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Abstract

Piecewise deterministic Markov processes (PDMPs) are a class of stochastic processes with appli-
ations in several fields of applied mathematics spanning from mathematical modelling of physical
henomena to computational methods. A PDMP is specified by three characteristic quantities: the
eterministic motion, the law of the random event times, and the jump kernels. The applicability of
DMPs to real world scenarios is currently limited by the fact that these processes can be simulated
nly when these three characteristics of the process can be simulated exactly. In order to overcome
his problem, we introduce discretisation schemes for PDMPs which make their approximate simulation
ossible. In particular, we design both first order and higher order schemes that rely on approximations
f one or more of the three characteristics. For the proposed approximation schemes we study both
athwise convergence to the continuous PDMP as the step size converges to zero and convergence in
aw to the invariant measure of the PDMP in the long time limit. Moreover, we apply our theoretical
esults to several PDMPs that arise from the computational statistics and mathematical biology literature.

2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
icense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

SC: primary 60J25; 65C99; secondary 65C05

eywords: Piecewise Deterministic Markov Processes; Numerical approximation; Weak error; Coupling

1. Introduction

Piecewise Deterministic Markov Processes (PDMPs) [21,22] are nowadays widely used in
athematical modelling in fields such as mathematical biology [5,14,42], biochemistry [45], in-

urance risk theory [20,29], materials science [1], neuroscience [40], and neutron transport [32].
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Mathematical properties of PDMPs such as stability and stationarity have been extensively
investigated in the mathematics community, see e.g. [4,16,26]. Moreover, in recent years these
processes have also quickly gained in popularity for purposes of Monte Carlo computation in
statistical physics [38,41,47] and in Bayesian statistics [30,48], for example in the form of the
Bouncy Particle Sampler (BPS) and the Zig-Zag Sampler (ZZS) [7,13]. Several papers have
further investigated the use of PDMPs in this area, e.g. [2,3,6,8,10,25,31,37].

PDMPs are continuous time Markov processes which move along deterministic trajectories
typically in Euclidean space) on a time interval of random length, after which a (possibly
andom) transition occurs to a new state, followed by another deterministic motion, etc. The
eterministic motion is prescribed by the integral curves, ϕt , of a vector field Φ : Rd

→ Rd ,
he length of the random time intervals between transitions is governed by a transition rate
: Rd

→ [0,∞), and the transitions are described by a Markov kernel Q : Rd
× B(Rd ) →

0, 1]. Together the vector field Φ, transition rate λ and transition kernel Q comprise the
haracteristics of the PDMP.

These processes are relatively easy to understand from a conceptual point of view and in
ome special cases their simulation can be performed exactly. In particular, if (i) the vector field

is explicitly integrable, (ii) it is possible to generate random times exactly as prescribed by
, and (iii) it is possible to simulate from the transition kernel Q, then the iterative computation
f trajectories of the associated PDMP is relatively straightforward.

Simulation of trajectories becomes problematic if one or more of these conditions are not
et. Let us discuss possible problems that may arise. Concerning (i), the vector field Φ, as is
ell known in the field of differential equations, explicit solutions to the ODE ϕ̇t = Φ(ϕt ) are
nly available in special cases, for example when Φ is affine, or when it is has some other
pecial structure or symmetry. Concerning (ii), the transition rate λ, it is easy to simulate when
he rate λ is constant or globally bounded. If λ is constant, then the random times between
ransitions are simply Exponential(λ)-distributed and thus easily simulated. If λ is globally
ounded, say by a constant M , we may use a technique called Poisson thinning [36], which
llows us to first simulate the random times according to an Exponential(M)-distribution and
hen accept a proposed transition time as a true transition with a probability governed by the
atio between λ(·) and M . The use of Poisson thinning may be extended to cases with non-
onstant bounds M(s) along trajectories under the condition that it is simple to simulate from an
nhomogeneous Poisson process with rate M(s). However, finding a sharp bound M(s) can be
n extremely challenging problem in most practical settings. Moreover, the looser the bound the
reater the computational cost of the simulation of the PDMP. For more extensive descriptions
f Poisson thinning we refer to, e.g., [7,13]. Finally problems with (iii), the simulation of
ransitions according to Q, may arise in various ways. For instance it may be interesting to
pproximate the transition kernel of the BPS (see Section 2.4 of [44]).

In this paper we propose several schemes to approximate a PDMP in cases that are otherwise
ot straightforward to simulate, and we accompany these schemes by a detailed analysis of
he convergence of the approximate process towards its exact, theoretical counterpart as the
arameter governing the numerical precision, δ, converges to zero. Moreover, in the setting in
hich the PDMP is geometrically ergodic with a specified invariant measure, we investigate

he theoretical convergence of the law of the approximate scheme to the invariant measure of
he PDMP.

We introduce the Fully Discrete PDMP (FD-PDMP) Algorithm, the Partially Discrete
DMP (PD-PDMP) Algorithm and the Higher Order Partially Discrete PDMP Algorithm
Algorithms 2, 3 and 5, respectively). The FD-PDMP algorithm (Algorithm 2) defines a Markov
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chain {Z tn }n∈N on a mesh 0 = t0 < t1 < t2 < . . . that moves deterministically between time
teps, and a random event may occur at each of the mesh points with suitable probability. The
D-PDMP algorithm (Algorithm 3) defines a Markov chain that moves deterministically with
xception of at most one random event in each interval of the form [tn−1, tn]. In contrast to the
D-PDMP the random event does not need to occur at mesh points. This difference motivates

he choice of name of the two algorithms. By allowing at most p random events per time step,
he higher order algorithm (Algorithm 5) constructs an approximation of the PDMP of order
p.

Naturally these algorithms are designed to be straightforward to simulate. Both the FD-
DMP and the PD-PDMP algorithms rely on first order approximations of the characteristics of

he PDMP. A wide range of approximations for ϕt , λ, Q is allowed, see Assumptions 4.4, 4.5,
.6 for the formal requirements. As a simple yet important example, consider the case in which
e are interested in simulating a PDMP for which the event times are hard to obtain. With an
uler-type approach, we can use an approximation of λ that is constant between mesh points,
ased on the state of the process at the initial point of each time step. For such approximation,
he next event time in the case of PD-PDMP is simply exponentially distributed with constant
ate, which is straightforward to simulate. Similarly, in the case of the FD-PDMP a random
vent takes place at the end of the time interval according to a Bernoulli distributed random
ariable. In comparison to the simulation of the continuous time PDMP, both algorithms do not
equire an upper bound to the switching rates, which is required to apply Poisson thinning. In
similar fashion, simple approximations of ϕt and Q can be employed. We refer to Section 3

or a detailed description of the algorithms.
We study convergence of these algorithms as a function of the step size and of the time

orizon. Under very broad assumptions on the approximation, in particular allowing for
pproximations of all three λ, ϕt , and Q, in Theorem 4.9 we are able to show convergence
n a Wasserstein distance to the PDMP as the step size tends to zero. In the case in which it is
ossible to simulate ϕt and Q exactly, we obtain convergence of the PD-PDMP algorithm in
he stronger metric of total variation (see Theorem 4.17). In this setting weaker assumptions
n the continuous time PDMP are required. For instance we show in Examples 5.2 and 5.5
hat BPS satisfies the assumptions of Theorem 4.17 but not those of Theorem 4.9. Moreover,
oth Theorems establish convergence of order p as long as the approximations of ϕt , λ, and

Q are of order p. The proofs of both these theorems rely on couplings of the continuous time
DMP with its approximation and are described respectively in Couplings 6.1 and 7.1.

In many areas it is important to understand the long time behaviour of the approximation
chemes. In the field of Markov chain Monte Carlo (MCMC) algorithms the goal is to simulate

process that converges in law to the correct probability measure, which is the posterior
istribution in Bayesian statistics and the Boltzmann–Gibbs distribution in statistical physics.
n this context, such a probability measure is the invariant distribution of the PDMP. In
heorem 4.24 we prove uniform in time convergence of the weak error between the PDMP
nd the approximations given by the FD-PDMP or the PD-PDMP algorithms. In particular, we
btain convergence in law of the approximation and its time average to the invariant measure
f the PDMP in the joint limit as time tends to infinity and step size tends to zero (see
orollary 4.27).

We confirm the applicability of our theorems on a variety of examples. ZZS and BPS
re instances of PDMPs for which exact simulation of the random event times is not always
ossible. In Example 3.2 we discuss how to approximate the ZZS, and in Examples 5.1, 5.11

e show that our Theorems apply to the proposed approximation. An attractive feature of ZZS
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is that it allows for exact subsampling (see [7]), which means that in a Bayesian statistics
etting for each “iteration” of the algorithm only a subset of the data has to be accessed.
n Example 5.7 we propose an approximation of ZZS with subsampling which also has the
roperty of accessing a batch of the data over each time step and prove convergence in total
ariation as the step size tends to zero. For BPS we construct an approximation and prove
onvergence as step size tends to zero and time tends infinity in Examples 3.3, 5.5 and 5.17.
n contrast to ZZS and BPS, randomised Hamiltonian Monte Carlo (RHMC) (see [12]) is an
xample of a PDMP in which it is typically not possible to simulate the flow ϕt exactly. In
xamples 3.4, 5.3, and 5.8 we discuss approximations of RHMC and show convergence as the
tep size tends to zero and time tends to infinity. We also discuss continuous time approximation
chemes of a PDMP in Examples 5.6 and 5.18.

elated works

Whereas discretisations of stochastic differential equations such as the Langevin equation
ave been studied extensively in the literature, see e.g. the book [34] or recent papers [27,28,
3], the same has not been done for PMDPs. Here we give a brief overview of works that are
o some extent related to the present manuscript.

An approximation scheme for PDMPs suitable for a specific setting was proposed in [35].
he authors consider the case in which the ODE describing the deterministic motion can
nly be solved numerically, a global upper bound for the switching rates is available, and the
ernels Q can be simulated exactly. Their proposal is to move deterministically according to a
umerical integrator and to draw a proposal for the following event time according to the upper
ound of the switching rates and then accept or reject it by Poisson thinning. The framework
e propose in Algorithms 3 and 5 is more general as approximations of all characteristics

re possible. Moreover, the approximations in this manuscript do not require existence or
nowledge of an upper bound for the switching rates. As discussed in Example 5.4 it is possible
o closely resemble the proposal of [35] using our framework. Moreover, we obtain similar
nite time strong and weak error results as in [35] by applying Theorem 4.9.

In [48] the authors focus on how to design a discrete time PDMP with a specific invariant
easure. This is a fundamentally different approach to the focus of this paper. A related work

s [44], which defines a discrete time chain that resembles a BPS.
The book [15] discusses approximations of PDMP based on finite volume schemes for the

hapman–Kolmogorov type equations. Such schemes approximate the law of the process and
re thus different in nature compared to this manuscript.

Finally, we discuss papers that deal with continuous time approximations of the ZZS. In [17]
he authors propose an approximation that relies on an integrator and a root finding method to
enerate the random event times. The paper [33] discusses the effect of approximate switching
ates {λ̃}d

i=1 on the stationary measure of the ZZS. This approximation relies on the availability
f suitable {λ̃}d

i=1 for which it is possible to (efficiently) simulate the corresponding ZZS. In
xamples 5.6 and 5.18 we discuss applications of our theory to these approximation schemes. A
imilar setting is considered in [26, Theorems 11 and 25], where the authors establish bounds in
otal variation distance between (the invariant measures of) two PDMPs with same deterministic
ynamics, but different switching rates and jump kernels. The authors prove such bounds by
coupling of the two continuous time PDMPs that is similar in spirit to our Coupling 7.1.

n this paper, in particular in Section 4.2, we bound the TV distance between a PDMP and a

iscrete time approximation. Thus the statements and proofs differ from [26] in this sense.
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Organisation of the paper

The paper is organised as follows. In Section 2 we define notation that we use throughout
he paper. In Section 3 we describe the setting and the proposed algorithms. In particular in
ection 3.1 we discuss first order schemes and in Section 3.3 we consider higher order schemes.
ection 4 contains the main results together with the required assumptions. This section is
ivided into three parts. Section 4.1 is devoted to convergence in Wasserstein distance, which
s established in Theorem 4.9. Section 4.2 concerns convergence in total variation as stated in
heorem 4.17. Section 4.3 gives conditions for uniform in time convergence of the weak error,
s expressed by Theorem 4.24. In Section 5 we gather examples to demonstrate the when the
ssumptions of the main theorems are satisfied. The proofs of the three main theorems can
e found respectively in Section 6, Section 7 and Section 8. All other results as well as all
uxiliary lemmas from Sections 4.1, 4.2, and 4.3 can be found respectively in Appendix A,
ppendix B, and Appendix C.

. Notation

We denote the semigroup of the continuous time PDMP, {Z t }t≥0, as Pt which acts on suitable
functions by

Pt f (z) = Ez[ f (Z t )].

Here the subscript z denotes that the process Z t has initial position Z0 = z. Note that the
semigroup is related to the transition probability of Z t , which is denoted by Pt (z, A). These
concepts are related for any function f and measurable set A ⊆ E by

Pt f (z) =

∫
f (y)Pt (z, dy), Pt (z, A) = (Pt1A)(z).

Similarly we denote the transition probability of the approximation processes {Z tn }n∈N as P tn .
Consider a metric d : Rd

× Rd
→ R+ and let P, Q be probability measures on Rd . Then

we define the Wasserstein distance of order 1 with respect to the metric d as

W1(P, Q) = inf
R∈Π (P,Q)

{∫
Rd×Rd

d(x, y)R(dx, dy)
}
, (1)

here Π (P, Q) is the set of couplings of the two probability measures P, Q, that is the set of
robability measures R on Rd

× Rd such that R(A,Rd ) = P(A) and R(Rd , B) = Q(B).
We will denote a norm by ∥ · ∥. The maximum between a ∈ R and 0 is denoted by

(a)+ = max{a, 0}.
Let us define the space Ck to be the set of functions f : Rd

→ R which are k times
ontinuously differentiable. Ck

b (Ck
c respectively) denotes the subset of Ck to functions which

re bounded (resp. have compact support) with bounded and continuous derivatives up to order
. We endow the space Cb with the supremum norm ∥ · ∥∞ and the space C1

b is endowed with
he norm

∥ f ∥C1
b

= ∥ f ∥∞ +

d∑
i=1

∥∂i f ∥∞.

Consider a random variable I with values in {1, . . . ,m} such that P(I = i) = wi for
= 1, . . . ,m. Then we say I has a discrete distribution with probabilities wi and we denote

this as I ∼ Discrete({w }
m ).
i i=1
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Given a measure π we define for any f ∈ L1
π

π ( f ) =

∫
f (z)π (dz).

imilarly for a probability kernel Q(x, dy) we write

Q f (x) =

∫
f (y)Q(x, dy) (2)

or f measurable and integrable with respect to Q(x, dy) for all x . Note that (2) allows us to
onsider a probability kernel as a map from the space of bounded and measurable functions,

Bb, to Bb.
Let us define the total variation distance between two probability measures µ, and ν as

∥µ− ν∥T V = sup
f ∈Cb :∥ f ∥∞≤1

|µ( f ) − ν( f )|.

Given a vector field Φ we can view this as a map, Φ, which acts on C1 functions as

Φ( f )(x) = Φ(x)T
∇ f (x), for f ∈ C1.

Given two maps X, Y : C∞
→ C∞ we shall define the commutator of X and Y , [X, Y ] to

e the map [X, Y ] : C∞
→ C∞ by

[X, Y ] f = XY f − Y X f, for f ∈ C∞.

e will use this with the maps Φ and Q. If we assume that Q preserves C1 and Φ is bounded
hen we can view [Φ, Q] : C1

b → Bb defined by

[Φ, Q] f = Φ(Q f ) − QΦ( f ), for f ∈ C1
b .

ote that although the commutator was defined for smooth vector fields the above definition
akes sense for all C1

b -functions since Φ is a map from C1
b to Cb and we have Q(C1

b ) ⊆ C1
b ,

Q(Cb) ⊆ Cb so both the operations Q(Φ f ) and Φ(Q f ) are well defined for f ∈ C1
b .

. Algorithms

Consider a PDMP (Z t )t≥0 taking values on a state space E , which is a subset of a finite
imensional vector space. Examples are E = Rd

×Rd or E = Rd
×{−1,+1}

d . The dynamics
f the process are described by the generator L, which applied on a function in the domain of
he extended generator gives

L f (z) = ⟨Φ(z),∇z f (z)⟩ +

m∑
i=1

λi (z)
∫

E
( f (y) − f (z))Qi (z, dy). (3)

he generator here is understood to be the extended generator, see [22, Theorem 26.14] for
he exact description of the domain of the extended generator. Note, in particular that functions
hat are differentiable in the direction Φ and bounded are included in the domain. Here Φ is a
mooth and globally Lipschitz vector field, λi : E → [0,∞) are continuous functions and Qi

re probability kernels. Let ϕt denote the integral curve of Φ, i.e. the solution to the following
rdinary differential equation (ODE)

d
ϕt (z) = Φ(ϕt (z)), ϕ0(z) = z, for all t ≥ 0, z ∈ E .
dt
96
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Algorithm 1: Pseudo-code for the simulation of a PDMP
Input : Time horizon T , initial condition z.
Set t = 0, Z0 = z;
while t < T do

simulate next event time as

τ = inf
{

r > 0 : 1 − exp
(

−

∫ r

0
λ(ϕs(Z t ))ds

)
≥ U

}
where U ∼ Unif[0, 1] ;

simulate Z t+s = ϕs(Z t ) for s ∈ (0, τ );
draw I ∼ Discrete

({
λi (Zt+τ−)
λ(Zt+τ−)

}m
i=1

)
;

simulate Z t+τ ∼ Q I (Z t+τ−, ·);
set t = t + τ ;

end

Note that ϕt exists since Φ is globally Lipschitz. We assume that ϕt leaves E invariant. Define
he total switching rate

λ(z) =

m∑
i=1

λi (z).

s shown in [22, Section 26] (3) corresponds to a PDMP where the next event time is
istributed as

Pz(τ ≤ t) = 1 − exp
(

−

∫ t

0
λ(ϕs(z))ds

)
, (4)

nd that between two random events the process follows the flow-map ϕt , i.e. Z t = ϕt (z). At
vent time, τ , the process jumps according to probability kernel Q I , where I is distributed
ccording to the following discrete distribution

I ∼ Discrete
({

λi (ϕτ (z))
λ(ϕτ (z))

}m

i=1

)
.

lgorithm 1 describes the simulation procedure for a PDMP with generator (3).

ote 3.1. It is possible to rewrite (3) to the form

L f (z) = ⟨Φ(z),∇z f (z)⟩ + λ(z)
∫

E
( f (y) − f (z))Q(z, dy) (5)

or some continuous function λ : E → [0,∞) and probability kernel Q. Indeed this can be
chieved by setting

λ(z) =

m∑
i=1

λi (z), Q(z, dy) =

m∑
i=1

λi (z)
λ(z)

Qi (z, dy). (6)

herefore there is no loss of generality for the PDMP to take m = 1. However we will see in
Section 4.1 that allowing m ≥ 1 leads to weaker assumptions for our convergence results, in
particular we will see in Example 5.1 a case where the assumptions are satisfied with m > 1
but would not be satisfied when written in the form (5).
97
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The focus of this paper is to define and analyse approximations of PDMPs that can be
mployed in settings where their simulation cannot be performed exactly. As explained in the
ntroduction, there are three quantities which characterise a PDMP and may be difficult to
imulate. These are the flow map ϕt , the random event times with rates λi , and the Markov

kernels Qi . The idea is then to introduce pth order approximations of the three characteristics
for some p ≥ 1. Precise conditions on the approximations are given in Assumptions 4.4, 4.5,
4.6, but here we provide a heuristic description. The flow map ϕt (z) can be approximated

ith a numerical integrator, which is denoted as ϕt (z; δ, p). The parameters δ, p have the
meaning that for s ∈ [0, δ] we have that ϕs(z; δ, p) is an approximation of order δ p of
ϕs(z). Classical examples of numerical integrators from the ODE literature include the Euler
discretisation, the leap frog scheme, and higher order numerical schemes. Then we want to
approximate the switching rates in such a way that the random times (4) can be simulated
easily at the cost of a small error. This can be done by using order δ p approximations of
λ(ϕs(z)), i.e. the switching rate along the deterministic flow. We denote the corresponding
approximation as λ(z, s; δ, p) : E×[0,∞) → [0,∞). The motivation is to ensure the following
s an approximation of order δ p for t ≤ δ:

Pz(τ ≤ t) ≈ 1 − exp
(

−

∫ t

0
λ(z, s; δ, p)ds

)
.

ere

λ(z, s; δ, p) =

m∑
i=1

λi (z, s; δ, p).

et us give some examples with p = 1. A possible choice is to “freeze” the switching rate,
hus taking λi (z, s; δ, 1) = λi (z). This is supported by the intuition that λ(ϕs(z)) ≈ λ(z) for

small s. In this case Pz(τ ≤ t) is approximately equal to 1 − exp (−tλ(z)), which is the
cumulative distribution function of the exponential distribution with constant rate λ(z). We refer
to the λi as frozen switching rates and to the corresponding approximation process as Euler

pproximation. Alternatively one could take λi (z, s; δ, 1) = λi (ϕδ(z)), or the switching rates
along the trajectory given by the numerical integrator λi (z, s; δ, 1) = λi (ϕs(z; δ, 1)), or more
generally λi (z, s; δ, p) = λi (ϕs(z; δ, p)). Finally, consider the Markov kernels Qi . We define

function Fi which describes a choice of implementation of Qi . Let Fi : E × U → E be a
eterministic map such that Fi (z,U ) is distributed according to Qi (z, ·) when U is distributed
ccording to a probability distribution νU . We can then approximate each map Fi by a map

F i (·; δ, p) : E ×U → E , where once again δ, p denotes the order of accuracy of our estimate.
o simplify the notation, when we consider first order schemes, i.e. p = 1, we shall suppress

he p-dependence and write ϕs(z; δ), λi (z, s; δ), F i (z,U ; δ).
Now that we have introduced the problem and the various approximations we wish to

exploit, we illustrate how to design first order and higher order approximation schemes for
PDMPs. By an order p scheme we mean an approximation process for which the local error,
i.e. the error between the PDMP and the approximation over a step of size δ with identical
initial conditions, is proportional to δ p+1. Therefore after n steps of size δ the global error is
proportional to tnδ p where tn = nδ, which motivates the term order p scheme.

