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Simplicial Convolutional Filters
Maosheng Yang , Graduate Student Member, IEEE, Elvin Isufi , Member, IEEE,

Michael T. Schaub , Member, IEEE, and Geert Leus , Fellow, IEEE

Abstract—We study linear filters for processing signals sup-
ported on abstract topological spaces modeled as simplicial com-
plexes, which may be interpreted as generalizations of graphs
that account for nodes, edges, triangular faces, etc. To process
such signals, we develop simplicial convolutional filters defined
as matrix polynomials of the lower and upper Hodge Laplacians.
First, we study the properties of these filters and show that they are
linear and shift-invariant, as well as permutation and orientation
equivariant. These filters can also be implemented in a distributed
fashion with a low computational complexity, as they involve only
(multiple rounds of) simplicial shifting between upper and lower
adjacent simplices. Second, focusing on edge-flows, we study the
frequency responses of these filters and examine how we can use
the Hodge-decomposition to delineate gradient, curl and harmonic
frequencies. We discuss how these frequencies correspond to the
lower- and the upper-adjacent couplings and the kernel of the
Hodge Laplacian, respectively, and can be tuned independently
by our filter designs. Third, we study different procedures for
designing simplicial convolutional filters and discuss their relative
advantages. Finally, we corroborate our simplicial filters in several
applications: to extract different frequency components of a simpli-
cial signal, to denoise edge flows, and to analyze financial markets
and traffic networks.

Index Terms—Simplicial complexes, Hodge Laplacians,
simplicial filters, filter design, Chebyshev polynomial.

I. INTRODUCTION

M ETHODS to process signals supported on non-Euclidean
domains modeled as graphs have attracted substantial

research interest recently. Most of these graph signal process-
ing (GSP) methods focus on signals supported on nodes, e.g.,
temperature measurements in weather stations network or EEG
signals in a brain network [2], [3]. Using linear shift operators
that couple node signals to each other via the edges of a graph,
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e.g., in terms of an adjacency or a Laplacian matrix, we can
design graph filters to process such node signals [2], [3], [4], [5].

However, we often encounter signals that are naturally asso-
ciated with edges or sets of nodes in real-world applications. For
example, blood flow between different areas in the brain [6], wa-
ter flow in a hydrological network, data flow in a communication
network, or traffic flow in a road network [7], [8]. We typically
model these signals as a flow over the edges of a network. Edge
flows have also been used in statistical ranking, to describe
financial markets, to analyze games, etc. [9], [10], [11], [12].
Similarly, we may even encounter signals supported on sets of
nodes [13], [14]. For instance, in a co-authorship network, the
number of publications with more than two authors can be seen
as such a signal [15].

In these cases, rather than focusing on utilizing the rela-
tionships between the nodes to process node signals, it can be
fruitful to study relations between the node-relationships (edges,
higher-order edges) themselves. In the case of edge-signals, we
want to understand couplings between edges, e.g., mediated
through a common incident node (lower adjacency) or because
these edges contribute to a triadic relation (upper adjacency).
To account for such relationships, we can model a (network)
system as a simplicial complex (SC). Using this representation
we can analyze signals associated to subsets of nodes, i.e.,
simplicial signals, with algebraic tools via so-called Hodge
Laplacians [16], [17], [18], which generalize the familiar graph
Laplacians.

In addition, the Hodge Laplacian admits a Hodge decompo-
sition, which allows for an intuitive physical interpretation of
signals supported on SCs [16], [17]. Namely, the Hodge decom-
position states that any edge flow can be decomposed into gradi-
ent (curl-free), curl (divergence-free) and harmonic components,
respectively. For instance, a water flow may contain a non-cyclic
component which can be seen as the potential difference between
water stations, a locally cyclic component with non-zero curl and
a harmonic component being flow-conservative [8].

Previous works [18], [19] have established a framework to
analyze simplicial signals and focused mostly on low-pass fil-
tering applications. However, general linear filters for simplicial
signals have not been considered in detail. In this paper, we
propose a simplicial convolutional filter via the shift-and-sum
operation as a matrix polynomial of the Hodge Laplacians to
enable a flexible simplicial signal filtering. Our filter accounts
for lower and upper adjacencies in an SC, e.g., the relationships
between edges via a common node or a common 2-simplex, and
allows to separately filter the three signal components provided
by the Hodge decomposition.

Contributions: Our three main contributions include:
1) Simplicial convolution. We study simplicial shifting via

the Hodge Laplacians as a basic operation to propagate signals
locally using both lower- and upper-connectivities in an SC.
Leveraging this shifting and the shift-and-sum operation, we
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develop simplicial convolutional filters by aggregating multi-
step shifted signals. Their local shifting operation allows a
distributed implementation of the filter with a cost linear in
the number of simplices. We show such filters are linear, shift-
invariant, and equivariant to permutations of the labeling and the
orientation of simplices.

2) Filtering in the spectral domain. Leveraging the simplicial
Fourier transform (SFT) [18], we show that the principles of
the convolutional theorem apply to the proposed filter, i.e., the
filter output in the frequency domain operates as a point-wise
multiplication between the filter frequency response and the
SFT of the input signal. We further show how the simplicial
frequencies act as measures of signal variations w.r.t. the lower
and upper adjacencies and divide them into gradient, curl and
harmonic frequencies. More precisely, the eigenmodes associ-
ated to these frequencies span the subspaces provided by the
Hodge decomposition. Ultimately, this implies that the proposed
filter can regulate signals independently in the three subspaces
provided by the Hodge decomposition.

3) Filter Design. To implement a desired frequency response,
we first consider a standard least-squares (LS) approach to
design the filter. To avoid the eigenvalue computation, we then
consider a grid-based universal design. As both strategies may
suffer from numerical instability, we propose a numerically more
stable Chebyshev polynomial design.

Related works: The idea of processing of signals defined on
manifolds and topological spaces has been discussed in various
areas, such as geometry processing [20], and topological data
analysis [21]. For an introduction that is geared more towards a
signal processing perspective see [17], [18], [22].

Filtering of simplicial signals has been partly approached
from a regularization perspective. The works in [8], [19] pro-
posed a regularized optimization framework based on (simpli-
fied variants of) the Hodge Laplacian, to promote flow con-
servation of the resulting estimated edge flows. The solution
is a low-pass simplicial filter. The same regularizer was used
in [19], [23] to perform edge flow interpolation by exploiting
the divergence-free and curl-free behaviors of real-world flows.
However, these assumptions do not always hold and the filters
arising from the considered regularized optimization problems
have limited degrees of freedom.

Filtering simplicial signals has also been analyzed in the
Fourier domain, akin to how graph filters are analyzed via the
graph Fourier transform [2]. The analogous SFT, defined via
the eigendecomposition of the Hodge Laplacian was described
in [18]. The eigenvectors provide a simplicial Fourier basis and
the eigenvalues carry a notion of frequency.

In parallel, signal processing techniques have been extended
from SCs to cell complexes [24], [25], [26]. However, the
cell filters are essentially of the same form as the simplicial
convolutional filters discussed here and in the preliminary con-
ference version of this article [1]. Indeed, all the filters studied
in the current paper can be generalized to cell complexes, by
substituting the appropriate incidence matrices. Different neural
network architectures on SCs have also been developed to learn
from the simplicial data, e.g., [27], [28], [29], [30], [31], [32],
[33]. Importantly, the linear operation in these different neural
convolutional layers may be understood as a simplicial filter (as
discussed here) with different filter parameters.

