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A novel spin echo small-angle neutron scattering (SESANS) concept based on a

rotationally symmetric magnetic field geometry is introduced. The proposed

method is similar to the conventional linear SESANS technique but uses

longitudinal precession fields and field gradients in a radial direction, as typically

found in neutron spin echo (NSE) spectrometers. Radial SESANS could thus be

implemented as an add-on to NSE setups. The neutron trajectory through the

instrument is encoded with the help of radial gradients generated by radial

shifters, which are coils placed in the beam area similar to Fresnel coils. The

present work introduces the setup of the instrument and explores its

performance and the relationship between the encoded momentum transfer

and the precession angle. The results indicate that radial SESANS is only

sensitive to scattering along the radial direction and thus measures the projected

correlation function along this direction as a function of the spin echo length,

defined similarly to linear SESANS. For an evaluation of the performance of the

setup, the case of scattering from solid spheres is considered and the results

calculated for the radial and linear SESANS cases are compared. Also discussed

is the implementation of the radial magnetic field geometry in spin echo

modulated small-angle neutron scattering.

1. Introduction

In neutron scattering, the energy and momentum of the

neutron beam are usually measured both before and after

scattering in order to determine the energy or momentum

transfer at the sample. Achieving a high accuracy of these

measurement parameters requires high collimation and

monochromatization which, in turn, leads to a dramatic loss in

beam intensity and thus limits the practically achievable

resolution. This limitation can be overcome by neutron spin

echo techniques. These use the Larmor precession of polar-

ized neutrons in a magnetic field to measure directly the

transfer of energy ! or momentum Q [Q = (4�/�)sin(�/2),

where � is the scattering angle and � is the wavelength of the

incident radiation] at the sample without the need to deter-

mine these quantities independently for the incoming and

scattered neutron beams. In this way, the accuracy with which

! or Q are determined becomes independent of beam char-

acteristics, and very high resolutions can be reached without

the prohibiting low-intensity penalty of other neutron scat-

tering methods.

1.1. Basics of neutron spin echo spectroscopy

Neutron spin echo (NSE) spectroscopy was first introduced

by Mezei (1972) to measure the energy transfer in inelastic

scattering. In an NSE spectrometer, a polarized neutron beam

traverses two equal magnetic precession regions in which it

experiences Larmor precession in opposite directions. A
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simplified NSE setup is shown in Fig. 1(a). The �/2 spin flipper

at the beginning of the first precession region turns the

polarization of the neutron beam P perpendicular to the

magnetic field B. This induces Larmor precession with the

characteristic Larmor frequency !L = �B, where � =

1.832 � 108 s�1 T�1 is the neutron gyromagnetic ratio. For a

neutron beam propagating with a speed v over a path of length

‘, where a constant magnetic field of strength B is applied, the

accumulated precession phase ’ is given by (Mezei, 1980c)

’ ¼
�B‘

v
¼
�B‘�m

h
¼ c�B‘; ð1Þ

with � the wavelength, m the neutron mass, h the Planck

constant and c = 4.636 � 1014 T�1 m�2. The precession angle ’
is thus proportional to both the neutron beam wavelength and

the magnetic field integral (along the neutron trajectory),

which in our simplified case (homogeneous magnetic field,

highly collimated, i.e. non-divergent, neutron beam) reduces

to the product of B and ‘.
A � flipper at the symmetry point of the setup, which is

close to the sample position, reverses the precession direction

in the second field area. Consequently, if the two precession

regions are identical, the precession angles before and after

the sample cancel each other. This leads to the spin echo

condition �’ = ’incoming � ’scattered = 0 at the second �/2

flipper, which is positioned at the end of the second precession

region in front of the analyser and the detector. This flipper

stops the precession and turns P in the direction of the

magnetic field and thus of the analyser, so that ideally the

maximum intensity is recovered at the detector (Mezei, 1980c;

Mezei et al., 2003).

Inelastic scattering from the sample breaks the symmetry of

the setup as the energy transfer !modifies the speed, and thus

the wavelength, of the scattered neutron beam. As a result, the

precession phases accumulated before and after the sample

are no longer equal to each other, leading to a non-zero total

precession phase �’ and a reduction in the detected intensity.

In the limit, where the energy transfer at the sample is much

smaller than the energy of the incoming neutron beam, �’ is

directly proportional to !,

�’ ¼
h�B‘

2�mv3
! ¼ �!; ð2Þ

where the proportionality factor � is the Fourier time (Mezei,

1980c). The component of the beam polarization P trans-

mitted by the analyser is proportional to cosð�’Þ. Thus, the

net precession angle �’ is reflected in the normalized spin

echo signal determined by integrating over all possible energy

transfers, which is equal to the intermediate scattering func-

tion (Mezei, 1980c):

IðQ; �Þ ¼

R
SðQ; !Þ cosð�!Þ d!

SðQ; � ¼ 0Þ
; ð3Þ

where S(Q, !) ¼ d2�/dQd!, with � the total scattering cross

section of the sample, and SðQ; � ¼ 0Þ ¼
R

SðQ; !Þ d! is the

static structure factor. In other words, NSE measures the real

(cosine) part of the ! Fourier transform of S(Q, !) and thus

the � dependence of the correlation function (Gähler et al.,

1996; Mezei et al., 2003).

1.2. Linear SESANS

The same principles of Larmor precession and neutron spin

echo can be applied in experiments with elastic scattering [i.e.

for ! = 0, in which case S(Q, !) reduces to S(Q) = d�(Q)/dQ]

to measure the scattering angle and thus the momentum

transfer. This labelling of a neutron beam trajectory by the

Larmor precession phase (Pynn, 1978, 1980) has been applied

for small-angle neutron scattering (SANS), neutron reflec-

tivity and neutron diffraction (Rekveldt et al., 2003), leading to

an increase in resolution by several orders of magnitude

compared with conventional neutron scattering methods.

Encoding the neutron trajectory using the Larmor preces-

sion is possible by introducing specially shaped precession

regions with inclined front and end faces, as shown in Fig. 1(b).

This is achieved by adding linear field gradients that span the

whole beam cross section. Analogously to NSE, the neutron

polarization undergoes Larmor precession in opposite direc-

tions in two precession regions before and after the sample.

Furthermore, the magnetic field configuration and arrange-

ment of the gradients is such that the spin echo condition is

satisfied in the absence of scattering.

