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Abstract
Modeling of fluid flow in porous media is a pillar in geoscience applications. Previous stud-
ies have revealed that heterogeneity and fracture distribution have considerable influence 
on fluid flow. In this work, a numerical investigation of two-phase flow in heterogeneous 
fractured reservoir is presented. First, the discrete fracture model is implemented based on 
a hybrid-dimensional modeling approach, and an equivalent continuum approach is inte-
grated in the model to reduce computational cost. A multilevel adaptive strategy is devised 
to improve the numerical robustness and efficiency. It allows up to 4-levels adaption, where 
the adaptive factors can be modified flexibly. Then, numerical tests are conducted to verify 
the the proposed method and to evaluate its performance. Different adaptive strategies with 
3-levels, 4-levels and fixed time schemes are analyzed to evaluate the computational cost 
and convergence history. These evaluations demonstrate the merits of this method com-
pared to the classical method. Later, the heterogeneity in permeability field, as well as ini-
tial saturation, is modeled in a layer model, where the effect of layer angle and perme-
ability on fluid flow is investigated. A porous medium containing multiple length fractures 
with different distributions is simulated. The fine-scale fractures are upscaled based on the 
equivalent approach, while the large-scale fractures are retained. The conductivity of the 
rock matrix is enhanced by the upscaled fine-scale fractures. The difference of hydraulic 
property between homogeneous and heterogeneous situations is analyzed. It reveals that 
the heterogeneity may influence fluid flow and production, while these impacts are also 
related to fracture distribution and permeability.

Article highlights

• A multilevel adaptive implicit scheme up to 4-levels adaption is presented for two-
phase ow in heterogeneous fractured reservoir.

• Discrete fracture model is combined with an equivalent continuum approach to reduce 
the complexity of fracture networks.
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• The effects of permeability, orientation, size and number of fractures on hydraulic 
properties are studied.

• A comparison study of fluid flow and numerical performance between homogeneous 
and heterogeneous media is conducted.

Keywords Fractured porous media · Two-phase flow · Heterogeneity · Fracture 
distribution · Multilevel adaptive scheme

1 Introduction

Modeling and simulation of fluid flow and transport in geomaterials is of paramount important 
in geoscience applications and geotechnical engineering, for instance, reservoir engineering, 
energy storage, radioactive waste disposal, hydraulic and water resources engineering (Sahimi 
2011; Adler et al. 2013; Medici et al. 2021). Investigations on porous media, in which the natural 
fractures are absent, are well understood and are more mature than that of the fractured porous 
media (Ghorbani et al. 2016; Badar and Tirumkudulu 2020). Recent decades, much attention 
has been focused on the development of numerical methods of fluid flow in fractured media. 
Several numerical challenges are raised, typically mesh partition on a complex fracture network 
(Mustapha 2014), modeling of multiscale feature of discrete fractures (Molins et al. 2019) and 
robustness of numerical methods (Pandare and Luo 2018). Especially, the presence of multiple 
length fractures makes simulators more unstable compared to the case without fractures. Moreo-
ver, the inherent features of a geological field, for instance, the heterogeneity, create the challenge 
on numerical stability and accuracy. To this end, this work focuses on numerical simulation of 
fractured porous media and study the effect of heterogeneity on hydraulic properties.

The complicated topological geometry of the fracture networks is an essential characteristic of 
the fractured porous media. Therefore, the challenges induced by modeling stochastic fractures 
have been paid much attention (Berre et al. 2019; Wang et al. 2019a, 2020; Tan et al. 2021). The 
discrete fracture network (DFN) was first proposed (Long and Billaux 1987; Cacas et al. 1990) to 
model single-phase flow only in discrete fractures, where the flow in the rock matrix is neglected 
in this model. It is a simplified model with an assumption that fractures have high conductivity 
and the rock bulk is almost impermeable. An enhanced version of DFN, based on the concept 
of fractured porous media, was proposed for modeling fluid flow in both the rock matrix and 
discrete fractures, where the flux interaction between them is allowed (Hoteit and Firoozabadi 
2008b; Choo and Lee 2018; Berre et al. 2019). Meanwhile, combined with the finite difference, 
finite element and finite volume methods, the DFN-based methods have gained many successes 
in simulation of hydraulic process as well as mechanical deformation (Gupta and Duarte 2018; 
Wang et al. 2019b, 2020; Hosseini and Khoei 2021; Wang et al. 2022).

On the basis of the concept of fractured porous media, there are two representative mod-
els classified by the conformal and non-conformal meshes, namely the discrete fracture model 
(DFM) (Karimi-Fard et  al. 2004; Hoteit and Firoozabadi 2008b; Wang et  al. 2022) and the 
embedded discrete fracture model (EDFM) (Hajibeygi et al. 2011; Tene et al. 2017). Both of 
them have pros and cons. EDFM enjoys mesh independence between the rock matrix and frac-
tures. But the accuracy highly depends on the interpolation points in fractures and the flux trans-
fer function. The DFM has been applied in many geoscience applications, in which one does 
not need to consider the transfer function between fractures and rock matrix, and the grids are 
partitioned along each fracture in a conformal scheme. In this work, the DFM is selected as a 
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prototype of the proposed numerical method. The advantages of DFM are accuracy and it fol-
lows the strict formulations of finite element and finite volume methods. Therefore, the fractures 
are modeled as the low-dimensional objects along the interfaces of matrix cells.