Outline: We begin by introducing some preliminaries in Sec-
tion II. Then we propose the simplicial convolutional filter in
Section III and investigate its properties. In Section IV, we

Fig. 1. Simplicial Complexes and Signals. (a) An SC of order 2 containing
seven nodes, ten edges and three 2-simplex (the shaded filled triangles). Ref-
erence orientations of the simplices are indicate by corresponding arrows (the
reference orientation of a node is trivial). (b) An arbitrary edge flow, where a
negative flow indicates that the actual flow direction is opposite to the reference
orientation and the magnitude is denoted by the edge width.

introduce the simplicial Fourier transform. We then analyze the
simplicial filter in the spectral domain and study the notion
of simplicial frequency. Different filter design methods are
discussed in Section V. Finally, we use simplicial filters for
subcomponent extraction and edge flow denoising, and consider
applications to financial market and transportation networks in
Section VI.

II. SIMPLICIAL COMPLEXES, SIGNALS AND HODGE

LAPLACIANS

In this section, we review SCs [16], [34] and signals supported
on simplices [18], [19]. We also introduce the Hodge Laplacians
as an algebraic representation of a simplicial complex, that acts
as a shift operator for simplicial signals.

Simplicial complexes: Given a finite set of vertices V , a k-
simplex Sk is a subset of V with cardinality k + 1. A subset of
a k-simplex Sk with cardinality k is called a face of Sk; hence,
Sk has k + 1 faces. A coface of a k-simplex is a simplex Sk+1

that includes it. A simplicial complex X is a finite collection
of simplices with an inclusion property: for any Sk ∈ X all
its faces Sk−1 ⊂ Sk are also part of the simplicial complex,
i.e., Sk−1 ∈ X . The order of an SC is the largest order of its
simplices. For an SC of order K, we collect the k-simplices into
a set X k = {Sk

1 , . . . ,Sk
Nk

} where Nk = |X k| is the number of
k-simplices [16], [18].

Based on its geometric realizations, we call a 0-simplex a
node, a 1-simplex an edge and a 2-simplex a (filled) triangle.
Note that an “empty triangle” formed by three vertices and three
pairwise relations between them is not a 2-simplex. Henceforth,
we refer to 2-simplices as triangles for simplicity. A graph is an
SC of order 1 with N0 nodes and N1 edges. Fig. 1(a) shows an
SC of order 2 including nodes, edges and triangles where edge
{5, 6} has nodes {5} and {6} as its faces and triangle {5, 6, 7}
as its coface.

Two k-simplices in an SC are lower adjacent if they have a
common face and are upper adjacent if they are both faces of a
common (k + 1)-simplex. Thus, for the simplex Sk

i , we define
its lower neighborhood N k

i,� as the set of its lower adjacent k-
simplices and its upper neighborhood N k

i,u as the set of its upper
adjacent k-simplices. For the ith edge {5, 6} in Fig. 1(a), we
have that N 1

i,� = {{4, 5}, {3, 6}, {5, 7}, {6, 7}}, and the upper
neighborhood is N 1

i,u = {{5, 7}, {6, 7}}.
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Simplicial signals: For computational purposes, we fix
an (arbitrary) reference orientation (see [16] and [35, p. 5]
for more details) for each simplex according to the lex-
icographical ordering of its vertices. Given this reference
orientation for k-simplices, we define a k-simplicial signal
sk = [sk1 , . . . , s

k
Nk

]� ∈ R
Nk by attributing the value ski to the

ith k-simplex Sk
i . If the signal value ski is positive, then the

corresponding signal is aligned with the reference orientation;
opposite otherwise. Fig. 1(b) illustrates an arbitrary edge flow
on an SC, in which some flows are aligned with and other are
opposite the reference orientation (negative). For convenience,
henceforth, we denote a node signal by v = [v1, . . . , vN0

]� ∈
R

N0 and an edge flow by f = [f1, . . . , fN1
]� ∈ R

N1 .
Hodge Laplacians: We can describe the relationships between

(k − 1)-simplices and k-simplices by the kth incidence matrix
Bk ∈ R

Nk−1×Nk , which maps each k-simplex to the (k − 1)-
simplices that are its faces; cf. [18], [34] for more details.
Specifically, B1 is the node-edge incidence matrix, and B2

is the edge-triangle incidence matrix. By definition, incidence
matrices have the property [16], [18]

BkBk+1 = 0. (1)

Upon defining the incidence matrices, we can describe an SC X
of order K via the Hodge Laplacians

Lk = B�
kBk +Bk+1B

�
k+1, k = 1, . . . ,K − 1, (2)

with the graph Laplacian L0 = B1B
�
1 and LK = B�

KBK .
The kth-Hodge Laplacian Lk contains the lower Laplacian
Lk,� � B�

kBk and the upper Laplacian Lk,u � Bk+1B
�
k+1.

The lower Laplacian encodes the lower adjacency relationships
between simplices through faces while the upper one encodes
the upper adjacency relationships through cofaces. In particular,
L1,� encodes the edge adjacencies through their incident nodes
and L1,u through the common triangles that they form.

III. SIMPLICIAL CONVOLUTIONAL FILTERS

In this section, we propose a simplicial convolutional filter
based on the Hodge Laplacian. We study its basic building block,
the simplicial shifting, and show how its local characteristics
make it amenable to a distributed implementation. We then
look into the properties of shift-invariance and permutation and
orientation equivariance in the simplicial domain.

Given the kth-Hodge Laplacian Lk, we define a simplicial
convolutional filter to process a k-simplicial signal sk as

Hk = h0I+

L1∑
l1=1

αl1(B
�
kBk)

l1 +

L2∑
l2=1

βl2(Bk+1B
�
k+1)

l2 ,

(3)
whereHk := H(Lk,�,Lk,u) is a matrix polynomial of the lower
and upper Hodge Laplacians with filter coefficients h0, α =
[α1, . . . , αL1

]�, β = [β1, . . . , βL2
]� and filter orders L1, L2.

When k = 0, we obtain the graph convolutional filter H0 :=
H(L0) built upon the graph Laplacian L0 [2], [4], [5].

In the following we will see that assigning two different sets of
coefficients to the lower and upper Laplacian parts inHk enables
the filter to treat lower and upper adjacencies differently which
results in a more flexible control of the frequency response.
Instead, the filter Hk =

∑L
l=0 hlL

l
k, which is equivalent to

setting L1 = L2 = L and α = β in (3), cannot differentiate

between the two types of adjacencies and loses some expressive
power.

When applying Hk to a k-simplicial signal sk, it generates an
output sko = Hks

k which is a shift-and-sum operation where
the filter Hk first shifts the signal L1 times over the lower
neighborhoods and L2 times over the upper neighborhoods,
and then sums the shifted results according the corresponding
coefficients. This is analogous to the convolutions of graph
signals, images and time series [2]. For ease of exposition, we
study the filtering process of an edge flow f via an edge filter
H1 hereafter.

Simplicial shifting and local implementation: Consider an
edge filter H1 applied to an edge flow f with an output

fo = H1f = h0f +

L1∑
l1=1

αl1L
l1
1,�f +

L2∑
l2=1

βl2L
l2
1,uf , (4)

where the basic operation consists of applying different powers
of the lower/upper Hodge Laplacian to the edge flow. This basic
operation is denoted simplicial shifting. Let us first consider the
one-step lower shifting f (1)� � L1,�f and one-step upper shifting

f
(1)
u � L1,uf . We can express the one-step shifted results on the

ith edge, [f (1)� ]i and [f
(1)
u ]i, as[

f
(1)
�

]
i
=

∑
j∈{N 1

�,i∪ i}

[L1,�]ij [f ]j ,

[
f (1)u

]
i
=

∑
j∈{N 1

u,i∪ i}

[L1,u]ij [f ]j , (5)

which are the weighted linear combinations of the edge flows
on the lower and upper neighborhoods, N 1

�,i and N 1
u,i, of edge

i. This implies that one-step shifting is a local operation in the
edge space within the direct lower/upper neighborhoods.