The accumulated total precession phase averaged over the

neutron beam now also depends on the linear gradient, which

leads to different phases for different trajectories through the

instrument. The vertically inclined field boundaries lead to a

linear relation between ’ and the vertical transmission angle
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Figure 1
Cross-sectional views of the discussed setups showing the shape of the
effective precession regions. (a) An NSE spectrometer with homo-
geneous magnetic field integrals shown as flat precession field area
boundaries. (b) Linear SESANS with shifters generating a gradient in the
magnetic field integral along the x direction, as illustrated by the inclined
front and end faces of the precession field areas. This setup works with
longitudinal or transverse precession fields. (c) A SESANS instrument
with radial shifters, which generate a radial gradient of the magnetic field
integral gradient with rotational symmetry about the optical axis of the
instrument. This is illustrated by the conical front and end faces of the
precession field area boundaries.



�x of the neutron beam. If there is scattering at the sample, the

transmission angle changes and, in the small-angle scattering

approximation, the difference in transmission angles �� =

�incoming � �scattered directly yields the momentum transfer for

elastic scattering. Therefore, the net precession angle encodes

the momentum transfer along the linear gradient Qx

(Rekveldt et al., 2003, 2005; Bouwman et al., 2000),

�’ ¼
c�2B‘1 cot �0

2�
Qx ¼ �xQx; ð4Þ

where �0 is the inclination angle of the field boundaries. The

quantity �x is the spin echo length, which is proportional to �2

and the magnetic field integral.

In the following we focus on isotropic elastic scattering and

on the spin echo small-angle neutron scattering (SESANS)

(Rekveldt, 1996) realization of this method. We designate the

geometry of Fig. 1(b) as linear SESANS. As the measurements

are performed in the direct beam it is convenient to consider

the average spin echo polarization,

PSES ’ hcosð�’Þi: ð5Þ

In the case of scattering from a sample with total scattering

cross section � and thickness t, PSES is related to the SESANS

correlation function G(�x),

PSES ¼ Pð�Þ ¼ exp �t Gð�xÞ �Gð0Þ
� �� �

: ð6Þ

In the small-angle approximation, the total cross section is

given by

� ¼

Z
dQx

Z
dQy

d2�ðQÞ

dQx dQy

¼
1

k2
0

Z
dQx

Z
dQy

d�ðQÞ

d�
; ð7Þ

with k0 = 2�/� and � the probed solid angle. This description

includes the fraction of the neutron beam that does not

scatter, as well as all scattering including multiple scattering

(Rekveldt et al., 2003).

The normalized SESANS correlation function G(�x) is

given by

Gð�xÞ ¼
1

�k2
0

Z
dQx

Z
dQy

d�ðQÞ

d�
cosð�xQxÞ: ð8Þ

Equations (6) and (8) show that, similarly to NSE, SESANS

measures a function which involves the Fourier transform of

the scattering cross section d�(Q)/d�. However, the inte-

gration in this case is with respect to the momentum transfer,

which is a two-dimensional vector in the detector plane. Con-

sequently, for isotropic density distributions �(r) the measured

G(�x) and d�(Q)/d� are connected by a Hankel transform

(Krouglov, de Schepper et al., 2003; Andersson et al., 2008;

Kohlbrecher & Studer, 2017), as illustrated in Fig. 2. G(�x) is

the projection of the normalized density autocorrelation

function �(r) along the neutron path (Andersson et al., 2008;

Krouglov, de Schepper et al., 2003; Kohlbrecher & Studer,

2017),

Gð�xÞ ¼

Z1

�1

dz �ðx; 0; zÞ ¼ 2

Z1

z

dr
�ðrÞ r

r2 þ x2ð Þ
1=2
; ð9Þ

with z the coordinate parallel to the beam propagation, x the

coordinate along the magnetic gradients [as shown in Fig. 1(b)]

and r = (x2 + z2)1/2.

The described SESANS setup is not sensitive in the y

direction and only measures correlations along x, the direction

of the magnetic field integral gradient. In the second step in

equation (9), a coordinate transformation from x, z to x, r is

performed, and the resulting formula shows that G(�x) is an

Abel transform of �(r) (Krouglov, de Schepper et al., 2003).

The first dedicated SESANS instrument was built at TU

Delft (Rekveldt, 1996) and uses transverse precession fields,

i.e. perpendicular to the optical axis z, which are generated by

permanent magnets. SESANS finds a broad range of appli-

cations such as in colloid science (Krouglov, Bouwman et al.,

2003, 2005; Li et al., 2011; Washington et al., 2014; van Gruij-

thuijsen et al., 2014, 2018) or food science (Bouwman, 2021).

Most SESANS instruments access spin echo lengths spanning

three orders of magnitude from 10 nm up to 20 mm. The

maximum length that can be probed is two orders of magni-

tude larger than that in conventional SANS. Besides the

increased resolution, a significant advantage is the simple

consideration of multiple scattering (Rekveldt et al., 2003). An

interesting feature, especially for the communication of the

data to non-scattering experts, is the real-space character of

the direct measurements (Bouwman et al., 2008).

A more recent variation in the technique is spin echo

modulation small-angle neutron scattering (SEMSANS)

(Bouwman et al., 2009, 2011; Sales et al., 2015; Strobl et al.,

2015). A SEMSANS setup consists of only two precession

devices with different gradients that create a spatial modula-

tion of intensity at a detector. All spin manipulations can be

performed before the sample, which gives more freedom to

work with magnetic samples (Li et al., 2021) or sample

environments. SEMSANS can also be combined with normal

SANS to probe a much longer range of length scales (Schmitt

et al., 2020).

1.3. Introducing radial SESANS

When it was first proposed to use the neutron spin echo

principle for structural investigations, it was considered that
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Figure 2
A transform triangle illustrating the relations between the scattering
function d�(Q)/d�, density autocorrelation function �(r) and projected
correlation function G(�) for an isotropic density distribution �(r).
Adapted from Andersson et al. (2008).



the method would deliver the Fourier transform of d�(Q)/d�
(Pynn, 1978, 1980; Gähler et al., 1996) closely following the

mathematical concepts of NSE. This would imply that linear

SESANS would measure the three-dimensional autocorrela-

tion function directly (Gähler et al., 1998). However, it turns

out that only one direction, the one along the magnetic field

gradient, is probed. This leads to a two-dimensional projection

of the autocorrelation function and to the Hankel transform

between G(�x) and d�(Q)/d� discussed above.

