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DUECA - DATA-DRIVEN ACTIVATION IN
DISTRIBUTED REAL-TIME

COMPUTATION
M.M. (Rene) van Paassen* and Olaf Stroosma^

Delft University of Technology, PO box 5058, 2600 GB Delft, The Netherlands
J. Delatour*

LAAS-CNRS 7, avenue du Colonel Roche 31077, Toulouse Cedex 4
Experiments and flight simulation programs for a research flight simulator can be

considered as a combination of real-time distributed calculation processes. Current
tools and architectures for implementing these processes are complicated to use and
require considerable real-time programming skills. The created programs are not
sufficiently flexible. A new middleware layer, DUECA, was developed to facilitate
implementation of programs on a research flight simulator. It combines a publish
and subscribe mechanism and message passing facilities with some novel elements,
namely explicit allocation of process activation and the conditions under which that
allocation should take place, synchronisation of data from different sources, and a
mechanism to transparently combine processes running at different update rates.

Introduction

THE Delft University of Technology makes use of
flight simulation for research, and the research

of flight simulation techniques. The foundation of
the international institute for research into Simula-
tion, MOtion, and NAvigation, and the construction
of the SIMONA Research flight Simulator (SRS) are
prime examples of this activity.

Version 2 of the SRS will become operational in
May of 2001. This version will contain an elabo-
rate display system and an advanced control load-
ing system. The SIMONA simulator consists of a
light-weight carbon and aramid-fiber aircraft cabin
mounted upon a high-performance six degree of free-
dom motion platform (Figure 1).

The low mass and the stiff construction of the
cabin, together with the high motion bandwidth of
15 Hz enable high quality simulations in which the
pilot will not be aware of any delays between his in-
put signals and the response of the cabin. Such a
high frequency response requires a high update rate
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Fig. 1 SIMONA Research Simulator
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and near zero delay of the signals controlling the
platform. This update rate can be produced by a
real-time computer system especially developed for
SIMONA.

Additional information on SIMONA
can be found at the following location:
http://www.simona.tudelft.nl.

The computational infrastructure for the SRS
consists of several computers, linked by a high speed
communication network (SCRAMNet l). This net-
work provides a fiber-optic link between the com-
puters, a global memory space accessible to all com-
puters and interrupt facilities.

A simulation or experiment can be seen as a real-
time distributed calculation process, and the follow-
ing functions can be identified in this process:

• Synchronization of calculation processes with
wall clock time

• Communication of data between processes; this
communication may cross nodes in the real-time
network.

• Matching of calculation processes with commu-
nication; i.e. the prevention of race conditions.

• Communication with the simulator hardware.

An experiment with the SRS hardware will require
running synchronized real-time programs in several
of the computers, and, without advanced program-
ming aids, development of such an experiment is a
task that will require considerable expertise on the
field of real-time programming and computer com-
munication.

Design and implementation of real-time programs
on distributed hardware is normally the work of ex-
perts. Especially the design of a communication and
activation schedule, and testing the performance of a
real-time process is a complicated job. However, the
users of the SRS will be scientists and students inter-
ested in solving a problem in simulation or human-
machine interaction, and are usually not experts in
real-time distributed programming. A software en-
vironment was therefore needed that supports these
users in the development of real-time experiments
and simulation. The planned environment consists
of two parts:

• A middleware layer, DUECA (Delft University
Environment for Communication and Activa-
tion). This layer facilitates the development of
real-time distributed processes, by hiding the
distributed nature of the network, and by pro-
viding synchronization of calculating processes.

1Reg. Trademark of Systran Corp.

• An application framework, DUSIME (Delft
University SIMulation Environment). DUSIME
provides basic capabilities needed for a real-
time simulation, such as run control facilities
(start/stop, etc.), initial condition calculation
support, snapshot taking and logging facilities.

Since experiment development and modification
will be a more or less continuing process in SI-
MONA - as with any research simulation facility
- the simulation programs and experiments will be
subject to frequent change, modification and exten-
sion. DUECA and DUSIME are designed to support
rapid prototyping and extension and/or modifica-
tion of simulation programs.

