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Abstract: Droughts exert severe impacts on the environment, economy, and society. The south
Asian region is vulnerable to droughts and the Indian sub-continent is one of the most vulnerable
in the region to frequent drought disasters. This study assesses the agricultural droughts in the
Narmada River Basin (NRB), India, where more than 50% of the area is utilized for agriculture,
through freely available local and global remote-sensing-based data focusing on long-term rainfall
trends (1989–2018) and recently weakened monsoons in 2017 and 2018. In this study, some of the
widely used indices to characterize droughts (viz., Standardized Precipitation Index (SPI), simplified
Rainfall Index (RIs), Normalized Difference Vegetation Index (NDVI)), soil moisture content, and
reservoir surface areas were used to assess the drought conditions in the Narmada River Basin over
the study period. Our analysis shows that the NRB has experienced a decreasing trend in monsoon
rainfall over the past three decades. The SPI captured most of the basin’s historical droughts. The
weakened monsoons during 2017–2018 show that different parts of the NRB have experienced severe
or moderate drought conditions. A clear difference does not show in the NDVI and in the soil
moisture contents of the basin over three hydrological years (2015/16, 2016/17, and 2017/18), except
for July to September 2017/18. The estimated water area depletion using the Normalized Difference
Water Index (NDWI) follows the actual water levels in three selected reservoirs in the basin, of which,
two show a decline in the maximum surface area, likely due to the weakened monsoons in 2017
and 2018. This research indicates that the freely available data can be beneficial for local authorities
to monitor and understand the drought conditions to support water resources management and
planning for agricultural activities.

Keywords: droughts; global products; Narmada River Basin; weaken monsoon

1. Introduction

Drought is one of the natural hazards frequently occurring in many parts of the
world [1–3], bringing a considerable shortage of water resources due to the absence of
rainfall over an extended period. High temperatures, low humidity, high winds, duration,
timing, the intensity of precipitation, and the distribution of rainy days play a vital role in
the occurrences of droughts [4]. Droughts lead to water supply reduction, the reduction in
agricultural productivity, water quality deterioration, loss of ecosystems, lack of sediment,
nutrient and organic matter transport, problems in livestock farming, tourism, and other
economic and social activities [4,5]. Therefore, much research is being carried out to monitor
and understand droughts’ occurrences, characteristics, severity, and impacts to assist water
resources planning and management.

In general, droughts can be categorized into four types: meteorological drought, agri-
cultural drought, hydrological drought, and socio-economic drought [2,4]. Meteorological
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drought occurs due to a region’s dominant dry weather patterns (i.e., lack of rainfall).
Agricultural drought relates to a soil moisture deficit resulting in a crop yield loss. A hydro-
logical drought occurs when the storage in surface and groundwater decreases. In contrast,
a socioeconomic drought relates to an imbalance in the supply and demand of water among
the different users (i.e., domestic, industrial, and environmental). A meteorological drought
may develop very quickly and lasts over a short period. However, other droughts take
more time to develop and last longer than meteorological droughts. These droughts are
correlated with time lags [6]. However, a meteorological drought does not necessarily
transform into an agricultural, hydrological, or socio-economic drought [7]. Drought in
agriculture links to rainfall shortages, depletion of soil water, and differences in the actual
and potential evapotranspiration. Crop water demands depend on weather conditions, the
characteristics of the plants, and the growing stage. The accessibility of water for plants
depends on the soil properties. Agricultural drought impact can be avoided or reduced by
irrigation, but the water used for irrigation cannot be used for other demands. Agriculture
is usually the first economic sector hit by drought due to the soil moisture depletion during
the crop growth stage and its high vulnerability to small weather changes [2].

To understand this complex phenomenon, different indices are used to assess and
monitor the drought conditions at different spatial (e.g., local, regional) and temporal
(short-term and long-term) scales. Those indices are based on meteorological (e.g., rainfall,
temperature, and evapotranspiration) and hydrological (e.g., discharge, (ground)water
levels, soil moisture) data and the information related to crops’ health conditions. The
recent advancements in remote sensing (RS) and geographical information system (GIS)
technologies play a vital role in agricultural drought detection, monitoring, assessment,
and management because they provide historical to near-real-time information at different
spatial (<0.05◦ grid resolution) and temporal (3 hourly to few months) scales beyond the
traditional field data collection methods [8]. Some of the RS-based products are rainfall,
temperature, evapotranspiration, vegetation health, soil moisture, and surface water area.
Several indices have been developed to assess drought based on the available in-situ data
and remote-sensing-based data at different geographical locations. Some of the most
commonly used indices to characterize droughts are the Standardized Precipitation Index
(SPI, [9]), the Rainfall Anomaly Index (RAI, [10]), the Normalized Difference Vegetation
Index (NDVI, [11]), the Temperature Condition Index (TCI, [12]), the Vegetation Condition
Index (VCI, [12]), and the Standardized Soil Moisture Index (SSMI, [13]).

India is one of the most vulnerable and drought-prone countries in the world, facing
drought conditions (moderate or severe) and water stress in over 16% of the land area
over the past few decades [3,4,14,15]. Since the 1950s, the occurrences and spatial extent
of droughts in India increased [16]. Since the mid-1990s, approximately 60% of the total
population in India has been affected by prolonged and widespread droughts [17]. It is a
norm that drought always increases the threat to the economic sectors that are sensitive
to climate, particularly agriculture [4]. In India, where approximately two-thirds of the
population depends on agriculture and related activities, the overall economy is at risk
due to frequent drought events [18]. Indian agriculture mainly relies on the southwest
monsoon rainfall (from June to September), contributing 70–90% of the annual rainfall [19].
According to the Department of Agriculture and Farmers Welfare [20], 51% of India’s
cultivated lands are rain-fed, yet contribute to ~40% of the total food production. The high
variability in the monsoon rainfall over India is a risk to the country’s agrarian economy.
The situation worsens when prolonged droughts affect the groundwater and surface water
availability for irrigation [18].

According to the Indian Meteorological Department (IMD), drought is defined as
a deficit of 25% or more of the average rainfall (i.e., long-term mean seasonal or annual
rainfall) over a particular region [17,21]. Over the last seven decades (1951–2015), the
southwest monsoon over India has decreased by ~6% [16]. Due to this weaker monsoon,
many parts of India are vulnerable to recurrent droughts [19,22]. Many studies have
been carried out investigating the drought characteristics in India via various drought
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indices and hydrological models (e.g., Amrit et al., 2018; Bhardwaj et al., 2020; Mishra
et al., 2007; Mujumdar and Bhaskar, 2021; Shah and Mishra, 2020a, 2020b; Swain et al.,
2021; Vishwakarma and Goswami, 2022) [3,16,17,22–26]. However, most studies have only
assessed the meteorological droughts [22]. Prolonged meteorological droughts propagate to
agricultural droughts, potentially followed by hydrological and socio-economic droughts.
Therefore, assessing the weakened monsoon rainfall and resulting agricultural drought is
essential for better planning and managing water resources and agricultural activities.