Consider now the l-step lower shifting of an edge flow f ,
f
(l)
� � Ll

1,�f = L1,�f
(l−1)
� , where the second equality indicates

that the l-step lower shifting can be computed as a one-step
shifting of the previously shifted result, f (l−1)

� . Accordingly, the

l-step upper shifting follows f
(l)
u � Ll

1,uf = L1,uf
(l−1)
u . Thus,

the simplicial shifting allows a recursive implementation. For
example, the two-step shifted results, f

(2)
� and f

(2)
u , can be

computed from f
(1)
� and f

(1)
u via another shifting. Each edge

thus collects the flows from its lower and upper neighbors two
hops away. Fig. 2 illustrates such shifting operations. Likewise,
the l-step shifted results f

(l)
� and f

(l)
u contain the information

up to the l-hop lower and upper neighborhoods. Finally, we can
express the output (4) as

fo = h0f
(0) +

L1∑
l1=1

αl1f
(l1)
� +

L2∑
l2=1

βl2f
(l2)
u , (6)

which is a weighted linear combination of lower and upper
shifted simplicial signals after different steps. Fig. 3 illustrates
such a shift-and-sum operation.

Thus, the simplicial convolutional filter admits a simplicial
locality, i.e., the output fo is localized in the L1-hop lower
neighborhood and L2-hop upper neighborhood of an edge. If
two edges are lower adjacent more than L1 hops away or upper
adjacent more than L2 hops away, H1 does not mix signals

Authorized licensed use limited to: TU Delft Library. Downloaded on October 14,2022 at 07:31:49 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 2. Simplicial shifting. (a) An edge flow indicator f of edge {5, 6}.
(b) One-step lower shifting L1,�f . Edge {5, 6} and its direct lower neighboring
edges (green) update their flows by aggregating information from their lower
neighbors and themselves. (c) Two-step lower shifting L2

1,�f . Lower neighbor-
ing edges (green) update their flows through faces within two hops away from
edge {5, 6}, which can be obtained by one-step shifting L1,�f�. (d) One-step
upper shifting L1,uf . Edge {5, 6} and its upper neighbors (red) update their
flows through local information aggregation. (e) Two-step upper shifting L2

1,uf .
The output is localized within the one-hop upper neighborhood, as there is no
upper neighboring edge two hops away from {5, 6}. (f) Two-step shifting result
L2
1f , as the sum of (c) and (e).

Fig. 3. Simplicial convolutional filtering is a shift-and-sum operation.

defined on such edges. Note, however, if two edges are lower or
upper adjacent at distance d, a d-step lower or upper shifting via
Ld
1,� or Ld

1,u does not necessarily cause an interaction between
them: the aggregation might be cancelled out by the combination
of the filter coefficients and the topology of the SC which leads
to positive and negative entries in L1,� or L1,u.

As a local operation within the simplicial neighborhood,
the simplicial shifting allows for a distributed filter implemen-
tation, in which each edge updates its information only by
a direct communication with its lower and upper neighbors.
The communication complexity mainly comes from operation
(5), which is of order O(D�) with D� := max{|N 1

�,i|
N1
i=1} for

the lower simplicial shifting at each edge and O(Du) with
Du := max{|N 1

u,i|N1
i=1} for the upper simplicial shifting, i.e.,

the maximum number of lower and upper neighbors among all
edges, respectively. Then, the total communication cost of the
distributed implementation for each edge is O(D�L1 +DuL2)
due to the L1 lower shifting steps and L2 upper ones.

Linearity and shift invariance: Simplicial convolutional filters
are linear operators that are invariant to shifts.

Proposition 1: The simplicial filter Hk [cf. (3)] is linear and
shift-invariant. Specifically, in the edge space, given two edge

flows f1 and f2 and a simplicial filter H1, we have

Linearity : H1(af1 + bf2) = aH1f1 + bH1f2,

Shift-invariance : L1,� (H1f1) = H1 (L1,�f1) ,

L1,u (H1f1) = H1 (L1,uf1) . (7)

Proof: See Appendix A. �
The shift-invariance implies that applying a lower or upper

Hodge Laplacian to the simplicial output is equivalent to apply-
ing them to the input signal prior to filtering. Consequently, it
holds that H1H

′
1f = H′

1H1f for any two filters H1 and H′
1.

Equivariance: In an SC, the labeling and the reference ori-
entation of the simplices should not affect the filter output. We
show that this is indeed the case. We can model the simplex
relabeling of simplices by a set of permutation matrices [32]

P = {Pk ∈ {0, 1}Nk×Nk : Pk1 = 1,P�
k1 = 1, k ≥ 0}. (8)

Let P̄ = (P0,P1, . . . ) ⊂ P denote a sequence of label permu-
tations in an SC. After relabeling the simplices by P̄ , signal sk

becomes Pks
k, i.e., a reordering of the entries of sk. Similarly,

the incidence matrix Bk becomes B̄k = Pk−1BkPk, i.e., a
reordering of the rows and columns of Bk. Likewise, for Lk,
we get L̄k = PkLkP

�
k .

Proposition 2 (Permutation equivariance): Consider the
Hodge Laplacians Lk and L̄k = PkLkP

� for a permutation
sequence P̄ . For the simplicial signals sk and s̄k = Pks

k, with
H̄k := H(L̄k) [cf. (3)], the simplicial filter outputs sko := Hks

k

and s̄ko := H̄ks̄
k satisfy

s̄ko := H̄ks̄
k = H̄k(Pks

k) = PkHks
k := Pks

k
o . (9)

Proof: See Appendix B. �
A new reference orientation of a k-simplex leads to a multipli-

cation by −1 of the columns (or rows) of the incidence matrices
Bk and Bk+1 where the k-simplex appears and it also flips the
sign of the corresponding simplicial signal. This can be modeled
by a diagonal matrix Dk from the set

D = {Dk = diag(dk) : dk ∈ {±1}Nk , k ≥ 1,d0 = 1},
(10)

where d0 = 1, as the orientation of the nodes is trivial [32]. De-
note a sequence of orientation changes by D̄ = (D0,D1, . . . ) ⊂
D. A k-simplicial signal sk becomes Dks

k after an orientation
change by D̄. Accordingly, the incidence matrix Bk becomes
B̄k = Dk−1BkDk and the Hodge Laplacian Lk becomes L̄k =
DkLkDk.

Proposition 3 (Orientation equivariance): Consider the
Hodge Laplacians Lk and L̄k = DkLkDk for a sequence of
orientation changes D̄. For the simplicial signals sk and s̄k =
Dks

k, with H̄k = H(L̄k), the simplicial filter outputs sko :=
Hks

k and s̄ko := H̄ks̄
k satisfy

s̄ko := H̄ks̄
k = H̄k(Dks

k) = DkHks
k := Dks

k
o . (11)

Proof: See Appendix C. �
Intuitively, the two previous propositions state that for the

simplicial filter Hk the labeling and reference orientation of
simplices are inconsequential for the filter output. These two
properties have been previously reported in the context of neural
network on SCs [27], [29], [32]. These equivariances imply
that we can learn a filter to process a given simplex by seeing
only permuted and reoriented versions of it: if two parts of
an SC are topologically equivalent and the simplices support
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corresponding flows, a simplicial convolutional filter yields
equivalent outputs.