Existing approaches
Some existing approaches for the implementation

of real-time simulations on distributed computing
hardware were reviewed:

• The "traditional" use of a common data area
(sometimes called data dictionary) that is glob-
ally accessible, and a schedule or calling se-
quence for the calculations, e.g.1 A drawback of
this approach is that schedules for distributed,
multi-node calculations are difficult to imple-
ment, and very inflexible. A careful design of
the schedule, based on data use and production
of all calculation processes, must be combined
with hand-programmed semaphores (or other
synchronization mechanisms) to guard against
race conditions. Errors in the design of the
schedule are easy to make, leading to time-
related imperfections in the implementation of
the model. The advantages of this approach is
that it has little run-time overhead.

• The use of message passing mechanisms. In
this approach the scheduling of processes in
the system is triggered by the arrival of data.
This eliminates the necessity of a (hand crafted)
schedule, and it solves the problem of race con-
ditions. In a traditional message passing appli-
cation (e.g. with the tools supplied by QNX3),
the destination of messages has to be known
to the sender. Disadvantages of this approach
are that the run-time overhead is larger, and
the implementation is still not very flexible, e.g.
additional processes require modification of the
code that sends out data. A more important
disadvantage is the programming overhead of
the model. Calculation processes for simulation
experiments usually require data from multi-
ple sources. In this solution the application
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programmer has to provide the code that syn-
chronizes data with the data coming in from
other sources. The advantage is that the sched-
ule is generated by the data communication.

• Message passing in combination with a publish-
subscribe mechanism.6 Examples are the use
of real-time Corba,5 or HLA for distributed
simulation.2 This makes the message-passing
solution more flexible. A disadvantage is that
the programming overhead is increased.

None of these approaches satisfied our needs to the
desired extent. Therefore it was decided to develop
a new middleware layer, DUECA, short for Delft
University Environment for Communication and Ac-
tivation.

DUECA
DUECA is specifically designed for the implemen-

tation of simulations and simulator experiments. It
uses a publish-subscribe mechanism to set up the
communication, by which it supports a modular and
flexible program design. In addition, the following
functions have been added, with the aim of facili-
tating the implementation of a distributed real-time
computational processes:

• Activation is allocated explicitly in DUECA. In
a normal message passing system, activation oc-
curs for each incoming message individually. In
DUECA activation can be coupled to a com-
bination of messages, so one can specify that a
module in the simulation is only activated when
all inputs needed by that module are available.

• DUECA can wait for a synchronous set of data,
and only then activate a process. Even when in-
coming messages run "out of synchronization",
e.g. data from different times is simultane-
ously available, DUECA can provide a time-
consistent set of messages to a user's module.

• Mechanisms are provided to transparently work
with data that has different update rates.

This provides a flexible environment for the im-
plementation of simulations and experiments. The
simulation can be programmed as a set of modules
connected via data channels, in a data-flow archi-
tecture. A module in DUECA will be written as a
(C++) class, and the steps typically needed at the
creation of a module are:

• Publication and subscription is done to obtain a
connection to the output and input data chan-
nels.

tick at Time 100

ticker driven activation, TimeSpec(100,105)

stick data, TimeSpcc(100,105)

data driven activation, TimeSpec(100,105)

control surface data, TimeSpec(100,105)

data driven activation, TimeSpec(100,105)

model output for TimeSpec(105,110)

ticker driven activation of instrument display
(IO!) at time 105 checks whether model data
for 105 is available and uses this data.

Fig. 2 Illustration of the data-driven activation
in DUECA. Three processes are time driven (by
the Ticker), input, output and atmosphere cal-
culations. Other processes are activated by the
(possibly joint) availability of data.

• An activity object is created.

• This object is linked to a method of the class
that implements the activity, i.e. the model cal-
culation.

• The update rate of the activity may be speci-
fied.

• The triggering condition for the activity is spec-
ified as the simultaneous availability of data on
the input channels.