A method for direct measurement of the density auto-

correlation function would also be of interest because it would

facilitate the comparison between SANS and SESANS data

sets. As a key feature, such a SESANS method should be able

to measure Q, the modulus of the total momentum transfer,

not just the one component along a certain direction. For this

purpose one might consider introducing radially symmetric

magnetic field precession regions, which would allow for

measuring correlations independent of a specific direction.

This concept is discussed in the following and is referred to as

radial SESANS. In order to respect the radial symmetry of the

setup, we consider longitudinal precession fields with radially

symmetric gradients as shown schematically in Fig. 1(c). This

radial symmetry is also reflected in the precession angle which,

as discussed in the following section, depends on the radial

distance of the neutron path from the optical axis.

Such a setup was first discussed by Zhao (2001) with the aim

of developing a SESANS method where the density distri-

bution function would be the simple Fourier transform of

d�(Q)/d�, similar to NSE spectroscopy. The radial SESANS

setup discussed by Zhao uses longitudinal magnetic fields

created by solenoids similar to those of NSE spectrometers

with in-beam gradient coils. Therefore, it can be considered as

a possible add-on for existing NSE spectrometers. In NSE,

Fresnel coils (Mezei, 1980a; Monkenbusch, 1990), shown

schematically in Fig. 3(a), are used to correct the magnetic

field integral inhomogeneities inherent to divergent beams

with large cross sections. Similarly, SESANS could use shifter

coils, linear or radial [see Figs. 3(b) and 3(c), respectively], not

to correct for magnetic field inhomogeneities but to encode

the neutron trajectory by adding a shift to the precession angle

depending on a specific neutron trajectory. Schematic draw-

ings of the resulting configurations are shown in Figs. 1(b) and

1(c) for linear and radial SESANS, respectively.

In this paper we investigate the realization conditions and

the performance of a radial SESANS setup for small-angle

neutron scattering. Our calculations are based on parameters

which are compatible with state-of-the-art NSE spectrometers,

such as the IN15 instrument at the Institute Laue–Langevin

(Schleger et al., 1999). The focus is on the measured

momentum transfer and the obtained correlation function.

Our findings show that in radial SESANS the labelling of

the trajectories, and thus of the momentum transfer, is along

the radial directions. However, it is not possible to obtain the

total momentum transfer from the measured signal as radial

SESANS is also sensitive to only one component of the

momentum transfer vector. Thus, in this case we also obtain a

projected correlation function along the radius, which is

similar to linear SESANS. This implies that, regardless of the

symmetry, radial or linear, SESANS probes correlation along

only one direction, which is the direction of the field gradient.

We discuss the implications of this result for other scattering

geometries.

2. Radial SESANS

As discussed above, when considering the implementation of

SESANS on NSE spectrometers, where the magnetic fields are

generated by solenoids and their direction is along the optical

axis of the instrument (i.e. longitudinal), there are two possi-

bilities to trace the neutron trajectory through the device,

either with linear shifters or with radial shifters, as shown in

Figs. 3(b) and 3(c).

SESANS with linear shifters, shown schematically in

Fig. 1(b), satisfies the spin echo condition for the unscattered

neutron beam, and the labelling of the scattering angle or

momentum transfer is along the direction of the magnetic field

integral gradient. Conse-

quently, the combination

of linear shifters and lon-

gitudinal precession fields

reproduces the conven-

tional linear SESANS

technique and may be

considered as an add-on

option for NSE spectro-

meters.

The SESANS method

discussed here uses radial

shifters, and the resulting

magnetic field integral is

therefore rotationally sym-

metric about the optical

axis. In the following we

evaluate the performance

and capabilities of radial
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Figure 3
Comparison between (a) a Fresnel correction coil, (b) a linear shifter and (c) a radial shifter. On the top row are
illustrations of the coils with the active beam area shown in yellow. On the bottom row, the magnetic line integrals
are plotted over the cross-sectional area. A current of I = 10 A and a wire density in the coils of nW = 2 mm�1 were
assumed.



SESANS assuming that the magnetic field configuration of the

host NSE spectrometer is ideal, i.e. the magnetic field integral

is the same for all possible neutron trajectories before and

after the sample. This is technically achievable using correc-

tion elements, in particular Fresnel coils (Monkenbusch,

1990). Thus, the host NSE spectrometer ideally satisfies the

spin echo condition ’ = 0 for both the non-scattered and the

elastically scattered (! = 0) neutron beams considered here.

For this reason, in the following we will make an abstraction of

the host instrument magnetic field configuration and will

consider solely the effect of additional coils, such as linear or

radial shifters, on ’ for both the non-scattered and the elas-

tically scattered neutron beams.

Ideally, Fresnel coils can be considered as consisting of

concentric current loops, as shown schematically in Fig. 3(a),

generating a magnetic field integral that counterbalances the

intrinsic r2 dependence of the magnetic field integral produced

by solenoids (Mezei, 1980a; Monkenbusch, 1990). In this way,

NSE spectrometers can reach long Fourier times while

keeping large beam cross sections and thus without sacrificing

their data acquisition rate.

Shifters are similar to Fresnel coils but they generate a

magnetic field integral proportional to a characteristic

distance, e.g. along x as in Fig. 3(b) or along the radius as in

Fig. 3(c). Linear shifters as in Fig. 3(b) were introduced in the

early days of NSE spectroscopy to produce linear gradients in

the magnetic field integral that can map the Q-dependent

energy (dispersion) of collective excitations (Mezei, 1980b).

The focus here is on radial shifters, the magnetic field

integral of which varies linearly with the radius. In this case the

resulting precession phase for neutrons crossing a radial

shifter at a radius r is given by

’ ¼ c�	0nWI ðr� RÞ ¼ Kr� KR; ð10Þ

with 	0 the magnetic permeability, nW the winding density, i.e.

the number of wires per unit length, R the outer radius of the

radial shifter (r < R) and I the current in the coil. From now on

we will ignore the term KR since it will in all configurations be

compensated by the same term in another radial shifter with

opposite sign. All tuning parameters are summarized in the

constant K. For example, for a monochromatic neutron beam

with � = 10 Å and a shifter with nW = 2 mm�1 and I = 10 A, K =

11651 m�1.

In the following we assume that the neutron beam is

perfectly monochromated. However, in the absence of scat-

tering the spin echo condition is wavelength independent, and

for this reason a wavelength distribution does not affect the

performance of the setup but leads only to a distribution of

spin echo lengths (Rekveldt et al., 2005). In SEMSANS this

distribution would decrease the amplitude for the higher-

order modulations.