IV. SPECTRAL ANALYSIS OF SIMPLICIAL FILTERS

We now analyze the spectral properties of the simplicial
convolutional filter. First, we introduce the Hodge decompo-
sition and review the simplicial Fourier transform (SFT) [18].
Then, we investigate the simplicial frequency in terms of the
Hodge decomposition. By defining three frequency types, we
characterize the frequency response of the filter.

A. Hodge Decomposition

The Hodge decomposition in the edge space states that:

R
N1 = im(B�

1 )⊕ im(B2)⊕ ker(L1) (12)

where im(·) and ker(·) are the image and kernel of a matrix.
This implies that the edge space is composed of three orthogonal
subspaces, namely, the gradient space im(B�

1 ), the curl space
im(B2), and the harmonic space ker(L1) [16], [19]. Thus, any
edge flow f ∈ R

N1 can be decomposed into three orthogonal
components f = fG + fC + fH, which are the gradient compo-
nent fG ∈ im(B�

1 ), the curl component fC ∈ im(B2), and the
harmonic component fH ∈ ker(L1), respectively. Furthermore,
the incidence matrices B1, B2 and their adjoints can be inter-
preted as follows [18], [19].

Divergence operator B1: The incidence matrix B1 acts as
a divergence operator. By applying it to an edge flow f , we
compute the divergence of the flow, div(f) = B1f . The ith entry
of div(f) is the netflow passing through the ith vertex, i.e., the
difference between the total inflow and outflow at vertex i. A
vertex is a source or sink if it has a nonzero netflow.

Gradient operator B�
1 : The adjoint operator B�

1 is called the
gradient operator, which takes the difference between node sig-
nals along the oriented edges to induce an edge flow, fG = B�

1 v.
We call fG ∈ im(B�

1 ) a gradient flow and subspace im(B�
1 ) the

gradient space, as any gradient flow can be induced from a node
signal via the gradient operator.

Curl adjoint B2: By applying matrix B2 to a triangle signal
t ∈ R

N2 , we can induce a curl flow, fC = B2t, corresponding
to a flow locally circling along the edges of triangles. The space
im(B2) is the curl space as any flow in it can be induced from
a triangle signal.

Curl operator B�
2 : By applying the operator B�

2 to an edge
flow f , we compute its curl as curl(f) = B�

2 f , where the ith
entry is the netflow circulating along the ith triangle, i.e., the
sum of the edge flows forming the triangle. This can be seen as
a rotational variation measure of the edge flow.

The two incidence matrices and their adjoints provide insights
into the three orthogonal subspaces and signal components given
by the Hodge decomposition.

i) If edge flow f has zero divergence at each vertex, i.e.,
B1f = 0 ⇔ f ∈ ker(B1), then it is cyclic or divergence-
free. The space ker(B1) is called the cycle space, orthogo-
nal to the gradient space, i.e.,RN1 = im(B�

1 )⊕ ker(B1).
A gradient flow always has nonzero divergence, while a
curl flow is divergence-free due to (1).

ii) If edge flow f has zero curl on each triangle, it is curl-free
and f ∈ ker(B�

2 ). The curl space im(B2) is orthogonal
to the space ker(B�

2 ) and we have R
N1 = im(B2)⊕

ker(B�
2 ). A gradient flow fG is curl-free due to (1).

Fig. 4. Flow decomposition illustration (all numbers rounded to two decimal
places). (a) A synthetic edge flow f . (b) The gradient component fG has a
nonzero netflow at each node, but a zero flow around each triangle. (c) The curl
component fC has a zero netflow at each node, i.e., is divergence-free, but a
nonzero flow around each triangle. (d) The harmonic component fH has a zero
netflow at each node and zero circulation around each triangle, i.e., is divergence-
and curl-free (see section VI-A).

iii) The space ker(L1) is called the harmonic space. Any flow
fH ∈ ker(L1) satisfiesL1fH = 0, which is harmonic, i.e.,
both divergence- and curl-free.

The decomposition of an edge flow into its three components
reveals different properties of the flow, as shown in Fig. 4. For
instance, we can study the effect of an external source or sink
by extracting the gradient component of the edge flow [18].
In Section VI-A, we will discuss this subcomponent extraction
problem and solve it with simplicial filters.

B. Simplicial Fourier Transform

The Hodge Laplacians are positive semidefinite matrices and
admit an eigendecomposition

Lk = UkΛkU
�
k , (13)

where the orthonormal matrix Uk = [uk,1, . . . ,uk,Nk
] col-

lects the eigenvectors, and the diagonal matrix Λk =
diag(λk,1, . . . , λk,Nk

) the associated eigenvalues. There exists a
correspondence betweenU1 and the three orthogonal subspaces
given by the Hodge decomposition (12), detailed in the following
proposition.

Proposition 4: Given the 1-Hodge Laplacian of an SC L1 =
L1,� + L1,u, the following holds.

1) Gradient eigenvectors UG = [uG,1, . . . ,uG,NG
] ∈

R
N1×NG of L1,� associated with nonzero eigenvalues

span the gradient space im(B�
1 ) with dimension NG, i.e.,

im(B�
1 ) = im(UG).

2) Curl eigenvectors UC = [uC,1, . . . ,uC,NC
] ∈ R

N1×NC

of L1,u associated with nonzero eigenvalues span the
curl space im(B2) with dimension NC, i.e., im(B2) =
im(UC).

3) Gradient eigenvectorsUG are orthogonal to curl onesUC.
Matrix [UG UC] forms the eigenvectors of L1 associated
with nonzero eigenvalues, which span the space im(L1)
with dimension NG +NC.

4) Harmonic eigenvectors UH = [uH,1, . . . ,uH,NH
] ∈

R
N1×NH of L1 associated with zero eigenvalues span

the harmonic space ker(L1) with dimension NH, i.e.,
ker(L1) = im(UH). Matrices [UH UC] and [UH UG]
provide the eigenvectors of L1,� and L1,u associated with
zero eigenvalues, respectively.

5) The columns of U1 can be ordered such that U1 =
[UH UG UC]. Matrix U1 forms an eigenvector basis for
L1, L1,� and L1,u, and N1 = NH +NG +NC.

Proof: See Appendix D. �
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Proposition 4 shows that: i) the eigenvectors in U1 can fully
span the three orthogonal subspaces given by the Hodge de-
composition; ii) the Hodge LaplacianL1 and its lower and upper
counterparts,L1,� andL1,u, can be simultaneously diagonalized
by U1; and, iii) from im(B�

1 ) = im(L1,�), we have that the
image of the lower Hodge Laplacian L1,� coincides with the
gradient space, and from im(B2) = im(L1,u), the image of L1u

coincides with the curl space. These results are applicable to the
k-Hodge Laplacian accordingly. See [19, Thm. 1] and [18, Prop.
1] for related discussions.

Thus, the lower shifting of a curl or harmonic flow leads to
zero as the harmonic and curl space correspond to the null space
of L1,�. Likewise, the upper shifting of a gradient or harmonic
flow leads to zero, i.e.,

L1,�fC = 0, L1,ufG = 0, L1,�fH = L1,ufH = 0. (14)

Given a k-simplicial signal sk, the simplicial Fourier trans-
form (SFT) is given by its projection onto the eigenvectors Uk,
i.e., s̃k � U�

k s
k. Entry [sk]i represents the weight eigenvec-

tor uk,i has on expressing sk. The inverse SFT is given by
sk = Uks̃

k. For k = 0, the SFT coincides with the GFT [18]. As
for the GFT, the eigenvalues of Lk carry the notion of simplicial
frequencies. But in the simplex domain, this frequency notion
is more involved. As we illustrate in the sequel for k = 1, the
eigenvalues in the set Q = {λ1,1, . . . , λ1,N1

} of L1 measure
three types of simplicial frequencies.

