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Propositions 
accompanying the dissertation 

Towards the Uncertainty Quantification of 
Fractured Karst Systems 

by 

Stephan de Hoop 

1. There is little sense in generating a model on a scale of orders of magnitude smaller
than the scale of our available data. [Chapter 3 of this thesis]

2. Even though the natural caves observed in outcrops are formed via several complex
processes, the interplay of advective, diffusive, and reactive mass transfer, expressed
with Damköhler and Péclet number, do cover some of the encountered cave
geometries. [Chapter 4 of this thesis]

3. The effectiveness of Adaptive Mesh Refinement strategies heavily depends on the
solved physical process, and the heuristic coarsening criteria. [Chapter 5 of this thesis]

4. Collections of reservoir models often exhibit a significant degree of redundancy and
allow for selecting a subset of representative models which reasonably accurately
describe the behavior of the complete set of models. [Chapter 6 of this thesis]

5. The importance of understanding logic, statistics, and how media and the internet
operate cannot be understated. It should be taught to children as early as possible.

6. Life is meaningless on a cosmic scale; however, this does not imply that our human
life is meaningless altogether.

7. Given infinite time, anyone can master any subject; never stop learning and never give
up.

8. Admitting you are wrong is a sign of strength; changing your opinion in light of new
evidence is at the heart of science and something we should aim for in our daily lives.

9. As a society, we should remove the stigma of failure; we should strive for it, since how
can we ever honestly know ourselves if we haven't failed?

10. Model Synthesis or Wave Function Collapse algorithm might be an interesting
alternative to Multiple-Point Statistics for generating geological reservoir models.

These propositions are regarded as opposable and defendable, and have been approved as 
such by the promotors dr. D.V. Voskov, prof. dr. G. Bertotti, and dr. A. Barnhoorn. 



Stellingen 
bij het proefschrift 

Op Weg Naar de Onzekerheidskwantificering van  
Gebroken Karst-Systemen 

door 

Stephan de Hoop 

1. Het heeft weinig zin om een model te genereren op een schaal van ordes van grootte
kleiner dan de schaal van onze beschikbare gegevens. [Hoofdstuk 3 van dit
proefschrift]

2. Hoewel de natuurlijke grotten die in ontsluitingen worden waargenomen, worden
gevormd via verschillende complexe processen, dekt het samenspel van advectieve,
diffuse en reactieve massaoverdracht, uitgedrukt met het Damköhler- en Péclet-getal,
enkele van de aangetroffen grotgeometrieën. [Hoofdstuk 4 van dit proefschrift]

3. De effectiviteit van Adaptive Mesh Refinement-strategieën hangt sterk af van het
opgeloste fysieke proces en de heuristische verruwingscriteria. [Hoofdstuk 5 van dit
proefschrift]

4. Verzamelingen van reservoirmodellen vertonen vaak een aanzienlijke mate van
redundantie en maken het mogelijk een subset van representatieve modellen te
selecteren die redelijk nauwkeurig het gedrag van de volledige set modellen
beschrijven. [Hoofdstuk 6 van dit proefschrift]

5. Het belang van het begrijpen van logica, statistieken en hoe media en internet werken,
kan niet worden onderschat. Het moet zo vroeg mogelijk aan kinderen worden
geleerd.

6. Het leven is zinloos op kosmische schaal; dit betekent echter niet dat ons menselijk
leven helemaal zinloos is.

7. Met oneindige tijd kan iedereen elk onderwerp beheersen; stop nooit met leren en geef
nooit op.

8. Toegeven dat je ongelijk hebt, is een teken van kracht; je mening veranderen in het
licht van nieuw bewijs is de kern van de wetenschap en iets waar we in ons dagelijks
leven naar moeten streven.

9. Als samenleving moeten we het stigma van mislukking wegnemen; we moeten ernaar
streven, want hoe kunnen we onszelf ooit eerlijk kennen als we niet hebben gefaald?

10. Modelsynthese of golffunctie-instortingsalgoritme kan een interessant alternatief zijn
voor meerpuntsstatistieken voor het genereren van geologische reservoirmodellen.

These propositions are regarded as opposable and defendable, and have been approved as 
such by the promotors dr. D.V. Voskov, prof. dr. G. Bertotti, and dr. A. Barnhoorn. 
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Life can only be understood backwards; but it must be lived forwards.

Søren Kierkegaard

Without music, life would be a mistake.

Friedrich Nietzsche

If a lion could speak, we could not understand him.

Ludwig Wittgenstein

“I wish it need not have happened in my time,” said Frodo. “So do I,” said Gandalf, “and
so do all who live to see such times. But that is not for them to decide. All we have to

decide is what to do with the time that is given us.”

John Ronald Reuel Tolkien
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SUMMARY

Society relies on large amounts of energy to progress and allow for a high standard of liv-
ing. The recent severe climate changes require advance technologies related to cleaner
energy resources. One such technology beneficial for accelerating this current energy
transition is geothermal energy. This type of energy often found in fractured and karsti-
fied carbonate aquifers. It is vital to understand the reservoir properties and reduce the
risks of such subsurface-related activities. This thesis attempts to better understand the
complex fractured carbonate reservoirs and improve the numerical simulation capabil-
ities towards large-scale uncertainty quantification.

In Chapter 2 all the relevant mathematical equations used in this work are intro-
duced. These equations are all discretized within the Delft Advanced Research Terra
Simulator (DARTS) platform, developed at the Delft University of Technology. The result-
ing nonlinear system of equations is then linearized using the Operator-Based Lineariza-
tion technique. The main advantage of this modeling approach is fast and straightfor-
ward partial derivatives. The porosity treatment when dissolving the rock matrix is also
described in Chapter 2.

Chapter 3 shows the advance DFM capabilities and introduces a preprocessing strat-
egy to handle complex (natural) fracture networks with variable fracture apertures. The
preprocessing framework results in a fully conformal, uniformly distributed grid for re-
alistic 2D fracture networks at a required level of precision. The simplified geometry
and topology of the resulting network are compared with input (i.e., unchanged) data to
evaluate the preprocessing influence. The simplified topology directly improves mesh-
ing results and, consequently, the accuracy and efficiency of numerical simulation.

Chapter 4 provides some background on the acquired LiDAR data sets and post-
processing techniques that extract and analyze the internal geometry of the caves. Very
regular and consistent cave passages are observed in the shape analysis. This chapter
also investigates dissolution in a fracture network and varies several parameters to in-
vestigate the instigated patterns in different hydraulic and chemical regimes. Finally,
these numerical simulation results are compared with the patterns observed in the Li-
DAR data.

Chapter 5 describes the AMR implementation in DARTS. Classical multi-scale prob-
lems arrive naturally from geoscience applications. Most effort has been put into solving
the pressure equation with multi-scale methods. However, improving the transport so-
lution can be pretty significant for the performance of the simulation, especially in com-
plex applications related to thermal-compositional flow. The use of an Adaptive Mesh
Refinement enables the grid to adapt dynamically during the simulation, which facili-
tates the efficient use of computational resources. The approach uses a multi-level con-
nection list and can be applied to fully unstructured grids. The adaptivity of the grid in
the developed framework is based on a hierarchical connectivity list. The performance

xi



xii SUMMARY

of the proposed approach is illustrated for several challenging geothermal applications
of practical interest.

Chapter 6 describes a fast and robust scheme for uncertainty quantification (UQ)
in fractured reservoirs. This is achieved by creating a simplified representation of the
fracture network while preserving the main characteristics of the high-fidelity model.
Information at different scales is included in the UQ workflow, which reduces the com-
putational time while converging to the high-fidelity full ensemble statistics. The pre-
processing algorithm allows for a hierarchical representation of the fracture network,
which is utilized in the reduced UQ methodology. The reduced UQ workflow uses the
coarser representation of the fracture networks to partition/rank the high-fidelity pa-
rameter space. Then a small subset of high-fidelity models is chosen to represent the full
ensemble statistics. As a result of this, the computational time of the UQ is reduced by
two/three orders of magnitude while converging to similar statistics as the high-fidelity
complete ensemble statistics.



SAMENVATTING

De samenleving is afhankelijk van grote hoeveelheden energie om vooruitgang te boe-
ken en een hoge levensstandaard mogelijk te maken. De recente ernstige klimaatver-
anderingen vereisen geavanceerde technologieën met betrekking tot schonere energie-
bronnen. Een dergelijke technologie die gunstig is voor het versnellen van deze huidige
energietransitie, is geothermische energie. Dit type energie wordt vaak aangetroffen in
gebroken en gekarstificeerde carbonaatwatervoerende lagen. Het is van vitaal belang
om de eigenschappen van het reservoir te begrijpen en de risico’s van dergelijke onder-
grondse activiteiten te verminderen. Dit proefschrift probeert de complexe gefractu-
reerde carbonaatreservoirs beter te begrijpen en de numerieke simulatiemogelijkheden
voor grootschalige onzekerheidskwantificering te verbeteren.

In Hoofdstuk 2 worden alle relevante wiskundige vergelijkingen geïntroduceerd die
in dit werk worden gebruikt. Deze vergelijkingen worden allemaal gediscretiseerd bin-
nen het Delft Advanced Research Terra Simulator (DARTS) platform, ontwikkeld aan de
TU Delft. Het resulterende niet-lineaire systeem van vergelijkingen wordt vervolgens
gelineariseerd met behulp van de Operator-Based Linearization-techniek (OBL). Het be-
langrijkste voordeel van deze modelleringsaanpak is snelle en ongecompliceerde parti-
ële afgeleiden. De porositeitsbehandeling bij het oplossen van de gesteentematrix wordt
ook beschreven in Hoofdstuk 2.

Hoofdstuk 3 toont de geavanceerde DFM-mogelijkheden en introduceert een pre-
processingstrategie om complexe (natuurlijke) breuknetwerken met variabele breukope-
ningen te verwerken. Het preprocessing-raamwerk resulteert in een volledig conform,
uniform verdeeld raster voor realistische 2D-breuknetwerken met een vereist precisieni-
veau. De vereenvoudigde geometrie en topologie van het resulterende netwerk worden
vergeleken met invoergegevens (d.w.z. ongewijzigde) om de invloed van de voorbewer-
king te evalueren. De vereenvoudigde topologie verbetert direct de meshing-resultaten
en bijgevolg de nauwkeurigheid en efficiëntie van numerieke simulatie.

Hoofdstuk 4 geeft wat achtergrondinformatie over de verkregen LiDAR-gegevenssets
en nabewerkingstechnieken die de interne geometrie van de grotten extraheren en ana-
lyseren. In de vormanalyse worden zeer regelmatige en consistente grotpassages waar-
genomen. Dit hoofdstuk onderzoekt ook het oplossen in een breuknetwerk en varieert
verschillende parameters om de geïnitieerde patronen in verschillende hydraulische en
chemische regimes te onderzoeken. Ten slotte worden deze numerieke simulatieresul-
taten vergeleken met de patronen die zijn waargenomen in de LiDAR-gegevens.

Hoofdstuk 5 beschrijft de AMR-implementatie in DARTS. Klassieke meerschalige pro-
blemen komen natuurlijk voort uit geowetenschappelijke toepassingen. De meeste moeite
is gedaan om de drukvergelijking op te lossen met multischaalmethoden. Het verbe-
teren van de transportoplossing kan echter behoorlijk belangrijk zijn voor de prestaties
van de simulatie, vooral in complexe toepassingen die verband houden met thermische-
compositionele stroming. Het gebruik van een Adaptive Mesh Refinement stelt het ras-
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xiv SAMENVATTING

ter in staat zich dynamisch aan te passen tijdens de simulatie, wat een efficiënt gebruik
van computationele middelen mogelijk maakt. De aanpak maakt gebruik van een ver-
bindingslijst met meerdere niveaus en kan worden toegepast op volledig ongestructu-
reerde netten. De adaptiviteit van het raster in het ontwikkelde raamwerk is gebaseerd
op een hiërarchische connectiviteitslijst. De prestaties van de voorgestelde aanpak wor-
den geïllustreerd voor verschillende uitdagende geothermische toepassingen van prak-
tisch belang.

Hoofdstuk 6 beschrijft een snel en robuust schema voor onzekerheidskwantificering
(UQ) in gebroken reservoirs. Dit wordt bereikt door een vereenvoudigde weergave van
het breuknetwerk te creëren met behoud van de belangrijkste kenmerken van het high-
fidelity-model. Informatie op verschillende schalen is opgenomen in de UQ-workflow,
waardoor de rekentijd wordt verkort en tegelijkertijd wordt geconverteerd naar de high-
fidelity volledige ensemble-statistieken. Het voorbewerkingsalgoritme zorgt voor een
hiërarchische weergave van het breuknetwerk, dat wordt gebruikt in de gereduceerde
UQ-methodologie. De verminderde UQ-workflow gebruikt de grovere weergave van
de breuknetwerken om de high-fidelity parameterruimte te partitioneren/rangschikken.
Vervolgens wordt een kleine subset van high-fidelity-modellen gekozen om de volledige
ensemble-statistieken weer te geven. Als resultaat hiervan wordt de rekentijd van de UQ
verminderd met twee/drie orden van grootte, terwijl het convergeert naar vergelijkbare
statistieken als de high-fidelity complete ensemble-statistieken.
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1
INTRODUCTION

1.1. SOCIETAL RELEVANCE
The availability of energy is of monumental importance to modern society. It is utilized
for industry, agriculture, transportation, households, and often used as an index for a
standard of living (Joyeux & Ripple, 2007). Energy consumption has been steadily grow-
ing for the past decades, especially in developing countries (Kaygusuz, 2012). A large
amount of this consumption still relies on fossil fuels (IEA, 2020). To meet the current
climate goals, we need to improve our use of the earth’s subsurface for cleaner energy
applications and storage solutions.

The current and future (i.e., prognoses) primary energy demand is shown in Fig-
ure 1.1. The different scenarios in Figure 1.1 are Stated Policies Scenario (STEPS), De-
layed Recovery Scenario (DRS), Sustainable Development Scenario (SDS), and Net Zero
Emissions by 2050 (NZE2050). STEPS is under the current policy settings. DRS takes
a more prolonged recovery from the COVID pandemic into account (i.e., longer than
2021). SDS requires a structural transformation of the energy section, alongside signifi-
cant investment in more efficient and cleaner capital stock. A large part of this scenario is
tailored to developing countries. The next very ambitious energy sector transformation,
NZE2050, will result in a net-zero emission by 2050. This requires a significant further
acceleration in the deployment of clean energy technologies alongside wide-ranging be-
havioral changes (IEA, 2020).

The report by Fleiter et al., 2016 shows that EU-28 countries use 26.5% of their total
primary energy for heating and cooling, of which 66% is reliant on fossil fuels. Space
heating is the most significant contributor, resulting in around 63.6% of the heating and
cooling energy consumption (Eurostat, 2020). A sustainable solution to this problem is
expanding the District Heating and Cooling Networks (DHC) (Arnaudo et al., 2021; Ar-
naudo et al., 2019). A significant reduction in carbon emissions can therefore be achieved
by utilizing DHC in the heating sector, especially considering the substantial worldwide
geothermal energy potential (Limberger et al., 2018). Therefore, geothermal energy plays
a vital role in reaching the NZE2050 scenario.

1



1

2 1. INTRODUCTION

Figure 1.1 Current and future primary energy demand. The different scenarios are: Stated Policies Scenario
(STEPS); Delayed Recovery Scenario (DRS); Sustainable Development Scenario (SDS); and Net Zero Emissions by
2050 (NZE2050). Taken from IEA, 2020.

Technical challenges to geothermal energy recovery are often related to hydro-geochemical
effects such as precipitation due to temperature reduction by cold-water injection and
the inability to properly characterize the reservoir properties (i.e., faults, fractures, per-
meability, thermal properties). This increases the risks associated with geothermal projects
and further limits their widespread use (Compernolle et al., 2019; Witter et al., 2019). Es-
pecially challenging reservoirs constitute carbonate reservoirs. They host a large part
of the world’s hydrocarbon reserves (Akbar et al., 2000) and are currently heavily inves-
tigated in the Netherlands for their geothermal energy potential (Reijmer et al., 2017).
These reservoirs are often chemically (i.e., karstified) and mechanically (i.e., fractured)
altered, resulting in unpredicted hazards. The fluid-flow response and mechanical be-
havior of these Naturally Fractured Reservoirs (NFR) are highly uncertain due to our
limited ability to predict the spatial distribution of fracture networks and karst at the
reservoir scale. Performing adequate risk and uncertainty quantification is necessary
due to the increasing environmental awareness and regulations. Therefore, we need to
understand these fractured and karstified reservoirs better and improve our numerical
models.

1.2. NATURAL FRACTURE NETWORKS
Rocks in the subsurface are often naturally fractured as a result of brittle deformation
(Bai et al., 2002; Bertotti et al., 2017). Natural fractures typically form in networks and
are spatially variable (Laubach et al., 2009). This variability has a significant effect on
the relevant flow and mechanical properties of the entire reservoir (rock) (Nelson, 2001;
Rijken, 2005). Cemented fractures and sealing faults can act as barriers to flow-fluid
(Antonellini & Aydin, 1994; Gale et al., 2007), while open fractures increase the effective
permeability of the bulk material (Council et al., 1996; Vidal & Genter, 2018; Wang et al.,
2002).

Accurate estimates on the characteristics of the fracture network are required in or-
der to make meaningful predictions on fluid-flow patterns, heat and reactive transport,
as well as mechanical stability at the reservoir-scale (Olson et al., 2009; Wang et al.,
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2021; Zhao & Paul Young, 2011). Typical sources of information on these characteris-
tics include data from the well, such as borehole images, logs, cores, and transient pres-
sure records. Well-data is severely limited to the near-well region, subject to biased and
sparse sampling, and is an indirect measurement that shows the interplay between var-
ious sources of heterogeneity (Cinco-Ley, 1996; Wu & Pollard, 2002). Seismic images of
the subsurface are not refined enough to reveal the 3D distribution, geometry, and con-
nectivity of the fracture networks and only provide the context of the presence of large-
scale faults (Liu & Martinez, 2014). Seismic attributes extracted from a high-resolution
seismic survey only provide insights into the intensity of the fracturing (Boersma et al.,
2020; Jaglan et al., 2015).

Furthermore, there is outcrop data in the form of drone photogrammetry or scan-
lines (Bisdom et al., 2014; Lamarche et al., 2012; Zeeb et al., 2013). These methods pro-
vide excellent information on the 2D and potential pseudo-3D characteristics of the frac-
ture network (Bisdom et al., 2017). However, there is not always a one-to-one correspon-
dence with the state of the fracture network in the subsurface (Li et al., 2018; McGinnis
et al., 2015), and the various processes that potentially affect the fracture characteristics
during their journey to the surface should be accounted for (Bertotti et al., 2017; Fossen,
2016). A major downside of large-scale outcrop images of fracture networks acquired
with drone photogrammetry is that manual interpretation is often required to get a ge-
ologically realistic picture of the fracture network. However, this is subject to interpre-
tation bias and can lead to a time-consuming endeavor. Recent advances in automatic
fracture detection allow for the use of large-scale outcrop images in fracture network
characterization in a timely manner (Prabhakaran et al., 2021). There are also forward
models and laboratory experiments that attempt to reveal the effect of layering and lo-
cal stress perturbations on different fracture network geometries (Boersma et al., 2018;
Douma et al., 2019; Rijken, 2005).

The generation of discrete fracture networks (DFN) is often done using statistical
tools that require fracture size and spacing, a (random) distribution of fracture orienta-
tion, and fracture density as input parameters (Bonneau et al., 2013; Chilès, 2005; Huang
et al., 2017a). These methods often poorly consider fracture connectivity and geological
realism (Liu et al., 2009). Recent developments related to multiple-point statistics (MPS)
show more realistic fracture network configurations (Bruna et al., 2019; Chugunova et al.,
2017). Chapter 6 of this thesis highlights a simple alternative fracture network generation
approach that attempts to capture accurate fracture intersections and connectivity.

1.3. CONCEPTUAL AND QUANTITATIVE KARST MODELS

1.3.1. EPIGENIC VS. HYPOGENIC KARST

Speleogenesis and karstology have been rapidly evolving regarding empirical data ac-
quisition and the theoretical framework. Karst formation is typically subdivided into an
epigenic and hypogenic realm (Palmer, 2011). Epigenic karst is formed in a (hydrauli-
cally) open system with direct contact to the surface, typically from enhanced dissolu-
tion by carbonic acid in shallow meteoric waters. Epigenic karst generally evolves via lat-
eral flow in the shallow (undersaturated) subsurface, where topographical lows primar-
ily govern the hydrology. Conduit development occurs according to positive-feedback
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mechanisms, mainly competing evolution of porosity alterations rather than uniform
dissolution resulting in a branching structure (Klimchouk, 2012).

Although the definition of hypogenic karst differs among authors, two significant dis-
tinctions can be made. The emphasis of the first definition lies on the source of aggres-
siveness of the fluid, particularly that the aggressiveness originated at depth and is there-
fore independent from overlying soil CO2 and is generally referred to as the “geochemical
definition” (Palmer & Palmer, 2000). The second definition of hypogenic karst is guided
by hydrogeology. It stresses the importance of ascending fluids recharging the soluble
formation from hydro-stratigraphically lower units. In addition, the fluids and aggres-
siveness are derived from deeper parts of the basin and independent from the surface
(Klimchouk, 2015). Since there are morphological and sedimentological features, as well
as mineralogical criteria distinct to hypogenic karst, a division between the two realms
can be made based on these three norms (Klimchouk, 2009).

A recent compilation of outcrop studies involving hypogenic karst illustrates the aca-
demic interest in understanding the formation and spatial distribution of the karst fea-
tures (Klimchouk et al., 2017). However, quantitative models and datasets used to ex-
plain the proposed hypothesis are areas in which progress can be made. Attempts to
quantify time scales associated with hypogenic karst have taken place based on simple
volume balances (Palmer, 2011), but extensions of this pragmatic approach to realistic
configurations are required. A quantitative database and characterization of cave envi-
ronments and patterns is currently investigated (Collon et al., 2017; Jouves et al., 2017).
It is proposed by Jouves et al., 2017 to benchmark stochastically generated cave patterns
using topology and the underlying cave morphology and establishes their realism. Jou-
ves et al., 2017 also states that the Angular Maze (AM) cave pattern exhibits the highest
topological complexity and assigns it to the type of flow and source of aggressiveness.

1.3.2. CONCEPTUAL HYPOGENIC MODELS

Figure 1.2 depicts a variety of conceptual models used in literature to explain (trans-
verse) hypogenic speleogenesis. Upwards flow of warm CO2-enriched water along a sol-
uble inclined fractured aquifer can lead to a “staircase” dissolution pattern (which re-
motely resembles dissolution patterns observed in the Morro Vermelho cave) (Ford &
Williams, 1989; Klimchouk, 2007) (Figure 1.2(A)). Recharge from deep sources through
more extensive vertical fractures (often denoted as feeders) into a sub-horizontal sol-
uble fractured aquifer capped with an impermeable layer can lead to prevalent hori-
zontal cave formations (Klimchouk et al., 2016) (Figure 1.2(B)). Another model exists to
describe cave formation in a multi-story aquifer with abundant connected vertical frac-
tures where free convection plays an essential role in the resulting geometry (Klimchouk,
2007, 2012) (Figure 1.2(C)).

Besides considerable structural aspects, several underlying mechanisms are proposed
for calcium carbonate dissolution at depth. An important factor is the presence of dis-
solved CO2 creating an acidic environment and vastly increasing the reaction rate and
the amount of dissolved CaCO3. The increase in pressure mainly causes increased sol-
ubility of CO2 with depth, while increasing temperature with depth attempts to coun-
teract this, resulting in a nonlinear behavior as a function of depth (Klimchouk, 2007)
(Figure 1.3(A)). Calcite solubility is not much affected by pressure. However, it is sig-
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Figure 1.2 Several conceptual models for (transverse) hypogenic speleogenesis. Figure (A) after (Ford & Williams,
1989; Klimchouk, 2007), “staircase“ like dissolution patterns resembling observations from the Morro Vermelho
cave (chapter 4). Figure (B) after (Klimchouk et al., 2016). Figure (C) after (Klimchouk, 2007, 2012).
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(A) (B) (C)

Figure 1.3 Illustration of several dissolution mechanisms. Figure (A) and (B) describe the CO2 and CaCO3 solu-
bility with depth (after Dublyansky, 2000; Klimchouk, 2007). Figure (C) shows the typical nonlinear behavior of
calcite and dolomite as a function of CO2 or H2S (Palmer, 1991).

nificantly reduced by increasing temperature (i.e., CaCO3 dissolution is an exothermic
reaction, which produces heat; therefore, the increasing temperature reduces the cal-
cite solubility). Low temperatures results in substantial solubility in the shallow subsur-
face (i.e., <500m depth) while solubility significantly decreases with depth (Dublyansky,
2000) (Figure 1.3(B)). Note, however, that if a solution at depth (at equilibrium with sur-
rounding rock) migrates upward, it has a significant potential to dissolve (due to low
dissolved CaCO3 ions and increased solubility with a decrease in temperature. Another
mechanism is mixing corrosion caused by mixing two fluids that are at equilibrium com-
position (i.e., saturated), resulting in a fluid that is undersaturated (Palmer, 1991) (Fig-
ure 1.3(C)).

1.3.3. QUANTITATIVE HYPOGENIC MODELS
Early numerical modeling efforts of karst evolution date back to works from Dreybrodt,
1990, Sauter, 1992, Clemens et al., 1997 and Gabrovšek and Dreybrodt, 2001. These
works provide elaborate details on the reaction mechanisms occurring in the dissolution
process and consist of 1D and 2D modeling domains. Later efforts by Annable, 2003,
Kaufmann, 2009, Kaufmann et al., 2010, and Hiller et al., 2011 extended the work to a
3D modeling domain. Typical mathematical formulations in these works consist of the
transient pressure equation. A system of pipes generally represents flow in fractures or
karst conduits, and the chemical processes are solved using a one-way coupling. In most
of the previous works, the flow in the matrix is disregarded, except for the recent paper
by Kaufmann, 2016. Generally, the coupling of thermal effects and changes in the stress
state due to dissolution are neglected. Also, the main application of the previous works
can be considered epigenic karst.

Modeling efforts more applicable to hypogenic karst development, also considering
the importance of a vertical flow component, are recognized and can be, roughly, char-
acterized into two sets of works: multi-level aquifer system (Birk et al., 2003; Rehrl et
al., 2010; Rehrl et al., 2008) and hydrothermal (Andre & Rajaram, 2005; Chaudhuri et
al., 2013; Rajaram et al., 2009). The results of these modeling efforts seem very promis-
ing in predicting potential karst manifestation and evolution in the subsurface. Still,
a fully coupled approach honoring all physical processes involved and including accu-
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rate representation of the fracture networks and heterogeneities can be improved. For
a complete overview of the previous numerical studies regarding conduit development
in karst, the reader is referred to the Introduction of Rehrl et al., 2008. The main limita-
tions of the previously mentioned work are the negligence of solution enlargement in the
continuum model (i.e., matrix and fractures), and the conduit development is initiated
at relatively few discontinuities which are predetermined (Rehrl et al., 2008).

Typical chemical kinetics employed in numerical models consist of the set of clas-
sical papers by Plummer and Wigley, 1976; Plummer et al., 1979; Plummer et al., 1978.
Other works Buhmann and Dreybrodt, 1985; Svensson and Dreybrodt, 1992 are also used
to describe chemical kinetics, either derived experimentally or analytically. More re-
cent experimental studies include a wider description of the involved fluid chemistry
(Morse et al., 2007) and (Saldi et al., 2017), range of pressure and temperature represent-
ing actual reservoir conditions (Peng et al., 2015), more realistic rock samples (Kirstein et
al., 2016), (Greiserman et al., 2016) and Non-Darcy flow (CHEN, 2011). Experiments on
wormhole formation are extensive (Bazin, 2001; Bazin & Abdulahad, 1999; Wang et al.,
1993) and various wormhole regimes are identified using both laboratory and numerical
experiments (Golfier et al., 2002).

1.4. THESIS OBJECTIVES
Numerical reservoir simulation is vital in developing subsurface resources and making
accurate predictions. Furthermore, being efficient and accurate is essential in minimiz-
ing the risks associated with such endeavors. Gaining a better understanding of the com-
plex fluid-rock interactions and improving our reservoir models constitute an essential
contribution to this thesis. The objectives can be summarized in the following points:

• Utilizing the current capabilities of the Delft Advanced Research Terra Simulator
(DARTS) platform and extending it with the implementation of advanced mesh-
ing and fracture modeling abilities. This includes the Discrete Fracture Model
(DFM) proposed for general-purpose reservoir simulation by Karimi-Fard et al.,
2004. This also includes the handling of complex natural fracture networks from
outcrop observations or stochastically generated and resolving the well-known
meshing problems associated with these networks (Berre et al., 2019; Reichen-
berger et al., 2006).

• Implementing a reactive transport framework constitutes another objective. This
includes chemical and kinetic reactions combined with multi-phase mass and heat
transfer capacity. An important step is benchmarking these capabilities with other
numerical codes that attempt to solve the same physical problem.

• Combining the numerical domain with real-world observations is another vital
objective. Understanding the regimes and conditions which govern certain disso-
lution patterns is vital in understanding the complex fluid-rock interactions. Ac-
quisition of cave data sets using Light Detection And Ranging (LiDAR) technology
and analyzing their geometric patterns. This will comprise a large data set that can
be compared to dissolution patterns obtained from numerical simulation results
using DARTS.
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• Most processes related to reservoir simulation and reactive transport constitute
sharp local changes in the solution. This means that a faster simulation can be
obtained by applying Adaptive Mesh Refinement (AMR) without severely compro-
mising accuracy. Implementing this constitutes another objective for this project.

• All of these objectives come together in the last objective: fast and robust uncer-
tainty quantification. This will ultimately significantly reduce the risks associated
with the aforementioned subsurface activities.

1.5. THESIS OUTLINE
Chapter 2 describes all the relevant mathematical equations and discretization used in
DARTS and all the flow simulations in this work.

Chapter 3 shows the advanced DFM capabilities and proposes a preprocessing strat-
egy to handle complex (natural) fracture networks with variable apertures. The algo-
rithm is tested based on several complex geothermal scenarios (i.e., high-enthalpy steam-
water system), and static changes (e.g., topology and angle-distribution of the fractures)
are considered as well.

Chapter 4 provides some background on the acquired LiDAR data sets and post-
processing techniques that extract and analyze the internal geometry of the caves. This
chapter also investigates dissolution in a fracture network and varies several parameters
to investigate the instigated patterns in different chemical- and flow regimes.

Chapter 5 describes the AMR implementation in DARTS. It is implemented outside
of the simulation loop and can be generalized for any other existing reservoir simulation
tool. It is tested on several geothermal scenarios and wormholing phenomena occurring
in carbonate dissolution.

Chapter 6 describes a fast and robust scheme for uncertainty quantification in frac-
tured reservoirs. This includes utilizing the preprocessing strategy to create a hierar-
chical ensemble of possible reservoir models and simulating these on a coarser scale to
partition the ensemble and perform a reduced uncertainty quantification on a subset of
fine-scale models based on partition representatives.
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METHODOLOGY

2.1. GOVERNING EQUATIONS IN CONTINUOUS FORM
This section briefly covers the governing equations of the multiphase multi-component
reactive transport framework used for modelling efforts and expanded upon by this dis-
sertation. The main contributions here comprise chemical (i.e., equilibrium and kinetic)
formulation in the Operator-Based Linerization (OBL) approach and an efficient trans-
missibility update after porosity and permeability changes. All the fluid-flow and heat
transfer results throughout this thesis are obtained using the equations outlined below
which form the basis of the Delft Advanced Research Terra Simulator (DARTS) developed
at the Delft University of Technology (DARTS, 2019).

The basic mass balance equations including the effect of chemical reactions as source/sink
term following Kala and Voskov, 2020 are:

∂nc

∂t
+ lc +qc =

K∑
k=1

vck r K
k +

Q∑
q=1

vcq r Q
q , c = 1, . . . ,C +M , (2.1)

where C is a number of fluid species and M is the number of mineral species, nc is the
overall mass of component, lc is the total flux associated with that component, qc is the
total well flow rate associated with that component, vck is the stoichiometric coefficient
associated with kinetic reaction k for the component c and vcq is the stoichiometric coef-
ficient associated with equilibrium reaction q for component c, r K

k is the rate for kinetic

reaction and r Q
q is the equilibrium reaction rate.

The overall mass of components is defined as

nc =φT
P∑

j=1
(ρ j s j xc j ), c = 1, . . . ,C . (2.2)

Here P stands for the total number of fluid phases, ρ j is the density and s j is the satura-
tion of fluid phase j respectively, and xc j is the mole fraction of component c in phase

9
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j . This term indicates total mass of component c in all the fluid phases. For the solid
mineral components, we use the following relationship:

nm =φTρm zm , m =C +1, . . . , M , (2.3)

where r hom is the molar density of mineral phase m, ŝm is the mineral composition, and
the total porosity φT term will be explained later.

The term lc defines the flux of component c and is given as:

lc =∇·
P∑

j=1

(
ρ j xc j u j −ρ jφs j dc j∇xc j

)
, c = 1, . . . ,C , (2.4)

where the term dc j corresponds to the dispersion of component c in phase j . The term
uj is the velocity of the phase j and is defined by Darcy’s law:

uj =−K
kr j

µ j
(∇p −ρ j g∇h) j = 1, . . . ,P. (2.5)

Equation 2.1 can be written in a vector form:

∂n

∂t
+ l+q = VQrQ +VKrK, (2.6)

where n = (n1,. . . ,nC+M )T, l = (l1,. . . ,lC )T, q = (q1,. . . ,qC )T is the well flow rate, VQ and
VK are the stoichiometric matrix respectively for the equilibrium and kinetic reactions
while rQ = (r Q

1 ,. . . ,r Q
Q )T and rK = (r K

1 ,. . . ,r K
K )T are the equilibrium and kinetic reaction

rate vectors.
If chemical equilibrium reactions are included into the calculation, this means that

several chemical species can be in local equilibrium at each nonlinear iteration and
therefore the dimensionality of the physical system (i.e., the number of global equations
that are solved, C + M) can be reduced accordingly. This method in reactive transport
literature is known as the total concentration method Lichtner, 1996 where the global
equations are solved for primary species. In the reservoir simulation literature this is
typically referred to as element conservation Fan et al., 2012; Farshidi et al., 2013; Kala
and Voskov, 2020; Sriyanong, 2013. In the special case of having only equilibrium reac-
tions, it is possible to find a matrix E, also called the rate annihilation matrix, that lies in
the left nullspace of V such that EV = 0. In the general case of having both kinetic and
equilibrium reactions, the matrix is defined as

E =
[

EK

EQ

]
, (2.7)

such that

EVr =
[

EKVKrK

EQVQrQ

]
=

[
rK

0

]
, (2.8)

where EK is the part related to the kinetic reactions with size K ×nc and EQ is the part
related to the equilibrium reactions with size Q ×nc . Therefore, when multiplying equa-
tion (2.6) with the E matrix we obtain

∂EN

∂t
+EL =

[
rK

0

]
(K+ne )×1

, (2.9)



2.2. PHASE BEHAVIOR OF COMPOSITIONAL SYSTEM

2

11

where the first K equations are related to the kinetic equations present in the system
and the remaining ne equations are related to the element conservation equations (here
element refers to any entity that cannot be broken down into smaller pieces).

The following equation describes the conservation of energy required for the geother-
mal simulations:

∂

∂t

(
φ

P∑
p=1

ρp spUp + (1−φ)Ur

)
+∇

P∑
p=1

hpρp vp +∇(κ∇T )+
P∑

p=1
hpρp qp = 0, (2.10)

where Up is the internal energy of fluid phase p, Ur is the rock internal energy, hp is the
enthalpy of phase p, κ is the thermal conduction, and T is the temperature. All governing
assumptions and properties can be found in (Wang et al., 2021; Wang et al., 2020).

2.2. PHASE BEHAVIOR OF COMPOSITIONAL SYSTEM
The following equations are used for thermodynamic equilibrium of multicomponent
system. A component is in thermodynamic equilibrium if the chemical potential of the
components in both phases are equal:

fc1 − fc j = 0, c = 1, . . . ,C , j = 2, . . . ,P. (2.11)

The fugacity of a component in a particular phase is given by

fc j =φc j xc j p, c = 1, . . . ,C , j = 1, . . . ,P, (2.12)

whereφc j is the fugacity coefficient of an ideal mixture. Equation 2.11 can also be written
in terms of the partition coefficients Kc j =φc j /φc1:

Kc j xc,1 −xc j = 0, c = 1, . . . ,C , j = 2, . . . ,P. (2.13)

The system of equations (2.11) or (2.13) can be directly coupled with conservation
equations (2.6) and solved in a fully coupled manner using the global Newton solver.
Such formulation is often called global or natural formulation. However, when a new
phase appears in the process of simulation, the phase equilibrium should be calculated
based on the local approximation of the mass from equation (2.6).

The system of equations can be closed with the following algebraic constraints:

P∑
p=1

sp = 1, (2.14)

and
C∑

c=1
xc j = 1, j = 1. . . ,P (2.15)

In case of equilibrium reactions, we need to add the law of mass action to either
global or local systems (depends on the preferred nonlinear formulation) which is given
as:

Qq −Kq =ΠC
c=1a

vcq
cw −Kq = 0, q = 1, . . . ,Q. (2.16)
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Here Q is the number of equilibrium reactions, Qq is the reaction quotient whereas Kq is
the equilibrium reaction quotient or equilibrium solubility limit in case of dissolution/-
precipitation of minerals, acw is the activity of the component c in the aqueous phase,
and vcq is the reaction stoichiometric coefficient.

2.3. POROSITY TREATMENT
For an accurate treatment of solid phase dissolution and precipitation at the continuous
level, the treatment of the rock porosity should be adjusted. Conventionally the control
volume (denoted as bulk volume) is subdivided into two regions, void space (occupied
by all mobile phases, such as liquid and vapor phase) and solid skeleton (occupied by
immobile species, for example, carbonate rock).

In most contributions from the literature, the porosity φ depends on the concentra-
tions of the minerals according to the relationship:

φ= 1−
M∑

m=1

Mmcms

ρm
, (2.17)

where M is the number of reactive minerals, Mm is the molar mass of mineral m, ρm

is the mass density of mineral m and cms represents and the molar concentration of
mineral m.

In equation (2.17), it is not clear which properties are spatially correlated and which
are changing in time due to dissolution or precipitation reactions. Following the ap-
proach suggested in Farshidi, 2016, we can subdivide the volume of the solid skeleton
further into a reactive part which can be modified by chemical reactions and a non-
reactive part (which is unaltered by any chemical reaction, and therefore constant through-
out the simulation) (Figure 2.1).

𝑉𝑛𝑟𝑉𝑟

𝑉𝑓Precipitation

𝑉𝑛𝑟

𝑉𝑓

𝑉𝑟 = 0

𝑉𝑛𝑟

𝑉𝑟

𝑉𝑓 = 0

Dissolution

Figure 2.1 Schematic of the different (continuum) volumes in the computational domain. The domain consists
of three distinct regions, the fluid volume which is occupies by all the mobile phases (liquid and gaseous in the
case of two phase flow), the reactive volume which consist of solid phases that can react or precipitate, and finally
the nonreactive volume (the part of the control volume which doesn’t participate in any chemical reaction).

Mathematically this is expressed as follows

Vb =V f +Vr +Vnr , (2.18)

and Vr denotes reactive volume and Vnr represents the non-reactive volume (not altered
by any chemical reaction). Dividing this by the total (bulk) volume gives

1 =φ+φr +φnr =φT +φnr , (2.19)
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where φr represents the reactive volume fraction, φnr is the non-reactive volume frac-
tion, and φT is the total porosity defined as the sum of the fluid porosity and reactive
volume fraction. Since only the reactive volume and fluid porosity can change due to
chemical reactions, it follows directly that the total porosity remains constant through-
out simulation (when neglecting compressibility). This and the changes in volume frac-
tions due to precipitation and dissolution is illustrated in Figure 2.1.

Note that the fluid porosity can always be obtained with the following constitutive
equation

φ=φT
(
1−

M∑
m=1

ŝm

)
, (2.20)

where M is the number of solid phases (occupying the reactive volume fraction) and ŝm

is the saturation of solid phase. Please note that the sα is the fluid saturation (defined
over the pore volume) while ŝm is the solid saturation of mineral phase m (defined over
the pore and reactive rock volume).

Solid saturation in the total porosity formulation can be found with the following
equation

ŝm = Vr,m

Vr +V f
, (2.21)

where Vr,m is the volume of mineral phase m defined as

Vr,m = Mm

ρm
nr

m , (2.22)

where nr
m is the total number of moles of mineral m that can participate in any reaction.

This means that in the total porosity formulation, the molar concentration of mineral m
is defined as

ĉm = nr
m

Vr +V f
. (2.23)

and since

cms =
nr

m +nnr
m

Vb
= nr

m

V f +Vr

V f +Vr

Vb
+ nnr

m

Vb
= ĉmφ

T + nnr
m

Vb
, (2.24)

where nnr
m is the total number of moles of mineral m that cannot participate in any reac-

tion. Therefore, using eq. (2.17) and eq. (2.24), we get

φ= 1−
M∑

m=1

Mmcms

ρm

= 1−
M∑

m=1

Mm

ρm

(
ĉmφ

T + nnr
m

Vb

)
= 1−

M∑
m=1

ŝmφ
T −φnr

= (φT +φnr )−
M∑

m=1
ŝmφ

T −φnr

=φT
(
1−

M∑
m=1

ŝm

)
. (2.25)
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2.4. FLUID AND ROCK DESCRIPTION
The relative permeability functions used in throughout this thesis consist of the Brooks-
Corey description, more precisely

kr,α = ke
r,α

( sα− sr,α

1−∑
p∈P sr,p

)nα
, (2.26)

where kr,α is the relative permeability, ke
r,α is the maximum relative permeability, sr,α

is the residual saturation, and nα is the Corey exponent of phase α respectively. In the
absence of any residual saturation and P = {w, g } (i.e., liquid (water) and vapor (gas)
phase present as fluid phases in the system), this results in

kr w = ke
r w (sw )nw , (2.27)

for the water and

kr g = ke
r g (1− sw )ng , (2.28)

for the gas relative permeability.

