adaptive subtraction step. A similar cost issue occurs for the
nonstationary prediction filters. [13] first introduced the concept of streaming prediction-
error filters, and [14] further applied it to random noise attenuation. The so-called stream-
ing version can easily avoid the iterative or recursive approaches for the nonstationary
prediction filters. Inspired by [13] and [14], the shaping regularization-based iterative in-
version in LPMO could also be avoided to improve the efficiency. Therefore, in this chap-
ter, we propose a fast LPMO (FLPMO) for surface-related multiple estimation and leakage
extraction. Assuming that the scalar LPMO weight is closely related to its neighboring
time-and-space points, FLPMO can be achieved via a spatially-constrained scaled point-
by-point division without any iterative inversions, where a key mean-averaging operator
is proposed to make the system more stable and smooth. The mean-averaging operator
is an unique component for FLPMO, which can improve the complete framework perfor-
mance. Applications to two North Sea field data sets demonstrate that the surface multi-
ple leakage extraction performances for LPMO and FLPMO are nearly the same, while the
computational cost for FLPMO is much less than LPMO.

This chapter is organized as follows: first, a review of LPMO is introduced, and then
we provide the detailed descriptions for the proposed FLPMO framework. In addition,
two field data examples from the North Sea are presented. A conclusion is drawn in the
end.

5.2. REVIEW OF LPMO
LPMO for surface-related multiple leakage extraction consists of two separate steps: an
initial surface multiple and primary estimation step via conservative SRME and a surface
multiple leakage extraction step via LPMO [11]. A brief review of LPMO is introduced
here. Note that LPMO can also be considered as an external remedy for compensating
and correcting any initial surface multiple and primary estimation approach. Based on a
vector notation, we reformulate the classic surface multiple and primary relation in the
time domain:

p = m+p0, (5.1)

where p, m and p0 indicate the upgoing full wavefield, initially estimated surface multi-
ples and primaries from any surface multiple estimation approach, respectively. Note that
both m and p0 are assumed imperfect. Assuming that the final estimated surface multi-
ples m̃ and primaries p̃0 should be locally orthogonal to each other, the orthogonalization
can be achieved by:

m̃ = m+w◦m, (5.2)

p̃0 = p0 −w◦m, (5.3)

where ◦ represents the Hadamard product (i.e., point-by-point multiplication) and w de-
notes the LPMO weight. Next, by solving the following unconstrained minimization prob-
lem the unknown LPMO weight can be estimated:

min
w

∥
p0︷ ︸︸ ︷

p−m−w◦m∥2
2. (5.4)
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Essentially, this unconstrained minimization problem indicates that the surface multiple
leakage in the initially estimated primaries can be matched by the LPMO weighted sur-
face multiples in a least-squares sense. We further impose a local smoothness constraint,
which can be solved by shaping regularization [15]:

ŵ = [λ2I+T (M T M −λ2I)]−1T M T p0, (5.5)

where M represents di ag (m), T indicates a triangle smoothing operator, λ denotes a
scaling parameter and [·]T is the matrix transpose. The thresholding H and median filter-
ing F operators are implemented on the estimated LPMO weight to achieve more stable
and physical results:

wLPMO =FH (ŵ). (5.6)

At last, the final estimated LPMO weight wLPMO can be substituted back into equations 5.2
and 5.3 to extract the surface multiple leakage. The achieved results by LPMO are promis-
ing, and it is able to partially mitigate the adaptive subtraction dilemma by removing most
multiple leakage without seriously hurting primaries [11].

Besides, the assumption of local orthogonality versus the practical requirements needs
to be addressed. First of all, the problem we are focusing on is the multiple leakage issue
typically seen in shallow water data, which comes from the classic dilemma of standard
adaptive subtraction. The trade-off, i.e., either damaging primaries (aggressive subtrac-
tion) or leaving multiple leakage (conservative subtraction), always exists. Secondly, the
fundamental assumption for LPMO is local orthogonality between primaries and multi-
ples/multiple leakage. Note that this is the same assumption as used with L2 subtrac-
tion. In fact, most subtraction methods assume local orthogonality, which is unfortu-
nately rarely met in practice, especially for shallow water. The violation of local orthog-
onality actually leads to the aforementioned dilemma. However, unlike other methods,
LMPO is able to achieve the most given this dilemma, meaning fully extracting the leaked
multiples for the area where local orthogonality is met and preventing serious primary
damages where local orthogonality fails. This is the fundamental difference and advan-
tage of LPMO compared to other methods, and it is achieved by introducing non-linear
elements (i.e., thresholding on the estimated LPMO weights) into the LPMO framework.
Note that it is not claimed that LPMO can fully solve the non-orthogonal (or overlapping)
events. However, LPMO can at least simultaneously extract the multiple leakage for non-
overlapping events, where local orthogonality is met, and protect the overlapping events,
where local orthogonality fails, without hurting the primaries by introducing a non-linear
element (i.e., thresholding on the estimated LPMO weights) into the LPMO framework.

To better understand the original concept of LPMO, we provide a very straightforward
demonstration in Figure 5.1. This example can also be regarded as an experimental proof
of local primary-and-multiple orthogonalization. The model is a simple two layer model,
which consists of a shallow water depth and a deep target layer. Figure 5.1(b) shows the
ground truth primaries, and we can clearly notice those two primary events. Figure 5.1(a)
demonstrates the modeled full wavefield after deghosting. Surface-related multiples are
visible throughout the whole shot record. Note that perfect orthogonality occurs in this ex-
ample, as indicted by frame boxes A and C. In other words, primaries and multiples do not
correlate in area A and C, which fulfills the assumption of local orthogonality. As for area B,
our target deep primary partially overlaps with the second-order water bottom multiple,
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(a) (b) (c)

(d) (e)

Figure 5.1: Illustrative example from a two layer model for better understanding of the orig-
inal LPMO theory. (a) Modeled full wavefield with surface-related multiples after deghost-
ing. (b) Modeled true primaries. (c) Standard SRME estimated primaries using local pro-
cessing windows. (d) Conservative SRME estimated primaries using global window. (e)
Estimated primaries after LPMO.

which fails to meet the local orthogonal assumption. First, we apply the standard SRME
on this simple but illustrative data set. “Standard" here means the L2 adaptive subtrac-
tion within local processing windows, which tends to be aggressive in terms of multiple
suppression. The corresponding standard SRME result is displayed in Figure 5.1(c). Ap-
parently, we have achieved a decent primary estimation result with most surface multiples
being removed in areas A and C, and only slight residual multiples are left, thanks to an
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aggressive L2 subtraction. However, due to the overlaps between primary and multiple
in area B, it is obvious that the aggressive L2 subtraction has damaged the primary event.
Note that primaries at far offsets are also damaged. In contrast, we also apply a conser-
vative SRME on the same data set, and the result is shown in Figure 5.1(d). Conservative
SRME uses a global subtraction, and tends to be more preservative on primaries. How-
ever, it can lead to more residual surface multiples as indicated by area A and C. Primaries
in area B are untouched compared to Figure 5.1(c). Finally, the proposed local primary-
and-multiple orthogonalization is based on the conservative SRME result. After LPMO
as shown in Figure 5.1(e), the residual multiples are removed and the primaries are still
preserved. Therefore, from this example, it is clear that LPMO can effectively extract the
residual multiples for an area that meets the local orthogonal assumption, e.g., area A and
C. At the same time, LPMO with the help of its non-linear element (thresholding operator)
can preserve primaries for an area that fails to meet the local orthogonal assumption, e.g.,
area B.

Differences need to be addressed between LPMO and the nonstationary matching fil-
ter [16], as one can regard LPMO as the extreme version of nonstationary matching fil-
ter, i.e., one-point matching filter. Moreover, the hyper parameters within the shaping
regularization-based inversion framework and the related thresholding and median fil-
tering operators for LPMO have already been extensively discussed in [11]. Other applica-
tion cases of the local orthogonalization include ground-roll removal [17], blended signal
separation [18], elastic wavefield decomposition [19], weak microseismic signal detection
[20], and elastic full waveform inversion [21]. As long as the noise model can be obtained,
local orthogonality is capable of achieving the signal leakage extraction.

5.3. FAST LPMO
Although LPMO is effective for extracting multiple leakage without hurting primaries, a
limitation lies in its computational cost. Due to many conjugate-gradient iterations em-
bedded in the shaping regularization-based inversion framework and the large data itself,
the computation cost for LPMO is quite large (e.g., the cost for LPMO is at least several
times more than the standard least-squares adaptive subtraction). We, therefore, propose
a fast LPMO (FLPMO) for surface multiple leakage extraction to mitigate the cost issue. In
fact, the simplest and fastest method to solve the unconstrained minimization problem
5.4 is the direct point-by-point division:

w(t , x) = p0(t , x)

m(t , x)
, (5.7)

where w(t , x), m(t , x) and p0(t , x) indicate the scalar value at a specific discrete tempo-
ral and spatial location (t , x) of the weight, initially estimated surface multiples and pri-
maries, respectively. This direct division might be very unstable and produce nonphysical
values, which can be solved by a costly shaping regularization, as done in LPMO. Alterna-
tively, using information on the typical local coherency length of primaries and multiples,
we could assume that the scalar weight w(t , x) is closely related to both the neighboring
time point w(t −d t , x) and space point w(t , x −d x) [13]. Note that d t and d x represent
the time and space interval, respectively. Then, we have the following relations regarding
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the scalar weight:  m(t , x)p
α1p
α2

w(t , x) ≈
 p0(t , x)p

α1w(t −d t , x)p
α2w(t , x −d x)

 , (5.8)

where α1 and α2 are the regularization parameters that can control time and space res-
olutions for the estimated weight, respectively. The solution to the above equations in a
least-squares sense is as follows:

w(t , x) = m(t , x)p0(t , x)+α1w(t −d t , x)+α2w(t , x −d x)

m(t , x)2 +α1 +α2 +β
, (5.9)

where β is introduced for better scaling the final estimated weight to match the standard
LPMO weight wLPMO in terms of the energy distribution. The above recursive scheme is
started by putting the edge to zero. Equation 5.9 can be considered as a scaled version
of point-by-point division 5.7, which is able to avoid unstable and nonphysical values.
Next, we reformulate all the estimated scalar weights w(t , x) to the vector notation w̄. Still,
we need to apply the necessary thresholding and median filtering operators. Note that
an extra mean-averaging operator A is implemented first to better smooth and preserve
more physically stable results. The complete filtering process is as follows:

wFLPMO =FH A (w̄). (5.10)

Because of the absence of many conjugate-gradient iterations within the inversion scheme,
the proposed method will be significantly faster than the original LPMO process. Hence,
equations 5.9 and 5.10 together are referred to the fast LPMO framework. Similarly, we
can substitute the final estimated FLPMO weight wFLPMO back into equations 5.2 and 5.3
to extract the surface multiple leakage.