Gradient frequency: For any unit norm gradient eigenvector
uG ∈ UG, associated to the gradient space im(B�

1 ), its corre-
sponding eigenvalue follows

λG = u�
GL1uG = ‖B1uG‖22 + ‖B�

2 uG‖22 = ‖B1uG‖22,
(15)

where the last equality is due to the fact that uG is curl-free,
i.e., B�

2 uG = 0. Thus, eigenvalue λG is the squared �2-norm
of the divergence B1uG of the eigenvector edge flow uG. The
magnitude of λG measures the extent of total divergence, i.e.,
the nodal variation. The gradient eigenvectors associated with a
large eigenvalue have a large total divergence. If the SFT f̃ =
U�

1 f of an edge flow has a large weight on such an eigenvector,
we say that it contains a high gradient frequency, corresponding
to its large divergence. We call any eigenvalue λG associated to
the gradient eigenvectors UG a gradient frequency and collect
them in the set QG = {λG,1, . . . , λG,NG

}.
Curl frequency: For any unit norm curl eigenvector uC ∈ UC

associated to the curl space im(B2), its corresponding eigen-
value follows

λC = u�
CL1uC = ‖B1uC‖22 + ‖B�

2 uC‖22 = ‖B�
2 uC‖22,

(16)
where the last equality is due to the fact that uC is divergence-
free, i.e., B1uC = 0. Eigenvalue λC is the squared �2-norm of
the curl B�

2 uC of the eigenvector uC. Thus, the magnitude of
λC measures the extent of total curl, i.e., the rotational variation.
Any eigenvector in the curl space corresponding to a large
eigenvalue has a large total curl. If the SFT of an edge flow
contains large weights on such eigenvectors, we say that it has a
high curl frequency. We name any eigenvalue λC associated to
the curl eigenvectors UC a curl frequency and collect them in
the set QC = {λC,1, . . . , λC,NC

}.
Harmonic frequency: The remaining eigenvalues λH are as-

sociated to the eigenvectors uH ∈ UH which span the harmonic

space ker(L1). They can be expressed as

λH = u�
HL1uH = ‖B1uH‖22 + ‖B�

2 uH‖22 = 0, (17)

because uH is harmonic, i.e., both divergence- and curl-free.
If the SFT of an edge flow has only nonzeros at the harmonic
frequencies (which are all zeros), then it is a harmonic flow.
We collect the harmonic frequencies (all zeros) in the set QH =
{λH,1, . . . , λH,NH

}.
With these three types of simplicial frequencies, low and

high frequency notions in an SC are only meaningful with
respect to a certain type. A higher gradient (curl) frequency
indicates respectively a larger nodal (rotational) variability. This
is different from the frequency notion in discrete and graph signal
processing. A zero simplicial frequency does not correspond
to a constant edge flow but a globally conservative flow, i.e.,
divergence- and curl-free. Fig. 5 shows examples of different
eigenvectors and the associated eigenvalues, which would be the
analogous of the complex exponentials in discrete-time signal
processing for the edge space in Fig. 1(a).

Simplicial embeddings: From Proposition 4 and three types of
simplicial frequencies, we can interpret the SFT by the following
diagonalization of L1

L1 = U1blkdiag (ΛH,ΛG,ΛC)U
�
1 (18)

with U1 = [UH UG UC] and blkdiag(A,B,C) a block-
diagonal matrix containing the square matrices A,B,C as
diagonal blocks. Similarly, we have

L1,� = U1blkdiag (0,ΛG,0)U
�
1 (19a)

L1,u = U1blkdiag (0,0,ΛC)U
�
1 (19b)

for the lower and upper Laplacians, where 0 is an all-zero matrix
of appropriate dimensions. Such insightful eigendecompositions
enable us to define the following three embeddings of an edge
flow f ∈ R

N1 ,⎧⎪⎨
⎪⎩
f̃H = U�

Hf = U�
HfH ∈ R

NH , harmonic embedding

f̃G = U�
Gf = U�

GfG ∈ R
NG , gradient embedding

f̃C = U�
Cf = U�

CfC ∈ R
NC , curl embedding.

(20)

They follow from the orthogonality of the three components
given by the Hodge decomposition. Equivalently, we can write
the SFT of f as f̃ = [f̃�H , f̃

�
G , f̃

�
C ]

�. Each entry of an embedding
represents the weight the flow has on the corresponding eigen-
vector (simplicial Fourier basis vector), e.g., entry [f̃G]i is the
SFT of f at the ith gradient frequency λG,i. Such an embedding
provides a compressed representation of the edge flow if they
present a degree of sparsity [18] and allows us to differentiate
different types of edge flow, e.g., to cluster trajectories and
analyze ocean drift data [35], [36].

C. Filter Frequency Response

Upon defining the SFT, we can analyze the frequency response
of the simplicial convolutional filter (3). From the diagonaliza-
tions (19a) and (20), we see that the lower simplicial shifting of
an edge flow affects only the gradient component and the upper
shifting affects only the curl component, i.e.,

L1,�f = UGΛGf̃G, L1,uf = UCΛCf̃C. (21)
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Fig. 5. Spectral analysis of the edge space in Fig. 1(a). The flow value (all numbers rounded to two decimal places) is indicated by the edge width and annotated
next to the edge. It is zero if the edge is not annotated. If a flow orientation is opposite to the reference orientation, the corresponding flow value is negative. (a)-(c)
The 1st, 3 rd, and 6th eigenvectors in the gradient space UG with the corresponding gradient frequencies λG. The total divergence of the eigenvector increases
with the eigenvalue. (d)-(e) The 1st and 3 rd eigenvectors in the curl space UC with the corresponding curl frequencies λC. The total curl of the eigenvectors
increases with the eigenvalue. (f) The only eigenvector in the harmonic space UH has frequency 0 and zero divergence and curl.

Through diagonalizingH1 byU1 = [UH UG UC], we can find
the frequency response of H1 as

H̃1 = U�
1H1U1 = blkdiag

(
H̃H, H̃G, H̃C

)
, (22)

where H̃H = h0I, H̃G = h0I+
∑L1

l1=1 αl1Λ
l1
G and H̃C =

h0I+
∑L2

l2=1 βl2Λ
l2
C . At an arbitrary frequencyλ, the frequency

response H̃1(λ) is given by

⎧⎪⎨
⎪⎩
H̃H(λ) := h0, for λ ∈ QH,

H̃G(λ) := h0 +
∑L1

l1=1 αl1λ
l1 , for λ ∈ QG,

H̃C(λ) := h0 +
∑L2

l2=1 βl2λ
l2 , for λ ∈ QC,

(23)

which is the filter frequency response at the harmonic, gradient
and curl frequencies, respectively. By the definition of spectral
filtering, the filter H1 cannot distinguish the signal compo-
nents belonging to the subspace spanned by the eigenvectors
associated to an eigenvalue of multiplicity greater than one.
For instance, the filter cannot respond differently to multiple
harmonic components, but only scale them by a factor h0. In
addition, we make the following three observations.

1) Filter H1 controls the different frequency types inde-
pendently. The coefficient h0 determines the harmonic
frequency response and contributes to the whole simplicial
spectrum. The coefficients α and β contribute only to
the gradient and curl frequency response, respectively.
This independent control on different signal subspaces
corresponds to the different parameters imposed on the
lower and upper adjacencies in the simplicial domain. In
contrast, if setting L1 = L2 and α = β in H1, the filter
cannot regulate the gradient and curl spaces independently
and has less flexibility.