For the phase density, a slightly compressible fluid is assumed, particularly

ρα = ρα,0(1+Cα(p −p0)). (2.29)

Here Cα is compressibility and ρα,0 is density at pressure p0. This is assumed to hold for
each of the three phases present in the system, water, gas, and solid. Additional physical
complexity can be obtained by adopting a fully compressible model for the gas phase.

2.5. DISCRETIZATION
After applying a finite-volume discretization on a general unstructured grid (using a two-
point flux approximation for the fluxes across interfaces with upstream weighting) and a
backward (implicit) Euler time discretization strategy we obtain the discretized conser-
vation equation (ignoring capillarity and gravity) for fluid species

V

∆t

[(
φT

P∑
j=1

(ρ j s j xc j )

)n+1

−
(
φT

P∑
j=1

(ρ j s j xc j )

)n]
−∑

l

(
P∑

j=1
x l

c jρ
l
jΓ

l
nrΓ

M ,l∆p

)

−∑
l

(
P∑

j=1
ρ jφs j dc jΓ

l
d∆xc j

)
+

P∑
j=1

ρ j xc j q j =V
K∑
k

vck r K
k +V

Q∑
q

vcq r Q
q , c = 1, . . . ,C

,

(2.30)
where Γl

nr is the static advective transmissibility component, ΓM ,l is the transmissibility
multiplier, and Γl

d is the static diffusive transmissibility compnent for interface l respec-
tively. The discretized conservation equation for the mineral species is given as follows

V

∆t

[(
φTρm zm

)n+1 − (
φTρm zm

)n
]
=V

K∑
k

vmk r K
k +V

Q∑
q

vmq r Q
q , m = 1, . . . , M (2.31)
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and the discretized energy conservation equation

V

∆t

[(
φ

P∑
j=1

ρ j s jU j + (1−φ)Ur

)n+1

−
(
φ

P∑
j=1

ρ j s jU j + (1−φ)Ur

)n]

−∑
l

(
P∑

j=1
hl

jρ
l
jΓ

l
nrΓ

M ,l∆p +Γl
c∆T l

)
+

P∑
j=1

h jρ j q j = 0

.

(2.32)

2.5.1. DISCRETE FRACTURE MODEL (DFM)
The general unstructured discretization follows the Discrete Fracture Model (DFM). The
ideas of the modern DFM approach can be found in Gureghian, 1975 where Finite El-
ement Methods (FEM) was applied, and in Helmig et al., 1997 where Finite Volume
Method (FVM) was used. In modern reservoir simulation, which includes highly im-
plicit time approximation using finite-volume discretization on unstructured grids, the
DFM methodology has been introduced by Karimi-Fard et al., 2004. This approach has
been implemented in Delft Advanced Research Terra Simulator (DARTS). In the DMF
approach, fractures are represented by a lower dimensional feature in the gridding do-
main (lines in 2D and planes in 3D). However, in the simulation domain the fractures are
assigned a width depending on their aperture (i.e., in a 3D comptutational domain each
fracture control volume is 3D as well) (Figure 2.2).

Physical Domain Grid Domain

(a) (b) (c)

Computational Domain

𝑛

𝑓𝑗

𝐶𝑗

𝐶𝑖

𝐴𝑖
𝐴𝑗

𝑓𝑖

𝐶0

𝐷𝑖 = 𝐶0𝐶𝑖

𝐷𝑗 = 𝐶0𝐶𝑗

Figure 2.2 Schematic representation of the DFM model (modified from Wang et al., 2021).

The transmissibility between any two control volumes is given by the following equa-
tion

Ti j =
αiα j

αi +α j
, (2.33)

where αi is given by

αi = Ai ki

Di
ni · fi , (2.34)

where Ai is the area of interface i , Di is the distance from the i -th cell to the i -th inter-
face, ni is the unit normal vector acting perpendicularly on the centroid of the i -th inter-
face, and fi is the unit vector through the centroid of the i -th interface and the centroid
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of the i -th grid block respectively. When more than two fractures intersect, the star-delta
transformation is applied. The small control volume of intersecting fractures are omit-
ted using the following two assumptions: k0 ≈ k1 and D0 << D1 therefore T01 = α1 and
T12 = (α1α2)/(α1 +α2), where the subscript 0 refers to the smaller intermediate volume
of the two intersecting fractures (1,2).

2.5.2. TRANSMISSIBILITY MULTIPLIER
Permeability is generally a function of porosity, grain-size distribution, tortuosity, and
specific surface area (Steefel et al., 2015). Dissolution and precipitation processes affect
rock characteristics and therefore the permeability. Changes in permeability are often
modeled as an explicit function of changes in porosity, ignoring other rock characteris-
tics. An example of this is the well-known and commonly used power-law approximation
of the Carman-Kozeny relation (Bear, 2013), given as follows

k = k0

(φT

φ0

)A
, (2.35)

where k is the current permeability, k0 is the initial permeability, φ0 is the initial fluid
porosity, and A is typically determined from experimental data (core experiments).

This simple expression for the porosity–permeability relations may not reflect the
complex relationship of porosity and permeability in geologic media that depends on
an interplay of many factors, such as pore size distribution, pore shapes, and connec-
tivity (Steefel et al., 2015; Verma & Pruess, 1988). However, laboratory experiments have
shown that modest reductions in porosity from mineral precipitation can cause large
reductions in permeability (Vaughan, 1987).

The non-reactive permeability is defined here as the maximum attainable perme-
ability, namely at φr = 0 or φ = φT . Which follows directly from plugging into equation
5.18

knr = k0

(φT

φ0

)A
. (2.36)

Furthermore, the geometric part of the transmissibility is defined in the following
way

Γ
(
ka

nr ,kb
nr ,φa,b

)
= Γnr

(
ka

nr ,kb
nr

)
·ΓM

(
φa,b

)
, (2.37)

where the superscripts indicate grid-block a and b, and the non-reactive part of the
transmissibility is defined as

Γnr
(
ka

nr ,kb
nr

)= αa
nrα

b
nr

αa
nr +αb

nr

. (2.38)

Here αi
nr is the projected non-reactive permeability of the i -th grid-block on the cur-

rently investigated interface, defined as

αi
nr =

Ai k i
nr

D i
ni · fi , (2.39)
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where Ai is the area of interface i , D i is the distance from the i -th cell to the i -th in-
terface, ni is the unit normal vector acting perpendicularly on the centroid of the i -th
interface, and fi is the unit vector through the centroid of the i -th interface and the cen-
troid of the i -th grid block respectively.

In the DARTS framework it is possible to use upstream weighed porosity for the trans-
missibility multiplier as well as interface weighed porosity for the multiplier. The inter-
face porosity used in the transmissibility multiplier is therefore defined as

φa,b =
{
φa , if pa > pb ,

φb , if pb > pa ,
(2.40)

in the case of upstream weighted or as

φa,b = φa +φb

2
(2.41)

in the case of interface averaged. The resulting multiplier is defined mathematically as
follows

ΓM
(
φa,b

)
=

(
φa,b

φT

)A

=
(
φT (1−∑M

m=1 ŝm)

φT

)A

=
(
1−

M∑
m=1

ŝm

)A
. (2.42)

It is clear that the ΓM is solely a function of the state, particularly the fluid porosity or
solid saturation in either block a, b, or both. Since in DARTS only a single state is known
at the time when operators are computed (precisely the upstream state), and the trans-
missibility multiplier is included in the flux operator, some adjustments are necessary.
An extra operator is generated, namely the porosity operator which is defined as

Φ(ω) = 1−
M∑
m

ŝm , (2.43)

where ω is the state vector (with pressure and compositions).
The multiplier is defined in such a way that it satisfies two conditions, namely

• ŝm = 0 →φ=φT → ΓM
(
φT

)
= 1, such that Γ

(
ka

nr ,kb
nr ,φa,b

)
= Γnr

(
ka

nr ,kb
nr

)
,

• ŝm = 1 →φ= 0 → ΓM
(
0
)
= 0 such that Γ= 0.

Since φ ∈ [0,φT ], the multiplier ΓM
(
φa,b

)
becomes a monotonically increasing function

on the closed interval [0,1], and for any solid saturation the transmissibility value can be
approximated and capture permeability changes due to dissolution/precipitation. Fur-
thermore, if a more complicated transmissibility multiplier is used, e.g. not the power
law approximation but the Carman-Kozeny relation, the transmissibility multiplier be-
comes a function of both the fluid porosity as well as the total porosity. Since the to-
tal porosity is space dependent, it is necessary to separate the multiplier into two parts
(space and state dependent).
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2.6. OPERATOR-BASED LINEARIZATION (OBL)
Operator-Based Linearization (OBL) is used to linearize the system of nonlinear con-
servation equations. OBL is a novel way of performing the linearization step. The dis-
crete form of the mathematical equations is grouped into state-dependent operators and
space-depended relations. The parameter space of the problem is discretized, where
each axis is split by the uniformly distributed set of supporting points. Any point in the
parameter space belongs to a certain hypercube bounded by supporting points. Next,
the nonlinear operators are subsequently calculated exactly in a set of supporting points
at a preprocessing stage or adaptively. At the simulation stage, the operators’ values and
their derivatives are evaluated using multi-linear interpolation inside a particular hyper-
cube in the parameter space where the specific simulation state belongs. The multi-
linear interpolation of the most nonlinear part of the governing equations provides sim-
ple, exact, and above all flexible Jacobian assemble for the nonlinear solution procedure.
Following Khait and Voskov, 2018a; Khait and Voskov, 2017; Voskov, 2017, the equations
in operator form are written as follows:

VφT [αc (ω)−αc (ωn)]−∆t
∑

l∈L(i )

P∑
j=1

[Γl
nrΓ

M ,lβl
c j (ωu)∆p l+φTΓl

dγ
l
j (ω)∆χc j ]+∆tV δc (ω) = 0.

(2.44)
where V is the control volume,ωn is the physical state of block i at the previous timestep,
ω is the physical state of block i at the new timestep,ωu is the physical state of upstream
block, and L(i ) is a set of interfaces for gridblock i .

With state-dependent operators defined as:

αc f (ω) =
(
1−

M∑
m=1

ŝm

)(
1+ cr (p −pr e f )

) np∑
j=1

xc jρ j s j , c = 1, . . . ,C ; (2.45)

αms (ω) = ρm zm , m = 1, . . . , M ; (2.46)

βc j (ω) = xc jρ j kr j /µ j , c = 1, . . . ,C , j = 1, . . . ,P ; (2.47)

γ j (ω) =
(
1−

M∑
m=1

ŝm

)(
1+ cr (p −pr e f )

)
s j , j = 1, . . . ,P ; (2.48)

χc j (ω) = Dc jρ j xc j , c = 1, . . . ,C , j = 1, . . . ,P ; (2.49)

δc (ω) =
np∑
j=1

vc j r j (ω), c = 1, . . . ,C . (2.50)

The discretized energy conservation equation in operator form can be written as:

Vφ0[αe f (ω)−αe f (ωn)]−∆t
∑

l∈L(i )

P∑
j=1

[Γlβl
e j (ωu)∆p l +Γl

dγ j (ω)∆χe j ]+∆tV δe (ω)

+ (1−φ0)V Ur [αer (ω)−αer (ωn)]−∆t
∑

l∈L(i )
(1−φ0)Γl

dκrαer (ω)∆χer = 0,

(2.51)
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where:

αe f (ω) =
(
1−

M∑
m=1

ŝm

)(
1+ cr (p −pr e f )

) P∑
j=1

ρ j s jU j ; (2.52)

βe j (ω) = h jρ j kr j /µ j , j = 1, . . . ,P ; (2.53)

χe j (ω) = κ j T j , j = 1, . . . ,P ; (2.54)

δe (ω) =
n j∑
j=1

ve j re j (ω) (2.55)

In addition, for accounting the energy of rock, three additional operators should be de-
fined:

αer i (ω) = Ur

1+ cr (p −pr e f )
, αer c (ω) = 1

1+ cr (p −pr e f )
, χer (ω) = Tr . (2.56)

αer i andαer c represent the rock internal energy and rock conduction, respectively. Ur is
a state-dependent parameter, thus these two rock energy terms are treated separately.





3
AN ADVANCED DISCRETE

FRACTURE METHODOLOGY FOR

FAST, ROBUST, AND ACCURATE

SIMULATION OF ENERGY

PRODUCTION FROM COMPLEX

FRACTURE NETWORKS

Fracture networks are abundant in subsurface applications (e.g., geothermal energy pro-
duction). Fractured reservoirs often have a very complex structure, making modeling flow
and transport in such networks slow and unstable. Consequently, this limits our ability
to perform uncertainty quantification and increases development costs and environmen-
tal risks. This study provides an advanced methodology for simulation based on Discrete
Fracture Model (DFM) approach. The preprocessing framework results in a fully confor-
mal, uniformly distributed grid for realistic 2D fracture networks at a required level of
precision. The simplified geometry and topology of the resulting network are compared
with input (i.e., unchanged) data to evaluate the preprocessing influence. The resulting
mesh-related parameters, such as volume distributions and orthogonality of control vol-
ume connections, are analyzed. Furthermore, changes in fluid-flow response related to
preprocessing are evaluated using a high-enthalpy two-phase flow geothermal simulator.
The simplified topology directly improves meshing results and, consequently, the accuracy
and efficiency of numerical simulation. The main novelty of this work is the introduction
of an automatic preprocessing framework allowing us to simplify the fracture network

Parts of this chapter have been published in Water Resources Research 58, e2021WR030743 (2022) de Hoop
et al., 2021b.
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down to required level of complexity and addition of a fracture aperture correction capable
of handling heterogeneous aperture distributions, low connectivity fracture networks, and
sealing fractures. The graph-based framework is fully open-source and explicitly resolves
small-angle intersections within the fracture network. A rigorous analysis of changes in
the static and dynamic impact of the preprocessing algorithm demonstrates that explicit
fracture representation can be computationally efficient, enabling their use in large-scale
uncertainty quantification studies.

3.1. INTRODUCTION
Many subsurface energy applications (e.g., geothermal energy production) rely on accu-
rate numerical simulations of fluid flow and mass or heat transport in fractured porous
media. A large class of methods is available for numerical modeling of fracture networks.
It may consist of various approaches to the homogenization of fractures network, in-
cluding Dual Porosity (Barenblatt, 1960; Warren & Root, 1963) and various MINC models
(Karimi-Fard et al., 2006; Pruess & Narasimhan, 1982), or different versions of Embedded
Discrete Fracture Models (EDFM) starting from already classic approaches (Hajibeygi et
al., 2011; Li & Lee, 2008) to projection-based technique (HosseiniMehr et al., 2020; Ţene
et al., 2017). Some hybrid versions combining EDFM with homogenized fractured net-
works at two different scales also exist (Li & Voskov, 2021).

Another class of model is Discrete Fracture Model (DFM), where fracture segments
are described as a lower-dimensional object on the mesh. The ideas of the modern DFM
approach can be found in Gureghian, 1975 where Finite Element Methods (FEM) was
applied, and in Helmig et al., 1997 where Finite Volume Method (FVM) was used. In
modern reservoir simulation, which includes highly implicit time approximation using
finite-volume discretization on unstructured grids, the DFM methodology has been in-
troduced by Karimi-Fard et al., 2004. The DFM approach is often preferred in detailed
geological studies due to its accuracy (Berre et al., 2019; Flemisch et al., 2018; Moinfar
et al., 2011; Wong et al., 2020). DFM models typically require a high meshing accuracy
to resolve the fracture networks’ complex geometry, thereby drastically increasing the
computational complexity and rendering them unusable for uncertainty quantification
purposes (Jung et al., 2013; Nejadi et al., 2017; Spooner et al., 2021). More recently, the
DFM approach in reservoir simulation has been enhanced for practical applications by
fully coupling geomechanics (Garipov et al., 2016) and fracture propagation (Gallyamov
et al., 2018). These complex physical processes typically require a fine modeling reso-
lution to capture all the effects, further exposing the limitations of incorporating uncer-
tainty quantification.

These limitations severely constrain the necessary low-risk, sustainable, and energy-
efficient subsurface activities that are desired. One of the main factors of the consider-
able computational complexity of DFM models is the meshing artifacts (i.e., skinny tri-
angles, small control volume sizes, and a large number of degrees of freedom) that result
from using conformal meshes and related convergence issues (Geiger & Matthäi, 2014;
Koohbor et al., 2020; Li & Li, 2019). Fracture network input data is typically acquired from
outcrop analysis or statistical models. In outcrop analysis, raw output, either by man-
ual or automatic interpretation, results in difficulties for the meshing software. These
meshing artifacts are highlighted in Figure 3.1 and are well known in the existing litera-
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(A) (B) (C)

(G)(F)(E)
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(H)
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100m

Figure 3.1 Fracture data acquisition, interpretation, and modeling steps. (A) and (E) Outcrop images obtained
from the Whitby and Brejoes fieldwork area. (B) and (F) Manual interpretation of the fracture networks. (C) and
(G) Conformal meshing results based on the raw interpretation. (D) and (H) is a zoom of the meshing artifacts
due to complex fracture interaction. (A) and (B) Taken from Houben et al., 2017. (E) and (F) Taken from Boersma
et al., 2019.

ture (Berre et al., 2019; Karimi-Fard & Durlofsky, 2016; Mallison et al., 2010; Mustapha &
Mustapha, 2007; Reichenberger et al., 2006).

Several preprocessing strategies have been proposed in the literature to address the
challenges of constructing a conformal mesh for complex natural fracture networks.
However, the investigation of a numerically convergent solution after applying the pre-
processing procedure, a thorough examination of the topology changes as a function of
discretization accuracy, and the application to uncertainty quantification have not been
adequately studied. Furthermore, in most existing methods, the meshing challenges re-
lated to fracture segments intersecting at a small angle are only implicitly resolved. For
example, in most studies, an algebraic constraint is used for merging nodes, but the an-
gle at which fractures intersect is not explicitly checked. This means that some meshing
issues are not resolved. Finally, in the existing fracture preprocessing methods, variabil-
ity of the fracture aperture is not taken into account.



3

24 3. ADVANCED DFM MODELING

Therefore, we have developed an open-source preprocessing framework that bor-
rows concepts from early work in this area (Koudina et al., 1998; Maryška et al., 2005) and
more recent approaches (Karimi-Fard & Durlofsky, 2016; Mallison et al., 2010; Mustapha
& Mustapha, 2007). It differs from other graph simplification works, such as Wellman
et al., 2009, where small (low permeable) fractures are iteratively removed. According
to prescribed algebraic constraints, our preprocessing procedure merges nodes and re-
solves fractures that intersect at a significantly small angle that would otherwise intro-
duce additional meshing challenges. To capture variable aperture distribution and low
connectivity networks, in addition to previous methodologies, an aperture correction is
added to the method presented here. Most of the operations are formulated using graph
theory, which results in simple bookkeeping of the incidence matrix operations (West
et al., 2001). Using the developed framework, we can create a fully conformal uniformly
distributed grid based on any realistic fracture network at the required level of accuracy.

Most data obtained from outcrop studies is in planar 2D view (Bisdom et al., 2017).
The available 3D data on fractures in the subsurface often consists of very coarse seismic
cubes or borehole imaging logs. The attributes of the seismic cube are often too coarse
to extract the exact fracture pattern, and the imaging logs only provide limited infor-
mation at the well location (Boersma et al., 2020). Therefore, this paper focuses on 2D
fracture characterization and the preprocessing technique, which improves the meshing
and subsequent fluid-flow modeling. We analyze the static and dynamic performance of
the preprocessing on changes in geometry and topology of the fracture network and re-
sulting mesh and changes in flow response. Ultimately, this leads to a robust way of con-
structing a hierarchy of DFMs for uncertainty quantification of natural fracture networks
(de Hoop & Voskov, 2021).

Notice that the main ingredients of the developed framework and flow modeling are
not limited to 2D and can be effectively applied for fully 3D fracture networks (as shown
by Karimi-Fard and Durlofsky, 2016 from which we borrow several concepts). In 3D, all
the fractures are represented by planes and discretized into segments (i.e., sub-planes)
using an unstructured mesh. The vertices and edges of the meshed fractures will con-
stitute the graph of the 3D fracture network, and the same preprocessing algorithm we
propose in this paper (i.e., merging nodes) can be applied. Fracture apertures can be
assigned to each edge of the discretized fracture, implying that the fracture aperture
correction could also be used. However, some difficulties (e.g., projection of fracture
aperture from the sub-plane to the edge and back) may introduce specific difficulties. A
more straightforward approach could be making several slices through the 3D volume,
projecting the fractures onto each slice and performing the same preprocessing on each
slice (Sanderson et al., 2019).

The paper is organized as follows. We start with the description of the input data used
in this study followed by the theory for preprocessing, topology analysis, and fluid flow
and energy transport modeling. Next, we describe all essential ingredients of the pro-
posed framework, including intersection, node merging, straightening, and removing
acute angles. The results section contains the analysis of the static and dynamic perfor-
mance of the preprocessing framework. We finish the paper with a detailed discussion
and conclusion.
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3.2. MATERIALS AND METHODS
The accurate numerical representation of fracture networks in the subsurface is not the
end goal of the modeling effort. The modeling objective is often to make better pre-
dictions on subsurface activities and their associated risks. Therefore, it is essential to
test our preprocessing framework accordingly. This is done by investigating the changes
introduced by the algorithm on the dynamic behavior of the subsurface (i.e., fluid flow
response). Mainly, geothermal energy production is chosen (i.e., injection of cold water
and production of hot water via a well doublet) to examine this. The methodology is pre-
sented here. First, a brief description of the fracture networks used in this work is given;
second is a brief introduction to graph theory; third, a brief theoretical background on
the topology of fracture networks is presented; fourth, the preprocessing method is pre-
sented; fifth, the relevant equations to model the physical processes are given; and, fi-
nally, the numerical approximation of governing equations is introduced.

3.2.1. FRACTURE NETWORK INPUT DATA
The performance of the preprocessing algorithm is examined for two realistic fracture
networks, a synthetic test case, and a variable aperture distribution applied to one of the
realistic fracture networks. The first is found in the Whitby Mudstone outcrop along the
cliff coast North of Whitby (UK) (Houben et al., 2017). The second example is the fracture
network observed in the carbonate outcrop in Brejões, Brazil (Boersma et al., 2019). Both
networks are interpreted by hand; however, the developed method would also be very
suitable for automatic fracture detection algorithms as presented in (Prabhakaran et al.,
2019). The synthetic test case consists of a high permeable matrix and low permeable
fractures with a narrow opening in the middle of the domain. The variable aperture
model is applied to the Whitby fracture network (Figure 3.2).

The outcrop images and the manual interpretation of the fracture networks are dis-
played in Figure 3.1. Both networks show good connectivity at first glance. The main
difference between the two networks is the angle at which the fractures intersect. In
the Brejoes network, this angle is around 60, while the angle is closer to 90 degrees for
the Whitby network. The proposed fracture networks significantly differ in scale (Bre-
joes 100-1000 m vs. Whitby 1-10 m scale). Both networks are scaled up to characteristic
reservoir size in a geothermal doublet system (Willems & Nick, 2019) by a scalar multi-
plication to preserve relative lengths and angles, which simplifies the static and dynamic
analysis. The scalar is chosen for each network such that the resulting length in the y-
direction is roughly 1000 [m] for both cases which is a typical distance between wells in
a geothermal doublet system. This scaling with a scalar multiplier can be safely done
because of the fractal nature of fracture networks (i.e., the same pattern exists at several
length scales) as discussed in Acuna and Yortsos, 1995.

For the dynamic analysis, it is assumed that the two realistic fracture network mod-
els have very low permeability (i.e., convective flow is mainly limited by the fracture net-
work) to ensure that the effect of changes to the fracture network on the flow response
can be observed. An important note is that not all manual interpretations record the
intersection between all fracture segments (i.e., only the end nodes of the fractures are
registered). This becomes important in the following section, where the graph is con-
structed based on the fracture network data. The two data arrays describing the frac-
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(A) (B) (C)

Figure 3.2 (A) and (B) Aperture distribution as a function of angle with the x-axis (i.e., E-W direction is zero
degree angle) (similar to Boersma et al., 2021). (C) Shows only the high-permeable fractures and illustrates that
variable aperture models can lead to low connectivity fracture networks.

ture networks used in this study can be found by the following link: https://github.com/
MakeLikePaperrr/Fracture-Preprocessing-Code.

To incorporate geological realism, a variable aperture distribution is applied to the
Whitby fracture network, similar to the aperture model in Boersma et al., 2021. The dis-
tribution and resulting apertures are visualized in Figure 3.2. Fractures oriented N-S
are highly permeable, while fractures oriented E-W are low permeable. Figure 3.2 also
depicts how a variable aperture leads to a much lower connectivity fracture network.
Choosing a cutoff around 13% of the maximum conductivity leads to a large number of
isolated fractures, hence, low connectivity.

3.2.2. GRAPH THEORY
As defined in Bollobás, 2013, a graph G is an ordered pair of disjoint sets (V ,E). The set
of all vertices of graph G is denoted as V =V (G), while the set of all edges of the graph G
is denoted as E = E(G). Edges of a graph join two vertices i and j such that (i , j ) ∈ E(G)
and i , j ∈V (G). If (i , j ) ∈ E(G), it implies that i and j are adjacent vertices of G , and i and
j are incident with the edge (i , j ) .

Important matrix representations of the graph G are the following four matrices:

1. Incidence matrix: B(G), which is a n×m matrix, where n is the number of vertices
and m the number of edges of the graph. As previously indicated, whenever a
vertex i is on an edge (i , ·), the vertex i is in incident with edge (i , ·). Hence Bi j = 1
if vertex i is on the j -th edge otherwise Bi j = 0;

2. Degree matrix: D(G), which is a n ×n matrix describing the number of edges at-
tached to each vertex. The degree matrix can be obtained using the follow equa-
tion D = diag

(
B1

)
, where diag(v) is a function that constructs a square matrix

with vector v on its diagonal, and 1 is a vector of ones with size m ×1. The degree
matrix denotes the number of edges leaving a specific vertex.

3. Adjacency matrix: A(G), which is a square n ×n matrix, where n is the number of

https://github.com/MakeLikePaperrr/Fracture-Preprocessing-Code
https://github.com/MakeLikePaperrr/Fracture-Preprocessing-Code
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vertices of the graph G . As previously mentioned, if the pair of vertices (i , j ) ∈ E(G),
they are said to be adjacent. Hence Ai j = 1 if vertices i and j are on the edge (i , j ).
Furthermore, for our purposes, it is assumed that the main diagonal is zero (i.e.,
Ai i = 0), which implies that no nodes are connected to itself. Note that A, B , and
D are related through the following equation A = BB T −D .

4. Discrete Laplacian matrix: L(G) which can be found via the following equation
L = D − A = 2D −BB T . This matrix will be used for an alternative connectivity
measure in the static analysis. The Discrete Laplacian is a matrix representation of
the relationships defined in a graph.

A typical input data array F that describes the fracture network contains the pairwise
x- and y-coordinates of each fracture segment in the network. The first step is to convert
this array into two different forms: an array that contains all the unique vertices in the
graph (i.e., V ) and the incidence matrix (B). This is done by using Algorithm 1 which
is found in the Appendix. An important assumption of this construction of V and B is
that no subsegments can intersect in other places than the vertices of the particular sub-
segments. As mentioned before, this is often not the case in the manual interpretation
of fracture networks; hence we need to calculate all possible intersections before apply-
ing Algorithm 1 shown in the Appendix. A simple intersection calculation algorithm is
provided in Section 3.2.4.

3.2.3. THE TOPOLOGY AND GEOMETRY OF FRACTURE NETWORKS
In this section, the required mathematical relations for performing the static analysis on
the effect of the preprocessing method on fracture networks are explained. Topology
is used to understand how the connectivity and abutment-intersection relations of the
fracture network are changing due to the preprocessing. Furthermore, it is also essential
to look at how several geometrical properties of the fracture network are changing (e.g.,
angles and lengths) through preprocessing.

Several authors have thoroughly investigated the application of topology to fracture
networks (Manzocchi, 2002; Sanderson & Nixon, 2015). Isolated nodes are typically de-
noted with an I, abutments are characterized by a Y-node, and X-nodes are used to in-
dicate intersecting fracture segments. This is illustrated in Figure 3.3. Translating the
type of nodes to the graph notation, node I is of degree one, node Y is of degree three,
and node X is degree four. In general, it is unusual that more than two lines intersect at
exactly one point. However, our preprocessing method merges nodes and causes several
nodes to have a degree > 4. This causes us to consider all intersections of node degrees
larger than four to be X type of nodes. This is used to plot the results in a ternary diagram
(as shown in Figure 3.3). Classifying the fracture networks topology in this way allows us
to use a proxy for the connectivity. Connectivity is often defined in this context as the
average number of intersections per line. This changes slightly when allowing for nodes
with a degree higher than four. Instead of the definition used in Balberg and Binenbaum,
1983

CL = 4
NY +NX

NI +NY
, (3.1)

where NI is the total number of I nodes, NY is the total number of Y nodes, and NX is
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I nodes

Y nodes

X nodes

I

Y X

Figure 3.3 Illustration of topology in fracture networks. After Sanderson and Nixon, 2015.

the total number of X nodes, we use

CL = 2

∑d
i wi Ni

NI +NY
, (3.2)

where wi are the weights, Ni the total number of i node types in the network, and
i = {Y , X , X+, X ++ . . .}. X+ represents a vertex which is one degree higher than an X (i.e.,
degree five instead of four), X ++ two degrees higher, etc. The weights are determined
by the number of lines (but not edges) involved in the vertex type (e.g., NY involves two
lines therefore wY = 2 while NX++ involves six edges and hence three lines therefore
wX++ = 3). Please also note that all vertices of degree two are not used nor important in
this analysis (i.e., a curved or a straight line are topologically the same).

An alternative connectivity measure is obtained by using the Discrete Laplacian of
the graph. This matrix can be used for finding spanning trees of a given graph (i.e.,
connected fracture sets in the fracture network). Notably, each element of the Lapla-
cian’s null-space rational basis describes a connected component of the graph (Spiel-
man, 2010). With this basis, we can find the number of connected fracture sets in our
network and also each fracture that belongs to these components (i.e., sub-graphs). The
connectivity measure is then calculated as the ratio between the cumulative length of the
fractures in the largest spanning cluster and the cumulative length of all the fractures in
the full network.

Geometrical properties such as angles and lengths of the fractures are obtained using
simple trigonometry rules. An easy and fast way to calculate the angles of a fracture
relative to the x-axis is to decompose the fracture into two components (i.e.,∆x = x2−x1

and ∆y = y2 − y1). Then, the angle can be obtained using the following equation

θ = arctan
( ∆y

∆x +ϵ
)
, (3.3)

where ϵ is a small perturbation to prevent the case of ∆x = 0.
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Figure 3.4 Illustration of the steps in the preprocessing workflow, from the raw data to a fully processed fracture
network. The partitioning and node merging steps are a function of l f while the acute angle and straighten steps
are a function of θa,mi n and θs,mi n respectively. The smaller the l f , the more precise the preprocessed network
represents the raw data. However, small l f means that the subsequent steps in the algorithm take substantially
more time.

3.2.4. PREPROCESSING ALGORITHM

For an accurate and efficient graph-based approach, a correct graph representation of
the fracture network is necessary. Since not all intersections are always given via the frac-
ture network’s geological (or automatic) interpretation, we need to calculate all the inter-
sections to construct the correct graph for a fracture network. After finding all the inter-
sections, the large fractures are partitioned into smaller fracture segments with length l f .
Then, any two nodes that are too close in proximity are merged. Subsequently, segments
that intersect at an angle below a certain threshold denoted as θa,mi n are merged as well.
Furthermore, an optional straightening of the fractures can be applied to simplify the
meshing procedure further if fractures intersect within [180−θs,mi n ,180+θs,mi n]. These
steps are illustrated in Figure 3.4 and thoroughly explained in the following sections.
Lastly, an aperture correction procedure is proposed, which deals with variable aper-
tures and connecting previously disconnected fractures.
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INTERSECTIONS

Here the intersection detection method is described. The intersections are found by
checking all combinations of any two edges. The combinations can be found via the
binomial formula. All edges are parameterized, and a 2× 2 linear system is solved for
each pair of edges. Any intersection that occurs splits the two edges into four, and a
vertex is added.

Let X =V ∈Rn×d be the set of coordinates in the physical space of all unique vertices
in the graph, where n is the number of vertices and d is the dimension of the physical
space associated with the graph (i.e., fracture network). Then, let P = E ∈ Rm×2 be the
set of all edges in the graph, where m is the number of edges and 2 represents the number
of vertices associated with each edge. In other words, the j -th element of P , p j ∈N2×1,
represents the set of two natural numbers associated with the two vertices of edge j . This
means that X (p1

j ) =V (p1
j , ·) = x1

j and X (p2
j ) =V (p2

j , ·) = x2
j , where x1

j ,x2
j ∈Rd are the two

vertices associated with edge j .
Finding all the intersections between any two edges, without any assumption on the

location or orientation of the edge, can be done as follows. First parameterize all seg-
ments, using the following equation:

r j (t ) = x1
j + t

(
x2

j −x1
j

)
, j = 1, . . . ,m, (3.4)

where r j (t ) represents a point on the fracture segments and t varies from 0 to 1 (from
both end-points of the fracture segment). Find the pairs/combinations of edges, (i , j ),
that can possibly intersect, (

m

2

)
= (m)2

2
, (3.5)

and solve the following equation for each such combination

r j (t ) = ri (s). (3.6)

The two edges intersect directly whenever 0 < t , s < 1 is true (note: < instead of ≤
indicates that the intersections at the end-points of segments are excluded). This sim-
plifies to solving a 2×d system of equations for each intersection, such as

Ax = b, (3.7)

where A = [x2
i −x1

i ,−(
x2

j −x1
j

)
], x = [t , s]T , and b = [x1

i −x1
j ].

The actual point of intersection is calculated by plugging the t that is obtained from
Equation 3.7 into Equation 3.4. Every intersection involves exactly two segments, and
the intersection id for those segments and x- and y-coordinate are stored in an array.
After all the segments have been checked, a loop over this array allows us to manipulate
intersections accordingly. For X , this amounts to ni nt new points, where ni nt refers the
the total number of intersection points. And for P , each p j ∈ P that contains at least

one intersection gets replaced by n j
i nt +1 new segments, where n j

i nt refers to the number
of intersections on the j -th segment.

This naive way of finding the intersection has the downside of having a large com-
putational complexity (as indicated above). To circumvent this, we applied a method
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that takes advantage of the fact that most time is spent solving the linear 2× 2 system
in Equation 3.7. A simple check is applied for each pair of fracture segments to indi-
cate if there can exist an intersection or not. Assuming the vertices of each edge (i.e.,
fracture) are ordered from smallest x-coordinate to largest, two edges can only have a
possible intersection if the smallest x-coordinate of one of the two edges is smaller than
the largest x-coordinate of the other edge (and vice versa for the y-coordinate). This
significantly reduces the overall computational time of the algorithm as shown in the re-
sults section. Further reduction in computational time is achieved by parallelizing the
algorithm, which is our ongoing development.

NODE MERGING

The node merging algorithm, in essence, is sequential. Each vertex (i.e., node) is added
to the domain if it doesn’t violate the algebraic constraint. This means that the distance
between the newly added node and any other node already in the domain must be larger
than l f ·h, the node is merged into the closest node already in the domain. Parameter
l f refers to the accuracy at which the original fracture network will be processed and
subsequently influences the optimal grid resolution, while h is a scaling parameter on
the closed interval [0.5,0.86]. The larger h is, the more simplified the resulting network
becomes. Here, 0.5 is chosen as a lower bound such that any point on a fracture segment
will get merged into one of the endpoints, while 0.86 is chosen as an upper bound such
that any vertex perpendicular to the fracture segment with a distance equal to the height
of an equilateral triangle with length l f at the midpoint will get merged. The sequential
nature of the algorithm implies that the order in which we add nodes to the domain
affects the final result. Nodes that are added first are most likely placed in their exact
location. Another essential consideration is the fracture aperture, since the conductive
fractures often have a large impact on the fluid flow. Therefore, the fracture segments are
ordered based on their aperture. If a single aperture model is applied, then segments are
sorted based on the length of the fractures to minimize changes to the global structure
of the network.

The length of each fracture segment, L ∈Rm , can be calculated in the following way:

L =

 ||x1
1 −x2

1||
...

||x1
m −x2

m ||

 . (3.8)

Then we define the order of adding segments, Osegm, from largest to smallest:

Osegm =
{

{i ∈N | ∀li ∈ L, li ≥ li+1}, if ai = a

{i ∈N | ∀ai ∈ A, ai ≥ ai+1}, otherwise
(3.9)

where ai is the aperture of fracture segment i , and A is the list of all fracture apertures.

From now on, for simplicity, it is assumed that h = 1/2. This means that
l f

2 is the
minimum distance between each vertex in the simplified graph. To achieve this, a par-
titioning algorithm that divides each fracture segment in mi = max(1,round(li /l f )) sub-
segments is executed. See Algorithm 2 for the detailed description.
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Now we can construct the graph representation of the ordered and partitioned frac-
ture network, using Algorithm 1 and substituting F with Fnew and m with mnew. Fur-
thermore, the problem is that vertices are added to the domain and not necessarily
edges. Therefore, we need to determine the order in which vertices should be added
to the domain. The order of the vertices, Overtices, can be found with Algorithm 3.

After the order is determined and B and X are sorted, the primary node merging
algorithm can be applied. It simply consists of sequentially checking, from highest to
lowest priority vertices, if a newly added node violates the algebraic constraint (i.e., is

within
l f

2 from any nodes already in the domain). This is thoroughly described in Algo-
rithm 4.

The main parameter in the partitioning and subsequent node merging algorithm is
the preprocessing accuracy l f . This parameter determines the minimum distance be-
tween any vertex in the simplified graph. The computational time of the algorithm scales
proportionally to the l f and the number of fractures.

STRAIGHTENING AND REMOVING ACUTE ANGLES

Another (optional) modification to the fracture network is the straightening of fracture
segments. This amounts to checking each vertex with order two and calculating the an-
gle between the two edges leaving this vertex. If this angle is within some threshold,
particularly within [180−θs,mi n ,180+θs,mi n], the node can be removed since the frac-
ture is considered straight. The angle θs,mi n is typically chosen on the interval [0, 7.5],
depending on how severely the user wants to straighten the fractures. The straightening
of fractures can be beneficial when considering meshing tools such as GMSH (Geuzaine
& Remacle, 2009). The reason for this is that conformal meshing techniques require the
fracture to be embedded into the domain. Less embedded fractures mean faster and
easier meshing.

Simply merging the conflicting nodes doesn’t resolve all the artifacts associated with

meshing DFMs. This is mainly caused by the fact that the algebraic constraint,
l f

2 , is
constant. Whenever nodes are merged, the corresponding edge (i.e., fracture segment)
might be stretched and have a length greater than l f . This might result in vertices being
placed near existing edges and not flagged as problematic nodes by the node merging
algorithm. Therefore, an additional correction to the network is required to obtain the
optimal representation for meshing purposes.

The algorithm for removing the acute angles is very similar to Algorthm 5; however,
now the loop is over all nodes with a degree bigger than one. Instead of calculating one
angle,

(di
2

)
angles are computed between all edges leaving the vertex i , where di is the

degree of vertex i . The two edges corresponding to the smallest angle below a certain
threshold will be merged. The smaller segment will be merged in the larger segment, and
the non-coinciding vertex will be merged in the closest vertex of the larger segment. This
ensures minimal changes to the fracture network due to other possible edges leaving the
merged vertex. The tolerance for the minimal angle θa,mi n is typically chosen on the
interval [0, 18] degrees. Larger θa,mi n means a more simplified fracture network since
potentially more fracture intersections are flagged as problematic.
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APERTURE CORRECTION

In order to incorporate low connectivity and fracture networks with variable apertures,
a fracture aperture correction is applied during the cleaning procedure. Connected frac-
tures are treated analogous to resistors in an electric circuit. Resistance is equal to the
inverse of the hydraulic conductivity, which in turn is a function of the square of the
fracture aperture. Figure 3.5 displays the two different corrections (Type 1 vs. Type 2).
Type 1 corrections result in the overlap of two segments after merging of vertices. Type 2
is subdivided further into 2a, which results in an edge collapse, and 2b, which connects
two previously disconnected edges. The following equation gives the correction for Type
1

R̂ =
(n=2∑

i=1

1

Ri

)−1
, (3.10)

where Ri is the resistance of edge i defined as

Ri = Li

a2
i

, (3.11)

where Li is the length and ai is the aperture of the i -th edge respectively, such that the
effective aperture of the corrected edge is given by

â =
√√√√L̂

n=2∑
i=1

a2
i

Li
, (3.12)

where L̂ is the length of the new edge.
The Type 2a correction is given by

R̂ =
n=2∑
i=1

Ri , (3.13)

resulting in

â =
√√√√√ L̂∑n=2

i=1
Li

a2
i

. (3.14)

In the case of Type 2b, an effective matrix aperture is obtained by inverting the perme-
ability of parallel plate flow such that

amat =
√

12kmat , (3.15)

where kmat is the matrix permeability at the location of the particular edge. A further ad-
dition to the Type 2b correction is added to preserve the characteristics of impermeable
fractures/faults and high permeable matrix, given by

â =


1

L̂

(
amat Lmat +ai Li

)
, if amat > ai

1

1−
(

Li /(Li+Lmat )
)n

ai
+

(
Lmat /(Li+Lmat )

)n

amat

, if amat ≤ ai ,
(3.16)
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Type 2aType 1 Type 2b

Figure 3.5 Illustration of the types of aperture corrections. Merging the non-shared vertex results in a Type 1
correction (parallel resistor), while merging the shared vertex results in a Type 2 correction (sequential resistor).
An effective matrix aperture is used if the two edges are disconnected (Type 2b).

where Lmat is the gap between the vertices and n is determined by fitting a least-squares
solution to tracer simulation on two disconnected fractures with different gaps and char-
acteristic cleaning lengths, given by

n = 9.56
Lmat

Li +Lmat
+1.18. (3.17)

If n ≈ 1 we have the normal harmonic mean, while n →∞ is the same as not applying
any aperture correction. The parameter n effectively limits the aperture penalty when
connecting disconnected fractures, as it was observed from simple numerical experi-
ments that the aperture correction, in some cases, over-penalizes the effective aperture.
Also, note that n is bounded since Lmat can never exceed l f h, since otherwise, these
vertices would not apply for merging.