In our calculations the beam divergence is defined by the

diaphragms. For an improved data acquisition rate one could

envisage focusing the beam at the sample position. This would

be possible by adequate design of the neutron delivery system,

e.g. using a focusing mirror, as foreseen on IN15 (Schleger et

al., 1999).

The performance of SESANS as given by equation (10) is

independent of the main magnetic field from the host NSE

instrument, which in principle could stay constant during the

SESANS measurements. In this way it would be easy to

disentangle the SESANS signal from any inelastic scattering.

The latter would reduce the amplitude of the modulation and

could be determined by NSE measurements with zero current

in the shifter coils.

Fig. 4 provides a schematic illustration of the linear and

radial SESANS setups discussed here, which are conceptually

equivalent to those of Figs. 1(b) and 1(c). The precession field

areas are positioned on each spectrometer arm symmetrically

around the � flipper, which is in the centre of the setup and

next to the pinhole at the sample position. The precession

fields are created by coils and thus point towards the optical

axis z. The labelling of the neutron beam trajectories is

performed by two pairs of shifters, one at each arm of the

setup, and the shifters of each pair are at a distance ‘1 apart

from each other. Furthermore, the inner shifters, which are

positioned next to the pinhole at the sample position, are at a

distance ‘2 from it. Thus, the total distance between the outer

shifters and the pinhole is L = ‘1 + ‘2 . The arrows indicate the

direction of the electric currents in the shifters. Ideally, both

the � flipper and the pinhole should be positioned at the

geometric centre of the setup. However, as the pinhole has

finite dimensions its exact positioning will not be critical for

the final performance of the setup.

2.1. Definition of neutron beam trajectories

In the following we focus on the performance of radial

SESANS and we start by defining the neutron beam trajectory

coordinates, expressing them in terms of the beam’s crossing

points with the four shifters (Sh) and the pinhole (S), as illu-

strated in Fig. 5. For this purpose we will use cylindrical

coordinates, which are concordant with the symmetry of the

setup. The coordinate system is defined such that the z axis

coincides with the optical axis of the instrument and the
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Figure 4
Schematic drawings of the SESANS instruments discussed here, with (a)
linear and (b) radial shifters. The shifters are positioned in the main
precession fields at a distance ‘1 from each other. The direction of the
current in the shifters is indicated by arrows. The � flipper in front of the
sample represents the symmetry point of the setup.



pinhole is located at the origin. Without any loss of generality,

the crossing points are given by

Sh1 ¼

x1

y1

z1

0
@

1
A ¼ r1 sin
1

r1 cos
1

�L

0
@

1
A; ð11Þ

Sh2 ¼

x2

y2

z2

0
@

1
A ¼

r2 sin
2

r2 cos
2

�‘2

0
@

1
A; ð12Þ

Sh3 ¼

x3

y3

z3

0
@

1
A ¼

r3 sin
3

r3 cos
3

‘2

0
@

1
A; ð13Þ

Sh4 ¼

x4

y4

z4

0
@

1
A ¼

r4 sin
4

r4 cos
4

L

0
@

1
A; ð14Þ

S ¼

xS

yS

zS

0
@

1
A ¼

rS sin 
S

rS cos
S

0

0
@

1
A: ð15Þ

Here ri is the radius of the crossing point at shifter Shi or at the

pinhole, and 
i are the corresponding angles in the xy plane, as

shown in Fig. 6.

In the absence of scattering, two points are sufficient to

define the trajectory through the whole setup. Thus, r1 , r2 and

r3 can be expressed as a function of the coordinates at the

sample S and the fourth shifter Sh4 :

r1 ¼ 4r2
S þ r2

4 � 4rSr4 cos 
S4

� �1=2
; ð16Þ

r2 ¼
1

L
r2

Sð‘1 þ 2‘2Þ
2
þ r2

4‘
2
2 � 2‘2ð‘1 þ 2‘2Þ rSr4 cos 
S4

� �1=2
;

ð17Þ

r3 ¼
1

L
r2

S‘
2
1 þ r2

4‘
2
2 þ 2‘1‘2rSr4 cos 
S4

� �1=2
; ð18Þ

with 
S4 = 
S� 
4 and L = ‘1 + ‘2. In the case where rS=r4 � 1,

i.e. when the radius of the beam at the sample position is small

compared with that at the shifters, we can simplify the above

expressions using the Taylor expansion:

r1 ’ r4 � 2rS cos
S4; ð19Þ

r2 ’
r4‘2

L
�
‘1 þ 2‘2

L
rS cos
S4; ð20Þ

r3 ’
r4‘2

L
þ
‘1

L
rS cos 
S4: ð21Þ

2.2. Neutron beam trajectory and Larmor precession

In general, the total precession angle �’ is equal to the

difference between the precession angle before and after the �
flipper. In this SESANS setup, �’ depends only on the

contributions of the four shifters (’i , i = 1, . . . , 4) that encode

the neutron trajectory, leading to

�’ ¼ ð’1 þ ’2Þ � ð’3 þ ’4Þ: ð22Þ
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Figure 5
A schematic drawing of a possible neutron trajectory through the four
shifters of the setup with scattering at the sample. The wavevectors ki and
kf are defined for the direct and scattered beam, respectively. The
momentum transfer Q is given as their difference.

Figure 6
(a) The definition of the crossing point of a neutron with shifter Shi in
polar coordinates (ri , 
i). (b) A projection of a direct beam trajectory on
the shifter plane to illustrate the relationship between the radial
coordinates from equations (11)–(15). The coordinate rS at the sample
is restricted to the pinhole area with radius p which is indicated in grey.



Here the relative orientation of the electric currents in the

shifters, which we will designate in the following by their signs

(+ and �), affects the sign of the corresponding ’i . In the

absence of scattering, the linear SESANS (+�, +�) config-

uration shown in Fig. 4(a) satisfies the spin echo condition for

all beam sizes and divergences.