2) The gradient frequency response is fully determined by
the matrix polynomial in L1,� [cf. (19a) and (22)]. Thus,
if L2 = 0, H1 has as responses h0 for λ ∈ QH ∪ QC,
and H̃G = h0 +

∑L1

l1=1 αl1λ
l1 , for λ ∈ QG. This con-

trols the gradient and non-gradient frequencies with a
reduced design burden due to fewer parameters. But we
give up the control on the curl frequencies. Likewise for
the case of L1 = 0, which is beneficial when only curl
components need to be tuned.

3) At two overlapping frequencies λ1 = λ2 with λ1 ∈ QG,
and λ2 ∈ QC, filter H1 responds differently as H̃G(λ1)

and H̃C(λ2) [cf. (23)], respectively. This cannot be real-
ized for the filter H1 =

∑L
l=0 hlL

l
1, i.e., setting L1 = L2

andα = β, which follows H̃G(λ1) = H̃C(λ2) instead. In
the latter case, it will preserve the unwanted curl compo-
nent at λ2 when setting H̃G(λ) = 1, for λ ∈ QG, when
the goal is to extract the gradient component.

V. FILTER DESIGN

Given a training set of input-output edge flow relations T =
{(f1, fo,1), . . . , (f|T |, fo,|T |)}, we can learn the filter coefficients
in a data-driven fashion by fitting the filtered output H1f to the
output fo. Specifically, consider a mean squared error (MSE)
cost function and a regularizer r(h0,α,β) to avoid overfitting,
we formulate the problem as

min
h0,α,β

1

|T |
∑

(fi,fo,i)∈T
‖H1fi − fo,i‖22 + γr(h0,α,β), (24)

with γ > 0. A flow prediction based on (24) is detailed in [1].
In this section, we focus in detail on designing the simplicial

filter given a desired frequency response. Specifically, we as-
sume a desired frequency response g0 at the harmonic frequency
λ = 0, a gradient frequency response gG(λ) for λ ∈ QG, and
a curl frequency response gC(λ) for λ ∈ QC. To design the
coefficients h0,α,β, our goal is then to approximate the desired
response by the filter frequency response H̃1(λ) [cf. (23)], which
can be formulated as⎧⎪⎨

⎪⎩
h0 ≈ g0, for λi = 0,

h0 +
∑L1

l1=1 αl1λ
l1
i ≈ gG(λi), for λi ∈ QG,

h0 +
∑L2

l2=1 βl2λ
l2
i ≈ gC(λi), for λi ∈ QC.

(25)

In the following, we first use a standard least-squares (LS)
approach to solve (25). Later, we consider a universal design
to avoid the eigenvalue computation when a continuous desired
frequency response is given. In particular, we consider a grid-
based and a Chebyshev polynomial approach.

A. Least-Squares Filter Design

Denote the number of distinct gradient frequencies in QG by
DG, and that of distinct curl frequencies in QC by DC. Then,
the three sets of equations in (25) contain respectively one,
DG and DC distinct linear equations. Let g = [g0,g

�
G,g

�
C]

�

collect the desired responses at distinct frequencies where
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[gG]i = gG(λG,i), for i = 1 . . . , DG, is the response at the
ith distinct gradient frequency λG,i, and [gC]i = gC(λC,i), for
i = 1 . . . , DC, at the ith distinct curl frequency. Then, we can
obtain the filter coefficients by solving the LS problem

min
h0,α,β

∥∥∥∥∥∥
⎡
⎣1 0

ΦG 0

0 ΦC

⎤
⎦
⎡
⎣h0

α

β

⎤
⎦− g

∥∥∥∥∥∥
2

2

, (26)

where 1 (0) is an all-one (all-zero) matrix or vector of an
appropriate dimension, ΦG ∈ R

DG×L1 and ΦC ∈ R
DC×L2 are

Vandermonde matrices with respective entries [ΦG]ij = λj
G,i

and [ΦC]ij = λj
C,i. We refer to problem (26) as the LS design,

which can be solved either with a direct solver or with a decou-
pled solver, studied as follows.

Direct LS design: From the Cayley-Hamilton theorem [37]
and [4, Thm. 3], we know that any analytical function of a
matrix can be expressed as a matrix polynomial of degree less
than its minimal polynomial degree, which equals the number of
distinct eigenvalues for a positive semi-definite matrix. Thus, we
can assume the filter orders L1 ≤ DG and L2 ≤ DC. Under this
condition, problem (26) admits a unique solution which can be
obtained via the pseudo-inverse of the system matrix. Further-
more, whenL1 = DG andL2 = DC,ΦG andΦC are square and
any two rows in them are linearly independent, the solution leads
to a zero cost in (26). We refer to this pseudo-inverse solution
of (26) as the direct LS design.

In addition, given a desired edge operator G, the following
proposition states that it can be implemented by filter H1.

Proposition 5: A desired linear operatorG ∈ R
N1×N1 can be

perfectly implemented by a simplicial filter H1 if the following
three conditions hold true:

i) Matrices G and L1 are simultaneously diagonalizable,
i.e., U1 forms an eigenvector basis for G. Let g =
[g�

H,g
�
G,g

�
C]

� collect the eigenvalues of G.
ii) If two eigenvalues of L1 are of the same frequency type

and equal, the corresponding eigenvalues of G are also
equal. For λH,i = λH,j = 0 ∈ QH, it holds that [gH]i =
[gH]j , for λG,i = λG,j ∈ QG, [gG]i = [gG]j , and for
λC,i = λC,j ∈ QC, [gC]i = [gC]j .

iii) The filter orders of H1 fulfill L1 ≥ DG, L2 ≥ DC.
Proof: See Appendix E. �
Decoupled LS design: We can reduce the complexity of solv-

ing (26) by decoupling the cost function for different frequency
types. First, we rewrite problem (26) as

min
h0,α,β

∥∥∥∥[1 ΦG]

[
h0

α

]
− gG

∥∥∥∥
2

2

+

∥∥∥∥[1 ΦC]

[
h0

β

]
− gC

∥∥∥∥
2

2

+ ‖h0 − g0‖22 . (27)

To approximate a solution, we ignore the dependence of the
first two terms in (27) on coefficient h0 and solve the last term
separately to estimate h0. We then substitute the estimate ĥ0 in
the first two terms to obtain α̂ and β̂, given by

ĥ0 = g0, α̂ = Φ†
G(gG − g01), β̂ = Φ†

C(gC − g01), (28)

which, referred to as the decoupled LS design, is suboptimal
compared to the direct LS design. The following proposition
discusses this suboptimality.

Fig. 6. An example of a continuous frequency response for the grid-based (top)
and Chebyshev (bottom) filter design, which promotes low gradient frequencies
and the high curl frequencies. The cut-off frequencies are subscripted by τ .
The harmonic frequency response is given at frequency 0. For the Chebyshev
polynomial design, we require that the gradient and curl are continuous functions
starting from frequency 0 and gG(0) = gC(0) = g0.

Proposition 6: The decoupled LS design (28) converges to the
direct solution of (26) as ‖ΦGΦ

†
G − I‖F → 0 and ‖ΦCΦ

†
C −

I‖F → 0 where ‖ · ‖F is the Frobenius norm.
Proof: See Appendix F. �
Proposition 6 states that as the pseudo-inverses of ΦG and

ΦC become closer to the true inverses, the decoupled solution
converges to the direct solution. Moreover, the decoupled LS
design reduces the computational cost to O(D3

G +D3
C) from

O((1 +DG +DC)
3) for the direct one. However, both de-

signs require the computation of the eigenvalues of the Hodge
Laplacians, which takes in general a computational complexity
of O(N3

1 ) [38]. In the sequel, we consider a universal design
strategy to avoid the eigenvalue computation, specifically, a
grid-based design and a Chebyshev polynomial design [39].