To deal with vertices that are connected through a path in the neighborhood of the
vertices, a sub-graph is extracted around the vertex that is merged. The shortest path is
computed using Dijkstra’s algorithm implementation described in Csardi, Nepusz, et al.,
2006. Whenever there is no shortest path (i.e., even in the neighborhood the two vertices
remain disconnected), the effective matrix aperture is used for the resistance instead.
This is represented in Figure 3.6

Figure 3.6 illustrates an essential feature of the aperture correction. Merging vertex
12 into vertex 11 results in a reduction of the aperture of the edges connecting vertex 10
and 12 as well as 12 and 13. This is undesirable because we want to preserve this con-
nectivity. Since the vertex merging happens sequentially, it has become evident at this
point that sorting based on aperture (highest to lowest) is more effective for an accurate
representation of fluid flow in the fracture network than simply sorting based on length.

All the code related to the algorithms described above is implemented in Python and
can be found at https://github.com/MakeLikePaperrr/Fracture-Preprocessing-Code. We
have made use of the following packages: NumPy (Harris et al., 2020), SciPy (Virtanen et
al., 2020), and igraph (Csardi, Nepusz, et al., 2006).

3.2.5. GOVERNING EQUATIONS
In order to evaluate the dynamic performance of the preprocessing algorithm, several
flow scenarios are considered, for which the governing equations are specified in Chap-

https://github.com/MakeLikePaperrr/Fracture-Preprocessing-Code
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Figure 3.6 Vertices that don’t share an edge might be connected through a path in the neighborhood of the ver-
tices. A sub-graph is extracted and using Dijkstra’s shortest path; the effective resistance is computed. If no
shortest path exists (i.e., even in the neighborhood the two vertices remain disconnected), the effective matrix
aperture is used instead.

ter 2.

3.2.6. NUMERICAL SOLUTION
Finite-volume discretization is applied to a general unstructured grid (using a Two-Point
Flux Approximation (TPFA) for the fluxes across interfaces with upstream weighting) and
a backward (implicit) Euler time discretization strategy to both the conservation equa-
tions (assuming no gravity and capillarity), see Chapter 2 for more details. Operator-
Based Linearization (OBL) is used to linearize the system of nonlinear equations, which
is also described in detail in Chapter 2.

The proposed fracture network processing framework has been fully integrated with
the open-source Delft Advanced Research Terra Simulator (DARTS). DARTS is a scalable
parallel simulation framework, which has been successfully applied for modeling of en-
ergy transition applications, including hydrocarbon (Khait & Voskov, 2018b; Lyu et al.,
2021a), geothermal (Khait & Voskov, 2018c; Wang et al., 2020) and CO2 sequestration
(Kala & Voskov, 2020; Lyu et al., 2021b) cases. The ongoing effort to include fully coupled
geomechanical modeling into DARTS allowed us to directly address induced seismicity
problems (Novikov et al., 2021) which is another challenge in energy transition usually
directly relevant to fracture networks.

3.3. RESULTS
This section presents the investigation of the performance of the preprocessing method
described in the previous section. The performance is assessed in terms of static and
dynamic qualities and is therefore subdivided accordingly. It is important to stress the
difference between the preprocessing accuracy l f and the meshing accuracy lm . The pa-
rameter l f refers to the minimum distance between any two vertices in the preprocessed
fracture network. In contrast, lm refers to the characteristic length of the control volumes
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after applying a particular meshing strategy (i.e., Frontal-Delaunay as a 2D meshing al-
gorithm in this work, see Geuzaine and Remacle, 2009 for details).

Following the definition of those two parameters, there is a significant distinction be-
tween the two preprocessing strategies described below. The first approach is defined as
the “clean” strategy. In this approach, the preprocessing algorithm is executed once with
a l f = 1, θa,mi n = 18◦, and θs,mi n = 2.5◦. The l f remains unchanged in the clean strategy
for subsequent coarser meshing results. The second strategy is denoted as the “opti-
mal” strategy. In this strategy, for each subsequent coarser model, the preprocessing
algorithm is executed with l f = lm . This means that the fracture network in the “clean”
strategy remains unchanged when coarsening the mesh. In the “optimal” strategy, the
fracture network changes when constructing the coarser models.

3.3.1. STATIC PERFORMANCE OF THE PREPROCESSING FRAMEWORK

CHANGES IN CONFIGURATION

Figure 3.7 illustrates several changes to the raw fracture network after applying succes-
sive coarsening. An apparent reduction in the number of nodes (red dots) can be seen
with increasing l f , which significantly reduces the number of fracture segments. Fewer
fracture segments typically indicate a lower network complexity (simply by having fewer
degrees of freedom). Multilinear segments become linear (i.e., straight) because of the
reduction in fracture segments, further reducing network complexity. Ultimately, small
and complex features of the fracture network start to disappear while the main pattern
(backbone) remains visible. The average spacing of the North-South fractures (40-50
meters) remains unchanged up to l f = 32. Around l f = 64, which exceeds this average
spacing, the fracture configuration changes substantially, as shown in Figure 3.8.

ANGLE DISTRIBUTION

A critical characteristic in fracture networks is the angle distribution, particularly weighted
by the length of the fractures, especially when considering variable apertures (Bagh-
banan & Jing, 2008; Bisdom et al., 2016a). This usually gives an insight into the po-
tential flow response of the network while also providing possible information on the
paleostress that caused the network formation. Since multiple nodes are merged in the
preprocessing approach, it is expected that these angles can change substantially when
using a large l f , where large is relative to the scale at which the raw data is collected.
This can be clearly seen when looking at Figure 3.8. For small l f , the deviation in angles
is almost unnoticeable, while around l f = 32, a small deviation of roughly 10% in the
orientation is observed in the Whitby network. Around l f = 64, the deviation becomes
significant (> 20%), but the dominant orientation (N-S) is still similar to that of the raw
results. Finally, at l f = 128, the angle distribution is very different from the raw data
(> 30%), even the dominant orientation, and doesn’t resemble the original network.

Similar behavior but at earlier resolution is observed for the Brejoes network. At
lm = 16 the deviation is roughly 20%. The dominant NNW-SSE orientation disappears
already at l f = 64. The average spacing of the NNW-SSE fractures in the Brejoes network
is roughly 12 meters. This shorter spacing correlates with the earlier deviation in the
angle distribution in the Brejoes network when compared to Whitby.
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TOPOLOGY

Besides the angle distribution, it is also important to look at connectivity and in partic-
ular, the topology changes to the fracture network. Figure 3.9 shows the topology of the
raw and preprocessed fracture networks in the ternary topology diagram (as explained
in Figure 3.3). A large deviation between the raw and preprocessed data is observed,
even with the small l f = 1 [m]. The raw network contains roughly 55% I-nodes, 20% Y-
nodes, and 25% X-nodes. The finest preprocessed network (i.e., l f = 1 [m]) contains ap-
proximately 20% I-nodes, 75% Y-nodes, and 5% X-nodes. Furthermore, with increasing
l f , the preprocessed networks increasingly deviates towards a large X-node percentage
(from 5% at l f = 1 to almost 70% at l f = 128 for Whitby and from 10% at l f = 2 to 70% at
l f = 64 for Brejoes).

To illuminate the differences in topology between the fine l f = 1 and the raw data,
the degree of the raw and cleaned network nodes is shown in Figure 3.10. Even after
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Figure 3.7 Changes to fracture network as a function of preprocessing accuracy l f . The network’s complexity is
greatly reduced by the decrease in fracture segments with increasing l f . The angles of the N-S fractures remain
unchanged up to l f = 64 [m].
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Figure 3.8 Angle distribution as a function of fracture cleaning accuracy. The top row corresponds to the Whitby
network, while the bottom row corresponds to the Brejoes network. The cleaning shows no significant change
between l f = 4 and l f = 16 for the Whitby network; that’s why these steps are omitted in the figure. However,
the Brejoes network does show significant deviation at l f = 16. The preprocessed Whitby network is no longer
representative of the raw network at l f = 128, while this already happens at l f = 64 for the Brejoes case.
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Figure 3.9 A large deviation between the raw data and the processed network’s topology in both fracture networks
is observed. The reason for this is explained in Figure 3.10. The Brejoes network converges to the raw data for
low l f < 1. The jump in the large l f = 128 for the Brejoes case is expected due to the fracture network becoming
extremely coarse. Only a few fractures actually remain, meaning the relative proportion of end-nodes greatly
increases.
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Figure 3.10 Detailed view of the fracture network topology of the Whitby network. The left image displays the raw
input topology, while the right image shows the topology after applying the preprocessing algorithm with l f = 1.
Due to the manual interpretation, it can be seen that a lot of nodes are characterized as I-nodes (degree 1) or
X-nodes (degree ≥4) in the left plot, while most seem to be Y-nodes (degree 3) (when considering usual abutment
relationships in fracture mechanics and the resolution of the outcrop image).

zooming in at the nodes of the raw network, a significant amount remains misclassified
as I-nodes while they would be more suitably classified as Y-nodes or X-nodes (at this
scale of observation). This is the result of two fracture segments essentially intersect-
ing, but not exactly due to inaccuracy in image interpretation. The same behavior arises
for the X-nodes that are misclassified as Y-nodes. This happens when two fracture seg-
ments only intersect with a minimal extension of one of the segments across the point
of intersection.

IMPACT OF CHANGES ON MESHING

Because the complexity of the fracture network decreases, the conformal meshing pro-
cedure becomes substantially easier. This is shown in Figure 3.11. A significant reduction
in the number of control volumes and a more homogeneous distribution is observed for
the preprocessed meshing results compared to the raw network. The dark blue areas in
the raw meshing results indicate a concentration of small control volumes. Furthermore,
very flat triangular elements are observed at some locations in the raw meshing results.
Therefore, it seems that the volume distribution and quality of the mesh elements are
improved in the preprocessed results. This is quantified in Figure ,3.12 and Figure 3.13
respectively. Please note that the fluid flow simulations are carried out in the 3D domain
and therefore the model is assigned a thickness (2.5D).

Mesh quality here refers to a similar definition as used in Mustapha and Dimitrakopou-
los, 2011, particularly using the following equation

q = 4
p

3
A

a +b + c
, (3.18)

where A is the area of the triangle and a/b/c are the lengths of the three sides of the
triangle, respectively. This means that when q = 1 we have a high mesh quality since
the triangle is equilateral (i.e., the optimal shape for TPFA fluid-flow simulation), while
a low-quality mesh element (i.e., q << 1) refers to a large deviation from an equilateral



3

40 3. ADVANCED DFM MODELING

Figure 3.11 Visual comparison between the meshing result of the raw (left) versus the cleaned (right). Meshing
and preprocessing accuracy are both 32 [m] (i.e., lm = l f = 32). The darker blue spots in the image on the left
represent clusters of small control volumes. These appear at locations of complex fracture interactions on a scale
way below the meshing resolution lm .

triangle. The mesh elements in the 2.5D model are triangular prisms which means that
this mesh element quality indicator also works for this type of geometry. The reason for
this is that the centroid of the triangular prism lies in the same xy-plane as the centroid of
the triangle and is therefore not changing the orthogonality relationship between neigh-
boring control volumes.

Ultimately, the purpose of using and generating fracture networks is to utilize them
in specific industrial applications. In this work, the chosen application is geothermal en-
ergy production from the subsurface. This application usually requires multiple numer-
ical simulations to address general uncertainty in subsurface parameters. The accuracy
and speed of convergence of these simulations are highly dependent on the mesh quality
and, specifically for fracture networks, the orthogonality of the control volume intersec-
tions and the volume distribution. Therefore, we quantify the effect of the preprocessing
method on these two properties, where mesh quality is a proxy for the orthogonality of
the control volume intersections. Figure 3.12 shows the volume distribution as a func-
tion of l f and lm , while Figure 3.13 shows the distribution of mesh element quality.

The volume distribution obtained after meshing the raw fracture network input is not
normally distributed. It has a peak around zero, which indicates a large number of small
control volumes. This effect becomes more substantial with increasing lm . At lm = 32
the volume distribution of the raw network input is entirely concentrated around zero.
The volume distribution obtained after meshing the optimal preprocessed fracture net-
work input does show a normal distribution. The distribution becomes wider and more
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Figure 3.12 Control volume size distribution as a function of preprocessing accuracy for the Whitby network. Op-
timal refers to the preprocessing strategy where the fracture network is cleaned at the same accuracy as the mesh
is generated. Clean refers to preprocessing the fracture network once at a small l f and then simply decreasing
the meshing resolution lm wile keeping the fracture network unchanged.

skewed with increasing the lm . No small control volumes are observed for the optimal
preprocessed results, even in lm = 128 [m]. The clean preprocessing strategy shows sim-
ilar behavior to the optimal strategy for small lm , while converging to the behavior of the
raw input network for lm ≥ 32.

The mesh element quality obtained after meshing with a small lm behaves similarly
for the raw and preprocessed input fracture data, except for a relatively small amount
of flat triangles (i.e., q ≈ 0). An increase in the number of flat triangles (i.e., q ≤ 0.01)
from 0.32% to 1.29% and a reduction of the overall quality is observed for the raw input
data with increasing lm . However, the mesh quality for the preprocessed results remains
above q = 0.40 even for lm = 128 [m]. Low mesh quality (i.e., q ≤ 0.01) can be seen as
an indicator for poor simulation convergence since a few of these elements can ruin the
nonlinear convergence behavior of the numerical simulation (more than the mean mesh
element quality or the whole distribution).

3.3.2. DYNAMIC PERFORMANCE OF PREPROCESSING FRAMEWORK

HIGH ENTHALPY SINGLE APERTURE

The dynamic performance is analyzed by applying geothermal simulation (i.e., solv-
ing mass and heat conservation equations) to the different DFM models obtained after
meshing (i.e., clean and optimal for different lm). Geothermal simulation typically con-
sists of a doublet system: at one point, cold water is injected, and at another point, hot
water or steam is produced. Mathematically speaking, this amounts to solving Equa-
tion 2.6 and 2.10 presented in Section 3.2.5. The injection point is in the bottom left of
the domain, while the production point is at the top right of the domain (Figure 3.14).
Both wells are perforating a fracture segment. First, the temperature fields of both net-
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Figure 3.13 Mesh element quality distribution as a function of preprocessing accuracy for the Whitby network.

works are shown (Figure 3.14 and 3.15). The water saturation field is shown for the Bre-
joes network (Figure 3.16), and finally, the temperature at the production well over time
(Figure 3.17).

The boundary conditions and modeling parameters can be found in Table 5.6 and
5.7. The simulation parameters model a situation that is investigated throughout the
world for its geothermal energy potential (Moeck, 2014). Particularly, we study geother-
mal energy production from a tight fractured reservoir with advective flow happening
predominantly through the fracture network. It is important to observe how changes
to the fracture network affect the simulation results in such a setup. If the fracture per-
meability is much larger than the matrix permeability, the fractures will evidently play
a dominant role in the fluid flow patterns. There are a particular set of parameters for
each network. The first set of parameters simulates initially high-enthalpy single-phase
super-critical water according to IAPWS 97 equation of state (Wagner & Kretzschmar,
2008) used in DARTS. This set of parameters is applied to the Whitby case. The second
set simulates high-enthalpy steam flow conditions and is applied to the Brejoes case.

Table 3.1 Boundary conditions.

Parameter Whitby Brejoes
Rock heat conduction, κr [kJ/m/day/K] 165 150
Rock heat capacity, Cr [kJ/m3/K] 2500 2200
Initial pressure, p0 [bar] 500 100
Initial temperature, T0 [K] 423.15 583.15
Injection rate, Qi n j [m3/day] 1000 300
Injection temperature, Ti n j [K] 303.15 308.15
Production bottom hole pressure, ppr od [bar] 475 100
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Figure 3.14 Temperature distribution as a function of preprocessing and meshing accuracy for the optimal strat-
egy after 3150 [days] (Whitby network).

Table 3.2 Reservoir and simulation parameters.

Parameter Whitby Brejoes
Matrix permeability, kmat [mD] 1e−3 1e−2
Matrix porosity, φmat [-] 0.3 0.04
Fracture permeability, k f r ac [mD] 8.3e7 7.5e6
Fracture porosity, φ f r ac [-] 1 1
Length domain, Lx [m] 1050 700
Width domain, Ly [m] 1050 350
Simulation time, t [days] 10950 10950

The temperature field after 3150 [days] of simulation for the Whitby network is pre-
sented in Figure 3.14. The temperature is reduced near the injection point from the ini-
tial 423.15 [K] to the injection temperature of 303.15 [K]. Fluid flow primarily happens
through the fractures, hence the largest temperature variations occur closer to the frac-
tures. This is more apparent in the finer models (i.e., smaller lm). Larger diffusion of the
temperature profile is observed for increasing lm . The main fracture pattern becomes
invisible at lm = 64 [m]. The temperature distribution for the Brejoes network is shown
in Figure 3.15. In terms of temperature distribution, a comparable trend was observed
regarding the Whitby network. The water saturation field is shown in Figure 3.16 after
150 days of simulation. Accurate representation of the water saturation is more sensitive
to the resolution than temperature.

The energy rate and temperature profile at the production well showed similar be-
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Figure 3.15 Temperature distribution as a function of preprocessing and meshing accuracy for the optimal strat-
egy after 3150 [days] (Brejoes network).
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Figure 3.16 Water saturation distribution as a function of preprocessing and meshing accuracy for the optimal
strategy after 150 [days] (Brejoes network).
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havior; therefore, only the temperature profiles are shown in Figure 3.17. A commonly
used metric to analyze the flow behavior of geothermal systems is the doublet lifetime.
The lifetime is typically reached when the water temperature at the production well has
decreased with 10-20% of the difference between initial and injection temperature. The
optimal strategy (i.e., l f = lm) in the Whitby network starts deviating from the finer scales
at l f = 32 [m], particularly the lifetime is reduced by 670 [days]. From l f = 64 [m] the
deviation becomes more significant, notably a 2700 [days] difference in lifetime due to
early breakthrough of the cold water. At l f = 128 [m], the response does not resemble
the finer scales specifically the lifetime is reduced to 500 [days] due to almost instant
cold water breakthrough.

The clean strategy (i.e., l f = 1 and lm = lm) shows an analogous result to the opti-
mal strategy for the small lm . For larger lm the result of the clean strategy is significantly
closer to the finer scales; particularly, there is no deviation in breakthrough times be-
tween the scales. This is expected since the fracture network is not changing (i.e., l f = 1
for all simulations) with increasing lm . Therefore, no changes in connectivity or the path
from injector to producer occur, which is important in this tight fractured reservoir set-
ting. Meshing artifacts in the clean strategy increase the number of control volumes for
larger lm , contributing to small changes across the scales (see Table 3.3). The difference
between the clean and optimal strategy (i.e., l f = lm) for small lm (≤ 32) in terms of flow-
response is negligible; however, the performance of the optimal strategy is significantly
better.

A more significant deviation in Brejoes temperature profile for the optimal case is ob-
served. This is in line with the other observations. This pattern is observed in the angle
distribution in the previous section (Figure 3.8). Furthermore, Brejoes fracture density
is larger (i.e., spacing between fractures is shorter), which leads to a more diffused and
less complex temperature distribution. The large connectivity also means a shorter and
highly conductive path from injector to producer, resulting in an early cold-water break-
through.

HIGH PERMEABLE MATRIX (LOW PERMEABLE FRACTURE)
Fractures are often seen as high-permeable conduits, but there are cases where fractures
or other discontinuities end up blocking fluid-flow (Gale et al., 2004). The test case pre-
sented here consists of a single phase-steady state simulation in a reservoir with a high
permeable matrix and low permeable fractures. A small gap between the fractures exists
in the middle of the domain (x, y) = (500,500). Since the gap exists below the meshing
resolution accuracy, the preprocessing algorithm connects the fractures. In the case of
no aperture correction, the flow can only go around the fractures. With aperture correc-
tion, the preprocessed model correctly represents a similar flow pattern as in the high
fidelity model with streamlines passing through the middle of the domain (Figure 3.18).
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Figure 3.17 The temperature at the production well over time for optimal (left column) and clean (right column)
preprocessing strategies for both the Whitby (top row) and Brejoes (bottom row) networks. Substantial deviation
for large l f = lm in the optimal strategy was observed. This does not happen in the clean strategy. This is because
the fracture network is unchanged while the mesh is coarsened. This also causes the number of control volumes
to remain considerable even for large lm thereby reducing the numerical diffusion (see Table 3.3 and Table 3.4).
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(B)

(D)(C)

(A)

Figure 3.18 Single phase steady-state simulation of a high-permeable matrix and low permeable fractures. There
is a small gap between the fractures in the high fidelity model allowing for fluid to pass. Not applying any fracture
correction blocks the flow, while the aperture correction accurately depicts the high fidelity behavior.
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Figure 3.19 Single phase tracer simulation on the Whitby network with the variable aperture model depicted in
Figure 3.2. A better match in breakthrough times is obtained after using the aperture correction.

LOW CONNECTIVITY ( VARIABLE APERTURE)
The final test case consists of the variable aperture model applied to the Whitby frac-
ture network (Figure 3.2). Since most of the high permeable fractures (N-S oriented)
are connected through low permeable fracture (E-W oriented), this variable aperture
model results in a low connectivity fracture model. A single-phase tracer simulation
shows that the aperture correction is able to preserve the low connectivity of the net-
work up to the numerical accuracy corresponding to the higher numerical dispersion in
the coarser model. The early breakthrough of the tracer without aperture correction is
obvious (Figure 3.19).

3.3.3. NUMERICAL PERFORMANCE HIGH ENTHALPY

The numerical performance of the two strategies can be found in Table 3.3 and Table 3.4
for Whitby and Brejoes, respectively. No timestep cuts are observed in both strategies for
the Whitby simulations. However, several timestep cuts were observed in both strategies
for the Brejoes simulations. This is reflected in the larger amount of nonlinear and lin-
ear iterations. The convergence issues can be explained by the combination of complex
two-phase physics (steam condensation) and DFM in the case of high-enthalpy two-
phase flow. A more sophisticated nonlinear strategy can be utilized to limit the timestep
cuts (Wang & Voskov, 2019), but the main goal of this study is to have a fair comparison
between the two preprocessing strategies for the conventional nonlinear solver.

It is observed that the optimal strategy shows a better convergence in both networks.
A reduction in nonlinear iterations of roughly 20% for the coarse models in the Whitby
simulations is observed. In the Brejoes simulations, this reduction is almost 45%. The
total CPU time for the optimal strategy in the Brejoes network increases slightly at the
coarsest level due to a higher number of control volumes when the coarsest strategy
is applied since the scale of the cleaning mainly constrains the meshing. For the op-
timal strategy at the coarsest scale, the simulation time is primarily dominated by the
linearization step (i.e., construction of the operators for the OBL method) and therefore
doesn’t reduce below 32 seconds.
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Table 3.3 Numerical performance Whitby simulations. Nbl ocks corresponds to the total number of control vol-
umes, N f r acs to the number of fracture control volumes, Nnew t to the number of Newton-iterations, Nl i n to the
number of linear-iterations, and TC PU to the total simulation time. l f refers to the preprocessing accuracy, and
lm refers to the meshing accuracy.

Nblocks N f r acs Nnew t Nl i n TC PU [s]
Clean (l f = 1, lm = 4) 91,780 6,800 3,543 53,210 4,159
Clean (l f = 1, lm = 8) 41,119 4,311 3,277 46,830 1,290
Clean (l f = 1, lm = 16) 24,044 3,152 3,199 40,566 538
Clean (l f = 1, lm = 32) 22,879 2,841 3,112 39,667 364
Clean (l f = 1, lm = 64) 20,142 2,824 3,087 39,340 400
Clean (l f = 1, lm = 128) 20,222 2,824 3,085 38,903 422
Optimal (l f = lm = 4) 80,672 6,362 3,436 50,573 4,079
Optimal (l f = lm = 8) 26,553 3,363 2,890 37,988 813
Optimal (l f = lm = 16) 8,718 1,594 2,680 32,600 196
Optimal (l f = lm = 32) 2,417 563 2,533 27,434 53
Optimal (l f = lm = 64) 605 147 2,395 23,119 18
Optimal (l f = lm = 128) 166 32 2,403 17,147 6

The number of control volumes Nblocks in the clean strategy does not drop below
48-50 thousand for Whitby and 22-26 thousand for Brejoes. This is because the fracture
network, at the preprocessing accuracy of l f = 1, is too complex for the meshing software
at large lm . The result is a substantial amount of elements with low mesh quality (see
Figure 3.13) and no further reduction in Nbl ocks with increasing lm . This significantly
increases the computational time for the clean strategy when compared with the optimal
strategy. For example, at l f = lm = 32 the optimal strategy only takes 14.6% of the clean
strategy simulation time. However, this comes at the cost of a less accurate simulation
response (see Figure 3.17).

3.4. DISCUSSION
The existing preprocessing strategies described in the literature only implicitly resolve
the fracture segments that intersect at a small angle via node merging. We augment
this with an extra step where all the low-angle intersections are explicitly resolved and
improve the volume distribution, mesh quality, and the convergence of subsequent nu-
merical simulation. Furthermore, we presented an aperture correction technique that
allows handling of realistic aperture distributions and low connected fracture networks.
We also contribute a comprehensive investigation of the geometry and topology changes
as a function of discretization accuracy and its effect on the dynamic reservoir behavior.

3.4.1. TOPOLOGY
The inherent bias of artificial connectivity in the coarser models is evident in the static
analysis. Especially the topology is sensitive to subtle changes in the fracture network.
The preprocessing method does seem to converge given that the distance in the ternary
topology diagram appears to decrease with decreasing l f (except for two jumps in the
Brejoes topology data for l f = 1 and l f = 128 [m]).
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Table 3.4 Numerical performance Brejoes simulations. Nbl ocks corresponds to the total number of control vol-
umes, N f r acs to the number of fracture control volumes, Nnew t to the number of Newton-iterations, Nl i n to the
number of linear-iterations, and TC PU to the total simulation time. l f refers to the preprocessing accuracy, and
lm refers to the meshing accuracy.

Nblocks N f r acs Nnew ton Nl i near TC PU [s]
Clean (l f = 1, lm = 4) 157,105 8,079 6,970 163,388 6,803
Clean (l f = 1, lm = 8) 58,912 4,682 4,947 87,940 1,607
Clean (l f = 1, lm = 16) 30,739 3,035 5,129 80,568 856
Clean (l f = 1, lm = 32) 22,918 2,402 4,784 77,690 766
Clean (l f = 1, lm = 64) 24,955 2,233 5,038 78,795 618
Clean (l f = 1, lm = 128) 26,127 2,211 4,851 75,687 551
Optimal (l f = lm = 4) 150,566 7,852 4,354 108,073 3,909
Optimal (l f = lm = 8) 46,811 4,115 3,308 52,374 564
Optimal (l f = lm = 16) 15,139 2,093 2,979 38,458 167
Optimal (l f = lm = 32) 4,899 967 2,747 27,698 50
Optimal (l f = lm = 64) 1,471 371 2,632 20,254 32
Optimal (l f = lm = 128) 400 122 2,562 14,203 34

The large deviation from the raw topology can be explained through several points.
Manual interpretation is usually made in some software (e.g., QGIS) or on the image di-
rectly. Every fracture is interpreted as a line, and two points are connected, particularly
the beginning- and end-point of the fracture. Even if the interpreter meant for the two
fractures to abut against each other, beginning- or end-points are rarely placed exactly
on top of the existing line. The computer processing interprets the point as I- or X-node,
while the interpreter meant the node to be a Y-node. This can be omitted if some snip-
ping tool during the interpretation is used or a semi-automated (Vasuki et al., 2014) or
fully automated (Prabhakaran et al., 2019) interpretation method. However, this is not
always the case as shown for two networks chosen in this study.

The other problem is the scale of the image. The Brejoes data set has a huge resolu-
tion (20 mm/pixel) (Prabhakaran et al., 2019). It can be argued that you would roughly
need 15-25 pixels to be sure about the interaction of two or more fractures due to shad-
ing, contrast, and other optical effects in the image. Considering this, it would mean
that intersection and abutment relationships cannot be interpreted at a scale smaller
than 300-500 [mm] (for this particular image).

Furthermore, the image shows a 2D representation of the fracture network. In 3D,
fractures are represented by planes. Any deviation from perfectly vertical planes would
increase the chance of nodes classified as I-nodes turning into Y-nodes. All of this leads
to the argument that the raw network data should not be used in the topological assess-
ment of fracture networks. However, a small cleaning should be applied for the analysis
to provide meaningful results.

3.4.2. FLUID FLOW

As shown in Figure 3.14 and 3.15, the predictions on flow response do not seem to be
affected by small details in the fracture network. However, they are substantially dif-
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ferent after successive coarsening (i.e., increasing lc ). The main reason for the earlier
water breakthrough observed in Figure 3.17 can be attributed to an increase in connec-
tivity of the fracture network (see also Figure 3.9). Furthermore, the shortest flow path
through the fracture network from the injector to the producer is significantly reduced
in the coarser models; hence the cold water arrives earlier. Finally, since the volume of
the fractures is unchanged, even if two fracture segments are merged, the fluid velocity
through a merged fracture is higher for the same injection rate. All of these things affect
the time the water has to heat up (i.e., recharge) and reduce the breakthrough time of
the cold water in the coarser models.

Even without using flow-based upscaling when coarsening the mesh (i.e., increasing
lm), the flow-response for the coarser models remains accurate (up to lm = 32 for the
Whitby simulation and up to lm = 16 for Brejoes). This implies that for a fraction of the
computational time of the high-fidelity model (i.e., 1.3% for Whitby and 4.3% for Bre-
joes), we are still able to obtain a representative flow and heat transfer for this complex
physical process. This opens up avenues for replacing effective media models in com-
mon optimization and uncertainty quantification practices, such as Arnold et al., 2016
and Spooner et al., 2019, with more accurate DFM models (de Hoop & Voskov, 2021).

The main idea is that adding a fracture to an already connected network is not nec-
essarily a problem. Connecting whole clusters that were not previously connected can
pose a significant issue and significantly affects the flow and heat transfer in the reser-
voir. To remedy this, we added a novel aperture correction that penalizes connecting
fracture segments that do not already share a connection. The tracer simulation applied
to the Whitby fracture network with variable aperture distribution significantly improves
the match between the coarser representation and the high-fidelity model in terms of
breakthrough time (see Figure 3.19). Furthermore, the aperture correction allows us to
deal with coarsening of sealing fractures that potentially block fluid-flow, as observed in
the synthetic test case in Figure 3.18.

3.4.3. APPLICATION AND RECOMMENDATIONS

It seems from the study presented in this paper that the flow-response is less sensitive to
changes in the fracture network than initially thought. The orientation of the fractures
(i.e., angle distribution) is also less sensitive than the topology. This could serve as a
recommendation to geologists and modelers that the scale and complexity at which the
data is collected and the models are constructed is unnecessarily refined. It would save
time and improve the ambiguity of our models to set a certain interpretation scale at
which you can be certain of the intersection and abutment relationships before making
the interpretation.

The preprocessing method effectively extracts the backbone of a complex fracture
network. Therefore, it can be used to extract the main pattern of the network and might
be useful when generating training images for algorithms such as Bruna et al., 2019.

3.5. CONCLUSION
This study demonstrates a strategy to simplify complex fracture networks in terms of
flow response based on a robust preprocessing approach using graph theory. We show
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that using raw fracture data for topological analysis and dynamic modeling is unwise and
that some preprocessing should be applied to investigate the patterns that exist in the
studied network. Our method simplifies the topology of the fracture network by merg-
ing fracture nodes (i.e., vertices) within a certain radius. Consequently, this amounts to
taking the union of the incidence matrix’s rows of each vertex, thereby preserving all the
connectivity within the fracture network. Furthermore, it explicitly removes problem-
atic fracture intersections that occur at an angle below a certain threshold. Finally, our
frameworks extends the current preprocessing methods, such as Mustapha and Mustapha,
2007 and Karimi-Fard and Durlofsky, 2016, by taking into consideration an aperture cor-
rection when vertices are merged to better preserve the original connectivity and handle
heterogeneous aperture distributions.

Our preprocessing framework can create a fully conformal uniformly distributed grid
for a given realistic fracture network with variable aperture at the required level of accu-
racy. The changes introduced by the method are analyzed in terms of geometry (i.e., an-
gle distribution of the fracture network), meshing results (i.e., volume and quality of the
elements), and dynamic response of the reservoir when subjected to geothermal high-
enthalpy production conditions. Results are analysed for two realistic fracture networks
based on outcrop studies, a synthetic case with sealing fractures, and a variable aper-
ture model. Topology is more affected by the preprocessing than the geometry and flow
response in studied networks.

Uncertainty quantification relies on a large number of numerical simulations. The
presented method decreases the computational complexity of DFM models. Therefore,
our approach opens up avenues for using efficient DFM models with similar compu-
tational complexity as embedded-DFM (EDFM) and even Dual-Porosity models while
accurately capturing the discrete nature of fracture networks for uncertainty quantifica-
tion and history matching purposes. This is especially true for the optimal preprocessing
strategy where cleaning and optimizing the fracture network, including treatment of in-
tersections, node merging, and straightening, are combined.

The open-source computational framework performing all the preprocessing stages
can be found at https://github.com/MakeLikePaperrr/Fracture-Preprocessing-Code.
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3.7. APPENDIX: VARIOUS ALGORITHMS FOR DFN PREPROCESS-
ING

Algorithm 1 Construct graph

1: V = {}
2: n = 0
3: for (xi , yi , x j , y j ) ∈F do
4: if (xi , yi ) ∉V then
5: V =V ∪ (xi , yi )
6: n += 1
7:

8: if (x j , y j ) ∉V then
9: V =V ∪ (x j , y j )

10: n += 1
11:

12: B = zeros(n,m)
13: for (xi , yi ) ∈V do
14: ids = find(∀(xi , yi ) ∈F (·, [1,2])∧∀(xi , yi ) ∈F (·, [3,4]))
15: B(i , ids) = 1

16:

17: D = diag(B1m×1)
18: A = BB T −D
19: L = D − A
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Algorithm 2 Partition segments

1: mnew =∑m
i max(1,round(li /l f ))

2: Fnew = zeros(mnew,4)
3: count = 1
4: for k ∈Osegm do
5: mk = max(1,round(lk /l f ))
6: ids = [1, . . . ,mk ]
7: Fnew(count : (count+mk ),1) =F (k,1)+ (ids −1)/mk (F (k,3)−F (k,1))
8: Fnew(count : (count+mk ),2) =F (k,2)+ (ids −1)/mk (F (k,4)−F (k,2))
9: Fnew(count : (count+mk ),3) =F (k,1)+ ids /mk (F (k,3)−F (k,1))

10: Fnew(count : (count+mk ),4) =F (k,2)+ ids /mk (F (k,4)−F (k,2))
11: count += mk

12:

13: Osegm, new = [1, . . . ,mnew] //since Fnew is already ordered now!

Algorithm 3 Determine order vertices

1: B = B(·,Osegm) //order the columns of B
2: Overtices = zeros(n, 1)
3: count = 0
4: for k = 1 to m do
5: (i , j ) = find(B(·,k) == 1)
6: if i ∉Overtices then
7: count += 1
8: Overtices(count) = i

9:

10: if j ∉Overtices then
11: count += 1
12: Overtices(count) = j

13:

14: X =X (Overtices, ·) //sort vertices
15: B = B(Overtices, ·) //sort rows of incidence matrix accordingly
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Algorithm 4 Node merging

1: DX = pdist(X ) //pairwise symmetric n ×n distance matrix for each vertex in X

2: mergelist = zeros(n, 1)
3: for k = 2 to n do
4: idmin = min({dk,i ∈ DX | ∀i ∈N, i < k}) //closest vertex already in domain
5: if DX (k, idmin) < l f /2 then
6: mergelist(k) = idmin

7: B(idmin, ·) = B(idmin, ·)∪B(k, ·) //record new connections from node merging
8: B(k, ·) = 0 //remove merged node from graph
9: DX (k, ·) =∞ //reset distance from removed node

10: DX (·,k) =∞ //reset distance from removed node

11:

12: mask = {i ∈N | ∀i ∉ mergelist, i ≤ n}
13: X =X (mask)
14: n = card(X )
15: B = B(mask, ·)
16: B = B(·,11×nB > 1) //remove “collapsed” edges
17: B = unique(B , ’cols’) //remove overlapping edges

Algorithm 5 Straighten fractures

1: nodelist = {di ∈ D(G) | di == 2}
2: mergelistnodes = zeros(n, 1)
3: mergelistsegms = zeros(m, 1)
4: for k ∈ nodelist do
5: idsegms = nonzero(B(k, ·))
6: v1 =F (idsegms(1), [1,2])−F (idsegms(1), [3,4])
7: v2 =F (idsegms(2), [1,2])−F (idsegms(2), [3,4])

8: dotproduct = min(1,max(−1,
vT

1 v2

||v1||||v2|| ))

9: θ = arccos
(
dotproduct

)
180/π

10: if θ < θtol then
11: mergelistnodes = k
12: B(k, ·) = 0
13: mergelistsegms = idsegms(2)
14: idnodes = nonzero(B(·, idsegms(1)))∪nonzero(B(·, idsegms(2)))
15: B(·, idsegms(2)) = 0
16: B(idnodes ̸= k, idsegms(1)) = 1

17:

18: //B and X are updated similarly to Algorithm 4 using “mergelistnodes” and
“mergelistsegms” for the removed vertices and edges respectively
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COMPREHENSIVE INVESTIGATION

OF KARSTIFICATION: LIDAR DATA

AND REACTIVE TRANSPORT

SIMULATIONS

Growing demand for cleaner energy sources has led to the comprehensive investigation of
high-enthalpy carbonate reservoirs. These reservoirs are often chemically and mechan-
ically altered and hence contain a significant uncertainty in the spatial distribution of
the reservoir parameters. The resulting discontinuity features commonly include complex
fracture networks, large inter-connected cave systems, and other flow barriers/conduits.
Several conceptual models exist for simulation of such systems; however, the main driv-
ing forces behind the resulting geometry are not fully understood, complicating quanti-
tative predictions. To improve the reservoir characterization of these complex reservoirs,
high-resolution LiDAR datasets from several outcrops were acquired. Statistical analy-
sis is performed on the geometry of the resulting cave networks. Several geometrical pa-
rameters are deduced from the LiDAR surveys, which correlate with the possible physical
processes involved. The effect of the heterogeneity of the porous media and fracture net-
work is studied extensively using the newly developed reactive transport module in the
Delft Advanced Research Terra Simulator (DARTS) framework. DARTS uses the Operator
Based Linearization approach, which transfers the governing nonlinear Partial Differen-
tial Equations into a linearized operator-form where the Jacobian is constructed as a prod-
uct of a matrix of derivatives with respect to state variables and discretization operators.
The state-dependent operators are only evaluated adaptively at vertices of the mesh intro-
duced in the parameter space. The continuous representation of state-dependent opera-
tors and their derivatives is achieved by using a multi-linear interpolation in parameter

Parts of this chapter have been published in ECMOR XVII Conference Proceedings, European Association of
Geoscientists & Engineers (2020) de Hoop et al., 2020.
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space, significantly improving simulation performance. We extend the reactive transport
module for both kinetic and equilibrium reactions, allowing for more complex chemical
interactions in the simulation framework. Linking the processes of wormholes creation
with the aid of numerical simulations and the measured manifestation of the disconti-
nuity networks will substantially improve the reservoir modeling process and subsequent
uncertainty quantification.

4.1. INTRODUCTION
A large part of the world’s hydrocarbon reserves, approximately 60% of the oil and 40%
of the gas reserves, are hosted in carbonate rocks (Akbar et al., 2000). An increase in this
percentage is expected due to several significant discoveries made in the past decade,
such as pre-salt carbonates in off-shore Brazil (Boyd et al., 2015; Mello et al., 2011) and
the Tarim basin in China (Huang et al., 2017b). Besides hydrocarbon accumulations,
the ongoing energy transition has resulted in an increase in geothermal discoveries as
well, for example, the geothermal potential in Dutch onshore Carboniferous carbonates
(Reijmer et al., 2017).

Heavily fractured and karstified reservoirs have been encountered during the drilling
process, resulting in unpredicted hazards. The fluid-flow response and mechanical be-
havior of Naturally Fractured Reservoirs (NFR) are highly uncertain due to our limited
ability to predict the spatial distribution of fracture networks and karst at the reservoir
scale. Performing adequate risk and uncertainty quantification is necessary due to the
increasing environmental awareness and regulations. Therefore, improving the accu-
racy and efficiency of the modeling of subsurface-related activities is essential. Con-
structing geologically realistic a priori models of fractured karst systems, extracted from
the LiDAR surveys, is key to a successful history matching approach (Arnold et al., 2019).

Several recent papers have investigated karstified reservoirs (see also Chapter 1).
Methods to detect karstification in the subsurface exists (Chen et al., 2005; Esrafili-Dizaji
& Rahimpour-Bonab, 2019; Reijmer et al., 2017; Zhang et al., 2020; Zhiwen et al., 2020),
as well as numerical simulation efforts for fluid flow in karstified reservoirs (Correia et
al., 2019; Murad et al., 2020; Popov et al., 2007). However, the input parameters for such
modeling efforts are still unclear. A few studies have investigated the geometric pat-
terns existing in cave systems (Collon et al., 2017; Jouves et al., 2017). Nonetheless, the
interaction of cave systems and fracture networks at the reservoir scale is still not fully
understood. Realistic reservoir modeling parameters and a rigorous uncertainty quan-
tification workflow are also missing (Mohammed et al., 2021).

The influence of fractures on cave development is highlighted by several authors
(Balsamo et al., 2020; Boersma et al., 2019; Kassa et al., 2012). Therefore, when studying
cave development through numerical simulations, it is essential to capture the discrete
nature of the fractures accurately. The use of a Discrete Fracture Matrix (DFM) model,
which explicitly represents the fracture geometry, is therefore preferred (Moinfar et al.,
2011). Arising complications and solutions of conformal meshing due to DFM approach
are addressed in Chapter 3.

Fractures in the subsurface are usually inferred from several different data sources
(e.g., seismic imaging, wire-line logs, borehole images, and well-test data). This causes
the spatial distribution and aperture of the fractures to have a non-unique solution.
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Given a set of observations, the challenge is determining which fracture networks are
more likely to occur in the subsurface. Furthermore, different fracture networks may re-
sult in different dissolution patterns. Assuming the dissolution patterns are potentially
related to fractures that can be observed in the different data sources (i.e., fractures were
present before large-scale dissolution occurred), it is possible to construct a set of possi-
ble dissolution patterns if the aperture and other fracture network characteristics can be
inferred. These patterns can then be history matched to other available data to improve
our knowledge of the dissolution patterns found in the subsurface and improve predic-
tions on geothermal or hydrocarbon energy recovery in such karstified reservoirs. The
possibility of using numerical simulation results for training images as input to Multiple
Point Geostatistics (MPS) algorithms is briefly discussed.