3.1. First order schemes

Let us introduce a mesh {tn}n∈N for the time variable where tn =
∑n

ℓ=1 δℓ, and δℓ are step

izes. For example if the step size is constant δℓ = δ then tn = nδ for all n ∈ N. In this section
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we introduce two alternative first order schemes: the FD-PDMP algorithm and the PD-PDMP
algorithm. We define the FD-PDMP approximation {Z tn } on the mesh {tn}n∈N by setting Z0 = z
nd then following the procedure

Z̃ tn+1 = ϕδn+1
(Z tn ; δn+1),

Z tn+1 = αn+1 F Īn+1
(Z̃ tn+1 ,Un+1; δn+1) + (1 − αn+1)Z̃ tn+1 .

ere we have Un+1 ∼ νU . The value of αn+1 is determined as follows. We simulate τ̄ which
as distribution conditional on Z tn given by

Pz(τ̄ ≤ t |Z tn ) = 1 − exp
(

−

∫ t

0
λ(Z tn , s; δn+1)ds

)
.

hen αn+1 = 1 if and only if τ̄ ≤ δn+1, otherwise αn+1 = 0. We then draw

Īn+1 ∼ Discrete

({
λi (Z tn , τ̄ ; δn+1)

λ(Z tn , τ̄ ; δn+1)

}m

i=1

)
. (7)

he resulting Markov chain Z tn is thus updated by first following the approximate flow map and
hen establishing whether a random event takes place at the end of the current time interval.
his procedure is written in pseudo-code form in Algorithm 2. Note that if λ(z, s; δn+1) is

independent of s, i.e. λ(z, s; δn+1) = λ(z; δn+1), then we do not need to simulate τ n+1 and we
ave that αn+1 is a Bernoulli random variable with success rate 1 − exp(−δn+1λ(z; δn+1)) and

Īn+1 is distributed as

Īn+1 ∼ Discrete

({
λi (Z tn ; δn+1)

λ(Z tn ; δn+1)

}m

i=1

)
.

his is for instance the case of frozen switching rates.
A different approach is shown in Algorithm 3, which describes the PD-PDMP approxima-

ion. Here the idea is to simulate the switching time τ̄ with rate λ(Z tn , s; δn+1), then if τ̄ is
before the end of the current time step set t = tn + τ̄ , draw I n+1 as in (7), and follow the

rocedure below:

Z t = F Īn+1
(Z̃ t ,Un+1; δn+1), where Z̃ t = ϕ τ̄ (Z tn ; δn+1),

Z tn+1 = ϕtn+1−t (Z t ; δn+1).

n the other hand, when τ̄ > δn+1 the process is simply moving deterministically according to
he approximate flow map, i.e. Z tn+1 = ϕδn+1

(Z tn ; δn+1). Only one random jump per time step
s allowed, and in this case it happens at time τ̄ instead of at the end of the time step. This
hoice comes with advantages and disadvantages if compared to Algorithm 2. As we shall see
n Sections 4.2 and 4.3 it is possible to obtain stronger results under weaker assumptions on
he PDMP in the setting of Algorithm 3 compared to Algorithm 2. However this may come at
larger computational cost (see e.g. Example 3.3).

.2. Examples

In this section we introduce several examples, which will be revisited as illustrative
pplications of our results. In the first three examples, i.e. Examples 3.2, 3.3, 3.4, we discuss
CMC samplers which target a probability measure with density π (x) ∝ exp(−ψ(x)) for

x ∈ Rd .
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Algorithm 2: Fully Discrete Approximation of a PDMP

Input : Number of iterations N , initial condition z, step sizes (δn)N
n=0.

utput: Chain (Z tn )N
n=0.

et n = 0, Z0 = z;
hile n < N do

simulate Z̃ = ϕδn+1
(Z tn ; δn+1);

simulate

τ̄ = inf
{

r > 0 : 1 − exp
(

−

∫ r

0
λ(Z tn , s; δn+1)ds

)
≥ U

}
where U ∼ Unif[0, 1] ;

if τ̄ ≤ δn+1 then
draw Un+1 ∼ νU and Īn+1 ∼ Discrete

({
λi (Z tn ,τ̄ ;δn+1)
λ(Z tn ,τ̄ ;δn+1)

}m

i=1

)
;

set Z̃ = F Īn+1
(Z̃ ,Un+1; δn+1);

end
set Z tn+1 = Z̃ ;
set n = n + 1;

nd

Algorithm 3: Partially Discrete Approximation of a PDMP

Input : Number of iterations N , initial condition z, step sizes (δn)N
n=0.

utput: Chain (Z tn )N
n=0.

et n = 0, Z0 = z;
hile n < N do

simulate

τ̄ = inf
{

r > 0 : 1 − exp
(

−

∫ r

0
λ(Z t , s; δn+1)ds

)
≥ U

}
where U ∼ Unif[0, 1] ;

if τ̄ < δn+1 then
set t = tn + τ̄ ;
simulate Z̃ t = ϕ τ̄ (Z tn ; δn+1);

draw Un+1 ∼ νU and Īn+1 ∼ Discrete
({

λi (Z tn ,τ̄ ; δn+1)
λ(Z tn ,τ̄ ; δn+1)

}m

i=1

)
;

set Z t = F Īn+1
(Z̃ t ,Un+1; δn+1);

simulate Z tn+1 = ϕtn+1−t (Z t ; δn+1);
else

simulate Z tn+1 = ϕδn+1
(Z tn ; δn+1);

end
set n = n + 1;

end
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Example 3.2 (Zig-Zag Sampler [7]). Let E = Rd
× {+1,−1}

d , and for any z ∈ E we
rite z = (x, v) for x ∈ Rd , v ∈ {+1,−1}

d . Set Φ(x, v) = (v, 0)T , m = d , λi (x, v) =

vi∂iψ(x))+ + γi (x, v), and Qi ((x, v), (dy, dw)) = δ(x,Ri v)(dy, dw), where δz denotes the
irac Delta measure and Riv = (v1 . . . , vi−1,−vi , vi+1, . . . , vd ). The ZZS is described by

ts generator

L f (x, v) = ⟨v,∇x f (x)⟩ +

d∑
i=1

λi (x, v)[ f (x, Riv) − f (x, v)]. (8)

imulating the event times with rates of this form is in general a very challenging problem as
he integral in (4) cannot be computed for general potentials ψ .

We can apply Algorithm 2 to the ZZS to obtain (X tn+1 , V tn+1 ) given the previous state by
rst simulating the next switching time τ̄ with rate λ((X tn , V tn ), s; δn+1) and then

X tn+1 := X tn + V tnδn+1

V tn+1 :=

{
R Īn+1

V tn if τ̄ ≤ δn+1,

V tn if τ̄ > δn+1,

here λ(z, s; δ) =
∑d

i=1 λi (z, s; δ), and

Īn+1 ∼ Discrete

⎛⎝{λi ((X tn , V tn ), τ̄ ; δn+1)

λ((X tn , V tn ), τ̄ ; δn+1)

}d

i=1

⎞⎠ .
he only approximation concerns the switching rates, whereas it is straightforward to simulate

he linear dynamics and the jumps at event times. As mentioned above, a simple choice is
o take λi ((x, v), s; δ) = λi (x, v), which results in an Euler approximation of the ZZS. An

alternative choice is

λi ((x, v), s; δ) =
1
δ
(ψ(x + vi eiδ) − ψ(x))+ + γi (x, v), (9)

which is obtained by a finite difference scheme approximation for ∂iψ . Here ei is the i th vector
f the canonical basis. Observe that with this choice of λi the approximation is gradient free, as
t does not require computing ∇ψ . An approximation given by Algorithm 3 may be introduced
nalogously.

xample 3.3 (Bouncy Particle Sampler [13,41]). Let E = Rd
× Rd , and for any z ∈ E we

rite z = (x, v) for x ∈ Rd , v ∈ Rd . Set Φ(x, v) = (v, 0)T , m = 2,

Q1((x, v), (dy, dw)) = δ(x,R(x)v)(y, w), Q2((x, v), (dy, dw)) = δx (dy)ν(dw),

ith λ1(x, v) = (vT
∇xψ(x))+, λ2 = λr for λr > 0, ν is the Gaussian measure, and finally

R(x)v = v − 2
⟨v,∇xψ(x)⟩
∥∇xψ(x)∥2 ∇xψ(x).

n this example ∥ · ∥ denotes the Euclidean norm. The BPS has generator

L f (x, v)=⟨v,∇x f (x)⟩+λ1(x, v)[ f (x, R(x)v)− f (x, v)]+λ2

∫(
f (x, w)− f (x, v)

)
ν(dw).

or the same reasons as for the ZZS, simulating the event times can be very challenging for
he BPS.
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For this process we introduce an approximation based on Algorithm 3. Let Un+1 =

Zn+1,Un+1) for Zn+1 distributed according to the standard Gaussian distribution ν and
Un+1 ∼ Unif([0, 1]) is an independent uniform random variable. For n ≥ 0 we define the
next state of the approximation (X tn+1 , V tn+1 ) given the previous state by first simulating τ̄

ith distribution Pz(τ̄ > t) = exp(−
∫ t

0 λ((X tn , V tn ), s; δn+1)ds) and then

X tn+1 := X tn + τ̄V tn + (δn+1 − τ̄ )V tn+1 ,

V tn+1 :=

{
F((X tn+τ̄ , V tn ),Un+1) if τ̄ ≤ δn+1,

V tn if τ̄ > δn+1.

ere λ((x, v), t; δn+1) = λ1((x, v), t; δn+1) + λr where λ1((x, v), t; δn+1) approximates λ1(x +

t, v) and

F((X tn+τ , V tn ),Un+1) =

{
R(X tn+τ )V tn if Un+1 >

λr
λ((X tn ,V tn ),τ̄ ;δn+1)

,

Zn+1 if Un+1 ≤
λr

λ((X tn ,V tn ),τ̄ ;δn+1)
.

t is thus clear that applying Algorithm 3 rather than Algorithm 2 can be more computationally
xpensive in the case of BPS, as when an event takes place ∇ψ has to be evaluated at some

midpoint X tn+τ̄ in order to compute the reflection operator. In contrast, ∇ψ has to be computed
nly at gridpoints in Algorithm 2. We shall see in Section 4 that our theoretical results can only
e applied to approximations of the BPS based on Algorithm 3, motivating the need for that
lgorithm.

Similarly to the case of the ZZS described in Example 3.2, possible approximations of
1(x + vt, v) are λ1((x, v), t; δ) = λ(x, v) or

λ1((x, v), t; δ) =
1
δ
(ψ(x + vδ) − ψ(x))+ .

The latter choice is not enough to not make the simulation of (X t , V t ) gradient free because
ψ is needed in the computation of the reflection operator.

xample 3.4 (Randomised Hamiltonian Monte Carlo Algorithm). The randomised Hamiltonian
onte Carlo algorithm (see [12]) is defined on E = Rd

× Rd by the generator

L f (q, p) = ⟨p,∇q f (q, p)⟩ − ⟨∇qψ(q),∇p f (q, p)⟩ + λr

∫ (
f (q, p′) − f (q, p)

)
ν(dp′),

here ν is a Gaussian measure on Rd . The Hamiltonian flow cannot be simulated exactly in
ost cases, and thus it becomes necessary to approximate it by a numerical integrator ϕs .

Then according to Algorithm 2 we obtain the next state by first denoting (Q̃tn+1 , P̃tn+1 ) =

ϕδn+1
(Z tn+1; δn+1) and thus

(Qtn+1 , P tn+1 ) =

{
(Q̃tn+1 , P̃tn+1 ) with probability exp(−λrδn+1),
(Q̃tn+1 ,Z) with probability 1 − exp(−λrδn+1),

here Z ∼ ν. We remark that the most efficient implementation is to simulate the next
efreshment time and then follow the numerical integrator until then, without drawing a new
efreshment time at each iteration.

xample 3.5 (Modelling the Size of a Cell). Following Section 1.5 in [42], denote the size of
cell by z ∈ R. The cell grows in time with deterministic flow ϕ , and splits into two daughter
t
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cells with division rate λ(z). Then denote as τn the time when a cell from the n-generation
plits. The size of a daughter cell is half of the parent cell, and thus Zτn =

1
2 Zτn−. We can

haracterise the resulting process with its generator:

L f (z) = ⟨Φ(z),∇ f (z)⟩ + λ(z)
(

f
( z

2

)
− f (z)

)
.

Therefore it may not be possible to simulate such a process if the desired ϕ and λ are
complicated functions. An approximation can be obtained applying the ideas above introducing
a numerical integrator ϕ and approximate division rate λ.

Example 3.6 (Chemotaxis in Escherichia coli). It was shown in [5] that the bacteria Escherichia
coli have two types of behaviour describing their motion, which are called “runs” and
“twiddles”. When the bacteria is “running” it moves with near uniform speed. However when
“twiddling” the bacteria changes direction very abruptly. We will describe this using the
stochastic model as given in [46]. We describe the bacteria by giving its position x ∈ R3

and velocity v ∈ S2 at each time, where S2 is the sphere in R3. Then there exists a function
λ : [0,∞) ×R3

× S2
→ (0,∞) which describes the next time the bacteria twiddles; at such a

twiddle the velocity changes according to some probability measure µv on S2
\ {v} where v is

the velocity before the twiddle. The dynamics of the bacteria are given as a PDMP described
by the backward equation

∂u
∂t

(t, x, v) + ⟨v,∇x u(t, x, v)⟩ + λ(t, x, v)
∫
S2

[u(t, x, η) − u(t, x, v)]µv(dη) = 0.

ote if λ is independent of t then we can describe this process by writing a generator in
he form (3); otherwise we can extend the space to include a time variable and then write a
orresponding generator in the form (3) which is given by

L f (t, x, v) = ∂t f (t, x, v)+⟨v,∇x f (t, x, v)⟩+λ(t, x, v)
∫
S2

[ f (t, x, η)− f (t, x, v)]µv(dη).

e can introduce an approximation of this process by using frozen switching rates.

.3. Higher order schemes

A natural question is how to obtain higher order schemes. The first important observation
s that the probability that a PDMP has more than one jump in a time interval of length δ is of
rder δ2. Therefore in order to construct higher order schemes it is natural to allow multiple
umps in the same time step. A detailed implementation of a higher order approximation
cheme can be found in Algorithm 5. Let us first describe a second order algorithm. Starting
t state Z tn = z, the proposed time for the first event is given by τ̄ where

P(τ̄ > r ) = exp
(

−

∫ r

0
λ(z, s; δn+1, 2)ds

)
.

If τ̄ < δn+1, the process moves according to the numerical flow ϕs(z; δn+1, 2) for time τ̄ , and at
ime tn +τ̄ the random event takes place according to F Ī (Z tn+τ̄ , ·; δn+1, 2), where Ī has discrete
istribution. In this case, a second jump is allowed in the current time step. The simulation
f this event can be made using first order approximations λ(·, · ; δn+1, 1), ϕs(· ; δn+1, 1), and

F (·, · ; δ , 1).
i n+1
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Algorithm 4: Second order Partially Discrete Approximation of a PDMP

Input : Number of iterations N , initial condition z, step sizes (δn)N
n=0.

utput: Chain (Z tn )N
n=0.

et n = 0, Z0 = z;
hile n < N do

set Z̃ = Z tn ;
draw U 1

∼ Unif[0, 1] and simulate

τ̄1 = inf
{

r > 0 : 1 − exp
(

−

∫ r

0
λ(Z̃ , s; δn+1, 2)ds

)
≥ U 1

}
if τ̄1 < δn+1 then

draw U 1
n+1 ∼ νU and Ī1 ∼ Discrete

({
λi (Z̃ ,τ̄1; δn+1,2)
λ(Z̃ ,τ̄1; δn+1,2)

}m

i=1

)
;

set Z̃ = ϕ τ̄1 (Z̃; δn+1, 2);
set Z̃ = F Ī1

(Z̃ ,U 1
n+1; δn+1, 2);

draw U 2
∼ Unif[0, 1] and simulate

τ̄2 = inf
{

r > 0 : 1 − exp
(

−

∫ r

0
λ(Z̃ , s; δn+1, 1)ds

)
≥ U 2

}
if τ̄2 < tn+1 − τ 1 then

draw U 2
n+1 ∼ νU and Ī2 ∼ Discrete

({
λi (Z̃ ,τ̄2; δn+1,1)
λ(Z̃ ,τ̄2; δn+1,1)

}m

i=1

)
;

set Z̃ = F Ī2
(Z̃ ,U 2

n+1; δn+1, 1);
simulate Z tn+1 = ϕtn+1−τ2−τ1

(Z̃; δn+1, 1);
else

simulate Z tn+1 = ϕtn+1−τ1
(Z̃; δn+1, 1);

end
else

set Z tn+1 = ϕ(Z̃; δn+1, 2);
end

nd

Let us consider as an example how to obtain a second order approximation for smooth
witching rates. For s ≤ δ the first order Taylor approximation of λi (ϕs(z)) is given by

λi (z, s; δn+1, 2) = λi (z) + s⟨Φ(z),∇λi (z)⟩.

ecause the integral in (4) is with respect to s, this choice of λi (z, s; δn+1, 2) is such that
omputing the corresponding switching time is equivalent to computing the root of a second
rder polynomial. The downside is that an evaluation of the gradient of λi is needed and may
e unavailable or expensive to compute. However, we can further approximate the product
Φ(z),∇λi (z)⟩ with a finite difference scheme to obtain for s ≤ δn+1 the expression

λi (z, s; δn+1, 2) = λi (z) +
s

(λi (ϕδn+1 (z)) − λi (z)), (10)

δn+1

104



A. Bertazzi, J. Bierkens and P. Dobson Stochastic Processes and their Applications 154 (2022) 91–153

O
S
w

e

c
δ

t

Algorithm 5: Order p Partially Discrete Approximation of a PDMP

Input : Number of iterations N , initial condition z, step sizes (δn)N
n=0.

utput: Chain (Z tn )N
n=0.

et n = 0, Z0 = z;
hile n < N do

set q = p, Z̃ = Z tn ;
set tleft = δn+1;
while q > 0 do

simulate

τ̄ = inf
{

r > 0 : 1 − exp
(

−

∫ r

0
λ(Z̃ , s; δn+1, q)ds

)
≥ U

}
where U ∼ Unif[0, 1] ;

if τ̄ < tleft then
draw Un+1 ∼ νU and Ī ∼ Discrete

({
λi (Z̃ ,τ̄ ; δn+1,q)
λ(Z̃ ,τ̄ ; δn+1,q)

}m

i=1

)
;

set Z̃ = ϕ τ̄ (Z̃; δn+1, q);
set Z̃ = F Ī (Z̃ ,Un+1; δn+1, q);
set q = q − 1 and tleft = tleft − τ̄ ;

else
set Z̃ = ϕδn+1

(Z̃; δn+1, q);
set q = 0;

end
end
set Zn+1 = Z̃ , n = n + 1;

nd

which is a second order approximation provided λ is sufficiently smooth. The algorithm for
p = 2 is given by Algorithm 4.

Similarly, it is possible to obtain an order p > 2 approximation. The simulation up to and
ounting the first event of each time step should be made according to approximations of order
p of the flow map, switching rates, and jump kernels. After the first event it is then possible

o use approximations of order p − 1, then of order p − 2, and so on until one reaches the end
of the current time interval, with the constraint that at most p events take place. Finally, it is
clearly possible to use approximations of order δ p for the simulation of all events in the same
time step, although such approximations can be in general more expensive to compute.

4. Main results

4.1. Error bounds in Wasserstein distance

The main result of this section is Theorem 4.9, which shows convergence of the Wasserstein
distance between the approximation and the continuous process as the step size goes to 0. We
consider the Wasserstein distance of order 1 with respect to any normed distance, that is we
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take d(x, y) = ∥x − y∥ in Eq. (1) for any vector norm ∥ · ∥. For convenience we assume that
for all n ∈ N we have an upper bound δn ≤ δ0.

Let us now state the assumptions on the process and on the various approximations that are
required to show Theorem 4.9. We start with assumptions on the continuous time PDMP, and
specifically from a condition on the deterministic dynamics. In particular, we require that Φ is

ipschitz.

ssumption 4.1. For the vector field Φ there exists a constant C > 0 such that for all z, z′
∈ E

t holds that

∥Φ(z) − Φ(z′)∥ ≤ C∥z − z′
∥.

We now shift our focus to the jump part of the process. In particular, we need the kernel
Q(z, ·) to satisfy the next conditions.

ssumption 4.2. There exist constants D1, D2, D3 > 0 such that for Ũ ∼ νU the following
onditions hold for all i ∈ {1, . . . ,m}:

(a) For any z ∈ E

E[∥z − Fi (z, Ũ )∥] ≤ D1.

(b) For all z, z′
∈ E

E[∥Fi (z, Ũ ) − Fi (z′, Ũ )∥] ≤ D2∥z − z′
∥.

(c) For all z ∈ E and all s ≤ δ ≤ δ0

E
[
∥ϕδ−s(Fi (ϕs(z), Ũ )) − Fi (ϕδ(z), Ũ )∥

]
≤ D3δ.

The first assumption asks that after a random jump the process is in expectation at bounded
istance to its previous state, while condition (b) states that a Lipschitz condition with respect to
he previous state holds for coupled jumps. Finally, condition (c) asks that the error committed
y switching at the end of the time step or at an earlier time is of order δ if the two jumps are
oupled. Moreover, the following Lipschitz condition for the switching rates is required.

ssumption 4.3. There exists D4 > 0 such that for all z, z′
∈ E and i = 1, . . . ,m

|λi (z) − λi (z′)| ≤ D4∥z − z′
∥.

Let us now focus on the required assumptions on the various approximations employed in
he approximation process. We state the assumptions for a general order of accuracy p ≥ 1,
ith p ∈ N. Starting from the deterministic dynamics, we assume that the numerical integrator

or the flow map is an approximation of order p.

ssumption 4.4. There exists C̃ ≥ 0 such that for any z ∈ E and any 0 ≤ s ≤ δ ≤ δ0

∥ϕs(z) − ϕs(z; δ, p)∥ ≤ C̃s p+1.

In case the flow map can be simulated exactly, one can simply take ϕs = ϕs and C̃ = 0.
ext we focus on the approximate jump kernels F .
i
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Assumption 4.5. The approximate jump kernels F i : E × U × [0, δ0] → E , satisfy for any
z ∈ E and δ ∈ (0, δ0]

Ez[∥F i (z, Ũ ; δ, p) − Fi (z, Ũ )∥] ≤ M1δ
p

for all i = 1, . . . ,m.

Let us now state the requirement on the approximate switching rates λi .

ssumption 4.6. The following conditions hold:

(a) There exists M2(z) such that for all 0 ≤ s ≤ δ ≤ δ0 and i ∈ {1, . . . ,m}

|λi (z, s; δ, p) − λi (ϕs(z))| ≤ δ p M2(z).

(b) For any n ∈ N there is a function M2(t, z) such that

Ez
[
M2(Z tn )

]
≤ M2(tn, z) < ∞.

As a final assumption, we require that both the continuous time PDMP and the approxi-
ation process have almost surely bounded norm for a finite time horizon. This assumption

s verified for instance if the state space is compact, or if the processes travel with bounded
elocity.

ssumption 4.7. For any t > 0 there exists B(t, z) > 0 such that almost surely both
Z t∥ ≤ B(t, z) and ∥Z t∥ ≤ B(t, z), where Z0 = Z0 = z.