5.4. FIELD DATA RESULTS
In this chapter, we apply both LPMO and FLPMO to two different field data sets from the
North Sea to compare their computational costs and performances in detail. The gen-
eral data information and the computational costs can be directly checked in Tables 5.1
and 5.2. More specifically, Table 5.1 indicates the local computational cost comparison
between the shaping regularization-based inversion in LPMO and the scaled point-by-
point division with mean-averaging filtering in FLPMO for two field shots with different
data size. Table 5.2 displays the overall computational cost comparison between the pro-
posed complete framework (conservative L2 method + LPMO/FLPMO) and the standard
L2 method for two field examples. Note that all the tests are conducted on a Linux system
using C codes without any parallelization, and the shaping regularization-based inversion
here is already the most optimized in the literature [15].

5.4.1. NELSON DATA SET FROM THE NORTH SEA - SHALLOW WATER DEPTH
The first example is based on the Nelson field from the North Sea and the water depth
is relatively shallow (around 95 m in depth). The original field data with surface-related
multiples, which is extracted from a 2D line, and the initial conservative SRME results with
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Test Nelson Haltenbanken
Size (time samples × receivers) 350×201 1024×161

Shaping regularization (ms) 40.45 147.28
Scaled point-by-point division (ms) 1.02 3.07

Local speedup 39.66 47.97

Table 5.1: Local computational cost comparison between the shaping regularization-based
inversion in LPMO and the scaled point-by-point division in FLPMO for two field shots with
different data size. Note that the scaled point-by-point division includes the cost of mean-
averaging filtering. Both examples have a time interval of 4 ms with 12.5 m spatial (both
source and receiver) interval for Nelson and 25 m for Haltenbanken.

Test Nelson Haltenbanken
Size (time samples × receivers × shots) 350×201×201 1024×161×161

Standard L2 (s) 2.80 6.14
Conservative L2 + LPMO (s) 10.76 31.25

Conservative L2 + FLPMO (s) 2.98 7.99
Overall speedup 3.61 3.91

Table 5.2: Overall computational cost comparison between the proposed complete frame-
work (conservative L2 method + LPMO/FLPMO) and the standard L2 method for two field
examples with different data size.

large processing windows can be found in Chapter 4. Due to the large processing windows
for conservative SRME, surface multiple leakage can be observed. Although this leakage is
not very strong, it might still provide false information for interpreters. Therefore, surface
multiple leakage extraction is required.

Figure 5.2 demonstrates the shot-domain surface multiple leakage removal compari-
son in detail. The LPMO and the FLPMO estimated weights, shown in Figures 5.2(a) and
5.2(d), respectively, are very similar, and all the surface multiple leakage can be well de-
tected for both approaches. More specifically, the estimated surface multiples for both
methods in Figures 5.2(b) and 5.2(e) extract their leaked energy back compared to Figure
while at the same time primaries for both methods in Figures 5.2(c) and 5.2(f) end up suc-
cessfully removing the surface multiple leakage compared to Figure. In terms of the over-
all performance, surface multiple leakage removal indicated by the arrows is visually the
same for both LPMO and FLPMO as shown in Figure 5.2, thus, we use local similarity map
[12, 22] for a more detailed comparison between LPMO and FLPMO. The local similarity
map takes the estimated surface multiples and primaries as the input to demonstrate their
similarities. Figure 5.3(a) presents the local similarity map before LPMO/FLPMO, which
clearly indicates the surface multiple leakage due to a conservative SRME. Note that the
most obvious leakage, coming from the first order multiples of the primaries around 0.55
s, is indicated by the white arrow. After the surface multiple leakage extraction step, lo-
cal similarity maps from LPMO and FLPMO, as shown in Figures 5.3(b) and 5.3(c), both
demonstrate substantial leakage improvement. Although the FLPMO residual leakage
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(a) (b) (c)

(d) (e) (f)

Figure 5.2: Nelson data middle shot gather comparison for LPMO and FLPMO. (a) & (d)
Estimated weight using LPMO and FLPMO, respectively. (b) & (e) Leakage compensated
surface multiples using LPMO and FLPMO, respectively. (c) & (f) Leakage extracted pri-
maries using LPMO and FLPMO, respectively. Note that all white arrows in this chapter
indicate the surface multiple leakage positions.

from the most obvious position indicated by the white arrow is slightly worse than LPMO,
the computational costs are quite different as shown in Table 5.1, where the local speedup
for scaled point-by-point division in the proposed FLPMO is 39.66 compared to the shap-
ing regularization-based inversion in LPMO. Generally, the overall speedup for the pro-
posed FLPMO framework (i.e., conservative L2 + FLPMO) is 3.61 compared to the LPMO
framework (i.e., conservative L2 + LPMO) according to Table 5.2. From the same table, it
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(a) (b) (c)

Figure 5.3: Local similarity map comparison for the middle shot from the Nelson data set.
(a) Local similarity map before LPMO or FLPMO. (b) & (c) Local similarity maps after LPMO
and FLPMO, respectively. The arrow indicates the most obvious surface multiple leakage.
Note that the local similarity map takes the estimated surface multiples and primaries as
the input to demonstrate their similarities.

is clear that the cost of the proposed FLPMO framework is almost equivalent to the cost of
the standard L2 method, while the LPMO framework is around 4 times more costly than
the standard L2 method.

To better observe the leakage extraction performances before and after both LPMO
and FLPMO methods, we provide another comparison in stacked profiles. From the per-
spective of stacked profiles in Figures 5.4(a), 5.4(b), and 5.4(c), similar effects can be seen
in a much easier and clearer way due to the power of stacking. The original stacked pro-
file of the data with surface-related multiples and the post-SRME primaries stacked pro-
file are presented in Figures and 5.4(a), respectively. Although conservative, SRME works
properly here for removing most surface multiples. Still, some surface multiple leakage
is visible from the initial estimated post-SRME primaries. LPMO and FLPMO are applied
to further extract this leaked energy. Figures 5.4(b) and 5.4(c) demonstrate the final re-
sults after LPMO and FLPMO surface multiple leakage extraction, respectively. According
to the leaked positions pointed by the arrows, LPMO and FLPMO have shown an equally
powerful leakage extraction capability and visually the same results.

5.4.2. HALTENBANKEN DATA SET FROM THE NORTH SEA - MEDIUM WATER

DEPTH
The second example is from the Haltenbanken field, the North Sea, with a medium wa-
ter depth (approximately 300 m). Figure 5.5(a) displays the original recorded data with
surface-related multiples. The data is also extracted from a 2D line. A fixed-spread data
set is obtained with 161 shots and 161 receivers after data regularization. The spacing for
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(a) (b) (c)

Figure 5.4: Stacked profile comparison for the Nelson data set. (a) & (b) Stacked profiles
of the original data and the conservative SRME estimated primaries, respectively. (c) & (d)
Stacked profiles of the leakage extracted primaries using LPMO and FLPMO, respectively.

both shots and receivers is 25 m. There are 1024 samples for each trace with a time inter-
val of 4 ms. Note that compared to the Nelson data set the data size of Haltenbanken is
around two times larger in terms of the total number of time samples. Strong interference
between surface multiples and primaries can be observed in Figure 5.5(a). Figures 5.5(c)
and 5.5(b) show the initially estimated primaries and surface multiples after the conser-
vative SRME, respectively. Although SRME attenuates large amounts of surface multiple
energy, visible surface multiple leakage can still be observed around the arrows due to
large processing windows (1000 ms * 60 traces).

Next we apply both LPMO and the proposed FLPMO to this data, and both methods
can extract the surface multiple leakage effectively as shown in Figure 5.6. In terms of
the estimated weights in Figures 5.6(a) and 5.6(d), LPMO and FLPMO are nearly the same
with only small differences. As for the leakage compensated surface multiples and leak-
age extracted primaries, both approaches display visually identical results, especially for
those arrow-indicated areas in Figure 5.6. Therefore, we take advantage of local similarity
map to amplify their little differences. Figure 5.7 shows the local similarity maps before
and after surface multiple leakage extraction. The white arrows denote the most obvious
leakages, where FLPMO still has slightly more residual leakage left compared to LPMO.
However, as shown in Table 5.1, the computational costs are far from each other, where
the local speedup for scaled point-by-point division in the proposed FLPMO reaches 47.97
compared to the shaping regularization-based inversion in LPMO. Besides, according to
Table 5.2, the overall speedup for the proposed FLPMO framework (including the conser-
vative L2 subtraction) is 3.91 compared to the LPMO framework with hardly any loss in
performance. Most importantly, the current cost of the proposed FLPMO framework is
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(a) (b) (c)

Figure 5.5: Middle shot record from the Haltenbanken data set with medium water depth.
(a) Original input data with surface-related multiples. Initially estimated surface multi-
ples (b) and primaries (c) using conservative SRME. The arrows indicate the surface-related
multiple leakage.

nearly equivalent to the cost of the standard L2 method, while the LPMO framework is
around 5 times more costly than the standard L2 method.

Figure 5.8 demonstrates a similar behavior as the shot gather comparison from the
perspective of stacked profiles. Conservative SRME gets rid of most surface multiples
while some leakage is still visible around the areas indicated by the arrows. Both LPMO
and FLPMO can again achieve visually the same surface multiple leakage extraction per-
formance.

5.5. DISCUSSION

The clear advantage of both LPMO and the proposed FLPMO frameworks versus the adap-
tive subtraction is their simultaneous surface-related multiple leakage extraction and pri-
mary preservation properties. In contrast, surface multiple leakage can also be attenuated
to some extent via a more aggressive SRME strategy, however, it risks a dimming or even
damaging of primaries due to small processing windows. Here, a more aggressive SRME
refers to the standard SRME because such setting is not uncommon. For better awareness
of the potential hazards, we also provide the stacked profile for standard SRME result with
local processing windows (160 ms * 25 traces) in Figure 5.9. Note that we only show this for
the Haltenbanken field, but the same comparison for the Nelson field can be found in [11].
From the standard SRME stacked profile, we can still see some surface multiple leakage,
although they have been attenuated compared to the conservative SRME result in Fig-
ure 5.8(b). However, more leakage can be observed compared to both LPMO and FLPMO
stacked profiles in Figures 5.8(c) and 5.8(d). On the other hand, the primaries in Figure be-
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(a) (b) (c)

(d) (e) (f)

Figure 5.6: Haltenbanken middle shot gather comparison for LPMO and FLPMO. (a) & (d)
Estimated weight using LPMO and FLPMO, respectively. (b) & (e) Leakage compensated sur-
face multiples using LPMO and FLPMO, respectively. (c) & (f) Leakage extracted primaries
using LPMO and FLPMO, respectively.

tween 2 and 3 s display clear dimming effects compared to the LPMO and FLPMO results,
which proves the strong risk of hurting primaries via local window processing.