4.2. LIDAR DATA ACQUISITION

4.2.1. BRIEF BACKGROUND ON AREA OF TWO EXPEDITIONS

In the years 2018 and 2019, several data sets were collected during fieldwork expedi-
tions to hypogenic and epigenic caves in the State of Bahia, Brazil. The data consists of
dense point clouds (resolution of around 3-10 cm), and the size of the caves ranges from
10s to 100s of meters. The data is collected with the mobile Light Detection And Rang-
ing (LiDAR) device (GeoSLAM ZEB Revo). This device relies on Simultaneous Localiza-
tion and Mapping (SLAM) technology. SLAM LiDAR is a suitable alternative to georef-
erenced photogrammetry in subterranean caves due to poor illumination and the non-
availability of GPS signals. Mobile LiDAR is also preferred over stationary LiDAR due to
the narrow passages in the caves (e.g., setup time, bulky equipment). Furthermore, the
resulting point cloud gives an exact representation of the inner cave surfaces providing
a distinct advantage to manual cave maps, as well as allowing more sophisticated 3D
analysis of the cave and speleogenetic features (Bosse et al., 2012; Zlot & Bosse, 2014a,
2014b).

The study area is located in the central part of Bahia State, Brazil, particularly the
Irecê Basin (Figure 4.1). It is located in the northern part of the São Francisco Craton,
on which, during the Late Proterozoic, an extensive carbonate platform had formed.
In terms of stratigraphy, the carbonates of the Una and Bambuì Groups overly Paleo-
Mesoproterozoic sedimentary and Archean metamorphic units (Misi et al., 2011). Two
formations make up the Una Group, particularly the Bebedouro and Salitre Formations.
At approximately 1 Ga, a major glacial event led to the deposition of glaciomarine sedi-
ments, which comprise the Bebedouro Formation. Between 750 and 650 Ma, the Salitre
Formation accumulated a thickness of several hundreds of meters. Many cave systems
in Brazil, including several of the caves examined in these two fieldwork expeditions, are
located in the Salitre Formation; therefore, it is of primary importance to this study.

Several fold belts border the São Francisco Craton, particularly Brasilia, Rio Preto,
Riacho do Pontal, Sergipano, and the Aracuai fold belts. During the fragmentation of
Rodinia, extensional events lead to the tectonic evolution of the Neoproterozoic sedi-
mentary basin. The São Francisco basin, which lies west to the Irecê basin, developed
during later tectonic inversion and compressional movement. The same tectonic events
that formed the São Francisco basin has likely caused the development of the Irecê basin
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Figure 4.1 Neoproterozoic cover (São Francisco Supergroup) of the São Francisco Craton and the folded belts
surrounding the cratonic area in NE Brazil. From Misi et al., 2011.

(Misi & Kyle, 1994). The collisions between the São Francisco Craton and the bordering
fold belts (i.e., formed during Brasiliano orogeny) caused deformation in the Neopro-
terozoic units of these basins (Ennes-Silva et al., 2016). According to structural analysis
by the same authors, there is evidence of superposed folding on the Neoproterozoic sed-
imentary units. Two phases of deformation are highlighted in these units. Folds and
thrusts striking NNE-SSW comprise the first phase, while folds and thrusts striking E-
W the second, both correspond to collisional events that occurred on the margin of the
craton (Ennes-Silva et al., 2016).

Having highlighted the geological history of the study area, an overview of all the
caves is given in Figure 4.2.
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Figure 4.2 Overview of the location of the studied caves.

4.2.2. ZEB REVO (RT) AND SLAM
The first expedition (2018) was carried out using the ZEB Revo, while the second (2019)
was carried out using the ZEB Revo RT. The main difference is the real-time point gener-
ation of the RT. This is very useful, especially in cave environments, since you can imme-
diately check the quality of the survey using either your phone or a tablet and estimate
if you have to redo the survey. Both scanners have similar specifications, particularly:
weight scanner 1kg, weight data logger 1.4kg, range 15-30m, resolution 3-30cm, field of
view of 360◦×270◦, and 43000 points/sec. The SLAM algorithm, utilized by both versions,
allows mobile data collection, especially useful in tortuous cave environments.

Some preparation is required for efficient and successful scanning practices. Besides
the apparent reading of the manual and ensuring all batteries are charged and enough
storage is available on the device, it is essential to plan your survey before starting. This
is done for two reasons: 1) making sure the survey length does not exceed 25min; 2) mak-
ing sure the route has enough features (rocks, boulders, anything other than a straight,
smooth wall). The second point is crucial for the SLAM algorithm and error distribution;
a simple straight tunnel with no features present might run into issues because of this
particular reason. Finally, if you want to save processing time, make sure no one moves
through your survey while recording.

Acquiring the survey is done systematically. Always start and end at the exact(!) loca-
tion. Always include several loops throughout the survey, and make sure you go slowly
through narrow passages. Keeping an eye out for the quality indication that the RT pro-
vides is critical in reducing post-processing issues later on. Anything within 10cm of
the scanner is not scanned, as a result of this limiting scanning yourself while surveying
(i.e., noise). Combined with the scanning resolution ratio of 1:10, the accuracy is roughly
3cm. An example of the LiDAR use is shown in Figure 4.3 (as well as a comparison of part
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of a LiDAR survey with an actual photo). Always make sure to include sufficient overlap
between the survey and recognizable objects.

(A) (B)

(C) (D)

Figure 4.3 LiDAR usage and comparison. (A) Starting LiDAR survey from fixed position (for initizilation). (B)
Capturing the reflection of the inner cave surface while moving through the cave. (C) and (D) Comparison be-
tween photo and LiDAR survey, roughly acquired at the same location.

4.2.3. DATA POST-PROCESSING
The first step when processing the data is done using the GeoSLAM Hub software. The
data storage unit is connected to a laptop via cable or using the WiFi of the datalogger.
The Hub software converts the raw scan data to usual point cloud formats (e.g., las or laz
format). Processing time is proportional to the scanning time of the particular survey.
After obtaining the las files and trajectory of the surveys, it is time to import them into
the software of your choice.

CloudCompare is a typical point cloud editing and processing software, excellent for
any post-processing tasks (Girardeau-Montaut, 2016). Due to the 25min survey limita-
tion and the necessity of creating several loops, one needs several surveys to map an
entire cave system. This means, in order to obtain a single point cloud of the full cave,
the individual surveys need to be registered (i.e., stitched together). This is why it is vi-
tal to include overlap and plenty of recognizable objects between two adjacent surveys.
The easiest way to register any two surveys is using these steps (following the manual
from CloudCompare): (1) use manual translations and rotations to approximately align
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each survey to the reference survey, (2) extract a small subset of each survey which has
overlapping points, (3) apply iterative closest point (ICP) (Besl & McKay, 1992) to finely
register these subsets to the reference cloud, (4) apply the obtained transformation ma-
trix from the ICP to the entire point clouds to obtain the fully aligned surveys, and (5)
merge the aligned individual surveys and obtain one complete continuous survey of the
cave.

4.3. LIDAR SHAPE ANALYSIS

4.3.1. EXAMPLE OF VISIBLE SPELEOGENETIC FEATURES IN LIDAR DATA

The investigated caves show very different patterns, possibly related to different struc-
tural (e.g., presence of fractures, bedding orientation) and hydrogeological (e.g., flow
barriers, origin, and chemistry of invading fluid) controls. One cave, in particular, Morro
Vermelho Cave (MVC), has been thoroughly investigated by Bertotti et al., 2020b. The
cave experienced little interaction with meteoric processes and served as an excellent
example of a hypogenic cave formed in a strike-slip tectonic regime. During an initial
stage, bedding parallel flow led to extensive dolomitization of a 102m thick body of rock
experiencing distributed deformation above a deep-seated strike-slip fault. With pro-
gressive displacement, the fault grew upward, connecting the two aquifers of the sedi-
mentary succession (quartzarenite and overlying carbonates), allowing for the invasion
of SiO2 rich fluids in the carbonates and creating caves with a variety of exotic miner-
als (e.g., barite). Similar minerals are recognized in the Dinantian rocks in Belgium and
surrounding areas.

This research indicates that the presence of strike-slip faults in the vicinity of deep-
seated carbonate aquifers can lead to extensive mineralization and large-scale dissolu-
tion along fractures, severely altering the reservoir properties (e.g., porosity and perme-
ability). The high-resolution LiDAR dataset also allowed for easy detection of small-scale
speleogenetic features indicating pathways for rising fluids and other diagnostic features
such as “cupolas“, as shown in Figure 4.4.

6 [m]

A A
’

(A)

20 [m]
A A

’

6 [m]

(B)

Figure 4.4 (A) High-resolution LiDAR data from the Morro Vermelho cave in Bahia, Brazil. (B) Visible speleoge-
netic features (i.e., “cupolas“). Modified from Bertotti et al., 2020b.
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4.3.2. EXTRACT SKELETON
The fickle nature of the MVC does not lend itself to comprehensive shape analysis using
the skeletonization approach. Several caves that were encountered fit this approach, one
in particular is presented (i.e., Lapa de Bode). This cave shows the typical maze-cave
pattern and is an excellent test case for the proposed methodology.

A topological skeleton is a thinner version of the original object that is equidistant
to each boundary (Yang et al., 2019). There are several skeletonization algorithms for
obtaining the skeleton of a 3D point cloud: L1-medial (Huang et al., 2013), curve skeleton
(Tagliasacchi et al., 2009), voxelizing point cloud (Ramamurthy et al., 2015), or based on
binary images (projected 2D or full 3D) (Lee et al., 1994). In this chapter, due to the
2.5D nature of the cave (i.e., cave passages manifest mostly in a single plane), it was
decided to project the point cloud onto a 2D plane. This plane can be rotated such that
it aligns with the bedding in which the cave originates. A 2D skeletonization algorithm,
similar to Lee et al., 1994 implemented in MATLAB, is then used on the image to obtain a
skeleton. Then, we apply the fracture preprocessing method to trim some skeleton edges
and straighten them to a certain degree.

4.3.3. EXTRACT SUB-CLOUD, PROJECTION AND CURVE FITTING
Once the skeleton is obtained, the next step is extracting the sub-cloud around a partic-
ular limb (i.e., edge) of the skeleton. Calculate the normal vector to the particular limb,
go a certain w along the normal vector in both directions, go a certain t perpendicular
to the normal vector, and finally extract all the points within this regular hexahedron
(Figure 4.5(A)).

After the sub-point cloud is extracted, a further subset has to be selected. In order
to make an accurate curve fit through the actual cross-section of the cave passage, it is
necessary only to extract these points. Since not all cave passages have the same width,
w must be chosen large enough to capture the largest width. If several cave passages
are parallel, this point-density cut-off criteria is excellent at identifying the extent of the
actual cave passage (Figure 4.5(B)).

After the final subset is obtained, a simple projection onto the plane perpendicular
to the skeleton limb is made. Finally, a 2D curve fitting through the projected points
results in a parametrized geometry of the cave passage at the particular limb. Many
choices can be made regarding what type of curve fitting is employed; in this case, a
simple polynomial fit is applied (i.e., allowing ellipses) (Figure 4.5(C) and (D)).

4.3.4. RESULTS
The Lapa de Bode cave is an excellent example of a maze cave and is well-suited for the
algorithm proposed in the previous section. Figure 4.6 displays the different shapes of
the cave along each passage. Quite regular shapes and spacing are observed for the cave
passages. Noticeably, the smaller cave passages in the SW-NE direction in the middle
of the domain are considerably narrower, this is also true for some of the end-points of
the branches in the south-side of the cave section (Figure 4.7). Enlargement of inter-
secting cave passages can also be observed, all of which points to converging and pref-
erential flow-paths (enlarging some passages more than others). On average, the cave
displays highly regular width and heights throughout the domain. These results suc-
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Figure 4.5 (A) Schematic 2D topview of point cloud with bounding box of points comprising the sub-point cloud.
(B) Extraction method for identifying the actual cave passage. (C) Final subset extraction and projection onto the
plane perpendicular to the skeleton limb. (D) Schematic of a curve fitting through the project subset of points.

cessfully demonstrate the application of an automatic extraction of 3D parameters of
complex cave geometry.

Ultimately, many different cave patterns were encountered during the two fieldwork
expeditions. Figure 4.8 attempts to visualize these differences both in shapes, the num-
ber of cave passages, and scale. In order to successfully use these observations for aiding
in the geological modeling workflow of karstified reservoirs, the difference in patterns
between those caves has to be explained by differences in formational processes. This
is attempted in the remaining chapter, where different wormhole numbers, length, and
presence of fractures on resulting dissolution patterns are examined. However, even af-
ter a link might be established, inferring these parameters and conditions from observa-
tions in the subsurface (i.e., well and seismic data) is a difficult task. History matching
based on some set of realistic prior karst models/configurations (i.e., similar to the con-
figurations in Figure 4.8) might be an option.
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(A) (B)

Figure 4.6 (A) Point cloud and skeleton of Lapa de Bode. (B) Examples of some projected sections along limbs of
the skeleton. Modified from Rossetto, 2020.
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(A)

(C)

(B)

Figure 4.7 (A) Width and height of the NW-SE cave segments. (B) Width and height of the SW-NE cave segments.
(C) Width of each cave segments. Modified from Rossetto, 2020.
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Figure 4.8 Impression of all the different geometries, scales, and number of cave passages that were observed
during the fieldwork expeditions. Modified from El Ahmar, 2019; Rossetto, 2020.
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Parametrizing caves does provide a direct use in fluid-flow simulation. Figure 4.9
shows an example of fluid-flow simulation in a discrete cave model, where cells in the
cave domain have been assigned a large porosity and permeability. Simplified cave rep-
resentations open up avenues for object-based modeling or even training images (TI)
for Multiple-Point Statistics (MPS). Accurate physical simulation in these complex triple
media (matrix-fracture-cave) geometries is of vital importance (Ali et al., 2020; Wu et al.,
2011).

(A) (B)

Figure 4.9 (A) 3D Cave model in GMSH after parametrizing the cave region and successive inner matrix regions.
(B) Two-phase fluid-flow simulation in 3D cave model. Large velocity in cave region results in almost instant
water breakthrough and small diffusion into the matrix (very similar to the fluid-flow patterns in conductive
fracture networks). From Rossetto, 2020.

4.4. CHEMICAL MODELING

4.4.1. CHEMICAL REACTIONS
Fundamentally, any chemical reaction can be broken down into a sequence of one or
more elementary reactions. Elementary reactions can be classified into three categories:
1) unimolecular; 2) bimolecular; 3) termolecular (Stumm & Morgan, 2012). A unimolec-
ular reaction describes the process of dissociation of a single reactant molecule. A simple
example is the dissociation of H2O into H+ and OH- (H2O H+ + OH–), or the dissocia-
tion of Oxygen at high pressures (O 4–

2 O2– + O2–). Another example of a unimolecular
reaction is radioactive decay. Bimolecular reactions involve the collision between two re-
active molecules (A + B AB). An example of a bimolecular reaction is CO(g) + NO3(g)
NO2(g) + CO2(g). Finally, in sporadic cases of extremely high-pressure conditions, a col-
lision between three reactant molecules can occur, which is denoted as termolecular
(Vallance, 2017).

In the first example, the proton (H+) is almost instantaneously hydrated to form hy-
dronium (H3O+) or sometimes referred to as a protonated water cluster. The overall reac-
tion is therefore often written as 2 H2O H3O+ + OH–. At first sight this might seem like a
bimolecular reaction, nonetheless, it is actually a sequence of two steps: a unimolecular
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reaction H2O H+ + OH– and a bimolecular reaction H2O + H+ H3O+. Following the
reaction steps we arrive at the ‘complex‘ reaction 2 H2O H3O+ + OH–.

Elementary reactions generally contain a transition between two states, separated by
a potential or energy barrier which is often denoted as the activation energy of the reac-
tion. The rate at which the reaction occurs is partially determined by the magnitude of
the activation energy (size of the potential barrier). High activation energy means that
for the reaction to occur, a large amount of (kinetic) energy is required during the col-
lision to overcome the energy barrier (Laidler, 1987; Lasaga, 1981, 1984), subsequently
reach the excited state and eventually form the product of the reaction. Since the tem-
perature of a system is a measure of the average kinetic energy of the molecules in the
system (Lasaga, 1981), an increase in temperature generally increases the reaction rate.
Change in the equilibrium constant of a reaction with respect to temperature was first
formalized by Van’t Hoff, 1884, when assuming standard conditions is expressed as:

d

dT
lnKeq = ∆HΘ

RT 2 , (4.1)

where T is the temperature in Kelvin, Keq is the equilibrium constant, ∆HΘ is the stan-
dard enthalpy of reaction, and R is the universal gas constant. The standard enthalpy of
reaction is positive for an endothermic reaction and negative for an exothermic reaction.
Integrating equation (4.1) from T2 to T1 results in

ln
(K2

K1

)
=−∆HΘ

R

( 1

T2
− 1

T1

)
, (4.2)

from which is it clear that if T2 > T1 and ∆HΘ > 0, endothermic, the equilibrium con-
stant is increasing (forward reaction is favorable) while if ∆HΘ < 0, exothermic, the
backward reaction is favored. This is also typically explained using Le Chatelier’s Prin-
ciple (Le Chatelier, 1884), which states that when changes are applied to a system that
is at equilibrium, the system reacts to counteract these changes. Consider the following
exothermic reaction: C A + B + Heat, note that heat is a product; when temperature in-
creases the heat content of the system increases, and the equilibrium is shifted towards
the left by favoring the backward reaction. A real world example of such an exother-
mic reaction is calcite dissolution (He & Morse, 1993; Singurindy & Berkowitz, 2003):
CaCO3 Ca2+ + CO 2–

3 + Heat. Dissolution potential related to hydrothermal karstifica-
tion is often formed due to cooling of ascending thermal fluids in combination with the
mixing of two fluids with different chemistry resulting in mixing corrosion (Dublyansky,
2000; Klimchouk, 2012; Palmer, 1991).

Based on the work of van Van ’t Hoff, Arrhenius, 1889 proposed his equation to de-
scribe the dependence of the kinetic rate constant on temperature:

k = A exp

{(−Ea

RT

)}
, (4.3)

where k is the rate constant, A is the pre-exponential factor, and Ea is the activation
energy (or potential barrier). The pre-exponential factor A, according to collision theory,
is related to the frequency of collisions in which the colliding molecules attain the correct
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orientation for the reaction to take place (Menzinger & Wolfgang, 1969). Present-day, this
equation is still regarded as an excellent empirical equation describing the temperature
dependence of the kinetic reaction rate constant (House, 2007; Wright, 2005).

Besides the dependence of the reaction rate on the system’s temperature, the law
of mass action, first described by Waage and Gulberg, 1986, proposes additional depen-
dence. It states that the reaction rate is proportional to the product of the activities of the
reactants. Note that this is typically only true for elementary (one-step) reactions. The
reaction mechanism is usually determined experimentally in a complex kinetic reaction,
accompanied by the rate-limiting step description. When the steps of complex reaction
happen sequentially, for example, A + B C followed by C + D E, the rate limiting
step is the slowest reaction. When the steps of the complex reaction happen in parallel,
for example, A + B C and D + E C, the rate limiting step is the fastest reaction
(Stumm, Morgan, et al., 1970).

4.4.2. EXAMPLES
Consider the following two kinetic reactions:

1. A C (unimolecular elementary reaction)

2. A + B C (bimolecular elementary reaction)

The reaction rate of the first reaction is given by ν1 = k[A], whereas the reaction rate of
the second reaction is given by ν2 = k[A][B ]. In order to obtain an explicit function for
the concentration of the reactant(s), the rate is expressed in differential form:

d [A]

d t
=−ν1 =−k[A], (4.4)

for the first reaction and:
d [A]

d t
=−ν2 =−k[A][B ], (4.5)

One way to obtain an expression for the concentration of reactant A is by integration.
For the first equation, this results in:

[A] = [A]0 −kt , (4.6)

while for the second equation, this results in:

kt = 1

[B ]0 − [A]0
ln

( [B ]0[A]

[A]0[B ]

)
. (4.7)

Consider now if the bimolecular elementary reaction is actually an equilibrium reac-
tion given by: A + B AB. The differential form is now expressed as:

d [A]

d t
= k−[AB ]−k+[A][B ], (4.8)

where k− is the backward and k+ is the forward reaction rate constant respectively. At
equilibrium, this equation equals zero. Setting d [A]

d t = 0 in equation (4.8) gives

k−[AB ]−k+[A][B ] = 0

[AB ]

[A][B ]
= k+

k−
= Keq . (4.9)
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Note: this doesn’t mean that no reaction occurs at all. Chemical equilibrium is usually
interpreted as a dynamic equilibrium where the forward reaction (creation of molecule
AB) occurs at the same rate as the backward reaction (product of molecule A and B),
rather than no reaction occurring at all (Wright, 2005). In this context, kinetic reactions
are interpreted as having a dominant direction in which the reaction occurs (e.g., k− >>
k+ or vice versa).

Please note the fundamental difference between equation (4.2) and (4.3): the equilib-
rium concentration (e.g., the solubility of a mineral) can both increase or decrease with
increasing temperature due to the reaction being either endo- or exothermic; however,
the kinetic rate constant for Arrhenius type of reactions solely increases with increas-
ing temperature (excluding non-Arrhenius and anti-Arrhenius reactions). This is also
used in chemical engineering (e.g., ammonia production). Since this is an exothermic
process, increasing the temperature reduces the produced ammonia; however, at lower
temperatures, the ammonia is produced at an unfavorable rate, and a compromise is
made between equilibrium concentration and rate of production (Modak, 2002).

4.4.3. TREATMENT OF REACTIONS IN REACTIVE TRANSPORT SIMULATIONS

The type of chemical reaction used in the mathematical formulation of a conservation
law is typically related to the reaction rate relative to the rate of other reactions in the
system and the flow velocity. A reaction with a fast reaction rate (e.g., homogeneous
or inter-aqueous reactions) in a system with relatively low flow velocity is best approx-
imated with an equilibrium reaction (Stumm, Morgan, et al., 1970; Stumm & Morgan,
2012). A reaction with a prolonged reaction rate (e.g., heterogeneous reactions) in a sys-
tem with fast flow velocity is best approximated using a kinetic reaction (Morel et al.,
1993).

Equilibrium reactions, as shown above, are expressed using the law of mass action.
Calcite dissolution/precipitation expressed as an equilibrium reaction results in CaCO3 Ca2+ +
CO 2–

3 , which at equilibrium must equal to:

{C a(aq)}{CO3(aq)}

{C aCO3(s)}
= K

{C a(aq)}{CO3(aq)} = K

Q = K (4.10)

where Q represents the Ion Activity Product (IAP) and the activity of the solid species
(C aCO3(s) is taken as unity. Note: For completeness, the square brackets that denote the
molar concentration of species i are substituted by curly brackets that denote species ac-
tivity i . This is following general hydro-chemistry literature. In the reservoir simulation
literature, the molar concentration of species i is usually denoted as mi and activity as
ai , respectively. The general reservoir simulation notation is followed in the remainder
of this document.

Kinetic reactions in reactive transport code describing mineral dissolution/precipi-
tation are typically expressed through the use of Transition State Theory (TST) rate laws
(Steefel et al., 2015). General form of such a (reversible) TST is given by (Aagaard & Helge-
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son, 1982; Lasaga, 1984):

Rm = sgn(Ω)Amkm

(∏
an

)∣∣∣exp

{(η∆G

RT

)}
−1

∣∣∣m

Rm = sgn(Ω)Amkm

(∏
an

)∣∣∣( Qm

Keq

)η−1
∣∣∣m

, (4.11)

whereΩ is the saturation index defined asΩ= log
(

Qm
Keq

)
, Am is the reactive surface area,

km is the kinetic rate constant, ∆G is the Gibbs free energy, the exponents η and m are
experimentally derived constant, and the exponent n is the stoichiometric coefficient.
Sometimes also given in the simplified version

Rm = Amkm

(∏
an

)(( Qm

Keq

)η−1
)
. (4.12)

For the use of a fully irreversible dissolution or precipitation reaction, the following
reaction is typically used (Steefel et al., 2015):

Rm = Amkm

(∏
an

)
. (4.13)

To avoid additional numerical convergence problems, the rate law should be a con-
tinuously differentiable function (Lichtner, 1996; Steefel et al., 2015). Both of the above
rate laws satisfy these conditions and are suitable for modeling dissolution and precipi-
tation reactions.

One of the other fundamental aspects of mineral dissolution and precipitation pro-
cesses is accurately capturing porosity changes, especially its effect on the permeability
and therefore pressure (Lichtner, 1996). Fracture permeability is ussualy update accord-
ing to a power-law function:

kn+1 = kn

(φn+1

φn

)A
, (4.14)

where kn+1 is the new fracture permeability and kn the old respectively, whileφn+1 is the
new fracture porosity or relative aperture and φn is the old respectively, and finally A is
the power-law exponent ussualy taken as 3.

Matrix permeability is usually updated using the Carman-Kozeny relationship:

kn+1 = kn

(φn+1

φn

)3( 1−φn

1−φn+1

)2
(4.15)

In practice, a transmissibility multiplier is used to avoid recalculation of the trans-
missibility list at every Newton iteration (for unstructured grids, this can be pretty time-
consuming).

4.4.4. FRACTURE NETWORK PREPROCESSING
The fluid flow evaluations are performed using the Delft Advanced Research Terra Simu-
lator (DARTS), recently developed at the Delft University of Technology (Khait & Voskov,
2018a, 2018d; Khait & Voskov, 2017). DARTS is capable of solving thermal flow and trans-
port problems in complex and realistic fractured reservoirs by using the DFM model
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adapted from (Karimi-Fard et al., 2004). For a detailed mathematical description of
the relevant flow equations, discretization, and modeling of permeability changes, see
Chapter 2. The current DFM implementation in DARTS relies on a Two-Point Flux Ap-
proximation (TPFA) scheme where fractures are represented explicitly in the numerical
model. However, explicit representations of the fractures, especially in fracture networks
generated from outcrops, often contain complex fracture intersections that might pose
meshing difficulties. Therefore, the resulting mesh can contain abundant artifacts that
negatively impact the performance of the reservoir simulator. See Chapter 3 for a de-
tailed analysis of the advanced DFM preprocessing method.

4.5. RESULTS REACTIVE TRANSPORT MODELING

4.5.1. INFLUENCE DAMKÖHLER AND PÉCLET
We conducted a large amount of portable LiDAR surveys to scan the interior of several
caves in the East of Brazil. The goal was to better understand the spatial distribution of
the cave networks and possibly explain the link between resulting cave geometry and
several features such as sedimentology, structural control, and boundary conditions.
Different cave geometries where observed, see for example (Bertotti et al., 2020a; Pontes
et al., 2020), in comparison to the results presented in Figure 4.10. In this figure, very
regular spacing of the cave tunnels can be observed (i.e., average of 6.5[m] between each
tunnel). However, fracture measurements inside the caves displayed a shorter spacing
between fractures than the cave tunnels display. This ties together with how much the
fractures are involved in the resulting cave geometry: do they fully constrain the devel-
opment of the dissolution features or only represent a small perturbation for the physical
instability to develop?

Figure 4.10 Left: Map view of the Torrinha cave in Brazil. Right: Detailed top- and cross-sectional view of the
obtained LiDAR dataset displaying several, regularly spaced (i.e., 6.5[m]), cave tunnels.

The numerical code, based on the equations discussed in Chapter 2, has the capabil-
ity of including chemical equilibrium as well as kinetic reactions. Equilibrium reactions
are compared to its direct kinetic counterpart (equilibrium reactions interpreted as ki-
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netic reactions)(Figure 4.11). Small differences between sub-branches of the wormhole
and wormhole thickness are observed due to the highly nonlinear and unstable nature
of the dissolution process where flow is tightly coupled with changes in permeability
(similar to the nonlinear behaviour of viscous instabilities). The nonlinear solver for the
kinetic reactions with very high kinetic rates struggles to converge without a good chop-
ping strategy to guide Newton (i.e., iterative method for solving nonlinear equations) to
the correct solution without oscillations.

Figure 4.11 Comparison between chemical equilibrium and kinetic reactions (of varying kinetic rates). The
results are obtained with the numerical simulation framework (DARTS) described in the previous section.

The Damköhler (Da) number is defined as the ratio between the reaction rate and
advective mass transport rate. In contrast, the Péclet (Pe) number is the ratio between
the advective mass transport rate and the diffusive transport rate. Low Da can be inter-
preted as either low reaction rate or fast advective mass transfer, while high Da implies
the inverse. Low Pe can be interpreted as either slow advective mass transfer or fast dif-
fusive mass transfer, while high Pe implies the inverse. Many authors have identified the
influence of these dimensionless numbers on the resulting dissolution regimes (Cohen
et al., 2008; Golfier et al., 2002; Kang et al., 2003; Koehn et al., 2021; Wang et al., 1993).
Golfier et al., 2002 illustrated these regimes with experimental and numerical data and
further labeled the wormhole types (previously mainly limited to compact, ramified, and
uniform)(Figure 4.12). A very small reaction rate relative to the diffusive and advective
transport results in uniform dissolution. Very fast reaction rate relative to diffusive and
advective transport in compact dissolution. Ramified wormholes occur when diffusion
is significantly larger than the reaction rate. Conical wormholes occur when the reaction
rate influence is significantly larger than the diffusive transport. The dominant worm-
hole regime occurs after reaching a certain threshold (Da and Pe = 1e-2), and increasing
the Da or Pe remains in the dominant wormhole regime. Numerical results by Cohen
et al., 2008 show similar wormhole regimes (Figure 4.12).

Linking cave development to these wormhole types is a difficult task since, as shown
later in this chapter, similar patterns can occur when fractures are involved. However,
one can still observe the similarities between the observations from the field (Figure 4.8)
and the different wormhole types (Figure 4.12). For example, the occurrence of a sin-
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gle (large) cave passage can be linked to either the conical wormhole dissolution regime
or potentially to a completely dissolved fracture corridor (requires a large diffusive in-
fluence relative to advective and reactive transfer). A maze cave pattern is likely some-
where between the dominant and ramified wormhole regime or could be formed in an
orthogonal fracture network with intermediate influence of diffusive transport relative
to advective and kinetic transfer rate (Figure 4.18).

Please note, Palmer, 1991 states: “the nature of the ground-water recharge is the most
important factor in determining whether a cave will be a branchwork or a maze”. All
these experiments are done with constant flow boundary conditions, which according
to Palmer, 1991 is more likely to result in maze patterns. In order to fully predict cave
patterns using numerical reactive transport models, more realistic boundary conditions
based on regional hydrology should be considered.

Face dissolution Conical Dominant Ramified Uniform ϕ

Compact dissolution Conical Dominant Ramified

Figure 4.12 Different types of wormholes depending on the Da and Pe numbers. The top row are numerical
results from Golfier et al., 2002 and the bottom row corresponds to numerical results from Cohen et al., 2008.

4.5.2. INFLUENCE BOUNDARY CONDITIONS AND RESOLUTION

The influence of boundary conditions on the resulting dissolution patterns from the nu-
merical simulation cannot be underestimated. Suppose one wants to predict potential
shapes and distributions of the subsurface karst network. In that case, careful consid-
eration has to be made based on the resolution of the model, the presence of fractures,
and the type of boundary condition. Besides the chemical composition and temperature
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of the fluids involved, even something as simple as constant flow boundary conditions
(i.e., Neumann) might be non-trivial. In reservoir simulation, we typically prescribe the
boundary conditions via wells. Two choices can be made to mimic a constant flow in-
jection along a specific boundary: a single well that perforates all boundary cells or a
separate well for each cell along the boundary.

Two basic numerical experiments were done to investigate the difference between
a single well versus multiple wells. The first experiment compares breakthrough times
between the different setups, while the second shows breakthrough time. The random
permeability is generated on the coarsest mesh (i.e., 50×100 for the first experiment and
12×20 for the second), and is downscaled to each finer scale by simply subdividing the
coarse cell into 2×2, 3×3, etc. fine cells (Figure 4.13(A) and (B)). The permeability field
of the first experiment is generated following a Gaussian (correlated) random field with
correlation length > 0, while the second one is generated using random noise of around
5% around the mean permeability. The size of the domain in both cases is 50×100[m]
in the x- and y-direction. Note, the ∆x = ∆y and ∆x < ∆y in the two respective setups.
The fluid and rock parameters are described in the Appendix A. Pure water is injected at
a constant rate of 200[m3/day] on the left, and on the right, constant pressure of 95[bar]
is maintained (for both experiments).

Permeability, ln(K[mD])

(A) (B)

Figure 4.13 Maps of initial permeability of two experimental setups. The random permeability is generated on
the coarsest mesh (i.e., 50×100 for the first experiment and 12×20 for the second), and is downscaled to each
finer scale by simply subdividing the coarse cell into 2×2, 3×3, etc. fine cells. The actual size of both domains is
50×100[m] in the x- and y-direction (meaning, ∆x =∆y and ∆x <∆y in the two respective setups).

A sensitivity study on the numerical convergence (i.e., changes in solution when re-
fining the mesh) shows that a single well with multiple perforations, as often used in
reservoir simulation, significantly increases dominant wormhole formation and reduces
breakthrough times with mesh refinement (Figure 4.14). This is most likely caused due
to two things. Refining the mesh speeds up the development of the unstable dissolu-
tion front. This, in turn, increases the convergence of fluids towards higher permeabil-
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ity zones (i.e., where the material is dissolved already). A single well with multiple per-
forations is already prone to distributing the fluid unevenly. The cumulative effect is
faster wormhole propagation. It can be argued which boundary condition implemen-
tation is more “realistic”. A fixed pressure (i.e., Dirichlet) or Robin (i.e., a combination
between Dirichlet and Neumann) might be more realistic but means one cannot control
the dimensionless numbers such as Da and Pe because constant pressure in combina-
tion with increasing effective permeability due to dissolution results in an increasing
flowrate. Note that implementing a separate well for each cell on the boundary causes
linear convergence issues, and a direct solver was applied instead of the standard iter-
ative solver. This is why 150×300 is the finest resolution tested in the sensitivity study.

Ny wells (direct solver)

Single well

(50 x 100) (100 x 200) (150 x 300)

Figure 4.14 Effect of boundary conditions on porosity map after dissolution (using permeability field in (Fig-
ure 4.13(A)). The plot shows two rows (i.e., multiple wells vs. single well) and three rows (i.e., coarsest to finest
scale). Early breakthrough of the leading wormhole is observed as well as an increase in the number of smaller
wormholes when refining the mesh.

A further quantitative analysis, similar to the Pore Volume Breaktrough Time (PVBT)
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of the leading wormhole in Cohen et al., 2008; Maheshwari et al., 2013; Shaik et al., 2017,
is presented. The number of fully developed wormholes is stabilizing as well at the finest
resolution (no difference when coarsening one level) (Figure 4.15). Following the obser-
vations of Shaik et al., 2017, the PVBT is decreasing with mesh refinement, and the curve
is approaching zero change with resolution at the finest resolution (Figure 4.16).

(12x20) (24x40) (48x80) (96x160) (192x320)

Figure 4.15 Porosity map as a function of resolution for constant flowrate with a single well/multiple perforations
(using permeability field in (Figure 4.13(B)). Note, the time at which the snapshot is visualized differs amongst
realizations and is taken at the time of breakthrough. The number of wormholes is stabilizing when refining the
mesh as while the PVBT is increasing when refining the mesh (similar to the observations in Shaik et al., 2017).
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Figure 4.16 PVBT curves for constant flowrate with a single well/multiple perforations when refining the mesh
(using permeability field in (Figure 4.13(B)). In accordance with the observations of Shaik et al., 2017, the PVBT
is decreasing with mesh refinement and the curve is approaching zero change with resolution at the finest reso-
lution.

4.5.3. PRESENCE OF FRACTURES
We furthermore use the numerical simulation framework to examine qualitatively how
significant the impact of fractures is on the dissolution patterns. This is done by varying
the fractures’ aperture (i.e., conductivity). It can be observed that with a large fracture
aperture, the resulting dissolution pattern is completely governed by the fracture distri-
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bution, while when decreasing the fracture aperture, similar patterns as shown in Figure
4.10 can be observed. Therefore, it is important to understand the initial and bound-
ary conditions of the geological system, especially in terms of fracture distribution and
characteristics, if we want to predict the dissolution patterns in the subsurface success-
fully. These predictions, however, can be improved/constrained by the use of history
matching/Bayesian inference of several parameters using present-day observations.

Fracture aperture has a large impact on the resulting dissolution pattern (Figure 4.17).
Increasing the fracture aperture results in a more localized dissolution from within the
fracture network (i.e., maze pattern as observed in Lapa de Bode). Reducing the fracture
aperture seems to generate a similar pattern as observed in Torrinha (Figure 4.10).

Figure 4.17 Illustration of the effect of fracture aperture on the resulting dissolution patterns. Smaller fracture
aperture seem to generate a similar pattern as observed in the LiDAR data. The results are obtained with the
numerical simulation framework (DARTS) described in the previous section.

Results obtained by varying dispersive influences (i.e., keeping constant injection
and kinetic reaction constants but increasing the effective dispersivity) are displayed in
Figure 4.18. It can be clearly seen that substantial effective dispersion almost negates
the influence of the fractures. At the same time, too small effective dispersion results
in a complete bypass of the dissolution in the fracture network (i.e., no fluid penetrates
the matrix surrounding the fracture walls, and nothing is dissolved). In between are two
regions: highly dispersed giant tunnel and wide-spread dissolution closer to the source
(i.e., location with higher dissolution potential); very regular dissolution patterns around
the fracture walls similar to patterns observed in Lapa de Bode.

Figure 4.19 shows the different dissolution patterns when varying the mesh resolu-
tion (for the same simulation parameters as the third regime in Figure 4.18. Sufficient
resolution is required when considering the highly localized dissolution around the frac-
ture walls. Qualitatively, the coarsest scale does not capture the same behaviour as the
other two finer scales.

4.6. CONCLUSIONS
Reservoir modeling of karstified and fractured reservoirs becomes a focus of modern re-
search due to the importance of such systems in various subsurface applications (e.g.,
geothermal energy or hydrocarbon production). There are techniques available to de-
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Decrease dispersion (constant injection and kinetic rate)

Figure 4.18 Different dissolution patterns when varying the effective dispersion. No maze caves are formed in
either end-point regimes (too strong/weak effective dispersion). Large variety in cave passage width is obtained
with high dispersive forces, while very regular width of cave passages is obtained in the intermediate effective
dispersion regime.

Increase spatial resolution

Figure 4.19 Effect of grid resolution on dissolution patterns. As is the case without fractures, dissolution requires
a large spatial accuracy to reflect the complex physical fluid-rock interaction. Local refinement might be a solu-
tion.

tect, at some scale, if karstification or other chemical and mechanical alterations exists.
However, it remains unclear how to model them on a reservoir scale and produce a real-
istic representation of the subsurface. This chapter attempts to explore the relationship
between heterogeneity (i.e., permeability and presence of fractures), different interplay
of reactive, advective, and diffusive transport rates, and the resulting dissolution patterns
using LiDAR observations from real caves and numerical reactive transport results.

In order to analyze the shape of the caves, the point cloud data is converted into
an image from which the skeleton is extracted. A slice is made through the point cloud
along each skeleton limb, and the points are projected on the plane perpendicular to the
skeleton limb. A curve is fitted through the project points resulting in an approximation
of the shape of the cave at the particular limb of the skeleton. The shape is analyzed
for a specific cave (i.e., Lapa de Bode). Very regular spacing between the cave passages
is observed, and regular width and heights of the cave passages. Except at some end-
points or connecting fractures in a NE-SW direction, possibly indicating converging flow
and preferential dissolution.
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Next, we combine our fracture modeling technique with the reactive flow and trans-
port framework utilized Operator-Based Linearization approach. The preprocessing al-
gorithm in Chapter 3.2.4 is used for handling the fracture networks. We introduce a
robust treatment of matrix dissolution based on a combination of kinetic and equilib-
rium chemistry with changes in porosity and permeability. The developed framework
allowed us to simulate various geogenesis scenarios where different system parameters
such as chemical treatment, fracture aperture, and spatial distribution are stochastically
populated. Qualitative simulation results are presented further to explore interactions
between flow in fractured media and dissolution.

Furthermore, the influence of effective dispersion on dissolution patterns in fracture
networks is analyzed. Intermediate ranges result in the localized regular dissolution dis-
tribution (at fracture walls) similar to some caves. While end points of effective disper-
sion (too small/large) reduces the influence of the fracture network on the dissolution
patterns. It is also shown that numerical simulation results require sufficient resolution
to capture maze cave patterns. In order to predict all cave patterns mentioned in Palmer,
1991, more realistic boundary conditions which represent the regional hydrology should
be considered. Convergence behavior of DARTS based on PVBT and number of worm-
holes is in accordance with results from AD-GPRS (Shaik et al., 2017). The significant
difference between a single well but multiple perforations and multiple wells is high-
lighted, further stressing that actual wormhole configuration is complicated to predict.

A future goal of our research is to define a straightforward approach on how to model
these different permeability and porosity distributions based on a set of observations.
Due to the lack of direct measurements and sparsity of these observations, uncertainty
on the state of the subsurface plays an important role. Uncertainty can be accounted for
through the use of statistical approaches (e.g., MPS), where the different dissolution pat-
terns can serve as training images. Subsequently, additional observations can be used to
obtain a posterior distribution of the reservoir parameters. However, defining and un-
derstanding what these reservoir parameters should embody within karstified reservoirs
remains a big challenge.
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5
ACCURATE GEOTHERMAL AND

CHEMICAL DISSOLUTION

SIMULATION USING ADAPTIVE

MESH REFINEMENT ON GENERIC

UNSTRUCTURED GRIDS

A coupled description of flow and thermal-reactive transport is spanning a wide range
of scales in space and time, which often introduces a significant complexity for the mod-
elling of such processes. Subsurface reservoir heterogeneity with complex multi-scale fea-
tures increases the modelling complexity even further. Traditional multiscale techniques
are usually focused on the accuracy of the pressure solution and often ignore the transport.
Improving the transport solution can however be quite significant for the performance of
the simulation, especially in complex applications related to thermal-compositional flow.
The use of an Adaptive Mesh Refinement enables the grid to adapt dynamically during
the simulation, which facilitates the efficient use of computational resources. This is es-
pecially important in applications with thermal flow and transport where the region re-
quires high-resolution calculations as often localized in space. In this work, the aim is
to develop an Adaptive Mesh Refinement framework for geothermal reservoir simulation.
The approach uses a multi-level connection list and can be applied to fully unstructured
grids. The adaptivity of the grid in the developed framework is based on a hierarchical
connectivity list. First, the fine-scale model is constructed, which accurately approximates
all reservoir heterogeneity. Next, a global flow-based upscaling is applied, where an un-
structured partitioning of the original grid is created. Once the full hierarchy of levels is

Parts of this chapter have been published in Advances in Water Resources 154, 103977 (2021) de Hoop et al.,
2021a.
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constructed, the simulation is started at the coarsest grid. Grid space refinement criteria is
based on the local changes and can be adjusted for specific models and governing physics.
The multi-level connectivity lists are redefined at each timestep and used as an input for
the next. The developed Adaptive Mesh Refinement framework was implemented in Delft
Advanced Research Terra Simulator which uses the Operator-Based Linearization tech-
nique. The performance of the proposed approach is illustrated for several challenging
geothermal applications of practical interest.