The case of radial SESANS, however, is more restrictive as

the beam dimensions at the sample position have a significant

impact on the performance of the setup. This is most promi-

nent for the (++, ++) configuration [equivalent to Figs. 1(b)

and 1(c) in the report by Zhao (2001)], the net precession

angle of which can be calculated using the approximations of

equations (19)–(21):

�’ðþþ;þþÞ ¼ K ðr1 þ r2Þ � ðr3 þ r4Þ
� �

’ �4KrS cos 
S4: ð23Þ

This result can be understood from the geometry of the

precession regions. Considering the case of 
S4 = �/2 or 3�/2 in

Fig. 6 will result in a symmetric situation for the radii of the

trajectory in the first arm as in the second arm. In that case we

expect an echo, which is illustrated mathematically by the fact

that in those cases cos 
S4 = 0. On the other hand, when 
S4 = 0

or �, then the asymmetry will be maximal. Only for rS = 0 will

there be an echo, as sketched in Fig. 7(a). This implies that this

configuration satisfies the spin echo condition only for infini-

tesimally small pinholes, i.e. when the neutron trajectory

passes exactly though rS = 0, and is very sensitive to deviations

from it. Any realistic pinhole would therefore lead to signifi-

cant deviations from the spin echo condition and a loss of the

spin echo modulation. This is a severe drawback and for this

reason, in the following, we will discard this configuration and

focus on the performance of the (+�, �+) setup. In that case,

and in the presence of a pinhole with radius p at the sample

position, so that 0 � rS � p, following equations (10) and (22)

the net precession angle can be written assuming the

approximations of equations (19)–(21):

�’ðþ�;�þÞ ¼ K ðr1 � r2Þ � ð�r3 þ r4Þ
� �

’ 0: ð24Þ

This result can also be understood from the geometry of the

setup as sketched in Fig. 7(b) by considering only the most

asymmetric case when 
S4 = 0 or �. For trajectories where the

signs of the x components of the radii of the first two shifters

are both opposite to those of the last two shifters this will

always result in an echo situation. The path length through

either of the two precession regions is only dependent on the

angle of the trajectory and not on its position. This implies

that, in the absence of scattering, the spin echo condition is

satisfied in this configuration for any small pinhole of finite

size.

The resulting NSE polarization in the most general case,

beyond the small sample pinhole approximation, can be

calculated by taking all possible neutron trajectories into

account and is given by

PNSE ¼

R a

0 dr4

R �
�� d


R p

0 drS r4rS cosð�’ÞR
dr4

R
d

R

drS r4rS

; ð25Þ

where p and a are the maximum pinhole and shifter radii,

respectively, 
 = 
S4 , and the net precession angle �’ is given

by equations (24) and (16)–(18).

Fig. 8(a) depicts the effect of the pinhole radius on PNSE , as

obtained by numerical integration for a = 20 mm, �= 10 Å and

different spin echo lengths �. A radius of 20 mm is a reason-

able assumption; smaller values would of course be possible

but would also lead to a dramatic decrease in the data

acquisition rate.

Only an infinitesimally small pinhole (p = 0) leads to PNSE =

1, thus only this case satisfies the spin echo condition perfectly.

By increasing the pinhole size, an increasing number of

neutron trajectories do not satisfy the spin echo condition,

leading to a reduction in PNSE . This reduction is substantial,

but not obstructive, as a pinhole with a radius of 5 mm (thus a/

4) leads to PNSE ’ 0.6, which, depending on the spin echo

length of the measurement, would be sufficient for performing

SESANS measurements.

For a more quantitative evaluation we calculated the figure

of merit (FOM) of the setup, derived from the relative error of

PNSE :

FOM ¼
PNSE

�PNSE

� 	2

¼
P2

NSEIn

P2
NSE þ 1

/
P2

NSEp2

P2
NSE þ 1

; ð26Þ

where the error �PNSE is determined from the derivative of

PNSE and In is the total intensity of the detected neutron

beam, proportional to the area of the pinhole, In / p2. As

shown in Fig. 8(b), if the FOM is plotted against the pinhole

size, it goes through maxima which mark the optimal oper-

ating conditions with the best compromise between resolution

and neutron beam intensity.
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Figure 7
Schematic drawings of the precession path through the two different
configurations for two different neutron trajectories. The rS direction is
taken along the y direction (perpendicular to the paper). We consider
only the trajectory for 
S4 = 0 or �, which means that all ri are in the x
direction. (a) In the (++, ++) configuration the path lengths through the
first and second precession regions are only equal for trajectories going
exactly through the centre of the setup, as illustrated for the lower
trajectory. In the higher trajectory the path length through the first
precession region becomes shorter, while it becomes longer for the
second region, as reflected in equation (23). (b) In the (+�, �+)
configuration the exact value of rS has no effect on the echo. For a certain
angle of the trajectory it does not matter if the neutron path is higher or
lower, as long as the x components of the radii in the shifters change sign
from the first precession region with respect to the second precession
region, as reflected in equation (24).



2.3. Effect of scattering: relation between precession and
momentum transfer

In the case of scattering, the trajectories before and after

the sample are no longer correlated with each other. Here we

start by assuming an infinitesimally small pinhole at the

sample position such that rS = 0. In this case there is a clear

relation between the radii of the points where the neutron

beam impinges on the shifters:

r2 ¼ r1

‘2

L
; r3 ¼ r4

‘2

L
; ð27Þ

where in the absence of scattering r1 = r4 and r2 = r3 . Using

equation (27), the net precession angle defined in equation

(24) becomes

�’ ¼ K
‘1

L
ðr1 � r4Þ: ð28Þ

Fig. 5 shows the trajectory of a possible scattering process

and defines the crossing points at the shifters. The direct

neutron beam travels from A0 at the first shifter to point A at

the fourth shifter, with rA0 ¼ rA because of the pinhole. Scat-

tered neutrons are deflected to point B.

The momentum transfer is defined as Q = ki � kf, where ki

and kf are the wavevectors of the incident and scattered

neutrons, respectively. Only elastic scattering is considered

here and therefore |ki| = |kf| = k0 = 2�/�. The vector ki points

along the trajectory of the incident or direct beam, along the

vector SA from the crossing point with the sample S to the

point A (equal to the vector between A0 at the first shifter and

S), while the direction of kf is given by the vector SB from S

to B:

ki ¼ k0

SA

jSAj
; kf ¼ k0

SB

jSBj
: ð29Þ

Using the coordinate notation from above for the crossing

points A and B, and the condition for a pinhole (p = 0), the

wavevectors can be written as

ki ¼
k0

r2
A þ L2

� �1=2

rA sin 
A

rA cos 
A

L

0
@

1
A; ð30Þ

kf ¼
k0

r2
B þ L2

� �1=2

rB sin 
B

rB cos
B

L

0
@

1
A: ð31Þ

Consequently, the total momentum transfer vector becomes

Q ¼ ki � kf ¼
k0

L

rA sin 
A � rB sin 
B

rA cos 
A � rB cos
B

0

0
@

1
A; ð32Þ

where the square roots are approximated assuming

rA; rB � L, such that (r2 + L2)1/2
’ L, and the modulus of the

momentum transfer is given by

Q ¼ r2
A þ r2

B þ 2rArB cosð
A � 
BÞ
� �1=2

: ð33Þ

Both the equation for Q and Fig. 5 show that the

momentum transfer takes place in the xy plane. This is the

detector plane, and looking at the scattering process in this

plane involves the projected wavevectors derived from equa-

tions (30) and (31):