Note 4.8. Let us comment on these assumptions:

• It is worth observing that conditions such as Assumption 4.3 can be weakened to forms
such as

|λi (z) − λi (z′)| ≤ D4∥z − z′
∥(1 + ∥z∥q

+ ∥z′
∥

q ′

),

for some q, q ′
∈ N. This is because by Assumption 4.7 the norms at time t of the two

processes are bounded almost surely and therefore for some M(t) we have

(1 + ∥Z t∥
q

+ ∥Z t∥
q ′

) ≤ M(t) < ∞

almost surely. A similar reasoning can be applied to other assumptions that have this
structure. For simplicity we will not consider this set of weakened assumptions in the
proof of Theorem 4.9, but we remark that the extension is straightforward.

• In both Example 3.2 on the ZZS and Example 3.3 on the BPS we can write λ of the form

λ(x, v) = f (r )

where r = ∂iψ(x)vi for ZZS or r = ⟨∇ψ(x), v⟩ for BPS and f (r ) = r+. Note that
it is possible to take a smooth function f for which the process still has the desired
invariant measure, see [3]. We will demonstrate some choices of λ for ZZS which satisfy
Assumption 4.6, and analogous choices hold for BPS. For smooth λ we can use (10) to
obtain a second order approximation or similarly a pth order finite difference scheme to
have an order p approximation. However if λ(x, v) = (vi∂iψ(x))+ is only Lipschitz then
this approximation is no longer valid; instead we can write

λ ((x, v), s; δ, p) = (∂ ψ((x, v), s; δ, p) v )
i i i +
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where ∂iψ((x, v), s; δ, p) is a pth order approximation in s of ∂iψ(x + sv) and can be
obtained either by a truncated Taylor expansion or using a finite difference scheme. Then
using that (·)+ is 1-Lipschitz

|λi ((x, v), s; δ, p) − λi (ϕs(x, v))| ≤ |∂iψ((x, v), s; δ, p) − ∂iψ(x + sv)| ≤ M2δ
p.

For example, for ψ sufficiently smooth, we can take

λi ((x, v), s; δ, p) =

⎛⎝ p−1∑
q=0

(svi )q

q!
∆

q+1
i,δ,p−qψ(x)

⎞⎠
+

,

where ∆
q
δ,p−qψ denotes the δ p−q -th order approximation of the qth derivative of ψ in

the variable xi .

We are ready to state the main result of this section.

heorem 4.9. Let p ≥ 1. Denote by {Pt }t≥0 the semigroup of a PDMP with generator (3),
hich satisfies Assumptions 4.1–4.3. Denote by P t the transition probability of the Markov
hain described by either Algorithms 2 or 3 in the case p = 1, or by Algorithm 5 for p > 1.
uppose that ϕt (·; δ, q), λ(·, ·; δ, q), F i (·; δ, q) satisfy Assumptions 4.4–4.7 for some δ0 > 0
nd for every 1 ≤ q ≤ p with q ∈ N. Then for a fixed T > 0 there exist K1 = K1(T ),

K2 = K2(T ) such that for any mesh 0 = t0 < t1 < · · · < tN = T with δn = tn − tn−1 and
n ≤ δ0 for any n ≤ N

W1(PT (z, ·),PT (z, ·)) ≤ K2

N∑
k=1

δ
p+1
k

(
N∏
ℓ=k

(1 + δℓK1)

)
.

f the step size is uniform, i.e. δn = δ and tn = nδ, then

W1(PT (z, ·),PT (z, ·)) ≤ δ p (eT K1 − 1
) K2

K1
.

roof of Theorem 4.9. The proof of Theorem 4.9 can be found in Section 6. □

We now give a setting in which Assumption 4.2 simplifies. This is motivated by and includes
the ZZS. Let us now consider a PDMP Z t = (X t , Vt ) ∈ Rn

× V , where X t and Vt should be
interpreted as the position and velocity at time t . Here V is some subset of Euclidean space.
Consider the case in which the deterministic dynamics with initial condition (x, v) are of the
form {

ẋ = Φ(v),
v̇ = 0.

Therefore the deterministic motion is X t = ϕt (x, v) and Vt = v if (X0, V0) = (x, v). Then
ssume that the random events affect only the velocity, and leave the position unchanged,
.e. Fi ((x, v),U ) = (x, Fv

i ((x, v),U )). This is the setting for example of the ZZS and BPS.
onsider the following assumption.

ssumption 4.10. The space V is such that for all v,w ∈ V with v ̸= w it holds that

0 < V ≤ ∥v − w∥ ≤ V < ∞.
min max
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Assume also that there exists D > 0 such that for any x, y ∈ Rn , i ∈ {1, . . . ,m} and v ∈ V

E(x,v)[∥Fv
i ((x, v),U ) − Fv

i ((y, v),U )∥] ≤ D∥x − y∥.

The next corollary states that in this setting Assumption 4.10 implies Assumption 4.2.

orollary 4.11. Consider a PDMP of the particular form described above. Suppose
ssumptions 4.1, 4.3–4.6, as well as Assumption 4.10 hold. Then Theorem 4.9 applies.

roof. The proof can be found in Appendix A.2. □

Finally, we consider the setting in which we have a deterministic upper bound for the switch-
ng rates, but the process is not almost surely bounded as was required by Assumption 4.7. This
s the case for instance of the Randomised HMC algorithm [12]. We shall show that in this case
heorem 4.9 holds as long as for a finite time horizon the processes are bounded in expectation.
he formal condition is the following.

ssumption 4.12. There exists a constant λmax > 0 such that λ(z) ≤ λmax for all z ∈ E .
oreover there exists L(t, z) < ∞ such that

max{Ez[∥Z t∥],Ez[∥Z t∥]} ≤ B(t, z).

Proposition 4.13. Suppose Assumptions 4.1–4.6 and 4.12 hold. Then Theorem 4.9 applies.

Proof. The proof is given in Appendix A.3. □

4.2. Error bounds in total variation distance

In this section we show that a bound of order δ p on the total variation distance between the
approximation and the PDMP can be derived for Algorithm 5 assuming it is possible to simulate
exactly the flow ϕt and the Markov kernels Qi . Interestingly, this result can be proved under
considerably weaker assumptions on the PDMP compared to what is considered in Section 4.1.
We remark in particular that no assumption on the maps Fi is needed, which was the case
n Assumption 4.2. Moreover the process needs not be bounded almost surely for finite time
orizons, as described in Assumption 4.7. The main result of this section is proved by coupling
he event times of the PDMP and of the approximations via Poisson thinning. It follows that
ith a positive probability the processes, which are initialised at the same point, will remain

ogether during a time step.
Let us state the required assumptions on the switching rates and on the continuous time

rocess. Recall that for first order approximations of the characteristics we drop the specific
rder of accuracy, e.g. for switching rates we have λi (z, s; δ) = λi (z, s; δ, 1) for i = 1, . . . ,m.
e distinguish the assumptions between the setting p = 1 and p > 1. In the case p = 1 we

mpose the following assumption.

ssumption 4.14. Each of the approximate switching rates λi (·; δ) for i = 1, . . . ,m satisfies
ssumption 4.6(a) with p = 1 for some M2(z). Furthermore for z ∈ E and s ≥ 0 define

λ(z, s; δ) =
∑m

λ (z, s; δ), and λ (z, s; δ) = λ(z) + λ(z, s; δ) + m. Let T > 0. Then there
i=1 i tot
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exist L1(T, z), L2(T, z), L3(T, z) < ∞ such that for any mesh 0 = t0 < t1 < · · · < tN = T
ith tk+1 − tk = δk+1 and N ∈ N the following conditions hold:

sup
n≤N

sup
i=1,...,m

sup
s∈[0,δn ]

sup
r∈[s,δn ]

Ez

[
λ(ϕs(Fi (ϕr (Z tn−1 ), Ũn)λtot (Z tn−1 , s; δ)

]
≤ L1(T, z),

sup
n≤N

sup
s∈[0,δn ]

Ez
[
M2(Z tn−1 )λtot (Z tn−1 , s; δ)

]
≤ L2(T, z),

sup
n≤N

sup
s∈[0,δn ]

sup
r∈[s,δn ]

Ez

[(
λ(ϕr (Z tn−1 )) + λ(Z tn−1 , r; δ)

)
λtot (Z tn−1 , s; δ)

]
≤ L3(T, z).

For the case p > 1 we make the following assumption. Recall in the case p > 1 if in
single time step there have been q jumps then we use λi (·; δ, p − q) to simulate the next

ump time. As the probability of there having been q jumps in a time interval is order δq the
onditions required on λi (·; δ, q) are lessened, for this reason there are different requirements
or each q .

Assumption 4.15. Each of the approximate switching rates λi (·; δ, q) for i = 1, . . . ,m and
= 1, . . . , p satisfies Assumption 4.6(a) for some M2(z). When q = 1 the approximate

witching rates λi (·; δ, 1) for i = 1, . . . ,m satisfy Assumption 4.14. We make the additional
moment bound for any 1 ≤ q ≤ p

sup
n≤N

sup
s∈[0,δn ]

Ez
[
(1 + M2(Z tn−1 ))λtot (Z tn−1 , s; δ, q) + λtot (Z tn−1 , s; δ, q)q+1]

≤ L4(T, z).

ote 4.16. The moment bounds in Assumption 4.14 are rather technical, but also general. For
nstance Assumption 4.14 holds if Assumptions 4.6 and 4.7 hold, i.e. when the process has
ounded norm for any finite time horizon. Furthermore, as Assumption 4.14 does not depend
n moment bounds for the approximate process {Z tn }n≥1, one can verify Assumption 4.14
y finding a suitable Lyapunov function for the PDMP. Indeed if there exists a Lyapunov
unction which bounds the functions appearing in Assumption 4.14 then Assumption 4.14
olds with L1, L2, L3 independent of T . This is the case for instance of the ZZS and BPS,
ee Example 5.5. Alternatively, one can take advantage of Holder’s inequality to reduce the
roblem to bounding polynomial moments of the various quantities. In Section 5.2 we show
hat the assumption holds for several examples. Finally we remark that in Assumption 4.14 it
s possible to substitute Z tn−1 with Z tn−1 and Theorem 4.17 still holds.

heorem 4.17. Denote as P t (z, ·) the transition probability of the approximation process
btained by Algorithm 3 for p = 1 or by Algorithm 5 for p > 1. Denote by {Pt }t≥0 the
emigroup of a PDMP with generator (3) satisfying Assumption 4.1. Let p ≥ 1 and suppose
he approximations λi (z, s; δ, q) for q ≤ p satisfy Assumption 4.14 if p = 1 or Assumption 4.15

if p > 1. Suppose the mesh tn =
∑n

i=1 δn is such that δn < δ0 for δ0 as in Assumption 4.6(a).
uppose that ϕs = ϕs and F i = Fi for all i = 1, . . . ,m. Then for any z ∈ E and any mesh
= t0 < t1 < · · · < tN = T with δn = tn − tn−1 and δn ≤ δ0 for any n ≤ N

∥PT (z, ·) − PT (z, ·)∥T V ≤

N∑
i=1

δ
p+1
i D(T, z)

N∏
ℓ=i+1

(1 − D(T, z)δℓ),

here D(t, z) is a non-decreasing function of t . If δn = δ for all n ∈ N then

∥P (z, ·) − P (z, ·)∥ ≤ 1 − e−D(T,z)T δ p
.
T T T V
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Proof. The proof can be found in Section 7. □

Note 4.18. Let us for simplicity consider the constant step size case. If we fix a time horizon
t , then the theorem shows that ∥Pt (z, ·) − P t (z, ·)∥T V → 0 as δ → 0. On the other hand,
he upper bound tends to 1 as T → ∞ if the step size δ is fixed. Moreover, because
− exp(−D(tn, z)tnδ) ≤ D(tn, z)tnδ we have

∥Ptn (z, ·) − P tn (z, ·)∥T V ≤ D(tn, z) tn δ p

nd therefore we have convergence of order δ p as δ → 0.

ote 4.19. In a similar fashion to [26], it is possible to obtain a bound as that in Theorem 4.17
lso when the jump kernel is approximated. To prove such result it is sufficient to define a
oupled jump kernel that keeps the two processes together with strictly positive probability if
hey are together right before the jump.

.3. Convergence to the invariant measure

In this section we give conditions for the approximation process {Z tn }n≥1 to converge to
µ, the invariant measure of the PDMP, which we shall assume to exist and be unique. We do
this by showing convergence in law to the PDMP uniformly in time and requiring that the
PDMP converges to its invariant measure. In the following we consider the case of geometric
convergence as it is verified for a range of PDMPs, however convergence with any rate r (t)
which is integrable over [0,∞) is sufficient.

The strategy of this proof is inspired by [18], which uses derivative estimates to obtain
uniform in time convergence of an Euler Scheme for an SDE. In that case the authors rely on
having exponential decay of the derivatives of the semigroup for the SDE of interest, for which
conditions are given in [19].

Assumption 4.20. Let {Z t }t≥0 be a PDMP with corresponding generator (5). Recall the
definition of Q given by (6). We assume the following:

(a) There exists an invariant measure, µ, for the PDMP, {Z t }t≥0, and µ is invariant under
Q, that is

µ(Q f ) = µ( f )

for any f measurable and integrable.
(b) The Markov process {Z t }t≥0 is geometrically ergodic with invariant measure µ. Specif-

ically fix G : E → [1,∞) and define G = {measurable g : E → R, |g| ≤ G}. Assume
that G(Z t ) is integrable for all t ≥ 0. For some R1 > 0, ω > 0

sup
g∈G

|Ez[g(Z t )] − µ(g)| ≤ R1e−ωt G(z). (11)

This Assumption has been shown in a variety of cases, for example for the 1-dimensional
ig-Zag process this was shown in [9, Theorem 5] and for higher dimensions in [10, Theorem
]. For BPS this was shown in [23,25]. For RHMC see [12, Theorem 3.9].

The following assumption is required for Algorithm 2, but not for Algorithm 3, for the
easons explained in Note 4.25. In general, derivative estimates on the semigroup are useful for
roving convergence of approximations as they control the effect of a small error in the initial
111
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condition of a stochastic process. In this case we are not using explicitly a derivative estimate
but instead the operator [Φ, Q]. The role of this commutator is to describe the difference in
he direction of the process over an infinitesimal time interval if the process first jumps then
ollows the flow map or first follows the flow map and then jumps.

ssumption 4.21. Let {Pt }t≥0 denote the semigroup corresponding to the generator L
iven by (5). Recall the notation [Φ, Q] defined in Section 2. Let G and G be given as in
ssumption 4.20. There exist some R2 > 0, ω > 0 and set G1 ⊆ G, such that for all t ≥ 0 we
ave

sup
g∈G1

sup
δ∈(0,δ0),s∈[0,δ]

[Φ, Q](Pt g ◦ ϕδ−s)(ϕs(z)) ≤ R2e−ωt G(z).

In Example 5.11 we show that this assumption is satisfied for ZZS with a non-trivial set G1.
Finally, we require the following moment bounds.

ssumption 4.22. Let {Z t }t≥0 be the process described by Algorithm i where i is either 2
r 3 and suppose Assumption 4.20 holds for the function G. Recall the definition of λ and Q
iven by (6). Define for i = 2 or 3 (corresponding to Algorithm i)

G i (z, r, s) = Ki (z, r, s) + λ(ϕr (z))Q((QG + G)λ)(ϕs−r (z))

+ λ(ϕr (z))λ(ϕs(z))(QG(ϕs(z)) + G(ϕs(z)))
(12)

here

K2(z, r, s) =
(
G(z)λ(z, s; δ) + K3(z, r, s)

)
,

K3(z, r, s) =
(
(QG(ϕs(z)) + G(ϕs(z)))(λ(z, s; δ)λ(z, r; δ) + M2(z))

)
.

or i = 2 or 3 there exists a function Hi (z) such that for any mesh 0 = t0 ≤ t1 ≤ · · · with
k = tk − tk−1 < δ0 for any k

Ez

[
sup

0≤r<s≤δ0
G i (Z tk , r, s)

]
≤ C Hi (z).

ote 4.23. Observe that since G is a Lyapunov function for the PDMP {Z t } we have that
z[G(Z t )] is bounded in t for any z. Since {Z tn }n≥0 is designed to be a good approximation
f {Z t }t≥0 we may hope that Ez[G(Z tn )] is also bounded in n. We confirm this for ZZS and
PS in 1 dimension in Lemma C.2 and test numerically in a higher dimensional setting.

In each of the references discussed after Assumption 4.20 there is some freedom in the
hoice of parameters in the Lyapunov function. By adjusting these parameters we can bound
he terms in G i (z) appearing in Assumption 4.22 by using a different choice of the parameters
f the Lyapunov function. Confirming Assumption 4.22 then reduces to showing that, for a
xed Lyapunov function G for the PDMP, we have

sup
n

Ez[G(Z tn )] < ∞.

heorem 4.24. Let {Z t }t≥0 be the PDMP with generator given by (5). Let {Z t }t≥0 be
the process described by Algorithm 2 or 3, with ϕ = ϕ and F = F. Suppose that
Assumptions 4.6(a), 4.20, 4.22 hold and that if {Z t }t≥0 is described by Algorithm 2 that
Assumption 4.21 holds also. Let G1 ⊆ G be given as in Assumption 4.21 if this assumption
is required and G = G otherwise.
1
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Then there exists K > 0 which depends only on R1, R2 and C such that for any g ∈ G1,
∈ N, z ∈ E we have⏐⏐Ez[g(Z tn )] − Ez[g(Z tn )]

⏐⏐ ≤ K Sn Hi (z). (13)

ere

Sn =

n−1∑
k=0

δ2
k+1e−ω(tn−tk+1). (14)

roof of Theorem 4.24. The proof of this theorem is given in Section 8. □

The choice of the set G1 here determines the type of convergence that we obtain. For example
if G1 contains the set of continuous functions with supremum norm bounded by 1 then this
corresponds to convergence in the total variation distance. On the other hand, if G contains the
set of functions with Lipschitz constant less than 1 then we have convergence in the Wasserstein
distance of order 1. Since we do not require Assumption 4.21 to hold when we use Algorithm
3 we can typically take G1 = G in that case and hence we have convergence in a metric that
s stronger than total variation. However for Algorithm 2 we need an additional bound on the
erivatives of the function so we have convergence in a weaker metric, see Example 5.11.

ote 4.25. An important estimate in the proof of Theorem 4.24 will be obtaining a bound
between the law of the first jump of the PDMP, τ , and of the approximation process, τ . This
s done in Lemma C.1. In this lemma we need to treat Algorithm 2 differently to Algorithm 3.
n particular, we show convergence as δ → 0 by considering E[h(τ )] − E[h(τ )] for a class C

of test functions h. In the case of Algorithm 3 we use the set C = Cb([0, δ]) of test functions
whereas in the case of Algorithm 2 we use the set C = C1

b ([0, δ]). The result of using this
eaker convergence is that we need a form of derivative estimate. The derivative estimate we

equire is given by Assumption 4.21 and is needed only if we are considering Algorithm 2.

ote 4.26. To simplify the exposition we have only considered the case when we can simulate
he flow exactly. We can extend this proof to allow also for the use of a numerical integrator
rovided we have a suitable derivative bound. More precisely we require that for some R1 > 0,
> 0 and some set G1 ⊆ G and for any δ ≤ δ0, t > 0, z ∈ E, i ∈ {1, . . . ,m}

sup
g∈G1

|Pt g(ϕδ(z)) − Pt g(ϕδ(z))| ≤ δ2 R3e−ωt G(z), (15)

sup
g∈G1

|QiPt g(ϕδ(z)) − QiPt g(ϕδ(z))| ≤ δ2 R3e−ωt G(z).

Now using the uniform in time weak error estimate (13) and exponential ergodicity (11) we
an show convergence to the invariant measure of the PDMP.

orollary 4.27. Suppose that the conclusion of Theorem 4.24 holds. Set δk = δ for all k ∈ N.
hen for g ∈ G1 we have⏐⏐Ez[g(Z tn )] − Ez[g(Z tn )]

⏐⏐ ≤ CδH (z), (16)⏐⏐Ez[g(Z tn )] − µ(g)
⏐⏐ ≤ C H (z)(δ + e−ωtn ) (17)⏐⏐⏐⏐⏐ 1

N

N∑
Ez[g(Z tn )] − µ(g)

⏐⏐⏐⏐⏐ ≤ C H (z)
(
δ +

1
t

)
. (18)
n=1 N
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Proof of Corollary 4.27. The proof of this corollary is given in Appendix C.1. □

orollary 4.28. Suppose that the assumptions of Theorem 4.24 hold. Assume that δk → 0 as
→ ∞ and

∑
∞

k=1 δk = ∞. For any g ∈ G1 we have

lim
n→∞

⏐⏐µ(g) − Ex,v[g(X tn , V tn )]
⏐⏐ = 0.

roof of Corollary 4.28. The proof of this corollary is given in Appendix C.1. □

. Examples

.1. Examples for Section 4.1

xample 5.1 (Zig-Zag Sampler Continued). We continue Example 3.2 checking that the
onditions of the previous section are satisfied. Let us check that approximations of the ZZS
ased on Algorithm 2 or 3 satisfy Corollary 4.11. Assumption 4.1 clearly holds. Assumption 4.7
olds because the process travels with bounded velocity, so we can apply the reasoning in
ote 4.8 to verify Assumption 4.3. In particular, Assumption 4.2 holds as long as ψ ∈ C2 and

i is locally Lipschitz for all i ∈ {1, . . . ,m}. Assumptions 4.4 and 4.5 follow from the fact that
e can simulate exactly the flow and the kernels. Assumption 4.6(a) is satisfied for p = 1 both

or λi (z, s; δ) = λi (z) and (9) for ψ ∈ C2. Assumption 4.6(b) follows from Assumption 4.7.
inally Assumption 4.10 clearly holds for any D > 0.

Note that we could define the same algorithm with m = 1 according to Note 3.1. However, in
his case neither Assumption 4.2 nor Assumption 4.10 holds as the function F is not Lipschitz.

In Fig. 1(a) we demonstrate numerically the difference between the ZZS with 50-dimens-
onal Gaussian target and the approximation scheme corresponding to Algorithm 2 with
onstant step size δ and frozen switching rates.1 In this plot the two processes have been
oupled according to Coupling 6.1, which is a synchronous coupling that is used in Section 6 to
rove Theorem 4.9. In the figure we see that as δ tends to zero that the distance between the two
rocesses converges to zero. We also observe there is an upper bound on how large the error
an get, which roughly corresponds to the velocities having the opposite sign, i.e. V tn = −Vtn .

xample 5.2 (Bouncy Particle Sampler Continued). We continue Example 3.3 and discuss the
ssumptions of this section in this context. We show that x ↦→ R(x)v need not be Lipschitz.
ndeed, for a Gaussian example with d > 1 fix v ∈ {1,−1}

d and take y ∈ Rd orthogonal to v
hen for any s > 0 consider

∥R(sv)v − R(y)v∥ = 2
 ⟨v, sv⟩

∥sv∥2 sv
 = 2∥v∥.

Letting s tend to zero we see that x ↦→ R(x)v is not Lipschitz at zero and hence Assumption 4.2
does not hold.