5.1. INTRODUCTION
Production development of prospective reservoirs includes the use of various technolo-
gies that provide information at many different scales. These scales range from core
plugs being a few centimeters in size to well logs detecting properties a few meters around
the well, and to seismic imaging covering a significant volume with limited resolution
(few meters vertically and 10’s of meters horizontally). However, time and capital limita-
tions result in sparse direct sampling of reservoir rock and fluid properties. This is why
the construction of reservoir models, through integration of these data using geostatisti-
cal reservoir description algorithms, has become a crucial step in resource development
(Branets et al., 2009). These algorithms conventionally result in fine-scale descriptions of
reservoir properties (porosity, permeability) on grids of tens of millions of cells (Christie,
1996).

An issue of considerable importance is the risk and uncertainty assessment of reser-
voir performance. The uncertainty can be gauged by simulating an ensemble of different
geological realizations (Chen et al., 2015). This may require to run thousands of simu-
lations to cover a wide range of parameter variation. It is however not computationally
feasible or desirable to perform these simulations on the high-fidelity (fine-grid) model.
Significantly upscaled models (i.e., the mapping of rock and fluid properties to a coarser
resolution) are therefore required, where these models should ideally be even coarser
than typical reservoir simulators, which can handle on the order of 105 −106 simulation
cells (Durlofsky, 2005). In the presence of more complex physics, excessive upscaling
may, however, result in non-satisfactory results, which necessitate the use of advanced
algorithms and solvers to allow for higher resolution grids to be employed (Cusini et al.,
2016).

Traditional Multiscale techniques (Jenny et al., 2003; Wang et al., 2014), developed to
solve the elliptic (or parabolic) pressure equation in sequentially coupled simulations,
mainly focus on the pressure solution and often ignore the transport. However, in com-
plex applications related to chemical and compositional EOR (Enhanced Oil Recovery),
reservoir storage and geothermal industry, the number of conserved chemical species
can be large which makes any improvement in transport solution quite significant for
the performance and robustness of the simulation. A technique called Adaptive Mesh
Refinement (AMR) provides an effective means for adapting the resolution of a model to
solution requirements. This method is well developed in many areas of computational
physics (e.g. fluid dynamics and solid mechanics) but is however not widely used for
practical reservoir simulation (Karimi-Fard & Durlofsky, 2014).

In today’s literature, several researchers have developed and proposed AMR proce-
dures to capture the local nature of transport processes. Bahrainian and Dezfuli, 2014
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have developed a novel unstructured grid generation algorithm which considers the ef-
fect of geological features and well locations in the grid resolution. This strategy involves
the definition and construction of the initial grid based on the geological model, ge-
ometry adaptation of geological features and grid resolution control. Trangenstein, 2002
used the combination of high-resolution discretization methods with dynamically adap-
tive mesh refinement for a two-component single-phase model for miscible flooding.
Pau et al., 2012 proposed an AMR algorithm for compressible two-phase flow in porous
media. The method is implemented within a block structured adaptive mesh refinement
framework which allows the grids to dynamically adapt to flow features and enables ef-
ficient parallelization of the algorithm. The coarse-scale permeability was obtained by
averaging the fine-scale permeability. Similar techniques have been developed for com-
positional simulation (Sammon et al., 2003), thermal problems (Christensen et al., 2004),
improved/enhanced oil recovery processes (Van Batenburg et al., 2011), Discrete Frac-
ture Networks (Berrone et al., 2019), and many more applications.

In this work, the aim was to develop a dynamic AMR scheme using an unstructured
multi-level gridding framework, for geothermal simulation in complex reservoirs. The
focus lied particularly on thermal-reactive flow and transport formulation which are re-
quired for a wide range of subsurface applications relevant to the energy transition in-
cluding geothermal. Notice that heterogeneity plays a very important role in geothermal
applications (Babaei & Nick, 2019; Shetty et al., 2018). The geothermal doublet lifetime
and heat recovery rate usually vary a lot with both reservoir parameters and operational
management where uncertainties due to heterogeneity are dominating (Willems & Nick,
2019). Besides, heterogeneity in flow path and shale facies play an important role in wa-
ter heat recharge which directly affects doublet performance at low net-to-gross ratio
(Crooijmans et al., 2016). Besides, complex heat extraction process and corresponding
chemical interactions can also amplify the effect of heterogeneity (Cui et al., 2016; Kala
& Voskov, 2020).

As a starting point of our framework, a fine-scale geological model has to be con-
structed accurately approximating all reservoir heterogeneity. In reservoir simulation,
this model is often represented by a list of volumes, depths and a connectivity list (Lim
et al., 1995) describing each control volume. Next, a global flow-based upscaling was ap-
plied and an unstructured partitioning of the original grid was constructed as suggested
in (Karimi-Fard & Durlofsky, 2014). This partitioning provides coarser levels of the orig-
inal model which is also described by a list of volumes, depths and a connectivity list. A
coarser connectivity list includes connections between control volumes at the given level
as well as interconnections between the levels. Once the full hierarchy of levels is con-
structed, the simulation is started at the coarsest grid. Grid space refinement criterion is
developed for particular applications. The multi-level connection list is reconstructed at
each time step and used for the simulation. The proposed approach was implemented
in Delft Advanced Research Terra Simulator (DARTS) (Kala & Voskov, 2020; Wang et al.,
2020).

5.2. METHODOLOGY
For the governing equations used for the flow simulations in this chapter, the reader is
referred to Chapter 2. For the discretization approach and linearization using OBL, the
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reader is referred to Chapter 2.

5.2.1. CONNECTIVITY LIST

The proposed AMR technique uses the Finite Volume Method (FVM) for discretization.
The implementation of the finite volume discretization method to the mass conserva-
tion equation requires the evaluation of the flow between two adjacent control volumes
in terms of the cell pressures. Using a Two-Point Flux Approximation (TPFA), the flow
rate is defined as:

Qi j = Γi j
p (Pi −P j ), (5.1)

where:
Qi j : flow rate at interface of cells i and j ,

Γ
i j
p : phase transmissibility at interface of cells i and j ,

Pi : pressure of cell i ,
P j : pressure of cell j .

Similarly, the heat flux between two adjacent control volumes is expressed in terms
of thermal transmissibility Γc and is, also using a TPFA, defined as:

Qh
i j = Γ

i j
c (Ti −T j ), (5.2)

where Γi j
c is the thermal transmissibility at interface i j , Ti and T j are the temperatures

of cell i and j respectively, and Qh
i j is the heat flux at interface i j .

To evaluate the flux between two adjacent control volumes, a so-called connectivity
list is constructed, i.e. for each interface between two neighbouring control volumes,
the indices of these cells are listed together with the transmissibility (Lim et al., 1995).
The result is a list with all connection pairs present in the grid. A few important points
to be noted are:

• Each connection consists of only two elements,

• The connection pairs are not repetitive,

• No-flow boundaries imply the absence of connections and are hence not listed in
the connectivity list.

The figure below shows a simple example of a 2D Cartesian structured grid, with corre-
sponding cell indexing. Table 5.1 shows its connectivity list. The list is expressed as two
arrays, cell i and cell j , where each column represent a connection pair. Each pair has
an associated interface transmissibility stored in the connectivity list.

Table 5.1 Connectivity list of the example grid from figure 5.1.

Dual connections
Cell i 0 0 1 1 2 2 3 4 4 5 5 6 6 7 8 8 9 9 10 10 11 12 13 14
Cell j 1 4 2 5 3 6 7 5 8 6 9 7 10 11 9 12 10 13 11 14 15 13 14 15
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0 1 2 3 0,1…15   cell index

connection

Figure 5.1 4x4 Cartesian grid denoting cell indexing and showing neighbouring connections. Indexing is based
on a Cartesian structured mesh for simplicity.

5.3. MULTI-LEVEL GRID GENERATION
The adaptivity of the grid in the developed AMR scheme is based on a hierarchical rep-
resentation of connectivity list. The simulation grid is composed of several predefined
levels representing the same geological properties at different resolutions. We start with a
fine-scale model (static geological model) which accurately represents all reservoir het-
erogeneity. This grid is defined as level 0 and represents our finest level. The model-
ing grid is defined by a list of control volumes, depths, reservoir properties (all spatially
distributed properties required to solve the discretized relations 2.31 and 2.32) for each
mesh element, and a list of connectivity with corresponding transmissibility between
neighbouring cells.

Next, level 1 is defined, where control volumes are constructed by aggregating fine
grid cells. Upscaling is applied to redefine volume, depth and reservoir properties at a
coarser level. A connectivity list, with corresponding transmissibility, is constructed for
this level and inter-level connections are defined in addition. Similarly, more levels of
coarsening can be constructed. A control volume in grid-level n always consists of cells
from grid-level (n −1), resulting in a hierarchical relationship (Karimi-Fard & Durlofsky,
2014). The simulation grid is then obtained by combining control volumes from grids of
different levels. A schematic representation of this procedure is illustrated in figure 5.2
below.

5.3.1. CELL AGGREGATION

A mesh consists of a set of finite elements, each having vertices with allocated coordi-
nates. To conduct cell aggregation, the centroid is first computed for each mesh ele-
ment within the grid. Figure 5.3 shows an example 2D unstructured grid to illustrate
how cell aggregation is conducted. As can be seen, in this particular example, each cell
has 3 vertices, and a centroid (represented in red) with coordinates xc and yc defined
as

( x1+x2+x3
3 , y1+y2+y3

3

)
, where xi and yi are the coordinates of the vertices. Each mesh

element has an assigned index number.

Cell aggregation is then carried out by dividing the grid in the x- and y-direction (and
in the z-direction for 3D models) into equidistant intervals∆x and∆y using a predefined
scaling factor. Each interval has coordinates [i , i +∆x] in the x-direction and [ j , j +∆y]
in the y-direction. Centroids of cells whose coordinates are within a given x y-area are
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Simulation grid

Level 0 Level 1 Level 2

Figure 5.2 2D Multi-level grid with three pre-constructed grids (levels) with an example simulation grid which
is constructed by aggregating control volumes from different levels.

aggregated to form one coarse cell. To check whether a fine cell f is within a given plane
which will form coarse cell F , the following algorithm is implemented for the coordinates
xc f and yc f of the centroid of fine cell f :

if i ≤ xc f < i +∆x and j ≤ yc f < j +∆y, cell f ∈ cell F. (5.3)

Figure 5.3 shows the range partitioning (illustrated by the white lines) for a 2D unstruc-
tured grid. The x- and y-range were divided in 5 and 3 equidistant intervals respectively.
The yellow-highlighted 2D plane has range [i , i +∆x] in the x-direction and [ j , j +∆y] in
the y- direction. For this given example, all cell centroids whose coordinates fall within
this plane, are aggregated to form one coarse cell. For example, cells 41, 46, 68, 77, 84,
92, 106, 111 and 118 form coarse cell 0.

For the given 2D unstructured grid example in figure 5.3, the so-called level 1 - i.e. the
next level of coarsening - is shown in figure 5.4. The numbers represent the assigned in-
dices of the newly constructed coarse cells. If one wants to construct an additional level,
the same procedure can be followed with a larger x- and y-range partitioning, where grid
cells of level 1 are aggregated to form level 2.

For further steps into the generation of the levels, a list - "fines in coarse" - is con-
structed where the corresponding indices of the aggregated fine cells are listed for each
coarse cell. Table 5.2 below tabulates this list for the example above (figures 5.3 to 5.4).
This type of list is generated for each coarse level (level> 0) in the hierarchical grid. These
lists are stored for the construction of the cell properties (e.g. volume, porosity) of the
coarse levels, where the cell data from the fine level is needed during upscaling.

Table 5.2 "fines_in_coarse" list of the example 2D unstructured grid of figures 5.3 - 5.4. This list describes for each
coarse cell, the aggregated fine cells of level n −1 to form the coarse cell of level n.
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Coarse cell Fine cells
0 41, 46, 68, 77, 84, 92, 106, 111, 118
1 2, 4, 12, 51, 55, 65, 78, 122
2 8, 25, 26, 27, 28, 29, 30
3 3, 5, 13, 44, 52, 79
4 16, 42, 45, 49, 74, 87, 90, 104, 114, 117
5 21, 34, 37, 61, 63, 71, 73, 82
6 15, 18, 56, 88, 96, 100, 102, 109, 110, 123
7 23, 35, 57, 94, 97, 98, 99, 101, 107, 108
8 14, 24, 64, 67, 89, 95, 115, 121
9 20, 33, 38, 60, 62, 70, 72, 83

10 17, 40, 47, 50, 75, 86, 91, 105, 113, 116
11 1, 7, 11, 53, 58, 81
12 9, 19, 22, 31, 32, 36, 39
13 0, 6, 10, 54, 59, 69, 80, 120
14 43, 48, 66, 76, 85, 93, 103, 112, 119

Note that cell aggregation can also be conducted while taking care of highlighting
geological features (e.g. fractures) and different facies in the model. For example, cell
aggregation can be conducted by grouping domains with the same facies together into
one coarse cell, or, in fractured reservoirs, by aggregating cells by isobar contours similar
to (Karimi-Fard & Durlofsky, 2014).

After cell aggregation is conducted, the connectivity list is then constructed describ-
ing all connections within each level and the inter-level connections. To illustrate the
methodology, we use the simple structured grid from figure 5.1, where cell aggregation
was performed to form one coarse level.

In the proposed AMR scheme, the connectivity list of each level is determined sys-
tematically. Each mesh element consists of a set of vertices x. E.g. a triangular mesh
element comprises 3 vertices, and a Cartesian grid comprises 4 vertices. These vertices
are numbered uniquely. The vertices x comprised in a cell i are stored in a list; this is
done for each mesh element in level 0. To determine whether two control volumes i and
j are adjacent, we take the intersection of both sets of vertices. That is:

{x|x ∈ i } ∩ {x|x ∈ j }. (5.4)

Each geometry has a different criterion. For 2D shaped mesh elements, the interface is a
line; for 3D shaped cells, the interface is a plane. Hence the criterion is that the intersec-
tion length should equal 2 for 2D shapes and 3 or more for 3D shapes. This methodology
is applied to the finest level of refinement - level 0. The result is a connectivity list repre-
senting all the unique connection pairs within level 0. The interface area is subsequently
computed (and stored for transmissibility computation in further steps) for each con-
nection.

For the construction of the coarse level connectivity list, we first store for each cell i ,
connection pairs (interfaces) which consist of cell i , describing its faces. Table 5.3 below
illustrates this methodology for the fine grid of the example above (see figure 5.5).
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Δx

Δy

(i+Δx, j)(i, j)

(i, j+Δy)

Figure 5.3 2D unstructured grid with centroids and with range partitioning (represented by the white lines) in
the x- and y-direction with ∆x and ∆y spacing respectively. Aggregation is carried out for cells whose centroid
fall within a given x- ([i : i +∆x]) and y-range ([ j : j +∆y]). E.g., all cells whose centroids are found within the
yellow-highlighted 2D range are aggregated to form one coarse cell.
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Figure 5.4 2D unstructured grid of figure 5.3 after cell aggregation. This grid represents the next level of coarsen-
ing of the finest grid: level 1.
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Figure 5.5 4x4 Cartesian grid showing cell aggregation, resulting in four coarse grid cells.

Table 5.3 Interfaces l contained in each cell i for level 0. The interfaces are expressed as connection pairs, de-
scribing it.

Cell i Faces
0 (0, 1), (0, 4)
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Coarse cell I Faces
1 (0, 1), (1, 2), (1, 5)
2 (1, 2), (2, 3), (2, 6)
3 (2, 3), (3, 7)
4 (0, 4), (4, 5), (4, 8)
5 (1, 5), (4, 5), (5, 6), (5, 9)
6 (2, 6), (5, 6), (6, 7), (6, 10)
7 (4, 7), (6, 7), (7, 8)
8 (4, 8), (8, 9), (8, 12)
9 (5, 9), (8, 9), (9, 10), (9, 13)

10 (6, 10), (9, 10), (10, 11), (10, 14)
11 (7, 11), (10, 11), (11, 15)
12 (8, 12), (12, 13)
13 (9, 13), (13, 14)
14 (10, 14), (13, 14), (14, 15)
15 (11, 15), (14, 15)

A similar list is constructed for coarser levels (level > 0), which is constructed by ag-
gregating the faces of the fine grid cells i (table 5.3 in this example) contained in each
coarse cell I . Inner fine interfaces are unaccounted for, as they are not contained in the
coarse interface. For the example above, this results in the following list:

Table 5.4 List of faces (corresponding connection pairs) for each coarse cell in the coarse grid.

Coarse cell I Faces
0 (1, 2), (4, 8), (5, 6), (5, 9)
1 (1, 2), (5, 6), (6, 10), (7, 11)
2 (4, 8), (5, 9), (9, 10), (13, 14)
3 (6, 10), (7, 11), (9, 10), (13, 14)

Next, the common faces between each coarse cell are determined. This is imple-
mented by evaluating the intersection between the set of faces f belonging to coarse cell
I and the set of faces f forming coarse cell J . This is expressed as:

{f|f ∈ I } ∩ {f|f ∈ J }. (5.5)

If a given coarse cell I has one or multiple common faces f with another coarse cell J ,
these two cells form neighbouring blocks. For transmissibility computation in further
steps, the area of the connecting interface is stored, which is here expressed as the sum
of the intersecting fine grid faces.

For inter-level connections, a similar method is implemented. For each coarse cell
I in level n, the intersection of its set of faces f with the set of faces f of a given fine
cell i is determined. This operation is conducted for every fine cell i in level (n − 1),
except for the fine cells comprised in the evaluated coarse cell I (i ∈ I ). This is expressed
mathematically as follows:

{f|f ∈ I } ∩ {f|f ∈ i }, where {i |i ∉ I } (5.6)
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Similarly, if a given coarse cell I has a common face with a fine cell i , the two cells are
connected. This procedure is applied between all levels n and (n − 1). The result is a
list of connections within level 0, a list of connections for each level n, and an inter-level
connectivity list, which describe the full hierarchical grid.

5.3.2. TRANSMISSIBILITY AND UPSCALING
In this work, the AMR method is implemented for unstructured grids of any geometry.
The definition of the transmissibility for unstructured grids is expressed as:

Γ12
p = Γ12λ with Γ12 =

(
α1α2

α1 +α2

)
and αi = A

ki

Di
n ·di , (5.7)

where:
Γ12

p : transmissibility between cells 1 and 2,
Γ12 : constant geometrical part of the transmissibility,
λ : mobility of a given phase p,
A : interface area,
ki : permeability of cell i ,
Di : distance between centroid of cell i to interface area A,
n : unit vector normal to the interface,
di : unit vector along the line joining centroid of cell i to the center of interface A.

Here, the directional permeability of each cell is expressed as the magnitude of the cell’s
[kx ,ky ,kz ] coordinates multiplied by the unit vector di .

To solve the mass conservation equation, the flow rate must be computed for the
interface of every neighbouring cells. It is therefore necessary to compute the transmis-
sibility for each dual connection listed in the connectivity list. The result is a list con-
sisting of all connections, with their corresponding transmissibility. This methodology
is applied at the finest level of refinement, level 0.

For thermal problems, another type of transmissibility Γl
c must be computed to ap-

proximate thermal conductive flux in the energy equation. Since thermal rock conduc-
tion is not as heterogeneous as permeability, the thermal transmissibility is defined as
the geometric coefficient, that is, the area of the interface l divided by the sum of the
distances D1 and D2 from centroids to interface l , multiplied by the average conduction
κ12:

Γ12
c = κ12

A

D1 +D2
. (5.8)

As mentioned earlier, level 0 is represented by a list of volumes, depths and reservoir
properties which are derived from the static geological model. Once the hierarchical
grid is constructed, all cell properties must be redefined for the coarser levels (level > 0).
This is done by upscaling the properties of the corresponding fine grid cells. The volume
is upscaled by simply summing the volumes of the aggregated fine grid cells vi ;

VI =
∑
i∈I

vi . (5.9)

Depth upscaling is done by taking the average of the fine scale depths. The porosity,
thermal conductivity, and rock heat capacity are upscaled using a volumetric averaging.
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For example, the sum of the porosity φi multiplied by the corresponding cell volume vi

of each fine cell i is taken over the total volume of the coarse cell VI ;

φ̄I = 1

VI

∑
i∈I

viφi . (5.10)

In this study, for the upscaling of permeability, we use the flow-based upscaling tech-
nique developed by (Gong et al., 2008; Karimi-Fard & Durlofsky, 2012; Karimi-Fard et al.,
2006). This technique uses the pressure solution when the system has reached steady-
state to compute the flow across each interface. The transmissibility can then be derived
by rearranging the flow equation 5.1. These approaches can be applied to unstructured
coarse grids with generally-shaped control volumes (Karimi-Fard & Durlofsky, 2014).
The coarsening technique defines the coarse transmissibility ΓI J

p between two adjacent
control volumes I and J . This is expressed as:

ΓI J
p =

∣∣∣∣ QI J

PI −P J

∣∣∣∣. (5.11)

The coarse-grid average pressures PI and P J , and the coarse-grid flow rate QI J , are
computed using a fine-grid pressure solution. These quantities are given by:

PI = 1

VI

∑
i∈I

vi pi , P J = 1

VJ

∑
j∈J

v j p j , QI J =
∑

(i∈I , j∈J )
Qi j =

∑
(i∈I , j∈J )

Γ
i j
p (pi −p j ), (5.12)

where pi and p j define the fine-scale pressures in the corresponding coarse blocks. In
the flow rate expression Qi j , i j indicates the interface between fine cells i and j and

Γ
i j
p denotes the transmissibility for this interface. This i j interface comprises a portion

of the interface between coarse blocks I and J . For inter-level connections, a similar
approach is used. For a given fine cell i and coarse cell J with interface i J , equation 5.12
is used with PI = pi , the pressure of fine cell i , and P J the pressure of coarse cell J . This
procedure is conducted for each inter-level connection found within the hierarchical
grid.

For thermal problems, a similar method can be implemented, but is however not
computationally efficient as temperature takes significantly longer to reach a steady state.
We therefore use equation 5.8 to compute the upscaled thermal transmissibility, where
the area is expressed as the sum of the fine-scale faces which compose interface I J , and
the distances D I and D J represent the distances between the cell centroid and the cen-
troid of the coarse interface.

GLOBAL INDEXING

Once all needed parameters at every hierarchical level are evaluated, which include cell
properties, a connectivity list with associated transmissibility for each level and between
levels, it is necessary to combine the levels in order to form a global hierarchical set of
grids. To combine the levels, it is however necessary to assign a unique indexing to each
and every mesh element contained in the multi-level grid. This is where global indexing
plays a role. For convenience, indexing is ordered starting from the coarsest level. An
example of global indexing is shown in the figure below.
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Figure 5.6 Example of a Cartesian structured 3-level hierarchical grid with global indexing. Numbering starts at
the coarsest level and finishes at the finest level of refinement.

The procedure used to assign global indexing is to simply add the number of cells
of the previous level(s) to the current level. E.g., for level 1 from the figure above, num-
bering starts at the total number of cells of level 2 n2; for level 0, numbering starts at
n2 +n1. This procedure is applied to the bookkeeping lists such as "fines in coarse" and
to the connectivity list of the corresponding levels. After the global indexing is applied
to the connectivity lists, the connectivity list at each level and the inter-level connec-
tion lists are combined into one list. This is conducted by concatenating these lists to
form one list describing all existing connections within the hierarchical grid. Regarding
the list of cell properties, global indexing is applied by simply concatenating the lists to-
gether in the right order, i.e. from the coarsest level to the finest level. This way, indexing
is done in the same order as the global indexing. The result is a global list of volumes,
depths and relevant reservoir properties describing each mesh element within the hier-
archical grid. Having constructed the hierarchical grid and assigned it global indexing,
the pre-processing stage is complete and the simulation with dynamic adaptivity can be
performed.

5.4. DYNAMIC ADAPTIVITY FRAMEWORK

To determine whether grid adaptivity is necessary, we define refinement and coarsen-
ing criteria, which are dependent on the application used. In this study, we adopted an
approach where the difference in solution variable is analysed between neighbouring
blocks. Therefore, the difference in the solution variable of interest X is computed be-
tween each pair of cells active in the simulation grid. If this difference is higher than
a given threshold, both neighbouring blocks are refined. For the coarsening of a set of
fine cells, belonging to a given coarse cell, the difference between all the corresponding
fine cells and their neighbouring cells is computed; if each and every one of these con-
nections have a difference in solution variable below a given threshold, the fine cells are
coarsened to the next consecutive level.

For cells marked for refinement, the corresponding fine cells from the level below
are added to the list of active blocks, which is used for implementation of the next time
step, while the indices of the coarse cells in question are suppressed. Similarly, the
cells marked for coarsening are suppressed from the active cells, and the corresponding
coarse blocks are added. Figure 5.7 below shows an example of a two-level hierarchical
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grid. The current time step simulation grid is represented on the bottom left. After a
check for adaptivity was conducted, cells 1 and 2 were marked for refinement. Hence
as explained above, the cell indices 1 and 2 are suppressed from the list of active blocks,
and their corresponding fine cell indices are added (6, 7, 10 and 11 for coarse cell 1, and
12, 13, 16 and 17 for coarse cell 2). The scheme at the bottom right of the figure shows
the simulation grid which will be used for the next time step. Cell adaptivity results in an
unstructured indexing as shown in the figure below.
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Simulation grid tn
Simulation grid tn+1

Adaptivity

Figure 5.7 Schematic representation of a 2-level hierarchical grid, with illustrated the adaptivity procedure and
the redefinition of the active blocks for the simulation grid of the next time step tn+1.

Once the simulation grid is redefined and the list of active cells is updated, the con-
nectivity list and corresponding transmissibility must be redefined. This is done by copy-
ing the list of connections for the whole hierarchical grid, where only the connections
and corresponding transmissibility involving the active cells are kept, while connections
involving non-active cells and their corresponding transmissibility are suppressed. Sim-
ilarly, the same holds for the list of volume, depth and relevant properties. Only the cell
properties of the active blocks are stored.

For computation of the next time step solution Xn+1, the solution of the previous
time step Xn is required (see equations 2.31 and 2.32). However, Xn doesn’t have the
same grid configuration as the next time step tn+1. It is therefore necessary to convert
the grid of solution Xn to the same configuration as the simulation grid at tn+1. To do so,
we use simple mapping techniques. A prolongation operator is firstly used to redefine
the solution variable X at each cell of the finest level of refinement (level 0). A so-called
constant prolongation is implemented; i.e., all sub-domain values Xi are set to the coarse
value solution variable X I :

Xi = X I , ∀i ∈ I . (5.13)

Subsequently, restriction to the new simulation grid is conducted on the prolongated
solution; i.e., for cells already at the finest level, the solution stays the same; when sev-
eral control volumes are grouped into a single coarser control volume, the coarse value
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X I is set to the volume-weighted average of all sub-domain values Xi (Karimi-Fard &
Durlofsky, 2014):

X I = 1

VI

∑
i∈I

vi Xi . (5.14)

A schematic representation of this procedure for the 2-level hierarchical grid and for the
new simulation grid of figure 5.7 (tn+1) is shown in figure 5.8 below.
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Figure 5.8 Schematic representation of the prolongation and restriction for the example in figure 5.7.

The model, however, necessitates sequential numbering for mesh generation. It can
be seen in figure 5.7 that indexing is non-consecutive when grid adaptivity is applied.
This is where local indexing comes in play. That is, the active blocks indices are re-
numbered in a sequential order to prevent undefined indices in the mesh. The global
indexing is stored in a so-called Global to Local array for conversion back to the global
indices for adaptivity check in the next time step. The described procedure, which rede-
fines the grid configuration for the next simulation, is repeated at each time t . It is also
important to note that all previously computed operators in the OBL method are re-used
after each successive timestep. This is possible since the parameter space for each state
dependent operator in the OBL method is decoupled from any spatial property or dis-
cretization. This provides a significant speeds-up of the computation especially when
simulation property is expensive to evaluate.

In the synthetic examples used to illustrate the performance of the AMR framework,
the first time step simulation is started at the coarsest level. For improved accuracy, the
cells containing the wells are kept at the finest level of refinement, level 0.

5.5. APPLICATIONS FOR GEOTHERMAL RESERVOIRS
Geothermal technology has recently received substantial attention as an alternative source
of energy. However, geothermal production systems have a relatively low return on in-
vestment, where uncertainties related to lack of detailed information about subsurface
formations can significantly affect the quantification of the economic planning and fea-
sibility of geothermal projects (Willems, 2017). It is therefore important to reduce the un-
certainty and produce a high accuracy solution while keeping the computational costs
low. Geothermal systems therefore represent a good candidate for implementation of
our AMR framework since it keeps the accuracy of simulation process close to the fine-
scale while the performance is close to coarse-scale models.

Simulation of geothermal reservoirs implicates the solution of both mass and energy
conservation equations where pressure and enthalpy are the solution variables. We are
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mostly interested in the accurate prediction of the temperature displacement front and
resulting thermal breakthrough time. Dynamic adaptivity will be illustrated for 2 syn-
thetic geothermal examples:

• A homogeneous reservoir with unstructured meshing,

• A heterogeneous fluvial system from (Shetty et al., 2018) with low net-to-gross ra-
tio.

In DARTS, the enthalpy is used as nonlinear unknown instead of the temperature. The
adaptivity criteria are therefore applied to the enthalpy solution where the difference in
enthalpy between two adjacent control volumes is analysed. This is done for each pair of
connection within the simulation grid. Here, we applied the following adaptivity criteria:{

if ∆hi j > 70 k J , mark cells i and j for refinement,
if ∆hl < 40 k J , ∀l ∈ I , mark cells {∀i ∈ I } for coarsening.

(5.15)

This adaptivity criteria is a simple heuristic and serves a practical purpose in this work.
The proposed AMR method would greatly benefit from a more sophisticated criteria, for
example, a criteria based on a posteriori error estimates similar to (Vohralik & Wheeler,
2013; Vohralik & Yousef, 2018).

The geothermal examples are illustrated by showing the fine-scale solution at differ-
ent time steps versus the AMR solution and the coarse-scale solution. Each synthetic
example was analyzed quantitatively by conducting an error analysis where the error of
both AMR and coarse solution are computed relative to the fine-scale solution. Both the
L2 norm and L-infinity norm were calculated for each time step throughout the simula-
tion. Moreover, to define the performance of the AMR method in terms of computational
resources, the percentage of grid cells utilized in the simulation using the AMR grid, rel-
ative to the total number of cells in the fine-scale model was plotted for each example.

5.5.1. CASE 1: HOMOGENEOUS MODEL

The first model is a simple 2D homogeneous reservoir (constant permeability) with un-
structured triangular mesh. We consider a single injector (I) and a single producer (P)
configuration. A two-level hierarchical grid is used, with 1420 cells in level 0 and 75 cells
in level 1. Figure 5.9 below illustrates both levels, along with the permeability field (con-
stant permeability of 2000 mD), and the well locations. The simulation parameters for
this model are specified in Table 5.6 and 5.7 in the Appendix. The level 1 is illustrated
above where each color represents a coarse cell. As can be seen, cell aggregation was
conducted by dividing the x- and y- axes into 5 and 15 equidistant intervals. The cells at
the well locations are kept fine at all times. The simulation was conducted for a period
of 5500 days. The temperature solution at three different times is shown in figure 5.10.
Figure (a) represents the temperature solution at fine scale, figure (b) the solution on
the AMR grid, figure (c) shows the coarse-scale solution, and figure (d) shows the node
distribution for the AMR simulation run.

The solution on the AMR grid demonstrates a particularly good match with the fine-
scale solution. The node distribution shows high concentration along the front and at
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Figure 5.9 Hierarchical grid of the unstructured homogeneous model. Left figure: permeability field with reser-
voir dimensions and well locations; middle figure: level 0, the finest level of refinement, with unstructured grid-
ding; right figure: coarser level, level 1 where each color represents a coarse cell.
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Figure 5.10 Temperature solution of the homogeneous reservoir with unstructured gridding at tD = 0.01, 0.3 and
1. (a) represents the fine-scale solution; (b) represents the AMR solution; (c) is the coarse-scale solution; (d) is the
node distribution of the AMR grid.

the well locations, and low concentration behind and ahead of the front, where no sig-
nificant changes are observed. This considerably lowers the computational time as com-
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pared to running the fine-scale model. The coarse-scale solution differs notably from
the AMR and fine-scale solution, with a faster cold front propagation at the coarse grid
which is more pronounced in comparison at late times tD = 0.3 and 1.

49

Figure 5.11 L2 norm (left) and L-infinity norm (right) of the difference between the coarse model and the fine
model, and between the AMR model and the fine model, both relative to the fine-scale solution, for the homoge-
neous model with unstructured gridding from figures 5.9 to 5.10.

The relative error of the AMR solution is significantly lower than the coarse solution
in both the L2 and L-infinity norm (figure 5.11). Moreover, the number of cells is con-
siderably reduced (see figure 5.12), ranging from 8 to 60%. The trend shows an overall
increase as the front propagates, and a decrease when the cold front has reached the pro-
ducing well, which results in coarsening at locations where no more thermal variations
are detected. This considerably improves the performance of simulation since the AMR
approach is much more favourable in terms of efficient use of computational resources
(see Table 5.5).
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Figure 5.12 Percentage of mesh elements used during the simulation of the AMR model, relative to the total
number of cells in the fine-scale model in time for the homogeneous model from figures 5.9 to 5.10.

5.5.2. CASE 2: SUGAR-CUBE SHALE MODEL
Shales are often neglected in conventional reservoir simulation as the convective flow
is never acquired in shales due to low permeability. For geothermal applications, they
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represent an important source of heat for thermal recharge of the cold water front. Mod-
elling of the shales however significantly increases computational time since shales often
occupy a significant amount of computational grid. Here, we test an application of our
AMR approach to a sugar-cube model where cubes represents shale bodies and space
between them fluvial channels. We use a simple 2D setup, with in total, a 5 by 6 shale
block configuration. Shale blocks have a permeability of 10−2 mD while the sand bodies
have a permeability of 103 mD. The injector and producer are placed at opposite corners
of the reservoir as shown in the figure 5.13. Level 0 consists of 4588 fine cells. Level 1
is constructed differently from the conventional AMR approach with the sand channels
kept at fine level, and only the shale blocks are coarsened by a ratio of 100 (10×10). The
coarse grid, level 1, contains 1618 cells. The simulation parameters for this model are
specified in Table 5.6 and 5.7 in the Appendix.
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Figure 5.13 Hierarchical grid of the model with shale blocks. Left figure: permeability field with reservoir dimen-
sions and well locations; middle figure: level 0; right figure: coarser level, level 1.

Figure 5.14 below depicts the temperature solution at three different times through-
out the simulation: tD = 0.1, 0.3 and 0.7. Similarly to the previous example, the solution
is shown for (a) the fine grid, (b) the AMR grid and (c) the coarse grid. As can be seen on
the AMR figure (b), the grid refines as soon as the cold front arrives at proximity to a shale
body. The cold front is accurately represented on the AMR grid and there are no differ-
ences compared to the fine grid. On the coarse grid however, the cold front propagates
further than for the fine and AMR model, which is clearly visible at the late time record-
ing tD = 0.7 in the figure above. When the cold front passes part of the shales blocks and
these have cooled down, coarsening occurs as observed at tD = 0.7.

Figure 5.15 below depicts the error distribution through time of both the AMR and
coarse model relative to the fine model. As can be seen in figure 5.15, the error of the
coarse model is significantly larger than for the AMR model, where the error is close to
zero. The high frequency changes in the error, especially observed in the L∞ norm, seem
to correlate with refinement and coarsening of the mesh in between timesteps, similar
to what was observed in Berrone, 2010. The percentage of cells used in the AMR grid
relative to the number of cells used in the fine grid is shown in figure 5.16 below. As can
be seen, the percentage of cells ranges from roughly 35% to around 90% halfway through
the simulation, when the cold front reaches the producing well, and then lowers to 65%
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(a) (b) (c) (a) (b) (c)

(a) (b) (c)

tD = 0.1 tD = 0.3

tD = 0.7

Figure 5.14 Temperature solution of the shale blocks model at three different times: tD = 0.1, 0.3 and 0.7. (a) is
the fine-scale solution (level 0); (b) is the AMR solution; (c) is the coarse-scale solution (level 1).
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Figure 5.15 L2 norm (left) and L-infinity norm (right) of the difference between the coarse model and the fine
model, and between the AMR model and the fine model, both relative to the fine-scale solution, for the shale
blocks model from figures 5.13 to 5.14.

when shale blocks proximal to the injector wells have cooled down to injection tempera-
ture, and hence coarsening occurs. As observed, the computational time and effort was
considerably reduced throughout the simulation, and the AMR solution outcome shows
a very accurate representation of the fine-scale model (see Table 5.5).

5.5.3. CASE 3: FLUVIAL HETEROGENEOUS MODEL
Our AMR framework was tested for a heterogeneous reservoir with a low net-to-gross
ratio (N/G = 35%). The permeability field ranges from 5 to 3400 mD with a significant
amount of shale regions present. The hierarchical grid for this example is a structured
grid and it comprises two levels. The finest grid, level 0, consists of 2400 grid cells with 40
cells in the x-direction and 60 cells in the y-direction. Level 1 was reduced to 150 mesh
elements, where aggregation was done using 4x4 fine mesh elements, resulting in 10 grid
cells in the x-direction and 15 grid cells in the y-direction. The permeability field along
with the hierarchical grid for this example is shown in figure 5.17 below. The location of
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Figure 5.16 Percentage of mesh elements used during the simulation of the AMR model, relative to the total
number of cells in the fine-scale model in time for the shale blocks model from figures 5.13 to 5.14.

the injector (I) and producer (P) are depicted in yellow on the permeability distribution
figure below. The simulation parameters for this model are specified in Table 5.6 and 5.7
in the Appendix.

29

Level 0 Level 1

P

I

Figure 5.17 Hierarchical grid of the heterogeneous model with low net-to-gross ratio. Left figure: permeability
field with reservoir dimensions and well locations; middle figure: level 0, the finest level of refinement; right
figure: coarser level, level 1.

The simulation was conducted until cold water breakthrough reached the producing
well. Figure 5.18 below illustrates the temperature solution at different times throughout
the simulation. For each time shown, figure (a) represents the fine-scale solution, figure
(b) is the AMR solution, and figure (c) is the coarse-scale solution. The grid is kept at its
finest level at well locations.

The AMR mesh exhibits a significant improvement in temperature solution com-
pared to the solution on the coarse grid. Refinement is mainly focused at the front and
slightly beyond the front, while areas where insignificant changes occur remain coarse.
Important details, such as fingering effects at the cold water front, which are neglected
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Figure 5.18 Temperature solution of the heterogeneous model with low net-to-gross ratio at three different times:
at tD = 0.1, 0.3 and 1. (a) is the fine-scale solution (level 0); (b) is the AMR solution; (c) is the coarse-scale solution
(level 1).

on the coarse grid, are clearly visible in both fine and AMR solutions, which results in a
more accurate representation of this physical phenomenon.

The relative error throughout the simulation run was recorded, where the fine model
is taken as reference solution, for comparison between the coarse and AMR model. Fig-
ure 5.19 below shows the L2 norm and the L-infinity norm error in time.

Figure 5.19 L2 norm (left) and L-infinity norm (right) of the difference between the coarse model and the fine
model, and between the AMR model and the fine model, both relative to the fine-scale solution, for the heteroge-
neous model with low net-to-gross ratio from figures 5.17 to 5.18.

As can be seen, the marked improvement is also recorded in the error analysis, where
the error between the coarse and fine model is notably larger than the error between the
AMR and fine model. The L2 norm remains relatively constant for the AMR solution
whereas it increases slightly in time for the coarse solution.
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The number of grid-cells used in the simulation ranges from 8 to 70% throughout the
simulation (see figure 5.20). This represents a significant improvement in computational
effort and time, while still capturing important features (see Table 5.5).
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Figure 5.20 Percentage of mesh elements used during the simulation of the AMR model, relative to the total
number of cells in the fine-scale model in time for the heterogeneous model with low net-to-gross ratio from
figures 5.17 to 5.18.

5.5.4. CASE 4: REACTIVE TRANSPORT

Carbonate reservoirs host a major part of the world’s hydrocarbon reserves. But besides
hydrocarbon reserves, the ongoing energy transition has resulted in an increase interest
in geothermal systems where many are hosted by carbonate rocks. These reservoirs can
have heavily fractured and karstified intervals, resulting in unforeseen hazards during
drilling. Furthermore, naturally fractured carbonate reservoirs contain a large uncer-
tainty in flow response due to the poor ability to predict the spatial distribution of dis-
continuity networks at reservoir-scale. Another important process related to dissolution
is well acidization used to increase the production. This process involves the dissolu-
tion of reservoir rock to stimulate flow towards the wells. These chemical reactions are
localized and form important features for accurate representation of the flow response.
Furthermore, reaction rates which occur during dissolution are high, resulting in a sharp
front in the flow response.

Moreover, during dissolution, formation and development of an unstable dissolution
front with multiple wormholes can occur and its modeling is quite sensitive to the res-
olution (Shaik et al., 2018). In near-well acidization processes, the regime which forms
a single dominating wormhole is the most preferable. It is therefore important to ac-
curately predict this unstable dissolution while keeping the computational time reason-
able. AMR is therefore a good solution to model these reservoirs and chemical processes
to solution requirements.