k
xy
i ¼

k0

r2
A þ L2

� �1=2

rA sin 
A

rA cos 
A

� 	
’

k0rA

L

sin 
A

cos
A

� 	
; ð34Þ

k
xy
f ¼

k0

r2
B þ L2

� �1=2

rB sin 
B

rB cos 
B

� 	
’

k0rB

L

sin 
B

cos
B

� 	
: ð35Þ

The moduli of these vectors depend on the radial coordi-

nates rA and rB :

k
xy
i ¼

k0rA

L
; k

xy
f ¼

k0rB

L
: ð36Þ

The total momentum transfer Q is now decomposed into a

radial Qr and a complementary QC component, as shown in

Fig. 9. Qr points in a radial direction parallel to k
xy
i and its

modulus is determined by the lengths of the wavevector

projections given in equation (36). The difference between k
xy
i

and k
xy
f labels the momentum transfer in the radial direction:

Qr ¼ k
xy
i � k

xy
f ¼

k0

L
ðrA � rBÞ: ð37Þ
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Figure 8
(a) Spin echo polarization and (b) FOM in the absence of scattering as a function of the pinhole radius p for a = 20 mm, �= 10 Å and different spin echo
lengths �. The PNSE and the FOM are derived from equations (25) and (26), respectively.



In contrast, the complementary component cannot be

expressed clearly in terms of the wavevectors without knowing

the polar coordinates 
A and 
B .

By combining the derived expressions for the precession

angle �’ [equation (28)] and Qr [equation (37)] while

considering that rA = r1 and rB = r4 , we find that the net

precession angle is proportional only to the radial momentum

transfer. This is an important result, indicating that only one

component of the momentum transfer vector is included in the

measured signal. Since there is no unique relationship

between Qr and QC, it is not possible to calculate the

magnitude or direction of Q from the vector equation Qr +

QC = Q without knowledge of QC. In other words, radial

SESANS probes only the momentum transfer along the radial

direction without the possibility of obtaining the total

momentum transfer,

�’ ¼
K‘1

L
ðr1 � r4Þ ¼

K‘1

k0

Qr ¼ �Qr: ð38Þ

This equation has been derived in the limit of an infinitely

small sample pinhole. A satisfactorily high PNSE can be

obtained for a sample pinhole with a diameter p = a/4.

Therefore, equation (38) will be less strict for scattering

events, especially those where the incoming and outgoing

vectors are close to the optical axis. However, these events

occur less frequently than those where they are closer to the

edge of the diaphragms, since there is more area. This small

deviation from equation (38) gives rise to a spread in

precession for a certain Qr , leading to a resolution effect for

the SESANS measurement as a function of spin echo length.

As in linear SESANS, the proportionality factor � in

equation (38) is the spin echo length,

� ¼
K‘1

k0

¼
c	0nWI‘1�

2

2�
; ð39Þ

which can be varied by changing the current I in the shifter

coils while keeping all other parameters, including the

precession magnetic field, unchanged.

The NSE polarization and FOM in Fig. 8 were calculated for

different � values that can be achieved with the described

setup. For I varying between 2 and 10 A in shifter coils with a

winding density of nW = 2 mm�1, ‘1 = 1 m and a neutron

wavelength of � = 10 Å, � ranges from 0.37 to 1.85 mm.

In general, the defined momentum transfer components Qr

and QC are not perpendicular to each other. For scattering

with a small total momentum transfer, however, this can be

assumed since Qr is small and a linear approximation, as

shown in Fig. 10, is justified. If so, Q ¼ ðQ2
r þQ2

CÞ
1=2 holds for

the measured component Qr and the complementary

component QC. This situation resembles the momentum

encoding in linear SESANS, where the total momentum

transfer is always decomposed into perpendicular compo-

nents. In other words, radial SESANS is similar to the

conventional linear method, as it does not allow for accessing

more than just a component of the momentum transfer vector.

A consequence of the fact that �’ depends only on Qr is

that radial SESANS probes only correlations along the radial

direction. Similar to linear SESANS, this leads to a projected

correlation function, defined as the Hankel transform of the

sample’s scattering function. For radially symmetric functions

the Hankel transform can be derived from a two-dimensional

Fourier transform (Bouwman et al., 2000; Andersson et al.,

2008; Uca et al., 2003),

Gð�Þ ¼
1

�k2
0

Z
dQx

Z
dQy

d�ðQÞ

d�
cosð�QrÞ: ð40Þ

The integral is over all Q values reaching the detector. In the

given case, the integral translates to an integral over the radii

of the first and last shifter and over the difference in polar

angles 
 (cf. Fig. 9). The normalized correlation function

becomes

Gð�Þ ¼

R a

0

R a

0

R �
�� dr1 dr4 d
 r1r4 ½d�ðQÞ=d�� cosð�QrÞR a

0

R a

0

R �
�� dr1 dr4 d
 r1r4 ½d�ðQÞ=d��

; ð41Þ

where a is the shifter radius determining the maximum

detectable Q value and thus the minimum size measurable.
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Figure 9
The scattering event shown in Fig. 5 as seen from the sample, projected
onto the xy plane. The total momentum transfer Q is decomposed into a
radial component Qr and a complementary component QC. Only the
magnitude of Qr is included in the measured precession angle. The angle

 denotes the difference between the polar angle at the first and last
shifter, 
 = 
1 � 
4 .

Figure 10
(a) A scattering event with a small momentum transfer projected onto the
xy plane and (b) an enlargement of the lower right quadrant. In this case,
Qr and QC are approximately perpendicular to each other, which
corresponds to the situation in linear SESANS.



2.4. Scattering from spherical particles

In the following we evaluate the performance of the radial

SESANS setup and compare it with linear SESANS. For this

purpose we consider the simple case of isolated spherical

particles of radius R, whose scattering function is given by

(Guinier & Fournet, 1955)

d�ðQÞ

d�
¼ 3

sinðQRÞ �QR cosðQRÞ

ðQRÞ3


 �2

: ð42Þ

The results for different particle radii are drawn in Fig. 11 for

both radial and linear SESANS. For the latter, G(�) has been

calculated analytically (Krouglov, de Schepper et al., 2003) and

thus corresponds to an ideal setup where instrument para-

meters, such as angular acceptance, are not taken into account.