In Fig. 1(b) we demonstrate numerically the difference between the BPS with 50-dimen-
sional Gaussian target, Gaussian refreshments with rate 1 and the approximation scheme
corresponding to Algorithm 2 with constant step size δ, and frozen switching rates when
coupled according to Coupling 6.1. We see that although the assumptions of the theory do

1 The codes for all experiments in this paper can be found in a dedicated GitHub repository at https://github.co
m/andreabertazzi/Euler PDMC algorithms.
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Fig. 1. Plots of the distance between the continuous time PDMPs and their approximations given by Algorithm 2
for several values of the step size. The x-axis shows continuous time units, i.e. the time of Z tn is tn = nδ. The

istance is ∥x − y∥1 =
∑d

i=1|xi − yi |. The plots show the average of 50 experiments. The processes are coupled
ccording to Coupling 6.1. The continuous PDMPs have a 50-dimensional standard Gaussian as stationary measure.
ere we choose λ((x, v), s; δ) = λ(x, v).

ot hold the error appears to tend to zero as δ → 0. Indeed in Section 4.2 we obtain theory
upporting this observation. Moreover, from the plot it appears that the error converges as
→ 0 uniformly in time. We will investigate this property further in Section 4.3.

xample 5.3 (Randomised Hamiltonian Monte Carlo Algorithm Continued). We continue
xample 3.4. As long as ∇ψ is Lipschitz, Proposition 4.13 can be applied to the approximations
ased on Algorithms 2 and 3.

xample 5.4 (PDMP Two-Dimensional Morris–Lecar Model [35]). Let us consider the PDMP
efined on E = {0, . . . , NK } × R whose characteristics are given by

Φ(θ, ν) =

(
0

1
C

(
1 − gLeak(ν − VLeak) − gCa M∞(ν)(ν − VCa) − gK

θ
NK

(ν − VK )
) )

,

λ(θ, ν) = (NK − θ )αK (ν) + θβK (ν),

Q((θ, ν), (θ + 1)) =
(NK − θ )αK (ν)

λ(θ, ν)
, Q((θ, ν), {θ − 1}) =

θβK (ν)
λ(θ, ν)

,

M∞(ν) = (1 + tanh((ν − V1)/V2))/2,
αK (ν) = λK (ν)N∞(ν), βK (ν) = λK (ν)(1 − N∞(ν)),

N∞(ν) = (1 + tanh((ν − V3)/4))/2, λK (ν) = λ̄K cosh((ν − V3)/2V4).

This model was given in [35] and is a PDMP version of the deterministic Morris–Lecar
model introduced in [39] to explain the dynamics of the barnacle muscle fibre. Here ν

denotes the membrane potential, θ is number of open Potassium channels, gLeak, gCa, gK is
maximum conductance value for leak, Calcium, and Potassium respectively, C is the membrane
apacitance, Vleak, VCa, VK is the equilibrium potential of relevant ion channels, M∞(ν) (N∞(ν)
espectively) is the fraction of open Calcium (Potassium resp.) channels at steady state. V1 (V3
espectively) is the potential at which M∞ = 0.5 (N∞ = 0.5 resp.). V2 (respectively V4) is the
eciprocal is the slope of the voltage dependence of M (N resp.).
∞ ∞
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We will consider a PD-PDMP approximation of this PDMP. Note that in this case the flow
oes not have an explicit solution so a numerical integrator is required. Therefore we will set
ϕt to be an Euler approximation of ϕt and λ((θ, ν), t; δ) = λ(ϕt (θ, ν; δ)) = λ((θ, ν)+tΦ(θ, ν)).

ote we can simulate jump times with this approximate rate using Poisson thinning. Since the
ernel Q can be simulated exactly we do not need to approximate this. This algorithm is very
imilar to the approximation proposed in [35] and we confirm their results in our framework.
ndeed, one can verify that Assumptions 4.1, 4.3–4.6, as well as Assumption 4.10 hold so by
heorem 4.9 we have that the approximation converges as δ → 0 to the PDMP.

.2. Examples for Section 4.2

It is straightforward to verify Assumption 4.14 for either ZZS or BPS. Below we give details
or BPS.

xample 5.5 (Bouncy Particle Sampler Continued). We continue Examples 3.3 and 5.2 and
iscuss when we may apply Theorem 4.17 in this setting. Recall in Example 5.2 we showed
hat we cannot expect BPS to satisfy the assumptions of Theorem 4.9 because the reflection
perator is in general not Lipschitz. However, we do not need any assumption of this type
or Theorem 4.17. Consider for instance a simple example in which λ1((x, v), s) = λ1(x, v).

Then Assumption Assumption 4.6 (a) follows provided ψ ∈ C2. If in particular ψ has
ounded Hessian, then M2(x, v) ≤ ∥v∥∥∇2U∥∞. It remains to verify the moment bounds

in Assumption 4.14 hold. It is clear that these are satisfied if the velocities are bounded, as
for instance when refreshments are from Zn+1 ∼ Unif(Sd−1) where Sd−1 is the unit sphere
in Rd . On the other hand, for the BPS with Gaussian refreshments we observe that outside
of a compact set one can bound the moments in Assumption 4.14 by the expectation of the
Lyapunov functions derived in [23] or [25]. Therefore we can apply Theorem 4.17 to obtain
convergence as δ → 0.

Let us derive a rough estimate on the dimensional dependence of Theorem 4.17 in the p = 1
case. In particular we focus on the dependence of D(tn, z) in the dimension. Observe from the
proof of the theorem that D(t, z) depends linearly on L1, L2, L3, and thus it is sufficient to
heck the dimensional dependence of such constants. By applying Cauchy–Schwarz inequality
he interesting terms are of the form Ez[(λ1(X t , Vt ))2]. We approximate this expectation with
ts value in stationarity. Let us restrict to the case of Gaussian refreshments and a standard
aussian invariant measure. Then in stationarity we obtain

Eπ [(λ1(X, V ))2] = Eπ [⟨V, X⟩
2
+

] ≤ d2.

Therefore we expect D(t, z) to have a quadratic dependence in the dimension of the PDMP.
In order to obtain a fixed error in total variation distance one should then choose δ such that
D(t, z)δ is constant, and thus δ of order d−2. Observe that taking refreshments on the unit
sphere the dependence would be linear in d .

Example 5.6 (Continuous Time Approximations of PDMP). So far we have concentrated on
discrete time approximations of PDMP, however it is also possible to apply our results to
approximate a PDMP with a second continuous time PDMP. Similarly to the setting of [33]
suppose we have an approximation λ̃i of λi , i.e. there exists ε > 0 such that for all i ∈

1, . . . ,m} we have

˜ ˜
|λi (z) − λi (z)| ≤ M(z)ε. (19)
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A possible motivation for this approach is the case of ZZS when we either cannot evaluate ∂iψ

xactly or it is too expensive to do so. Then we can use an approximation ∂iψ to obtain an
approximation of λ, i.e. λ̃i = (vi∂iψ)+. Now we define a PDMP with approximated rates λ̃i

hich moves according to the generator L̃ acting on sufficiently smooth functions by

L̃ f (z) = ⟨φ(z),∇z f (z)⟩ +

m∑
i=1

λ̃i (z)
∫

( f (z′) − f (z))Qi (z, dz′). (20)

e are interested in comparing this process to the PDMP with generator L given by (3). In
order to use Theorem 4.17 we introduce a discrete time process which we can use to compare
to both the PDMPs corresponding to L and L̃. Set δ = ε and tn = nδ, define {Z tn }n∈N to be

iven by Algorithm 3 with rates λi (z, t) = λ̃i (ϕt (z)), and according to the exact flow ϕt = ϕt
and Markov kernels Qi , i.e. F i = Fi . We assume that the moment bounds of Assumption 4.14
are satisfied which is clear for example if the processes move with bounded velocity. We may
apply Theorem 4.17 both when the PDMP is given by L and by L̃. Therefore for any t > 0
there exists a constant D(t, z) > 0 such that

∥Pt (z, ·) − P̃t (z, ·)∥T V ≤ 2(1 − e−D(t,z) t ε) ≤ 2D(t, z) t ε.

ere {Pt }t≥0 denotes the semigroup of a PDMP with generator L and {P̃t }t≥0 denotes the
emigroup of a PDMP with generator L̃. We remark that the analysis above could be adapted
o the setting of the Numerical Zig-zag algorithm introduced in [17].

xample 5.7 (ZZS with Subsampling). In Bayesian statistics the posterior distribution π (x) ∝

xp(−ψ(x)) is often of the form ψ(x) =
∑N

j=1 ψ j (x), where ψ j (x) depends only on a subset
f the data. As described in [7], the ZZS allows for exact subsampling, which means that
he simulation of each event time is calculated using ψJ for some J ∼ Unif{1, . . . , N }

nstead of the full negative log-density ψ . This is achieved by defining switching rates
j
i (x, v) = (vi∂iψ j (x))+ and computational bounds Mi (t) such that λ j

i (x + vt, v) ≤ Mi (t).
hen starting at state (x, v) at time t , a proposal for the next event time is found by taking

i∗ = min τi , where τi has rate Mi (t) for i = 1, . . . , d. Then the proposal is accepted with
robability λJ

i∗ (x + vτi∗ , v)/Mi∗ (τi∗ ) for J ∼ Unif{1, . . . , N } and in case of acceptance we set
Vt+τi∗ = Ri∗ Vt .

Motivated by the fact that the bounds Mi (t) may be unavailable or hard to compute, we can
pproximate this process as follows. Here we restrict to the case of frozen switching rates, that
s

λ
j
i ((x, v), s; δ) = λ

j
i (x, v).

We apply the same idea behind Algorithm 3 to obtain (X tn+1 , V tn+1 ) given the previous state
y first drawing J ∼ Unif{1, . . . , N }, and then simulating the next switching time τ̄ = τ̄i∗ =

in τ̄i with rates λJ
i (X tn , V tn ). Finally

X tn+1 := X tn + (δn+1 − τ̄ )V tn + τ̄V tn+1

V tn+1 :=

{
Ri∗ V tn if τ̄ ≤ δn+1,

V tn if τ̄ > δn+1,

here the operator Ri was defined in Example 3.2.
The fundamental difference with respect to the setting of Algorithm 3 lies in the additional

evel of randomness introduced by the random variable J . We can adapt the proof of Theo-
em 4.17 to also allow this additional randomness. Indeed in each step we use a synchronous
117
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coupling of the random variable J , then conditional on J we can apply Coupling 7.1 with λi

eplaced by λJ
i in (35)–(36), and setting

λi
tot ((x, v), t; δ) =

N∑
j=1

λ
j
i (x + vt, v) +

N∑
j=1

λ
j
i (x, v) + 1.

Thus provided ψ ∈ C2 for any (x, v) ∈ E and t > 0 there exists D = D(t, (x, v)) > 0 such
that

∥Pt ((x, v), ·) − P t ((x, v), ·)∥T V ≤ 1 − e−Dtδ,

here {Pt }t≥0 is the semigroup of ZZS with subsampling and {P t }t≥0 is the transition
robability of the approximation. We remark that a similar reasoning can be applied to the
PS with subsampling (see [13]).

.3. Examples for Section 4.3

xample 5.8 (Randomised Hamiltonian Monte Carlo Algorithm Continued). We continue
xample 3.4 by verifying the various assumptions for Theorem 4.24. For this example we
ssume that ψ ∈ C2, is strongly convex and has bounded Hessian, i.e. for some K , L > 0

K Id ⪯ ∇
2ψ(q) ⪯ L Id . (21)

hen this holds we have that Assumption 4.20 is satisfied by [12, Theorem 3.9] with G = H ,
where H is the Hamiltonian function

H (q, p) = ψ(q) +
1
2
∥p∥

2.

ince we consider the approximation based on Algorithm 3 we do not need Assumption 4.21.
s λ is constant in this case Assumption 4.22 is satisfied provided

sup
n∈N

E(q,p)

[
ψ(Qtn ) +

1
2
∥P tn ∥

2
]
< ∞. (22)

ecause ψ has bounded second order derivative this reduces to showing that the second
oment of the approximation is bounded uniformly in time. This condition depends on the

hoice of the numerical integrator and should be checked depending on the specific choice.
As mentioned in Note 4.26 in order to apply Theorem 4.24 with a numerical error we

eed to verify (15) holds. It is sufficient to show that the derivative of the semigroup
ecays exponentially. In order to prove this we shall rely on two Lipschitz conditions for the
amiltonian flow ϕt : there exist ν, K1,C ≥ 1, γ ∈ (0, 1) such that for any q, q̄, p, p̄ ∈ Rd

sup
t>0

∥ϕt (q, p) − ϕt (q̄, p̄)∥ ≤ C∥(q, p) − (q̄, p̄)∥ (23)

∥ϕt (q, p) − ϕt (q̄, p)∥ ≤ γ ∥q − q̄∥ for ν < t ≤ K1. (24)

t is shown in [11] that under (21) the contraction (24) holds for some ν, γ, K1. Indeed the
uthors prove a stronger result under which ν = 0, but γ depends on t . There are also
xtensions to non-convex functions ψ , however here we only consider the convex setting.
n the other hand, (23) is for instance satisfied for linear flows since the flow preserves the
amiltonian and the Hamiltonian is equivalent to the norm. To simplify the exposition we will

estrict to the case where (23) and (24) hold.
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Proposition 5.9. Let {Pt }t≥0 denote the semigroup of RHMC. Suppose that (23) and (24)
old. Moreover assume that

0 < κ := C(1 − (e−λν
− e−λK1 )(1 − γC−1)) < 1.

hen

∥∇q,pPt f (q, p)∥ ≤ C2e−κt
∥ f ∥C1

b
.

roof. The proof is deferred to Appendix C.2. □

A case where it is easy to see that κ < 1 is the standard Gaussian case, i.e. ψ(q) = ∥q∥
2/2,

ince in this case we have that C = 1.

heorem 5.10. Suppose that ψ satisfies (21), (23), (24), and the numerical integrator satisfies
22). Then the conclusions of Theorem 4.24 hold.

xample 5.11 (Zig Zag Sampler Continued). Recall the notation of Examples 3.2 and 5.1. Let
s verify the assumptions of Theorem 4.24 for the ZZS.

We will make the following assumptions on ψ . Assume ψ ∈ C2 and

lim
∥x∥→∞

max(1, ∥∇2
xψ(x)∥)

∥∇xψ(x)∥
= 0 and lim

∥x∥→∞

∥∇xψ(x)∥
ψ(x)

= 0. (25)

erifying Assumption 4.20:
Geometric ergodicity of the ZZS was established in [10] under (25) with Lyapunov function

Gα,ϵ(x, v) = exp

(
αψ(x) +

d∑
i=1

φϵ(vi∂iψ(x))

)
. (26)

ere φϵ(s) = sign(s) log(1 + ϵ|s|)/2, α ∈ (0, 1), ϵ > 0, α > ϵγ , where γ upper bounds the
xcess switching rate γ : E → R+.

Verifying Assumption 4.21:
When dealing with this assumption it is convenient to use a smooth choice of λi , so for this

section we will set φ(r ) = r (1 + r )−1 and

λi (x, v) = − log (φ exp(−vi∂iψ(x))) (27)

which was shown in [3] to be a smooth choice of λi for which the ZZS has the correct invariant
measure. Note that for this choice of λi the excess switching rate γ takes values between 0
and γ = log(2).

Lemma 5.12. Let {Pt }t≥0 denote the semigroup corresponding to the ZZS as described in
Example 3.2. Assume ψ ∈ C2 and has bounded Hessian. For λi given by (27) there exists a
onstant C depending on the Hessian of ψ and on d such that for any f ∈ C1 we have

[Φ, Q]( f ◦ ϕδ−s)(x + sv, v) ≤ C sup
i∈{1,...,d}

{| f (x + sv + (δ − s)Fiv, Fiv)|

+ |∂xi f (x + sv + (δ − s)Fiv, Fiv)|}.

roof of Lemma 5.12. The proof is deferred to Appendix C.3. □
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We apply this Lemma with f = Pt g with g ∈ G1 where

G1 = {g : E → R : x ↦→ g(x, v) ∈ C1, µ(g) = 0, |g| ≤ Gα,ϵ, ∥∇x g∥ ≤ Gα,ϵ} (28)

here γ ϵ < α < α < 1. Such an α can always be found by taking ϵ sufficiently small. It
remains to show that ∇xPt g converges to zero for g ∈ G1.

heorem 5.13. Let {Pt }t≥0 denote the semigroup of the ZZS with generator given by (8) and
ith λi such that x ↦→ λi (x, v) ∈ C1 for each v and has bounded derivative ∇xλi (x, v). Fix
γ < α < α, and let G1 be given by (28). Then there exists a constant C such that for any

g ∈ G1

∥∇xPt g(x, v)∥ ≤ C(1 + t)e−ωt Gα,ϵ(x, v).

roof of Theorem 5.13. The proof is deferred to Appendix C.3. □

Note that by adjusting C, κ and α we can show that

sup
δ∈(0,δ),s∈[0,δ]

∥∇xPt g ◦ ϕδ−s(x + sv, v)∥ ≤ Ce−ωt Gα,ϵ(x, v).

herefore Assumption 4.21 holds by combining Lemma 5.12, Theorem 5.13 and Assump-
ion 4.20.

Verifying Assumption 4.22:
Note that since λ grows at most linearly it is sufficient to show that there exists a function

H (x, v) for any mesh 0 = t0 ≤ t1 ≤ · · · with δk = tk − tk−1 < δ0 for any k

Ez
[
∥X tk ∥

2Gα,ϵ(X tk , V tk )
]

≤ H (x, v).

ote that Gα,ϵ is dominated by the eαψ term so we can bound ∥x∥
2Gα,ϵ(x, v) by eα1ψ for any

α1 > α so it remains to show there exists a function H (x, v) for any mesh 0 = t0 ≤ t1 ≤ · · ·

ith δk = tk − tk−1 < δ0 for any k

Ez

[
eα1ψ(X tk )

]
≤ H (x, v). (29)

hen in the 1-dimensional case we prove that the required bound holds.

emma 5.14. Suppose (25) hold and d = 1. Then (29) holds for both Algorithms 2 and 3,
hence Assumption 4.22 is satisfied.

This follows from Lemmas C.2 and C.3 which can be found in Appendix C.3. The
generalisation to the d-dimensional setting is challenging and is thus left as a conjecture,
supported by the experiments in Fig. 2(a).

Conjecture 5.15. Suppose ψ satisfies (25). Then inequality (29) holds for Algorithms 2 and
3.

Theorem 5.16. Let {(X t , Vt )}t≥0 be the ZZS. Let {(X t , V t )}t≥0 be the process described in
xample 3.2. Assume that ψ satisfies (25) and that Conjecture 5.15 holds. Let G1 be given by

28). Then the conclusions of Theorem 4.24 hold.

In Fig. 3 we show some numerical results in the case of a Gaussian target. We observe that
he error in the estimation of the first component of the mean of the approximations is similar
o that of the continuous ZZS, while the error for the radius statistic, i.e. t(x) =

∑d
i=1 x2

i ,
btained with the approximations decreases to that of the ZZS as δ becomes smaller.
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Fig. 2. Plots of the estimates of E[G(X t , Vt )] and E[G(X t , V t )], which are respectively for the continuous
ime PDMPs and their approximations for several values of the step size. The plots show the average of 105

xperiments. The continuous PDMPs have a 25-dimensional standard Gaussian as stationary measure. Here we
hoose λ((x, v), s; δ) = λ(x, v). For each experiment X0, X0 are given by an independent realisation of the sum of

a 25-dimensional standard Gaussian and a uniform random variable on [0, 1]25, while V0, V 0 are drawn from the
tationary distribution of the continuous time PDMP.

xample 5.17 (BPS Continued). Let us discuss the assumptions of Theorem 4.24 for the
pproximation of BPS as given in Example 3.3, 5.2, and 5.5. Since this approximation is based
n Algorithm 3 it is sufficient to check Assumptions 4.20 and 4.22. Conditions under which
ssumption 4.20 holds are given in [23,25]. To be concrete we concentrate on [23], in which

he Lyapunov function is given by

G(x, v) =
e

1
2ψ(x)

√
λ(x,−v)

.

Here at refreshment times a new velocity vector is drawn from the uniform distribution
on the unit sphere. In Fig. 2(b) we estimate the moments of G for the continuous time

PS with a 25-dimensional standard Gaussian target and compare it to the approximations
btained by applying Algorithm 3 for several values of δ. We observe that the moments of

the approximations resemble the continuous BPS and E[G(X t , V t )] appears to be bounded
niformly in time. Therefore we conjecture that Theorem 4.24 holds under the assumptions
f [23] for approximations of the BPS according to Algorithm 3.

In Fig. 3 we compare the errors of the BPS and its approximations given by Algorithm 3
n the case of a Gaussian target. We observe that the approximations perform similarly to the
PS. Note that for this target measure the BPS and the approximation are both rotationally

nvariant so they both have mean zero and hence in Fig. 3(c) we do not see the effect of the
ias of the approximation.

xample 5.18 (Continuous Time Approximation of a PDMP). We continue our analysis of the
etting introduced in Example 5.6. We wish to extend the conclusions of Theorem 4.24 to the
ontinuous PDMP with generator L̃ given by (20).

heorem 5.19. Suppose both the PDMPs with generators L and L̃ satisfy Assumption 4.20
G and G̃ respectively, and with invariant measures µ and µ̃. Assume
ith Lyapunov functions
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Fig. 3. Errors in the estimation of the first component of the mean and radius statistic in the context of Fig. 2.
For the ZZS we take γ (x, v) = 0, while for the BPS we have λr = 1.

19) holds for some ε > 0. Moreover, suppose the approximation of the PDMP with generator
described in Example 5.6 satisfies Assumption 4.22 both for G and G̃. Set G1 = {g ∈ C(E) :

|g(x, v)| ≤ min{G(x, v), G̃(x, v)}}. Then for all g ∈ G1⏐⏐⏐Ez[g(Z t )] − Ez[g(Z̃ t )]
⏐⏐⏐ ≤ CεH (z).

oreover, letting t → ∞ we have

|µ(g) − µ̃(g)| ≤ Dε.

Hence, in the case of ZZS we recover the result obtained in Theorem 6.2 of [33].

. Proof of Theorem 4.9

We shall first prove the case of p = 1 in Section 6.1, and then in Section 6.2 we will use
the p = 1 setting as a base case in a proof by induction to obtain the result for p > 1.
122



A. Bertazzi, J. Bierkens and P. Dobson Stochastic Processes and their Applications 154 (2022) 91–153

w

3
s

w

c

w

w

C
U

6.1. The case of p = 1

To prove Theorem 4.9 in this setting we define a coupling of Z tn and Z tn that satisfies the
bounds in the statement. Then because the Wasserstein distance is defined as an infimum over
all couplings we immediately obtain

W1(PT (z, ·),PT (z, ·)) ≤ Ez[∥ZT − Z T ∥],

here the expectation on the right hand side is with respect to the specific coupling we consider.
Let us now introduce a general framework that contains both Algorithm 2 and Algorithm

. Denote the approximation process as Z tn with initial state Z0 = z. Then given the previous
tate Z tn define

τ̃ i
n+1 := inf

{
t ≥ 0 : 1 − exp

(
−

∫ t

0
λi (Z tn , s; δn+1)ds

)
≥ Ũ i

n+1

}
,

τ̃n+1 := min
i=1,...,m

τ̃ i
n+1, In+1 = arg min

i=1,...,m
τ̃ i

n+1

(30)

here Ũ 1
n+1, . . . , Ũ

m
n+1

i id
∼ Unif[0, 1]. Then the switching time of the process is

τ n+1 = τ n+1(τ̃n+1, δn+1),

with the requirement that τ n+1 ≤ δn+1 if and only if τ̃n+1 ≤ δn+1. In particular Algorithm 2
orresponds to the choice

τ n+1(τ̃n+1, δn+1) = δn+11{τ̃n+1≤δn+1} + ∞1{τ̃n+1>δn+1},

hile Algorithm 3 corresponds to

τ n+1(τ̃n+1, δn+1) = τ̃n+1.