The heterogeneity in permeability field would lead to the numerical instability of a simula-
tor and an ill-convergence condition may occur (Chung et al. 2018). In the past decades, many 
numerical methods have been developed for heterogeneous porous media. The multiscale 
modeling approach was developed, where the information about the dual and primal grids is 
required for the multiscale solver (Wang et al. 2014). A discontinuous control volume finite ele-
ment method was proposed (Salinas et al. 2018), in which the pressure has 1st-order accuracy 
and that of velocity is 2nd-order. Lately, a novel method, namely the fracture cross-flow equi-
librium (Zidane and Firoozabadi 2020), was devised to model flow in non-planar fractures. The 
lattice Boltzmann method was combined with image segmentation techniques (Liu et al. 2020) 
to simulate multi-phase flow at different scales. On the other hand, the capillary heterogene-
ity can also affect the flow path in fractured reservoirs. A numerical challenge behind it is the 
treatment of saturation discontinuity in finite element framework. In addition, the contrast in 
capillary pressure function in heterogeneous media may cause the capillary discontinuity then 
induces numerical difficulties. An effective approach is to use the capillary potential gradient 
to express the total velocity, therefore the saturation discontinuity from the contrast in capillary 
pressure between the rock bulk and discrete fractures can be described (Hoteit and Firoozabadi 
2008a, b). However, the common issues in numerical methods of fractured reservoir are numer-
ical robustness and efficiency when heterogeneity and fractured networks are considered, which 
also consist of the topic of the presented work.

In practice, there are many multiple length fractures in the fractured reservoir. It is impossi-
ble to explicitly simulate all of these fractures in a simulation. The limitations are the expensive 
computational cost and mesh partition of the complex geometry. To this end, we introduce the 
hierarchical modeling approach (Lee et al. 2001; Khoei et al. 2015; Islam and Manzocchi 2019) 
to upscale the fine-scale fractures. An equivalent continuum approach is introduced to com-
pute equivalent tensor. Therefore, the effect of fine-scale fractures is reflected by the equiva-
lent tensor, while the large-scale fractures are retained and allowed to be modeled explicitly. 
The equivalent tensor can be calculated either by the analytical approach (Oda 1985; Hosseini 
and Khazaei 2021) or flow-based upscaling approach (Islam and Manzocchi 2019). The flow-
based upscaling approach is directly derived from the Darcy’s law. Oda’s method is a widely 
used approach for a porous medium containing a large number of short fractures (Khoei et al. 
2015; Ghahfarokhi 2017), where the equivalent permeability tensor is computed based on the 
assumption that the fractures are uniformly distributed inside the domain. As a result, the frac-
tured medium is considered as an anisotropic homogeneous medium (Oda 1985; Khoei et al. 
2015). In this work, this equivalent continuum approach is integrated in the numerical scheme.

This study focuses on numerical investigation of two-phase flow in fractured porous media. 
Based on this method, the effects of heterogeneity and fracture distribution on hydraulic char-
acteristics are analyzed. The rest of this paper is organized as follows. First, the formulation of 
two-phase flow in fractured porous media is provided in Section 2. Then, numerical method is 
introduced in Section 3. Later, the solution strategy with multilevel adaptive implicit scheme 
is presented in Section 4. Oda’s approach is employed for upscaling the fine-scale fractures. 
Finally, a number of numerical tests is conducted to study two-phase flow in different patterns 
of porous media, especially the effects of heterogeneity and fracture distribution are studied.



 L.-Y. Wang et al.

1 3

2  Mathematical Formulation

In this section, the formulation of fluid flow in fractured porous media is provided. The 
physical domain is modeled by the discrete fracture model (DFM). In the framework of 
continuum mechanics, fluid flow is governed by the mass conservation and momentum 
balance (Eymard et al. 2000; Aziz 1979; LeVeque 1992).

2.1  The Model of Fractured Porous Media

In practice, the natural fractures are randomly distributed in porous media. The discrete 
fractures are considered as the discontinuous interfaces.

Assuming a set of stochastic fractures � = ∪Nf

i=1
�i distributed in a porous medium Ω , 

each fracture is modeled explicitly. Nf  is the number of fractures. The rock matrix is repre-
sented by Ωm.

Figure. 1 illustrates several fractures connected to each other, therefore they create a 
fracture network. Consequently, the entire domain Ω consists of two main components 
Ω = Ωm ∪ � . The distribution pattern of the stochastic fractures has great impact on the 
properties of DFM. There are several representative patterns, typically the orthogonal, par-
allel and random patterns.

The boundary Γ of this domain is decomposed as Dirichlet type ΓD and Neumann type ΓN . 
Note that Γ = ΓD ∪ ΓN and ΓD ∩ ΓN = � . Consequently, a hybrid-dimensional model is con-
structed, which implies that the fractures satisfy 𝜔 ⊆ ℝ

n−1 and the matrix satisfies Ωm ⊆ ℝ
n.

2.2  Governing Equations of Flow and Transport

The formulation of the incompressible and immiscible fluid flow in porous media is given 
as follows for completeness. For the phase � and phase � , the mobilities are denoted as �� 
and �� , respectively. The total mobility is �t = �� + �� (Aziz 1979; Dietrich et  al. 2005; 
Eymard et al. 2000). Therefore, the total velocity �(p) depends on pressure p and is calcu-
lated by Darcy’s law �(p) = −�t∇p.

Fig. 1  Schematic of the discrete fracture model (DFM)
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Following the hyperbolic conservation laws (LeVeque 1992; Eymard et al. 2000), the 
conserved quantity c(�, t) , the source term f (�, t) and the flux �(�, t) are functions of an 
arbitrary temporal-spatial position (�, t) inside the domain Ω . The general conservation law 
reads:

The saturation S� for phase � is introduced according to the theory of two-phase flow (Aziz 
1979; Sahimi 2011; Dietrich et  al. 2005; Hoteit and Firoozabadi 2008b). For a porous 
medium with porosity � and volumetric flux q, the two terms in Eq. (1) are expressed 
as �(�, t) = f�

(
S�
)
�(p) and f (�, t) = f�

(
S�
)
q , respectively. The fractional flow f�

(
S�
)
 

is a nonlinear function, defined as f�
(
S�
)
= ��

(
S�
)
∕�t (Aziz 1979; Eymard et  al. 2000; 

Dietrich et al. 2005).
Consequently, the transport equation for incompressible and immiscible fluid is derived 

from Eq. (1). To summarize, the governing equations for fluid flow and transport read:

where the domain of entire time is T(0, t).
Eq. (2) constructs a coupled system of nonlinear elliptic-hyperbolic (PDEs). As shown 

in Fig. 1, both the Dirichlet and Neumann types can be applied on ΓD and ΓN , respectively. 
The initial condition is pre-defined at the initial time T(0). For all fractures and matrix, it 
reads:

where � is the outward unit vector to the external boundary. p̄ , q̄ and S̄𝛼 are the pre-defined 
quantities. The unknown for phase � is S� = 1 − S�.