In this study, we aimed to assess the applicability of the freely available data for
agricultural drought monitoring in the Narmada River Basin, India. The Narmada River
Basin is one of India’s largest basins; more than 50% of the land areas are utilized for crop
cultivation. The north-western, western, or central parts of India have experienced recent
major droughts (2000, 2002, 2008, 2009, and 2015) [16] and the Narmada basin is located
within or nearby. Therefore, it is important to study the prolonged weakened monsoon
and the continued drought conditions for this basin, which is important for large crop
producers and the agro-economy.

We used freely available gridded rainfall data from IMD to assess the long-term
rainfall variability and to calculate two drought indices (viz., Standardized Precipitation
Index (SPI, Ref. [9]) and simplified Rainfall Index (RIs, Ref. [26]). We carried out a detailed
assessment of the recent weakened monsoon rainfall events in 2017 and 2018. We calculated
the vegetation index (NDVI) and assessed the surface and subsurface soil moisture over
the basin from October 2015 to September 2018. Furthermore, we quantified the variability
of the reservoir water areas to detect the drought conditions.

2. Materials and Methods
2.1. Study Area

The Narmada River Basin is the seventh-largest river basin in India, spanning between
72◦32′ to 81◦45′ E longitude and 21◦20′ to 23◦45′ N latitude (Figure 1) with a drainage
area of 97,560 km2. It contains the fifth-longest river in the country (i.e., the Narmada
River), which is 1312 km long and fed by 41 tributaries, annually draining ~46 km3 to the
Arabian Sea. It can be categorized as a rift valley river with two hill ranges on either side.
The elevation in the basin varies from ~1200 m above mean sea level (MSL) in the most
upstream mountainous region to the low-lying coastal area (<100 m MSL) downstream
(Figure 1a). The floodplain areas along the Narmada River are at <400 m MSL. According
to the topographic slope classification of the FAO (2003) [27], the Narmada basin can be
categorized as undulating land (0–8% slope). By 2005, approximately 52% of the basin’s
land area was utilized as cropland, while the rest was primarily covered by forest, fallow
lands, and water bodies (Figure 1b). Over the previous two decades (1985–2005), cropland
has increased by 3.8%, and the total forest area was reduced by 1.2%. The basin’s population
mainly depends on the agricultural production of paddy, wheat, soybean, sugarcane, jower,
and gram [28]. According to the FAO soil classification, vertisols (heavy clay-rich with a
high proportion of swelling clay) is the dominant soil type found in the basin [29].

The average annual rainfall in the basin is 1048 mm, varying from 1490 mm upstream
to 670 mm downstream (Figure 1c). Approximately 90–95% of the total annual rainfall in
the basin occurs during the south-west monsoon period (June to September). According
to a trend analysis (using a simple linear regression method) of the annual rainfall over
30 years (1989–2018), most of the upstream basin areas show a decreasing trend, while
middle and downstream areas show increasing trends (Figure 1d). Here, datasets were
fitted to linear regression lines and the slope of the line is presented as trend in mm/yr.
The mean annual temperature varies from 17.5 ◦C to 20 ◦C and 30 ◦C to 32.5 ◦C in the cold
(December–January) and hot (March–April) seasons, respectively.
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cropland, 3: built-up land, 4: mixed forest, 5: shrubland, 6: barren land, 7: fallow land, 8: waste-
land, 9: water bodies, 10: plantations, 14: grassland, and 16: deciduous needleleaf forest [30]. 
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perature data is the interpolated (modified Shepard’s angular distance weighting algo-
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Figure 1. The Narmada River Basin in India, (a) topography, (b) land use, (c) average annual
rainfall (1989–2018) of IMD grids, and (d) linear trend of the annual rainfall over the same period.
The numbers of land use units present the land use classification: 1: deciduous broadleaf forest,
2: cropland, 3: built-up land, 4: mixed forest, 5: shrubland, 6: barren land, 7: fallow land, 8: wasteland,
9: water bodies, 10: plantations, 14: grassland, and 16: deciduous needleleaf forest [30].

2.2. Data Used

This study used meteorological and reservoir data from local authorities and remote-
sensing (RS)-based data from global products to analyze the long-term droughts (1989–2018)
and the recent droughts caused by the weakened monsoons in 2017 and 2018.

2.2.1. Meteorological Data

The daily rainfall and maximum and minimum temperatures were collected from the
Indian Meteorological Department (IMD) at 0.25◦ × 0.25◦ (134 grids) and 1◦ × 1◦ resolu-
tions, respectively [31,32]. This IMD rainfall was derived from Inverse Distance Weighted
Interpolation (IDW) of 6955 rain gauge stations over India, whereas the temperature data is
the interpolated (modified Shepard’s angular distance weighting algorithm) product from
395 stations. For our analysis, we considered a hydrological year from October to September.

The annual average basin rainfall has decreased over the last 30-year period (Figure 2a)
by ~1.2 mm/year (on average), which is negligible, compared to the total annual rainfall
(1048 mm). However, it is noteworthy that trends vary locally (Figure 1d). In 2017 and 2018,



Sustainability 2022, 14, 13050 5 of 21

the annual rainfall volumes were below the long-term average of 1048 mm. Furthermore,
the number of dry days (rainfall < 1 mm) has increased over 30 years (Figure 2b). Generally,
the rainfall from November to May is almost zero, while the highest rainfall is received
during July and August (Figure 3).
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Figure 2. Annual rainfall (a) and the number of dry days (having <1 mm rainfall, (b)) over the
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basin. The black dashed lines indicate the linear trend. This analysis is based on the daily rainfall
data of 134 grids covering the basin.
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Figure 3. The box plot of the monthly rainfall over the basin for the last 30 years. The boxes are
limited to the 25th, and 75th percentiles of the sample, and the red line shows the median value.
Whiskers are extended to the 1.5 times inter-quartile range to the top and bottom of the boxes. The
red ‘+’s show the values beyond the whiskers.

2.2.2. Remote-Sensing-Based Global Products

The Normalized Difference Vegetation Index (NDVI) over the basin was obtained from
the MOD13Q V6 product [33,34] at 250 m pixel size and 16-day interval. This MODIS NDVI
(moderate resolution imaging spectroradiometer—NDVI) is referred to as the continuity
index to the existing advanced very high-resolution radiometer (AVHRR) derived NDVI
by the National Oceanic and Atmospheric Administration (NOAA). This data is available
from 2000 and is suitable for monitoring agricultural droughts, vegetation dynamics, and
estimating crop yields.

The soil moisture at the surface and sub-surface was obtained from NASA-USDA
Enhanced SMAP Global soil moisture data at a 10 km spatial resolution, available from the
1st of April 2015 at a three-day time interval. This dataset is produced by combining the
satellite-derived Soil Moisture Active Passive (SMAP) Level 3 soil moisture data with the
modified two-layer Palmer model using a 1D Ensemble Kalman Filter data assimilation
approach [35–38] and is developed by the Hydrological Science Laboratory at NASA’s
Goddard Space Flight Center, in cooperation with the USDA Foreign Agricultural Services
and the USDA Hydrology and Remote Sensing Lab. The maximum water holding capacity
of the first layer (surface) is estimated to be 25.4 mm, and the second layer (subsurface) is
275 mm, which can vary based on the soil type.