B. Grid-Based Filter Design

The grid-based filter design aims to match the desired fre-
quency response in a continuous interval where the exact fre-
quencies lie such that the eigenvalue computation of L1 can be
avoided. Given a harmonic frequency response g0, a continuous
gradient frequency response gG(λ), λ ∈ [λG,min, λG,max] and a
continuous curl frequency response gC(λ), λ ∈ [λC,min, λC,max],
we want that

⎧⎪⎪⎨
⎪⎪⎩
h0 − g0 ≈ 0∫ λG,max

λG,min

∣∣h0 +
∑L1

l1=1 αl1λ
l1 − gG(λ)

∣∣2dλ ≈ 0∫ λC,max

λC,min

∣∣h0 +
∑L2

l2=1 βl2λ
l2 − gC(λ)

∣∣2dλ ≈ 0,

(29)

which is a continuous version of (25). An example of the
continuous frequency response is given in Fig. 6 (top).

By sampling M1 and M2 (grid)-points uniformly from the
intervals [λG,min, λG,max] and [λC,min, λC,max], the problem (29)
can then be formulated as an LS problem of form (26) but with
the sampled frequencies as the entries of the system matrix
instead of the true eigenvalues. We can again solve this LS
problem either via a direct pseudo-inverse of the system matrix
or via the decoupled solution method [cf. (28)]. Notice that
the largest true eigenvalue can be approximated by efficient
algorithms, e.g., power iteration, [38], [40]. For the smallest,
we can set a small value greater than 0 as the lower bound.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 14,2022 at 07:31:49 UTC from IEEE Xplore.  Restrictions apply. 



YANG et al.: SIMPLICIAL CONVOLUTIONAL FILTERS 4641

C. Chebyshev Polynomial Filter Design

Both discussed filter designs rely on solving an LS problem,
which has a Vandermonde matrix as the system matrix, and
suffers from numerical instability. To tackle this issue, we con-
sider a Chebyshev polynomial based filter design [39], [41].
As illustrated in Fig. 6 (bottom), consider a continuous gradient
frequency response gG(λ), λ ∈ [0, λG,max] and a continuous curl
frequency response gC(λ), λ ∈ [0, λC,max]. We further require
that gG(0) = gC(0) = g0. That is, the continuous functions
gG(λ) and gC(λ) are defined starting from frequency 0, at which
they are equal to the harmonic frequency response g0.

As the filter H1 is a sum of matrix polynomials of L1,� and
L1,u, our strategy is to first consider the Chebyshev polynomial
design for each of them so to separately obtain the gradient and
curl frequency responses, then sum these two polynomials to
obtain the final filter. However, one type of frequency response
could be affected unwantedly by the identity matrix term in
the Chebyshev polynomial designed for the other frequency re-
sponse, as detailed later. The requirement that gG(0) = gC(0) =
g0 allows a possible correction.

First, we approximate the gradient frequency response via
a truncated series of shifted Chebyshev polynomials H� :=
H�(L1,�). Let P̄l(λ), λ ∈ [−1, 1] be the lth Chebyshev polyno-
mial of the first kind [42]. We perform a transformationPl(λ) :=

P̄l(
λ−ω
ω ) with ω :=

λG,max

2 to shift the domain to [0, λG,max]. We
then approximate the operator gG(L1,�) that has the gradient
frequency response gG(λ) by H� of order L1

H� =
1

2
c�,0I+

L1∑
l1=1

c�,l1Pl1(L1,�) (30)

where we have P0(L1,�) = I, P1(L1,�) =
2

λG,max
L1,� − I, the

l1th Chebyshev term, for l1 ≥ 2, is

Pl1(L1,�) = 2P1(L1,�)Pl1−1(L1,�)− Pl1−2(L1,�), (31)

and the Chebyshev coefficients c�,l1 can be computed as

c�,l1 =
2

π

∫ π

0

cos(l1φ)gG (ω(cosφ+ 1)) dφ. (32)

The frequency response H̃�(λ) of H� can be found as

{
p�,0 :=

1
2c�,0+

∑�L1/2�
l1=1 (c�,2l1 − c�,2l1−1), for λ ∈ QH ∪ QC

H̃�,G(λ) :=
1
2c�,0+

∑L1

l1=1 c�,l1Pl1(λ), for λ ∈ QG,
(33)

with coefficient p�,0 on the identity term of H�, which is the
frequency response at the harmonic and curl frequencies, asso-
ciated to the kernel of L1,� [cf. (19a)]. For a reasonably large L1

we have p�,0 ≈ g0 and H̃�,G(λ) ≈ gG(λ), λ ∈ QG.
Second, to approximate the curl frequency response gC(λ),

we follow the same procedure [cf. (30)-(32)] to obtain the
Chebyshev polynomial Hu := Hu(L1,u) of order L2

Hu =
1

2
cu,0I+

L2∑
l2=1

cu,l2Pl2(L1,u). (34)

It has a frequency response H̃u(λ){
pu,0 :=

1
2cu,0+

∑�L2/2�
l2=1 (cu,2l2−cu,2l2−1), for λ ∈ QH ∪ QG

H̃u,C(λ) :=
1
2cu,0+

∑L2

l2=1 cu,l2Pl2(λ), for λ ∈ QC.
(35)

with coefficient pu,0 on the identity term of Hu, which is the
frequency response at the harmonic and gradient frequencies,
associated to the kernel of L1,u [cf. (19b)]. For a reasonably
large L2 we have pu,0 ≈ g0 and H̃u,C(λ) ≈ gC(λ), λ ∈ QC.

Lastly, by summingH� andHu, we obtain a filter that approx-
imates the gradient and curl frequency responses. However, from
(33), we see that H� generates a response p�,0 at both harmonic
and curl frequencies. This will lift up the curl frequency response
unwantedly by p�,0. Similarly, Hu has the effect of lifting the
gradient frequency response by pu,0 [cf. (35)]. By requiring that
gG(0) = gC(0) = g0, we can remove this unwanted influence
by subtracting a term g0I from the summation. Hence, the final
Chebyshev polynomial design H1 of orders L1 and L2 is given
by

H1 = H� +Hu − g0I, (36)

which has a frequency response H̃1(λ)⎧⎨
⎩
p�,0 + pu,0 − g0, for λ ∈ QH

H̃l,G(λ) + pu,0 − g0, for λ ∈ QG

H̃u,C(λ) + p�,0 − g0, for λ ∈ QC.

(37)

The following proposition states that the approximation error of
the Chebyshev polynomial design (36) is bounded.

Proposition 7: Let G be the desired operator corresponding
to the continuous gradient and curl frequency responses gG(λ)
with λ ∈ [0, λG,max] and gC(λ) with λ ∈ [0, λC,max], as well as
the harmonic one gG(0) = gC(0) = g0. Let H1 [cf. (36)] be a
truncated series of Chebyshev polynomials of orders L1 and L2

with frequency response H̃1(λ) [cf. (37)]. Define

B1(L1) := supλ∈[0,λG,max]

{∣∣H̃�(λ)− g0 − gG(λ)
∣∣},

B2(L2) := supλ∈[0,λC,max]

{∣∣H̃u(λ)− g0 − gC(λ)
∣∣}, (38)

and B := max{B1(L1), B2(L2)}. Then, we have that

‖G−H1‖2 := max
f �=0

‖(G−H1)f‖2
‖f‖2

≤ B (39)

Proof: See Appendix G. �
When gG(·) and gC(·) are real analytic, a stronger bound can

be found [39], [43]. In addition, we make the following three
comments. i) When only the gradient frequency response gG(λ)
is of interest, we can directly consider the Chebyshev polynomial
H� [cf. (30)] with L2 = 0. Likewise we consider Hu when only
gC(λ) is of interest. ii) If a frequency response g(λ) is given
on the whole spectrum, we can build a filter H =

∑L
l=0 hlL

l
1

based on a Chebyshev polynomial design analogous to the graph
filter case [39]. iii) The Chebyshev polynomial design requires
no eigenvalue computation of L1. Thus, it does not suffer from
numerical instability, allows to build simplicial filters with large
L1 and L2 for an accurate design, and admits a recursive and
distributed implementation due to the Chebyshev polynomial
property (31).