The hyper parameters within shaping regularization-based inversion framework and
related thresholding and median filtering operators for LPMO have already been exten-
sively discussed in [11]. For the new proposed FLPMO, parameter fine-tuning is a bit more
complex, involving two regularization parameters α1 and α2 and one scaling parameter
β. Specifically, α1 controls the resolution of the estimated FLPMO weights along the time
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(a) (b) (c)

Figure 5.7: Local similarity map comparison for the middle shot from the Haltenbanken
data set. (a) Local similarity map before LPMO or FLPMO. (b) & (c) Local similarity maps
after LPMO and FLPMO, respectively. The arrows indicate the most obvious surface multi-
ple leakage.

direction, while α2 controls this along the spatial direction. β scales the estimated FLPMO
weight as a final adjustment. Our strategy for parameter tuning is first obtaining the LPMO
weight from only one shot (e.g., the middle shot record) as the template, where the com-
putational cost of LPMO is trivial for one shot record. Our goal is to fine-tune a similar
FLPMO weight by adjusting α1, α2 and β, and then fix these parameters for all the shots.
Note that both LPMO and FLPMO are implemented shot by shot. Based on our experi-
ence, α1 is slightly more important and sensitive than α2. β should be adjusted in the
end to match the energy distribution as close as possible to the LPMO weight. Another
important factor for FLPMO is the mean-averaging operator A , which can significantly
smooth and stabilize the estimated FLPMO weight. To better demonstrate its effect, we
show the FLPMO weights without the help of mean-averaging operator for both Nelson
and Haltenbanken shot gathers in Figure 5.10. It is very straightforward and clear that
both FLPMO weights show much less stable and continuous features compared to Fig-
ures 5.2(d) and 5.6(d). For both field data sets, the averaging radius for both time and
space directions is set as 3 sample points. Besides, hyper parameter α1, α2 and β vary
from data set to data set, as they depend on the scale of the data itself.

Regarding the computational cost, the shaping regularization-based inversion frame-
work inside LPMO requires many conjugate-gradient iterations, and its cost increases
when the data size becomes larger (e.g., the Haltenbanken data set). Currently, we use
20 conjugate-gradient iterations for shaping regularization, and the current local speedup
for the Haltenbanken data set is already 47.97. As more conjugate-gradient iterations and
larger data set applied to LPMO, both the local and overall speedup could reach even
higher. As the original LPMO consumes considerable resources, its wide application in
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(a) (b)

(c) (d)

Figure 5.8: Stacked profile comparison for the Haltenbanken data set. (a) & (b) Stacked pro-
files of the original data and the conservative SRME estimated primaries, respectively. (c)
& (d) Stacked profiles of the leakage extracted primaries using LPMO and FLPMO, respec-
tively.

industry will be limited. However, FLPMO, whose cost is now equivalent to the industry
standard L2 adaptive subtraction, smartly replaces the shaping regularization-based in-
version framework with a scaled point-by-point division and, thus, makes fast implemen-
tation feasible with only slight performance degrade. For example, the inversion-based
SRME (i.e., closed-loop SRME [23]) usually needs many iterations. Thanks to the fast im-
plementation, closed-loop SRME constrained by LPMO becomes more practical and is
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Figure 5.9: Haltenbanken stacked profile from a standard SRME result using small local
processing windows (160 ms × 25 traces) during adaptive subtraction. Note that some sur-
face multiple leakage is still visible and some primaries are dimmed due to these adaptive
subtraction settings.

(a) (b)

Figure 5.10: Effects of the mean-averaging operator on the proposed FLPMO weight. (a) Es-
timated FLPMO weight without the mean-averaging operator on the Nelson data set (com-
pare to Figure 5.2(d)). (b) Estimated FLPMO weight without the mean-averaging operator
on the Haltenbanken data set (compare to Figure 5.6(d)).

currently under research. Besides, FLPMO can also be attached to any surface multiple es-
timation approach (e.g., model-based multiple prediction [24] or estimation of primaries
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by sparse inversion (EPSI) [25]) as an external processing step to help extract the surface
multiple leakage. Meanwhile, a fast quality control (QC) using FLPMO to check the mul-
tiple leakage is possible for any multiple estimation approaches. Applications of the pro-
posed FLPMO method to more complicated and time-consuming multiple subtraction
methods are worth investigating, but are considered beyond the scope of this research.

5.6. CONCLUSIONS
We have introduced a new FLPMO framework for faster surface multiple leakage esti-
mation and extraction. By using a scaled point-by-point division in FLPMO, the shap-
ing regularization-based iterative inversion in LPMO is avoided, and thus a local speedup
factor of around 40 is achieved. Application to two different field data sets demonstrates
an equally good performance of the proposed FLPMO and LPMO framework for surface
multiple estimation and leakage extraction, and the overall cost of the complete FLPMO
framework is around 4 times faster than the LPMO framework, which is now equivalent to
the costs of the industry standard L2 adaptive subtraction.
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6
DL-BASED MULTIPLE ADAPTIVE

SUBTRACTION

Surface-related multiple elimination remains one of the most robust primary estimation
approaches for decades, in which the adaptive subtraction step is a non-trivial task. Due to
imperfections in the made assumptions during prediction, the perfect adaptive subtraction
is a highly non-linear and non-stationary process, which is suitable for the popular deep
learning (DL)-based image processing. Different from the most straightforward DL-based
adaptive subtraction (i.e., the full wavefield and the advanced estimated primary training
pair), we propose to include both the original full wavefield and the initial globally esti-
mated multiples as the two-channel input, and train a DL neural network (U-Net) on the
synthetic modeled primaries. In this way, the robust physics (i.e., the globally estimated
multiples) is utilized, and the ground truth primary labels can be beneficial to the frame-
work. Both synthetic and field examples are provided to demonstrate the performance of
our proposed framework.

This chapter is a slightly modified version of the proceeding "D. Zhang, M. de Leeuw, and E. Verschuur, Deep
learning-based seismic surface-related multiple adaptive subtraction with synthetic primary labels, in First In-
ternational Meeting for Applied Geoscience & Energy Expanded abstracts (Society of Exploration Geophysicists,
2021) pp. 2844–2848".
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6.1. INTRODUCTION
Surface-related multiple elimination (SRME) remains one of the most robust primary es-
timation approaches for decades [1–3]. The multiple model with correct kinematic prop-
erties are obtained via a multi-dimensional convolution process. With the estimated mul-
tiple model, most adaptive subtraction methods aim to match and remove the multiple
events from the original full wavefield under some type of assumption, e.g., the minimum
residual primary energy (L2 norm) [4, 5]. However, every assumption is imperfect with
its own flaws, and most will fail when there are some overlapping events between pri-
maries and multiples. In theory, the perfect adaptive subtraction is a highly non-linear
and non-stationary process, which is suitable for the popular deep learning (DL)-based
image processing [6].

The most common DL-based adaptive subtraction is very straightforward, in which
the input is the original full wavefield and the primaries are the target labels. The DL neu-
ral network (NN) is able to learn to directly map the full wavefield to the multiple-free
data. Although it works, two concerns emerge: (1) The real challenge comes from the
training data set [7]. It is impossible to provide the true primaries for the field data set, so
one usually utilizes the most advanced demultiple approach to obtain the best estimated
primaries [8]. Thus, the DL performance can never outperform current demultiple meth-
ods, which is not our goal; (2) Only providing the original full wavefield and the target
primaries to the DLNN lacks physics (i.e., primary and multiple relation), which will lower
the chance to have the physically correct primaries. [8] introduce the Generative adver-
sarial network (GAN) to map from full wavefield to the best possible primaries (i.e., EPSI
estimated primaries [9]) without using synthetic training pairs, which leads to efficient
results rather than the desired better primaries we are pursuing. Although they also men-
tion that providing the NN with a relative cheap prediction of multiples can improve the
performance, the related details are missing in [8]. Therefore, we propose to include both
the original full wavefield and the initial estimated multiples as the two-channel input,
and train DLNN (i.e., U-Net) on the synthetic modeled primaries. In this way, the robust
physics (i.e., the globally estimated multiples) is utilized, and the ground truth primary
labels can be beneficial to the framework. Both synthetic and field examples are provided
to demonstrate the performance of our proposed NN framework.

6.2. DL-BASED ADAPTIVE SUBTRACTION WITH SYNTHETIC PRI-
MARY LABELS

The conventional adaptive subtraction step for SRME is implemented in the time domain
using a minimum-energy constraint [4]:

E = ∑
t ,xr ,xs

[p(t , xr , xs )−a(k+1)(t )∗m̂(k+1)(t , xr , xs )]2, (6.1)

where p(t , xr , xs ), m̂(k+1)(t , xr , xs ) and a(k+1)(t ) represent the estimated primaries, the un-
adapted multiples (i.e. −P0P) and the surface operator in the time domain, respectively.
The length of the surface operator is also known as the filter length, which is capable of
controlling the trade-off between under-fitting and over-fitting. xr and xs are the source
and receiver locations of seismic data. For the standard SRME, it is first matched and sub-
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tracted in a global window during the first 1 or 2 iterations. Small local windows and a
long filter length are then utilized for adaptive subtraction in the last iteration to better
remove the multiples [4, 10]. It is worth noting that small local windows and a long filter
length for standard SRME can damage the primaries though more multiples are removed
due to its over-fitting nature. On the other hand, when the last iteration of adaptive sub-
traction is still implemented in a global window or large local windows with a short filter
length, the conservative SRME result with much less primary damage and relatively more
multiple leakage is expected due to its under-fitting nature. This dilemma requires more
non-linear and non-stationary elements to be solved, and DLNN is able to provide this.

Figure 6.1: The proposed DL-based adaptive subtraction workflow. Note that the origi-
nal full wavefield and the globally estimated surface multiples (i.e., belonging to the real
physics) are fed in the two channels of the input, and the true primaries are used as the
target labels.

The biggest problem for DL-based adaptive subtraction is defining a proper training
data set. To correctly remove the interfering surface multiples, we would always prefer the
ground truth primaries as our target labels. Nevertheless, we can never know the ground
truth primaries in the real world. Ideally, the synthetically modeled primaries can be ob-
tained without too much efforts. Therefore, we propose to utilize the synthetic primary
labels to learn the most accurate features involved in the adaptive subtraction. On the
other hand, direct mapping from the original full wavefield to primaries might be too
aggressive for the learning process. The initial estimated multiples are obtained from a
global adaptive subtraction, which have the correct kinematic properties. We can regard
these multiples as the physics because they are estimated in a physically robust manner
(i.e., multi-dimensional convolution). In this way, there is much higher chance to arrive
at a physically correct estimated primaries. By combining the mentioned suggestions,
the physics-informed adaptive subtraction with synthetic primary labels can be achieved,
and the proposed convolutional NN (CNN) workflow can be seen in Figure 6.1. The origi-
nal full wavefield and the globally estimated multiples are combined together as the input
for CNN, and then the CNN output is compared with the ground truth primary label to
minimize their differences.
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6.3. U-NET FOR ADAPTIVE SUBTRACTION

Figure 6.2: U-Net architecture used in this study.