Comparison of the two data sets shows that G(�) of radial

SESANS also goes to zero at the � values corresponding to the

maximal distance of the scattering particle, which in the case

of spheres corresponds to their diameter. On the other hand,

for small R, and therefore large values of Q, the radial

SESANS results deviate from those of the analytical calcula-

tion. This is due to the angular acceptance of the setup and

thus the shifter size, which determines the maximal detectable

Q value in radial SESANS. The calculation of equation (41)

was performed with a shifter radius of a = 20 mm, which gives

a minimum measurable particle radius of less than R = 50 nm

for the given setup (‘1 = ‘2 = 1 m, � = 10 Å). Below this radius

the SESANS correlation function deviates from the analytical

result, and this holds not only for radial but also for linear

SESANS (Rekveldt, 1996).

3. Radial SEMSANS

The rotationally symmetric magnetic field geometry,

consisting of radial shifters and longitudinal precession fields,

can also be implemented for SEMSANS. In this technique, all

spin manipulations take place in two precession regions before

the sample (see Fig. 12).

Existing SEMSANS instruments are built with transverse

precession fields that have inclined front and end faces, as for

linear SESANS. In this case, the total Larmor precession angle

accumulated by the neutrons depends linearly on the height of

their trajectory at the detector but is independent of their

divergence angle. When the focus condition B1‘1 = B2‘2 is

satisfied (Bouwman et al., 2009, 2011), where B1 and B2 are the

precession magnetic fields and ‘1 and ‘2 are the distances of

the respective precession areas from the detector, this leads to

a spatial modulation of the neutron beam intensity at the

detector. Any scattering by a sample decreases the amplitude

of that modulation, also called visibility (Bouwman et al., 2011;

Li et al., 2016).

The SEMSANS normalized visibility is analogous to the

normalized NSE polarization in SESANS, and therefore both

methods probe the same projected correlation function

(Bouwman et al., 2011; Strobl et al., 2015). The labelled

direction in the precession angle ’, and thus the orientation of

the modulation, are determined by the direction of the

magnetic fields. While transverse fields create a modulation

along the detector height (transverse direction), the modula-

tion in radial SEMSANS would be along the radial coordinate,

starting at the beam centre.

3.1. Precession angle and momentum transfer

Fig. 12 shows the setup of a radial SEMSANS instrument.

Two shifters encode the radial coordinate of the neutron

trajectory in ’. The magnetic fields and positions are set to B2 =

2B1 and ‘1 = 2‘2 to satisfy the focus condition. As before, a

neutron trajectory can be defined by its crossing points at the

shifters Shi , the sample S and the detector D using cylindrical

coordinates:

Sh1 ¼

x1

y1

z1

0
@

1
A ¼

r1 sin 
1

r1 cos
1

�‘1

0
@

1
A; ð43Þ

S ¼

xS

yS

zS

0
@

1
A ¼

rS sin 
S

rS cos 
S

�‘S

0
@

1
A; ð44Þ
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Figure 11
Comparisons of the correlation function G of radial and linear SESANS,
calculated for dilute spherical particles of different radii R. The solid lines
represent G for radial SESANS as a function of the spin echo length �,
while the dashed lines are the corresponding G(�) for linear SESANS.
The minimum measurable length scale in radial SESANS is determined
by the maximum Q value detected, which depends on the scattering
angles and the size of the detector.

Figure 12
A schematic drawing of the radial SEMSANS instrument. The second
shifter generates a magnetic gradient twice as strong as the first one,
resulting in a modulation of the beam intensity at the detector in a radial
direction.



Sh2 ¼

x2

y2

z2

0
@

1
A ¼

r2 sin
2

r2 cos
2

�‘2

0
@

1
A; ð45Þ

D ¼

xD

yD

zD

0
@

1
A ¼

rD sin 
D

rD cos
D

0

0
@

1
A; ð46Þ

Using equation (10), the total precession angle �’, defined

as the difference between the precession accumulated before

and after the � flipper, becomes

�’ ¼ Kðr1 � 2r2Þ; ð47Þ

in which K is defined as in equation (10) for the first shifter. In

SEMSANS it is crucial to have a direct proportionality

between �’ and the radial position of a neutron at the

detector rD. In the absence of scattering, the radial coordinate

of the crossing point at the second shifter r2 can be first

expressed as a function of r1 and rD. With ‘1 = 2‘2 and 
1D =


1 � 
D this gives

r2 ¼
1
2 r2

1 þ r2
D þ 2r1rD cos
1D

� �1=2
: ð48Þ

As a second step we introduce a small pinhole in front of the

first shifter, so that, r1=rD � 1 and we can use the Taylor

expansion,

r2
1 þ r2

D þ 2r1rD cos
1D

� �1=2
’ rD 1þ

r1

rD

cos 
1D

� 	

¼ rD þ r1 cos 
1D: ð49Þ

This simplifies the expression for the total precession angle,

which in the absence of scattering becomes

�’ ¼ K r1ð1� cos 
1DÞ � rD

� �
: ð50Þ

This indeed provides a linear relation between �’ and rD,

which shows that this setup creates a radial modulation.

However, this result is not valid close to the detector centre

(rD! 0) where our approximation using the Taylor expansion

breaks down.

In the presence of scattering, we can express �’ as a

function of the radial momentum transfer Qr and a spin echo

length in a way very similar to radial SESANS. For this deri-

vation, we introduce an infinitesimally small pinhole in front

of the first shifter so that r1 ! 0. The radius r2 can then be

derived from the geometry of the setup:

r2 ¼ rS

‘1 � ‘2

‘1 � ‘S

: ð51Þ

The precession angle from equation (47) becomes

�’ ¼ �2Kr2 ¼ �2KrS

‘1 � ‘2

‘1 � ‘S

: ð52Þ

Considering the wavevectors for the incident and scattered

neutron beams, we derive the moduli of their projections onto

the xy plane as

k
xy
i ’ k0

rS

‘1 � ‘S

; k
xy
f ’ k0

rD � rS cos 
SD

‘S

; ð53Þ

where 
SD = 
S� 
D, and rS and rD are small compared with ‘1

or ‘S.