The process can now be defined as follows:

Z tn+1 =

{
ϕδn+1

(Z tn ; δn+1) if τ n+1 > δn+1,

ϕδn+1−τn+1
(F In+1 (ϕτn+1

(Z tn ; δn+1),Un+1; δn+1); δn+1) if τ n+1 ≤ δn+1,

here Un+1 ∼ νU takes values in U .
Let us now define the coupling of Z tn and Z tn that we will use to prove Theorem 4.9.

oupling 6.1. Fix both processes up to time tn and let (Z tn+1 , Z tn+1 ) evolve as follows. Let

n+1 ∼ νU and Ũ 1
n+1, . . . , Ũ

m
n+1

i id
∼ Unif([0, 1]) be independent of each other and of Z tn and

Z tn . The coupling evolves as follows:

• Define the next switching time of the continuous process as

τ i
n+1 := inf

{
t ≥ 0 : 1 − exp

(
−

∫ t

0
λi (ϕs(Z tn ))ds

)
≥ Ũ i

n+1

}
,

τn+1 := min
i=1,...,m

τ i
n+1.

(31)

Then there are two cases:

– if τn+1 ≤ δn+1, then set Z tn+s = ϕs(Z tn ) for s ∈ (0, τn+1) and
Z tn+τn+1 = FIn+1 (ϕτn+1 (Z tn ),Un+1)
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where In+1 = arg mini τ
i
n+1. Then simulate the process independently of the rest for

the remaining time δn+1 − τn+1.
– if τn+1 > δn+1, then set Z tn+s = ϕs(Z tn ) for s ∈ (0, δn+1].

• Define τ̃n+1 as in Eq. (30), where Ũ 1
n+1, . . . , Ũ

m
n+1 is the same random variable used in

(31). Compute τ n+1 = τ n+1(τ̃n+1, δn+1). Then the approximation process evolves as:

– if τ n+1 ≤ δn+1, then set

Z tn+1 = ϕδn+1−τn+1
(F I n+1

(ϕτn+1
(Z tn ; δn+1),Un+1; δn+1); δn+1)

where Īn+1 = arg mini τ̃
i
n+1.

– if τ n+1 > δn+1, then set Z tn+1 = ϕδn+1
(Z tn ; δn+1).

herefore the first switching times of the two processes are coupled, and so is the eventual
andom jump. Once Z tn+1 and Z tn+1 have been obtained, repeat the same procedure to obtain

Z tn+2 and Z tn+2 .

We remark that the marginal distributions of each process are the correct one, and thus this
is indeed a valid coupling of the two processes.

In the proof that follows we simplify the notation denoting the approximations as ϕz(z),
λi (z, s), and F i (z,U ), instead of ϕz(z; δn+1), λi (z, s; δn+1), and F i (z,U ; δn+1).

Proof of Theorem 4.9. We begin by partitioning the space as

Ez[∥Z tn+1 − Z tn+1∥] = Ez[∥Z tn+1 − Z tn+1∥(1E00 + 1E11 + 1E10 + 1E01 )],

here Ei j for i, j = 0, 1 denotes the event in which there are i random events for the
pproximation process, while j = 0 denotes that no events take place for the continuous
rocess, and j = 1 that at least one event for the original process happens in the time interval
∈ [tn, tn+1). The four events are considered respectively in Lemmas A.4, A.5, A.6, and A.7.
ince the upper bounds in these results are non-decreasing functions of the time tn , we combine

he results of the Lemmas to obtain that there exist constants K1 = K1(tn+1) and K2 = K2(tn+1)
uch that

Ez[∥Z tn+1 − Z tn+1∥] ≤ (1 + δn+1 K1)Ez[∥Z tn − Z tn ∥] + δ2
n+1 K2.

ince the two processes start at the same point this implies, by recursion,

Ez[∥Z tn+1 − Z tn+1∥] ≤

n+1∑
k=1

K2δ
2
k

(
n+1∏
ℓ=k

(1 + δℓK1)

)
. (32)

In the setting when δn = δ the right hand side of (32) becomes a geometric series which leads
to the estimate

Ez[∥Z tn+1 − Z tn+1∥] ≤ δ2 (1 + δK1)n+1
− 1

(1 + δK1) − 1
K2

≤ δ
(
eK1(n+1)δ

− 1
) K2

K1
. □

(33)

.2. The case of p > 1

In order to simply the notation we shall restrict to the case δn = δ. To prove the result we
reason by induction on p. In particular, we consider the following inductive hypothesis. Fix

p ≥ 1 and n ≥ 1.
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Inductive Hypothesis 6.2. Suppose the PDMP satisfies Assumptions 4.1–4.3. Moreover
uppose the approximation given by Algorithm 5 satisfies Assumptions 4.4–4.7 hold for some
0 > 0. Given (Z tn , Z tn ) there exists a coupling (Z tn+1 , Z tn+1 ) with respective marginals
orresponding to Pδ(Z tn , ·),Pδ(Z tn , ·; δ, p) there exist A = A(T ), B = B(T ) independent
f n such that for any 0 < δ ≤ δ0

Ez[∥Z tn+1 − Z tn+1∥] ≤ Aδ p+1
+ (1 + Bδ)Ez[∥Z tn − Z tn ∥]. (34)

It is sufficient to show that the Inductive hypothesis holds and then the statement of
he Theorem follows by recursion in n as done in (33). Observe that the case p = 1,
hich corresponds to Algorithm 3, holds by the proof of Section 6.1. Suppose the Inductive
ypothesis holds for some p ≥ 1, let us consider the case of p+1. Let us define the following

oupling of (Z tn+1 , Z tn+1 ) given (Z tn , Z tn ).

oupling 6.3. Define for 0 ≤ t ≤ δ

λi
tot (z, z, t; δ, p + 1) = λi (z, t; δ, p + 1) + λi (ϕt (z)) + 1.

hen for i = 1, . . . ,m draw the proposed event times Ti with distribution given by

P(Ti > t) = exp
(

−

∫ t

0
λi

tot (Z tn , Z tn , r; δ, p + 1)dr
)
.

et Ti∗ = mini=1,...,m Ti and let i∗ be the argument that minimises Ti . If Ti∗ ≥ δ, then let
Z tn+1 = ϕδ(Z tn ), Z tn+1 = ϕδ(Z tn ; δ, p + 1).

Consider now the case in which Ti∗ < δ. Let U ∼ νU and U ∼ Unif([0, 1]) independent of
he Ti ’s and independent of each other. Then set

τ∗ = Ti∗ if U ≤
λi∗ (ϕTi∗ (Z tn ))

λi∗
tot (Z tn , Z tn , Ti∗; δ, p + 1)

,

i.e. the proposed event time is accepted for the continuous time process. Alternatively set
τ∗(z) = R for some constant R > δ. Similarly let

τ ∗ = Ti∗ if U ≤
λi∗ (Z tn , Ti∗; δ, p + 1)

λi∗
tot (Z tn , Z tn , Ti∗; δ, p + 1)

,

nd thus conditional on acceptance τ ∗ is the next event time for the approximation process. In
ase of rejection set τ ∗ = R for some constant R > δ as done above. Set Z tn+s = ϕs(z) and

Z tn+s = ϕs(Z tn ; δ, p + 1) for s ∈ [0, Ti∗ ). We distinguish three scenarios:

(1) The proposed switching time Ti∗ is accepted by both processes. Then set

Z tn+Ti∗ = Fi∗ (ϕTi∗ (Z tn ),U ),

Z tn+Ti∗ = F i∗ (ϕTi∗
(Z tn ; δ, p + 1),U ; δ, p + 1).

To get from time tn + Ti∗ to tn+1 we apply the coupling given by the Inductive
Hypothesis 6.2.

(2) The proposed switching time Ti∗ is accepted for one process, but rejected for the other.
To get from time tn +Ti∗ to tn+1 we let the two processes evolve independently according
to their marginal distributions.

(3) The proposed switching time Ti∗ is rejected by both processes. Then set ZTi∗ = ϕTi∗ (Z tn )
and Z Ti∗ = ϕTi∗

(Z tn ; δ, p+1). To get from time tn +Ti∗ to tn+1 we repeat this procedure
starting at time t + T ∗ and with δ replaced with δ − T ∗ .
n i i
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Proof of Theorem 4.9. Assume Z0 = Z0 = z. Suppose that (34) holds for some p ≥ 1. We
ill show that (34) then follows for p replaced p + 1 by using Coupling 6.3.
Suppose first that Ti∗ > δ. Then the two processes follow the deterministic flow and by

ssumption 4.4 with order p + 1 and Lemma A.2 we have

Ez[∥Z tn+1 − Z tn+1∥1Ti∗>δ] = Ez[∥ϕδ(Z tn ) − ϕδ(Z tn ; δ, p + 1)∥1Ti∗>δ]

≤ (1 + CC ′δ)Ez[∥Z tn+1 − Z tn+1∥] + C̃ p+2.

Let us consider the case (1) in Coupling 6.3 and denote the corresponding event as E1. Then
sing the Inductive Hypothesis 6.2

Ez[∥Z tn+1 − Z tn+1∥1E1 ] = EzEz[∥Z tn+1 − Z tn+1∥1E1 |Ti∗ ]

≤ Ez[(Aδ p+1
+ (1 + Bδ)∥Z tn+Ti∗ − Z tn+Ti∗ ∥)1E1 ]

= Ez[(Aδ p+1

+ (1 + Bδ)∥Fi∗ (ϕTi∗ (Z tn ),U )−F i∗ (ϕTi∗
(Z tn ; δ, p + 1),U ; δ, p + 1)∥)1E1 ]

≤ Ez[(Aδ p+1
+ (1 + Bδ)(M1δ

p+1
+ D2∥ϕTi∗ (Z tn ) − ϕTi∗

(Z tn ; δ, p + 1)∥))1E1 ]

≤ Ez[(Aδ p+1
+ (1 + Bδ)(M1δ

p+1
+ D2(1 + CC ′δ)∥Z tn − Z tn ∥ + D2C̃δ p+2))1E1 ].

Here we used Assumption 4.2(b), and Lemma A.2. Then we take advantage of

Pz(Ti∗ < δ) ≤ 1 − exp(−δ(2L(tn+1, z, p + 1) + m)) ≤ δ(2L(tn+1, z, p + 1) + m)

o get

Ez[∥Z tn+1 − Z tn+1∥1E1 ] ≤ Ã1δ
p+2

+ (1 + B̃1δ)Ez[∥Z tn − Z tn ∥]

or suitable constants Ã1, B̃1 and taking advantage of δ < δ0.
Now consider the case (2) in Coupling 6.3 and denote the corresponding event as E2. Note

hat

Pz(E2|Z tn , Z tn ) = δ(2L(tn+1, z, p + 1) + m)
|λi∗ (ϕTi∗ (Z tn )) − λi∗ (Z tn , Ti∗; δ, p + 1)|

λi∗
tot (Z tn , Z tn , Ti∗; δ, p + 1)

.

sing Assumptions 4.1, 4.3, 4.6, and the triangle inequality we obtain

Pz(E2|Z tn , Z tn ) ≤ δ(2L(tn+1, z, p + 1) + m)(D4C ′
∥Z tn − Z tn ∥ + δ p+1 M2(Z tn )).

Therefore using Assumption 4.7

Ez[∥Z tn+1 − Z tn+1∥1E2 ] ≤ Ã2δ
p+2

+ (1 + B̃2δ)Ez[∥Z tn − Z tn ∥]

or some constants Ã2, B̃2.
Let us consider the case (3) in Coupling 6.3 and denote the corresponding event as E3.

ote that since case (3) involves repeating the coupling we may have to repeat this step an
rbitrary number of times. Let q denote the number of times we propose a candidate jumping
ime. If q < p + 2 then we must have reached case (1) or (2), so it is sufficient to use the
espective estimate derived above to get the desired result. On the other hand, the probability
hat q ≥ p + 2 is bounded by (2L(tn+1, z, p + 1) + m)p+2δ p+2, which gives us the correct

rder. □
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7. Proof of Theorem 4.17

7.1. The case of p = 1

To prove the result we define a coupling of the continuous process with the approximation
rocess. The intuitive idea is that, assuming the two processes are equal at the beginning of
he current time step, we can use Poisson thinning [24,36] to simulate a proposal for the next
vent time that is common to both processes. This is achieved by simulating a Poisson process
ith rate given by the sum of the rates of the two processes. The proposal is then accepted or

ejected individually for each process based on the correct switching rates. For this acceptance–
ejection step a common uniform random variable is used. If the proposal is accepted for both
rocesses, then a coupled event takes place, thus ensuring that the processes are equal after the
vent has happened. If the thinning step is successful it follows that the processes are equal
or all s ∈ (tn, tn+1] unless a second event takes place for the continuous time process in the
urrent time interval, which is an event with O(δ2

n+1) probability. Let us now give the formal
efinition of the coupling.

oupling 7.1. Let tn be the current time and assume Z tn = Z tn = zn . Define λi
tot (z, t; δn+1) =

λi (z, t; δn+1)+λi (ϕt (z))+1. Then for i = 1, . . . ,m draw the proposed event times Ti (zn) with
distribution

P(Ti (zn) ≤ t) = 1 − exp
(

−

∫ t

0
λi

tot (zn, r; δn+1)dr
)
.

et Ti∗ (z) = mini=1,...,m Ti (z). Now let Un+1 ∼ νU and U ∼ Unif([0, 1]) independent of the
Ti ’s and of Z tn . Then set

τ (zn) = Ti∗ (zn) if U ≤
λi∗ (ϕTi∗ (zn )(zn))

λi∗
tot (zn, Ti∗ (zn); δn+1)

, (35)

ence upon acceptance the proposed event time is the next switching time for the continuous
ime process. Alternatively set τ (zn) = R > δn+1 for some constant R ̸= Ti∗ (zn). Similarly let

τ (zn) = Ti∗ (zn) if U ≤
λi∗ (zn, Ti∗ (zn); δn+1)
λi∗

tot (zn, Ti∗ (zn); δn+1)
, (36)

nd thus conditional on acceptance τ (zn) is the next event time for the approximation process.
n case of rejection set τ (zn) = R > δn+1 for some constant R ̸= Ti∗ (zn) as done above.

If Ti∗ ≥ δn+1, then let Z tn+s = Z tn+s = ϕs(zn) for s ∈ (0, δn+1]. In this case the two
rocesses are equal at time tn+1.

Alternatively, we have Ti∗ < δn+1 and thus we set Z tn+s = Z tn+s = ϕs(zn) for s ∈

(0, Ti∗ (zn)). Then the continuous process evolves as follows:

• if τ (zn) = Ti∗ (zn), then set

Z tn+τ (zn ) = Fi∗ (ϕτ (zn )(zn),Un+1).

Then let the process evolve independently of the approximation until time tn+1.
• if τ (zn) ̸= Ti∗ (zn), the proposed event time is rejected and we let the process evolves

independently of the approximation until time tn+1.
n the other hand, the approximation process evolves as follows:
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• if τ (zn) = Ti∗ (z), set

Z tn+τ (zn ) = Fi∗ (ϕτ (zn )(zn),Un+1),

and finally Z tn+s = ϕs(Z tn+τ (zn )) for s ∈ (τ (zn), δn+1].
• if τ (zn) ̸= Ti∗ (zn), then repeat this procedure from the beginning starting at time

tn + Ti∗ (zn) and with step δn+1 − Ti∗ (zn).

emma 7.2. Under Assumption 4.14, there exists D(tn, z) > 0 such that

Pz(Z tn ̸= Z tn |Z tn−1 = Z tn−1 ) ≤ D(tn, z)δ2
n,

or D(tn, z) = (L1(tn, z)/2 + L2(tn, z) + L3(tn, z)/2).

roof. The proof is postponed to Appendix B.1. □

roof of Theorem 4.17. By the coupling inequality we have

∥Ptn (z, ·) − P tn (z, ·)∥T V ≤ Pz(Z tn ̸= Z tn )

nd thus it is sufficient to bound the right hand side. Apply Lemma 7.2 to obtain

Pz(Z tn ̸= Z tn ) = Pz(Z tn ̸= Z tn |Z tn−1 ̸= Z tn−1 )Pz(Z tn−1 ̸= Z tn−1 )

+ Pz(Z tn ̸= Z tn |Z tn−1 = Z tn−1 )(1 − Pz(Z tn−1 ̸= Z tn−1 ))

≤ Pz(Z tn−1 ̸= Z tn−1 ) + D(tn, z)δ2
n(1 − Pz(Z tn−1 ̸= Z tn−1 ))

= (1 − D(tn, z)δ2
n)Pz(Z tn−1 ̸= Z tn−1 ) + D(tn, z)δ2

n .

(37)

hus by recursion and since Z0 = Z0 = z it follows that

Pz(Z tn ̸= Z tn ) ≤

n∑
i=1

D(tn, z)δ2
i

n∏
ℓ=i+1

(1 − D(tn, z)δ2
ℓ ).

In particular if δn = δ for all n ∈ N we have that

Pz(Z tn ̸= Z tn ) ≤ D(tn, z)δ2
n−1∑
ℓ=0

(1 − D(tn, z)δ2)ℓ

≤ 1 − (1 − D(tn, z)δ2)n

≤ 1 − e−D(tn ,z)tnδ. □

7.2. The case of p > 1

In order to simplify the notation we shall restrict to the case δn = δ. To prove the result
e reason by induction on p similarly to Section 6.2. In particular, we consider the following

inductive hypothesis. Fix p ≥ 1 and n ≥ 1.

Inductive Hypothesis 7.3. Suppose λ satisfies Assumption 4.14 for some δ0 > 0. Given
Z tn = Z tn there exist a coupling (Z tn+1 , Z tn+1 ) with respective marginals corresponding to
Pδ(Z tn , ·), Pδ(Z tn , ·; δ, p), and constants A = A(T ), B = B(T ) independent of n such that for
ny 0 < δ ≤ δ0

P (Z ̸= Z |Z = Z ) ≤ Aδ p+1.
z tn+1 tn+1 tn tn
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It is sufficient to show that the Inductive hypothesis holds and the statement of the Theorem
ollows by recursion in n as done in (37). Observe that the case p = 1 holds by the proof of
ection 7.1. To obtain the result we use Coupling 6.3 but with ϕ = ϕ, F i = Fi , and replacing
nductive Hypothesis 6.2 with Inductive Hypothesis 7.3. Because the strategy is similar to that
n Section 6.2 we postpone the formal proof to Appendix B.2.

. Proof of Theorem 4.24

Recall in Section 6.1 we introduced a general framework which includes both Algorithms 2
nd 3. We now introduce some further notation. Let pz,δ,i

τ be a probability measure on [0,∞]
which denotes the law of τ for Algorithm i with initial condition at z for a time step of length
δ. Note that for Algorithm 2 we have pz,δ,i

τ is a point measure with

pz,δ,2
τ ({δ}) = 1 − e−

∫ δ
0 λ(z,s;δ)ds,

pz,δ,2
τ ({+∞}) = e−

∫ δ
0 λ(z,s;δ)ds .

(38)

n the other hand, in the case of Algorithm 3 pz,δ,3
τ admits a density which is given by

pz,δ,3
τ (ds) = λ(z, s; δ) exp

(
−

∫ s

0
λ(z, r; δ)dr

)
ds. (39)

roof of Theorem 4.24. Fix g ∈ G1. Then by a telescoping sum we have

Ez[g(Z tn )] − Ez[g(Z tn )] =

n−1∑
k=0

(Ez[Ptn−tk+1 g(Z tk+1 )] − Ez[Ptn−tk g(Z tk )]).

or each k ∈ {0, . . . , n − 1}, set fk(y, s) = Ptn−tk−s g(y) then we have

Ez[g(Z tn )] − Ez[g(Z tn )] =

n−1∑
k=0

Ez[ fk(Z tk+1 , δk+1) − fk(Z tk , 0)].

y conditioning on Z tk it is sufficient to prove that

|Ez[ fk(Z δk+1 , δk+1)] − fk(z, 0)| ≤ Re−ω(tn−tk+1)G i (z)δ2
k+1. (40)

Here with an abuse of notation we have denoted as Z δk+1 the approximation process with initial
ondition at z and step size δk+1. Indeed if we have that (40) holds then by Assumption 4.22

we have

|Ez[g(Z tn )] − Ez[g(Z tn )]| ≤ R
n−1∑
k=0

e−ω(tn−tk+1)δ2
k+1Ez[G i (Z tk )]

≤ RC Sn Hi (z).

hich gives the desired result. It remains to show that (40) holds.
Using that the approximation process jumps according to Q at a time determined by pz,δk+1,i

τ

e can evaluate the expectations

Ez[ fk(Z δk+1 , δk+1)] − [ fk(z, 0)] =

= E [ f (Z , δ )] − f (ϕ (z), δ ) + f (ϕ (z), δ ) − f (z, 0)
z k δk+1 k+1 k δk+1 k+1 k δk+1 k+1 k
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=

∫ δk+1

0
Q( fk(ϕδk+1−s(·), δk+1))(ϕs(z)) − fk(ϕδk+1 (z), δk+1)pz,δk+1,i

τ (ds)

+ fk(ϕδk+1 (z), δk+1) − fk(z, 0).

Recall pz,δ,2
τ (pz,δ,3

τ respectively) is defined in (38) (resp. (39)). Using the fundamental Theorem
of calculus we can rewrite this as

Ez[ fk(Z δk+1 , δk+1)] − fk(z, 0) =

=

∫ δk+1

0
Q( fk(ϕδk+1−s(·), δk+1))(ϕs(z)) − fk(ϕδk+1 (z), δk+1)pz,δk+1,i

τ (ds)

+

∫ δk+1

0

d
dr

fk(ϕr (z), r )dr

=

∫ δk+1

0
Q( fk(ϕδk+1−s(·), δk+1))(φs(z)) − fk(ϕδk+1 (z), δk+1)pz,δk+1,i

τ (ds)

+

∫ δk+1

0
⟨Φ(ϕr (z)),∇ fk(ϕr (z), r )⟩ + (∂s fk)(ϕr (z), r )dr.

ote that ∂s fk(y, s) = −L fk(y, s)

Ez[ fk(Z δk+1 , δk+1)] − fk(z, 0) =

=

∫ δk+1

0
Q( fk(ϕδk+1−s(·), δk+1))(ϕs(z)) − fk(ϕδk+1 (z), δk+1)pz,δk+1,i

τ (ds)

+

∫ δk+1

0
⟨Φ(ϕr (z)),∇ fk(ϕr (z), r )⟩ − L fk(ϕr (z), r )dr.

ecall L is given by (5) so we can write the above as

Ez[ fk(Z δk+1 , δk+1)] − fk(z, 0) =

=

∫ δk+1

0
Q( fk(ϕδk+1−s(·), δk+1))(ϕs(z)) − fk(ϕδk+1 (z), δk+1)pz,δk+1,i

τ (ds)

+

∫ δk+1

0
−λ(ϕr (z))[Q( fk(·, r ))(ϕr (z)) − fk(ϕr (z), r )]dr.

e rewrite this as

Ez[ fk(Z δk+1 , δk+1)] − fk(z, 0) =

=

∫ δk+1

0

(
Q( fk(ϕδk+1−s(·), δk+1))(ϕs(z))− fk(ϕδk+1 (z), δk+1)

)
(pz,δk+1,i
τ (ds)−λ(ϕs(z))ds)

−

∫ δk+1

0
λ(ϕr (z))[Q( fk(·, r ))(ϕr (z)) − Q( fk(ϕδk+1−r (·), δk+1))(ϕr (z))]dr (41)

−

∫ δk+1

0
λ(ϕr (z))[ fk(ϕδk+1 (z), δk+1) − fk(ϕr (z), r )]dr.