Essentially, the seismic adaptive subtraction task can be treated as one of image-to-
image mapping. The famous U-Net might be the most suitable mapping tool (or data
fitting) among all different kinds of DLNNs. Originally designed for medical image seg-
mentation [11], the CNN architecture-based U-Net is very powerful in terms of image
processing. The convolutional autoencoder is its ancestor, and it consists of two parts:
the encoder and the decoder [6]. The encoder downsamples the image and searches for a
sparse representation. The decoder does the opposite and includes both upsampling and
back-projection. Most importantly, there exist some extra skip connections between the
mirrored layers, which can reduce the loss of useful information and result in a more ac-
curate reconstruction. Both encoder and decoder in this chapter are fully convolutional.
Figure 7.1 demonstrates the designed architecture of our U-Net. More specifically, each
encoder block consist of a 2D convolution with 4 × 4 filters and stride 2, a batch normal-
ization and a leaky ReLU. Correspondingly, each decoder includes a similar setup except
for a 2D deconvolution. More detailed descriptions of the U-Net can be found in [6]. The
channel information (or filter) is indicated by the red number on top of each block, which
increases along downsampling direction and decreases along upsampling. The core ob-
jective function is as follows:

J = 1

N

∑
N
∥p0(t , xr , xs )− p̂0(t , xr , xs )∥1

= 1

N

∑
N
∥p0(t , xr , xs )−D(E(p(t , xr , xs ),m̂g (t , xr , xs )))∥1,

(6.2)

where p0(t , xr , xs ), p̂0(t , xr , xs ) and m̂g (t , xr , xs ) represent the ground-truth primaries, the
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U-Net estimated primaries, and the globally adapted multiples, respectively. N indicates
the total number of training data pairs, and ∥.∥1 is the L1 norm. E and D describe the en-
coding and decoding operators. The aforementioned objective function directly explains
the data fitting nature of the U-Net, i.e., minimize the difference between the U-Net esti-
mated primaries and the true primaries. More specifically, the U-Net estimated primaries
can be obtained via first encoding the original full wavefield and the globally estimated
multiples into their sparse representations, and then decoding back-projects the sparse
signals to the final estimated primaries.

The unique feature of our U-Net is its special two-channel input, i.e., the original full
wavefield as the first channel and the globally estimated multiples as the second channel.
Thus, it can provide the physics (multiples) into the U-Net, which leads to a more accurate
estimation than the direct mapping from the original full wavefield to primaries.

6.4. RESULTS
We have applied our proposed NN framework on three different cases: (1) train on syn-
thetic data and test on different synthetic data; (2) train on field data and test on different
subsets from the same field data; (3) train on synthetic data and test on field data. Figure
6.3 display two different models used for generating all the synthetic data. Both models
contain a shallow water layer with several subsurface layers. Model 1 from Figure 6.3(a)
generates all the synthetic training data pair used in this chapter as shown in Figure 6.4,
which consist of 256 shots. Each shot has 256 receivers with 256 time samples for each
trace. Both source and receiver sampling are 12.5 m, and time sampling is 4 ms. So the
input seismic data size is 256 × 256. Note that the acquisition parameters are the same for
all synthetic and field data sets.

6.4.1. CASE 1: TRAINED ON SYNTHETIC AND APPLIED ON SYNTHETIC

We first only trained on synthetic data from one model, and applied the learned NN on
the data generated from another model. Figure 6.4 shows the results during the train-
ing phase. The original full wavefield and the globally estimated multiples (Figure 6.4(a)
and 6.4(b)) are regarded as the two input channels of the U-Net. The ground truth pri-
maries (Figure 6.4(c)) is considered as the U-Net target. 10% (random picking) of the
training shots (i.e., 26 shots) are designed as the development data to fine-tune the hyper-
parameters (e.g., NN channels, layers, epoch, etc) for avoiding over/under-fitting. Figure
6.4(d) and 6.4(e) indicate the ground truth primaries and the U-Net estimated primaries
on the development data, and they are visually the same. Thus, the proposed NN frame-
work has learned well from the training synthetic data. However, the general performance
of the learned NN needs to be confirmed on the test data set.

Figure 6.5 demonstrates the performance of the proposed NN framework on the syn-
thetic test data generated from Model 2. The original full wavefield (Figure 6.5(a)), the
ground truth primaries (Figure 6.5(b)) and the globally estimated primaries (Figure 6.5(c))
are provided for better comparison. From the globally estimated primaries, it can be seen
that there are large primary and multiple overlapping area as indicated by the arrow, which
leads to either primary damage or multiple leakage for the traditional adaptive subtrac-
tion methods. The U-Net estimated primaries are shown in Figure 6.5(d), which partly
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(a)

(b)

Figure 6.3: Two subsurface models used for generating data. (a) Model used for generating
training data. (b) Model used for generating test data.

improves the globally estimated primary result with clearer primary events and less resid-
ual multiple events. Although it is not perfect because of the different data distribution
of the two synthetic examples, it is surprising how close these primaries resemble to true
ones.

6.4.2. CASE 2: TRAINED ON FIELD AND APPLIED ON FIELD

Next, to pursue a similar data distribution, we select two close subsets of the 2D field data
set, and train our NN on one and test on the other. Note that in this case, we do not know
the ground truth primaries, so we need to provide the target primaries in advance. Local
primary-and-multiple orthogonalization (LPMO) [12] is used to obtain a good estimated
of primaries. In theory, the upper limit that NN can learn is LPMO. Figure 6.6 displays
the training data pair. After training, we applied the learned NN on the nearby test field
data, which is shown in Figure 6.7. It can be noticed from the globally estimated primaries
that there exist some multiple leakage as shown by the arrow. LPMO, from which NN
is learned, is good at extracting those leaked multiple. The proposed U-Net estimated
primaries are shown in Figure 6.7(c), which can reduce the multiple leakage at the arrow-
indicated area. Therefore, our proposed NN framework can successfully learn the LPMO
feature under the same data distribution. Note again that the training data are selected
from a different part in the field data compared to the test data, to avoid the NN just acts
as a data interpolator.
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(a) (b) (c)

(d) (e)

Figure 6.4: U-Net training data pair, and its performance on the development data. (a) &
(b) The original full wavefield and the globally estimated multiples as two input channels
of U-Net, respectively. (c) The ground truth primaries as the target label channel. (d) & (e)
The ground truth primaries and the U-Net estimated primaries on the development data.
Note that the data are modeled from Figure 6.3(a).

(a) (b) (c) (d)

Figure 6.5: DL-based adaptive subtraction performance on the test data. (a) & (b) The orig-
inal full wavefield and the ground truth primaries, respectively. (c) Globally estimated pri-
maries. (d) The U-Net estimated primaries. Note that the data are modeled from Figure
6.3(b).

6.4.3. CASE 3: TRAINED ON SYNTHETIC AND APPLIED ON FIELD
The last case is we train on synthetic data and applied on the field data, which is the ideal
scenario and also the most challenging situation due to very different data distribution.
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(a) (b) (c)

Figure 6.6: Training field data set. (a) & (b) The original full wavefield and the globally es-
timated multiples as two input channels of U-Net, respectively. (c) The estimated primaries
from LPMO as the target.

(a) (b) (c)

Figure 6.7: Test field data set (trained on the field data). (a) & (b) The original full wavefield
and the global estimated primaries, respectively. (c) The U-Net estimated primaries.

Note that in this case we have to cut the data into small patches first and then apply the
proposed NN on those patches due to strong non-stationary feature of seismic field data.
The patch size is 64 by 64. Note that the corresponding U-Net size and layers will also
decrease. Figure 6.8 demonstrates the current results in this most difficult scenario. The
original full wavefield and the global estimated primaries are shown in Figure 6.8(a) and
6.8(c), respectively. The U-Net estimated primaries trained only on synthetic data are dis-
played in Figure 6.8(c). We notice that the originally weak primary events are enhanced
after the proposed NN framework, especially for events marked by the arrows. The NN
might learn to compensate the amplitude loss caused by the deghosting process from
the synthetic data. Still, the overall energy distribution is different from the original data.
Thus, we propose to include 1% of field data training pair (primaries from LPMO), and the
result is shown in Figure 6.8(d), which is closer to the original distribution.

6.5. CONCLUSIONS
We have proposed the DLNN framework for primary estimation via a U-Net with both to-
tal data and predicted multiples as input channels. The data distribution between train-
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(a) (b) (c) (d)

Figure 6.8: Test field data set (trained on the synthetic data). (a) & (b) The original full wave-
field and the global estimated primaries, respectively. (c) The U-Net estimated primaries.
(d) The U-Net estimated primaries with 1% field data as the training data.

ing and test data plays an important role on the U-Net primary estimation performance.
Training on field data and test on nearby field data gives the best performance due to
the similar data distribution. The globally estimated multiples as the second channel of
the input provide robust physics for the proposed framework, and using synthetic pri-
maries as target labels can enhance the weak primary energy. Applications on three dif-
ferent cases demonstrate the promising performance of the proposed framework, where
the most promising is the scenario of training on synthetic data and applying it to field
data. Please note that the initial results in this chapter are currently optimal, which might
not be the best due to limited training data set and various U-Net settings.
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7
DL-BASED MULTIPLE DE-ALIASING

The main prediction engine in surface-related multiple elimination (SRME) is the multi-
dimensional convolution process, where data sampling plays an essential role for accurate
surface multiple prediction. Therefore, fully sampled sources and receivers are preferred. If
especially the source sampling is far from ideal, the estimated multiples will suffer from the
severe aliasing effect. Consequently, this can lead to poorly estimated primaries. Interpola-
tion of coarsely sampled sources is not a trivial task. Dealiasing on the estimated multiples
from limited sources might provide a potential solution. In theory, this dealiasing problem
is highly non-linear, which suits well for deep learning (DL)-based methods. Therefore, we
propose a U-Net-based approach to dealiase the estimated surface multiples from limited
sources. Applications on two subsets of the field data demonstrate the effective performance
of the proposed method.