The radial component of the momentum transfer vector

thus becomes

Qr ¼ k
xy
i � k

xy
f ¼ k0

rS

‘1 � ‘S

�
rD � rS cos 
SD

‘S

� 	
: ð54Þ

Using equations (52) and equation (54) we obtain

�’ ¼ �2Kð‘1 � ‘2Þ
Qr

k0

þ
rD � rS cos 
SD

‘S

� 	
; ð55Þ

where the factor in front of Qr denotes a spin echo length �,
with

� ¼ �
2K

k0

ð‘1 � ‘2Þ: ð56Þ

The spin echo length depends on the distance between the

shifters, which is as expected and is also the case for radial

SESANS.

The variation in the visibility of the modulation in the beam

intensity at the detector can be calculated in the most general
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Figure 13
The normalized visibility V of the intensity modulation as a function of
the radial distance from the detector centre rD. V was calculated with
equation (57) for a pinhole radius of R = 0.5 mm. (a) Modulation visibility
with and without the first shifter. If the pinhole is smaller than the first
loop of the shifter coil, the magnetic field of Sh1 does not affect the
neutrons, as if no shifter were present. (b) V for different values of spin
echo length.



case, beyond the small pinhole approximation. For a pinhole

of radius R in front of the first shifter, so that 0 � r1 � R, we

obtain

VðrDÞ ¼

R �
0 d


R R

0 dr1 r1 cosð�’ÞR �
0 d


R R

0 dr1 r1

: ð57Þ

In the following, �’ was determined using equations (47) and

(48) in equation (57). The integration was performed

numerically for different spin echo lengths between 0.1 and

1.8 mm. The results obtained in the absence of scattering, for a

pinhole with R = 0.5 mm and as a function of rD, are illustrated

in Fig. 13. This shows that it is also possible to perform

SEMSANS measurements with radial shifters, even though

the visibility is lower than for linear SEMSANS.

As in the previous section for SESANS, we consider here

shifters with a winding density of nW = 2 mm�1. The generated

magnetic field gradient is therefore not continuous, as

assumed in the mathematical model, but a stepped function of

the windings. This approach thus breaks down when the radius

of the pinhole becomes comparable to or smaller than the

radius of the innermost shifter coil loop. In this case the effect

of the first shifter drops out, leading to another expression for

the total precession angle: �’ = �2Kr2 . The effect on the

modulation can be seen in the recalculated visibility shown in

Fig. 13(a). This effect will further reduce the visibility for

radial SEMSANS.

4. Concluding remarks

Since the early days of NSE it has been acknowledged that

shifter coils combined with longitudinal precession fields, as

found in NSE spectrometers, may be used to encode the

neutron beam trajectories for SESANS-like applications

(Pynn, 1978, 1980). In this article we have discussed how linear

shifter coils can lead to a configuration that is conceptually

equivalent to the SESANS setup, which has been developed in

Delft (Rekveldt, 1996; Rekveldt et al., 2003; Andersson et al.,

2008) and uses transverse (vertical) magnetic fields with

inclined boundaries. This configuration is only sensitive to the

projection of the momentum transfer vector along the

(vertical) direction, which is defined by the inclination of the

magnetic field boundaries.

Here we have considered radial, instead of linear, magnetic

field integral gradients and have evaluated the performance of

a SESANS setup resulting from the combination of radial

shifter coils with longitudinal precession fields, in concordance

with the cylindrical symmetry of the setup. Our results show

that this configuration is also sensitive to the projection of the

momentum transfer vector along one direction, in this case the

radial one. Thus, in this case SESANS also yields a projected

correlation function. We argue that this should be the case for

all SESANS realizations, independent of their specific

magnetic field geometry. In fact, as the magnetic field integral

varies in a continuous fashion across the area of the neutron

beam it is always possible to identify continuous ‘equipoten-

tial’ lines along which the magnetic field (integral) gradient

vanishes [e.g. along x in Fig. 4(a) or along all circles centred at

y = 0 and z = 0 in Fig. 4(b)]. Consequently, the SESANS signal

would be insensitive to the correlation function along these

lines and would yield the projected correlation function along

those direction(s) along which the magnetic field (integral)

gradient is maximum: y in Fig. 4(a) or the radial direction in

Fig. 4(b). This is an important difference between SESANS

and NSE spectroscopy and explains why the former yields a

projected correlation function, whereas the latter, which

probes a scalar quantity (the energy transfer at the sample),

delivers the intermediate scattering function directly.

The performance of linear SESANS does not depend on

neutron beam characteristics such as beam dimensions and

divergence. In contrast, our results show that radial SESANS

performs best for p� a, i.e. when the radius of the neutron

beam at the sample is small in comparison with that at the

outer shifter coils. This requirement ensures that the spin echo

condition is satisfied for a majority of trajectories but also

leads to substantial intensity losses. Nonetheless, the results of

Fig. 8 show that for a realistic configuration, in the absence of

scattering, it is possible to increase the beam size at the

sample, e.g. p/a ’ 1/4, while keeping a reasonable spin echo

polarization. In addition, scattering from a model sample

consisting of simple spherical particles provides results

consistent with what would be expected for linear SESANS.

The simple setup considered here should reach spin echo

lengths ranging from about 100 nm to a few micrometres.

Higher resolutions could be obtained by using stacked shifter

coils, as is commonly the case with Fresnel coils in NSE

spectrometers.

Longitudinal magnetic fields combined with radial shifter

coils could also be used for radial SEMSANS, although with a

substantially reduced performance with respect to its linear

SEMSANS counterpart. Radial SEMSANS requires the

smallest possible beam aperture at the point (first shifter)

where the Larmor labelling begins. This of course dramatically

reduces the intensity of the neutron beam and at the same

time makes the first shifter redundant when the dimensions of

the aperture become comparable to the distance between the

wires of this shifter coil.

To conclude, linear and radial SE(M)SANS are concep-

tually similar to each other but the linear realization clearly

outperforms the radial one. In addition, both setups can be

realized by combining shifter coils (radial or linear) with

longitudinal magnetic fields, as found at NSE spectrometers,

and could be implemented as add-ons to existing instruments.

The spin echo length that can be reached would be similar to

those obtainable on present SESANS instruments (some 10–

20 mm). The advantage of such a realization would lie in the

combination of the long wavelengths accessible to existing

NSE instruments and their high neutron flux. In this way it

would be possible to study weakly scattering systems and

perform kinetic measurements on the timescale of minutes

instead of hours, which is presently the limit.

Compared with existing SESANS instruments, such a

realization would allow for using custom-made in-beam coils,

with current densities adapted to specific requirements that
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could enable new types of experiments with unexplored

capabilities.
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