In the flow example analyzed in this study, dissolution involves the following simple
reaction where carbonate is dissolved:

CaCO3(s) Ca2+ + CO 2–
3 , (5.16)
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Level 0 Level 1

PI

Figure 5.21 Hierarchical grid of the wormhole model. Left figure: permeability field with reservoir dimensions
and well locations; middle figure: level 0, the finest level of refinement; right figure: coarser level, level 1.

The kinetic reaction rate for this simple reaction is

rk = AKk (1− Q

Ksp
)ss , (5.17)

where A is the mineral surface area, Kk is the kinetic reaction constant, Q is the ion ac-
tivity product, Ksp is the equilibrium product, and ss is the solid saturation. Permeability
is updated using a power-law relationship defined as follows

k = k0

( φ
φ0

)n
, (5.18)

where k0 and φ0 are the initial permeability and porosity, and n is the power-law expo-
nent.

The model we use simulates the phenomenon of unstable wormhole formation trig-
gered by small perturbations in permeability. On one side of the reservoir, an injector
well is placed which is perforated throughout the whole thickness. On the other side, the
producer well is placed, also spanning the entire thickness of the reservoir. The model
described in this example has dimensions of 100 by 100 meters. A constant permeability
of 1 mD is used with 5% of random noise. The left illustration in figure 5.21 shows the
well locations, along with the permeability of the reservoir. The hierarchical grid consists
of two levels, where level 0 is an unstructured grid containing 2194 triangular cells. Cell
aggregation was conducted to construct level 1, where the x- and y- axes were divided in
10 equidistant intervals, resulting in a grid with only 100 cells. Level 0 and 1 are shown in
figure 5.21. The simulation parameters for this model are specified in Table 5.8 and 5.9
in the Appendix.

The AMR simulation was started at the coarse level, while keeping the well cells at
the finest level throughout the entire simulation run. For this application, the adaptivity
criterion is based on the solid composition, x[C aCO3]. The adaptivity criteria used in
this example are defined as follows:{

if ∆x[C aCO3]i j > 0.02, mark cells i and j for refinement,
if ∆x[C aCO3]l < 0.01, ∀l ∈ I , mark cells {∀i ∈ I } for coarsening,

(5.19)
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where ∆x[C aCO3] is the difference in composition of the calcium carbonate C aCO3

component.
The simulation was recorded at three different times: 0.13, 0.25 and at the final time

(expressed in dimensionless time). Figure 5.22 depicts the solid composition - the com-
position of C aCO3 - in time, where figure (a) is the fine-scale solution, figure (b) is the
AMR solution, figure (c) is the coarse-scale solution, and figure (d) represents the node
distribution of the AMR grid.

45

tD = 0.13

tD = 1

tD = 0.25

(a) (b) (c) (d)

(a) (b) (c) (d)

(a) (b) (c) (d)

Figure 5.22 Solid composition solution of the wormhole model at three different times. (a) is the fine-scale solu-
tion (level 0); (b) is the AMR solution; (c) is the coarse-scale solution (level 1).

As can be seen, the AMR solution is considerably more accurate than the coarse-
scale solution. The far-propagating wormhole (at tD = 1), which is present in both the
fine-scale solution and the AMR solution, is not well represented on the coarse-scale so-
lution, where two extensive wormholes are present. The AMR solution however shows
a very good representation of the fine-scale solution throughout time. The most exten-
sive wormhole exhibits slight differences in thickness and some minor variations are ob-
served at the other smaller wormholes. The node distribution follows the front, which is
in this example quite dispersed, resulting in refinement spanning a wide area, especially
at the last time step. However, considerable computational resources are saved at the
early stage of the simulation.

To quantify the differences between fine-scale solution, AMR solution and coarse-
scale solution, an error analysis was conducted. Here again, both the L2 norm and the
L-infinity norm were computed for the AMR and coarse model, relative to the fine-scale
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solution. The graphs in figure 5.23 below depict the outcome. As can be seen, the AMR
error is once more significantly less than the coarse model, for both norms. For the L2
norm, the coarse-fine relative error is three times greater than the AMR-fine error at the
final time step. The L-infinity norm of the coarse-fine error starts low at the first time
step, where no extensive propagation is observed and where the model is close to the
initial conditions, but then rapidly increases to 0.8 and remains more or less constant
throughout. The L-infinity norm of the AMR-fine error seems to increase in time. This
is due to the propagation of initially small errors in the solution. Note however that the
relatively big error for both the AMR and coarse-scale model are not representative for
this example and are related to another type of instability in the solution.

53

Figure 5.23 L2 norm and L-infinity norm of the difference between the coarse model and the fine model, and
between the AMR model and the fine model, both relative to the fine-scale solution, for the wormhole model
from figures 5.21 to 5.22.

Similarly to the previous example, we have analyzed the total number of cells used
in the AMR model, relative to the total number of cells contained in the fine-scale grid.
The graph in figure 5.24 below shows this quantity expressed in percentage.

As can be seen, the number of cells used during the AMR simulation is overall less
than the number of cells present in the fine-scale model. Initially, the number of cells
starts at 20%, which represents the use of the coarsest level, with both left and right
boundaries kept at the finest level. It then increases, fairly steeply, to around 95% due
to the high injection velocity which corresponds to the dominating wormhole regime.
Around the end of the simulation, the number of cells starts to decrease, which indicates
coarsening at some locations. See Table 5.5 for the actual computational time. Although
almost 100% of the cells is used at two thirds of the simulation, which is computationally
expensive, considerable resources are saved in the beginning. Moreover, this problem is
sensitive to the resolution which requires refinement at many locations in order to accu-
rately capture the wormhole propagation.
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Figure 5.24 Percentage of mesh elements used during the simulation of the AMR model, relative to the total
number of cells in the fine-scale model in time for the wormhole model from figures 5.21 to 5.22.

5.6. DISCUSSION
In the results section, all computational speed-up was indicated in terms of % of active
cells w.r.t. fine-scale. In this section, the actual CPU times are highlighted for all cases.
In order to have a fair comparison, the same nonlinear solver (Newton’s based update
with a fixed number of iterations), linear solver (direct one) and time-stepping strategy
is used for the fine, coarse, and AMR runs. All these results shown in Table 5.5.

Even though the overhead of the AMR method is substantial, this can easily be ex-
plained by the non-vectorized Python implementation of the AMR procedure vs highly
optimized Python and C++ implementation of the conventional simulation used in the
coarse and fine simulation. Since the scope of this work is a proof of concept of the pro-
posed AMR procedure prototyped outside of the simulation loop, our AMR code has not
been optimized yet. This can be solved by either an application of Numba (just-in-time
compiler for Python) or rewriting the procedure in C++. An expected speed-up, in our
experience, is around two orders of magnitude when compared to the original Python
implementation, thereby reducing the overhead to around 1.5% of the runtime of the
AMR method and making it a viable strategy for geoscience applications.

Table 5.5 Computational effort.

CPU Time Case 1 [s] Case 2 [s] Case 3 [s] Case 4 [s]
Runtime Coarse 1.28 1.70 1.60 13.61
Runtime Fine 12.33 4.35 21.73 167.33
Runtime AMR 5.94 3.06 8.87 91.85
Overhead AMR 9.03 36.33 15.54 321.86

The framework presented in this paper is developed in the DARTS platform which
can be used for a more general set of applications related to the energy transition. How-
ever, it is important to note the major differences in various energy applications. For
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example, in two types of applications shown in this study (geothermal and chemical dis-
solution cases), the coarser representation still capable to accurately capture important
features of the geothermal dynamic behaviour. The coarse-scale simulation in chemical
dissolution, however, completely fails to represent the same dynamic behaviour (dis-
solution pattern) and effective characterization of the process (e.g. effective rock dis-
solution). It is therefore evident, as is also pointed out in the literature, that problems
contained localized sharp gradients can greatly benefit from the AMR technique.

5.7. CONCLUSIONS
This study aimed at developing an Adaptive Mesh Refinement (AMR) technique in Delft
Advanced Research Terra Simulator (DARTS) for general-purpose reservoir simulation.
The developed AMR framework consists of a multi-level hierarchical grid, where levels
are constructed through a mesh partitioning of the fine-scale model - the static geolog-
ical model - which is represented by a list of properties (e.g. volume and porosity). The
framework consists of the construction of the coarse levels through cell aggregation of
the next consecutive fine level at the pre-processing stage. The method used to aggre-
gate fine cells includes the grouping of subdomains whose centroids are found within
a predefined 3D domain. In this study, domains are grouped by the partitioning of the
x-, y- and z- axes into equidistant intervals. However, this strategy can be easily changed
and improved.

The aggregation of the subdomains to form a coarser level is stored as a list of indices
for the next stages, which consists of the indices of the fine cells comprised in its coarse
control volume for each coarse cell. Next, in order to solve the relevant governing equa-
tions, the flow must be computed at each interface present in the mesh. We, therefore,
generate a list - called a connectivity list - describing all neighbouring cells within each
level and between levels. The fine-scale transmissibility is then computed using the per-
meability field. Hereafter, a flow-based upscaling is applied in order to acquire the trans-
missibility of coarser levels and the inter-level transmissibility. Each control volume has
defined parameters that are relevant for solving the system (volume, porosity, depth etc).

Once the hierarchy of levels is complete, the simulation can be started. Adaptivity
check is performed at every time step, using criteria specific to the application. Once
the regions for coarsening and refinement are defined, the solution is prolongated to the
finest meshing level, and subsequently restricted from fine to the adaptive simulation
grid. A new connection list and grid properties are constructed for the new coarsened
schema. Once it is completed, the simulation runs for the next time step using the con-
structed simulation model.

The accuracy of the method was demonstrated for geothermal applications. Two
models were tested, including a homogeneous model with unstructured gridding, a syn-
thetic sugar-cube-like model with high permeability channels surrounded by shale blocks
and a heterogeneous fluvial system model with a low net-to-gross ratio. High levels of so-
lution accuracy relative to the reference fine-scale results are observed for both cases. An
error analysis was conducted to record the differences between the AMR and the coarse
solution relative to the reference fine-scale solution. The error resulting from the AMR
model is significantly lower than for the coarse model, for all tested problems. The over-
all percentage of grid cells used in the AMR model relative to the fine-scale model is



5

110 5. ADAPTIVE MESH REFINEMENT

considerably decreased for most problems.
To conclude, the developed AMR method shows high levels of accuracy for both ho-

mogeneous and heterogeneous models and can be used for geothermal applications as
well as for other applications implemented in DARTS. The number of cells in the AMR
simulation, relative to the total number of cells of the finest level, is considerably re-
duced, which is very favourable in terms of efficient use of computational resources. The
framework is applicable to two- and three-dimensional models and for unstructured as
well as structured meshes. The applicability of the method to unstructured grids pro-
vides an effective means for solving complex geological systems.
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5.9. APPENDIX

Table 5.6 Boundary conditions geothermal models (section 5.1, 5.2, and 5.3).

Parameter Value
Rock heat conduction, κr [kJ/m/day/K] 200
Rock heat capacity, Cr [kJ/m3/K] 2500
Initial pressure, p0 [bar] 100
Initial temperature, T0 [K] 348.15
Injection pressure, pi n j [bar] 150
Injection temperature, Ti n j [K] 308.15
Production pressure, ppr od [bar] 60

Table 5.7 Reservoir and simulation parameters geothermal models (section 5.1, 5.2, and 5.3).

Parameter Value (section 5.1) Value (section 5.2) Value (section 5.3)
Sand permeability, ksa [mD] 2000 1000 3000 ± 12.5%
Sand porosity, φsa [-] 0.25 0.25 0.3 ± 12.5%
Shale permeability, ksh [mD] N/A 1e−2 5
Shale porosity, φsh [-] N/A 0.001 0.1
Length domain, Lx [m] 1000 600 1200
Width domain, Ly [m] 3000 700 1800
Simulation time, t [days] 5500 1200 7600
Control volumes level 0 [-] 1420 4588 2400
Control volumes level 1 [-] 75 1618 150

Table 5.8 Boundary conditions chemical model (section 5.4).

Parameter Value
Mineral surface area, A [m2] 1
Kinetic reaction constant, Kk [kmole/day] 1e−3
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Table 5.8 Boundary conditions chemical model (section 5.4).

Parameter Value
Equilbrium product, Ksp [-] 0.24
Power-law exponent, n [-] 3
Initial pressure, p0 [bar] 95
Initial composition, zc,0 [Ca2+ + CO 2–

3 , CaCO3, H2O] [0.24, 0.75, 0.01]
Injection rate, qi n j [m3/day] 0.05
Injection composition, zc,i n j [Ca2+ + CO 2–

3 , CaCO3, H2O] [0.01, 0.0, 0.99]
Production pressure, ppr od [bar] 65

Table 5.9 Reservoir and simulation parameters chemical model (section 5.4).

Parameter Value
Initial permeability, k0 [mD] 1 ± 5%
Initial porosity, φ0 [-] 0.26
Length domain, Lx [m] 100
Width domain, Ly [m] 100
Simulation time, t [days] 2e6
Control volumes level 0 [-] 2194
Control volumes level 1 [-] 100





6
FAST AND ROBUST SCHEME FOR

UNCERTAINTY QUANTIFICATION IN

NATURALLY FRACTURED

RESERVOIRS

The main objective of this study is to perform Uncertainty Quantification (UQ) using a de-
tailed representation of fractured reservoirs. This is achieved by creating a simplified rep-
resentation of the fracture network while preserving the main characteristics of the high-
fidelity model. We include information at different scales in the UQ workflow which al-
lows for a large reduction in the computational time while converging to the high-fidelity
full ensemble statistics. Ultimately, it allows us to make accurate predictions on geother-
mal energy production in highly heterogeneous fractured porous media. The numerical
reservoir simulation tool we use in this work is the Delft Advanced Research Terra Simu-
lator (DARTS). It is based on Finite Volume approximation in space, fully coupled explicit
approximation in time, and uses the novel linearization technique called Operator-Based
Linearization (OBL) for the system of discretized nonlinear governing equations. We use
a fracture network generation algorithm that uses distributions for length, angles, size of
fracture sets, and connectivity as its main input. This allows us to generate a large number
of complex fracture networks at the reservoir scale. We developed a pre-processing algo-
rithm to simplify the fracture network and use graph theory to analyze the connectivity
before and after pre-processing. Furthermore, we use metric space modeling methods for
statistical analysis. A robust coarsening method for the Discrete Fracture Matrix model
(DFM) is developed which allows for great control over the degree of simplification of the
network’s topology and connectivity. We apply the framework to modeling of geothermal
energy extraction. The pre-processing algorithm allows for a hierarchical representation

Parts of this chapter have been published in SPE Reservoir Simulation Conference Proceedings, OnePetro
(2021) de Hoop and Voskov, 2021.
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of the fracture network, which in turn is utilized in the reduced UQ methodology. The
reduced UQ workflow uses the coarser representation of the fracture networks to parti-
tion/rank the high-fidelity parameter space. Then a small subset of high-fidelity models
is chosen to represent the full ensemble statistics. Hereby, the computational time of the
UQ is reduced by two/three orders of magnitude, while converging to similar statistics as
the high-fidelity full ensemble statistics. The methods developed in this study are part of
a larger project on a prediction of energy production from carboniferous carbonates. The
final goal is to perform UQ in pre-salt reservoirs which are characterized by complex reser-
voir architecture (i.e., large karstification and fracture networks). The UQ of fractured
reservoirs is typically done in the petroleum industry using effective media models. We
present a methodology that can efficiently handle a large ensemble of DFM models, which
represent complex fracture networks and allow for making decisions under uncertainty
using more detailed high-resolution numerical models.

6.1. INTRODUCTION
Society heavily depends on the availability of energy (e.g., industry and agriculture, lo-
gistics, and households) and raw materials (e.g., plastic, medicine, tires, and solvents).
Carbonate reservoirs host a major part of the world’s hydrocarbon reserves, approxi-
mately 60% of the oil and 40% of the gas reserves (Akbar et al., 2000). This percentage is
likely to increase due to several large discoveries made in the past decade, such as pre-
salt carbonates in off-shore Brazil (Boyd et al., 2015; Mello et al., 2011) and the Tarim
basin in China (Huang et al., 2017b). The ongoing energy transition has also resulted in
an increase in geothermal discoveries, for example, the geothermal potential in Dutch
onshore Carboniferous carbonates (Reijmer et al., 2017).

Developments of any project related to the subsurface are often associated with large
uncertainty and risks (Caers, 2011). The main reason for this is the lack of information
on some of the modeling parameters, such as, in the case of natural fracture networks,
the spatial distribution of matrix permeability and fracture aperture. These parameters
largely control the resulting fluid-flow and geomechanical behavior of the porous media,
hence greatly impact any decision making related to these subsurface activities.

A popular remedy for the lack of information is to assume, based on the available
data, some (prior) distribution of the modeling parameters and generate a large set of
models. This set of models, generally denoted as an ensemble, is subjected to the mod-
eling effort and subsequently attempts to explain the uncertainty in the flow- or geome-
chanical response. This class of uncertainty quantification (UQ) methods belongs to
the Monte Carlo (MC) methods (Hammersley, 2013). MC methods often need a large
amount of random samples to converge and, in the case of large fractured reservoirs,
this can lead to an insurmountable computational effort.

In response, the ensemble of fractured reservoir models is regularly upscaled to ef-
fective media models (e.g., dual-porosity or Embedded Discrete Fracture Models) to re-
duce the computational time and still attempt to make meaningful predictions. How-
ever, in the case of realistically complicated fracture orientation and connectivity, these
models might not actually reflect reality. Therefore, the use of a Discrete Fracture Matrix
(DFM) model, which explicitly represents the fracture geometry, is preferred (Moinfar
et al., 2011).
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Since the mesh is conformal to the fractures in DFM models, the main problem, es-
pecially in the case of complex realistic fracture networks, is the gridding step. This is
particularly problematic whenever complex fracture intersections are present. The re-
sulting mesh will often contain several artifacts: non-orthogonal control volume con-
nections, control volumes with a large aspect ratio (i.e., flat triangles), and a massive
difference in the size of the control volumes. This will eventually diminish the quality
of the resulting numerical solution and also lead to poor nonlinear convergence of the
simulation process. Therefore, we have developed a pre-processing algorithm, which
borrows concepts from early work done is this area (Koudina et al., 1998; Maryška et al.,
2005) as well as more recent approaches (Karimi-Fard & Durlofsky, 2016; Mallison et al.,
2010; Mustapha & Mustapha, 2007). The main idea is to simplify the fracture network
such that the meshing artifacts are reduced while keeping the main characteristics of
the fracture network intact. This allows for a reliable and fast way of constructing DFM
models on any desired scale.

Finally, we present a methodology that can efficiently handle a large ensemble of
DFM models, which represent complex fracture networks and allow for making deci-
sions under uncertainty using more detailed high-resolution numerical models. This
approach is similar to those in de Hoop et al., 2018; Scheidt and Caers, 2009; Scheidt et
al., 2011, however, here we utilize information of coarse-scale models, obtained via our
efficient and robust pre-processing procedure, to rank and partition the high-fidelity pa-
rameter space. Subsequently, a small subset of high-fidelity models is chosen to repre-
sent the full ensemble statistics. Hereby, the computational time of the UQ is reduced by
several orders of magnitude, while the reduced approach is converging to similar statis-
tics as the full high-fidelity ensemble of models.

6.2. METHOD AND THEORY
For the advanced DFM preprocessing algorithm, the reader is referred to Chapter 3. The
governing equations of the physical system that were used in the uncertainty quantifi-
cation workflow, particularly the equations describing geothermal energy production,
as well as their discretization and linearization using OBL are described in detailed in
Chapter 2.

6.2.1. GENERATION FRACTURE NETWORKS

In this section, we present a generic framework which allows us to generate various types
of fracture networks with different properties (e.g., connectivity, orientation, length, etc.).
Fractures, as observed in outcrops, typically occur in sets with characteristic angles of in-
tersection, connectivity, and spacing (Bakay et al., 2016; Bour & Davy, 1997; Manzocchi,
2002). Therefore, we propose to generate the fractures as sets which are parameterized
by the number of fractures in the set, lengths, and the angles at which they intersect.
Connectivity of the final network, expressed as the total length of the largest connected
sub-network divided by the total length of all the fractures in the domain, is calculated
and adjusted (i.e., fracture sets are connected or disconnected) based on the target con-
nectivity.

Fracture networks themselves are only a means in any modeling workflow and (al-
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most) never constitute the final objective. Usually the objective is to make predictions
on a subsurface system, which in turn can contain a fracture network. Our proposed
algorithm considers the discretization accuracy, denoted as lc , at which the final high-
fidelity subsurface model will be constructed from the start of the generation. Fractures
that belong to the same fracture set will not intersect at a scale or have a spacing that
is smaller than lc . This results in a uniform discretization of each fracture set and min-
imizes the numerical artifacts which are often observed in Discrete Fracture Network
(DFM) models (Berre et al., 2019). Interaction of different fracture sets can still result in
a complex fracture network where intersections occur below the discretization accuracy,
hence the need for a robust pre-processing method as explained below in section ??.

The algorithm sequentially populates the domain with fractures sets, where the char-
acteristics of the fracture sets are sampled from a specified distribution. For example,
the length of the fractures is repeatedly described by a power-law distribution, but you
could use any distribution that models your input data (outcrop analogue, seismic, or
borehole data). The length of each fracture in the domain is some (random) multiple
of the discretization accuracy lc . Before adding a fracture to the domain, it is split into
ns

i segments of length lc , where ns
i is the number of smaller fracture segments of frac-

ture i . Additional fractures of the same set as fracture i always intersect at the nodes of
the smaller segments, hence a uniform distribution of control volumes is expected after
meshing the fracture network.

The following parameters are input to the generation framework:

• Connectivity, C ;

• Number of fractures pairs, N f ;

• Maximum number of fracture pairs per set, N f ,s ;

• Set of length distributions, L f ;

• Set of angle distributions,Θ f .

Since the number of fractures and maximum number of fractures per set are highly
correlated with the total connectivity of the network, you can choose to express those pa-
rameters as a function of connectivity. For example, N f = N 0

f

p
C , where N 0

f is the some

base number of fractures (e.g., at maximum connectivity). Also, as could be inferred
from the parameters above, the fractures are always added in pairs within each fracture
set. This means that there are two length and angle distributions per fracture set. We de-
signed a detailed algorithm for sequential generation of fracture network following the
approach suggested in (Sartori Suarez, 2018).

After the algorithm has finished and N f fracture pairs are added to the domain, the
connectivity is calculated using graph theory. First construct the unweighted undirected
graph G = (E ,V ), where V is the set of vertices of the graph and E is the set of paired
vertices called edges. Based on these two sets we can construct the following matrices:

• Incidence matrix: B(G), which is a n×m matrix, where n is the number of vertices
and m the number of edges in the graph. Bi j = 1 if vertex i is on edge j otherwise
Bi j = 0;



6.2. METHOD AND THEORY

6

117

• Degree matrix: D(G), which is a n×n matrix describing the number edges attached
to each vertex. The degree matrix can be obtained using the follow equation D =
diag

(
B1

)
, where diag(v) is a function that constructs a square matrix with vector

v on its diagonal and 1 is a vector of ones with size m ×1;

• Discrete Laplacian matrix: L(G) which can be found via the following equation
L = D −BB T .

The Laplacian of the graph can be used for finding spanning trees of a given graph
(i.e., connected fracture sets in the fracture network). Particularly, each element of the
rational basis of the null-space of the Laplacian describes a connected component of the
graph (Spielman, 2010). With this basis we can find the number of connected fracture
sets in our network but also the connectivity of the network (as defined above). If this
connectivity is larger than the specified connectivity, fracture sets are disconnected un-
til the actual connectivity reaches the desired connectivity (within some threshold). The
reverse (i.e., connecting fracture sets) is done when the specified connectivity is lower
than the desired connectivity. Components of the graph are sequentially merged or dis-
connected based on this smallest distance between each vertex in the component of the
graph and each vertex in the fracture sets.

6.2.2. UNCERTAINTY QUANTIFICATION FRAMEWORK
The uncertainty quantification workflow utilizes a distance-based method and ranking
procedure similar to those proposed in de Hoop et al., 2018; Scheidt and Caers, 2009;
Scheidt et al., 2011. Distance-based methods attempt to reduce the dimensionality and
complexity of the modeling task. They can be extremely effective for visualizing the vari-
ability of an ensemble of models, which is often high dimensional. This dimensional-
ity reduction is achieved by projecting onto a (much) lower-dimensional space. This
is especially efficient when a distance, or dissimilarity measure, is used that has a high
correlation with the modeling objective (e.g., predicting the distribution of total energy
produced of the ensemble) (Caers, 2011). Subsequently, the global and local structure
of the response uncertainty can be visually and quantitatively analyzed in this reduced
space.

A commonly used approach for dimensionality reduction is the Multidimensional
Scaling (MDS) algorithm (Borg & Groenen, 2005). In MDS, the square symmetric dis-
tance matrix D, obtained by taking the distances of a particular property between each
ensemble member, is projected onto a Cartesian hyperplane (after double centering it
around a origin) of dimension Nreduced = Nm << NM, where NM is the size of the ensem-
ble M. For the details of the MDS algorithm we refer the reader to Borg and Groenen,
2005 chapter 12 and Caers, 2011.

The dimension Nm of the hyperplane required to accurately replicate the original D,
depends on the magnitude of the eigenvalues of the decomposition of the distance ma-
trix. Typically Nm attains one or two when production data from wells are used in the
computation of D. Generally in geoscience problems Nm can range from one utill six di-
mension(s) (Caers, 2011). The following simple example shows both the effectiveness of
reducing the size as well as detecting possible redundancy in the output space.

Fluid-flow simulations generally have high dimensional input data in the form of
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Figure 6.1 Distances and similarities in the high-dimensional flow-response output space are preserved in the
reduced dimensional space (left and middle graph). Clustering will identify similar responses and this subset of
models converges to the full ensemble uncertainty characteristics (right graph). Taken from de Hoop et al., 2018.

complex high-fidelity models. However, decision are usually made on simple statistics,
such as the amount of energy produced from a (relatively) small set of wells. This often
leads to redundancies in the output space of the simulations. Sadly, due to the non-
linearity of the simulations, it is not necessarily easy to (a priori) predict which models
behave similarly. Therefore, using a fast way of detecting these possible redundancies in
the output space is the basis of the reduced UQ methodology. If we can predict which
subset of models explains the same variability of the full ensemble (i.e., first two stochas-
tic moments), we can greatly reduce the computational time of the UQ process.

In this work we utilize the coarse information, obtained from our pre-processing al-
gorithm, to construct the squared dissimilarity matrix, D(2), of the full ensemble. Sub-
sequently, we apply the MDS procedure to this matrix and perform clustering based on
the projected variability of the coarse representation of the full ensemble. The medoids
of the clusters are the representative subset of models which are simulated on the high-
fidelity scale. Finally, three quantiles, particularly the P10, P50, and P90, are used to
quantify the mismatch between the full ensemble statistics and the approximate statis-
tics from the subset of models. Precisely, we calculate the mismatch with the following
equation (Scheidt, Caers, et al., 2009)

ϵNK = 1

3Nt

Nt∑
i

(∣∣Pfull
10 (ti )−Psub

10 (ti )
∣∣+∣∣Pfull

50 (ti )−Psub
50 (ti )

∣∣+∣∣Pfull
90 (ti )−Psub

90 (ti )
∣∣), (6.1)

where NK represents the number of clusters (i.e., size of the subset of HF models), Nt is
the number of time-steps, and ti represents the i -th time step.

6.3. RESULTS
In this section the results of the fracture generation and cleaning are presented followed
by the results of the reduced uncertainty quantification workflow.
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6.3.1. FRACTURE GENERATION RESULTS

Figure 6.2 shows three examples of fracture networks generated with the above described
algorithm. In these examples the number of fractures and size of the fracture sets is a
function of connectivity. The angles for each fracture set are sampled from a random
distribution. Characteristic length lc is chosen substantially small in order to achieve a
complex fracture network.

High Connectivity Moderate Connectivity Low Connectivity

Figure 6.2 Three examples of the fracture networks with different connectivity, generated using the algorithm in
section Generation fracture networks.

An ensemble of fracture networks was generated for the analysis of the pre-processing
strategy and subsequent uncertainty quantification. A total number of 600 fracture net-
works were generated with a varying degree of connectivity (200 low, 200 moderate, and
200 high connectivity fracture networks respectively), number of fractures, and orienta-
tion of the fracture sets. The fluid-flow results presented in the next section were per-
formed on the 184 models with the largest connectivity. Moderate to low connectivity
results will be included in the future work.

6.3.2. FRACTURE PRE-PROCESSING RESULTS

The pre-processing algorithm and its performance is first illustrated using a realistic
fracture network, generated from outcrop data (Bisdom et al., 2016b). The meshes in
Figure 6.3 are obtained using the free software Gmsh (Geuzaine & Remacle, 2009). The
figure attempts to illustrate the comparison between the meshing results obtained from
the unprocessed fracture input versus the pre-processed fracture network. A large re-
duction in the degrees of freedom is observed in part (A) while a more uniform volume
distribution is observed in part (B).

Figure 6.4 illustrates the differences between each level of coarsening for a geother-
mal simulation. The numbers below the temperature fields correspond to the degrees
of freedom in fracture and matrix cells respectively. Even though large variations can
be observed in the temperature fields, due to the large reduction in spatial resolution, a
similar response in terms of temperature at the production well can be observed.

Besides studying the effect of the pre-processing on a single realizations, it is impor-
tant to see the effect on stochastic properties. Usually, decisions are made based on an
ensemble of models, for example, the ensemble of models generated in section Fracture
generation results. It is important to see how the quantiles are changing for each level of
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Figure 6.3 (A) Comparison between meshing results of the uncleaned and cleaned network. (B) Comparison of
the control volume size distribution of the uncleaned and cleaned fracture network. Modified from (de Hoop
et al., 2020)

Figure 6.4 Temperature response of the fracture network at different scales (field on the left and rates on the right).
The two numbers below the temperature fields at different scales indicate the number of fracture and matrix cells
respectively. Modified from (de Hoop et al., 2020)

coarsening. In order to investigate this, numerical simulations were performed.

For the geothermal simulations, cold water is injected in the bottom left of the do-
main and water is produced from the top right of the domain. Each well (i.e., doublet
system) penetrates a fractures and the distance between each well is roughly 800 meters.
The simulation models have no flow boundary conditions on each side of the domain.
The injection well is controlled by rate (500 m3/day) and an injection temperature of
30 degrees Celsius, while the production well is set to bhp control (450 bar). The initial
reservoir temperature is 150 degrees Celsius and the initial pressure is 400 bar (i.e., high-
enthalpy geothermal system). The matrix permeability is set to 1 mD and the fracture
aperture is 1 mm, resulting in a contrast in permeability of roughly 108 (K f r ac /Kmatr i x ),
resembling an average naturally fractured carbonate system. Figure 6.5 shows the en-
ergy production rate for the 184 high connectivity models. Figure 6.6 shows how the
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quantiles are changing for each of the coarsening level.

Figure 6.5 Flow response of the ensemble of fracture networks for each coarsening level.

Figure 6.6 Quantiles of energy production for each ensemble scale. Monotonous deviation of each coarse-scale
ensemble from the fine-scale can be observed, as well as an increase in the energy production for each quantile.
This is most likely caused by the increase in connectivity when coarsened is increased.

One artifact of the pre-processing algorithm is that disconnected networks become
connected when increasing the characteristic length scale lc (i.e., discretization accu-
racy). See Figure 6.7 as an example. This is also observed in the flow-response as an
increase in energy production due to a larger area of the reservoir being depleted. Please
note that matrix permeability and conductivity are not upscaled in these coarse-scale
realizations which also contributes to deviation from fine-scale response. This seems to
imply that the low to moderate connectivity models will deviate more from the fine-scale
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than the higher connectivity models. For the UQ workflow, this would mean that the dis-
tance used for the MDS procedure would be less representative of the distance between
fine-scale ensemble members. To remedy this, we could keep track to which fracture set
each individual fracture belongs in the pre-processing algorithm and ultimately discon-
nect fractures that were not connected in the unprocessed input data.

Figure 6.7 Example of alterations to the fracture network based on desired discretization accuracy lc . The pro-
posed remedy for ensuring similar flow-behavior in the coarse scale models is to dicsonnect fractures that have
become connected due to coarsening.

In Figure 6.7, the lc = 60 (i.e., 16× lfinest
c ) can be seen as a scale at which the coars-

ening fails to accurately represent the fine-scale fracture network (in terms of topology,
orientation of fractures, and connectivity). The question remains if this scale can still
be used for ranking and selecting representative models for the reduced UQ workflow,
which will be answered for highly connected networks in the following section. Finally,
to further illustrate the performance of the cleaning, Figure 6.8 shows the connectivity
of the pre-processed versus connectivity of the input data for each level of coarsening.

6.3.3. UNCERTAINTY QUANTIFICATION RESULTS

As mentioned in Uncertainty quantification framework, performing high-fidelity DFM
simulations on a large ensemble is often unfeasible and impractical. Instead of using
dual-porosity models to speed up the computation, we propose to utilize the more real-
istic DFM models at a coarser scale to identify representative models. Ultimately, sim-
ulating this subset of high-fidelity models should convergence to the same statistics as
the full ensemble.

For the reduced UQ workflow in this section, we present the analysis on the 184 high-
est connectivity models, as mentioned in the previous section. The coarse scale response
that we utilize in the example is based on the lc = 60 model scale. The reason for this is
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Figure 6.8 Displaying the behavior of the connectivity of the processed vs. raw input data as a function of coars-
ening levels.

a trade-off between the quality of the distance (higher for lower lc ) and the computa-
tional gain of using a larger lc . Using a lower quality distance for the MDS procedure
will likely increase the number of representatives you need to select, since the correla-
tion between the coarse-scale and the fine-scale response is lower for larger lc . This will
increase the overall computational time since more representative models are required
(which are simulated on the finest scale). The total simulation time of the reduced UQ,
as a function of lc , is given by

tred.UQ(lc ) = NM × tprocessing(lc )+NM × tsim.coarse(lc )+NK (lc )× tsim.fine. (6.2)

The tred.UQ is expect to be much smaller than tfullUQ = NM × tsim.fine, since tsim.fine >>
tsim.coarse and NM >> NK . Computational time for the MDS and clustering procedure
is negligible compared to the total time. Processing time is dependent on the lc as well,
but much smaller than tsim.fine. Therefore, the objective is to minimize tred.UQ while also
minimizing ϵNK .

The results of the reduced UQ workflow are depicted in Figure 6.9. The coarse-scale
response is translated to z-scores (subtract mean and normalize by the standard devia-
tion of the energy rate at each time-step). Then the distances are projected into lower
dimensional space using MDS and clustering is performed using k-medoids algorithm.
The centroids of each cluster is chosen as a representative and comprises the subset of
models. These models are then simulated on the fine-scale and for the computation of
the cumulative distribution function (CDF) the responses are weighted by the size of the
cluster which they present (similar to (Scheidt, Caers, et al., 2009)).
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Figure 6.9 The general workflow of reconstructing the stochastic response. First, use coarse scale information to
construct distances between ensemble members. Project into lower dimensional space using MDS and perform
clustering. Reconstruct the quantiles based on subset and compare with full ensemble statistics.

6.4. CONCLUSIONS

In this work we have presented three main aspects which contribute to a robust and UQ
quantification workflow for naturally fractured reservoirs. Instead of the using a simpli-
fied effective media models (i.e., dual-porosity), we show that it’s possible to use high-
fidelity DFM models to accurately represent the complex geometry of the fracture net-
works. We achieve this by utilizing coarse-scale information and selecting a subset of
high-fidelity models which describe the same statistics as the full-ensemble of models.

The fracture network generation algorithm allows us to quickly generate a large en-
semble of models, depending on some input parameters (e.g., connectivity, number of
fractures, orientation, etc.). Connectivity of the final model is ensured by disconnected
or connected realizations until target connectivity is achieved. Creating a graph and
computing its Laplacian allows for an easy computation of connected fracture sets and
therefore speed up this process.

The developed pre-processing method is essential in the reduced UQ workflow. Par-
ticularly, it allows us to generate a uniformly meshed DFM model of complex fracture
networks for a desired scale lc , which has a large mesh quality and therefore smooth
numerical convergence. This allows for a quick way and reliable way of ranking and
partitioning the ensemble space in order to identify representative ensemble members.
The pre-processing method seems to be working bests for highly connected networks.
Moderate to low connectivity fracture networks seem to be more affected by the pre-
processing strategy. Hence it is expected that the coarser realizations result in a lower
quality distance for the uncertainty quantification procedure. A remedy for this will be
included in future work and consists of a connectivity modification, where necessary, to
preserve the main flow characteristics.
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7
CONCLUSION

The main contribution of this thesis is a collection of methods that aid in uncertainty
quantification workflows for fractured and karstified reservoirs. They can all be used in a
unified framework, or each component can be used independently. By applying mean-
ingful simplifications to the raw input data or high-fidelity model, an alternative (i.e.,
coarser) representation is obtained which allows for large-scale uncertainty quantifica-
tion practices. Presented cave parametrization methods allow the extraction of a large
amount of statistics from LiDAR surveys and provide insights for modelling of karstified
carbonate reservoirs.

7.1. ADVANCED MESHING CAPABILITIES

Chapter 3 contains a fracture preprocessing strategy, which can create a fully conformal,
uniformly distributed grid for a given realistic fracture network with a variable aperture
at the required level of accuracy. Besides the application towards large-scale UQ, this
framework has other benefits, such as cleaning and preparing the raw fracture input data
for topological and graph-based analysis of the inherent structure and characteristics of
the fracture network. The framework extends contemporary methods by allowing for a
variable aperture distribution of the fracture network and accomodating for this during
the merging of fracture segments. The changes introduced by the method are analyzed
in terms of geometry (i.e., angle distribution of the fracture network), meshing results
(i.e., volume and quality of the elements), and dynamic response of the reservoir when
subjected to geothermal high-enthalpy production conditions. Results are analysed for
two realistic fracture networks based on outcrop studies, a synthetic case with sealing
fractures, and a variable aperture model. Topology is more affected by the preprocessing
than the geometry and flow response in studied networks. The open-source graph-based
computational framework performing all the preprocessing stages can be found at https:
//github.com/MakeLikePaperrr/Fracture-Preprocessing-Code.
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7.2. REACTIVE TRANSPORT FRAMEWORK AND LINK WITH OUT-
CROP OBSERVATIONS

In chapter 4, a workflow is presented to analyze LiDAR cave data which extracts an ap-
proximation of the complex 3D shape of the cave’s interior and provides estimates on
variability in lengths and widths along cave passages. This information can be help-
ful when constructing 3D reservoir models of karstified reservoirs. Numerical simula-
tion results show that cave patterns can be primarily linked to pre-existing fracture net-
works (via perturbation in the pressure field creating a preferential flow path or fully
constrained by the fracture network, depending on the magnitude of the aperture) or to
different interplay of Da and Pe numbers. Predicting the actual in-situ geometry of the
cave passages (and fracture networks) is unachievable. However, a similar UQ procedure
can be applied to karstified reservoirs, as presented in chapter 6, where a range of possi-
ble karst configurations is generated and then grouped based on similar flow responses.

7.3. ADAPTIVE MESH REFINEMENT
Also shown in chapter 4 is the required resolution to certain model phenomena such as
wormholing and geothermal energy production. The physical phenomena require small
grid resolution due to numerical diffusion and transient effects in both cases. Especially
the wormhole is not accurately represented using coarse meshes. Therefore, in chapter
5, an adaptive mesh-refinement strategy was implemented to model these sharp and lo-
calized features. The multi-level hierarchical grid is constructed using mesh-partitioning
of the fine-scale (geological) model. A multi-level connection list is created before sim-
ulation, and before every time step, an adaptivity check is done to see where refinement
is necessary. Large speed-ups (>30%) are obtained using the AMR strategy.

7.4. UNCERTAINTY QUANTIFICATION
Finally, after all the ingredients are in place, the final addition to the traditional UQ work-
flow is presented in chapter 6. The main idea is that decisions on the coarsest scale in-
clude all sorts of biases due to upscaling and numerical diffusion. Therefore, it seems
that the best idea is to make decisions based on finer scales. However, coarse informa-
tion can be effectively used to partition and group all the possible realizations (i.e., the
configuration of properties that potentially represent the subsurface’s continuum scale).
A representative model is selected and modeled on the fine-scale for each group of sim-
ilar models. A significant speed-up (>80%) is obtained, meaning more models can be
run, meaning lower risk subsurface activities.



ACKNOWLEDGEMENTS

I don’t know where to begin writing this because I never thought I would eventually reach
this point. To anyone mentioned here, this is as much your achievement as it is mine.
Denis, we have known each other for over seven years now. From the start of my Master
of Science, you have managed to feed my curiosity about fluid flow in porous media and
all the complexities associated with it happening at various scales. Throughout this pe-
riod, you have been an excellent supervisor. No matter the challenge, you always made
me feel like I could do it; you never gave up on me. But besides being a great supervisor,
you were like a father sometimes, supporting me through some mentally challenging
periods. I want to thank you for all that you have done for me over the past seven years,
and I want to say that I loved working together and hope dearly that someday we might
work together again. We expected, in the beginning, to tackle more complex problems
and go more in-depth in certain areas, but then life happened, and we didn’t reach all of
our goals. I still hope you can look back at this period and feel like we have accomplished
something together; I indeed think that way. I am proud to have worked under your su-
pervision and in your research team; it has taught me many professional and personal
lessons.

Then, I want to thank Giovanni and Auke. We might not have met as much as we
would have liked during this journey, but thanks to you, every meeting was beneficial
and to the point. You have supported me through some challenging parts of my life, and
I am forever thankful for your advice and trust. I couldn’t work for some time, and you
never complained or pushed my recovery; most importantly, you always trusted me dur-
ing this period which is one of the big reasons why I am here today. Auke, your guidance
during the writing of my second paper was essential for my writing development and for
better formulating my thoughts into words. Giovanni, I will never forget that moment
when I was in isolation due to a severe case of COVID, and you brought a lasagna to my
home; I will forever cherish this moment.

I want to thank Mark for his insurmountable help throughout the first two years
of my Ph.D. You always made time to help with understanding the newly developed
Operator-Based Linearization. Without your time, effort, patience, enthusiasm, and lay-
ing the foundation of the Delft Advanced Research Terra Simulator framework, this thesis
would not be the same.