This chapter is a slightly modified version of the proceeding "D. Zhang and E. Verschuur, Deep learning-based
dealiasing for estimated surface-related multiples from limited sources, 82nd EAGE Conference and Exhibition
Expanded abstracts (European Association of Geoscientists & Engineers, 2021)".
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7.1. INTRODUCTION
Surface-related multiple elimination (SRME) requires two necessary steps: the multidi-
mensional convolution and adaptive subtraction [1, 2]. During the first step, data sam-
pling plays an essential role for accurate surface multiple prediction. At the receiver side
sampling is usually such that interpolation can be carried out. However, also fully sampled
sources are preferred. If the source sampling is far from ideal, the estimated multiples will
suffer from the severe aliasing effect [3, 4]. Consequently, this can lead to poorly estimated
primaries. Source interpolation is usually applied to overcome the sampling issue for bet-
ter unaliased multiples [5]. However, source-side interpolation is extremely challenging in
real 3D case due to the limited recorded data (around 2% of the desired data) and the huge
data storage. Regarding the aforementioned issues, dealiasing on the estimated multiples
from limited sources might provide a potential solution to the real 3D problem. In theory,
this dealiasing problem is highly non-linear, which suits well for deep learning (DL)-based
methods. Therefore, we propose a convolutional neural network (CNN)-based approach
(i.e., U-Net) to dealiase the estimated surface multiples from limited sources. Note that
we currently demonstrate the proposed method on a 2D field data example, and the 3D
application will be studied in the future.

7.2. MULTIDIMENSIONAL CONVOLUTION-BASED MULTIPLE ES-
TIMATION

The multidimensional convolution for kinematic multiple estimation can be described as
follows:

M̂ =−P0P, (7.1)

where M̂, P0 and P denote the estimated multiples, the estimated primaries and the origi-
nal full wavefield, respectively. We use P to replace P0 for initial multiple estimation. Note
that depending on source type an obliquity factor may be included [6]. This multidimen-
sional convolution is the most robust step in SRME under the condition that the recorded
full wavefield data are fully sampled in both source and receiver side. Otherwise, the esti-
mated multiples will suffer from the aliasing effects. Note that in this chapter we focus on
the source side sampling. Source side interpolation is usually only feasible in the 2D case,
and is very challenging in 3D. When applying multiple prediction with sparsely sampled
source creates a distinct aliasing pattern on the predicted multiples. Therefore, dealiasing
on the estimated multiples from limited sources might provide a potential solution, which
requires a highly non-linear mapping operator.

7.3. U-NET FOR MULTIPLE DE-ALIASING
Essentially, the seismic dealiasing task can be treated as one of the image-to-image map-
ping, which is highly non-linear. The famous U-Net might be the most suitable mapping
tool (or data fitting) among all different kinds of DL neural networks. Originally designed
for medical image segmentation [7], a CNN architecture-based U-Net is very powerful in
terms of image processing. The convolutional autoencoder is its ancestor, and it consists
of two parts: the encoder and the decoder [8]. The encoder downsamples the image and
searches for a sparse representation. The decoder does the opposite, which includes both
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Figure 7.1: U-Net architecture used in this study.

upsampling and back-projection. Most importantly, there exist some extra skip connec-
tions between the mirrored layers, which can reduce the loss of useful information and
result in a more accurate reconstruction. Both encoder and decoder in this chapter is
fully convolutional. Figure 7.1 demonstrates the designed architecture of our U-Net, in
which the input is the aliased multiples and the output is the dealiased multiples. More
specifically, each encoder block consist of a 2D convolution with 4 × 4 filters and stride 2,
a batch normalization and a leaky ReLU. Correspondingly, each decoder includes a sim-
ilar setup except for a 2D deconvolution. More detailed description of the U-Net can be
found in [8]. The channel information (or filter) is indicated by the red number on top
of each block, which increases along the downsampling direction and decreases during
upsampling. The core objective function is as follows:

J = 1

N

∑
N
∥M−D(E(M̂))∥1, (7.2)

where M represent the target multiples with fully sampled sources and M̂ the input mul-
tiple prediction with aliasing imprint. N indicates the total number of training data pairs,
and ∥.∥1 is the L1 norm. D and E describe the encoding and decoding operators. The
aforementioned objective function directly explains the data fitting nature of the U-Net,
i.e., minimizing the difference between the U-Net estimated multiples and the target mul-
tiples. More specifically, the U-Net estimated multiples can be obtained via first encoding
the aliased multiples into a sparse representation, and then decoding back-projects the
sparse signals to the final estimated multiples.

7.4. RESULTS
We extract two fixed-spread fully sampled data subsets from the same 2D Nelson North
Sea data. Two subsets come from adjacent areas, which have similar geological struc-
tures. For each subset, there are 256 shots, and each shot contains 256 receivers. The time
sampling is 4 ms. Figure 7.2 shows the stacked sections of the aforementioned two sub-
sets. The idea behind is that one subset (7.2(a)) is regarded as the training data with fully
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(a) (b)

Figure 7.2: Two fixed-spread fully sampled subsets from the same 2D Nelson line. (a) Subset
used for training. (b) Subset used for testing.

(a) (b) (c)

(d) (e) (f)

Figure 7.3: Conventional source interpolation results and their corresponding estimated
multiples. (a) & (d) Original shot and its multiples with 12.5 m source spacing. (b) & (e)
Interpolated shot with 50 m source spacing and the estimated corresponding multiples af-
ter interpolation. (c) & (f) Interpolated shot with 100 m source spacing and the estimated
corresponding multiples after interpolation.
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sampled sources, while the other subset (7.2(b)) is considered as the test data with lim-
ited sources. In reality, it represents that we can intensively record fully sampled sources
in one area for training the NN, and for the adjacent areas we only need to record sparse
sources to reduce the cost. The resulting aliasing effects can be resolved by the proposed
DL-based approach. Note that we test two different source spacing in this chapter, i.e., 50
me and 100 m, to demonstrate the DL power on source side dealiasing.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7.4: U-Net training data pair, and its performance on the test data. (a) & (e) The
aliased multiples (50 m source spacing) and its unaliased target multiples from the train-
ing data, respectively. (b) & (f) The aliased multiples (50 m source spacing) and the DL
estimated dealiased multiples from the test data, respectively. (c) & (g) The aliased multi-
ples (100 m source spacing) and its unaliased target multiples from the training data, re-
spectively. (d) & (h) The aliased multiples (100 m source spacing) and the DL estimated
dealiased multiples from the test data, respectively.

First, we display some conventional interpolation results as a comparison in Figure
7.3. Conventional method interpolates the missing sources based on the low-frequency
components of the data in the common offset domain. The multiples are thus estimated
after the interpolation to reach the desired performance. From both interpolation results
and the corresponding multiples, it is clear that the conventional method can provide a
good interpolation performance for further multiple estimation for both 50 m and 100 m
source spacing. However, some tiny details are lost along the seismic events, which cannot
be easily noticed from the shot gather displays. In contrast, all specular reflections are well
interpolated.

Next, Figure 7.4 demonstrate the performance of the proposed DL dealiasing method.
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The training pair of the aliased multiples with 50 m source spacing and the unaliased tar-
get multiples are shown in Figure 7.4(a) and 7.4(e). After the training phase, we apply the
learned NN on the similar aliased test shot gather (Figure 7.4(b)) from the adjacent area.
The dealiased result via the DL-based approach is displayed in Figure 7.4(f). We can notice
that most events are well recovered and all aliased energy has been successfully removed.
Then, we apply the same method to the training pair with 100 m source spacing as shown
in Figure 7.4(c) and 7.4(g). The learned NN is applied to the aliased test data with 100 m
source spacing in Figure 7.4(d). Figure 7.4(h) indicates the final DL-based dealising result,
which removes most aliased energy. However, some of the weak seismic events are not
well recovered.

(a) (b) (c)

(d) (e)

Figure 7.5: Stacked section comparison for estimated multiples from (a) the original fully
sampled sources (12.5 m source spacing), (b) & (c) the conventional interpolated data and
the NN dealised data (50 m source spacing), and (d) & (e) the conventional interpolated
data and the NN dealised data (100 m source spacing).

For better and clearer comparison, we provide the stacked sections for the estimated
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multiples in Figure 7.5. Figure 7.5(a) is considered as the benchmark multiple stacked
section, which comes from the original fully sampled sources. Figure 7.5(b) and 7.5(d)
demonstrate the stacked multiple sections from the conventional interpolated data. It
can be seen that most specular reflections are well preserved. However, those events be-
come smoother than the benchmark section, in which we can observe more small scale
discontinuities. Also note that the 100 m source spacing result is much smoother than
the 50 m source spacing. In contrast, both stacked multiple sections from the DL-based
dealiasing method in Figure 7.5(c) and 7.5(e) contain more small-scale information and
shows a better resemblance with the benchmark results (Figure 7.5(a)).

7.5. CONCLUSIONS
We have proposed a DL-based dealising method for multiple estimation. The non-linear
mapping power of DL can successfully project the aliased multiples to its corresponding
unaliased target multiples. Applications on two subsets of the field data demonstrate the
effective performance of the proposed method. Note that we also need to compare a DL-
based dealiasing with a DL-based source interpolation method, in order to find out which
approach is most suitable. However, the real potential value lies in 3D cases, where most
data are not recorded. Conventional interpolation method works well for the relative flat
geology in 2D, while it will fail under complex structures in 3D. The proposed DL-based
dealiasing framework can be potentially extended to 3D environment, which will be our
future research. Also note that such approach will have an impact on acquisition design:
to benefit from this approach it can be decided to shoot certain areas with dense sampling
for training purpose.

7.6. ACKNOWLEDGEMENTS
The authors would like to thank PGS for providing the field data.

REFERENCES
[1] A. J. Berkhout and D. J. Verschuur, Estimation of multiple scattering by iterative inver-

sion, Part I: Theoretical considerations, Geophysics 62 (1997), pp. 1586–1595.

[2] D. J. Verschuur and A. J. Berkhout, Estimation of multiple scattering by iterative inver-
sion, Part II: Practical aspects and examples, Geophysics 62 (1997), pp. 1596–1611.

[3] D. J. Verschuur, Seismic multiple removal techniques : past, present and future (EAGE
Publications, Houten, Netherlands, 2013).

[4] B. Dragoset, E. Verschuur, I. Moore, and R. Bisley, A perspective on 3D surface-related
multiple elimination, Geophysics 75 (2010), pp. 75A245–75A261.

[5] J. Cai, M. Guo, S. Dong, R. Camp, G. Abarr, and B. Wang, True azimuth surface multi-
ple elimination, in 80th SEG Technical Program Expanded Abstracts (Society of Explo-
ration Geophysicists, 2010).

http://dx.doi.org/10.1190/1.1444261
http://dx.doi.org/10.1190/1.1444262
https://www.earthdoc.org/content/books/9789073834569
http://dx.doi.org/10.1190/1.3475413
http://dx.doi.org/ 10.1190/1.3513577


7

112 REFERENCES

[6] A. B. Weglein, F. A. Gasparotto, P. M. Carvalho, and R. H. Stolt, An inverse-scattering se-
ries method for attenuating multiples in seismic reflection data, Geophysics 62 (1997),
pp. 1975–1989.

[7] O. Ronneberger, P. Fischer, and T. Brox, U-net: Convolutional networks for biomedi-
cal image segmentation, in Lecture Notes in Computer Science (Springer International
Publishing, 2015) pp. 234–241.