3  Numerical Method

In this section, the system of PDEs, i.e. Eqs. (2) and (3), is discretized based on the finite 
element formulation with Euler Backward scheme (implicit) and the upwind algorithm.

3.1  The Unstructured Grids on DFM

The Delaunay triangulation (Shewchuk 2002) is used to generate the unstructured grids by 
triangular cells, as illustrated in Figure. 2. The fractures are partitioned by a set of finite 
low-dimensional cells �ele , while the matrix is partitioned by the high-dimensional cells 
Ωele . Therefore, we have 𝜔ele ⊆ ℝ

n−1 and Ωele ⊆ ℝ
n.

Therefore, the physical domain Ω is partitioned by the generated unstructured grids:

(1)ct(�, t) + ∇ ⋅ �(�, t) = f (�, t) on Ω

(2)
− ∇ ⋅

[
�t∇p

]
= q on Ω × T(0, t)

�
�S�

�t
+ ∇ ⋅

[
f�
(
S�
)
�(p)

]
= f�

(
S�
)
q on Ω × T(0, t)

(3)

p𝛼 = p̄ on ΓD × T
(
0, tn

)

−
(
𝜆t∇p

)
⋅ � = q̄ on ΓN × T

(
0, tn

)

S𝛼 = S̄𝛼 on Ω × T(0)
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where nm and nf  are the numbers of matrix and fracture cells, respectively. The governing 
equations in Eq. (2) are valid on each of the partitioned cells (Wang et al. 2022).

3.2  Numerical Discretization

Following the framework of the Galerkin finite element method (GFEM) (Wang 2003; Zienkie-
wicz et al. 2013; Borst 2018), the temporal and spatial integrals are applied over a time interval Δt 
and the domain Ω . We consider the integrals of the governing equation Eq. (2):

 where the time-dependent term �
(
�S�∕�t

)
 is discretized by Euler Backward difference 

scheme (implicit):

The primary unknown of Eq. (6) is saturation S� . It should be noted that the term [
f�
(
S�
)
�(p)

]n+1 is related to the unknown pressure p, which is coupled through velocity 
�(p) . Applying the Gauss theorem to the first equation in Eq. (5) and Eq. (6), the semi-
discretized forms hold true on each cell Ωele

i
:

and

(4)Ω =
(
∪nm

i=1
Ωele

i

)
∪
(
∪nf

j=1
�ele
j

)

(5)
∫Ω

−∇ ⋅

[
�t∇p

]
dV = ∫Ω

qdV

∫Δt ∫Ω

�
�S�

�t
dVdt + ∫Δt ∫Ω

∇ ⋅

[
f�
(
S�
)
�(p)

]
dVdt = ∫Δt ∫Ω

f�
(
S�
)
qdVdt

(6)∫Ω

�

Δt

(
Sn+1
�

− Sn
�

)
dV

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Time-dependent term

+∫Ω

∇ ⋅

[
f�
(
S�
)
�(p)

]n+1
dV

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Flux term

= ∫Ω

[
f�
(
S�
)
q
]n+1

dV

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Source term

(7)
nall∑
i=1

∫�Ωele
i

−
[
�t∇p

]n+1
⋅ �dΓ = ∫Ωele

i

qn+1dV

(8)

nall∑
i=1

∫Ωele
i

�

Δt

(
Sn+1
�

− Sn
�

)
dV +

nall∑
i=1

∫�Ωele
i

[
f�
(
S�
)
�(p)

]n+1
⋅ �dΓ =

nall∑
i=1

∫Ωele
i

[
f�
(
S�
)
q
]n+1

dV

Fig. 2  Delaunay triangulation. The unstructured grids are composed of the high-dimensional cells Ωele and 
the low-dimensional cells �ele
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 with the number of all cells nall = nm + nf  . Note that the symbol of cell Ωele
i

 can be either 
a fracture cell or matrix cell. In this way, pressure and saturation are coupled through the 
coupled terms �t and f�

(
S�
)
 , which should be updated at each time step during iteration.

The unknowns p and S� (for convenience S� = S ) are solved by the finite element scheme (Jha 
and Juanes 2007). The approximations are given based on GFEM (Jha and Juanes 2007; Zienkie-
wicz et al. 2013), p ≈ ph =

∑nall

i=1
�ipi and S ≈ Sh =

∑nall

i=1
�iSi . � and � are the shape functions.

As shown in Fig. 3, a certain cell Ωele
i

 has nneig
i

 edges connecting to its neighbors Ωele
j

 , 

Ωele
k

 and Ωele
m

 , etc. The boundary �Ωele
i

 is decomposed by its sub-edges �i∗ . Therefore, we 

have �Ωele
i

= ∪
n
neig

i

∗=j,k,m,...
�i∗.

The semi-discretized forms Eqs. (7) and (8) are rewritten as:

and

The fully discretized forms are given in Appendix A. Besides, the flux term shown in Eq. 
(6) is discretized by the upwind algorithm. We refer to Appendix B for the detail.

4  Solution Strategy

In this section, the two primary unknowns, p and S, are solved using an iterative 
method (Aziz 1979; Wesseling 2001). A multilevel adaptive implicit scheme is devised 
to improve the numerical robustness and efficiency. Then, an equivalent continuum 

(9)
n
neig

i∑
∗=j,k,m,...