I also want to kindly thank my independent doctoral examination committee mem-
bers Prof.dr.ir. David Smeulders, Prof.dr. Daniel Tartakovsky, Prof.dr. Daniel Kohn,
Prof.dr. Sebastian Geiger, and Prof.dr.ir. Pacelli Zitha for agreeing to review my work
and be part of my committee.

Thank you to the fantastic support staff at the department of Geoscience and Engi-
neering: Marlijn, Lydia, Anke, Ralf, Lydia, Margot, Marijke, and Marja. Thanks to you, I
never had to worry about anything; it made my life 100× easier; thanks!

129



7

130 7. CONCLUSION

I want to thank the Molengraaff fund for providing funds to perform the fieldwork
expedition in Brazil. This fieldwork would not have been a success if it wasn’t for Hi-
lario; thank you so much for your generous hospitality and impeccable planning during
this trip. I also want to thank Augusto and Phillippe for their valuable expertise dur-
ing this time. And, of course, Cayo and Rebecca for showing us around Natal and be-
ing great company during the fieldwork. Also, this whole Ph.D. project was performed
with a subsidy (reference TKI2017-07-UG) from the Ministry of Economic Affairs, Na-
tional schemes EZ subsidies, Top sector Energy, carried out by the Netherlands Enter-
prise Agency. Special thanks Elisa Bergkamp, my colleague at TU Eindhoven, for working
on the CarbFrac project together. I’m also particularly grateful to Sorin Pop for inviting
me to Hasselt University and showing me the importance of a deeper understanding of
the mathematics of what we try to model. Also, thanks to Fred Vermolen for having such
patience on the highway near Utrecht, haha.

Thanks, Xiaocong and Yang, for your endless enthusiasm and discussions regarding
geothermal energy and CO2 sequestration. Thank you, Xiaoming, for our exciting dis-
cussions regarding dimensionality reduction techniques and history matching. Thank
you, Kiarash, for the stimulating conversations on coupled momentum, mass balance,
and well-models. Thank you, Aleks, for always being inspiring with the vast mathemati-
cal and physical knowledge you possess. You never fail to amaze me with your expertise
in many research areas. Thank you, Ilshat, for insightful programming tips and even of-
fering to help with my moving, haha! Thank you, Michiel, for your many discussions
regarding fluid-flower, gmsh, and chemical models. Thank you, Gabriel, for the excit-
ing work we are doing together now and for sharing my newfound love for triathlon.
Also, thank you, Anne, for the mental support throughout the pandemic. And thank you,
Willemijn, for organizing the DARSim meetings; they were always interesting.

Thank you to all my friends and colleagues from Applied Geology: Akeel, Andrea,
Aulia, Emilio, Guillaume, Martha, Parvin, Pierre, Quinten, Rahul, Remi, Santosh, and
Youwei. I will always cherish the lunches together and the Think & Drink. Rahul, the
fieldwork wouldn’t have been such a great success without you.

Thank you, Hadi; even though I feel sometimes we perhaps not always gotten along
perfectly, you have taught me a great deal. You inspired me to be a better teacher and
genuinely understand the fundamentals of what we are studying.

Thanks to Joep Storms for encouraging me to follow a more geological-oriented mas-
ter’s program during my pre-master. Thanks to Prof. Bill Rossen for inspiring me in the
beautiful world of physical transport phenomena during my pre-master; I think here is
when my scientific journey already started! Also, thank you, Femke Vossepoel, for always
making time for me during my Master’s and teaching me about exciting things in statis-
tics. Thank you, Andre Jung, for making me curious about geostatistics and allowing me
some time in BakerHughes during my Master’s to see the application side of everything.

I also want to thank the Master’s students I either supervised or worked with during
my Ph.D.: Keshav, Elodie, Andrei, Camillo, Lynn, Hanif, Joey, Chenyang, Niek, Arturs,
Duncan, Marvin, Andrea, and Martin. I probably learned more from you than you did
from me, and it inspired me to become a better supervisor; thanks.

Thank you, Etienne, Michel, and Brahim, for collaborating on the multiphase reac-
tive transport benchmark; I have learned so much from you!



7.4. UNCERTAINTY QUANTIFICATION

7

131

Thanks to Stephen West and Irvin Yalom for strengthening my mind and piquing my
interest in philosophy. You have kickstarted my journey into this whole another universe
of thinking. You have provided me with weapons against the creatures emerging from
the void often created by overthinking even the most straightforward questions in life.

Thank you, Barry, for teaching me the phrase: if it works, it ain’t stupid.
Quick shoutout to Jannick, Martijn, and Jordi for making my time living in Delft from

2014 till 2017 fun and not only about studying. Jarno, thank you for the many evenings
studying Machine Learning together and the occasional beer afterward.

Thank you, Robert and Ronald, for the fun evenings with lots of beer and drinking
games. These were the much-needed cooling-downs after being in my head for too long.

To my chess buddies, Douwe, Han, Arend, and Mathijs. Thanks for listening to my
ramblings about academia and my Ph.D. Also, thanks for educating me on the beautiful
game of chess and keeping me motivated to play and enjoy the game. Also, thank you,
Douwe, for inspiring me to get back into sports, especially to try a triathlon.

Kristian, I was delighted you had chosen to work at the Albert Heijn for some time,
else it would have been unlikely that I would earn such a great friend. I wasn’t always the
person I am today, and I am happy that you forgave me for my mindless teenage self. I
greatly value your intelligence, literature insights, and music appreciation. You were the
person to get me into more complex board games, which changed my life in a good way.

I will never forget our journey in Finland, Jasper. And then our expedition in Delft,
where we very often discussed the misery and advantages of studying all day, haha. You
are a great friend; I always appreciate your relativism and outlook on life.

My board game and concert buddies from Utrecht, Paul and Vic. Thanks for the fun
evenings playing board games at the Amsterdamsestraatweg. I love both of your musical
journeys, and I hope more is to come in the future. The mental support was greatly
appreciated during these years in Utrecht, and you made me feel at home in Utrecht.

My former running buddy, Shirah, thanks for getting me back into sports after be-
ing (almost) defeated physically by COVID for half a year. I could barely walk the stairs
without being out of breath, but with you, we started the great habit of going running,
sometimes even twice a week! During these runs, I also greatly appreciate our talks about
spirituality, psychology, and life. You have taught me to be more open-minded. I am also
very proud of you and the steps you have made in the last few years; never give up!

My new running buddy, Fanny, haha. No, but for real, you have greatly inspired me
sometimes to slow down my life, appreciate the small things, and pay more attention to
a healthy (mental and physical) lifestyle. I love discussing things with you, no matter the
topic, even though it can get heated sometimes. I loved having you in Utrecht, and I am
very happy for you and Richard in Sweden.

The messiah of music, Bart, thanks for educating my music palette all these years.
Now you finally started making your music, and I couldn’t be more proud of you! Through
this, you inspire me to pursue things I genuinely want in my life; thanks for that! I also
appreciate that you never sugarcoat things and say what is truly on your mind; this has
helped me on several occasions, and it most often makes the advice worthwhile.

It feels like yesterday that we were trying to manage these Saturday mornings to-
gether at the Albert Heijn, Robin. Thank you very being a terrific friend all these years;
no matter what happens, I always feel I can count on you. Significantly, the "just one



7

132 7. CONCLUSION

more" game of League of Legends and Company of Heroes 2 helped me through this
period of my life. Also, your endless patience when discovering new board games was a
blessing. I don’t know if anyone else would sit with me for a full day and night(!) to learn
the rules of a new crazy, complicated board game that I bought.

Timofey Baranov, thanks for being a fantastic colleague and friend. From the very
beginning, we hit it off with similar tastes in music and board games. Your musical rec-
ommendations and our ranting sessions on what was currently not going well in our
Ph.D. journey were always welcome. Always fun to discuss math and programming dur-
ing some of our digital-working-together sessions. Thanks again for inspiring me to ride
my bike more. I enjoyed playing board games with you and Nienke; hope to do it again.

Alexandros and Insa, thank you for opening your home for food and good vibes when
I was in Delft many times. They were the boost I needed when I again doubted if I could
make it these last months. I wish you the best with your new adventures, and I can’t wait
for the housewarming in your new place. Alex, thanks for the many words of encourage-
ment and philosophical discussions during these years; I greatly appreciate them.

Even though times are constantly changing and our lives are much different now, I
would have never been able to complete this journey if it weren’t for you, Natalia. Thank
you for all the fantastic things you have taught me the throughout these years. You never
stopped to inspire me with your unique and kind personality and by never giving up no
matter how tough life is. I am very proud of you and wish you all the best in life!

Thanks to Jeannette and Deniz for the always fantastic Christmas day and sometimes
Easter. Lovely food, great jokes, and a decent amount of beer and wine always end in a
wonderful night. And Deniz, I always love discussing things about science and getting a
small history lesson from you, haha.

Thank you, Foppe (my parent’s dog), for all the fluffy hugs and mental support.
Then I want to thank my parents, Arie and Truus. You always supported me through-

out my life, no matter what I wanted to do. We all show our love in different ways, with
food, gifts, or just spending time together. For example, Arie picked us up in the middle
of the night when we were stranded after a concert. Truus made a food package for me
whenever I came to Apeldoorn for the weekend and back to Delft on Sunday. Thank you
for all those moments, and hopefully, many more.

Now, I don’t think anyone could wish for a better brother than you, Richard. We have
been best friends for a long time, excluding our silly fights as kids, haha. You have taught
me many things in life which I will always take with me. I will forever cherish our time
living together in Utrecht, both coming back from some hardship in our lives. I am very
happy for you and hope you are delighted in the Swedish Apeldoorn. You always inspired
me to never give up through all the adversity you faced and overcame.

Lastly, I want to thank myself for never giving in to my inner voice telling me I couldn’t
do this. Everyone always thinks a Ph.D. is challenging because of math, statistics, sci-
ence, and solving complicated problems, but the mental aspects are incredibly under-
rated. So many Ph.Ds (and other academics) suffer from some form of mental distress.
Please know you are not alone, even if no one dares the speak up. Please do yourself a
favor and take your mental health seriously.

Much love to all,
Stephan



BIBLIOGRAPHY

Aagaard, P., & Helgeson, H. C. (1982). Thermodynamic and kinetic constraints on reac-
tion rates among minerals and aqueous solutions; i, theoretical considerations.
American journal of Science, 282(3), 237–285.

Acuna, J. A., & Yortsos, Y. C. (1995). Application of fractal geometry to the study of net-
works of fractures and their pressure transient. Water Resources Research, 31(3),
527–540.

Akbar, M., Vissapragada, B., Alghamdi, A. H., Allen, D., Herron, M., Carnegie, A., Dutta,
D., Olesen, J.-R., Chourasiya, R., Logan, D., et al. (2000). A snapshot of carbonate
reservoir evaluation. Oilfield Review, 12(4), 20–21.

Ali, M. T., Ezzat, A. A., & Nasr-El-Din, H. A. (2020). A model to simulate matrix-acid stimu-
lation for wells in dolomite reservoirs with vugs and natural fractures. SPE Jour-
nal, 25(02), 609–631.

Andre, B. J., & Rajaram, H. (2005). Dissolution of limestone fractures by cooling waters:
Early development of hypogene karst systems. Water Resources Research, 41(1).

Annable, W. K. (2003). Numerical analysis of conduit evolution in karstic aquifers. Uni-
versity of Waterloo [Department of Earth Sciences].

Antonellini, M., & Aydin, A. (1994). Effect of faulting on fluid flow in porous sandstones:
Petrophysical properties. AAPG bulletin, 78(3), 355–377.

Arnaudo, M., Dalgren, J., Topel, M., & Laumert, B. (2021). Waste heat recovery in low tem-
perature networks versus domestic heat pumps-a techno-economic and envi-
ronmental analysis. Energy, 219, 119675.

Arnaudo, M., Topel, M., Puerto, P., Widl, E., & Laumert, B. (2019). Heat demand peak
shaving in urban integrated energy systems by demand side management-a
techno-economic and environmental approach. Energy, 186, 115887.

Arnold, D., Demyanov, V., Christie, M., Bakay, A., & Gopa, K. (2016). Optimisation of deci-
sion making under uncertainty throughout field lifetime: A fractured reservoir
example. Computers & Geosciences, 95, 123–139.

Arnold, D., Demyanov, V., Rojas, T., & Christie, M. (2019). Uncertainty quantification in
reservoir prediction: Part 1—model realism in history matching using geologi-
cal prior definitions. Mathematical Geosciences, 51(2), 209–240.

Arrhenius, S. (1889). Über die dissociationswärme und den einfluss der temperatur auf
den dissociationsgrad der elektrolyte. Zeitschrift für physikalische Chemie, 4(1),
96–116.

Babaei, M., & Nick, H. (2019). Performance of low-enthalpy geothermal systems: Inter-
play of spatially correlated heterogeneity and well-doublet spacings. Applied
Energy, 253. https://doi.org/10.1016/j.apenergy.2019.113569

Baghbanan, A., & Jing, L. (2008). Stress effects on permeability in a fractured rock mass
with correlated fracture length and aperture. International journal of rock me-
chanics and mining sciences, 45(8), 1320–1334.

133

https://doi.org/10.1016/j.apenergy.2019.113569


7

134 BIBLIOGRAPHY

Bahrainian, S. S., & Dezfuli, A. D. (2014). A geometry-based adaptive unstructured grid
generation algorithm for complex geological media. Computers & geosciences,
68, 31–37.

Bai, T., Maerten, L., Gross, M. R., & Aydin, A. (2002). Orthogonal cross joints: Do they
imply a regional stress rotation? Journal of Structural Geology, 24(1), 77–88.

Bakay, A., Demyanov, V., & Arnold, D. (2016). Uncertainty quantification in fractured
reservoirs based on outcrop modelling from northeast brazil. 7th EAGE Saint
Petersburg International Conference and Exhibition, cp–480.

Balberg, I., & Binenbaum, N. (1983). Computer study of the percolation threshold in a
two-dimensional anisotropic system of conducting sticks. Physical Review B,
28(7), 3799.

Balsamo, F., Bezerra, F., Klimchouk, A., Cazarin, C., Auler, A., Nogueira, F., & Pontes, C.
(2020). Influence of fracture stratigraphy on hypogene cave development and
fluid flow anisotropy in layered carbonates, ne brazil. Marine and Petroleum
Geology, 114, 104207.

Barenblatt, G. (1960). Basic concepts in the theory of seepage of homogeneous liquids in
fissured rocks. Prikl. Mat. Mekh., 24(5), 852–864.

Bazin, B. (2001). From matrix acidizing to acid fracturing: A laboratory evaluation of
acid/rock interactions. SPE Production & Facilities, 16(01), 22–29.

Bazin, B., & Abdulahad, G. (1999). Experimental investigation of some properties of emul-
sified acid systems for stimulation of carbonate formations. Middle East Oil
Show and Conference.

Bear, J. (2013). Dynamics of fluids in porous media. Courier Corporation.
Berre, I., Doster, F., & Keilegavlen, E. (2019). Flow in fractured porous media: A review of

conceptual models and discretization approaches. Transport in Porous Media,
130(1), 215–236.

Berrone, S., Borio, A., & Vicini, F. (2019). Reliable a posteriori mesh adaptivity in dis-
crete fracture network flow simulations. Computer Methods in Applied Mechan-
ics and Engineering, 354, 904–931.

Berrone, S. (2010). Skipping transition conditions in a posteriori error estimates for fi-
nite element discretizations of parabolic equations. ESAIM: Mathematical Mod-
elling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique,
44(3), 455–484.

Bertotti, G., Audra, P., Auler, A., Bezerra, F., de Hoop, S., Prabhakaran, R., Pontes, C., &
Lima, R. (2020a). Characteristics and genesis of hypogenic karsts in carbonate
successions: Inferences for hydrocarbon and geothermal systems. Fourth Nat-
urally Fractured Reservoir Workshop, 2020(1), 1–5.

Bertotti, G., Audra, P., Auler, A., Bezerra, F. H., de Hoop, S., Pontes, C., Prabhakaran, R., &
Lima, R. (2020b). The morro vermelho hypogenic karst system (brazil): Stratig-
raphy, fractures, and flow in a carbonate strike-slip fault zone with implications
for carbonate reservoirs. AAPG Bulletin, 104(10), 2029–2050.

Bertotti, G., de Graaf, S., Bisdom, K., Oskam, B., Vonhof, H. B., Bezerra, F. H., Reijmer, J. J.,
& Cazarin, C. L. (2017). Fracturing and fluid-flow during post-rift subsidence in
carbonates of the jandaıra formation, potiguar basin, ne brazil. Basin Research,
29(6), 836–853.



BIBLIOGRAPHY

7

135

Besl, P. J., & McKay, N. D. (1992). Method for registration of 3-d shapes. Sensor fusion IV:
control paradigms and data structures, 1611, 586–606.

Birk, S., Liedl, R., Sauter, M., & Teutsch, G. (2003). Hydraulic boundary conditions as a
controlling factor in karst genesis: A numerical modeling study on artesian con-
duit development in gypsum. Water Resources Research, 39(1).

Bisdom, K., Gauthier, B., Bertotti, G., & Hardebol, N. (2014). Calibrating discrete fracture-
network models with a carbonate three-dimensional outcrop fracture network:
Implications for naturally fractured reservoir modeling. AAPG bulletin, 98(7),
1351–1376.

Bisdom, K., Bertotti, G., & Nick, H. M. (2016a). A geometrically based method for pre-
dicting stress-induced fracture aperture and flow in discrete fracture networks.
AAPG Bulletin, 100(7), 1075–1097.

Bisdom, K., Bertotti, G., & Nick, H. M. (2016b). The impact of different aperture distribu-
tion models and critical stress criteria on equivalent permeability in fractured
rocks. Journal of Geophysical Research: Solid Earth, 121(5), 4045–4063.

Bisdom, K., Nick, H. M., & Bertotti, G. (2017). An integrated workflow for stress and flow
modelling using outcrop-derived discrete fracture networks. Computers & Geo-
sciences, 103, 21–35.

Boersma, Q., Athmer, W., Haege, M., Etchebes, M., Haukås, J., & Bertotti, G. (2020). Nat-
ural fault and fracture network characterization for the southern ekofisk field: A
case study integrating seismic attribute analysis with image log interpretation.
Journal of Structural Geology, 141, 104197.

Boersma, Q., Hardebol, N., Barnhoorn, A., & Bertotti, G. (2018). Mechanical factors con-
trolling the development of orthogonal and nested fracture network geome-
tries. Rock Mechanics and Rock Engineering, 51(11), 3455–3469.

Boersma, Q., Prabhakaran, R., Bezerra, F. H., & Bertotti, G. (2019). Linking natural frac-
tures to karst cave development: A case study combining drone imagery, a nat-
ural cave network and numerical modelling. Petroleum Geoscience, 25(4), 454–
469.

Boersma, Q. D., Bruna, P. O., de Hoop, S., Vinci, F., Tehrani, A. M., & Bertotti, G. (2021). The
impact of natural fractures on heat extraction from tight triassic sandstones in
the west netherlands basin: A case study combining well, seismic and numerical
data. Netherlands Journal of Geosciences, 100.

Bollobás, B. (2013). Modern graph theory (Vol. 184). Springer Science & Business Media.
Bonneau, F., Henrion, V., Caumon, G., Renard, P., & Sausse, J. (2013). A methodology for

pseudo-genetic stochastic modeling of discrete fracture networks. Computers &
Geosciences, 56, 12–22.

Borg, I., & Groenen, P. J. (2005). Modern multidimensional scaling: Theory and applica-
tions. Springer Science & Business Media.

Bosse, M., Zlot, R., & Flick, P. (2012). Zebedee: Design of a spring-mounted 3-d range sen-
sor with application to mobile mapping. IEEE Transactions on Robotics, 28(5),
1104–1119.

Bour, O., & Davy, P. (1997). Connectivity of random fault networks following a power law
fault length distribution. Water Resources Research, 33(7), 1567–1583.



7

136 BIBLIOGRAPHY

Boyd, A., Souza, A., Carneiro, G., Machado, V., Trevizan, W., Santos, B., Netto, P., Bagueira,
R., Polinski, R., Bertolini, A., et al. (2015). Presalt carbonate evaluation for santos
basin, offshore brazil. Petrophysics, 56(06), 577–591.

Branets, L. V., Ghai, S. S., Lyons, S. L., & Wu, X.-H. (2009). Challenges and technologies in
reservoir modeling. Communications in Computational Physics, 6(1), 1.

Bruna, P.-O., Straubhaar, J., Prabhakaran, R., Bertotti, G., Bisdom, K., Mariethoz, G., &
Meda, M. (2019). A new methodology to train fracture network simulation using
multiple-point statistics. Solid Earth, 10(2), 537–559.

Buhmann, D., & Dreybrodt, W. (1985). The kinetics of calcite dissolution and precipita-
tion in geologically relevant situations of karst areas: 1. open system. Chemical
geology, 48(1-4), 189–211.

Caers, J. (2011). Modeling uncertainty in the earth sciences. John Wiley & Sons.
Chaudhuri, A., Rajaram, H., & Viswanathan, H. (2013). Early-stage hypogene karstifica-

tion in a mountain hydrologic system: A coupled thermohydrochemical model
incorporating buoyant convection. Water Resources Research, 49(9), 5880–5899.

Chen, G., Pan, W., Sa, L., Han, J., & Guan, W. (2005). Application of prediction techniques
in carbonate karst reservoir in tarim basin. Applied Geophysics, 2(2), 111–118.

Chen, M., Tompson, A., Mellors, R., & Abdalla, O. (2015). An efficient optimization of well
placement and control for a geothermal prospect under geological uncertainty.
Applied Energy, 137, 352–363. https://doi.org/10.1016/j.apenergy.2014.10.036

CHEN, Z. (2011). Experimental study of the non-darcy flow and solute transport in a
channeled single fracture. Journal of Hydrodynamics, 23(6), 745–751.

Chilès, J.-P. (2005). Stochastic modeling of natural fractured media: A review. Geostatis-
tics Banff 2004, 285–294.

Christensen, J., Darche, G., Dechelette, B., Ma, H., Sammon, P., et al. (2004). Applications
of dynamic gridding to thermal simulations. SPE international thermal opera-
tions and heavy oil symposium and western regional meeting.

Christie, M. A. (1996). Upscaling for reservoir simulation. Journal of petroleum technol-
ogy, 48(11), 1–004.

Chugunova, T., Corpel, V., & Gomez, J.-P. (2017). Explicit fracture network modelling:
From multiple point statistics to dynamic simulation. Mathematical Geosciences,
49(4), 541–553.

Cinco-Ley, H. (1996). Well-test analysis for naturally fractured reservoirs. Journal of Petroleum
Technology, 48(01), 51–54.

Clemens, T., Hueckinghaus, D., Sauter, M., Liedl, R., & Teutsch, G. (1997). Modelling the
genesis of karst aquifer systems using a coupled reactive network model. IAHS
PUBLICATION, 241, 3–10.

Cohen, C. E., Ding, D., Quintard, M., & Bazin, B. (2008). From pore scale to wellbore scale:
Impact of geometry on wormhole growth in carbonate acidization. Chemical
Engineering Science, 63(12), 3088–3099.

Collon, P., Bernasconi, D., Vuilleumier, C., & Renard, P. (2017). Statistical metrics for the
characterization of karst network geometry and topology. Geomorphology, 283,
122–142.

https://doi.org/10.1016/j.apenergy.2014.10.036


BIBLIOGRAPHY

7

137

Compernolle, T., Welkenhuysen, K., Petitclerc, E., Maes, D., & Piessens, K. (2019). The
impact of policy measures on profitability and risk in geothermal energy invest-
ments. Energy Economics, 84, 104524.

Correia, M. G., von Hohendorff Filho, J. C., Schiozer, D. J., et al. (2019). Multiscale inte-
gration for karst-reservoir flow-simulation models. SPE Reservoir Evaluation &
Engineering.

Council, N. R. et al. (1996). Rock fractures and fluid flow: Contemporary understanding
and applications. National Academies Press.

Crooijmans, R., Willems, C., Nick, H., & Bruhn, D. (2016). The influence of facies hetero-
geneity on the doublet performance in low-enthalpy geothermal sedimentary
reservoirs. Geothermics, 64, 209–219. https://doi.org/10.1016/j.geothermics.
2016.06.004

Csardi, G., Nepusz, T. et al. (2006). The igraph software package for complex network
research. InterJournal, complex systems, 1695(5), 1–9.

Cui, G., Zhang, L., Ren, B., Enechukwu, C., Liu, Y., & Ren, S. (2016). Geothermal exploita-
tion from depleted high temperature gas reservoirs via recycling supercritical
CO2: Heat mining rate and salt precipitation effects. Applied Energy, 183, 837–
852. https://doi.org/10.1016/j.apenergy.2016.09.029

Cusini, M., van Kruijsdijk, C., & Hajibeygi, H. (2016). Algebraic dynamic multilevel (ADM)
method for fully implicit simulations of multiphase flow in porous media. Jour-
nal of Computational Physics, 314, 60–79.

DARTS. (2019). Delft Advanced Research Terra Simulator [[Online; accessed 29-May-
2020]].

de Hoop, S., Voskov, D., & Bertotti, G. (2020). Studying the effects of heterogeneity on
dissolution processes using operator based linearization and high-resolution
lidar data. ECMOR XVII, 2020(1), 1–13.

de Hoop, S., Voskov, D., Vossepoel, F., & Jung, A. (2018). Quantification of coarsening ef-
fect on response uncertainty in reservoir simulation. ECMOR XVI-16th Euro-
pean Conference on the Mathematics of Oil Recovery, 2018(1), 1–16.

de Hoop, S., Jones, E., & Voskov, D. (2021a). Accurate geothermal and chemical dissolu-
tion simulation using adaptive mesh refinement on generic unstructured grids.
Advances in Water Resources, 103977.

de Hoop, S., & Voskov, D. (2021). Fast and robust scheme for uncertainty quantification
in naturally fractured reservoirs. SPE Reservoir Simulation Conference.

de Hoop, S., Voskov, D., Ahusborde, E., Amaziane, B., & Kern, M. (2022). Reactive multi-
phase flow in porous media at the darcy scale: A benchmark proposal.

de Hoop, S., Voskov, D., Bertotti, G., & Barnhoorn, A. (2021b). An advanced discrete frac-
ture methodology for fast, robust, and accurate simulation of energy production
from complex fracture networks. Water Resources Research, e2021WR030743.

Douma, L. A., Regelink, J. A., Bertotti, G., Boersma, Q. D., & Barnhoorn, A. (2019). The
mechanical contrast between layers controls fracture containment in layered
rocks. Journal of Structural Geology, 127, 103856.

Dreybrodt, W. (1990). The role of dissolution kinetics in the development of karst aquifers
in limestone: A model simulation of karst evolution. The Journal of Geology,
98(5), 639–655.

https://doi.org/10.1016/j.geothermics.2016.06.004
https://doi.org/10.1016/j.geothermics.2016.06.004
https://doi.org/10.1016/j.apenergy.2016.09.029


7

138 BIBLIOGRAPHY

Dublyansky, Y. (2000). Hydrothermal speleogenesis: Its settings and peculiar features.
Speleogenesis. Evolution of karst aquifers. National Speleological Society, 292–
297.

Durlofsky, L. J. (2005). Upscaling and gridding of fine scale geological models for flow
simulation. 8th International Forum on Reservoir Simulation Iles Borromees,
Stresa, Italy, 2024, 1–59.

El Ahmar, L. (2019). Characterization of karst geometry and stability analysis of cave tun-
nels in bahia, brazil.

Ennes-Silva, R. A., Bezerra, F. H., Nogueira, F. C., Balsamo, F., Klimchouk, A., Cazarin,
C. L., & Auler, A. S. (2016). Superposed folding and associated fracturing influ-
ence hypogene karst development in neoproterozoic carbonates, são francisco
craton, brazil. Tectonophysics, 666, 244–259.

Esrafili-Dizaji, B., & Rahimpour-Bonab, H. (2019). Carbonate reservoir rocks at giant oil
and gas fields in sw iran and the adjacent offshore: A review of stratigraphic
occurrence and poro-perm characteristics. Journal of Petroleum Geology, 42(4),
343–370.

Eurostat. (2020). Energy consumption in households 2020. Retrieved March 4, 2022, from
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Energy_
consumption_in_households

Fan, Y., Durlofsky, L. J., & Tchelepi, H. A. (2012). A fully-coupled flow-reactive-transport
formulation based on element conservation, with application to co2 storage
simulations. Advances in Water Resources, 42, 47–61.

Farshidi, S. F., Fan, Y., Durlofsky, L. J., Tchelepi, H. A., et al. (2013). Chemical reaction
modeling in a compositional reservoir-simulation framework. SPE Reservoir Sim-
ulation Symposium.

Farshidi, S. F. (2016). Compositional reservoir simulation-based reactive-transport formu-
lations, with application to co2 storage in sandstone and ultramafic formations
(Doctoral dissertation). Stanford University.

Fleiter, T., Steinbach, J., Ragwitz, M., Dengler, J., Köhler, B., Reitze, F., Tuille, F., Hartner,
M., Kranzl, L., Forthuber, S., et al. (2016). Mapping and analyses of the current
and future (2020-2030) heating/cooling fuel deployment (fossil/renewables).
European Commission, Directorate-General for Energy.

Flemisch, B., Berre, I., Boon, W., Fumagalli, A., Schwenck, N., Scotti, A., Stefansson, I., &
Tatomir, A. (2018). Benchmarks for single-phase flow in fractured porous media.
Advances in Water Resources, 111, 239–258.

Ford, D. C., & Williams, P. W. (1989). Karst geomorphology and hydrology (Vol. 601). Un-
win Hyman London.

Fossen, H. (2016). Structural geology. Cambridge university press.
Gabrovšek, F., & Dreybrodt, W. (2001). A model of the early evolution of karst aquifers in

limestone in the dimensions of length and depth. Journal of Hydrology, 240(3-
4), 206–224.

Gale, J. F., Laubach, S. E., Marrett, R. A., Olson, J. E., Holder, J., & Reed, R. M. (2004).
Predicting and characterizing fractures in dolostone reservoirs: Using the link
between diagenesis and fracturing. Geological Society, London, Special Publica-
tions, 235(1), 177–192.

https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Energy_consumption_in_households
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Energy_consumption_in_households


BIBLIOGRAPHY

7

139

Gale, J. F., Reed, R. M., & Holder, J. (2007). Natural fractures in the barnett shale and their
importance for hydraulic fracture treatments. AAPG bulletin, 91(4), 603–622.

Gallyamov, E., Garipov, T., Voskov, D., & Van den Hoek, P. (2018). Discrete fracture model
for simulating waterflooding processes under fracturing conditions. Interna-
tional Journal for Numerical and Analytical Methods in Geomechanics, 42(13),
1445–1470.

Garipov, T., Karimi-Fard, M., & Tchelepi, H. (2016). Discrete fracture model for coupled
flow and geomechanics. Computational Geosciences, 20(1), 149–160.

Geiger, S., & Matthäi, S. (2014). What can we learn from high-resolution numerical sim-
ulations of single-and multi-phase fluid flow in fractured outcrop analogues?
Geological Society, London, Special Publications, 374(1), 125–144.

Geuzaine, C., & Remacle, J.-F. (2009). Gmsh: A 3-d finite element mesh generator with
built-in pre-and post-processing facilities. International journal for numerical
methods in engineering, 79(11), 1309–1331.

Girardeau-Montaut, D. (2016). Cloudcompare. France: EDF R&D Telecom ParisTech.
Golfier, F., Zarcone, C., Bazin, B., Lenormand, R., Lasseux, D., & QUINTARD, M. (2002).

On the ability of a darcy-scale model to capture wormhole formation during the
dissolution of a porous medium. Journal of fluid Mechanics, 457, 213–254.

Gong, B., Karimi-Fard, M., & Durlofsky, L. J. (2008). Upscaling discrete fracture charac-
terizations to dual-porosity, dual-permeability models for efficient simulation
of flow with strong gravitational effects. SPE Journal, 13(01), 58–67.

Greiserman, M., Hasson, D., Semiat, R., & Shemer, H. (2016). Kinetics of dolomite dis-
solution in a packed bed by acidified desalinated water. Desalination, 396, 39–
47.

Gureghian, A. B. (1975). A study by the finite-element method of the influence of frac-
tures in confined aquifers. Society of Petroleum Engineers Journal, 15(02), 181–
191.

Hajibeygi, H., Karvounis, D., & Jenny, P. (2011). A hierarchical fracture model for the
iterative multiscale finite volume method. Journal of Computational Physics,
230(24), 8729–8743.

Hammersley, J. (2013). Monte carlo methods. Springer Science & Business Media.
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau,

D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van
Kerkwijk, M. H., Brett, M., Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., . . .
Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–
362. https://doi.org/10.1038/s41586-020-2649-2

He, S., & Morse, J. W. (1993). The carbonic acid system and calcite solubility in aqueous
na-k-ca-mg-cl-so4 solutions from 0 to 90 c. Geochimica et Cosmochimica Acta,
57(15), 3533–3554.

Helmig, R. et al. (1997). Multiphase flow and transport processes in the subsurface: A con-
tribution to the modeling of hydrosystems. Springer-Verlag.

Hiller, T., Kaufmann, G., & Romanov, D. (2011). Karstification beneath dam-sites: From
conceptual models to realistic scenarios. Journal of Hydrology, 398(3-4), 202–
211.

https://doi.org/10.1038/s41586-020-2649-2


7

140 BIBLIOGRAPHY

HosseiniMehr, M., Piguave Tomala, J., Vuik, C., & Hajibeygi, H. Projection-based embed-
ded discrete fracture model (pedfm) on corner-point grid geometry for subsur-
face flow and geothermal modeling. In: 2020. https://doi.org/10.3997/2214-
4609.202035245.

Houben, M., Hardebol, N., Barnhoorn, A., Boersma, Q., Carone, A., Liu, Y., de Winter, D.,
Peach, C., & Drury, M. (2017). Fluid flow from matrix to fractures in early jurassic
shales. International Journal of Coal Geology, 175, 26–39.

House, J. E. (2007). Principles of chemical kinetics. Academic press.
Huang, H., Wu, S., Cohen-Or, D., Gong, M., Zhang, H., Li, G., & Chen, B. (2013). L1-medial

skeleton of point cloud. ACM Trans. Graph., 32(4), 65–1.
Huang, N., Jiang, Y., Liu, R., & Li, B. (2017a). Estimation of permeability of 3-d discrete

fracture networks: An alternative possibility based on trace map analysis. Engi-
neering Geology, 226, 12–19.

Huang, S., Zhang, Y., Zheng, X., Zhu, Q., Shao, G., Cao, Y., Chen, X., Yang, Z., & Bai, X.
(2017b). Types and characteristics of carbonate reservoirs and their implica-
tion on hydrocarbon exploration: A case study from the eastern tarim basin,
nw china. Journal of Natural Gas Geoscience, 2(1), 73–79.

IEA. (2020). World energy outlook 2020, iea, paris. Retrieved March 4, 2022, from https:
//www.iea.org/reports/world-energy-outlook-2020

Jaglan, H., Qayyum, F., & Hélène, H. (2015). Unconventional seismic attributes for frac-
ture characterization. First Break, 33(3).

Jenny, P., Lee, S., & Tchelepi, H. A. (2003). Multi-scale finite-volume method for ellip-
tic problems in subsurface flow simulation. Journal of Computational Physics,
187(1), 47–67.

Jouves, J., Viseur, S., Arfib, B., Baudement, C., Camus, H., Collon, P., & Guglielmi, Y. (2017).
Speleogenesis, geometry, and topology of caves: A quantitative study of 3d karst
conduits. Geomorphology, 298, 86–106.

Joyeux, R., & Ripple, R. D. (2007). Household energy consumption versus income and
relative standard of living: A panel approach. Energy Policy, 35(1), 50–60.

Jung, A., Fenwick, D. H., & Caers, J. (2013). Training image-based scenario modeling
of fractured reservoirs for flow uncertainty quantification. Computational Geo-
sciences, 17(6), 1015–1031.

Kala, K., & Voskov, D. (2020). Element balance formulation in reactive compositional flow
and transport with parameterization technique. Computational Geosciences, 24(2),
609–624. https://doi.org/10.1007/s10596-019-9828-y

Kang, Q., Zhang, D., & Chen, S. (2003). Simulation of dissolution and precipitation in
porous media. Journal of Geophysical Research: Solid Earth, 108(B10).

Karimi-Fard, M., & Durlofsky, L. J. (2014). Unstructured adaptive mesh refinement for
flow in heterogeneous porous media. ECMOR XIV-14th European conference on
the mathematics of oil recovery.

Karimi-Fard, M., & Durlofsky, L. J. (2012). Accurate resolution of near-well effects in up-
scaled models using flow-based unstructured local grid refinement. SPE Jour-
nal, 17(04), 1–084.

https://doi.org/10.3997/2214-4609.202035245
https://doi.org/10.3997/2214-4609.202035245
https://www.iea.org/reports/world-energy-outlook-2020
https://www.iea.org/reports/world-energy-outlook-2020
https://doi.org/10.1007/s10596-019-9828-y


BIBLIOGRAPHY

7

141

Karimi-Fard, M., & Durlofsky, L. J. (2016). A general gridding, discretization, and coars-
ening methodology for modeling flow in porous formations with discrete geo-
logical features. Advances in water resources, 96, 354–372.

Karimi-Fard, M., Durlofsky, L. J., & Aziz, K. (2004). An efficient discrete-fracture model
applicable for general-purpose reservoir simulators. SPE journal, 9(02), 227–
236.

Karimi-Fard, M., Gong, B., & Durlofsky, L. J. (2006). Generation of coarse-scale contin-
uum flow models from detailed fracture characterizations. Water resources re-
search, 42(10).

Kassa, S., Pierson, B., Chow, W. S., & Talib, J. B. A. (2012). Identifying the link between lin-
eament and cave passage trends to comprehend fractures continuity and influ-
ence on the kinta valley karst system. International Journal of Speleology, 41(1),
7.

Kaufmann, G. (2009). Modelling karst geomorphology on different time scales. Geomor-
phology, 106(1-2), 62–77.

Kaufmann, G. (2016). Modelling karst aquifer evolution in fractured, porous rocks. Jour-
nal of Hydrology, 543, 796–807.

Kaufmann, G., Romanov, D., & Hiller, T. (2010). Modeling three-dimensional karst aquifer
evolution using different matrix-flow contributions. Journal of hydrology, 388(3-
4), 241–250.

Kaygusuz, K. (2012). Energy for sustainable development: A case of developing countries.
Renewable and Sustainable Energy Reviews, 16(2), 1116–1126.

Khait, M., & Voskov, D. (2018a). Adaptive parameterization for solving of thermal/com-
positional nonlinear flow and transport with buoyancy. SPE Journal, 23, 522–
534. https://doi.org/10.2118/182685-PA

Khait, M., & Voskov, D. (2018b). Adaptive parameterization for solving of thermal/com-
positional nonlinear flow and transport with buoyancy. SPE Journal, 23(2), 522–
534. https://doi.org/10.2118/182685-pa

Khait, M., & Voskov, D. (2018c). Operator-based linearization for efficient modeling of
geothermal processes. Geothermics, 74, 7–18. https : / / doi . org / 10 . 1016 / j .
geothermics.2018.01.012

Khait, M., & Voskov, D. (2018d). Operator-based linearization for efficient modeling of
geothermal processes. Geothermics, 74, 7–18. https : / / doi . org / 10 . 1016 / j .
geothermics.2018.01.012

Khait, M., & Voskov, D. V. (2017). Operator-based linearization for general purpose reser-
voir simulation. Journal of Petroleum Science and Engineering, 157, 990–998.

Kirstein, J., Hellevang, H., Haile, B. G., Gleixner, G., & Gaupp, R. (2016). Experimental
determination of natural carbonate rock dissolution rates with a focus on tem-
perature dependency. Geomorphology, 261, 30–40.

Klimchouk, A. (2007). Hypogene speleogenesis. Hydrogeological and morphogenetic per-
spective. National.

Klimchouk, A. (2009). Morphogenesis of hypogenic caves. Geomorphology, 106(1-2), 100–
117.

Klimchouk, A. (2012). Speleogenesis, hypogenic. Encyclopedia of caves (second edition)
(pp. 748–765). Elsevier.

https://doi.org/10.2118/182685-PA
https://doi.org/10.2118/182685-pa
https://doi.org/10.1016/j.geothermics.2018.01.012
https://doi.org/10.1016/j.geothermics.2018.01.012
https://doi.org/10.1016/j.geothermics.2018.01.012
https://doi.org/10.1016/j.geothermics.2018.01.012


7

142 BIBLIOGRAPHY

Klimchouk, A. (2015). The karst paradigm: Changes, trends and perspectives/kraska paradigma:
Spremembe, trendi in perspektive. Acta Carsologica, 44(3), 289.

Klimchouk, A., Auler, A. S., Bezerra, F. H., Cazarin, C. L., Balsamo, F., & Dublyansky, Y.
(2016). Hypogenic origin, geologic controls and functional organization of a gi-
ant cave system in precambrian carbonates, brazil. Geomorphology, 253, 385–
405.

Klimchouk, A., Palmer, A. N., De Waele, J., Auler, A. S., & Audra, P. (2017). Hypogene karst
regions and caves of the world. Springer.

Koehn, D., Piazolo, S., Beaudoin, N. E., Kelka, U., Spruženiece, L., Putnis, C. V., & Tou-
ssaint, R. (2021). Relative rates of fluid advection, elemental diffusion and re-
placement govern reaction front patterns. Earth and Planetary Science Letters,
565, 116950.

Koohbor, B., Fahs, M., Hoteit, H., Doummar, J., Younes, A., & Belfort, B. (2020). An ad-
vanced discrete fracture model for variably saturated flow in fractured porous
media. Advances in Water Resources, 140, 103602.

Koudina, N., Garcia, R. G., Thovert, J.-F., & Adler, P. (1998). Permeability of three-dimensional
fracture networks. Physical Review E, 57(4), 4466.

Laidler, K. J. (1987). Chemical kinetics.
Lamarche, J., Lavenu, A. P., Gauthier, B. D., Guglielmi, Y., & Jayet, O. (2012). Relation-

ships between fracture patterns, geodynamics and mechanical stratigraphy in
carbonates (south-east basin, france). Tectonophysics, 581, 231–245.

Lasaga, A. C. (1981). Transition state theory. Rev. Mineral.;(United States), 8.
Lasaga, A. C. (1984). Chemical kinetics of water-rock interactions. Journal of geophysical

research: solid earth, 89(B6), 4009–4025.
Laubach, S. E., Olson, J. E., & Gross, M. R. (2009). Mechanical and fracture stratigraphy.