[8] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning (The MIT Press, Cambridge,
Massachusetts, 2016).

http://dx.doi.org/10.1190/1.1444298
http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://www.deeplearningbook.org


8
CONCLUSION AND

RECOMMENDATIONS

8.1. CONCLUSION
The traditional seismic surface-related multiple estimation and removal methods are lim-
ited by the unrecorded data reconstruction (e.g., the missing near offsets and the data gap
between the crosslines) and the subsequent multiple adaptive subtraction performance.
These issues become even more severe for the shallow water environment, which is de-
fined as having typically around 50-200 m water depth when regarding the exploration
seismic frequency range (i.e., 2-120 Hz) in this thesis. Shallow water creates highly curved
seismic reflection events with strong lateral amplitude variations, and tends to generate
complex seismic event overlap between primaries and surface-related multiples. Conven-
tional data reconstruction methods fail to tackle the missing data in shallow water, and
are even more problematic in 3D. Meanwhile, the dilemma between primary damage and
surface multiple leakage during the adaptive subtraction usually becomes more severe for
shallow water data. Therefore, a reconstruction approach to handle both the missing near
offsets and large crossline data gaps and a robust tool to mitigate the adaptive subtraction
dilemma is desired.

In this thesis, a new integrated closed-loop surface-related multiple estimation (CL-
SRME) and full-wavefield migration (FWM) framework for better primary and surface-
related multiple estimation is proposed to attack the unrecorded data reconstruction is-
sue. This framework is able to support CL-SRME with good-quality near-offset data in
order to avoid primary estimation failure that typically occurs in shallow-water environ-
ments. Near-offset data reconstruction in shallow-water environments is challenging whe-
re the seismic events are highly curved with strong lateral amplitude variations. Conven-
tional data-driven reconstruction methods (e.g., using the parabolic Radon transform) fail
to fill the missing gaps with correct phase and amplitudes. We, therefore, suggest to use
multiples to provide information on the missing near-offset data by using FWM, where
primaries and surface multiples together create an image of the shallow subsurface. Tak-

113
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ing advantage of FWM - with its closed-loop simultaneous primaries and multiples imag-
ing approach - as the data reconstruction method and feeding the reconstructed near-
offsets to CL-SRME are the most important components to success. Good performance
of the proposed integrated framework for shallow-water environments has been demon-
strated based on a 2D synthetic and a 2D North Sea field data. This new integrated frame-
work will have its main impact on a full 3D implementation with coarse sampling. There-
fore, a similar cascaded framework for 3D surface-related multiple estimation in shallow-
water scenarios, which consists of a data reconstruction step via 3D FWM and a surface
multiple estimation step via 3D SRME or general surface multiple prediction (GSMP),
is also introduced in the thesis. 3D FWM has demonstrated its strong data reconstruc-
tion power through two different shallow-water 3D synthetic data sets. More specifically,
FWM-aided 3D SRME is indeed capable of delivering the best surface multiple estima-
tion result because of fully taking advantage of the 3D FWM reconstruction power and
perfectly fulfilling the data sampling requirement of 3D SRME. However, FWM-aided 3D
SRME is currently not affordable due to the huge data storage issue and the intensive com-
putational cost. Therefore, only partial reconstruction power of 3D FWM on recovering
the near offsets is used by FWM-aided GSMP, in which an acceptable result with less data
storage and computational resources is achieved.

In order to mitigate the surface-related multiple adaptive subtraction dilemma, we
have also introduced an innovative two-step framework for surface multiple leakage ex-
traction in this thesis, and thus extended our seismic multiple processing toolbox. The
aforementioned two-step framework based on local primary-and-multiple orthogonal-
ization (LPMO) is both versatile and efficient for leaked multiple extraction, therefore,
primaries can be better preserved without leaving much multiple energy. The initial esti-
mation step usually prefers a conservation SRME, and LPMO is followed to compensate
the initial estimated primaries and multiples. Applications to two synthetic data sets and
one North Sea field data set show a good performance of the proposed framework for
alleviating the adaptive subtraction dilemma. Although effective, LPMO is relatively com-
putational intensive. Therefore, a fast LPMO (FLPMO) is further introduced to accelerate
this process. More specifically, the time-consuming shaping regularization-based itera-
tive inversion in LPMO can be replaced by a scaled point-by-point division in FLPMO. In
this way, we can achieve a local speedup factor of around 40. Two different North Sea field
data sets are tested to display the equally good performance of FLPMO compared to LPMO
for surface multiple leakage extraction. However, the overall cost of the complete FLPMO
framework is around 4 times faster than the LPMO framework, which is now equivalent to
the costs of the industry standard L2 adaptive subtraction.

With the advance of deep learning (DL) technology, two DL neural network (NN) frame-
works are investigated for better surface-related multiple estimation in shallow water.
Both NN are based on the U-Net setting. DL-based dealising NN is introduced for the
initial multiple estimation, where the strong data fitting power of DL can directly project
the aliased multiples due to coarse sampling to its corresponding unaliased target mul-
tiples. Such approach might have an impact on the acquisition design, in which certain
areas can be shot densely for DL training purpose. At the same time, DL-based adaptive
subtraction NN is proposed with both total full wavefield and the predicted multiples as
two input channels. The globally estimated multiples, as the second input channel, are
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regarded as the robust and helpful physics. In general, it is preferable to train and test on
data sets with the same characteristics. Training on field data and test on nearby field data
gives the best performance due to the similar data distribution. In this case, only limited
training data are required because all the data have the same characteristics. Transferring
from synthetic data to field data, however, requires much more efforts in order to find the
same data distribution. The corresponding benefit is training with the ground truth data.
Applications on the North Sea field data show promising performances of both DLNN for
surface-related multiple estimation.

Shallow water is very challenging for surface-related multiple estimation. Physics-
based deterministic approaches, e.g., FWM-based data reconstruction and LPMO, can
help geophysicists better understand and partially solve the essentials of the problem.
For poorly described deterministic problems, e.g., adaptive subtraction and multiple de-
aliasing, DL can find the underlying relationships that are not easily achievable by the
deterministic methods. Combination of deterministic methods and DL will result in an
optimal performance. This is where further research should concentrate on.

8.2. RECOMMENDATIONS FOR FURTHER RESEARCH

8.2.1. SOURCE SIDE SAMPLING WITH 3D EXTENSION
Current work of data reconstruction for the missing near offsets and coarse sampling via
FWM is still restricted to the receiver side. It is necessary to include source side data re-
construction as well to achieve the best surface-related multiple estimation. However, the
data storage tends to explode with full sampling on the source side [1]. Balance between
the data storage issue and optimal performance needs more attention for further research.

8.2.2. ATTACKING/MITIGATING AVO EFFECTS
Because of the over-parametrization danger from angle-dependent FWM [2], the current
version of FWM-based data reconstruction cannot easily handle the angle-versus-offset
(AVO) effects in the large offsets. Some simplified AVO approximation (e.g., Shuey approx-
imation [3] or DL-based approximation [4]) might help FWM to better fit the data at large
offsets without over-parametrization. Oppositely, one can think of removing or mitigat-
ing the AVO effects in the data rather than explaining them [5]. Thus, FWM-based data
reconstruction is expected to perform even better in the future.

8.2.3. SHALLOW SUBSURFACE MODEL
The shallow subsurface model proves to be extremely important for model-based FWM-
type data reconstruction approach. An accurate near-surface model is usually very chal-
lenging to obtain [6], therefore, an integrated study with high-resolution seismic imag-
ing/inversion is desired to achieve such a good shallow subsurface model.

8.2.4. LPMO CONSTRAINED CL-SRME OR SRME
LPMO, attached behind any conservative multiple estimation method, has been demon-
strated to be effective on extracting the leaked multiples in this thesis. In theory, more
advanced inversion-based CL-SRME can achieve an optimal separation without the help
from LPMO [7]. However, data can never be perfect, due to 2D/3D effects, coarse sam-
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pling, source/receiver directivity, etc. This can lead to undesired multiple estimation even
for CL-SRME. LPMO acting as an internal constraint might help condition the inversion
framework, thus, reach a better primary and multiple model. Similarly, LPMO might also
constrain the iterative SRME, meaning LPMO can be applied after every iteration of SRME
to improve both the efficiency and performance.

8.2.5. EFFECTS OF OVERLAPPING MULTIPLES FROM DIFFERENT ORDERS ON

LPMO
As water depth decreases, the issue of interfering multiples from different orders becomes
more severe. The case of a first-order SRME prediction can be more interesting since this
is often the prediction in industrial practice. For such a prediction, overlapping multiples
from different orders may require different corrections during the adaptive subtraction.
Thus, the corresponding effects on the proposed LPMO framework are worth further in-
vestigating in detail. LPMO results might even indicate issues related the overlapping or-
der of multiples. It should be informative to compare closely and quantitatively the results
from this iterative approach with results from CL-SRME or EPSI that have the capability
to solve this issue of interfering multiples from different orders.

8.2.6. SEPARATION-RELATED TOOLBOX

In order to become a standard seismic separation-related processing toolbox, LPMO re-
quires much more further studies with different initial separation methods and scenarios.
We only tested on L2-based adaptive subtraction, and methods such as curvelet [8] and
non-stationary regression [9] approaches need more validation.

8.2.7. BEYOND LIMITED TRAINING DATA SET

DL-based results in this thesis only utilize limited number of training data sets, and we
are actually already surprised by the current performances. Nevertheless, more training
data will keep improving the power of our NN especially for more challenging scenarios,
i.e., training on the synthetic data and applied on the field data. Searching for the optimal
training size by itself is worth further investigation. Note that it is always preferable to
train and test on the data with similar distribution.

8.2.8. DL-BASED DE-ALIASING VS DL-BASED INTERPOLATION

Conventionally for seismic surface-related multiple estimation, one usually interpolates
the missing data first and then applies the multidimensional convolution to obtain the
multiple model. Alternatively, one can directly apply the convolution on the coarse data
set, and implement de-aliasing on the aliased multiples. Note that the interpolation task
can also be achieved via DLNN [10, 11]. Therefore, it is imperative to compare the per-
formances of these two different routes, and study the role and effectiveness of DLNN on
each route.

8.2.9. DL-BASED OPTIMAL METRIC FOR ADAPTIVE SUBTRACTION

Choosing the optimal metric for adaptive subtraction is usually very challenging and trou-
blesome in practice [12]. DL might come in handy if we train the NN to evaluate different
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metric, e.g., L1, L2, Lp, etc. In this way, we can apply adaptive metric for different part of
the data to reach the optimal subtraction performance. It would be extremely helpful for
the future practitioners in the industry.