∫�i∗

−
[
�t∇(�p)

]n+1
⋅ ���∗

dΓ = ∫Ωele
i

qn+1dV

(10)
∫Ωele

i

�

Δt
�
(
Sn+1 − Sn

)
dV +

n
neig

i∑
∗=j,k,m,...

∫�i∗

[
f
(
S
)
�(p)

]n+1
⋅ ���∗

dΓ = ∫Ωele
i

[
f
(
S
)
q
]n+1

dV

Fig. 3  Key parameters of fracture 
and matrix cells
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approach is introduced to upscale the fine-scale fractures. All algorithms have been 
implemented in our C++ program (Wang et al. 2022).

4.1  Implicit Iteration

To solve the system of Eqs. (9) and (10) by an iterative method, the nonlinear residuals 
are expressed as:

for matrix cells, and:

for fracture cells. As shown in Fig. 3, ΔLi and Δai are the length and aperture of a frac-
ture cell, respectively. Δli∗ in Eq. (12) is determined by the velocity on its corresponding 
interface, as indicated in the upwind algorithm (Appendix B). If the velocity is of fracture-
fracture, Δli∗ = Δai ; if the velocity is of matrix-fracture, Δli∗ = ΔLi.

The residual vector is defined for all cells, � =
[
�m �f

]T . Note that the superscripts 
m and f are the matrix and fracture, respectively. At a certain iteration step � , the Jaco-
bian is constructed using the derivative of the residual vector:

with the saturation vector � =
[
�m �f

]T.
The incremental form of Newton-Raphson iteration is �����+1 = −�� . Therefore, the 

value of � at iteration step � + 1 is updated by ��+1 = �� + ���+1.
The solution strategy in this work is to split the global solution of p and S into two blocks and 

then to solve them iteratively (Aziz 1979; Wesseling 2001). pn+1 is calculated from Eq. (9) at 
time n + 1 , then enter the procedure to solve Sn+1 by Eqs. (11), (12) and (13). The algebraic sys-
tem for iteration is assembled into one block and rewritten as:

The discretized form of the algebraic system is given in Appendix C. Fig.  4 shows the 
flowchart of the solution strategy. The nonlinear convergence of the iteration is reached 
once the criterion is satisfied.

4.2  Multilevel Adaptive Time‑Stepping Strategy

The time increment Δt controls the advance of time step in this iteration. Furthermore, the 
convergence performance of the numerical scheme is also significantly influenced by Δt . 
The convergence criterion is given by:

(11)
[
Rm
i

]n+1
=
[
fiqi

]n+1
ΔVi −

�ΔVi�i

Δt

(
Sn+1
i

− Sn
i

)
−

n
neig

i∑
∗=j,k,m,...

[
f↑ �i∗

]n+1
ΔAi∗

(12)
[
R
f

i

]n+1
=
[
fiqi

]n+1
ΔLiΔai −

�ΔLiΔai�i
Δt

(
Sn+1
i

− Sn
i

)
−

n
neig

i∑
∗=j,k,m,...

[
f↑ �i∗

]n+1
Δli∗

(13)�
� =

��

��

||||
�

(14)
[
�mm �mf

�fm �ff

] [
��m

��f

]
= −

[
�m

�f

]
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with the user-defined threshold �.
The L2 norm of residual ‖‖�n+1‖‖2 is affected by Δt . An appropriate Δt enables a low cost itera-

tion as well as a good convergence performance. The optimal option is to set a variable Δt which 
can be updated dynamically during the iteration (Alikhani et al. 2016; Shepherd et al. 2019). The 
procedure of adaptive time step control is shown in Algorithm 1.

The literature shows that there are two representative strategies, namely the sequential 
implicit (SI) strategy (Sheth and Younis 2017) and the fully implicit (FI) strategy (Ganis et al. 
2014). Both of them have been widely applied in reservoir simulation. The computational 
cost of SI is relatively lower than the FI, since the size of algebraic system in SI is smaller 
than that of in FI. Obviously, a matrix with a larger size may induce a more ill-condition Jaco-
bian. Moreover, the convergence criterion in FI is more stricter than that of in SI, where one 

(15)
‖‖‖�

n+1‖‖‖2 < 𝜖

Fig. 4  Flowchart of the solution strategy. The steps highlighted by the dashed box are shown in Algorithm 1
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needs to handle both the residual of p and S in FI, but in SI one just considers the residual of 
S. Therefore, the implementation of adaptive strategy in SI is more convenient that of in FI. 
To balance the pros and cons, we use the sequential implicit strategy in this study.

As shown in Fig. 4, the adaptive iteration is applied if the steps highlighted by dashed 
box are replaced by the Algorithm 1. Otherwise, the fixed time step is used. Note that W1 
and Yi, (i = 1, 2) are the user-defined factors to measure convergence condition. wi and yi 
are factors to update Δt∗ . A feasible optional in the implementation is to set W1 = 102 , 
w1 = 1∕5,w2 = 1∕2 ; Y1 = 10−3, Y2 = 10−2 and y1 = 5, y2 = 2 . Different adaptive strate-
gies and the classical method will be studied and compared in Section 5.

4.3  Oda’s Method of Permeability Tensor

A hierarchical modeling approach is introduced to simplify geometrical complexity and 
to reduce computational cost. In this study, Oda’s method is used to upscale a fractured 
medium with uniformly distributed small size fractures (Oda 1985; Khoei et al. 2015; 
Ghahfarokhi 2017), while the large size fractures are retained and allowed to be explic-
itly modeled.