We will divide the remainder of the proof into 3 steps:

Step (i): For this step we distinguish between Algorithm 2 and 3. Let

h = Q( f (ϕ (·), δ ))(ϕ (z)) − f (ϕ (z), δ ).
s k δk+1−s k+1 s k δk+1 k+1
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Then we will show that there exists a constant R > 0 such that for any h ∈ C1
b ([0, δ])

(for Algorithm 3 we only need h ∈ Cb([0, δ])) we have⏐⏐⏐⏐∫ δk+1

0
hs(pz,δk+1,i

τ (ds) − λ(ϕs(z))ds)
⏐⏐⏐⏐ ≤ Re−ω(tn−tk+1)δ2

k+1 sup
s,r∈[0,δ0]

Ki (z, s, r )

(42)

where Ki is as in Assumption 4.22.
Step (ii): For any z ∈ E, r ∈ [0, δk+1] we have

| fk(ϕδk+1 (z), δk+1) − fk(ϕr (z), r )| ≤

≤ R1

∫ δk+1

r
e−ω(tn−tk−s)λ(ϕs(z))(QG(ϕs(z)) + G(ϕs(z)))ds.

(43)

Step (iii): For any z ∈ E, r ∈ [0, δk+1] we have

|Q( fk(ϕδk+1−r (·), δk+1))(z) − Q( fk(·, r ))(z)| ≤

≤ R1

∫ δk+1

r
e−ω(tn−tk−s) Q((QG + G)λ)(ϕs−r (z))ds.

(44)

Eq. (40) follows from Step (i), (ii), (iii) and (41), as this gives

Ez[ fk(Z δk+1 , δk+1)] − fk(z, 0) ≤ Re−ω(tn−tk+1)δ2
k+1 sup

s,r∈[0,δ0]
Ki (z, r, s)

+

∫ δk+1

0
λ(ϕr (z))R1

∫ δk+1

r
e−ω(tn−tk−s) Q(λ[QG + G])(ϕs−r (z))dsdr

+

∫ δk+1

0
λ(ϕr (z))R1

∫ δk+1

r
e−ω(tn−tk−s)λ(ϕs(z))[QG(ϕs(z)) + G(ϕs(z))]dsdr.

ecall that G i (z, r, s) is given by (12), then we have

|Ez[ fk(Z δk+1 , δk+1)] − fk(z, 0)| ≤ Re−ω(tn−tk+1)δ2
k+1 sup

s,r∈[0,δ0]
G i (z, r, s).

Proof of Step (i): This step follows from Lemma C.1. It remains to find a bound for |hs |

nd |∂shs | for the case of Algorithm 2. By Assumption 4.20

|hs | =
⏐⏐Q( fk(ϕδk+1−s(·), δk+1))(ϕs(z)) − fk(ϕδk+1 (z), δk+1)

⏐⏐
≤
⏐⏐Q( fk(ϕδk+1−s(·), δk+1))(ϕs(z)) − µ( fk(ϕδk+1−s(·), δk+1))

⏐⏐
+
⏐⏐µ( fk(ϕδk+1−s(·), δk+1)) − fk ◦ ϕδk+1−s(ϕs(z), δk+1)

⏐⏐
≤ R1e−ω(tn−tk+1)[QG(ϕs(z)) + G(ϕs(z))]. (45)

For Algorithm 2 we also require to control |∂shs | for which we require a bound on the
erivative of f , for this case we use Assumption 4.21. Note that

∂shs =

⏐⏐⏐⟨Φ(ϕs(z)),∇z(Q( fk(ϕδk+1−s(·), δk+1)))(ϕs(z))⟩

− Q(⟨Φ,∇z( fk(ϕδk+1−s(·), δk+1))⟩)(ϕs(z))
⏐⏐⏐

= [Φ, Q]( fk(ϕδk+1−s(·), δk+1))(ϕs(z)).

ecall here we have defined the commutator in Section 2 and we are denoting by Φ the
ifferential operator corresponding to Φ. This term is bounded by Assumption 4.21 and we
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have

|∂shs | ≤ R2e−ω(tn−tk+1)G(z). (46)

ombining Lemma C.1 with (45) and (46) we have that (42) holds.
Proof of Step (ii): Observe that since ∂s fk(y, s) + ⟨Φ(y),∇ fk(y, s)⟩ = −λ(y)[Q fk(y, s) −

fk(y, s)] we have

| fk(ϕδk+1 (z), δk+1) − fk(ϕr (z), r )| =

⏐⏐⏐⏐∫ δk+1

r

d
ds

fk(ϕs(z), s)ds
⏐⏐⏐⏐

=

⏐⏐⏐⏐∫ δk+1

r
λ(ϕs(z))[Q fk(ϕs(z), s) − fk(ϕs(z), s)]ds

⏐⏐⏐⏐
≤

∫ δk+1

r
λ(ϕs(z))[|Q fk(ϕs(z), s) − µ(Q( fk(·, s)))| + |µ( fk(·, s)) − fk(ϕs(z), s)|]ds.

e can bound this using Assumption 4.20 we obtain (43).
Proof of Step (iii): Applying (43) with z replaced by ϕ−r (y) and applying Q we have

(44). □
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Appendix A. Proofs of Section 4.1

A.1. Proof of Theorem 4.9

In this section we prove the lemmas that are used to prove Theorem 4.9 in the case p = 1. In
the proofs that follow we simplify the notation denoting the approximations as ϕz(z), λi (z, s),
and F i (z,U ), instead of ϕz(z; δn+1), λi (z, s; δn+1), and F i (z,U ; δn+1). Before proving bounds
on the events Ei j , let us state three simple lemmas which will be used multiple times in the
proof. The proofs are omitted as they are a straightforward consequence of the assumptions.

Lemma A.1. Assumption 4.1 implies that for any δ0 > 0 there exists a constant C ′
= C ′(δ0) >

such that for any z, z′
∈ E and t ∈ (0, δ0) it holds that

∥ϕt (z) − ϕt (z′)∥ ≤ C ′
∥z − z′

∥. (47)

oreover, for any t ∈ (0, δ0) and any z, z′
∈ E we have the alternative bound

∥ϕ (z) − ϕ (z′)∥ ≤ (1 + CC ′t)∥z − z′
∥.
t t
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Lemma A.2. Suppose Assumptions 4.1 and 4.4 hold. Then for any p ≥ 1, s ≥ 0 and z, z′
∈ E

t holds that

∥ϕs(z) − ϕs(z′)∥ ≤ C ′
∥z − z′

∥ + C̃s p+1.

Moreover, using Lemma A.1 we can replace C ′ with 1 + CC ′δ.

Lemma A.3. Under Assumptions 4.3, 4.6, and 4.7, for any t ≥ 0, p ≥ 1 there exists a
positive constant L(t, z, p) such that

sup
r∈[0,t],s∈[0,δ0]

max{λ(Zr ), λ(Z r , s; δn+1, p)} ≤ L(t, z, p) a.s.

where in particular z = Z0 = Z0. Note if p = 1 we write L(t, z, 1) = L(t, z).

We can now start showing a bound on event E00, followed by the other events.

Lemma A.4. Under Assumptions 4.1 and 4.4, it holds that

Ez[∥Z tn+1 − Z tn+1∥1E00 ] ≤ (1 + δn+1CC ′)Ez[∥Z tn − Z tn ∥] + C̃δ2
n+1.

Proof. On E00 we are interested only in the error introduced by the integrator ϕ. We have

Ez[∥Z tn+1 − Z tn+1∥1E00 ] = Ez

[ϕδn+1 (Z tn ) − ϕδn+1
(Z tn )

1E00

]
≤ Ez

[ϕδn+1 (Z tn ) − ϕδn+1 (Z tn )
]

+ Ez

[ϕδn+1 (Z tn ) − ϕδn+1
(Z tn )

] ,
hen one can directly apply to the first term Assumption 4.1 and thus Lemma A.1, together
ith the assumption that δn ≤ δ0, and to the second term Assumption 4.4 to obtain the wanted

esult for C ′
= C ′(δ0). □

emma A.5. Under Assumption 4.1, parts (b) and (c) of Assumption 4.2, as well as
Assumptions 4.3–4.7, it holds that

Ez[∥Z tn+1 − Z tn+1∥1E11 ] ≤ δ2
n+1

(
mK2 + m(m − 1)K̃2 + 2B(tn+1, z)(L(tn+1, z))2)

+ δn+1(mK1 + m(m − 1)K̃1)Ez
[
∥Z tn − Z tn ∥

]
,

here L(tn+1, z) was defined in Lemma A.3, while

K1 = D2(C ′)2L(tn+1, z),

K2 = (D2C̃C ′
+ L(tn+1, z)(2D3 + M1C ′)),

K̃1 = D2(C ′)2(L(tn+1, z))2,

K̃2 = (D2C̃C ′
+ (L(tn+1, z))2)(2D3 + M1C ′).

roof. Let us first restrict to the event that Zs has only one event for s ∈ (tn, tn+1] and denote
uch event as E . For any i, j ∈ {1, . . . ,m}, let Ai j be the event that Z tn jumps according to Fi
nd Z tn jumps according to F j and no other jumps occur. Note that {Ai j }

m
i, j=1 is a partition of

E11 ∩ E so we may write

Ez[∥Z tn+1 − Z tn+1∥1E11∩E ] =

m∑
Ez[∥Z tn+1 − Z tn+1∥1Ai j ].
i, j=1
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Let us first consider event Ai i , i.e. the processes have a switch according to kernels Fi and
F i . Considering Coupling 6.1, we first observe that Ai i is an order δn+1 event. This follows
rom the fact that in this case we require

Ũ i
n+1 ≤ min

{
1 − exp

(
−

∫ δn+1

0
λi (Z tn , s)ds

)
, 1 − exp

(
−

∫ δn+1

0
λi (ϕs(Z tn ))ds

)}
.

herefore, using that 1 − exp(−z) ≤ z we obtain

Ez
[
1Ai i |Z tn , Z tn

]
≤ min

{∫ δn+1

0
λi (Z tn , s)ds,

∫ δn+1

0
λi (ϕs(Z tn ))ds

}
≤ δn+1L(tn+1, z),

(48)

here L(tn+1, z) < ∞ was defined in Lemma A.3. We can then separate the effects of the
ifferent approximations by the triangle inequality:

Ez
[
∥Z tn+1 − Z tn+1∥1Ai i

]
=

= Ez[∥ϕδn+1−τn+1 (Fi (ϕτn+1 (Z tn ),Un+1)) − ϕδn+1−τn+1
(F i (ϕτn+1

(Z tn ),Un+1))∥1Ai i ]

≤ Ez
[
∥ϕδn+1−τn+1 (Fi (ϕτn+1 (Z tn ),Un+1)) − ϕδn+1−τn+1 Fi (ϕτn+1 (Z tn ),Un+1)∥1Ai i

]
(*)

+ Ez

[
∥ϕδn+1−τn+1 (Fi (ϕτn+1 (Z tn ),Un+1)) − ϕδn+1−τn+1 (Fi (ϕτn+1

(Z tn ),Un+1))∥1Ai i

]
(**)

+ Ez

[
∥ϕδn+1−τn+1 (Fi (ϕτn+1

(Z tn ),Un+1)) − ϕδn+1−τn+1 (F i (ϕτn+1
(Z tn ),Un+1))∥1Ai i

]
(***)

+ Ez

[
∥ϕδn+1−τn+1 (F i (ϕτn+1

(Z tn ),Un+1)) − ϕδn+1−τn+1
(F i (ϕτn+1

(Z tn ),Un+1))∥1Ai i

]
.

(****)

or term (*) we first compare both terms to Fi (ϕδn+1 (Z tn ),Un+1), and then we condition on all
andom variables apart from Un+1 in order to apply Assumption 4.2(c):

(*) ≤ Ez
[
∥ϕδn+1−τn+1 (Fi (ϕτn+1 (Z tn ),Un+1)) − Fi (ϕδn+1 (Z tn ),Un+1)∥1Ai i

]
+ Ez

[
∥Fi (ϕδn+1 (Z tn ),Un+1) − ϕδn+1−τn+1 Fi (ϕτn+1 (Z tn ),Un+1)∥1Ai i

]
≤ 2D3δn+1Pz(Ai i )

≤ δ2
n+12D3L(tn+1, z).

n the last inequality we used the inequality derived in (48). Term (**) can be bounded applying
nequality (47), then conditioning on Z tn , Z tn , τ n+1 and using Assumption 4.2(b), and finally

applying Lemma A.2 and (48):

(**) ≤ C ′Ez

[
∥Fi (ϕτn+1 (Z tn ),Un+1) − Fi (ϕτn+1

(Z tn ),Un+1)∥1Ai i

]
≤ C ′ D2Ez

[
∥ϕτn+1 (Z tn ) − ϕτn+1

(Z tn )∥1Ai i

]
≤ (C ′)2 D2Ez[∥Z tn − Z tn ∥1Ai i ] + δ2

n+1C ′ D2C̃
′ 2 2 ′ ˜

(49)
≤ (C ) D2L(tn+1, z)δn+1Ez[∥Z tn − Z tn ∥] + δn+1C D2C .
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Term (***) is estimated by inequality (47), then again conditioning on Z tn , Z tn , τ n+1 and
pplying Assumption 4.5, and finally using (48):

(***) ≤ C ′Ez

[
∥Fi (ϕτn+1

(Z tn ),Un+1) − F i (ϕτn+1
(Z tn ),Un+1)∥1Ai i

]
≤ C ′M1δn+1Pz(Ai i )

≤ δ2
n+1C ′M1L(tn+1, z).

(50)

erm (****) is bounded using Assumption 4.4 and bounding by 1 the probability of Ai i :

(****) ≤ C̃δ2
n+1Pz(Ai i ) ≤ C̃δ2

n+1.

utting together terms (*), (**), (***), (****) we obtain the following bound on event Ai i :

Ez
[
∥Z tn+1 − Z tn+1∥1Ai i

]
≤ δ2

n+1 K2 + δn+1 K1Ez
[
∥Z tn − Z tn ∥

]
(51)

here K1, K2 are as in the statement of the lemma. Now consider event Ai j for i ̸= j . In this
case we take advantage of independence of Ũ i

n+1 and Ũ j
n+1 to conclude that

Ez[1Ai j |Z tn , Z tn ] ≤

≤

(
1 − exp

(
−

∫ δn+1

0
λi (ϕs(Z tn ))ds

))(
1 − exp

(
−

∫ δn+1

0
λ j (Z tn , s)ds

))
≤

∫ δn+1

0
λi (ϕs(Z tn ))ds

∫ δn+1

0
λ j (Z tn , s)ds

≤ δ2
n+1(L(tn+1, z))2. (52)

hen we can use the decomposition

Ez[∥Z tn+1 − Z tn+1∥1Ai j ] =

= Ez[∥ϕδn+1−τn+1 (Fi (ϕτn+1 (Z tn ),Un+1)) − ϕδn+1−τn+1
(F j (ϕτn+1

(Z tn ),Un+1))∥1Ai j ]

≤ Ez[∥ϕδn+1−τn+1 (Fi (ϕτn+1 (Z tn ),Un+1)) − Fi (ϕδn+1 (Z tn ),Un+1)∥1Ai j ] (†)

+ Ez[∥Fi (ϕδn+1 (Z tn ),Un+1) − F j (ϕδn+1 (Z tn ),Un+1)∥1Ai j ] (‡)

+ Ez[∥F j (ϕδn+1 (Z tn ),Un+1) − ϕδn+1−τn+1 (F j (ϕτn+1 (Z tn ),Un+1))∥1Ai j ] (‡†)

+ Ez[∥ϕδn+1−τn+1 (F j (ϕτn+1 (Z tn ),Un+1)) − ϕδn+1−τn+1
(F j (ϕτn+1

(Z tn ),Un+1))∥1Ai j ] (‡‡)

To bound (†) and (‡†) we use Assumption 4.2(c), while for (‡) we add and subtract ϕδn+1 (Z tn )
nd use Assumption 4.2(a), and for (‡‡) we use a similar argument to the Ai i case. Combining

this with the bound in (52) we obtain

Ez[∥Z tn+1 − Z tn+1∥1Ai j ] ≤ ((L(tn+1, z))2(2D3 + D1) + K̃2)δ2
n+1

+ δn+1 K̃1Ez
[
∥Z tn − Z tn ∥

]
where K̃ , K̃ are as in the statement of the lemma.
1 2
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Let us finally consider E
c
, i.e. the case in which Z t has two or more jumps. The probability

this event is given by

Pz(E
c
) = Ez

[ ∫ δn+1

0

(
1 − exp

(
−

∫ δn+1−t

0
λ(ϕs(FIn+1 (ϕt (Z tn ),Un+1)))ds

))
λ(ϕt (Z tn )) exp

(
−

∫ t

0
λ(ϕr (Z tn ))dr

)
dt
]

≤ Ez

[∫ δn+1

0

(∫ δn+1−t

0
λ(ϕs(FIn+1 (ϕt (z),Un+1)))ds

)
λ(ϕt (z))dt

]
≤ δ2

n+1(L(tn+1, z))2.

(53)

hen we can bound the norms ∥Z tn+1∥ and ∥Z tn+1∥ by Assumption 4.7 to obtain

Ez

[
∥Z tn+1 − Z tn+1∥1E11∩Ec

]
≤ 2B(tn+1, z)Ez

[
1Ec

]
≤ 2δ2

n+1 B(tn+1, z)(L(tn+1, z))2.
(54)

ombining the bounds on E and E
c

we obtain the statement of the lemma. □

emma A.6. Under Assumptions 4.1, 4.2(a), 4.3–4.7, it holds that

Ez
[

∥Z tn+1 − Z tn+1∥1E10

]
≤ δn+1 m(C ′)2(D1 D4 + 2D2L(tn+1, z))Ez

[
∥Z tn − Z tn ∥

]
+ δ2

n+1(C̃ + C ′(D2C̃ + m D1 M2(tn, z) + 2mM1L(tn+1, z))).

Proof. Recall that E10 is the event in which there are no switches for Zs for s ∈ (tn, tn+1] and

here is one event for the approximation. Taking advantage of the coupling of the two processes

s described in Coupling 6.1 we find that E10 takes place as long as for some i

Ũ i
n+1 ∈

(
1 − exp

(
−

∫ δn+1

0
λi (ϕs(Z tn ))ds

)
, 1 − exp

(
−

∫ δn+1

0
λi (Z tn , s)ds

)]
.

hen we can estimate the probability of this event as follows:

Ez[1E10 |Z tn , Z tn ] ≤

m∑
i=1

⏐⏐⏐⏐exp
(

−

∫ δn+1

0
λi (ϕs(Z tn ))ds

)
− exp

(
−

∫ δn+1

0
λi (Z tn , s)ds

)⏐⏐⏐⏐
≤

m∑
i=1

∫ δn+1

0

⏐⏐λi (ϕs(Z tn )) − λi (Z tn , s)
⏐⏐ ds

here we used that exp(−z) is 1-Lipschitz for z ≥ 0. Then we find bounds for Ez[1E10 ] and
z[1E10 |Z tn , Z tn ] respectively. For the first case we use the triangle inequality, followed by

bserving that λ and ϕ are Lipschitz by the inequality shown in (47) and then Assumption 4.6:
s
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Ez[1E10 ] ≤

m∑
i=1

Ez

[ ∫ δn+1

0

⏐⏐λi (ϕs(Z tn )) − λi (ϕs(Z tn ))
⏐⏐ ds

+

∫ δn+1

0

⏐⏐λi (ϕs(Z tn )) − λi (Z tn , s)
⏐⏐ ds

]
≤

m∑
i=1

Ez

[∫ δn+1

0
D4C ′

∥Z tn − Z tn ∥ds +

∫ δn+1

0
δn+1 M2(Z tn )ds

]
≤ δn+1m D4C ′Ez[∥Z tn − Z tn ∥] + mδ2

n+1Ez[M2(Z tn )]

≤ δn+1m D4C ′Ez[∥Z tn − Z tn ∥] + δ2
n+1mM2(tn, z),

(55)

here in the last inequality we used again Assumption 4.6. Alternatively, we can bound the
witching rates by Lemma A.3:

Ez[1E10 |Z tn , Z tn ] ≤

m∑
i=1

∫ δn+1

0

(
|λi (ϕs(Z tn ))| + |λi (Z tn , s)|

)
ds

≤ 2mδn+1L(tn+1, z),

(56)

Let us now focus on bounding the distance between the two processes. On event E10 we
ave Z tn+1 = ϕδn+1 (Z tn ), while Z tn+1 = ϕδn+1−τn+1

(F(ϕτn+1
(Z tn ),Un+1)) where τ n+1 is the time

f the event for the approximation. By triangle inequality we can decompose the distance in
he following terms

Ez[∥Z tn+1 − Z tn+1∥1E10 ] =

= Ez

[
∥ϕδn+1 (Z tn ) − ϕδn+1−τn+1

(F Īn+1
(ϕτn+1

(Z tn ),Un+1))∥1E10

]
≤ Ez

[
∥ϕδn+1 (Z tn ) − ϕδn+1−τn+1 (FĪn+1

(ϕτn+1 (Z tn ),Un+1))∥1E10

]
(*)

+ Ez

[
∥ϕδn+1−τn+1 (FĪn+1

(ϕτn+1 (Z tn ),Un+1)) (**)

− ϕδn+1−τn+1 (FĪn+1
(ϕτn+1

(Z tn ),Un+1))∥1E10

]
+ Ez

[
∥ϕδn+1−τn+1 (FĪn+1

(ϕτn+1
(Z tn ),Un+1)) (***)

− ϕδn+1−τn+1
(F Īn+1

(ϕτn+1
(Z tn ),Un+1))∥1E10

]
= (∗) + (∗∗) + (∗ ∗ ∗).

n order to estimate term (*) we apply inequality (47), then Assumption 4.2(a) by conditioning
n Z tn , τ n+1, and then we apply (55):

(*) ≤ C ′Ez[∥ϕτn+1 (Z tn ) − FĪn+1
(ϕτn+1 (Z tn ),Un+1)∥1E10 ]

≤ C ′ D1Ez[1E10 ]

≤ δn+1m D4(C ′)2 D1Ez[∥Z tn − Z tn ∥] + δ2
n+1mC ′ D1 M2(tn, z).