The method that implements the activity is then
invoked each time a model update has to be cal-
culated. Upon invocation, this method can access
a time-consistent set of data from the input chan-
nels, perform the model calculation and send the
result over the output channels. By thus hiding the
synchronization issues associated with a real-time
program, application programmers can use data flow
diagram concepts, familiar from control systems en-
gineering and modeling environments such as Mat-
lab/Simulink.

The use of a scripting language (Scheme,4) and a
simple interface between the scripting language and
the modules provides added flexibility and re-use;
a simulation or experiment can be composed from
existing modules and tailored in a creation script
written in Scheme.

Basic concepts
The programming model introduced by DUECA

uses the concept of "module" for the components
supplied by application developer. A module is a
software entity that can use the services supplied
by DUECA to communicate with other modules.
A number of service levels can be distinguished in
DUECA:
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DUECA base The base service level in DUECA
is accessible to modules written in (currently)
C++. This level provides;

1. Naming, identity and registry. Each mod-
ule using DUECA services must have a
unique name. By deriving from the parent
NamedObject (usually not directly, but in-
directly), this service is provided. In ad-
dition to the name, DUECA assigns an
Id, composed of a locationld, pointing to
the DUECA executable the module lives
in and an objectld, which is unique within
the DUECA node.
A pointer to the module (of type Name-
dObject*) can be obtained by querying
DUECA with a name or with a module
Id.

2. Communication. DUECA modules can
communicate by means of "Channels". A
channel is a (possibly) distributed com-
munication device for communicating one
specific type of data. Channel versions ex-
ist for communicating events and for com-
municating stream data; i.e. data that is
refreshed regularly.

3. Activation. A computational process in
DUECA does not require the specification
of a global schedule (in the form of: first
module A, then module B, then modules
C and D, etc.) instead each module de-
scribes the conditions under which it has
to be scheduled. This can be simple, for
example many modules implement a cal-
culation like:

or:
= F(x(t),u(t)) (1)
= G(x(t),u(t-l)) (2)

For module F, the activation condition is
that the data x and the data u are both
available at a certain time t. It can then
produce data x for time t + 1. For module
G, data x has to be available at time t and
data u at time t — 1, it can then produce
data y for time t. For real-time simulation,
the activation can also be requested from a
"Ticker", which provides activation at reg-
ular intervals. See the example in Figure 2.

DUECA configuration DUECA has the capabil-
ity to implement a computational process in a
distributed manner, on a number of computers.
The channels in that case will have multiple

channel ends, one end in each executable in
which that channel's data is read or written.
To use DUECA on a distributed platform, one
must start a DUECA executable on all the plat-
forms. Each executable must have a unique
Locationld, and one must specify how the data
is to be transported to the other DUECA parts.
The programming language "Scheme" is used to
implement the DUECA configuration. Special
scheme commands were added to the interpreter
used by DUECA. These commands can be used
to set up the transportation media used and to
specify which partners get their data by what
media. A file "dueca.cnf", in the directory in
which the DUECA executable is started, is read
and used to obtain configuration data.

DUECA creation DUECA provides an elaborate
and flexible system for creating so-called "enti-
ties" from modules. An entity is for example an
aircraft in a simulation. A DUECA system can
contain and update several entities in parallel.
The programming language Scheme is also used
to implement the creational process. A scheme
script can for example describe the composi-
tion of an entity out of several modules. If the
modules require or can accept parameters, it
is possible to specify these parameters in the
script. An example of simple entity is:

(define ent
(make-entity

"PH-COZ"
(list-of-modules 0
(make-module 'cl72-dynamic-model

'initial-position "57.34.18N05.23.06E"
'initial-heading 330)

(make-module 'c!72-ai-pilot))))

This would make a Cessna 1722. The complete
model is programmed in a single module, and
it is combined with a module for an artificial
intelligence pilot. The plane's initial position
is given in a string with earth coordinates, and
the initial heading is 330. If the artificial intelli-
gence pilot has any sense she will start taxiing,
flying etc., when the simulation is started.