We derived the changes in the reservoir surface area using Landsat 8 Collection 1
Tier 1, representing scale, calibrated at sensor radiance. This highest quality data (i.e., Tier 1
data) are considered suitable for the time-series analysis. Landsat 8 images are available
from 11 April 2013 to present (near-real-time).

We used the Google Earth Engine (GEE) platform (https://earthengine.google.com/,
accessed on 15 August 2021) to download and process the spatial data (NDVI, soil moisture,
and Landsat images). The NDVI and soil moisture data were downloaded for three
hydrological years, spanning 1 October 2015 to 30 September 2018. The analysis was
carried out for each quartile of a hydrological year by composite images of three month
spans. Three reservoirs in the Narmada basin were used in our analysis to assess the
reservoir surface area changes during the recent drought years of 2017 and 2018. More
details on the reservoir surface area calculation are given in Section 2.3.4.

2.2.3. Reservoir Characteristics and Operational Data

The three main reservoirs located up-, middle-, and downstream (Figure 4) were
considered for our analysis because of their importance in hydropower generation, irriga-

https://earthengine.google.com/
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tion of the water supply, and drinking water supply. The data required for this analysis
(i.e., water level time series from October 2015 to September 2018) were collected from
a web portal maintained by the Water Resources Department, Madhya Pradesh, India
(http://eims1.mpwrd.gov.in/fcmreport/control/main, accessed on 1 August 2021). Even
though the time series were not continuous, the data can be used for validating the reservoir
water surface area changes computed in our study.
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Figure 4. The three selected reservoirs located in the basin and their characteristics. HP, WS, and IR
denote hydropower, water supply, and irrigation, respectively.

2.3. Drought Iindices and Assessment

In this study, a few of the most commonly used drought indices were used to assess the
drought in the Narmada River Basin using freely available local and global data. At first, the
meteorological drought assessment was carried out using the Standardized Precipitation
Index (SPI) and the simplified Rainfall Index (RIs). Since more than 50% of land area
of the Narmada basin is utilized for agriculture, the Normalized Difference Vegetation
Index (NDVI) was used to capture crop health during the drought period and to assess the
agricultural drought. Furthermore, the changes of the soil moisture is one of the indicators
for agricultural drought monitoring as it is essential for crop growth. Finally, changes in
the reservoirs were calculated to identify the consequences of the weakened monsoon and
the resultant drought conditions in the basin.

2.3.1. Indices Derived from Rainfall

The SPI [39] is the most commonly used index among several other indices to deter-
mine the short- and long-term spatial-temporal distribution of meteorological droughts
and to identify, monitor, and define the severity of droughts [7]. It fits the rainfall data
to a probability distribution (commonly Gamma or normal distribution) to convert data
to a reduced variate. The short- and long-term meteorological drought analysis can be
represented by different SPI indices, based on the number of months considered (e.g., SPI-3,
SPI-6, SPI-12, and SPI-24, in which 3, 6, 12, and 24 are the number of months). Generally,
the short-term responses to the changes in rainfall can be found in soil moisture and plant
health, while groundwater and reservoir storage respond to long-term changes in the
rainfall. This study conducted the SPI analysis for 3, 6, and 12 months by considering the
daily rainfall in the Narmada basin for 30 years. The subsequent drought categorization is
presented in Table 1.

http://eims1.mpwrd.gov.in/fcmreport/control/main
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Table 1. Dry/wet severity categorization based on the SPI [40] and RIss [26].

SPI RIs Category
SPI > 2 RIs > 2 Extremely wet

1.5 < SPI ≤ 2 1.5 < RIs ≤ 2 Severely wet
1 < SPI ≤ 1.5 1 < RIs ≤ 1.5 Moderately wet
1 < SPI ≤ −1 −1 < RIs ≤ 1 Near Normal
−1.5 < SPI ≤ −1 −1.5 < RIs ≤ −1 Moderate drought
−2 < SPI ≤ −1.5 −2 < RIs ≤ −1.5 Severe drought

SPI ≤ −2 RIs ≤ −2 Extreme drought

The IMD defined drought as more than a 25% rainfall deficit from the long-term
average. Considering this IMD criterion, a simplified rainfall index (RIs) was introduced
by Swain et al. (2021) [26], which can be expressed as:

RIs =
1

25%

(
Pi − Pm

Pm

)
= 4

(
Pi − Pm

Pm

)
(1)

where, Pi is the total rainfall for the ith season or year and Pm is the long-term mean rainfall
over a particular season or year of each grid cell. In general, the meteorological applications
require at least 30 years to represent the long-term mean value. In this study, the rainfall
dataset covers 30 years spanning 1989 to 2018. The dry/wet conditions are categorized
based on this index (Table 1).

Both indices (SPI and RIs) have their simplicity and similarly capture the drought
severities. Here, we used the SPI to assess the basin-wide precipitation anomalies over the
past 30 years and the RIs for the detailed spatial drought assessment over the last three
years in the Narmada River Basin.

2.3.2. Normalized Difference Vegetation Index (NDVI)

The NDVI is one of the most commonly used vegetation indices for monitoring and
agricultural drought assessment [41]. The changes in the canopy cover (green leaves) and
vegetation health can be interpreted with an NDVI analysis. The NDVI is the normalized
transform of near-infrared (NIR) to the red reflectance ratio, which varies between−1 and 1.
Since the NDVI is a ratio, it can minimize certain band-correlated noises and influences
related to changes in atmospheric and spatial conditions. However, ratio-based indices
can exhibit a non-linear behavior resulting in a sensitivity to variation in vegetation over
certain land cover conditions [33]. To analyze the effects of drought on vegetation at spatial
and temporal scales, the MODIS NDVI (discussed in Section 2.2.2) was used in this study.

2.3.3. Soil Moisture Content

In recent studies, remote sensing-based soil moisture (SM) data has been used in
agricultural drought monitoring [35,42,43]. It provides information to monitor the intensity
of droughts, the beginning of rainy seasons and planting, and awareness and early warning
of crop productivity or losses [44]. This analysis was carried out on a seasonal basis
(3 months) for three hydrological years (2015/2016, 2016/2017, and 2017/2018). As the soil
moisture data is available at a 3-day interval, we considered a cumulative soil moisture for
three months and presented the total soil moisture every three months.

2.3.4. Reservoir Water Surface Area

Agricultural, hydrological, and socio-economic droughts may follow from prolonged
meteorological droughts. The availability of water resources depletes with prolonged
drought conditions, resulting in stress in fulfilling water demands for agriculture and other
sectors. Reservoirs in the Narmada River Basin play a vital role in storing water during the
rainy season and re-distributing for societal needs during dry seasons. However, with a
continued meteorological drought, reservoirs may not be able to serve the required water
amount for different purposes, as expected, which is a critical situation in most agricultural



Sustainability 2022, 14, 13050 9 of 21

economies. Owing to the importance of reservoir water storage in the Narmada River
Basin, this study analyzed the surface water area changes in three major reservoirs of the
Narmada basin (Figure 4).