(57)

For term (**) we use the same reasoning of (49) together with the estimate (56):

(**) ≤ δn+1m2L(tn+1, z)(C ′)2 D2Ez[∥Z tn − Z tn ∥] + C ′ D2C̃δ2
n+1.

hen for term (***) we follow the reasoning in (50) and apply estimate (56) to obtain

(***) ≤ δ2 (
2 mC ′M L(t , z) + C̃

)
.
n+1 1 n+1
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The statement of the lemma follows then by combining estimates (*), (**), (***). □

Lemma A.7. Under Assumptions 4.1, 4.2(a), 4.3, 4.4, 4.6, 4.7, it holds that

Ez
[
∥Z tn+1 − Z tn+1∥1E01

]
≤ δn+1 mC ′

(
L(tn+1, z) + C ′ D1 D4

)
Ez
[
∥Z tn − Z tn ∥

]
+ δ2

n+1

(
2B(tn+1, z)(L(tn+1, z))2

+ mC ′ D1 M2(tn, z) + C̃
)
.

Proof. Recall that E01 is the event in which for s ∈ [tn, tn+1) there are no switches for Z s ,
hile there is at least one event for Zs . Similarly to the proof of Lemma A.5, let us denote as

E the event in which there is exactly one event for Zs in the current time interval. On E
c

we
an use the bound (54). On E

Ez[∥Z tn+1 − Z tn+1∥1E01∩E ] =

= Ez

[ϕδn+1−τn+1 (FIn+1 (ϕτn+1 (Z tn ),Un+1)) − ϕδn+1
(Z tn )

1E01∩E

]
≤ Ez

[ϕδn+1−τn+1 (FIn+1 (ϕτn+1 (Z tn ),Un+1)) − ϕδn+1 (Z tn )
1E01∩E

]
(*)

+ Ez

[
∥ϕδn+1 (Z tn ) − ϕδn+1

(Z tn )∥1E01∩E

]
. (**)

n order to find an estimate for term (*) observe that the probability of E01 can be estimated
imilarly to what done for the probability of E10. Then following the reasoning in (57) we
btain

(*) ≤ δn+1m(C ′)2 D1 D4Ez[∥Z tn − Z tn ∥] + δ2
n+1mC ′ D1 M2(tn, z).

Similarly, for term (**) it is sufficient to apply Lemma A.2 and then to bound E[1E01 ] by the
probability that the continuous process has a random event:

(**) ≤ δn+1mC ′L(tn+1, z)Ez
[
∥Z tn − Z tn ∥

]
+ C̃δ2

n+1. □

.2. Proof of Corollary 4.11

roof. We only need to show that Assumptions 4.2 and 4.7 are verified in this setting under
ssumption 4.10. Clearly the process moves with bounded velocity, and thus 4.7 holds. Then

et us focus on verifying Assumption 4.2 and consider the ℓ1-norm. For part (a) it is clear that
or z = (x, v)

E[∥z − Fi (z, Ũ )∥] = E[∥v − Fv
i ((x, v), Ũ )∥] ≤ Vmax .

hen consider part (b). For z′
= (y, w)

E[∥Fi (z, Ũ ) − Fi (z′, Ũ )∥] ≤ ∥x − y∥ + E[∥Fv
i ((x, v), Ũ ) − Fv

i ((y, w), Ũ )∥]

≤ ∥x − y∥ +
∥v − w∥

Vmin
Vmax + E[∥Fv

i ((x, w), Ũ ) − Fv
i ((y, w), Ũ )∥]

≤ max
{

Vmax

Vmin
, 1 + D

}
∥z − z′

∥.

n the second inequality we used the triangle inequality and that ∥v−w∥ ≥ Vmin , while in the
ast inequality we bounded the rightmost term by Assumption 4.10. Let us focus on part (c).
or the position part we have for s ∈ [0, δ] and z = (x, v)

E[∥ϕ (ϕ (z), Fv((ϕ (z), v), Ũ )) − ϕ (z)∥] =
δ−s s i s δ
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[x +

∫ s

0
Φ(v)ds +

∫ δ−s

0
Φ(Fv

i ((ϕs(z), v),U ))dr − x −

∫ δ

0
Φ(v)ds

]
≤ E[∥sΦ(v) + (δ − s)Φ(Fv

i ((ϕs(z), v),U )) − δΦ(v)∥]

≤ E[∥(δ − s)(Φ(Fv
i ((ϕs(z), v),U )) − Φ(v))∥]

≤ δCE[∥Fv
i ((ϕs(z), v),U ) − v∥]

≤ δCVmax .

n the other hand, for the velocity part we obtain using Assumptions 4.1 and 4.10

E[∥Fv
i ((ϕs(z), v), Ũ ) − Fv

i ((ϕδ(z), v), Ũ )∥] ≤ D∥ϕs(z) − ϕδ(z)∥

≤ DC ′
∥z − ϕδ−s(z)∥

≤ δD(C ′)2.

herefore part (c) of Assumption 4.2 holds with D3 = D(C ′)2
+ CVmax . □

.3. Proof of Proposition 4.13

roof. In the proof of Theorem 4.9 boundedness of the PDMP is used only in the case p = 1
o deal with the event in which the PDMP has two or more jumps in the same time step (see
emmas A.5 and A.6, in particular Eq. (54)). Then it is sufficient to show that a similar bound
olds also under Assumption 4.12 instead of Assumption 4.7. Let p = 1 and consider the case
f Lemma A.6, i.e. restricting to event E10 ∩ E , which is the event in which the continuous
ime process has two or more jumps, while the approximation has zero jumps. Then we want
o bound

Ez[∥Z tn+1 − Z tn+1∥1E10∩E ] =

=

∑
ℓ≥2

∫
Aℓ
Ez
[
∥ϕsℓ◦FI ℓn+1

(·,Uℓ−1)◦ϕsℓ−1◦. . .◦FI 1
n+1

(·,U0)◦ϕs0(Z tn )−ϕδn+1
(Z tn )∥pZtn (ds)

]
,

here s0, . . . , sℓ−1 are the interarrival times of the random jumps of Z t , I ℓn+1 denote the index

f the ℓ-th jump to occur between time tn and tn+1, sℓ = δn+1 −
∑ℓ−1

i=1 si , U0, . . . ,Uℓ−1
i id
∼ νU ,

Aℓ =

{
s = (s0, . . . , sℓ) :

ℓ∑
i=1

si = δn+1, si > 0

}
,

nd pZtn (ds) is the law of the interarrival times,. Then we have

Ez[∥Z tn+1 − Z tn+1∥1E10∩E ] ≤ E
[∑
ℓ≥2

∫
Aℓ
Ez

[(
∥ϕsℓ ◦ FI ℓn+1

(·,Uℓ−1) ◦ · · · ◦ ϕs0 (Z tn )∥

+ ∥ϕδn+1
(Z tn )∥

) ⏐⏐⏐Z tn

]
pZtn (ds)

]
ow we use (47) to conclude that ϕs has linear growth for some constant L , and so ∥ϕs(z)∥ ≤

L(∥z∥ + 1). It follows that

Ez

[
∥ϕsℓ ◦ FI ℓn+1

(·,Uℓ−1) ◦ ϕsℓ−1 ◦ FI ℓ−1
n+1

(·,Uℓ−2) ◦ · · · ◦ ϕs0 (Z tn )∥|Z tn

]
≤

≤ LEz

[(
∥F ℓ (·,Uℓ−1) ◦ ϕs ◦ F ℓ−1 (·,Uℓ−2) ◦ · · · ◦ ϕs (Z t )∥ + 1

)
|Z t

]

In+1 m−1 In+1 0 n n
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≤ L(1 + D1) + LEz

[(
∥ϕsℓ−1 ◦ FI ℓ−1

n+1
(·,Uℓ−2) ◦ · · · ◦ ϕs0 (Z tn )∥

)
|Z tn

]
.

n the last inequality we used that E[∥Fi (z,U )∥] ≤ ∥z∥ + D1 for any i , which is implied by
ssumption 4.2(a). Therefore by recursion we have

Ez

[
∥ϕsℓ ◦ FI ℓn+1

(·,Uℓ−1) ◦ · · · ◦ ϕs0 (Z tn )∥|Z tn

]
≤

ℓ∑
i=1

(1 + D1)L i
+ Lℓ+1(1 + ∥Z tn ∥).

oreover we also have that ∥ϕs(z)∥ ≤ δ2
n+1 + L(∥z∥ + 1) by Assumption 4.4. It follows that

Ez[∥Z tn+1 − Z tn+1∥1E10∩E ] =

≤

∑
ℓ≥2

Ez

[∫
Aℓ

(
ℓ∑

i=1

(1 + D1)L i
+ Lℓ+1(1 + ∥Z tn ∥) + δ2

n+1 + L(∥Z tn ∥ + 1)

)
pZtn (ds)

]

≤ Ez

[∑
ℓ≥2

(
ℓ∑

i=1

(1 + D1)L i
+ Lℓ+1(1 + ∥Z tn ∥) + δ2

n+1 + L(∥Z tn ∥ + 1)

)
pZtn (Aℓ)

]

≤ L̃Ez

[
(1 + ∥Z tn ∥ + ∥Z tn ∥)

∑
ℓ≥2

ℓLℓ pZtn (Aℓ)

]

for some constant L̃ which depends only on D1, L , δ0. The function f (ℓ) = ℓLℓ is increasing
n the number of jumps and therefore because the switching rates have a global upper bound
max we obtain

Ez[∥Z tn+1 − Z tn+1∥1E10∩E ] ≤

≤ L̃Ez

[
(1 + ∥Z tn ∥ + ∥Z tn ∥)

∑
ℓ≥2

ℓLℓe−δn+1λmax
(δn+1λmax )ℓ

ℓ!

]

≤ L̃(1 + 2B(tn, z))
∑
ℓ≥2

ℓLℓe−δn+1λmax
(δn+1λmax )ℓ

ℓ!
,

here in the last inequality we used Assumption 4.12. It remains to show that the sum is of
rder δ2

n+1. This can be proved as follows∑
ℓ≥2

ℓLℓe−δn+1λmax
(δn+1λmax )ℓ

ℓ!
= e(L−1)δn+1λmax

∑
ℓ≥2

e−Lδn+1λmax
(Lδn+1λmax )ℓ

(ℓ− 1)!

= e(L−1)δn+1λmax Lδn+1λmax

∑
ℓ≥1

e−Lδn+1λmax
(Lδn+1λmax )ℓ

ℓ!

= e(L−1)δn+1λmax Lδn+1λmax (1 − e−Lδn+1λmax )

≤ δ2
n+1e(L−1)δ0λmax Lλmax .

n particular we used that δn ≤ δ0 for all n ∈ N.
The same proof holds on the event E10 ∩ E , and thus we have proved the wanted result. □

ppendix B. Proofs of Section 4.2
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B.1. Proof of Theorem 4.17: the case of p = 1

roof of Lemma 7.2. Let us take advantage of the construction in Coupling 7.1. First consider
he case in which Ti∗ (Z tn−1 ) > δn . In this case there are no random events for either process in
he time interval (tn−1, tn] and therefore Z tn = Z tn = ϕδn (Z tn−1 ). Now, consider the case where

Ti∗ ≤ δn . In this scenario, there are three disjoint events:

• The proposed switching time is accepted by both processes. Denote this event as E1.
• The proposed switching time is accepted by one process, and rejected by the other. Denote

this event as E2.
• The proposed switching time is rejected for both processes. Denote this event as E3.

herefore we have

Pz(Z tn ̸= Z tn |Z tn−1 = Z tn−1 ) =

3∑
i=1

Pz(Z tn ̸= Z tn , Ei |Z tn−1 = Z tn−1 ).

We start with event E1. In this case we have that Z tn ̸= Z tn if the continuous time process
as at least one more jump in time interval (tn−1 + Ti∗ , tn]. Now let λ(z) =

∑m
i=1 λi (z) and

λtot (z, t; δn) =
∑m

i=1 λ
i
tot (z, t; δn). Observe that, conditional on Z tn−1 , the minimum of the m

roposed random times is distributed as P(Ti∗ ≤ t) = 1 − exp(−
∫ t

0 λtot (Z tn−1 , s; δn)ds). Then
ounding by 1 the probability that both proposals are accepted, and conditioning on Z tn−1 we
btain

Pz(Z tn ̸= Z tn , E1|Z tn−1 = Z tn−1 ) ≤ Ez

[∫ δn

0
λtot (Z tn−1 , t; δn)e−

∫ t
0 λtot (Ztn−1 ,s;δn )ds

(
1−exp

(
−

∫ δn

t
λ(ϕs(Fi∗ (ϕt (Z tn−1 ),Un)))ds

))
dt
]
.

hen using that 1 − exp(−z) ≤ z, that exp(−z) ≤ 1 for z ≥ 0 and by Fubini’s theorem we
btain the following bound:

Pz(Z tn ̸= Z tn , E1|Z tn−1 = Z tn−1 ) ≤

≤ Ez

[∫ δn

0

∫ δn

t
λtot (Z tn−1 , t; δn)λ(ϕs(Fi∗ (ϕt (Z tn−1 ),Un)))dsdt

]
≤

∫ δn

0

∫ δn

t
Ez
[
λtot (Z tn−1 , t; δn)λ(ϕs(Fi∗ (ϕt (Z tn−1 ),Un)))

]
dsdt

≤ δ2
n L1(tn, z)/2.

ote that in the last inequality the bound L1(tn, z) follows from part (a) of Assumption 4.14.
Let us now consider event E2. As the proposal Ti∗ (Z tn−1 ) is accepted for one process only,

t must be that

U ∈

(
min

{
λi∗ (ϕTi∗ (Z tn−1 ))

λi∗
tot (Z tn−1 , Ti∗ (Z tn−1 ); δn)

,
λi∗ (Z tn−1 , Ti∗ (Z tn−1 ))

λi∗
tot (Z tn−1 , Ti∗ (Z tn−1 ); δn)

}
,

max

{
λi∗ (ϕTi∗ (Z tn−1 ))

λi∗
tot (Z tn−1 , Ti∗ (Z tn−1 ); δn)

,
λi∗ (Z tn−1 , Ti∗ (Z tn−1 ); δn)

λi∗
tot (Z tn−1 , Ti∗ (Z tn−1 ); δn)

}]
.

herefore using that U and Ti∗ are independent we obtain

P(Z ̸= Z , E |Z = Z ) =
tn tn 2 tn−1 tn−1
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= E

[
1{Ti∗ (Ztn−1 )≤δn}

⏐⏐⏐⏐⏐λi∗ (Z tn−1 , Ti∗ (Z tn−1 ); δn) − λi∗ (ϕTi∗ (Z tn−1 ))

λi∗
tot (Z tn−1 , Ti∗ (Z tn−1 ); δn)

⏐⏐⏐⏐⏐
]
.

y the definition given in Coupling 7.1 we have λi∗
tot (z, t; δn) ≥ 1. Using part (b) of

ssumption 4.14 and Fubini’s theorem:

P(Z tn ̸= Z tn , E2|Z tn−1 = Z tn−1 ) ≤ δnEz

[
M2(Z tn−1 )1{Ti∗ (Ztn−1 )≤δn}

]
≤ δnEz

[
M2(Z tn−1 )

∫ δn

0
λtot (Z tn−1 , t; δn)e−

∫ t
0 λtot (Ztn−1 ,s;δn )dsdt

]
≤ δn

∫ δn

0
Ez
[
λtot (Z tn−1 , t; δn)M2(Z tn−1 )

]
dt

≤ δ2
n L2(tn, z).

Finally, we focus on E3. On this event, the processes remain equal unless there is (at least)
switch for either process for t ∈ (tn−1 + Ti∗ (Z tn ), tn). Recall λ(z, s; δn) =

∑m
i=1 λi (z, s; δn).

Using this observation together with Assumption 4.14 and the facts that on this event Ti∗ (Z tn ) ≤

n and that 1 − exp(−z) ≤ z we obtain

P(Z tn ̸= Z tn , E3|Z tn−1 = Z tn−1 ) ≤ Ez

[∫ δn

0

((
1 − exp

(
−

∫ δn

t
λ(ϕr (Z tn−1 ))dr

))
+

(
1 − exp

(
−

∫ δn

t
λ(Z tn−1 , r; δn)dr

)))
λtot (Z tn−1 , t; δn) exp

(
−

∫ t

0
λtot (Z tn−1 , s; δn)ds

)
dt
]

≤ Ez

[∫ δn

0

∫ δn

t
λtot (Z tn−1 , t; δn)

(
λ(ϕr (Z tn−1 )) + λ(Z tn−1 , r; δn)

)
drdt

]
=

∫ δn

0

∫ δn

t
Ez

[
λtot (Z tn−1 , t; δn)

(
λ(ϕr (Z tn−1 )) + λ(Z tn−1 , r; δn)

)]
drdt

≤ δ2
n L3(tn, z)/2.

ombining the three bounds on events E1, E2, E3 we obtain the statement. □

.2. Proof of Theorem 4.17: the case of p > 1

roof of Theorem 4.17. Observe that if Ti∗ > δ the two processes are equal at time δ and thus
the probability that Z tn ̸= Z tn is 0. We analyse in turn the three events E1, E2, E3 which were

efined in Section 7.1 in the proof of Lemma 7.2. Define the event E= = {Z tn−1 = Z tn−1}.
On event E1, the proposal Ti∗ is accepted by both processes. Then we reformulate Pz(Z tn ̸=

Z tn , E1|E=) in terms of the conditional probability

Pz(Z tn ̸= Z tn , E1|E=) = Pz(Z tn ̸= Z tn |Z tn−1+Ti∗ = Z tn−1+Ti∗ , Ti∗ < δ)Pz(E1|E=).

he first term on the right hand side can be bounded by applying Inductive Hypothesis 7.3.
oreover we can use the bound Pz(E1|E=) ≤ Pz(Ti∗ < δ|E=) for the rightmost term to obtain

Pz(Z tn ̸= Z tn , E1|E=) ≤ Aδ p+1 Ez

[(
1 − exp

(
−

∫ δ

λtot (Z tn−1 , t; δ, p + 1)dt
))]
0
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≤ Aδ p+2 sup
s∈[0,δ]

Ez
[
λtot (Z tn , s; δ, p + 1)

]
≤ Aδ p+2L4(tn, z).

n the last inequality we took advantage of the bound 1−exp(−z) ≤ x which is true for z > 0.
On event E2 the proposal Ti∗ is accepted for one process, and rejected for the other. This

appens when

U ∈

(
min

{
λi∗ (ϕTi∗ (Z tn−1 ))

λi∗
tot (Z tn−1 , Ti∗; δ, p + 1)

,
λi∗ (Z tn−1 , Ti∗; δ, p + 1)

λi∗
tot (Z tn−1 , Ti∗; δ, p + 1)

}
,

max

{
λi∗ (ϕTi∗ (Z tn−1 ))

λi∗
tot (Z tn−1 , Ti∗; δ, p + 1)

,
λi∗ (Z tn−1 , Ti∗; δ, p + 1)

λi∗
tot (Z tn−1 , Ti∗; δ, p + 1)

} ]
,

nd therefore with probability⏐⏐⏐⏐⏐λi∗ (Z tn−1 , Ti∗; δ, p + 1)−λi∗ (ϕTi∗ (Z tn−1 ))

λi∗
tot (z, Ti∗ (z); δ, p + 1)

⏐⏐⏐⏐⏐≤ ⏐⏐λi∗ (Z tn−1 , Ti∗; δ, p + 1)−λi∗ (ϕTi∗ (Z tn−1 ))
⏐⏐

≤ δ p+1 M2(Z tn−1 )

here we used that by definition λi∗
tot ≥ 1 and then that λi∗ (·, ·; δ, p + 1) is an approximation

of p + 1 order. Thus we have

Pz(Z tn ̸= Z tn , E2|E=) ≤ δ p+1Ez
[
M2(Z tn−1 )Pz(Ti∗ < δ|Z tn−1 , E=)

]
≤ δ p+2 sup

s∈[0,δ]
Ez
[
M2(Z tn−1 )λtot (Z tn , s; δ, p + 1)

]
≤ δ p+2L4(tn, z)

Finally consider event E3. Similarly to the proof of Theorem 4.9 it is sufficient to bound
he event that p +2 proposal times occur before the end of the time interval, which is bounded
y Assumption 4.14. □

ppendix C. Proofs of Section 4.3

.1. Proofs of Theorem 4.24 and its corollaries

emma C.1. Suppose λ and λ satisfy Assumption 4.6(a). We will consider the two algorithms
eparately. For Algorithm 2, let pz,δ,2

τ be given by (38) then for any h ∈ C1
b ([0, δ]) we have⏐⏐⏐⏐∫ δ

0
hs pz,δ,2

τ (ds) − hsλ(ϕs(z))ds
⏐⏐⏐⏐ ≤ δ2 sup

s,r∈[0,δ]

(
|∂r hr |λ(z, s; δ)

+ |hs |
(
λ(z, s; δ)λ(z, r; δ) + M2(z)

))
.

For Algorithm 3, let pz,δ,
τ

3 be given by (39) then for any h ∈ Cb([0, δ])⏐⏐⏐⏐∫ δ

0
hs pz,δ,3

τ (ds) −

∫ δ

0
λ(ϕs(z))hsds

⏐⏐⏐⏐ ≤ δ2 sup
s,r∈[0,δ]

(
|hs |(λ(z, s; δ)λ(z, r; δ) + M2(z))

)
roof of Lemma C.1. First consider the case where pz,δ,2

τ is given by (38), and fix h ∈
1
b ([0, δ]). Then⏐⏐⏐⏐∫ δ

hs pz,δ,2
τ (ds) − hsλ(ϕs(z))ds

⏐⏐⏐⏐ =

⏐⏐⏐⏐hδ (1 − e−
∫ δ

0 λ(z,s;δ)ds
)

−

∫ δ

hsλ(ϕs(z))ds
⏐⏐⏐⏐ .
0 0
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We can rewrite

1 − e−
∫ δ

0 λ(z,s;δ)ds
=

∫ δ

0
λ(z, s; δ)e−

∫ δ
0 λ(z,r;δ)dr ds.

herefore we have⏐⏐⏐⏐∫ δ

0
hs pz,δ,2

τ (ds) − hsλ(ϕs(z))ds
⏐⏐⏐⏐ =

⏐⏐⏐⏐hδ ∫ δ

0
λ(z, s; δ)e−

∫ δ
0 λ(z,r;δ)dr ds −

∫ δ

0
hsλ(ϕs(z))ds

⏐⏐⏐⏐
≤

⏐⏐⏐⏐∫ δ

0
(hδ − hs)λ(z, s; δ)e−

∫ δ
0 λ(z,r;δ)dr ds

⏐⏐⏐⏐
+

⏐⏐⏐⏐∫ δ

0
hs

(
λ(z, s; δ)e−

∫ δ
0 λ(z,r;δ)dr

− λ(ϕs(z))
)

ds
⏐⏐⏐⏐ .