Oda’s method is a widely used upscaling approach for calculating permeability tensor 
(Oda 1985). Here we apply it to two-phase flow in fractured media (Khoei et al. 2015). For 
a sub-domain with volume Vsub , the mean velocity of phase � is expressed as:

(16)�̄𝛼 =
1

Vsub

⎛⎜⎜⎝∫Vsub,m

kr𝛼

𝜇𝛼

�m∇p dV +

Nf�
i=1

∫Vi
sub.f

�̄
f

𝛼,i
dV

⎞⎟⎟⎠
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where the volumes of matrix and fractures in the sub-domain are Vsub,m and Vsub,f  , respec-
tively. �� and kr� are viscosity and relative permeability of phase � . The mean velocity �̄f𝛼 
in fracture i follows the cubic law and reads (Khoei et al. 2015):

where �f
i
 is the unit vector normal to fracture i.

Therefore, the equivalent permeability tensor �eq of this sub-domain is derived as:

The permeability of fracture i is written as:

where � is the identity tensor. ⊗ is the outer product of tensors. Other notations are defined 
in the preceding sections.

Note that Eq. (18) holds in a fractured medium with uniformly distributed small frac-
tures. In Section 5, we will apply Eq. (18) to upscale the fine-scale fractures.

5  Numerical Results and Discussion

Numerical studies are performed in this section using the modeling approach proposed in 
Sections 3 and 4. First, the presented numerical scheme is verified by a benchmark study. 
The robustness and efficiency of the scheme are demonstrated under different conditions. 
Then, numerical tests are performed to analyze the effects of heterogeneity, multiple length 
fractures and fracture distribution on fluid flow in fractured porous media.

5.1  Numerical Validation and Performance Evaluation

Numerical test is conducted to verify our method and to evaluate the convergence perfor-
mance, then different adaptive schemes are selected and a comparison study demonstrates 
the numerical robustness and efficiency of this scheme.

The crossing-fractures model is shown in Fig. 5. It is a widely used benchmark model 
in fluid flow simulation (Hajibeygi et al. 2011; Tene et al. 2017). The coordinates of frac-
ture are shown in this figure. The size of the domain is 9m × 9m . The injection is placed 
at the left bottom corner (1 MPa), while the outlet is placed at the right top corner. Perme-
ability of the rock bulk is km = 1 × 10−12m2 . Fracture permeability is kf = 1 × 10−7 and 
1 × 10−17m2 . Thereafter, we define the permeability ratio kr = kf∕km to measure the con-
ductivity of this medium.

The simulation results are displayed in Fig. 5. It appears that the permeability ratio has 
strong effect on fluid flow. Saturation profile is illustrated in different pore volume injection 
(PVI). The high permeability ratio ( kr = 105 ) leads to a conductive channel for flow, while 
a small permeability ratio ( kr = 10−5 ) produces a barrier effect.
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To evaluate the performance of the multilevel adaptive time (AT) scheme, different strat-
egies are selected, as shown in Table  1. The convergence factors and adaptive factors are 
defined in Algorithm 1. These factors control the adaptive level. We test four different strate-
gies, concerning the 4-levels (AT-4L) and 3-levels (AT-3L). The variation of time step Δt∗ 
during iteration is shown in Fig. 6 (left). To test the performance of the adaptive scheme, a 
strict convergence criterion is considered ( � = 5 × 10−10 ). Δt∗ will be decreased dramatically 
if the adaptive scheme is applied, while it keeps a constant if the fixed time (FT) scheme is 
used. Obviously, the adaption of time step during iteration automatically changes Δt∗ , there-
fore the computational cost will be reduced correspondingly. We use the total number of 
Newton iteration Niter to represent the cost. The comparison of different schemes is shown 
in Fig.  6 (right) with different numbers of grids. It implies that the adaptive time scheme 
improves the computational efficiency compared to the fixed time scheme.

The three-fractures model is displayed in Fig. 8, in which the comparison with refer-
ence solution is provided. Following the parameters given by Karimi-Fard et al. (2004), we 
set km = 0.99 × 10−15m2 and kf = 8.33 × 10−10m2 . It appears that the saturation evolution 
calculated by the presented method agrees well with the reference solution. Furthermore, 
Fig. 7 shows the convergence performance of the crossing-fractures model and the three-
fractures model during iteration using different strategies. As depicted in this figure, the 

Fig. 5  The crossing-fractures model. Saturation evolution and pressure distribution of the fractured medium 
with different permeability ratio k

r

Table 1  Parameters of multilevel 
adaptive time (AT) scheme. 
Different adaptive strategies with 
4-levels (AT-4L) and 3-levels 
(AT-3L), corresponding to 
Algorithm 1

Adaptive strategies AT-4L1 AT-4L2 AT-3L1 AT-3L2

Convergence factor W
1 102 10 102 -

Y
1 10−3 10−2 10−2 10−2

Y
2 10−2 10−1 – 10−1

Adaptive factor w
1

1/5 1/2 1/5 –
w
2

1/2 1∕
√
2 1/2 1/2

y
1

5 2 5 2
y
2

2
√
2 –

√
2
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convergence condition is influenced by the permeability ratio kr . It indicates that the adap-
tive time scheme improves the convergence condition compared to the fixed time scheme.

5.2  A Heterogeneous Porous Medium with Layered Permeability

The heterogeneity of permeability has significant effect on fluid flow. To investigate the 
effect of heterogeneity, a layer model with different layer angles � is shown in Fig. 9. The 
size of the domain is 500m × 270m . The permeability of the rock matrix is assigned as a 
layered layout, in which the permeability of each layer is set to an alternate pattern ( 10−12 
or 10−14m2).

Three cases (Cases 1 ∼ 3 ) are analyzed with different angles � = 0◦, 45◦ and 90◦ , as dis-
played in Fig.  9. Initial saturation of the model is set to a random pattern, in the range 
2.3 × 10−2 ∼ 1.7 × 10−1 . The pre-given pressure 1 MPa is imposed on the left boundary, 
while the outlet is placed on the right boundary. The physical properties used in simulation 
are shown in Table 2. Note that the relative permeabilities kr� and kr� are determined by the 
Brooks-Corey relations (Brooks and Corey 1964):

Fig. 6  Variation of time step of the crossing-fractures model using different adaptive strategies (left), when 
the threshold � = 5 × 10−10 . The total number of Newton iteration versus the number of grids (right)

Fig. 7  Convergence history of the crossing-fractures model (left) and the three-fractures model (right) 
under different conditions
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where the normalized saturation Sn is defined as (S� − S�l)∕(1 − S�l − S�l) . S�l and S�l are 
the irreducible saturation, as given in Table 2.