The Normalized Difference Water Index (NDWI, an indicator for surface water) was
used to differentiate the water area from the Landsat 8 images. In this study, the water
bodies were detected by using two methods: (1) normalized differences between green and
NIR bands (Equation (2), [9]) and (2) normalized differences between green and short-wave
infrared (SWIR) bands (Equation (3), [45]). The total water surface areas of each reservoir
were calculated based on the images available for the analysis period (October 2015–
September 2018). The calculated surface areas were compared with the reservoir water
level data (discussed in Section 2.2.3). For this analysis, we only considered the images
with less than 20% cloud cover. Hence, most of the images during the monsoon months
(particularly July–September) were omitted from the estimations.

NDWI(Green, NIR) =
(Green− NIR)
(Green + NIR)

(2)

NDWI(Green,SWIR) =
(Green− SWIR)
(Green + SWIR)

(3)

3. Results and Discussion
3.1. SPI and RIs over the Narmada Basin

Figure 5 shows that the Narmada basin has experienced many short (three months)
and long-term (six and twelve months) droughts over the past 30 years (1989–2018). In
India, monsoonal (June–September) droughts were recorded in 2002, 2004, 2009, 2014,
and 2015 [16]. The recent major droughts have been documented in 2000, 2002, 2008,
2009, and 2015 in the north-western, western, or central parts of India [16], where the
Narmada basin is located within or nearby. All three SPI indices shown in Figure 5
indicate the years 1999/2000 and 2007/2008 as ‘moderate’ or ‘severe’ droughts in the
Narmada basin. Particularly, the year 2000 drought event was captured by the SPI-3
as an extreme drought (SPI < −2.5) from October to December of the hydrological year
1999/2000. Furthermore, the SPI indices were negative in 2001/2002 and 2008/2009, falling
into ‘near normal’ conditions. In 2015/2016, the SPI-3 for July to September and the SPI-6
for April to September showed negative values, and the SPI-12 showed a positive value,
classifying the whole year as ‘near normal’. The SPI-12 showed 2016/2017 as near-normal
and 2017/2018 as moderate drought in the basin. According to the annual rainfall variation
over the last three decades (Figure 2), 2017 and 2018 had rainfall deficits as it was below
the long-term average value by 148 mm and 198 mm, respectively. These shortages were
due to the weak monsoonal periods during the respective years. These results prove that
the SPI can reasonably represent the recent meteorological drought conditions in terms
of the short-term (SPI-3) and the long-term (SPI-6 and 12). This analysis was carried for
the whole basin as one unit, however local conditions (regional or city level) may be
different. The SPI-6 adequately reflects the seasonal and medium-term rainfall and their
changing patterns. Agricultural and hydrological droughts generally take a season or
more to develop. Therefore, the long-term SPI indices (SPI-6 and SPI-12) can be used as
indicators to support the further investigation of impacts on water storage underground
and in surface water (groundwater and reservoirs).
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To further analyze the meteorological drought in the Narmada basin, we used the
simplified rainfall index (RIs) suggested by Swain et al. (2021) [26]. They presented a
detailed assessment of the meteorological drought at district levels in the basin from
1954–2013 by using the RIs. Therefore, our analysis was limited to three hydrological years
from 2015 to 2018, covering the basin at a 0.25◦ × 0.25◦ spatial resolution at which the
IMD rainfall data is available. Here, the RIs were calculated for the annual rainfall, where
approximately 90–98% of its total is received during the monsoon season of the basin.
Even more than the SPI-12, the RIs shows 2016/2017 and 2017/2018 as moderate or severe
drought years in most of the basin. Particularly, in 2016/2017, the basin has undergone
severe drought (Figure 6). This drought continued until 2018 when the middle and most
downstream parts of the basin experienced a ‘severe’ drought, while most of the other
regions were in ‘near normal’ condition and some faced a ‘moderate drought’. Due to the
weakening of the monsoon rainfall in two consecutive years, this drought condition might
significantly affect crop production, water supply, and hydropower generation.
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These indices (SPI and RIs) only consider the rainfall to determine the drought severity.
Therefore, temperature changes (maximum and minimum) were also analyzed and are
presented in Figure A1. The analysis shows no significant changes in the average daily
maximum and minimum temperatures over the Narmada basin during these three years
(2015–2018). This further proves that droughts in 2016/2017 and 2017/2018 were mainly
due to the weakening of monsoon rainfall only.

3.2. Changes in the NDVI

To assess the relationship between the meteorological and agricultural droughts, first,
the vegetation conditions were analyzed in terms of the NDVI. The NDVI has a value
between −1 and 1, where a higher value represents relatively greener and healthier vege-
tation. The Narmada basin area shows mean (standard deviation) values of 0.402 (0.081),
0.428 (0.082), and 0.405 (0.076) in 2015/2016, 2016/2017, and 2017/2018, respectively. These
NDVI data were obtained from the MODIS NDVI products at 250 m grid resolution, which
has been used for many studies around the world (e.g., Dutta, 2018, Mbatha and Xulu, 2018,
and Zhi et al., 2019) [1,46,47]. In order to obtain more details on the spatial NDVI changes
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at seasonal scales, further analysis of the NDVI was carried out every three months. The
quarters clearly show seasonal patterns in the NDVI (Figure 7). During the monsoon period
(July–September), the NDVI is relatively high and even increases into the post-monsoon
period (October–December). From January through June, the NDVI decreases. There are
three types of cultivation seasons in the Narmada basin: (1) Kharif crops (July to October),
(2) Rabi crops (October to March), and (3) Zaid crops (March to June). Kharif and Rabi
are the major crop seasons [48]. Paddy is the most common Kharif crop, mostly cultivated
in the middle and upper parts of the basin (the hot subhumid eco-region). Wheat and
gram are the most common Rabi crops in the same areas. In the lower hot-semi arid
eco-region of the basin, sorghum, soybean, maize, and pearl millet are common Kharif
crops, whereas sorghum, sunflower, and gram are the common Rabi crops. Vegetables are
the Zaid/summer crops cultivated as rotational systems. These cultivation patterns are
based on the water availability (irrigation and rain). About 30% of the basin is covered
by forests. In the upper parts, tropical moist deciduous forests exist, and the middle and
lower areas comprise tropical dry vegetation, commonly bamboo. The Kharif and Rabi
crop seasons profit from the monsoon rainfall, as it retains moisture and further develops
during the post-monsoon periods. From February to May, the basin undergoes harvesting
and the least cultivation, which is reflected in the lowest NDVI from April to June. This
suggests that the NDVI provides a good representation of the vegetation health in the basin.
However, part of the cultivated land area has irrigated agriculture as more than 250 dams
in the basin serve as water suppliers for agriculture. In such conditions, the NDVI may not
be able to reflect the agricultural drought in the Narmada basin as irrigation compensates
for the rainfall deficiency for crop water requirements. There is no clear difference between
the quarters in the three years considered, except for July-September in 2018, which could
be a result of the weakened monsoon.
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3.3. Changes in the Soil Moisture

Soil moisture is one of the critical factors affecting crop growth and productivity.
Therefore, to further analyze the agricultural drought, the total soil moisture contents at
the surface and sub-surface at a 10 km × 10 km spatial resolution were calculated over the
basin for each quarter of the three hydrological years considered in the study.