DUECA control This service level can be one of
many versions. It provides a human user (op-

2 Since Scheme is a full-fledged programming language, one
could also make procedures that take a name and initial po-
sition, and create a Cessna. Add a loop and you can create a
whole platform full of Cessna's
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erator) the control over the entities in the com-
putational process. The first implementation
of this level will probably be an implementa-
tion for control of simulations, called DUSIME
(Delft University SIMulation Environment). It
provides the means to start, stop, take snap-
shots, replay, etc. Implementation of DUSIME
is currently underway.

Activity
In order to play its role in a simulation, a module

has two basic needs:

communication In order to perform the model cal-
culations or output to the simulator hardware,
a module has to gain access to data produced
by other modules, and output data has to be
delivered.

activation Especially in a real-time program, the
timely execution of the model calculations is
important. In general, a module needs to be
"called" at a fixed update rate.

In a conventional real-time simulation program,
the communication is ensured because parts of the
program have access to a common data storage
in computer memory, and activation takes place
when "entry points", in the form of subroutine calls.
In publish-subscribe systems, the communication is
provided by a middleware layer. Usually a module
requesting data can provide a function (or object
method) that gets called when new data is available.
The activation is thus triggered by the availability
of data.

Allocation of Activity
In the decomposition of a simulation or experi-

ment program, one can identify a number of activ-
ities, in which each of these activities consists of a
logically coherent set of programming instructions.
Some examples of activities are; - the calculation of
aerodynamic force and moment contributions of an
aircraft model, reading of the primary control in-
puts, generation of an EFIS display image.

In a conventional simulation program, a number
of activities is strung together into a task. In this
manner, the start of an activity is triggered by the
completion of a previous activity. The problem is
that for most activities, completion of a previous ac-
tivity is not an adequate trigger. For most activities,
and for all activities involved in updating the model
state, the only adequate trigger is the availability of
all the necessary input data. In a single-processor,
single-thread simulation, one can determine a call

/Trigger of

Activity-
Manager 2

Ticker trigger :
point ;

i
writing of stick_data
triggers ac_activity

writing of new
aircraft output

Fig. 3 Sequence of activities for a simple simula-
tion, with time-driven input and output of data,
and a data-driven model update.

order in which the completion of the previous activ-
ity coincides with the availability of the necessary
data. For a distributed computation environment,
this task quickly becomes complex, while synchro-
nization mechanisms and data buffers need to be
introduced.

A module in DUECA may explicitly define one
or more activities. An activity can be triggered by
various events. One possibility is triggering of an
activity on the passing of wall clock time. This
is appropriate for activities that implement input
or output to the simulator's devices. An activity
can also be triggered by the availability of data.
If a module uses two or more data sources, it can
specify that its activity should be triggered by the si-
multaneous availability of data from several sources.
So the following steps are followed for connecting a
module in DUECA:

• Subscribe to all data channels needed for the
module.

• Create an Activity, and link it to a method or
function that implements the Activities calcu-
lations.

• Specify that the Activity should be triggered
when the necessary data is available.

The time associated with the data that is being
published is stored in the channels. This time stamp
is used in the synchronization of data from different
sources. As an activity is (re-) started, it is invoked
with a time specification as one of its parameters.
Using this time specification, the activity can ob-
tain a time-consistent set of data from the channels
it reads its data from, and the data produced by the
activity can be time-stamped with the same time
specification. A simple example of a schedule cre-
ated by specification of activities triggered by time
and activities triggered by data availability is given
in Figure 3.
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the modules which use the aircraft's state in some
way: The Visual Display System presents a view
of the outside world to the pilot, the Motion System
module drives the 6 degree of freedom hydraulic Mo-
tion System of the SRS, and the Avionics modules
control the cockpit displays. The Sound module col-
lects data from other modules to generate a realistic
sound pattern in the cockpit.

The entire simulation is controlled by the Simula-
tion Control module, which is part of DUSIME, the
subject of the next chapter.

Extension of the concept: DUSIME
DUECA provides all the tools for implementation

of a distributed calculation process. For the imple-
mentation of a simulation on DUECA, a number
of basic capabilities of simulations must be imple-
mented in all modules, typically a simulation can
be stopped, started, reset to an initial condition,
data can be recorded, and "snapshots", (complete
descriptions of the simulation state) can be taken
and used to jump back to a previous point in the
simulation.