8.2.10. IMAGING OR REMOVING MULTIPLES
The choice of multiple imaging or multiple removal relies on the original data sampling
pattern [13]. Note that multiple removal methods require dense sampling on both source
and receiver side. If either source or receiver side is poorly sampled, e.g., in the situation
of ocean bottom node (OBN), multiple imaging is the preferred route. Also, the relation
between seismic acquisition and FWM needs to be further investigated.

8.2.11. APPLICATION TO A LARGER AND MORE REPRESENTATIVE DATA SET
In this thesis, several methods were only demonstrated on the 2D Nelson field data, that
may not represent all typical issues. Therefore, application on a 2D marine line of some
50 km or longer, with representative variations in geology, towing conditions, sources op-
erations, weather, and noise, would be more beneficial for the industry. Also, sufficient
advanced processing including imaging/inversion such that one could assess the sensi-
tivity of advanced processing results to the proposed enhancements.
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A
APPENDIX A: LPMO FOR LEAKED

INTERNAL MULTIPLE ATTENUATION

ON FWM IMAGES

An important imaging challenge is creating reliable seismic images without internal mul-
tiple crosstalk, especially in cases with strong overburden reflectivity. Several data-driven
methods have been proposed to attenuate the internal multiple crosstalk, for which fully
sampled data in both source and receiver side are usually required. To overcome this acqui-
sition constraint, model-driven full-wavefield migration (FWM) can automatically include
internal multiples and only needs dense sampling in either source or receiver side. In ad-
dition, FWM can correct for the transmission effects at the reflecting interfaces. Although
FWM has been shown to work effectively in compensating for transmission effects and sup-
pressing the internal multiple crosstalk compared to the conventional least-squares pri-
mary wavefield migration (PWM), it tends to generate relatively weaker internal multiples
during modeling. Therefore, some leaked internal multiple crosstalk can still be observed in
the FWM image, which tends to blend in the background and can be misinterpreted as real
geology. Thus, we propose a novel framework using local primary-and-multiple orthogo-
nalization (LPMO) on the FWM image as a post-processing step for leaked internal multi-
ple crosstalk estimation and attenuation. Due to their opposite correlation with the FWM
image, a positive-only LPMO weight can be used to estimate the leaked internal multiple
crosstalk, while a negative-only LPMO weight indicates the transmission effects that need
to be retained. Application to North Sea field data validates the performance of the pro-
posed framework for removing the weak but misleading leaked internal multiple crosstalk
in the FWM image. Therefore, with this new framework, FWM can provide a reliable solu-
tion to the longstanding issue of imaging primaries and internal multiples automatically,
with proper primary restoration.

This chapter is a slightly updated version of the published paper "D. Zhang, D. J. Verschuur, M. Davydenko,
Y. Chen, A.M. Alfaraj, and S. Qu, Local primary-and-multiple orthogonalization for leaked internal multiple
crosstalk estimation and attenuation on full-wavefield migrated images, Geophysics 86 (2021), pp. A7–A13".
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A.1. INTRODUCTION

Internal multiples have drawn abundant interest for several decades due to the severe
challenges in sub-salt imaging and land data processing, where strong reflectors gener-
ate rich internal multiples to prevent interpreters from seeing the real geology. Many so-
lutions have already been brought forward for internal multiple elimination in a data-
driven manner. Inverse-scattering series-based approaches can predict all possible in-
ternal multiples that will be subtracted from the original data [1]. Layer-related internal
multiple elimination is capable of estimating important subsets of interbed multiples by
direct multidimensional convolution and correlation of the surface data [2] or with the
help of redatuming operators in which an approximated homogeneous velocity model is
needed [3]. Marchenko multiple elimination utilizes the Marchenko scheme to retrieve
artifact-free primaries and accurately estimate all orders internal multiples without any
model knowledge and adaptive subtraction in theory [4, 5]. All these data-driven meth-
ods require dense sampling in both sources and receivers, which is difficult to meet es-
pecially in a full 3D sense. [6] introduce hybrid model- and data-based method for in-
ternal multiple prediction and attenuation. More recently, we have come to realize that
full-wavefield migration (FWM) including internal multiples in a model-driven manner
might show promising potentials to overcome the sampling issue in reality [7, 8]. Specifi-
cally, FWM only needs dense sampling in either source or receiver side, and the modeling
strategy in FWM is redefined for imaging internal multiples. By allowing simulating trans-
mission effects and multiple scattering in the subsurface through full-wavefield modeling
(FWMod) [9], FWM reproduces the true physics and can better explain the internal mul-
tiples in the input data. Based on the estimated reflectivity model and given the migra-
tion velocity model, FWM handles all orders internal multiples in a data-consistent and
closed-loop fashion, without strong sampling requirements.

[8] demonstrate good performance of FWM on North Sea field data set for attenuating
internal multiple crosstalk that is overlying target reflections. Although FWM works effec-
tively to compensate for transmission effects and suppress the internal multiple crosstalk
compared to the conventional least-squares primary wavefield migration (PWM), it tends
to underestimate the amplitudes of internal multiples during modeling. Therefore, some
leaked internal multiple crosstalk is often observed in the FWM image, which might be
interpreted as real geology and needs to be further attenuated. This can be regarded as a
typical signal leakage problem. [10] propose local primary-and-multiple orthogonaliza-
tion (LPMO) for successful surface-related multiple leakage extraction. Inspired by the
aforementioned concept, we propose a novel framework using LPMO on the FWM image
for leaked internal multiple crosstalk estimation and attenuation. Both PWM and FWM
images are required to provide the difference image that consists of coupled transmission
effects and initially estimated internal multiples. Application to the same Vøring field data
as shown by [8] validates the promising performance of the proposed framework.

A.2. FWM AND ITS MODELING ENGINE FWMOD

To better understand the physics behind FWM and its advantages, a brief introduction of
FWM and its modeling engine FWMod is given in this section. The objective function for
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FWM can be written as follows:

JFWM = 1

2

∑
ω

∑
shot s

∥d−
obs(z0)−p−(z0, r̂)∥2

2, (A.1)

where d−
obs(z0) and p−(z0, r̂) represent the monochromatic observed and modeled upgo-

ing wavefield at the surface z0 for a single shot, respectively. r̂ denotes the reflectivity pa-
rameter as a function of subsurface coordinate that needs to be estimated during FWM.
Equation A.1 can be augmented by an extra constraint term, e.g., a sparsity constraint. In
terms of objective functions, FWM is similar to most least-squares type migrations and
can be solved by gradient-based approaches [8]. However, the unique feature and power
of FWM lies in its modeling engine FWMod, which takes multiple scattering and transmis-
sion effects into account, based on the estimated image. First, FWMod describes the two-
way wavefield via one-way wavefields, i.e., the downgoing and upgoing wavefields. Migra-
tion velocity and reflectivity are decoupled to diminish non-linearity. Multiple-scattered
reflections and transmission effects are handled at each depth level zn in an elegant way
[9]:

q+(zn) = s+(zn)+T+(zn)p+(zn)+R∩(zn)p−(zn),

q−(zn) = s−(zn)+T−(zn)p−(zn)+R∪(zn)p+(zn),
(A.2)

where p±(zn), q±(zn) and s±(zn) denote the incoming, outgoing and source wavefields;
superscripts + and − refer to downgoing and upgoing, respectively. T±(zn) represents
transmission matrix. R∪(zn) and R∩(zn) represent upward and downward reflection ma-
trix, respectively. Moreover, the wavefield propagation between two adjacent depth levels
zn and zn−1 is described by propagation matrices W(zn , zn−1) and W(zn−1, zn):

p+(zn) = W(zn , zn−1)q+(zn−1),

p−(zn−1) = W(zn−1, zn)q−(zn).
(A.3)

Equations A.2 and A.3 introduce the basic ingredients of FWMod. We recursively repeat
this process from the surface to bottom and vice versa, referred to as one round-trip. Only
primary reflections are generated during the first round-trip. Multiple scattering will be
successfully modeled as the number of round-trips increases. In this way, surface-related
multiples, internal multiples and transmission effects can be taken into account during
modeling, and via inversion, the recovered reflectivity is optimized [7].

A.3. LPMO FOR LEAKED INTERNAL MULTIPLE ESTIMATION
LPMO has shown promising results on surface-related multiple leakage estimation [10]. In
this paper, we propose leaked internal multiple crosstalk estimation and attenuation us-
ing LPMO. Two clear differences from the surface-related multiple case are: first, instead
of a data-domain (e.g., shot or offset domain) estimation for surface multiple leakages, the
leaked internal multiple crosstalk is estimated in the image domain, i.e., the FWM image;
second, initially estimated internal multiples are coupled with transmission effects, un-
like estimated surface multiples. The main advantage for image domain LPMO is that the
noise is already canceled by the summing process in FWM and a better grip on the internal
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multiples can be obtained [11]. On the other hand, FWM also changes all primary contri-
butions due to the restored transmission effects, so to minimize the coupled transmission
effects on leaked internal multiple crosstalk estimation is the new challenge. Based on the
PWM and FWM images, we rearrange the basic relations in vector notation:

rPWM = rFWM + rdiff,

rdiff = rTE + rIM,
(A.4)

where rPWM and rFWM denote vectorized PWM and FWM images, respectively. The differ-
ences rdiff between two images consist of two parts: the transmission effects rTE and the
initially estimated internal multiples rIM by FWM. Due to its tendency to estimate rela-
tively weaker internal multiples, the FWM image still contains some visible leaked internal
multiple crosstalk. Our goal is to use the initially estimated internal multiples rIM to match
and extract the leaked internal multiple crosstalk in the FWM image. However, the initially
estimated internal multiples cannot be easily separated from the difference image. There-
fore, we match the leaked internal multiple crosstalk with the differences between FWM
and PWM in a least-squares sense:

min
w

∥rFWM −w◦ rdiff∥2
2, (A.5)

where w denotes the LPMO weight and ◦ represents the Hadamard product (element-
by-element multiplication). With the help of a smoothness constraint, the above uncon-
strained minimization problem can be solved by a shaping regularization-based inversion
scheme [12]:

w+ =FH ([λ2I+T (DT D−λ2I)]−1T DT rFWM), (A.6)

where D = di ag (rdiff), λ is a scaling parameter and [·]T denotes matrix transpose. T ,
H and F represent triangular smoothing, thresholding and median filtering operators,
respectively. Note that due to the non-separability between initially estimated internal
multiples and transmission effects, the whole inversion framework not only matches the
leaked internal multiple crosstalk with initially estimated internal multiples rIM, but also
the primaries in FWM image with transmission effects rTE. However, FWM tends to es-
timate stronger events to compensate for the transmission effects, while typically under-
estimates the internal multiples, which leads to an opposite correlation in the difference
image compared to FWM image, i.e., positive correlation for the leaked internal multiple
crosstalk and negative correlation for the transmission effects. Therefore, we could take
advantage of this prior knowledge by using positive-only LPMO weight through a thresh-
olding operator. In this way, w+ indicates the estimated positive-only LPMO weight that
is related to the leaked internal multiple crosstalk rLIM in the FWM image:

rLIM = w+ ◦ rdiff. (A.7)

Thus, we obtain relations for the final estimated FWM and difference images:

r̂FWM = rFWM −w+ ◦ rdiff = rFWM − rLIM,

r̂diff = rdiff +w+ ◦ rdiff = rTE + r̂IM,
(A.8)

where r̂FWM, r̂diff and r̂IM are the final estimated FWM image, difference image and inter-
nal multiples after LPMO, respectively.
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A.4. RESULTS
The Vøring field data set from the Norwegian North Sea is used to test the proposed frame-
work. [8] demonstrate the ability of FWM for handling internal multiples on the same data
set, and detailed preprocessing steps and data information can be found therein. Note
that these data are particularly suited for internal-multiple related research due to a large
water depth and, therefore, the absence of surface-related multiples in the target area.