The surface soil moisture (SM) represents the water content of a few centimeters
of topsoil, which describes the wetness or dryness of the topsoil layer. Figure 8 shows
that the cumulative surface soil moisture is minimal (<200 mm) during the dry period
(January–March and April–June). The post-monsoon periods (October to December) of
2015 show the lowest surface soil moisture. According to the SPI-3 and SPI-6 analysis,
the rainfall conditions in the preceding period were ‘near-normal’ but with the negative
SPI values. This implies that even near-normal conditions (with a negative SPI) from the
monsoon period in 2015 triggered a low soil moisture from October to December 2015.
Following the monsoon period, the soil becomes dryer due to the limited rainfall, drainage
and seepage, and evapotranspiration. The April-June period captures the start of the
monsoon season, causing a slight increase in the soil moisture. The weakening of the
monsoon precipitation is seen in the spatial distribution of the soil moisture from July
to September of 2016/2017 and 2017/2018, where most of the land area shows less than
700 mm total water content in the topsoil layer (Figure 8). During the same period of
2015/2016, most of the basin area (~80% of the area) was in a very wet condition with more
than 700 mm of the surface soil moisture content. The effects of the weakened monsoon
of 2016/2017 can be seen in the post-monsoon months of October–December 2017/2018,
which shows a lower soil moisture than in the same period in 2016/2017.
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Figure 8. Total surface soil moisture at an every three-month scale (top) and the number of cells that
fall into each soil moisture class (bottom) in three hydrological years (2015/2016 to 2017/2018).

The sub-surface soil moisture (SSM) represents the water content of the plant root
zone (up to ~1 m soil depth). In this analysis, the sub-surface soil moisture content shows
a similar spatial distribution as the surface soil moisture (Figure 9). However, the values
during the dry months (January to March and April to June) are almost similar (<1000 mm),
whereas the surface soil moisture was almost double from April to June, compared to
January to March (Figure 8). The possible reason could be the starting of the monsoon
rainfall in mid of June, which may have wetted the top-soil layer but not reached deeper
layers yet. Similar to the SPI and the surface soil moisture content, the sub-surface soil
moisture shows a considerable deficit from October to December in 2015, than the other



Sustainability 2022, 14, 13050 15 of 21

two years, indicating more drought. The sub-surface soil moisture content for the monsoon
period in 2017 is slightly lower than in 2016. Similar to the surface soil moisture content,
this trend continues during the dryer post-monsoon period (October–December) of the
next hydrological year (Figure 8). The weakened monsoon of 2017/2018 also resulted in a
slightly lower sub-surface soil moisture than in 2015/2016.
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3.4. Relationship between the Rainfall, the NDVI, and the Soil Moisture

Since rainfall affects the soil moisture and plant growth, and vegetation health is
related to the available water in the root zone, it is expected that there are relationships
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between the rainfall, the NDVI, and the soil moisture. Therefore, the correlations between
the NDVI and the rainfall and the two soil moisture contents were analyzed over the basin,
considering each grid cell (at 0.25◦ resolution), on a quarterly basis. Here, we analyzed the
total soil moisture vs the average NDVI and the total rainfall for each period considered.
Our results show that as a general trend with a large band with a higher soil moisture
(>500 and 5000 mm for SM and SSM, respectively) corresponds to a lower NDVI (0.2–0.5),
whereas a lower soil moisture (<300 and 3000 mm) corresponds to a higher NDVI (0.4–0.7)
(Figure 10a). During the monsoon period, the soil moisture is high and marks the initiation
of the growing season (high soil moisture, low NDVI). In the post-monsoon season, the
vegetation further develops while the soil moisture decreases. Hence, the NDVI increases
while the soil moisture gets lower (as indicated by the arrow in Figure 10a).
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Figure 10. Correlation between the soil moisture content vs the NDVI (a) and vs the rainfall (b) for
all quarters of 2015–2018 for each grid cell (in total 134 cells) covering the Narmada basin. SM means
surface soil moisture, and SSM means sub-surface soil moisture.

The relationship between the soil moisture and the rainfall shows a logarithmic shape
(Figure 10b) as the soil moisture increases with the increasing rainfall but approaches a
maximum. The cluster of points next to the y-axis indicates that the soil moisture can be
high during low or no rainfall. Following the monsoon, the rainfall is nihil, but soils are
still wet and gradually dry due to drainage, seepage, and evapotranspiration (indicated
by the arrow in Figure 10b). In addition, the soil moisture content can be high in the dry
period because of irrigation.

3.5. Reservoir Storage

We calculated the three reservoirs’ total surface water area and analyzed their changes
over three years (Figure 11). The surface areas calculated from both NDWI analyses
(NDWI(Green, NIR) and NDWI(Green, SWIR1)) do not show significant differences in the three
reservoirs, except for a few cases in the Bargi and Indira Sagar dams. Therefore, both
NDWI estimations can be used for the water body detection in the Narmada basin, al-
though the NDWI(Green, NIR) seems more stable than the NDWI(Green, SWIR1). The reservoirs
generally were at their highest level from late September to early October, and the sur-
face areas narrowed towards the end of the dry period (the beginning of the monsoon).
The dates belonging to the largest and smallest reservoir areas vary, but the months are
always September and June, respectively. The area reductions from October to June are
approximately 50%, 85%, and 50% in the Bargi, Tawa, and Indira Sagar dams, respectively.
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The pattern in the reservoir surface area for 2015/16 and 2016/17 is similar for all
reservoirs. At the end of the monsoon of 2017, the surface area recovered to the original
value for the Bargi. However, for the Tawa and especially the Indira Sagar, the surface
areas remained substantially smaller than the maximum value calculated in 2015. For
the Tawa and the Indira Sagar, these deficits were about 20% and 30%, respectively. This
reduction in water surface area might be an effect of the weakened monsoon in 2017/18,
which is most pronounced in the middle part of the basin (see Figure 6) just upstream
of the Indira Sagar. The minimum levels remain similar over the years to maintain the
reservoir’s live storage and reduce the risk of a lack of water for the next cropping seasons.
It can be assumed that the Tawa and the Indira Sagar operations might have changed.
The calculated water areas followed the same pattern as the observed water level and the
reservoir live storage (Figures 11 and A2, respectively) in the three reservoirs. Therefore,
the remote-sensing-based images can be effectively utilized for the water area estimated
in the Narmada basin. Due to the lack of cloud-free images during the monsoon seasons
and the lack of recorded water levels in the non-monsoon periods, the two data sources
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are complementary. Even though a water storage reduction is directly linked to monsoon
rainfall, the daily storage changes depend on other hydro-meteorological factors (e.g.,
temperature and evapotranspiration) and human factors (e.g., irrigation, water supply, and
dam operation).

4. Conclusions

This study aimed to use freely available local and global data to monitor the agri-
cultural drought in the Narmada River Basin, where more than 50% of the land area is
utilized for agriculture. The long-term rainfall and recently weakened monsoons in 2017
and 2018 were assessed using freely available local data, remote-sensing-based global data,
and different drought indicators.