(58)

e can use Assumption 4.6(a) and that 1 − e−y
≤ y for y > 0 to bound the integrand of the

econd term on the right of (58),⏐⏐⏐λ(z, s; δ)e−
∫ δ

0 λ(z,r;δ)dr
− λ(ϕs(z))

⏐⏐⏐ ≤

⏐⏐⏐λ(z, s; δ)(1 − e−
∫ δ

0 λ(z,r;δ)dr )
⏐⏐⏐

+
⏐⏐λ(z, s; δ) − λ(ϕs(z))

⏐⏐
≤ λ(z, s; δ)

∫ δ

0
λ(z, r; δ)dr + δM2(z). (59)

or the first term on the right hand side of (58) we use that

|hδ − hs | ≤ (δ − s) sup
r∈[0,δ]

|∂r hr |. (60)

Applying (59) and (60) to (58) we have⏐⏐⏐⏐∫ δ

0
hs pz,δ,2

τ (ds) − hsλ(ϕs(z))ds
⏐⏐⏐⏐ ≤

≤

⏐⏐⏐⏐⏐ sup
r∈[0,δ]

|∂r hr |

∫ δ

0
(δ − s)λ(z, s; δ)e−

∫ δ
0 λ(z,r;δ)dr ds

⏐⏐⏐⏐⏐
+

⏐⏐⏐⏐∫ δ

0
|hs |

(
λ(z, s; δ)

∫ δ

0
λ(z, r; δ)dr + δM2(z)

)
ds
⏐⏐⏐⏐

≤ δ2 sup
s,r∈[0,δ]

(
|∂r hr |λ(z, s; δ) + |hs |

(
λ(z, s; δ)λ(z, r ) + M2(z)

))
.

Let us consider the case where pz,δ,3
τ is given by (39). We use (59) to bound⏐⏐⏐⏐∫ δ

0
hs pz,δ,3

τ (ds) − hsλ(ϕs(z))ds
⏐⏐⏐⏐ ≤

≤

∫ δ

0
|hs |

⏐⏐⏐⏐λ(z, s; δ) exp
(

−

∫ s

0
λ(z, r; δ)dr

)
− λ(ϕs(z))

⏐⏐⏐⏐ ds

≤

∫ δ

0
|hs |

(
λ(z, s; δ)

∫ δ

0
λ(z, r; δ)dr + δM2(z)

)
ds

≤ δ2 sup
s,r∈[0,δ]

(
|hs |(λ(z, s; δ)λ(z, r; δ) + M2(z))

)
. □
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Proof of Corollary 4.27. First observe that (16) follows from (13). Then (17) is obtained by
dding (11) and (13). To obtain (18) we use that⏐⏐⏐⏐⏐ 1

N

N∑
n=1

Ez[g(Z tn )] − µ(g)

⏐⏐⏐⏐⏐ ≤

⏐⏐⏐⏐⏐ 1
N

N∑
n=1

(Ez[g(Z tn )] − Ez[g(Z tn )])

⏐⏐⏐⏐⏐
+

⏐⏐⏐⏐⏐ 1
N

N∑
n=1

Ez[g(Z tn )] − µ(g)

⏐⏐⏐⏐⏐ .
e bound this using (11) and (13)⏐⏐⏐⏐⏐ 1

N

N∑
n=1

Ez[g(Z tn )] − µ(g)

⏐⏐⏐⏐⏐ ≤ CδG2(z) + CG2(z)
1
N

N∑
n=1

e−ωtn

≤ CG2(z)
(
δ +

1
tN

)
. □

roof of Corollary 4.28. It is sufficient to show for Sn given by (14) that Sn → 0 as n → ∞.
ix η > 0. Then we have

Sn =

η−1∑
k=0

δ2
k+1e−ω(tn−tk+1)

+

n−1∑
k=η

δ2
k+1e−ω(tn−tk+1).

Consider the first term:
η−1∑
k=0

δ2
k+1e−ω(tn−tk+1)

≤ sup
k
δk

∫ tn−η

0
e−ω(tn−s)ds = sup

k
δk

e−ωη
− e−ωtn

ω
.

onsider the second term:
n−1∑
k=η

δ2
k+1e−ω(tn−tk+1)

≤

(
sup

k∈{η,...,n}

δk

)∫ tn

tη
e−ω(tn−s)ds =

1 − e−ω(tn−tη)

ω
sup

k∈{η,...,n}

δk .

herefore

lim sup
n→∞

Sn ≤

(
sup
k≥0

δk

)
e−ωη

ω
+

1
ω

sup
k≥η

δk .

ince η is arbitrary we let η tend to ∞ which gives that Sn → 0 as n → ∞. □

.2. Proofs of Example 5.8

roof of Proposition 5.9. Fix f ∈ C1
b (Rd

× Rd ). Then by the chain rule

∥∇q,pPt f (q, p)∥ = ∥E[∇q,p(Qt , Pt )(∇q,p f )(Qt , Pt )]∥ ≤ ∥ f ∥C1
b
E[∥∇q,p(Qt , Pt )∥].

otice that there is a version of (Qt , Pt ) which is differentiable with respect to the initial
onditions since we can write (Qt , Pt ) as the composition of smooth operators. Let Ti denote
he i th refreshment time and ξi ∼ N (0d , Id ) the corresponding refreshed velocity. Set T0 = 0.

e shall track for which refreshment times we have that ν ≤ Ti − Ti−1 ≤ K . Let Mt denote
he number of refreshment times before time t which have this property and let Nt denote the
otal number of refreshment times before time t . Note that conditional on Nt , Mt is distributed
ccording to a Binomial distribution with N trials and success rate e−λν

− e−λK1 .
t
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To stress the dependence on the initial condition for the remainder of the proof we shall
rite (Qq,p

t , Pq,p
t ) to denote the process at time t with initial condition (q, p). Then by (23)

e have

∥(Qq,p
t , Pq,p

t ) − (Qq̄, p̄
t , P q̄, p̄

t )∥ = ∥ϕt−TNt
(Qq,p

TNt
, ξNt ) − ϕt−TNt

(Qq̄, p̄
TNt
, ξNt )∥

≤ C∥Qq,p
TNt

− Qq̄, p̄
TNt

∥.

here are now three possible events either Nt = 0, ν ≤ TNt − TNt −1 ≤ K or TNt − TNt −1 ≥ K .
f ν ≤ TNt − TNt −1 ≤ K then we use (24), however if TNt − TNt −1 ≥ K then we use (23). By
oing this for each refreshment we have

∥(Qq,p
t , Pq,p

t ) − (Qq̄, p̄
t , P q̄, p̄

t )∥ ≤ C1+Nt −Mt γ Mt ∥Qq,p
T1

− Qq̄, p̄
T1

∥.

hen by applying (23) once more we have

∥(Qq,p
t , Pq,p

t ) − (Qq̄, p̄
t , P q̄, p̄

t )∥ ≤ C2+Nt −Mt γ Mt ∥(q, p) − (q̄, p̄)∥.

ividing by ∥(q, p) − (q̄, p̄)∥ and taking the limit as ∥(q, p) − (q̄, p̄)∥ → 0 we have that

∥∇q,p(Qq,p
t , Pq,p

t )∥ ≤ C2+Nt −Mt γ Mt .

t remains to bound E[C Nt −Mt γ Mt ]. By conditioning on Nt we can use the moment generating
unction of a Binomial distribution to find

E[C Nt −Mt γ Mt |Nt ] = C Nt (1 − (e−λν
− e−λK )(1 − γC−1))Nt .

ow Nt is a Poisson process with rate λ so we have

E[C Nt −Mt γ Mt ] = exp
(
λ
(
C(1 − (e−λν

− e−λK )(1 − γC−1)) − 1
))
.

his is decays exponentially provided

C(1 − (e−λν
− e−λK1 )(1 − γC−1)) < 1. □

.3. Proofs of Example 5.11

roof of Lemma 5.12. Note that for the ZZS

[Φ, Q] f (x, v) =

d∑
i=1

⟨
v,∇x

(
λi (x, v)
λ(x, v)

f (x, Fiv)
)⟩

−

d∑
i=1

λi (x, v)
λ(x, v)

⟨Fiv,∇x ( f (x, Fiv))⟩

=

d∑
i=1

⟨
v,∇x

(
λi (x, v)
λ(x, v)

)⟩
f (x, Fiv) + 2

d∑
i=1

(
λi (x, v)
λ(x, v)

)
vi∂xi f (x, Fiv).

When we apply this with f = Pt g ◦ ϕδ−s and (x, v) replaced by (x + vs, v) we have

[Φ, Q] f (x, v) =

d∑
i=1

⟨
v,∇x

(
λi (x, v)
λ(x, v)

)⟩
Pt g(x + sv + (δ − s)Fiv, Fiv)

+ 2
d∑

i=1

(
λi (x, v)
λ(x, v)

)
vi∂xi (Pt g)(x + sv + (δ − s)Fiv, Fiv)

≤

d∑⟨
v,∇x

(
λi (x, v)
λ(x, v)

)⟩
|Pt g(x + sv + (δ − s)Fiv, Fiv)|
i=1
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+ 2∥∇x (Pt g)(x + sv + (δ − s)Fiv, Fiv)∥.

Observe that

∂r (− log (φ(exp(−r )))) =
1

1 + e−r

then we have

∇x

(
λi (x, v)
λ(x, v)

)
=

(
∇xλi (x, v)
λ(x, v)

)
− (∇xλ(x, v))

(
λi (x, v)
λ(x, v)2

)
=

(
vi∇x∂xiψ(x, v)

(1 + e−vi ∂xi ψ(x))λ(x, v)

)
−

d∑
j=1

(
v j∇x∂x jψ(x, v)λi (x, v)

(1 + e−vi ∂xi ψ(x))λ(x, v)2

)
nder our assumptions this is bounded. □

roof of Theorem 5.13. Fix f ∈ G1. We observe that Pt f satisfies

∂tPt f (x, v) = LPt f (x, v).

e can differentiate this with respect to the i th component of x , denoted as x i , to obtain an
quation for ∂x iPt .

∂t∂x iPt f (x, v) = L∂x iPt f +

d∑
j=1

∂x iλ j (x, v)[Pt f (x, R jv) − Pt f (x, v)].

e can solve this equation using the variation of constants formula

∂x iPt f (x, v) = Pt∂x i f (x, v) +

d∑
j=1

∫ t

0
Pt−s

(
gi, j

s

)
(x, v)ds

here

gi, j
s (x, v) = ∂x iλ j (x, v)[Ps f (x, R jv) − Ps f (x, v)].

e can integrate this with respect to µ to obtain an expression for µ(∂x iPt f )

µ(∂x iPt f ) = µ(∂x i f ) +

d∑
j=1

∫ t

0
µ
(
gi, j

s

)
ds.

ere we have used that µ is an invariant measure for Pt to remove Pt−s terms. We shall bound
his by comparing to µ(∂x iPt f ),

|∂x iPt f (x, v) − µ(∂x iPt f )| ≤ |Pt∂x i f (x, v) − µ(∂x i f )|

+ |

d∑
j=1

∫ t

0
Pt−s

(
gi, j

s

)
(x, v) −

d∑
j=1

∫ t

0
µ
(
gi, j

s

)
ds|.

(61)

Observe that since λi is globally Lipschitz there exists a constant Cλ such that |∂x iλ| ≤ Cλ

or any i ∈ {1, . . . , d}, x ∈ Rd , v ∈ {±1}
d . Therefore we can bound gi, j

s by

|gi, j
s (x, v)| ≤ Cλ(|Ps f (x, R jv) − µ( f )| + |Ps f (x, v) − µ( f )|).

ow we can bound gi, j
s using geometric ergodicity, (11), and that f ∈ G1

i, j −κt G (x, R v) + G (x, v)).
|gs (x, v)| ≤ CCλe ( α,ϵ j α,ϵ
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By (25) there exists a constant K such that

|gi, j
s (x, v)| ≤ K e−κs Gα,ϵ(x, v).

By applying (11) we have

|

d∑
j=1

∫ t

0
Pt−s

(
gi, j

s

)
(x, v) −

d∑
j=1

∫ t

0
µ
(
gi, j

s

)
ds| ≤

d∑
j=1

∫ t

0
|Pt−s

(
gi, j

s

)
(x, v) − µ

(
gi, j

s

)
|ds

≤ C K Gα,ϵ(x, v)
∫ t

0
e−κt ds

≤ C K Gα,ϵ(x, v)te−κt . (62)

Since f ∈ G1 we can also apply (11) for the function ∂i f

|Pt∂x i f (x, v) − µ(∂x i f )| ≤ CGα,ϵ(x, v)e−κt . (63)

sing (62), (63) to bound the right hand side of (61) we obtain

|∂x iPt f (x, v) − µ(∂x iPt f )| ≤ C(1 + K t)e−κt Gα,ϵ(x, v). (64)

t remains to consider µ(∂x iPt f ). Note that we have following integration by parts formula for

∫
∂xk ghdµ = −

∫
g∂xk hdµ+

∫
∂xkψghdµ. (65)

etting k = i , g = Pt f and h = 1 we have

µ(∂x iPt f ) = µ(Pt f ∂x iψ)

Observe that µ(∂x iψ) = 0 (this follows from (65) with g = h = 1 and k = i) then subtracting
µ(∂x iψ)µ( f ) we have

|µ(∂x iPt f )| = |µ(∂x iPt f − µ( f ))|
≤ µ(|∂x iψ(x)||Pt f − µ( f )|)

≤ Ce−κtµ(|∂x iψ(x)|Gα,ϵ(x, v)).

(66)

y (25) we have |∂x iψ(x)|Gα,ϵ(x, v) ≤ CGα,ϵ and combining (64) and (66) we obtain a
constant C ′ such that

|∂x iPt f (x, v)| ≤ C ′(1 + K t)e−κt Gα,ϵ(x, v). □

emma C.2. Let {(X tn , X tn )}n∈N denote the Euler Zig Zag algorithm in 1-d using Algorithm
or 3. Let λ(x, v; δ) = λ(x, v) and λ(x, v) = (ψ ′(x)v)+ + γ (x) for γ : R → [0, γ ] with

γ < ∞. Assume that ψ ∈ C2 is such that (25) is satisfied. Let α ∈ (0, 1), β > 0 be such that
< 2β and define

Gα,β(x, v; δ) =

{
exp

(
αψ(x) + βδψ ′(x)v

)
, if vψ ′(x) ≥ 0,

exp
(
αψ(x) − βδψ ′(x)v

)
, if vψ ′(x) < 0.

(67)

hen there exists a compact set C and κ ∈ (0, 1) such that

E G (X , V ; δ) ≤ κnG (x, v; δ) for all x /∈ C.
x,v α,β tn tn α,β
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Proof. Let {(X
2
δ, V

2
δ)} ({(X

3
δ, V

3
δ)} respectively) be given by Algorithm 2 (Algorithm 3 resp.).

o simplify the notation in this proof suppress the δ dependence of Gα,β . Set β± = β if
ψ ′(x) ≥ 0 and β± = −β otherwise. Observe that

Ex,v[Gα,β(X
3
δ, V

3
δ)] − Ex,v[Gα,β(X

2
δ, V

2
δ)] =

=

∫ δ

0
λ(x, v)e−λ(x,v)s

(
eαψ(x+vs−(δ−s)v)−δβ±vψ

′(x+sv−(δ−s)v)
−eαψ(x+δv)−δβ±vψ

′(x+δv)
)

ds

=

∫ δ

0
λ(x, v) exp

(
−λ(x, v)s + αψ(x + δv) − δβ±vψ

′(x + δv)
) (

eI (x,v,s;δ)
− 1

)
ds,

here

I (x, v, s; δ) := αψ(x + vs − (δ − s)v) − αψ(x + δv)

− δβ±vψ
′(x + sv − (δ − s)v) + δβ±vψ

′(x + δv).

y Taylor’s theorem we can find ξ1, ξ2

I (x, v, s; δ) = α2(s − δ)vψ ′(x + δv) + 2α(δ − s)2ψ ′′(ξ1) + 2β±δ(s − δ)vψ ′′(ξ2).

y taking x sufficiently large we can ensure that the sign of I (x, v, s; δ) is equal to the sign
f −vψ ′(x). Therefore,

Ex,v[Gα,β(X
3
δ, V

3
δ)] ≤ Ex,v[Gα,β(X

2
δ, V

2
δ)] if vψ ′(x) > 0,

Ex,v[Gα,β(X
3
δ, V

3
δ)] ≥ Ex,v[Gα,β(X

2
δ, V

2
δ)] if vψ ′(x) < 0.

n the first case it is sufficient to consider Algorithm 2, while in the latter it is sufficient to
onsider Algorithm 3. We shall consider these two cases separately.

Case vψ ′(x) > 0: Note that it is sufficient to show that outside of a sufficiently large
ompact set

Ex,vGα,β(X
2
δ, V

2
δ)

Gα,β(x, v)
< 1.

e can expand Ex,vGα,β(X
2
δ, V

2
δ) as

Ex,vGα,β(X
2
δ, V

2
δ) = e−δλ(x,v)Gα,β(x + vδ, v) + (1 − e−δλ(x,v))Gα,β(x + vδ,−v).

sing the definition of Gα,β we can write

Gα,β(x + vδ, v)

Gα,β(x, v)
= exp

(
α(ψ(x + vδ) − ψ(x)) + βδv(ψ ′(x + vδ) − ψ ′(x))

)
,

Gα,β(x + vδ,−v)

Gα,β(x, v)
= exp

(
α(ψ(x + vδ) − ψ(x)) − βδv(ψ ′(x + vδ) + ψ ′(x))

)
.

e can Taylor expand U to find some z1, z2, z3 such that

Gα,β(x + vδ, v)

Gα,β(x, v)
= exp

(
α(ψ ′(x)vδ +

1
2
ψ ′′(z1)δ2) + βδ2ψ ′′(z2)

)
,

Gα,β(x + vδ,−v)

Gα,β(x, v)
= exp

(
α(ψ ′(x)vδ +

1
2
ψ ′′(z1)δ2) − βδ(2ψ ′(x)v + ψ ′′(z3)δ)

)
.
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Thus we have

Ex,vGα,β(X
2
δ, V

2
δ)

Gα,β(x, v)
= e−δλ(x,v) exp

(
α(ψ ′(x)vδ +

1
2
ψ ′′(z1)δ2) + βδ2ψ ′′(z2)

)
+ (1 − e−δλ(x,v)) exp

(
α(ψ ′(x)vδ +

1
2
ψ ′′(z1)δ2) − βδ(2ψ ′(x)v + ψ ′′(z3)δ)

)
.

earranging we can rewrite this as

Ex,vGα,β(X
2
δ, V

2
δ)

Gα,β(x, v)
=

= exp
(
−δλ(x, v)+αψ ′(x)vδ +

α

2
ψ ′′(z1)δ2

)(
e
(
βδ2ψ ′′(z2)

)
−e(−βδ(2ψ

′(x)v+ψ ′′(z3)δ))
)

(68)

+ exp
(

(α − 2β)ψ ′(x)vδ +
1
2
αψ ′′(z1)δ2

− βδ2ψ ′′(z3)
)
. (69)

ecall that in this case λ(x, v) ≥ vψ ′(x) > 0. Thus for the first term (68)

exp
(
−δλ(x, v) + αψ ′(x)vδ +

α

2
ψ ′′(z1)δ2

)(
e
(
βδ2ψ ′′(z2)

)
− e(−βδ(2ψ

′(x)v+ψ ′′(z3)δ))
)

≤

≤ exp
(
−δλ(x, v) + αψ ′(x)vδ +

α

2
ψ ′′(z1)δ2

)
e
(
βδ2ψ ′′(z2)

)

≤ exp
(
−(1 − α)δvψ ′(x) +

α

2
ψ ′′(z1)δ2

)
e
(
βδ2ψ ′′(z2)

)
.

ow choose 0 < α < min{1, 2β} and recall that by assumption ψ ′ diverges to infinity faster
han ψ ′′. It follows that, outside of a large enough compact set, both (68) and (69) can be made
rbitrarily small.

Case vψ ′(x) < 0: In this case λ(x, v) = γ (x). We expand Ex,vGα,β(X
2
δ, V

2
δ) as

Ex,vGα,β(X
2
δ, V

2
δ)

Gα,β(x, v)
= e−δλ(x,v) Gα,β(x + vδ, v)

Gα,β(x, v)

+

∫ δ

0
λ(x, v)e−sλ(x,v) Gα,β(x + v(2s − δ),−v)

Gα,β(x, v)
ds.

imilarly to above, we can use Taylor’s theorem to find z1, z2, z3, z4 with

Ex,vGα,β(X
2
δ, V

2
δ)

Gα,β(x, v)
= e−δλ(x,v) exp

(
α(ψ ′(x)vδ +

1
2
ψ ′′(z1)δ2) − βδ2ψ ′′(z2)

)
+

∫ δ

0
λ(x, v)e−sλ(x,v) exp

(
α(ψ ′(x)v(2s − δ) +

1
2
ψ ′′(z3)(2s − δ)2)

+ βδ(2ψ ′(x)v + ψ ′′(z4)(2s − δ))
)

ds.

(70)

aking advantage of −δ ≤ 2s − δ ≤ δ we obtain the bound

exp
(
α(ψ ′(x)v(2s − δ)) + βδ(2ψ ′(x)v)

)
≤ exp

(
(−ψ ′(x)v)(α − 2β)δ

)
.
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Using this bound together with the assumption that −vψ ′(x) diverges to +∞ faster than ψ ′′,
we obtain that for 0 < α < 2β the right hand side of (70) can be made arbitrarily small for
sufficiently large values of x .

Combining the two cases above we obtain the statement of the lemma. □

Lemma C.3. Assume that ψ ∈ C2 satisfies (25). Let Gα,β(x, v; δ) be given by (67) and
Gα,ϵ(x, v) be given by (26). Then for any 0 < α1 < α < α2 < 1 there exist positive constants
,C ′ > 0 with

Gα1,ϵ(x, v) ≤ C ′eαψ(x)
≤ CGα2,β(x, v; δ). (71)

roof of Lemma C.3. Let us first consider Gα1,ϵ(x, v), since |φϵ(s)| ≤ ϵ|s|/2 we have

Gα1,ϵ(x, v) ≤ exp
(
α1ψ(x) +

ϵ

2
|ψ ′(x)|

)
.

By (25) there exists R > 0 such that for any |x | > R we have |ψ ′(x)| ≤ 2ϵ−1(α − α1)ψ(x).
herefore for |x | > R we have

Gα1,ϵ(x, v) ≤ exp (αψ(x)) .

etting C ′
= exp(sup|x |≤R|ψ ′(x)|) we have the left hand side of (71).

Similarly, we have

Gα2,β(x, v; δ) ≥ exp
(
α2ψ(x) − βδ0|ψ

′(x)|
)
.

Using (25) for x sufficiently large we have that βδ0|ψ
′(x)| ≤ (α2 −α)ψ(x) and hence the right

and side of (71) follows. □
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