Simulation results are displayed in Fig. 10. The saturation evolution, as well as pres-
sure field, is strongly influenced by the layer angle. The layers with a relatively low 
permeability ( 10−14m2 ) show the barrier effect in Case 1 ( � = 0◦ ). In contrast, the lay-
ers with a high permeability ( 10−12m2 ) provide a conductive channel for fluid flow. In 
Case 2, the direction of fluid flow follows the layer orientation. The effect of barrier 
effect gradually decreases with the increase of angle. Therefore, the saturation profile 
appears an uniform pattern in Case 3 ( � = 90◦ ). The linear pressure gradient is observed 
in Cases 1 and 3, while it shows a different pattern in Case 2.

It appears that different layer angles may change the pattern of fluid flow as well as 
the production. Fig. 12 illustrates the relation of pore volume injection versus pore vol-
ume production. We compare two different situations, the uniform and random initial 

(20)kr� = S2
n
, kr� =

(
1 − Sn

)2

Fig. 8  The three-fractures model. Comparison between the reference solution and the results simulated by 
the presented method
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saturation Sini , in Cases 1 ∼ 3 . Simulation results imply that the layer angle influences 
the pore volume production. The model in Case 3 produces a relatively high production 
due to the high efficiency of driving fluid, while the production in Case 1 is relatively 
low compared to other cases. The reason is that the layers are set to the direction of flow 
and then directly conduct the injected fluid to the outlet. Moreover, it is observed that 
the random Sini has a slight influence on production, since the domain is partially filled 
with initial saturation before injection.

In contrast to the layer model, a porous medium with a fracture network (Case 4) is sim-
ulated with a random permeability field. Figure. 11 shows the permeability distribution and 
saturation evolution. The range of km is 6 × 10−11 ∼ 1 × 10−9 m2 . Note that kr is determined 
by kf∕min(km) since km is random. It can be seen from this figure that the fracture network 
provides a dominant channel for fluid flow. We compare the pore volume production of the 
fracture network model (Case 4) with different permeability ratio kr and different permea-
bility field (uniform or random km ), as shown in Figure. 13. It appears that a large kr would 
lead to a relatively high production compared to a small kr . The reason is that the fracture 
network plays the role of barrier in the later case, therefore the injected fluid is blocked 
around fractures.

Apparently, the layer model and the fracture network model show different flow pat-
terns. To study the difference between them, the pressure and saturation distributions along 
a survey line, which is placed at the middle of horizontal direction in models, are depicted 
in Figure. 14. Pressure distribution of Cases 1 ∼ 4 is displayed in the left top inset of this 
figure. It appears that the variation range of pressure in Case 2 is relatively larger than other 
cases, since the effect of layer angle plays a dominant role. Saturation evolution along the 
survey line displays an oscillation in Cases 1 and 2, while it shows a smooth shape in Case 
3. Furthermore, the results reveal the effect of layer angle and heterogeneity on fluid flow. 
The existence of fracture network in Case 4 influences the saturation distribution along the 
survey line, where a discontinuity produced by the fractures is observed.

The performance of adaptive scheme depends on the adaptive factors, as shown in 
Table 1. We test different adaptive schemes to compare their computational efficiency. The 
simulation results are displayed in Fig. 15. The 4-levels, 3-levels schemes and the classical 
fixed time scheme are applied to simulate Cases 1 ∼ 4 . Figure. 15 (left) provides the bar 
graphs for comparison of the number of total Newton iteration. It proves that the adap-
tive scheme is better than the fixed scheme. However, the computational cost of different 

Table 2  Physical properties in 
simulation

Physical properties Values Units

Matrix permeability km 1 × 10−12 m2

Fracture permeability kf 1 × 10−17 ∼ 1 × 10−7 m2

Fracture aperture af 0.1 mm
Fracture porosity �f 1 -
Matrix porosity �m 0.2 -
Relative permeability Brooks-Corey relations -
Irreducible saturation S�l 0.001 -
Irreducible saturation S�l 0 -
Dynamic viscosity of phases � 0.001 Pa ⋅ s

Dynamic viscosity of phases � 5 × 10−4 Pa ⋅ s
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adaptive schemes is related to the adaptive factors. In this context, the AT-4L1 scheme 
enjoys a relatively high efficiency. Figure. 15 (right) shows the variation of time step during 
iteration in Case 4. The threshold of convergence criterion is set to 5 × 10−6 . It is observed 
that a low permeability of fractures improves the convergence condition. The cause might 
be that the fractures are barriers such that the fracture cells do not involved in computation 
compared to the conductive matrix cells.

Fig. 9  The layer model with heterogeneity (Cases 1 ∼ 3). The initial saturation and the layered permeabili-
ties

Fig. 10  Saturation evolution (top and middle) and pressure distribution (bottom) of the layer model with 
heterogeneity (Cases 1 ∼ 3) corresponded to Fig. 9
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5.3   A Fractured Porous Medium with Multiple Length Fractures

In practice, a naturally fractured reservoir contains many multiple length fractures. The dis-
tribution and size of fractures may impact fluid flow in the reservoir. However, it is impos-
sible that all of the multiple size fractures are explicitly modeled in simulation, since the 
limitations of complicated geometry and expensive computational cost. In this section, we 
use a hierarchical approach to model the fine-scale and large-scale fractures separately.