Rainfall over the Narmada River Basin shows a slight decreasing trend and an increase
in the number of dry days over the last 30-year period (1989–2018). The simplified rainfall
index varied over the basin and showed moderate and severe drought in 2016/2017 and
severe drought in 2017/2018, particularly in the middle part of the basin. Prolonged
droughts in the two consecutive years do not show a clear difference in the crop health in
terms of the NDVI. However, the analysis revealed a slight decrease in the NDVI during the
weakened monsoon of 2017/2018. The NDVI is not a reasonable indicator for agricultural
drought assessment in places where irrigated agriculture is dominant. The surface and
sub-surface soil moisture follow seasonal trends, with the lowest soil moisture values in
January-March and the highest values during the monsoon. The effects of the weakened
monsoon in 2017 can be observed in the lower soil moisture of the subsequent quarters. The
water area detection via the NDWI analysis follows the actual water level changes in three
reservoirs. The Tawa and Indira Sagar reservoirs were affected mostly by the prolonged
drought in the middle part of the Narmada basin.

Although the weakened monsoons can be identified as meteorological droughts, it
is hard to say whether it has led to agricultural droughts or even hydrological or socio-
economical droughts. Even though the precipitation during the monsoon (in 2017 and
2018) was less, there was still a substantial amount of rainfall. At the same time, it is also
not clear that the slight decline in the average annual rainfall is a serious problem for the
socio-economic sector. The problems are more likely caused by the local deficiencies in
rainfall. Since an already established irrigation system is functioning in the basin, the
effects of the meteorological droughts may be compensated by the irrigation from the
groundwater or reservoirs.

This study shows that freely available data can be successfully used to monitor drought
indices, explain their behavior, and recognize the spatial and temporal extents. However, it
is difficult to conclude that an agricultural drought occurred in 2017 and 2018 because large
parts of the Narmada basin are irrigated. Information on irrigated and rain-fed areas is
lacking for this study but would be required to assess an agricultural drought in more detail.
Nevertheless, the monitoring indices (SPI, RIs, vegetation health, soil moisture, and storage)
can be helpful to water managers to obtain an indication of the near real-time status of a
basin. Such near-real-time information (i.e., status of water availability, precipitation) is
useful when communicating to stakeholders in a meaningful manner to move forward
with the proper management of water resources and timely decision-making.

Author Contributions: Conceptualization, J.S. and D.A.; methodology, J.S. and D.A.; formal analysis
and data curation, J.S.; writing—original draft preparation, J.S.; writing—review and editing, D.A.,
A.N. and J.B.; visualization, J.S.; supervision, D.A. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data used in this research is available on request.



Sustainability 2022, 14, 13050 19 of 21

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Sustainability 2022, 14, x FOR PEER REVIEW 19 of 22 
 

real-time status of a basin. Such near-real-time information (i.e., status of water availabil-
ity, precipitation) is useful when communicating to stakeholders in a meaningful manner 
to move forward with the proper management of water resources and timely decision-
making. 

Author Contributions: Conceptualization, J.S. and D.A.; methodology, J.S. and D.A.; formal analy-
sis and data curation, J.S.; writing—original draft preparation, J.S.; writing—review and editing, 
D.A., A.N. and J.B.; visualization, J.S.; supervision, D.A. All authors have read and agreed to the 
published version of the manuscript. 

Funding: This research received no external funding. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Data used in this research is available on request. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 

 
Figure A1. Average daily maximum and minimum temperatures over the Narmada River Basin. 

 

Figure A1. Average daily maximum and minimum temperatures over the Narmada River Basin.

Sustainability 2022, 14, x FOR PEER REVIEW 19 of 22 
 

real-time status of a basin. Such near-real-time information (i.e., status of water availabil-
ity, precipitation) is useful when communicating to stakeholders in a meaningful manner 
to move forward with the proper management of water resources and timely decision-
making. 

Author Contributions: Conceptualization, J.S. and D.A.; methodology, J.S. and D.A.; formal analy-
sis and data curation, J.S.; writing—original draft preparation, J.S.; writing—review and editing, 
D.A., A.N. and J.B.; visualization, J.S.; supervision, D.A. All authors have read and agreed to the 
published version of the manuscript. 

Funding: This research received no external funding. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Data used in this research is available on request. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 

 
Figure A1. Average daily maximum and minimum temperatures over the Narmada River Basin. 

 

Sustainability 2022, 14, x FOR PEER REVIEW 20 of 22 
 

 

Figure A2. Calculated reservoir surface water areas and the recorded live capacity of three reser-
voirs. Rani Avanti Bai Sagar (top), Tawa (middle), and Indira Sagar (bottom). 

References 
1. Dutta, R. Drought Monitoring in the Dry Zone of Myanmar using MODIS Derived NDVI and Satellite Derived CHIRPS 

Precipitation Data. Sustain. Agric. Res. 2018, 7, 46. https://doi.org/10.5539/sar.v7n2p46. 
2. Wilhite, D.A. Drought as a Natural Hazard: Concepts and Definitions. Drought Mitigation Center Faculty Publications. 2000. 

Available online: http://digitalcommons.unl.edu/droughtfacpub/69. (accessed on 4 September 2022). 
3. Mishra, A.K.; Desai, V.R.; Singh, V.P. Drought Forecasting Using a Hybrid Stochastic and Neural Network Model. J. Hydrol. 

Eng. 2007, 12, 626–638. https://doi.org/10.1061/(asce)1084-0699(2007)12:6(626). 
4. Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. 

https://doi.org/10.1016/j.jhydrol.2010.07.012. 
5. Singh, O.; Saini, D.; Bhardwaj, P. Characterization of Meteorological Drought over a Dryland Ecosystem in North Western India; Nat 

Hazards. 2021, 109, 785–826. https://doi.org/10.1007/s11069-021-04857-9. 
6. Zhu, Y.; Liu, Y.; Wang, W.; Singh, V.P.; Ma, X.; Yu, Z. Three dimensional characterization of meteorological and hydrological 

droughts and their probabilistic links. J. Hydrol. 2019, 578, 124016. https://doi.org/10.1016/j.jhydrol.2019.124016. 
7. Alahacoon, N.; Edirisinghe, M.; Ranagalage, M. Satellite-based meteorological and agricultural drought monitoring for 

agricultural sustainability in Sri Lanka. Sustainability 2021, 13, 3427. https://doi.org/10.3390/su13063427. 
8. Arshad, S.; Morid, S.; Mobasheri, M.R.; Alikhani, M.A. Development of agricultural drought vulnerability assessment model 

for Kermanshah Province (Iran) using remote sensing data. Option Mediterrianeennes Ser. A Sémin. Méditerr. 2008, 12, 303–310. 
https://doi.org/10.7558/bhs.2010.ic121. 

9. McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. 
Remote Sens. 1996, 17, 1425–1432. https://doi.org/10.1080/01431169608948714. 

10. Van-Rooy, M.P. A Rainfall Anomaly Index (RAI), Independent of the Time and Space. Notos 1965, 14, 43–48. 
11. Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–

150. 
12. Kogan, F.N. Application of vegetation index and brightness temperature for drought detection. Adv. Space Res. 1995, 15, 91–100. 
13. Hao, Z.; AghaKouchak, A. Multivariate Standardized Drought Index: A parametric multi-index model. Adv. Water Resour. 2013, 

57, 12–18. https://doi.org/10.1016/j.advwatres.2013.03.009. 