AAPG bulletin, 93(11), 1413–1426.
Le Chatelier, H. L. (1884). Sur un énoncé général des lois des équilibres chimiques. Comptes

Rendus Académie des Sciences, 99, 786–789.
Lee, T.-C., Kashyap, R. L., & Chu, C.-N. (1994). Building skeleton models via 3-d medial

surface axis thinning algorithms. CVGIP: Graphical Models and Image Process-
ing, 56(6), 462–478.

Li, J. Z., Laubach, S., Gale, J., & Marrett, R. (2018). Quantifying opening-mode fracture
spatial organization in horizontal wellbore image logs, core and outcrop: Appli-
cation to upper cretaceous frontier formation tight gas sandstones, usa. Journal
of Structural Geology, 108, 137–156.

Li, L., & Lee, S. H. (2008). Efficient field-scale simulation of black oil in a naturally frac-
tured reservoir through discrete fracture networks and homogenized media.
SPE Reservoir evaluation & engineering, 11(04), 750–758.

Li, L., & Voskov, D. (2021). A novel hybrid model for multiphase flow in complex multi-
scale fractured systems. Journal of Petroleum Science and Engineering, 203, 108657.

Li, X., & Li, D. (2019). A numerical procedure for unsaturated seepage analysis in rock
mass containing fracture networks and drainage holes. Journal of Hydrology,
574, 23–34.

Lichtner, P. C. (1996). Continuum formulation of multicomponent-multiphase reactive
transport. Reviews in Mineralogy and Geochemistry, 34(1), 1–81.



BIBLIOGRAPHY

7

143

Lim, K.-T., Schiozer, D., & Aziz, K. (1995). A new approach for residual and jacobian arrays
construction in reservoir simulators. SPE Computer Applications, 7(04), 93–96.

Limberger, J., Boxem, T., Pluymaekers, M., Bruhn, D., Manzella, A., Calcagno, P., Beek-
man, F., Cloetingh, S., & van Wees, J.-D. (2018). Geothermal energy in deep aquifers:
A global assessment of the resource base for direct heat utilization. Renewable
and Sustainable Energy Reviews, 82, 961–975.

Liu, E., & Martinez, A. (2014). Seismic fracture characterization (Vol. 575). Elsevier.
Liu, X., Zhang, C., Liu, Q., & Birkholzer, J. (2009). Multiple-point statistical prediction on

fracture networks at yucca mountain. Environmental geology, 57(6), 1361–1370.
Lyu, X., Khait, M., & Voskov, D. (2021a). Operator-based linearization approach for mod-

elling of multiphase flow with buoyancy and capillarity. SPE Journal. https://
doi.org/10.2118/205378-PA

Lyu, X., Voskov, D., & Rossen, W. R. (2021b). Numerical investigations of foam-assisted
co2 storage in saline aquifers. International journal of greenhouse gas control.

Maheshwari, P., Ratnakar, R., Kalia, N., & Balakotaiah, V. (2013). 3-d simulation and anal-
ysis of reactive dissolution and wormhole formation in carbonate rocks. Chem-
ical Engineering Science, 90, 258–274.

Mallison, B. T., Hui, M.-H., & Narr, W. (2010). Practical gridding algorithms for discrete
fracture modeling workflows. ECMOR XII-12th European Conference on the Math-
ematics of Oil Recovery, cp–163.

Manzocchi, T. (2002). The connectivity of two-dimensional networks of spatially corre-
lated fractures. Water Resources Research, 38(9), 1–1.

Maryška, J., Severn, O., & Vohralık, M. (2005). Numerical simulation of fracture flow with
a mixed-hybrid fem stochastic discrete fracture network model. Computational
Geosciences, 8(3), 217–234.

McGinnis, R. N., Ferrill, D. A., Smart, K. J., Morris, A. P., Higuera-Diaz, C., & Prawica, D.
(2015). Pitfalls of using entrenched fracture relationships: Fractures in bedded
carbonates of the hidden valley fault zone, canyon lake gorge, comal county,
texaspitfalls of using entrenched fracture relationships. AAPG Bulletin, 99(12),
2221–2245.

Mello, M. R., Bender, A. A., De Mio, E., et al. (2011). Giant sub-salt hydrocarbon province
of the greater campos basin, brazil. OTC Brasil.

Menzinger, M., & Wolfgang, R. (1969). The meaning and use of the arrhenius activation
energy. Angewandte Chemie International Edition in English, 8(6), 438–444.

Misi, A., Kaufman, A. J., Azmy, K., Dardenne, M. A., Sial, A. N., & De Oliveira, T. F. (2011).
Neoproterozoic successions of the são francisco craton, brazil: The bambuı,
una, vazante and vaza barris/miaba groups and their glaciogenic deposits. Ge-
ological Society, London, Memoirs, 36(1), 509–522.

Misi, A., & Kyle, J. R. (1994). Upper proterozoic carbonate stratigraphy, diagenesis, and
stromatolitic phosphorite formation, irecê basin, bahia, brazil. Journal of Sedi-
mentary Research, 64(2a), 299–310.

Modak, J. M. (2002). Haber process for ammonia synthesis. Resonance, 7(9), 69–77.
Moeck, I. S. (2014). Catalog of geothermal play types based on geologic controls. Renew-

able and Sustainable Energy Reviews, 37, 867–882.

https://doi.org/10.2118/205378-PA
https://doi.org/10.2118/205378-PA


7

144 BIBLIOGRAPHY

Mohammed, I., Olayiwola, T. O., Alkathim, M., Awotunde, A. A., & Alafnan, S. F. (2021).
A review of pressure transient analysis in reservoirs with natural fractures, vugs
and/or caves. Petroleum Science, 18(1), 154–172.

Moinfar, A., Narr, W., Hui, M.-H., Mallison, B. T., & Lee, S. H. (2011). Comparison of
discrete-fracture and dual-permeability models for multiphase flow in naturally
fractured reservoirs. SPE Reservoir Simulation Symposium.

Morel, F. M., Hering, J. G., Hering, J. G., et al. (1993). Principles and applications of aquatic
chemistry. John Wiley & Sons.

Morse, J. W., Arvidson, R. S., & Lüttge, A. (2007). Calcium carbonate formation and dis-
solution. Chemical reviews, 107(2), 342–381.

Moutte, J., Michel, A., Battaia, G., Parra, T., Garcia, D., & Wolf, S. (2010). Arxim, a library for
thermodynamic modeling of reactive heterogeneous systems, with applications
to the simulation of fluid-rock system. 21st Congress of IUPAC.

Murad, M., Lopes, T., Pereira, P., Bezerra, F., & Rocha, A. (2020). A three-scale index for
flow in karst conduits in carbonate rocks. Advances in Water Resources, 141.
https://doi.org/10.1016/j.advwatres.2020.103613

Mustapha, H., & Dimitrakopoulos, R. (2011). Discretizing two-dimensional complex frac-
tured fields for incompressible two-phase flow. International Journal for Nu-
merical Methods in Fluids, 65(7), 764–780.

Mustapha, H., & Mustapha, K. (2007). A new approach to simulating flow in discrete frac-
ture networks with an optimized mesh. SIAM Journal on Scientific Computing,
29(4), 1439–1459.

Nejadi, S., Trivedi, J. J., & Leung, J. (2017). History matching and uncertainty quantifi-
cation of discrete fracture network models in fractured reservoirs. Journal of
Petroleum Science and Engineering, 152, 21–32.

Nelson, R. (2001). Geologic analysis of naturally fractured reservoirs. Elsevier.
Novikov, A., Voskov, D., Khait, M., Hajibeygi, H., & Jansen, J. A collocated finite volume

scheme for high-performance simulation of induced seismicity in geo-energy
applications. In: 2021. https://doi.org/10.2118/203903-MS.

Olson, J. E., Laubach, S. E., & Lander, R. H. (2009). Natural fracture characterization
in tight gas sandstones: Integrating mechanics and diagenesis. AAPG bulletin,
93(11), 1535–1549.

Palmer, A. N. (1991). Origin and morphology of limestone caves. Geological Society of
America Bulletin, 103(1), 1–21.

Palmer, A. N. (2011). Distinction between epigenic and hypogenic maze caves. Geomor-
phology, 134(1-2), 9–22.

Palmer, A. N., & Palmer, M. V. (2000). Hydrochemical interpretation of cave patterns in
the guadalupe mountains, new mexico. Journal of Cave and Karst Studies, 62(2),
91–108.

Pau, G. S. H., Bell, J. B., Almgren, A. S., Fagnan, K. M., & Lijewski, M. J. (2012). An adaptive
mesh refinement algorithm for compressible two-phase flow in porous media.
Computational Geosciences, 16(3), 577–592.

Peng, C., Crawshaw, J. P., Maitland, G. C., & Trusler, J. M. (2015). Kinetics of calcite dis-
solution in co2-saturated water at temperatures between (323 and 373) k and
pressures up to 13.8 mpa. Chemical Geology, 403, 74–85.

https://doi.org/10.1016/j.advwatres.2020.103613
https://doi.org/10.2118/203903-MS


BIBLIOGRAPHY

7

145

Plummer, L. N., & Wigley, T. (1976). The dissolution of calcite in co2-saturated solutions
at 25 c and 1 atmosphere total pressure. Geochimica et Cosmochimica Acta,
40(2), 191–202.

Plummer, L., Parkhurst, D., & Wigley, T. (1979). Critical review of the kinetics of calcite
dissolution and precipitation. ACS Publications.

Plummer, L., Wigley, T., & Parkhurst, D. (1978). The kinetics of calcite dissolution in co
2-water systems at 5 degrees to 60 degrees c and 0.0 to 1.0 atm co 2. American
journal of science, 278(2), 179–216.

Pontes, C., Bezerra, F., Bertotti, G., Balsamo, F., La Bruna, V., & de Hoop, S. (2020). Karst
conduits formed along fracture corridors in anticline hinges of carbonate units:
Implications for reservoir quality. Fourth Naturally Fractured Reservoir Work-
shop, 2020(1), 1–6.

Popov, P., Quin, G., Bi, L., Efendiev, Y., Ewing, R., Kang, Z., & Li, J. (2007). Multi-scale
methods for modeling fluid flow through naturally fractured carbonate karsts
reservoirs, spe 110778. SPE Annual Technical Conference and Exhibition.

Prabhakaran, R., Bruna, P.-O., Bertotti, G., & Smeulders, D. (2019). An automated fracture
trace detection technique using the complex shearlet transform. Solid Earth,
10(6), 2137–2166.

Prabhakaran, R., Urai, J. L., Bertotti, G., Weismüller, C., & Smeulders, D. M. (2021). Large-
scale natural fracture network patterns: Insights from automated mapping in
the lilstock (bristol channel) limestone outcrops. Journal of Structural Geology,
150, 104405.

Pruess, K., & Narasimhan, T. (1982). On fluid reserves and the production of superheated
steam from fractured, vapor-dominated geothermal reservoirs. Journal of Geo-
physical Research: Solid Earth, 87(B11), 9329–9339.

Rajaram, H., Cheung, W., & Chaudhuri, A. (2009). Natural analogs for improved under-
standing of coupled processes in engineered earth systems: Examples from karst
system evolution. Current Science, 1162–1176.

Ramamurthy, B., Doonan, J., Zhou, J., Han, J., & Liu, Y. (2015). Skeletonization of 3d plant
point cloud using a voxel based thinning algorithm. Proceedings of the 23rd Eu-
ropean Signal Processing Conference (EUSIPCO), Nice, France, 31.

Rehrl, C., Birk, S., & Klimchouk, A. (2010). Influence of initial aperture variability on con-
duit development in hypogene settings. Zeitschrift für Geomorphologie, Supple-
mentary Issues, 54(2), 237–258.

Rehrl, C., Birk, S., & Klimchouk, A. (2008). Conduit evolution in deep-seated settings:
Conceptual and numerical models based on field observations. Water Resources
Research, 44(11).

Reichenberger, V., Jakobs, H., Bastian, P., & Helmig, R. (2006). A mixed-dimensional fi-
nite volume method for two-phase flow in fractured porous media. Advances in
water resources, 29(7), 1020–1036.

Reijmer, J. J., Johan, H., Jaarsma, B., & Boots, R. (2017). Seismic stratigraphy of dinan-
tian carbonates in the southern netherlands and northern belgium. Netherlands
Journal of Geosciences, 96(4), 353–379.

Rijken, M. C. M. (2005). Modeling naturally fractured reservoirs: From experimental rock
mechanics to flow simulation. The University of Texas at Austin.



7

146 BIBLIOGRAPHY

Rossetto, C. (2020). Dimensional and mechanical stability analysis of caves in bahia,
brazil.

Saldi, G. D., Voltolini, M., & Knauss, K. G. (2017). Effects of surface orientation, fluid
chemistry and mechanical polishing on the variability of dolomite dissolution
rates. Geochimica et Cosmochimica Acta, 206, 94–111.

Sammon, P. H. et al. (2003). Dynamic grid refinement and amalgamation for composi-
tional simulation. SPE reservoir simulation symposium.

Sanderson, D. J., & Nixon, C. W. (2015). The use of topology in fracture network charac-
terization. Journal of Structural Geology, 72, 55–66.

Sanderson, D. J., Peacock, D. C., Nixon, C. W., & Rotevatn, A. (2019). Graph theory and
the analysis of fracture networks. Journal of Structural Geology, 125, 155–165.

Sartori Suarez, A. (2018). Uncertainty quantification based on hierarchical representa-
tion of fractured reservoirs (Master’s thesis). Delft University of Technology. the
Netherlands.

Sauter, M. (1992). Quantification and forecasting of regional groundwater flow and trans-
port in a karst aquifer (gallusquelle, malm, sw. germany).

Scheidt, C., & Caers, J. (2009). Representing spatial uncertainty using distances and ker-
nels. Mathematical Geosciences, 41(4), 397.

Scheidt, C., Caers, J. et al. (2009). Uncertainty quantification in reservoir performance
using distances and kernel methods–application to a west africa deepwater tur-
bidite reservoir. SPE Journal, 14(04), 680–692.

Scheidt, C., Caers, J., Chen, Y., & Durlofsky, L. J. (2011). A multi-resolution workflow to
generate high-resolution models constrained to dynamic data. Computational
Geosciences, 15(3), 545–563.

Shaik, A., Tomin, P., & Voskov, D. (2018). Modeling of near-well matrix acidization. 43rd
Workshop on Geothermal Reservoir Engineering.

Shaik, R., TOMIN, P., VOSKOV, D., & DELFT, A. (2017). Modelling of near-well acidisation
(Doctoral dissertation). Master’s thesis, TU Delft.

Shetty, S., Voskov, D., & Bruhn, D. F. (2018). Numerical strategy for uncertainty quantifi-
cation in low enthalpy geothermal projects. Workshop on Geothermal Reservoir
Engineering.

Singurindy, O., & Berkowitz, B. (2003). Flow, dissolution, and precipitation in dolomite.
Water resources research, 39(6).

Spielman, D. A. (2010). Algorithms, graph theory, and linear equations in laplacian ma-
trices. Proceedings of the International Congress of Mathematicians 2010 (ICM
2010) (In 4 Volumes) Vol. I: Plenary Lectures and Ceremonies Vols. II–IV: Invited
Lectures, 2698–2722.

Spooner, V., Geiger, S., & Arnold, D. (2021). Dual-porosity flow diagnostics for sponta-
neous imbibition in naturally fractured reservoirs. Water Resources Research,
e2020WR027775.

Spooner, V., Geiger, S., & Arnold, D. (2019). Ranking fractured reservoir models using flow
diagnostics. SPE Reservoir Simulation Conference.

Sriyanong, P. (2013). Element-based formulations for coupled flow, transport, and chemi-
cal reactions (Doctoral dissertation). Stanford University.



BIBLIOGRAPHY

7

147

Steefel, C., Appelo, C., Arora, B., Jacques, D., Kalbacher, T., Kolditz, O., Lagneau, V., Licht-
ner, P., Mayer, K. U., Meeussen, J., et al. (2015). Reactive transport codes for sub-
surface environmental simulation. Computational Geosciences, 19(3), 445–478.

Stumm, W., Morgan, J. J. et al. (1970). Aquatic chemistry; an introduction emphasizing
chemical equilibria in natural waters.

Stumm, W., & Morgan, J. J. (2012). Aquatic chemistry: Chemical equilibria and rates in
natural waters (Vol. 126). John Wiley & Sons.

Svensson, U., & Dreybrodt, W. (1992). Dissolution kinetics of natural calcite minerals in
co2-water systems approaching calcite equilibrium. Chemical Geology, 100(1-
2), 129–145.

Tagliasacchi, A., Zhang, H., & Cohen-Or, D. (2009). Curve skeleton extraction from in-
complete point cloud. Acm siggraph 2009 papers (pp. 1–9).

Ţene, M., Bosma, S. B., Al Kobaisi, M. S., & Hajibeygi, H. (2017). Projection-based embed-
ded discrete fracture model (pedfm). Advances in Water Resources, 105, 205–216.

Trangenstein, J. A. (2002). Multi-scale iterative techniques and adaptive mesh refinement
for flow in porous media. Advances in Water Resources, 25(8-12), 1175–1213.

Vallance, C. (2017). Reaction kinetics.
Van Batenburg, D. W., De Zwart, A., Boerrigter, P. M., Bosch, M., & Vink, J. C. (2011). Ap-

plication of dynamic gridding techniques to IOR/EOR processes. IOR 2011-16th
European Symposium on Improved Oil Recovery.

Van’t Hoff, J. H. (1884). Etudes de dynamique chimique (Vol. 1). Muller.
Vasuki, Y., Holden, E.-J., Kovesi, P., & Micklethwaite, S. (2014). Semi-automatic mapping

of geological structures using uav-based photogrammetric data: An image anal-
ysis approach. Computers & Geosciences, 69, 22–32.

Vaughan, P. J. (1987). Analysis of permeability reduction during flow of heated, aqueous
fluid through westerly granite. Coupled processes associated with nuclear waste
repositories (pp. 529–539). Elsevier.

Verma, A., & Pruess, K. (1988). Thermohydrological conditions and silica redistribution
near high-level nuclear wastes emplaced in saturated geological formations.
Journal of Geophysical Research: Solid Earth, 93(B2), 1159–1173.

Vidal, J., & Genter, A. (2018). Overview of naturally permeable fractured reservoirs in
the central and southern upper rhine graben: Insights from geothermal wells.
Geothermics, 74, 57–73.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M.,
Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Lar-
son, E., . . . SciPy 1.0 Contributors. (2020). SciPy 1.0: Fundamental Algorithms
for Scientific Computing in Python. Nature Methods, 17, 261–272. https://doi.
org/10.1038/s41592-019-0686-2

Vohralik, M., & Wheeler, M. F. (2013). A posteriori error estimates, stopping criteria, and
adaptivity for two-phase flows. Computational Geosciences, 17(5), 789–812.

Vohralik, M., & Yousef, S. (2018). A simple a posteriori estimate on general polytopal
meshes with applications to complex porous media flows. Computer Methods
in Applied Mechanics and Engineering, 331, 728–760.

https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2


7

148 BIBLIOGRAPHY

Voskov, D. V. (2017). Operator-based linearization approach for modeling of multiphase
multi-component flow in porous media. Journal of Computational Physics, 337,
275–288.

Waage, P., & Gulberg, C. M. (1986). Studies concerning affinity. Journal of chemical edu-
cation, 63(12), 1044.

Wagner, W., & Kretzschmar, H.-J. (2008). International steam tables: Properties of wa-
ter and steam based on the industrial formulation iapws-if97. Springer-Verlag
Berlin Heidelberg. https://doi.org/10.1007/978-3-540-74234-0

Wang, M., Kulatilake, P., Um, J., & Narvaiz, J. (2002). Estimation of rev size and three-
dimensional hydraulic conductivity tensor for a fractured rock mass through a
single well packer test and discrete fracture fluid flow modeling. International
Journal of Rock Mechanics and Mining Sciences, 39(7), 887–904.

Wang, Y., Hill, A., & Schechter, R. (1993). The optimum injection rate for matrix acidizing
of carbonate formations. SPE Annual Technical Conference and Exhibition.

Wang, Y., de Hoop, S., Voskov, D., Bruhn, D., & Bertotti, G. (2021). Modeling of multi-
phase mass and heat transfer in fractured high-enthalpy geothermal systems
with advanced discrete fracture methodology. Advances in Water Resources, 154,
103985.

Wang, Y., & Voskov, D. (2019). High-enthalpy geothermal simulation with continuous
localization in physics. 44th Workshop on Geothermal Reservoir Engineering,
Stanford, California. https://doi.org/https://pangea.stanford.edu/ERE/pdf/
IGAstandard/SGW/2019/Wang4.pdf

Wang, Y., Voskov, D., Khait, M., & Bruhn, D. (2020). An efficient numerical simulator for
geothermal simulation: A benchmark study. Applied Energy, 264, 114693.

Wang, Y., Hajibeygi, H., & Tchelepi, H. A. (2014). Algebraic multiscale solver for flow in
heterogeneous porous media. Journal of Computational Physics, 259, 284–303.

Warren, J., & Root, P. J. (1963). The behavior of naturally fractured reservoirs. Society of
Petroleum Engineers Journal, 3(03), 245–255.

Wellman, T. P., Shapiro, A. M., & Hill, M. C. (2009). Effects of simplifying fracture network
representation on inert chemical migration in fracture-controlled aquifers. Wa-
ter Resources Research, 45(1).

West, D. B. et al. (2001). Introduction to graph theory (Vol. 2). Prentice hall Upper Saddle
River.

Willems, C. (2017). Doublet deployment strategies for geothermal hot sedimentary aquifer
exploitation: application to the Lower Cretaceous Nieuwerkerk Formation in the
West Netherlands Basin (Doctoral dissertation). Delft University of Technology.

Willems, C., & Nick, H. (2019). Towards optimisation of geothermal heat recovery: An
example from the west netherlands basin. Applied energy, 247, 582–593.

Witter, J. B., Trainor-Guitton, W. J., & Siler, D. L. (2019). Uncertainty and risk evaluation
during the exploration stage of geothermal development: A review. Geother-
mics, 78, 233–242.

Wong, D. L. Y., Doster, F., Geiger, S., Francot, E., & Gouth, F. (2020). Fluid flow charac-
terization framework for naturally fractured reservoirs using small-scale fully
explicit models. Transport in Porous Media, 134(2), 399–434.

Wright, M. R. (2005). Introduction to chemical kinetics. John Wiley & Sons.

https://doi.org/10.1007/978-3-540-74234-0
https://doi.org/https://pangea.stanford.edu/ERE/pdf/IGAstandard/SGW/2019/Wang4.pdf
https://doi.org/https://pangea.stanford.edu/ERE/pdf/IGAstandard/SGW/2019/Wang4.pdf


BIBLIOGRAPHY 149

Wu, H., & Pollard, D. D. (2002). Imaging 3-d fracture networks around boreholes. AAPG
bulletin, 86(4), 593–604.

Wu, Y.-S., Di, Y., Kang, Z., & Fakcharoenphol, P. (2011). A multiple-continuum model for
simulating single-phase and multiphase flow in naturally fractured vuggy reser-
voirs. Journal of Petroleum Science and Engineering, 78(1), 13–22.

Yang, L., Oyen, D., & Wohlberg, B. (2019). A novel algorithm for skeleton extraction from
images using topological graph analysis. Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition Workshops, 0–0.

Zeeb, C., Gomez-Rivas, E., Bons, P. D., & Blum, P. (2013). Evaluation of sampling meth-
ods for fracture network characterization using outcrops. AAPG bulletin, 97(9),
1545–1566.

Zhang, J., Zhou, J., Fu, L., Li, H., & Lou, D. (2020). Karstification of ordovician carbon-
ate reservoirs in huanghua depression and its control factors. Carbonates and
Evaporites, 35(2), 1–16.

Zhao, X., & Paul Young, R. (2011). Numerical modeling of seismicity induced by fluid
injection in naturally fractured reservoirs. Geophysics, 76(6), WC167–WC180.

Zhiwen, D., Rujun, W., Fangfang, C., Jianping, Y., Zhongqian, Z., Zhimin, Y., Xiaohui, S.,
Bo, X., Erpeng, L., Tao, S., et al. (2020). Origin, hydrocarbon accumulation and
oil-gas enrichment of fault-karst carbonate reservoirs: A case study of ordovi-
cian carbonate reservoirs in south tahe area of halahatang oilfield, tarim basin.
Petroleum Exploration and Development, 47(2), 306–317.

Zlot, R., & Bosse, M. (2014a). Efficient large-scale three-dimensional mobile mapping for
underground mines. Journal of Field Robotics, 31(5), 758–779.

Zlot, R., & Bosse, M. (2014b). Three-dimensional mobile mapping of caves. Journal of
Cave & Karst Studies, 76(3).





A
MULTI-PHASE REACTIVE

TRANSPORT BENCHMARK

A.1. INTRODUCTION AND CONTEXT OF THE PROPOSAL
This document presents a proposal for a benchmark on reactive multiphase flow. The
proposal was put together as a followup of the first SITRAM meeting https://sitram19.
sciencesconf.org/, which took place in Pau in December 2019. The topic is increasingly
important for modern energy applications.

The content of the benchmark was initially written by SdH and DV, and the current
version is the result of discussions between the five authors. The proposal is still work
in progress. Preliminary results were reported by seveal teams in two sessions of a min-
isymposium at the upcoming SIAM Conference on Mathematical and Computational
Issues in the Gesociences, and it is the organizers’ hope that input form the participants
will enable the model to be extended towards more realistic geometries as well as physi-
cal and chemical phenomena.

A second workshop SITRAM21 https://sitram21.sciencesconf.org/ was organized in
December 2022 at the Inria Centerin Paris, where participants showed further results. A
special issue of the journal “Computational Geosciences” is planned, where participants
will be able to present and compare their work.

The proposal was written to address several challenges commonly met in applica-
tions:

1. Robust coupling of chemical reactions with multiphase flow in porous media,

2. Phase behaviour coupling with equilibrium reactions,

3. Conservative treatment of solid phase dissolution and precipitation,

4. Effective coupling of equations in the case of multiple (concurrent) reactions.

Parts of this chapter have been published as a preprint on HAL open archive, fhal-03635080 (2022) de Hoop
et al., 2022.
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The general structure of the physical and chemical model is described in Sections 2
to 5, while the specific data for the proposed cases are given in Section 6, and requested
output is specified in Section 7.

A.2. BENCHMARK SCENARIOS

A.2.1. 1D HOMOGENEOUS DOMAIN

The first case is a basic 1D model. The rock and fluid properties are shown in Table A.1.

Property Value Units

Permeability, kx,y,z [100, 100, 100] [mD]
Total porosity, φT 1 [-]

Porosity, φ 0.3 [-]
Control volume dimension, ∆x, y, z [1, 1, 1] [m]

Number of control volumes, Nx 1000 [-]
Phase density at p0, ρw,g ,s [1000, 100, 2000] [kg/m3]

Phase compressibility, Cw,g ,s [10−6, 10−4, 10−7] [1/bar]
Phase viscosity, µw,g [1, 0.1] [cP]

End-point relative permeability, ke
r w,r g [1, 1] [-]

Corey exponents, nw,g [2, 2] [-]
Residual saturation, sr w,r g [0, 0] [-]

Phase partition coefficients, KH2O,CO2 [0.1, 10] [-]
Diffusion coefficients, dc j = d 10−9 [m2/s]
Activity coefficients, γcw = γ 1 [-]

Porosity-permeability dependence factor, A 3 [-]

Table A.1 Values for all the relevant fluid and rock properties.

The model is setup with an injection well (i.e., source term) in the first block and a
production well in the last block, no flow boundary conditions from left and right (i.e.,
∂p
∂x |x=0 = 0 and ∂p

∂x |x=∆xNx = 0). These are typical boundary conditions for reservoir sim-
ulation. It is possible to replace the wells and no-flow boundary condition with a Neu-
mann boundary condition at x = 0 and a Dirichlet at x = ∆xNx . Table A.2 summarizes
the initial, injection and production conditions and simulation time.

Note that the injection and initial compositions are given in terms of the overall mole
fractions zi , i = 1, . . . ,C , defined as

zi =
P∑

j=1
xi jν j , i = 1, . . . ,C ,

with

ν j =
ρ j S j∑P

k=1ρk Sk
, j = 1, . . . ,P.
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…

pprodQinj, zc,inj

p0, zc,0

Q = 0Q = 0

Figure A.1 One dimensional domain setup. Injection on the left is constrained with rate and composition Qi n j
and zc,i n j respectively. Production on the right is constrained with pressure ppr od . Initial condition for pressure
and composition is defined as p0 and zc,0 respectively. No flow boundary condition is imposed on both the left
and right boundary.

Property Value Units

Injection rate, Qinj 0.2 [m3/day]
Injection composition, zc,inj, c = 1, . . . ,C −1, [0, 1, 0, 0] [-]

Initial pressure, Pini 95 [bar]
Initial composition, zc,ini, c = 1, . . . ,C −1, [0.15, 0, 0.075, 0.075] [-]

Production pressure, Pprod 95 [bar]
Simulation time, T 1000 [day]

Table A.2 Boundary conditions and other simulation parameters.

We refer to Kala and Voskov, 2020 for more details. Note that composition for the
C -th component can be obtained by zC = 1−∑C−1

j=1 z j and is not a primary unknown
(hence the initial and injection composition doesn’t contain the composition of zC ), and
the primary unknowns in this system are X = [p, z1, . . . , zC−1]. The initial and injection
composition expressed in terms of molar fraction of individual species and saturation of
each phases are given at the end of this Appendix A.3.2.

We now describe the chemical reaction used for this first case. It consists of a single
chemical reaction (i.e., we cannot reduce the global system of nonlinear equation using
the element reduction). The system consists of the following components: zc = [ H2O,
CO2, Ca+2, CO –2

3 , CaCO3 ]. The kinetic reaction equation consists of

CaCO3 Ca+2 + CO –2
3 . (A.1)

We distinguish two cases according to whether the reaction is modelled as kinetic or
at equilibrium.

TWO-PHASE FLOW WITH KINETIC CHEMISTRY

Here we assume that the chemical reaction (A.1) is kinetic. The kinetic rate (i.e., the
right-hand-side of equation (2.6)) is written as

rk = AKk

(
1− Q

Ksp

)
(A.2)
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where A is the reactive surface area, which is a linear function of the solid saturation
(A = A0 ŝs = (1−φ0)ŝs ), Kk is the kinetic reaction constant, Q is the activity product (to
simplify Q = xca,w ×xco3,w ) and Ksp is the equilibrium constant.

The values of the reaction constants are given in Table A.3. Ksp is equal to 0.25×0.25 =
0.0625 to ensure that the initial state is in equilibrium and no dissolution occurs.

Property Value Units

Kinetic constant, Kk 1 [kmol / m3 / day ]
Solubility constant, Ksp 0.0625 [-]

Table A.3 Kinetic and equilibrium constants.

TWO-PHASE FLOW WITH EQUILIBRIUM CHEMISTRY

The second test case is similar to the first one, except that now the reaction is treated as
an equilibrium reaction. Mathematically, this adds an additional constraint equation of
the form

Q −Ksp = 0, (A.3)

where Q is the activity product of the equilibrium reaction as defined in equation (2.16)
(which is taken here to have the same form as in Section A.2.1) and Ksp is the solubility
constant, with the value given in Table A.2. All the other parameters, fluid/rock/bound-
ary condition/simulation parameters (as specified in table A.1 and A.2), are the same as
for the previous case (including of course the stoichiometry of the reaction).

A.2.2. 2D HETEROGENEOUS DOMAIN

The third test case consists of a two-dimensional heterogeneous domain. In the model,
a zone of high porosity (and permeability) is embedded within a lower porosity (and per-
meability) zone. The domain extends for 10[m] in the y-direction (all the other measures
are mentioned in Figure A.2). The boundary conditions are constant injection rate on the
left (bottom half of the domain pure CO2, top half pure H2O) and constant pressure on
the right boundary (outflow) with no-flow on top and bottom.

Kinetic chemistry is used to model the dissolution of CaCO3. See Tables A.4 and A.5
for all the parameters used in this model. Note that we have provided the initial values
both in terms of the overall mole fractions and in terms of the individual mole fractions
(computed with the same python code listed above), and also that the concentration of
the calcite can be directly computed as a function of the porosity (see equation 2.17). All
fluid and chemical parameters (e.g., kinetic constants, reference mass density, etc.) are
the same as in test case A.2.1.

In addition to the two chemical systems described later, this test case can be executed
with or without gravity (i.e. g = 0). We note that when gravity is included, it would have
been more natural for the initial pressure to follow a hydrostatic law. However, the effect
is quite small, and the simpler constant initial pressure was retained.
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Figure A.2 Configuration of the 2D test case (Section A.2.2). Constant injection rate on the left boundary (Neu-
mann) and constant pressure (Dirichlet) on the right. The domain extends 10[m] in the y-direction.

Property Value Units

Gas injection rate, Qinj 1000 [m3/day]
Water injection rate, Qinj 200 [m3/day]
Gas injection composition, zc,inj, c = 1, . . . ,C −1, [0, 1, 0, 0] [-]
Gas injection composition in molar fractions,
xcg ,inj, c = 1, . . . ,C −1,

[0, 1, 0, 0] [-]

Water injection composition, zc,inj, c = 1, . . . ,C −
1,

[1, 0, 0, 0] [-]

Water injection composition in molar fractions,
xcw,inj, c = 1, . . . ,C −1,

[1, 0, 0, 0] [-]

Initial pressure onΩ1 ∪Ω2, Pini 95 [bar]
Initial composition onΩ1, zc,ini, c = 1, . . . ,C −1, [0.4, 0, 0.20, 0.20] [-]
Initial composition onΩ2, zc,ini, c = 1, . . . ,C −1, [0.15, 0, 0.075, 0.075] [-]
Initial fluid composition on Ω1 ∪Ω2 in molar
fractions, xcw,ini, c = 1, . . . ,C −1,

[0.5, 0, 0.25, 0.25] [-]

Production pressure, Pprod 95 [bar]
Simulation time, T 1000 [days]

Table A.4 Boundary conditions and other simulation parameters.

SIMPLE CHEMICAL MODEL

In that case, only one chemical reaction is included, and the chemical model is the same
as in Section A.2.1.

However, one further simplification may be necessary: one may encounter conver-
gence problems when running the system as described previously. If that is the case, it
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Property Value Units

Porosity onΩ1, φ 0.8 [-]
Permeability onΩ1, kx,y,z [1896, 1896, 1896] [mD]

Porosity onΩ2, φ 0.3 [-]
Permeability onΩ2, kx,y,z [100, 100, 100] [mD]

Total porosity onΩ1 ∪Ω2, φT 1 [-]
Control volume dimension, ∆x, y, z [10, 10, 10] [m]

Number of control volumes, Nx ×Ny ×Nz 60×1×24 [-]
Diffusion coefficients, dc j = d 10−9 [m2/s]
Gravitational acceleration, g 9.8 [m/s2]

Table A.5 Values for all the relevant fluid and rock properties.

may be helpful to consider a single "meta-ion" Ca2++CO 2–
3 in the liquid phase.

EXTENDED CHEMICAL MODEL

We consider a somewhat more realistic (albeit still quite small) chemical system, includ-
ing dissociation of water and of carbonic dioxide, as this makes it possible to take into
account the influence of pH.

The system is composed of 4 reactions:

H2O H+ + OH–

CO2 + H2O HCO –
3 + H+

HCO –
3 H+ + CO –2

3

CaCO3 + H+ Ca+2 + HCO –
3

(A.4)

Note that this increases the total number of species by three, particularly to zc = [
H2O, CO2, Ca+2, CO –2

3 , H+, OH–, HCO –
3 , CaCO3 ]. However, this allows to represent the

CaCO3 reaction (last equation in (A.4)) with an explicit dependency on the pH of the
solution.

The first three reactions are at equilibrium, the logarithms of the equilibrium con-
stants are given in Table A.6, while the fourth reaction is kinetic, and the rate for the last
reaction is given by equation (A.2), with Q now defined by:

Q = aC a,w aHCO3,w

aH ,w
. (A.5)

K1 K2 K3 Ksp

−13.95 −6.293 −10.279 −1.899

Table A.6 Log10 of the equilibrium constants for extended chemical system (A.4).

For this last case, the mass actions laws are expressed in activities:
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K1 aH2O,w = aH+,w aOH–,w ,

K2 aCO2,w aH2O,w = aHCO –
3 ,w aH+,w ,

K3 aHCO –
3 ,w = aH+,w aCO –2

3 ,w .

(A.6)

Initial conditions computed using Arxim Moutte et al., 2010 are given in table A.7. All
other physical are the same as in test A.2.2.

Property Value Units

xCO2,w 3.9624×10−10 [-]
xCa2+,w 2.1703×10−6 [-]
xH+,w 2.3507×10−12 [-]

xOH–,w 1.5475×10−6 [-]
xHCO –

3 ,w 1.5467×10−6 [-]
xCO –2

3 ,w 6.2315×10−7 [-]

Table A.7 Initial molar fractions for the extended chemical model

.

A.3. EXPECTED OUTPUT
Participants are expected to provide the following output, in the form of a CSV file for 1D
output and a figure for 2D output. To make it easier to organize the results from different
participants we ask that the submitted files follow a specific naming scheme, as detailed
below. Each filename name has four parts: GROUP_CASE_LOC_VAR, where

GROUP is a (4 to 6 character) unique identifier, selected by each group;

CASE is a 2 character identifier for the specific benchmark case, as follows

11 for 1D, kinetic chemistry;

12 for 1D, equilibrium chemistry;

21 for 2D, simple chemistry;

22 for 1D, extended chemistry.

LOC is the location of the variables in the file (such as t1000 or x25);

VAR gives additional information, such as grav or nograv depending on whether or not
gravity has been included.

A.3.1. 1D HOMOGENEOUS DOMAIN
• Text output of all variables as a function of space at time 1000 days in a CSV file

named (with case = "11" or "12") GROUP_CASE_t1000.csv , containing (x, Sg , Pg ,
φ, xH2O,w , xCO2,w , xCa2+,w +xHCO –

3 ,w );
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• Text output of all variables as a function of time at x = 25 in a CSV file named
GROUP_CASE_x25.csv, containing (t , Sg , Pg ,φ, xH2O,w , xCO2,w , xCa2+,w +xHCO –

3 ,w );

• It is suggested to include a numerical convergence study.

A.3.2. 2D HETEROGENEOUS DOMAIN

SIMPLE CHEMICAL MODEL

• Plot CO2 fraction, ion mole fractions, gas saturation and porosity as a space maps
at time 1000 days;

• Write the same variables as in 1D on a cross-section along the vertical line at x =
40m in a CSV file named GROUP_21_x40_VAR.csv, containing (y , Sg , Pg ,φ, xH2O,w ,
xCO2,w , xCa2+,w +xHCO –

3 ,w );

• Write the same variables as in 1D on a cross-section along the horizontal line at
y = 50m in a CSV file named GROUP_21_y50_VAR.csv, containing (x, Sg , Pg , φ,
xH2O,w , xCO2,w , xCa2+,w +xHCO –

3 ,w ).

EXTENDED CHEMICAL MODEL

Same output as for the simple chemical model, with the addition of all chemical species:

• Plot CO2 fraction, ion mole fractions, gas saturation and porosity as a space maps
at time 1000 days;

• Text output of the same variables as 1D cross-section along vertical line at x = 40m
in a CSV file named GROUP_22_x40.csv, containing (y , Sg , Pg , xH2O,w , xCO2,w ,
xCa2+,w , xH+,w , xHCO –

3 ,w , xCO 2–
3 ,w , φ);

• Write the same variables as in 1D on a cross-section along the horizontal line at
(y = 50m in a CSV file named GROUP_22_y50.csv, containing (y , Sg , Pg , xH2O,w ,
xCO2,w , xCa2+,w , xH+,w , xHCO –

3 ,w , xCO 2–
3 ,w , φ).
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INITIAL AND INJECTION CONDITIONS
1D injection

Properties based on injection state: state = [P, z_h2o, z_co2, z_ca, z_co3]
Injection state = [1.65e+02 1.00e-12 1.00e+00 1.00e-12 1.00e-12]
---------------------------------------------------------------------------

H2O CO2 Ca+2 CO3-2 CaCO3
Composition, z_c 1.00e-12 1.00e+00 1.00e-12 1.00e-12 1.00e-12
Liquid MoleFrac 1.00e-11 1.00e-02 4.94e-01 4.94e-01 0.00e+00
Vapor MoleFrac 1.00e-12 1.00e+00 4.94e-13 4.94e-13 0.00e+00



A.3. EXPECTED OUTPUT

A
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Solid MoleFrac 0.00e+00 0.00e+00 0.00e+00 0.00e+00 1.00e+00
---------------------------------------------------------------------------

---------------------------------------------------------------------------
Liquid Vapor Solid

Phase MoleFrac 1.02e-12 1.00e+00 1.00e-12
Mass Density 1.00e+03 1.01e+02 2.00e+03
Viscosity 1.00e+00 1.00e-01 0.00e+00
Sat. phi_tot 1.17e-13 1.00e+00 1.00e-12
Sat. phi_fluid 1.17e-13 1.00e+00 0.00e+00
---------------------------------------------------------------------------

1D initial

Properties based on initial state: state = [P, z_h2o, z_co2, z_ca, z_co3]
Initial state = [9.5e+01 1.5e-01 1.0e-12 7.5e-02 7.5e-02]
---------------------------------------------------------------------------

H2O CO2 Ca+2 CO3-2 CaCO3
Composition, z_c 1.50e-01 1.00e-12 7.50e-02 7.50e-02 7.00e-01
Liquid MoleFrac 5.00e-01 3.33e-12 2.50e-01 2.50e-01 0.00e+00
Vapor MoleFrac 5.00e-01 3.33e-12 2.50e-01 2.50e-01 0.00e+00
Solid MoleFrac 0.00e+00 0.00e+00 0.00e+00 0.00e+00 1.00e+00
---------------------------------------------------------------------------

---------------------------------------------------------------------------
Liquid Vapor Solid

Phase MoleFrac 3.00e-01 0.00e+00 7.00e-01
Mass Density 1.00e+03 1.00e+02 2.00e+03
Viscosity 1.00e+00 1.00e-01 0.00e+00
Sat. phi_tot 3.00e-01 0.00e+00 7.00e-01
Sat. phi_fluid 1.00e+00 0.00e+00 0.00e+00
---------------------------------------------------------------------------
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