We start with the PWM, FWM and their difference images as shown in Figure A.1(a),
A.1(b) and A.1(c), respectively. Generally, it is clear that there are mostly flat layers above
2.2 km depth and dipping layers below this level. Due to the conflicting dips below the
anticline in Figure A.1(a) ranging from 2.3 km to 2.7 km, the crosstalk from internal mul-
tiples is obvious in the PWM image, as indicated by the arrows. Because of the modeling
advantages for taking both internal multiples and transmission effects into consideration,
FWM shows significant internal multiple crosstalk attenuation, as indicated by the arrows
from the same area in Figure A.1(b). Even some crosstalk events above 2 km, indicated
by the arrows, are slightly suppressed. However, the leaked internal multiple crosstalk
in Figure A.1(b) still hinders geologic interpretation. Figure A.1(c) clearly demonstrates
the differences between the PWM and FWM images, where initially estimated internal
multiples and transmission effects are visible. Due to their opposite correlation in the
difference image compared to FWM image, the LPMO weight related to leaked internal
multiple crosstalk can be obtained via considering a positive-only weight (Figure A.1(d)).
The locations of the leaked internal multiple crosstalk can be well detected in the esti-
mated LPMO weight. Figure A.1(e) displays the final estimated FWM image after LPMO,
where the leaked internal multiple crosstalk is further attenuated, especially for areas in-
dicated by the arrows. The same image improves significantly when compared directly
to the PWM image. Figure A.1(f) demonstrates the difference image after LPMO that ex-
tracts the leaked internal multiple crosstalk as shown by the arrows, while transmission
effects are untouched. Note that because of the tendency of FWM to underestimate in-
ternal multiples, the LPMO weight for leaked internal multiple crosstalk estimation tends
to be larger than the surface-related multiple case [10]. For this data, the LPMO weight
ranges from 0 to 5. Special attention should be paid on the median filtering operator in-
side LPMO as there exists a trade-off for the window size of median filter. Edge effect starts
to become severe with smaller window size while the multiple attenuation performance
degrades with larger window size. We use 5 × 3 samples as our window size for this field
data.

To better understand the power of FWM on compensating for transmission effects and
attenuating internal multiple crosstalk and also to better demonstrate the LPMO perfor-
mance on the FWM image, a zoom-in trace comparison is given in Figure A.2(a). It is
obvious that the FWM trace (red line) has a stronger amplitude than the PWM trace (black
line) especially above 2.2 km, which indicates that transmission effects are taken into ac-
count by FWM. As for the target area ranging from 2.2 km to 2.5 km, the FWM trace signif-
icantly attenuates the internal multiple crosstalk compared to the PWM trace. However,
the leaked internal multiple crosstalk is still visible from the FWM trace, which means the
FWM estimated internal multiples are weaker than the real ones. The FWM trace after
LPMO (green line) from the zoom-in trace comparison shows further attenuation for the
leaked internal multiple crosstalk, while retaining all transmission effects, which indicates
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(a) (b) (c)

(d) (e) (f)

Figure A.1: LPMO on the FWM image of the Vøring field data set. (a) PWM image. (b)
FWM image. (c) Difference image between PWM and FWM that includes the initially es-
timated internal multiples (IM) and transmission effects (TE). (d) Estimated positive-only
LPMO weight related to the leaked internal multiple crosstalk in the FWM image. (e) Final
estimated FWM image after LPMO. (f) Difference image that includes the final estimated
internal multiples and transmission effects after LPMO.

the effectiveness of the proposed framework. We also provide the FWM and difference im-
age similarity map [13, 14] comparison before and after using LPMO on the FWM image
in Figure A.2(b) and A.2(c) for a more clear demonstration. It is also obvious from the
similarity maps that the leaked internal multiple crosstalk on the FWM image has been
effectively attenuated, as indicated by the arrows.
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(a) (b) (c)

(d) (e) (f)

Figure A.2: (a) A zoom-in trace comparison at distance 2.2 km ranging from depth 1.6 km
to 2.5 km where the black, red and green line denote the trace from the PWM image, the
FWM image and the FWM image after LPMO, respectively. (b) & (c) Local similarity maps
before and after using LPMO on the FWM image, respectively. (d) Estimated negative-only
LPMO weight related to the transmission effects. (e) FWM image after conventional L2-
norm adaptive subtraction of the difference image from Figure A.1(c). (f) Conventional L2-
norm adaptive subtraction matched difference image.

To QC the retained transmission effects, we display the negative-only LPMO weights
in Figure A.2(d). The negative LPMO weights (blue area) are in good agreement with most
layer structures, where most transmission effects are generated. Thus, layer-structured
primaries can be well preserved by simply rejecting the negative LPMO weight.
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(a) (b) (c)

(d) (e) (f)

Figure A.3: LPMO on the FWM image of the Vøring field data set with 3% velocity errors. (a)
PWM image. (b) FWM image. (c) Difference image between PWM and FWM that includes
the initially estimated internal multiples and transmission effects. (d) Estimated positive-
only LPMO weight related to the leaked internal multiple crosstalk in the FWM image. (e)
Final estimated FWM image after LPMO. (f) Difference image that includes the final esti-
mated internal multiples and transmission effects after LPMO.

However, using conventional L2-norm adaptive subtraction to match the leaked inter-
nal multiple crosstalk with the difference image will cause severe primary damage due to
not accounting for transmission effects. This is shown in Figure A.2(e), where the primary
damage occurs across the whole image. Moreover, some leaked internal multiple crosstalk
is still visible after L2-norm adaptive subtraction of the difference image in Figure A.1(c).
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In addition, the transmission effects in Figure A.2(f) mistakenly extract primary energy
during L2-norm adaptive subtraction. The reason behind is because the L2-norm-based
matching filter can be easily updated to match the negatively correlated transmission ef-
fects, which are usually happened to primaries.

To test the robustness of the proposed framework using LPMO on the FWM image, an
extra experiment is applied on the same field data set, but with 3% velocity errors. From
the PWM, FWM and their difference images in Figure A.3(a), A.3(b) and A.3(c), the internal
multiple crosstalk indicated by the arrows can still be attenuated to some extent although
the whole image is slightly shifted due to the velocity errors. Both transmission effects and
internal multiples can again be observed from the difference image. By accepting positive-
only LPMO weight, the leaked internal multiple crosstalk can be detected in Figure A.3(d).
Figure A.3(e) and A.3(f) show the FWM and difference images after LPMO, respectively.
We can observe that the leaked internal multiple crosstalk from the final estimated FWM
image is further attenuated, while the estimated internal multiples extract their leaked
energy in the final estimated difference image.

A.5. DISCUSSION
The FWM methodology is a very promising method which aims at solving a longstand-
ing issue in imaging technology: including the internal multiples as part of the imaging
scheme. In this way the traditional multiple removal and subsequent primary imaging
method is being replaced by one inversion-type imaging process which handles all inter-
nal multiples on the fly. However, this technology sometimes struggles to find the exact
balance between primaries and multiples, therefore an adaptive component from LPMO
to improve its results will be playing a crucial role in its acceptance and success.

Regarding the general applicability of the proposed framework, on the one hand, a
new imaging scheme has emerged, in which reverse time migration (RTM) is the main
engine and multiples are explained on-the-fly as part of the traditional RTM-based imag-
ing process [15]. From this perspective, the proposed methodology can be applied to the
RTM-type methods. On the other hand, whether our proposed methodology is generally
applicable to other traditional imaging methods depends on their own ability to handle
internal multiples during imaging. For example, the conventional RTM cannot include in-
ternal multiples during the imaging process. Thus, we cannot directly apply our proposed
framework on the conventional RTM. However, if the conventional RTM is combined with
any conventional internal multiple removal technique, our proposed framework can defi-
nitely be applicable. Specifically, the internal multiples can be first attenuated in the data
domain before RTM, and then RTM can produce an image with internal multiples atten-
uated. In this way, one can obtain two RTM images with and without internal multiples.
Accordingly, a difference image with the estimated internal multiples can be achieved, and
the internal multiple crosstalk in the RTM image can be further matched and attenuated
using the difference image based on LPMO. Note that the transmission effects will not be
taken into consideration by the conventional RTM. Still, LPMO will outperform the L2-
norm adaptive subtraction in terms of internal multiple crosstalk attenuation due to its
non-stationary property. Besides, our proposed framework is also useful for those model-
based internal multiple removal methods as long as the estimated internal multiples are
available.



A

128 REFERENCES

Although all examples are shown for 2D data, this framework can be straightforwardly
extended to the 3D case. 3D FWM has already been demonstrated and the details can be
found in [16]. As for LPMO, it is also straightforward to be extended to the 3D case. In
fact, the LPMO formulas in equations 4 - 6 do not have any limitations on the dimension.
However, the computational cost might be an issue due to the smoothing process inside
the shaping regularization-based inversion. Thus, we could still consider LPMO on 3D
data in a 2D manner (i.e., data slice by slice) in terms of the efficiency. An extended image
domain (e.g., by angle-dependent FWM [8]) might produce even better results than the
original image domain. However, we still need to consider the issue of increased compu-
tational cost of LPMO from one image to hundreds of image gathers. Besides, although
we ignore elastic effects, we do include multiple scattering and transmission effects that
other methods usually ignore. Note that the anelastic Q-effect is another factor on top of
the regular transmission effect, and this can be included in our FWM method by including
it in the propagator [17], without influencing our proposed framework.

A.6. CONCLUSION
We have shown that the positive LPMO weight is able to estimate the leaked internal multi-
ple crosstalk from an FWM image, whereas the negative LPMO weight indicates the trans-
mission effects. From the Vøring field data set application, it has been demonstrated that
the leaked internal multiple crosstalk in the FWM image can be further attenuated to a
minimum by the LPMO process. The proposed framework, i.e., generating both PWM
and FWM outputs and then using LPMO on the FWM image, should be considered as a
routine procedure for internal multiple imaging, where LPMO could also be regarded as a
QC step on the FWM image.
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