Figure A2. Calculated reservoir surface water areas and the recorded live capacity of three reservoirs.
Rani Avanti Bai Sagar (top), Tawa (middle), and Indira Sagar (bottom).

References
1. Dutta, R. Drought Monitoring in the Dry Zone of Myanmar using MODIS Derived NDVI and Satellite Derived CHIRPS

Precipitation Data. Sustain. Agric. Res. 2018, 7, 46. [CrossRef]

http://doi.org/10.5539/sar.v7n2p46


Sustainability 2022, 14, 13050 20 of 21

2. Wilhite, D.A. Drought as a Natural Hazard: Concepts and Definitions. Drought Mitigation Center Faculty Publications. 2000.
Available online: http://digitalcommons.unl.edu/droughtfacpub/69. (accessed on 4 September 2022).

3. Mishra, A.K.; Desai, V.R.; Singh, V.P. Drought Forecasting Using a Hybrid Stochastic and Neural Network Model. J. Hydrol. Eng.
2007, 12, 626–638. [CrossRef]

4. Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [CrossRef]
5. Singh, O.; Saini, D.; Bhardwaj, P. Characterization of Meteorological Drought over a Dryland Ecosystem in North Western India.

Nat. Hazards 2021, 109, 785–826. [CrossRef]
6. Zhu, Y.; Liu, Y.; Wang, W.; Singh, V.P.; Ma, X.; Yu, Z. Three dimensional characterization of meteorological and hydrological

droughts and their probabilistic links. J. Hydrol. 2019, 578, 124016. [CrossRef]
7. Alahacoon, N.; Edirisinghe, M.; Ranagalage, M. Satellite-based meteorological and agricultural drought monitoring for agricul-

tural sustainability in Sri Lanka. Sustainability 2021, 13, 3427. [CrossRef]
8. Arshad, S.; Morid, S.; Mobasheri, M.R.; Alikhani, M.A. Development of agricultural drought vulnerability assessment model

for Kermanshah Province (Iran) using remote sensing data. Option Mediterrianeennes Ser. A Sémin. Méditerr. 2008, 12, 303–310.
[CrossRef]

9. McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J.
Remote Sens. 1996, 17, 1425–1432. [CrossRef]

10. Van-Rooy, M.P. A Rainfall Anomaly Index (RAI), Independent of the Time and Space. Notos 1965, 14, 43–48.
11. Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8,

127–150. [CrossRef]
12. Kogan, F.N. Application of vegetation index and brightness temperature for drought detection. Adv. Space Res. 1995, 15, 91–100.

[CrossRef]
13. Hao, Z.; AghaKouchak, A. Multivariate Standardized Drought Index: A parametric multi-index model. Adv. Water Resour. 2013,

57, 12–18. [CrossRef]
14. Hasson, S.U.; Pascale, S.; Lucarini, V.; Böhner, J. Seasonal cycle of precipitation over major river basins in South and Southeast

Asia: A review of the CMIP5 climate models data for present climate and future climate projections. Atmos. Res. 2016, 180, 42–63.
[CrossRef]

15. Mishra, V.; Thirumalai, K.; Jain, S.; Aadhar, S. Unprecedented drought in South India and recent water scarcity. Environ. Reserch
Lett. 2021, 2, 56–61. [CrossRef]

16. Mujumdar, M.; Bhaskar, P. Droughts and floods. In Assessment of Climate Change over the Indian Region; Krishnan, R., Sanjay, J.,
Gnanaseelan, C., Mujumdar, M., Kulkarni, A., Eds.; Springer: Singapore, 2021; pp. 118–141. ISBN 9789811543265.

17. Amrit, K.; Pandey, R.P.; Mishra, S.K. Assessment of meteorological drought characteristics over Central India. Sustain. Water
Resour. Manag. 2018, 4, 999–1010. [CrossRef]

18. Udmale, P.; Ichikawa, Y.; Manandhar, S.; Ishidaira, H.; Kiem, A.S. Farmers’ perception of drought impacts, local adaptation and
administrative mitigation measures in Maharashtra State, India. Int. J. Disaster Risk Reduct. 2014, 10, 250–269. [CrossRef]

19. Kumar, K.N.; Rajeevan, M.; Pai, D.S.; Srivastava, A.K.; Preethi, B. On the observed variability of monsoon droughts over India.
Weather Clim. Extrem. 2013, 1, 42–50. [CrossRef]

20. Department of Agriculture and Farmers Welfare Rainfed Farming System. Available online: https://agricoop.nic.in/en/
divisiontype/rainfed-farming-system (accessed on 2 December 2021).

21. Pandey, R.P.; Pandey, A.; Galkate, R.V.; Byun, H.R.; Mal, B.C. Integrating Hydro-Meteorological and Physiographic Factors for
Assessment of Vulnerability to Drought. Water Resour. Manag. 2010, 24, 4199–4217. [CrossRef]

22. Shah, D.; Mishra, V. Drought Onset and Termination in India. J. Geophys. Res. Atmos. 2020, 125, e2020JD032871. [CrossRef]
23. Bhardwaj, K.; Shah, D.; Aadhar, S.; Mishra, V. Propagation of Meteorological to Hydrological Droughts in India. J. Geophys. Res.

Atmos. 2020, 125, e2020JD033455. [CrossRef]
24. Vishwakarma, A.; Goswami, A. The dynamics of meteorological droughts over a semi-arid terrain in western India: A last five

decadal hydro-climatic evaluation. Groundw. Sustain. Dev. 2022, 16, 100703. [CrossRef]
25. Shah, D.; Mishra, V. Integrated Drought Index (IDI) for Drought Monitoring and Assessment in India. Water Resour. Res. 2020, 56,

e2019WR026284. [CrossRef]
26. Swain, S.; Mishra, S.K.; Pandey, A. A detailed assessment of meteorological drought characteristics using simplified rainfall index

over Narmada River Basin, India. Environ. Earth Sci. 2021, 80, 221. [CrossRef]
27. FAO. The Digital Soil Map of the World (Version 3.6); Land and Water Development Devision; FAO: Rome, Italy, 2003.
28. Pandey, B.K.; Khare, D.; Kawasaki, A.; Mishra, P.K. Climate Change Impact Assessment on Blue and Green Water by Coupling

of Representative CMIP5 Climate Models with Physical Based Hydrological Model. Water Resour. Manag. 2019, 33, 141–158.
[CrossRef]

29. FAO. World Reference Base for Soil Resources 2014: International Soil Classification System for Naming Soils and Creating Legends for Soil
Maps; FAO: Rome, Italy, 2015.