Figure. 16 shows the geometry of a fractured reservoir. The size of the domain is 
500m × 500m . The fine-scale fractures consist of two fracture groups, as shown in Table 3. 
We use the statistical parameters to describe the fracture distribution. Each of the groups 
contains 1500 fractures, where the orientation and length follow the normal distribution. 
These fine-scale fractures are upscaled by the Oda’s method, as discussed in Section 4.3. 
The domain is partitioned into 15 × 15 sub-squares for calculation of the equivalent per-
meability tensor. We compute the average value of each component in the tensor. Finally, 
the components of permeability tensor are kxx = 6.5 × 10−11m2 , kyy = 6.9 × 10−11m2 
and kxy = −1.2 × 10−12m2 . There are five large-scale fractures placed at the center of the 
domain, as illustrated in Figure. 16. The injection consists of nine spots (10 MPa) along the 
four sides of the domain. The outlet is located at the middle of the horizontal fracture. The 
physical properties used in the simulation are shown in Table 2.

In addition, we consider the middle-scale fractures distributed inside the reservoir, 
which are modeled explicitly in this simulation. Three different angles � = 0◦, 45◦ and 90◦ 
of the middle-scale fractures are shown in Fig. 17. Based on this, we analyze the influence 
of fracture angle on fluid flow and production. Fig. 18 shows the saturation evolution and 
pressure field in different cases. Note that the permeability ratio is set to kr = 105 . It is 

Fig. 11  Permeability distribution and saturation evolution of Case 4 with a fracture network

Fig. 12  The layer model (Cases 1 ∼ 3). Curves of pore volume injection (PVI) versus pore volume produc-
tion (left) and PVI versus volume fraction of water (right)
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obvious that the fracture distribution affects the pressure distribution as well as saturation 
profile at different PVI.

A comparison study is performed to show the difference of pore volume production 
in different fracture distributions. Figures. 19 and 20 display the relations of pore volume 
injection versus pore volume production and the volume fraction of water. In Figure. 19 
( kr = 105 ), the production is relatively high when � = 90◦ due to the vertical fractures 
properly drive fluid toward the large-scale fractures, as illustrated in Figure. 18 (bottom). 
In contrast, the situation is different if kr = 10−5 . The vertical fractures no longer play the 
role of conductive channels, therefore the fluid is blocked around the almost impermeable 
fractures. In this case, the model of � = 45◦ has a relatively high production. Moreover, the 
cumulative rate of production in the case of high fracture permeability is faster than that of 
low permeability.

The influence of the length Lf  and number Nf  of the middle-scale fractures is inves-
tigated in this test. Figures. 21 and 22 depict the simulation results. It appears that 

Fig. 13  The fracture network model (Case 4). Curves of pore volume injection (PVI) versus pore volume 
production (left) and PVI versus volume fraction of water (right)

Fig. 14  Pressure distribution and saturation evolution along a survey line. The layer model (Cases 1 ∼ 3) 
and the fracture network model (Case 4)
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different fracture distributions show distinct impacts on the production. The case of 
� = 0◦ has a relatively slow production rate compared to other cases. Figure. 23 illus-
trates the variation of the rock matrix permeability in different patterns of the middle-
scale fractures. It proves that the component kxx is nearly constant in the case � = 90◦ . 
Similarly, kyy is constant when � = 0◦ , with the increase of fracture length. The reason is 
that the vertical and horizontal fractures enhance kxx and kyy , respectively.

We generate a random permeability field to reproduce the heterogeneity in a porous 
medium, as shown in Figure. 24. A homogeneous medium is simulated as a comparison. 
To demonstrate the difference of homogeneous and heterogeneous media, we calculate 
the pressure difference Δp (unit: MPa) between them. Note that the pressure in homo-
geneous and heterogeneous cases is denoted as pho and phe , therefore the difference is 
Δp = |phe − pho| . Figure. 24 (bottom) provides the pressure difference induced by het-
erogeneity and different fracture distributions ( kr = 105 ). It appears that the difference 
concentrates around the large-scale fractures. To measure the deviation of saturation 
induced by heterogeneity, the difference between the results of homogeneous and het-
erogeneous cases is calculated. Saturation in homogeneous and heterogeneous cases is 
denoted as Sho and She , therefore ΔS = |She − Sho| . A ratio is defined as ΔS∕Sho . Figure. 
25 provides the effect of heterogeneity during injection. Saturation is computed by the 
cells along the diagonal of the domain in these cases. It indicates that the heterogene-
ity changes the saturation and may influence the production. Obviously, these impacts 
depend on the fracture distribution and permeability.

6  Conclusion

This work focuses on numerical investigation of two-phase flow in heterogeneous frac-
tured porous media. We combine the discrete fracture model and an equivalent con-
tinuum approach to achieve a hierarchical modeling with an adaptive time scheme. This 
method allows the simulation of multiple length fractures with impermeable or conduc-
tive property. Based on these, the effects of heterogeneity, multiple scale fractures and 
fracture distribution on fluid flow are analyzed.

The main conclusions are summarized as follows: 

Fig. 15  Comparison of total number of Newton iteration N
iter

 (left) and variation of time step (right) with 
different adaptive schemes
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(1) A multilevel adaptive implicit scheme is presented to improve the numerical robust-
ness and efficiency. Different adaptive strategies with 3-levels, 4-levels and fixed time 
schemes are analyzed to evaluate the computational cost and convergence history. 
These evaluations prove that our method enjoys several attractive features compared 
with the classical method.

(2) For a naturally fractured reservoir with many fine-scale fractures, an equivalent con-
tinuum approach is integrated in the presented framework to upscale these small frac-
tures, where the equivalent permeability tensor is calculated utilizing the Oda’s method. 