For the implementation of these properties, com-
mon to most simulations, a layer of functionality
can be added to DUECA. Different layer can be
added when the basic functionality of DUECA is
used in other domains, for example data acquisition
and identification. The DUSIME (Delft University
SIMulation Environment) addition provides the fol-
lowing:

• A class SimulationModule, that provides the co-
ordination between different modules in a sim-
ulation, for the purpose of control of the sim-
ulation. A DUSIME module would not inherit
from Module (the DUECA module class), but
from SimulationModule. A SimulationModule
knows only two or three basic states:

HoldCurrent The current state of the model
is maintained

Advance A time step is made for the model
Calculatelnco An initial calculation is being

calculated

• A class HardwareModule, that functions as a
base class for modules that interface with a sim-
ulator's hardware. A HardwareModule has a
simple set of states:

Down The hardware is driven to or kept in the
off/safe state

Neutral The hardware is driven to or kept in
a neutral state

Fig. 4 Basic simulation architecture for an air-
craft model in the SIMONA Research Simulator

Example implementation
This section discusses an example implementation

of a - fairly basic - aircraft simulation in DUECA. It
covers the basic architecture as it is being developed
for the SIMONA Research Simulator (SRS). In Fig-
ure 4 the different modules and their relationships
are shown.

On the top of the figure several modules can be
seen which generate input of some sort to the sys-
tem: the Atmosphere module generates atmospheric
properties for use in the Aerodynamics and Engine
modules. The Pilot Input controls, possibly through
an Auto Pilot, the Flight Controls and the Engine,
as well as the Aircraft Configuration, e.g. landing
gear and flaps. Since these modules are easily ex-
changeable, a conventional flight control system with
simulated pullies and cables, can, for example, be re-
placed with an advanced fly-by-wire control system
without modifications to the rest of the modules.

The middle section of the figure shows the mod-
ules responsible for calculating the aircraft's re-
sponses: the Ground Interaction module calculates
the forces and moments from the landing gear, but
also from other ground contact such as a tail or belly
scrape. The Aerodynamics module is responsible for
calculating the aerodynamic forces on the aircraft,
while the Engine module simulates the engines. All
the calculated forces are summed and integrated in
the Dynamics module, which outputs the state of
the simulated aircraft.

The bottom portion of the figure shows some of
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Active The hardware uses the model input to
determine its output

State transitions between HardwareModules and
SimulationModules are co-ordinated, basically the
Active mode is only possible when the Simulation-
Modules are in HoldCurrent or Advance.

The simple, orthogonal design of the state dia-
grams for DUSIME modules simplifies implementa-
tion for the application programmer. More complex
actions, such as a reset to the initial state of the sim-
ulation, will be performed by a HoldCurrent state
in combination with a reload from a snapshot, while
the hardware is in Neutral or Safe.

A second part of DUSIME is formed by a number
of standard modules that provide the coordination
of the state transitions, and a user interface for the
experiment or simulation controller.

Conclusions
At the SIMONA institute there is a need for a

middleware layer that Would facilitate the develop-
ment of simulations and experiments for a research
simulator. Current architectures for the implemen-
tation of real-time calculation and communication
processes can only be used by experts in real-time
programming, and would require too much expertise
from SIMONA users. A new design, DUECA, was
developed. DUECA combines a publish and sub-
scribe mechanism and message passing with with
some novel elements, namely (1) explicit allocation
of process activation and (2) the conditions under
which that allocation should take place, (3) synchro-
nization of data from different sources, and (4) a
mechanism to transparently combine processes run-
ning at different update rates.

The implementation of an aircraft simulation in
this framework shows that the programming model
differs from that used in traditional approaches.
Activation of modules, and the flow of control in
the program, is determined by the flow of data.
The composition of a simulation or experiment from
modules, and the extension of a program is however
greatly simplified by this mechanism. Not only is
the data access facilitated by the publish-subscribe
mechanism, timing of activation is also provided by
DUECA.

An extension to DUECA, DUSIME, further fa-
cilitates the implementation of simulation-specific
functionalities.
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