30. Roy, P.S.; Meiyappan, P.; Joshi, P.K.; Kale, M.P.; Srivastav, V.K.; Srivasatava, S.K.; Behera, M.D.; Roy, A.; Sharma, Y.; Ramachandran,
R.M.; et al. Decadal Land Use and Land Cover Classifications Across India, 1985, 1995, 2005; ORNL DAAC: Oak Ridge, TN, USA, 2016.
[CrossRef]

http://digitalcommons.unl.edu/droughtfacpub/69.
http://doi.org/10.1061/(ASCE)1084-0699(2007)12:6(626)
http://doi.org/10.1016/j.jhydrol.2010.07.012
http://doi.org/10.1007/s11069-021-04857-9
http://doi.org/10.1016/j.jhydrol.2019.124016
http://doi.org/10.3390/su13063427
http://doi.org/10.7558/bhs.2010.ic121
http://doi.org/10.1080/01431169608948714
http://doi.org/10.1016/0034-4257(79)90013-0
http://doi.org/10.1016/0273-1177(95)00079-T
http://doi.org/10.1016/j.advwatres.2013.03.009
http://doi.org/10.1016/j.atmosres.2016.05.008
http://doi.org/10.1088/1748-9326/abf289
http://doi.org/10.1007/s40899-017-0205-5
http://doi.org/10.1016/j.ijdrr.2014.09.011
http://doi.org/10.1016/j.wace.2013.07.006
https://agricoop.nic.in/en/divisiontype/rainfed-farming-system
https://agricoop.nic.in/en/divisiontype/rainfed-farming-system
http://doi.org/10.1007/s11269-010-9653-5
http://doi.org/10.1029/2020JD032871
http://doi.org/10.1029/2020JD033455
http://doi.org/10.1016/j.gsd.2021.100703
http://doi.org/10.1029/2019WR026284
http://doi.org/10.1007/s12665-021-09523-8
http://doi.org/10.1007/s11269-018-2093-3
http://doi.org/10.3334/ORNLDAAC/1336


Sustainability 2022, 14, 13050 21 of 21

31. Pai, D.S.; Sridhar, L.; Rajeevan, M.; Sreejith, O.P.; Satbhai, N.S.; Mukhopadhyay, B. Development of a new high spatial resolution
(0.25◦ × 0.25◦) long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over
the region. Mausam 2014, 65, 1–18. [CrossRef]

32. Srivastava, A.K.; Rajeevan, M.; Kshirsagar, S.R. Development of a high resolution daily gridded temperature data set (1969–2005)
for the Indian region. Atmos. Sci. Lett. 2009, 10, 249–254. [CrossRef]

33. Didan, K.; Munoz, A.B.; Solano, R.; Huete, A. MODIS Vegetation Index User ’s Guide (MOD13 Series); University of Arizona: Tucson,
AZ, USA, 2015.

34. Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006 [NDVI]. Available online:
https://lpdaac.usgs.gov/products/mod13q1v006/ (accessed on 10 August 2021).

35. Mladenova, I.E.; Bolten, J.D.; Crow, W.; Sazib, N.; Reynolds, C. Agricultural Drought Monitoring via the Assimilation of SMAP
Soil Moisture Retrievals Into a Global Soil Water Balance Model. Front. Big Data 2020, 3, 10. [CrossRef]

36. Mladenova, I.E.; Bolten, J.D.; Crow, W.T.; Sazib, N.; Cosh, M.H.; Tucker, C.J.; Reynolds, C. Evaluating the Operational Application
of SMAP for Global Agricultural Drought Monitoring. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3387–3397.
[CrossRef]

37. Sazib, N.; Mladenova, I.; Bolten, J. Leveraging the google earth engine for drought assessment using global soil moisture data.
Remote Sens. 2018, 10, 1265. [CrossRef]

38. Entekhabi, D.; Njoku, E.G.; Neill, P.E.O.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.;
Johnson, J.; et al. The Soil Moisture Active Passive (SMAP) Mission. Proc. IEEE 2010, 98, 704–716. [CrossRef]

39. McKee, T.B.; Dosken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the
Eighth Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 1–6.

40. McKee, T.B.; Doesken, N.J.; Kleist, J. Drought monitoring with multiple time scales. In Proceedings of the 9th Conference on
Applied Climatology, Dallas, TX, USA, 15–20 January 1995; pp. 233–236.

41. Gandhi, G.M.; Parthiban, S.; Thummalu, N.; Christy, A. Ndvi: Vegetation Change Detection Using Remote Sensing and Gis—A
Case Study of Vellore District. Procedia Comput. Sci. 2015, 57, 1199–1210. [CrossRef]

42. Souza, A.G.S.S.; Ribeiro Neto, A.; Souza, L.L. de Soil moisture-based index for agricultural drought assessment: SMADI
application in Pernambuco State-Brazil. Remote Sens. Environ. 2021, 252, 112124. [CrossRef]

43. Mananze, S.; Pôças, I. Agricultural drought monitoring based on soil moisture derived from the optical trapezoid model in
Mozambique. J. Appl. Remote Sens. 2019, 13, 024519. [CrossRef]

44. Zeri, M.; Williams, K.; Cunha, A.P.M.A.; Cunha-Zeri, G.; Vianna, M.S.; Blyth, E.M.; Marthews, T.R.; Hayman, G.D.; Costa,
J.M.; Marengo, J.A.; et al. Importance of including soil moisture in drought monitoring over the Brazilian semiarid region: An
evaluation using the JULES model, in situ observations, and remote sensing. Clim. Resil. Sustain. 2021, 1, e7. [CrossRef]

45. Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery.
Int. J. Remote Sens. 2006, 27, 3025–3033. [CrossRef]

46. Mbatha, N.; Xulu, S. Time series analysis of MODIS-Derived NDVI for the Hluhluwe-Imfolozi Park, South Africa: Impact of
recent intense drought. Climate 2018, 6, 95. [CrossRef]

47. Zhi, Z.; Yin, H.; Lu, N.; Zhang, X.; Yu, K.; Guo, X.; Qi, H. Spatial-Temporal Changes of Vegetation Restoration in Yan’an Based on
MODIS NDVI and Landsat NDVI. In Proceedings of the 2019 IEEE International Conference on Signal, Information and Data
Processing (ICSIDP), Chongqing, China, 11–13 December 2019; pp. 2–6. [CrossRef]

48. CWC; NRSC. Narmada Basin; Central Water Commission: New Delhi, India, 2014.

http://doi.org/10.54302/mausam.v65i1.851
http://doi.org/10.1002/asl.232
https://lpdaac.usgs.gov/products/mod13q1v006/
http://doi.org/10.3389/fdata.2020.00010
http://doi.org/10.1109/JSTARS.2019.2923555
http://doi.org/10.3390/rs10081265
http://doi.org/10.1109/JPROC.2010.2043918
http://doi.org/10.1016/j.procs.2015.07.415
http://doi.org/10.1016/j.rse.2020.112124
http://doi.org/10.1117/1.JRS.13.024519
http://doi.org/10.1002/cli2.7
http://doi.org/10.1080/01431160600589179
http://doi.org/10.3390/cli6040095
http://doi.org/10.1109/ICSIDP47821.2019.9173313

	Introduction 
	Materials and Methods 
	Study Area 
	Data Used 
	Meteorological Data 
	Remote-Sensing-Based Global Products 
	Reservoir Characteristics and Operational Data 

	Drought Iindices and Assessment 
	Indices Derived from Rainfall 
	Normalized Difference Vegetation Index (NDVI) 
	Soil Moisture Content 
	Reservoir Water Surface Area 


	Results and Discussion 
	SPI and RIs over the Narmada Basin 
	Changes in the NDVI 
	Changes in the Soil Moisture 
	Relationship between the Rainfall, the NDVI, and the Soil Moisture 
	Reservoir Storage 

	Conclusions 
	Appendix A
	References