Fig. 16  Schematic of the fractured porous medium and the treatment of fine-scale fractures by Oda’s 
method

Table 3  Statistical parameters of the fine-scale fractures in the reservoir

Orientation ( ◦) Length [m] Number Distribution

Fracture group 1 40 ∼ 55 10 ∼ 15 1500 Normal
Fracture group 2 125 ∼ 145 5 ∼ 10 1500 Normal

Fig. 17  The fractured porous medium with different angles of the middle-scale fractures
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Besides, the middle-scale fractures are allowed to be set to different angles, while the 
large-scale fractures are modeled explicitly.

(3) Then, a layer model is constructed with different layer angles. The heterogeneity of 
permeability field and the initial saturation are considered in the simulation. It appears 
that the pore volume production is influenced by layer angle and permeability. A porous 
medium with a fracture network is simulated and the effect of fracture network is ana-
lyzed. Next, we study the difference between the fracture network model and the layer 
model, especially in terms of the pressure distribution and saturation evolution.

(4) Later, a fractured porous medium with multiple length fractures is simulated. The 
results prove that pore volume production is influenced by fracture distribution and 
permeability. The impact of the length and number of the middle-scale fractures on 
permeability of the medium is investigated. The conductivity of the rock matrix is 
enhanced by the upscaled fine-scale fractures. Pressure difference induced by hetero-

Fig. 18  Saturation evolution and pressure distribution of the fractured porous medium ( k
r
= 105)

Fig. 19  Curves of pore volume injection (PVI) versus production (left) and PVI versus volume fraction of 
water (right) when k

r
= 105
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geneity is analyzed in the situation of different fracture distributions. It appears that the 
difference is mainly concentrated around the large-scale fractures. The heterogeneity 
changes the saturation and may influence the production. These impacts depend on the 
pattern of fracture orientation and permeability.

Fig. 20  Curves of pore volume injection (PVI) versus production (left) and PVI versus volume fraction of 
water (right) when k

r
= 10−5

Fig. 21  Effect of length of the middle-scale fractures on production. Curves of pore volume injection (PVI) 
versus production with different fracture orientations

Fig. 22  Effect of number of the middle-scale fractures on production. Curves of pore volume injection 
(PVI) versus production with different fracture orientations
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Fig. 23  Variation of permeability in different patterns of the middle-scale fractures

Fig. 24  Different permeability distributions (top) and the pressure difference induced by heterogeneity 
compared to homogeneous situation (bottom)

Fig. 25  Saturation deviation induced by heterogeneity compared to homogeneous situation
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Appendix A. The Fully Discretized forms of Governing Equations

Following the discussion and notations in Section 3, the fully discretized forms of the gov-
erning equations are derived based on Eqs. (7) and (8), which hold true for both fracture 
and matrix cells in DFM:

(1) The fully discretized form of the elliptic PDE, Eq. (7), is discretized cell-by-cell:

where the coefficient Λi∗ is defined as Λi∗ =
(
ΛifΛ∗f

)
∕
(
Λif + Λ∗f

)
 . Transmissibility Λif  

is defined by parameters of two neighboring cells (Karimi-Fard et  al. 2004; Berre et  al. 
2019), for instance, in the case of cell Ωele

i
 and its neighbor Ωele

∗
:

where ΔAi∗ is the area of surface �i∗ . Di∗ is the distance from center of Ωele
i

 to center of �i∗ . 
��∗

 is the outward unit vector of edge �i∗ . Fig. 3 shows the parameters of fractured cell �ele
i

 
and its neighbors. It should be noted that the fracture aperture Δa is a virtual value (the 
dashed lines) which is only considered in the computational aspect instead of the mesh 
partition.

(2) The fully discretized form of the hyperbolic PDE, Eq. (8), is discretized cell-by-cell:

where ΔVi is the volume of the cell. Δt is the time step as discussed in Section 4.2. The 
symbol f↑ in the “Upwind term” represents that it is determined by upwind scheme in 
Appendix B. Other notations are defined in the preceding sections.

Appendix B. The Upwind Algorithm on Unstructured Grids

It is important to clarify the upwind scheme for calculation of flux, as indicated in Eq. (23). 
The upwind scheme was originally devised for Cartesian structured grids (LeVeque 1992; 
Wesseling 2001). In this work, we use it to calculate flux on unstructured grids.

For an arbitrary matrix cell Ωele
i

 , the direction of its sub-flux is determined by the veloc-
ity at the interface between Ωele

i
 and its neighbors Ωele

∗
 (∗= j, k,m) , as illustrated in Fig. 3. 

The upwind algorithm for a matrix cell reads:

For an arbitrary fracture cell �ele
i

 , the situation is complex. The difficulty is the treatment of 
different patterns of fracture cells, as shown in Fig. 26. It can be seen from this figure that 
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different types of �ele
i

 would lead to different neighbor patterns. The fluxes toward its corre-
sponding neighbors depend on their pressure gradients. Each crossing fractures cell has six 
neighbors �ele

∗
 (∗= j, k,m, e, d, g) , as illustrated in Fig. 26. Eq. (24) is still valid in this case.

The function f↑ is related to saturation (Aziz 1979; Hoteit and Firoozabadi 2008b), as dis-
cussed in Section 2. The velocity �i∗ is calculated based on Darcy’s law:

The value of Λi∗ is updated during the iteration process, as discussed in Section 4. Algo-
rithm 2 shows the procedure of the upwind scheme and flux calculation of matrix and frac-
ture cells on unstructured grids.

Appendix C. The Discretized forms of Jacobian

Following the discussion in Section 4, the discretized forms of Eq. (13) are expressed as 
follows based on Eqs. (11) and (12):

(25)�i∗ =
Λi∗

ΔAi∗

(
�ipi − �∗p∗

)

Fig. 26  Different situations of fracture cells when applying the upwind scheme on unstructured grids
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 for matrix cells, and:

 for fracture cells. Δli∗ is determined by the upwind scheme as discussed in Appendix 
B. If the velocity is of fracture-fracture, Δli∗ = Δai ; if the velocity is of matrix-fracture, 
Δli∗ = ΔLi . Other notations are defined in the preceding sections.
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