Authorized licensed use limited to: TU Delft Library. Downloaded on October 14,2022 at 07:31:49 UTC from IEEE Xplore.  Restrictions apply. 



4642 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

VI. APPLICATIONS

In this section, we first discuss how to use a simplicial filter for
subcomponent extraction and edge flow denoising. We then con-
sider analyses of financial markets, street and traffic networks.
These are similar to previous works [8], [9], [18], [44], [45], but
we directly use our here developed filters instead of employing
a regularized optimization problem (which implicitly defines a
low-pass filter).

To gauge the performance in estimation tasks, we use the nor-
malized root mean square error (NRMSE), e = ‖f̂ − f0‖2/‖f0‖2
with the flow estimate f̂ and the true flow f0. For filter design
problems, we evaluate the spectral norm ‖H1 −G‖2 with the
designed filterH1 and the true operatorG. The Chebfun toolbox
was used for the Chebyshev polynomial filter design [46].

A. Subcomponent Extraction

In pairwise ranking problems, we aim to rank alternatives
by comparing their scores. The work [9] modeled the score
differences between alternatives as edge flows on a pairwise
comparison graph. The gradient component of these flows gives
a global ranking and the curl components measures the inconsis-
tency of the ranking. For further examples see [10], [11], [12].
A common approach to obtain the three components of the flow
is to compute [9], [16], [18]:

f̂G = PGf , f̂C = PCf , f̂H = PHf = f − f̂G − f̂C. (40)

where PG = B�
1 (B1B

�
1 )

†B1 is the projection onto the gra-
dient space, the curl projector is PC = B2(B

�
2B2)

†B�
2 and

the harmonic projector PH = I− L1L
†
1. Notably, we can use a

(polynomial) simplicial filter H1 to implement these operators,
too.

Lemma 1: The projection operators (40) are equivalent to
PG = UGU

�
G, PG = UCU

�
C and PH = UHU

�
H. As U re-

quires the knowledge of global properties in this form the
projections cannot be computed in a distributed way.

However, for L1 = DG, L2 = DC, there exists a unique
{h0,α,β} such thatH1 = PG. These coefficients can be found
by solving the system (26) with g0 = 0,gC = 0 and gG = 1;
analogous arguments lead to distributed implementations of
H1 = PC and H1 = PH.

Proof: See Appendix H. �
For the gradient and curl components, this can be simplified.
Corollary 1: For the gradient projector PG, there exist a

filter with L1 = DG, L2 = 0 and a unique {h0,α} such that
H1 = PG. The solution is h0 = 0 and α = Φ−1

G 1. For the curl
projector PC, there exist a filter with L1 = 0, L2 = DC and a
unique {h0,β} such that H1 = PC. The solution is h0 = 0 and
β = Φ−1

C 1
Proof: See Appendix I. �
Corollary 1 shows a gradient projector can be build solely

upon L1,�, since L1,u has no effect in the gradient space [cf.
(14) and (21)]. Similar arguments hold for the curl projector.

Fig. 7 reports the performance of the subcomponent extraction
based on H1 via an LS design. We generated a synthetic edge
flow f = U1f̃ with a flat spectrum f̃ = 1 on the SC in Fig. 1(a).
We observe that as the filter order increases, the filter performs
better as its expressive power increases. Setting L1 = L2 with
α = β reduces the expressive power as expected. If filter orders
obey L1 ≥ 6 and L3 ≥ 3, then the gradient (or curl) component

Fig. 7. Subcomponent extraction performance by filters H1 with different
parameters based on an LS design. The extraction becomes better as the filter
order increases. For the gradient and curl components, setting L1 = L2 and
α = β worsens the performance because of the limited expressive power.
For the general filter form, the direct and decoupled LS designs have smaller
performance difference as the filter order grows (see Proposition 6).

Fig. 8. Frequency responses of the denoising filter HP = (I+ 0.5L1)
−1

based on the grid design with different filter orders.

can be perfectly extracted, as shown in Fig. 4 and indicated by
Lemma 1 and Corollary 1. In the general parameter setting, the
decoupled LS design performs closer to the direct LS design as
the filter order grows as shown in Proposition 6.

B. Edge Flow Denoising

Consider a noisy edge flow f = f0 + ε with f0 the true edge
flow and ε a zero-mean white Gaussian noise. To obtain an esti-
mate f̂ , we can solve the regularized optimization problem [8],
[19]:

min
f̂

‖f̂ − f‖22 + μf̂Pf̂ , (41)

with an optimal solution f̂ = HP f̂ := (I+ μP)−1f . For matrix
P we have two choices: (i) the edge Laplacian L1,� = B�

1B1,
leading to a regularizer ‖B1f̂‖22 to penalize the flows with a
nonzero divergence [8]; (ii) the Hodge Laplacian L1, leading to
a regularizer f̂L1f̂ = ‖B1f̂‖22 + ‖B�

2 f̂‖22 to penalize the flows
with a nonzero divergence or curl [19].

Operator HP has the frequency response H̃P (λi) = 1/(1 +
μλi) with (i) λi = 0 or λi ∈ QG for P = L1,�, (ii) λi = 0 or
λi ∈ QG ∪ QC for P = L1. Thus, HP is a low pass filter which
suppresses either the gradient frequencies or the non-harmonic
frequencies. We can implement a simplicial filter to approximate
HP . Fig. 8 shows the frequency responses of the filter HP with
P = L1, μ = 0.5 based on the grid-based design, for which we
considered 10 samples in the frequency interval [0,5.488] and
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Fig. 9. Gradient flow denoising. (a) Edge flow f0 induced by a node signal with
a flat spectrum. (b) The noisy observation f with error e = 0.46. (c-d) Denoising
with the low-pass filter HP with (c) P = L1 [19], or (d) P = L1,� [8] leads
to an even larger error of e = 0.70 or e = 0.73, respectively. (e) Denoising by
a gradient based simplicial filter H1 with an order L1 = L2 = 4 and α = β,
yields a much better result with error e = 0.39. (f) Denoising by a general filter
H1 with α �= β provides an even smaller error with e = 0.23, even for a lower
filter order L1 = L2 = 1.

the maximal eigenvalue is estimated with 50 steps of power
iterations. The grid-based filter design errors compared to using
the true eigenvalues are negligible, 0.023 and 0.004 for L = 2
and L = 4, respectively.

Note that the above optimization framework relies on the
assumption that the true edge flow is either divergence-free or
harmonic, which is not always true for real-world flows [9], [23].
When different spectral properties of the underlying edge flow
are known, or certain spectral properties of noise are known,
we are able to deal with various situations for denoising by
properly designing the simplicial filters. To illustrate this we
induced a gradient flow from a node signal with a flat spectrum
and added Gaussian noise with an error of 0.46, shown in
Figs. 9(a) and 9(b). Fig. 9 contrasts the denoising results of the
regularized optimization methods with our filters that preserve
the gradient component based on an LS design (Corollary 1).
As Figs. 9(c) to 9(f), shown in this context the low-pass filters
which are implicitly defined via the optimization procedures lead
to large errors. In contrast the simplicial filters that preserve the
gradient can denoise properly. Setting α = β again reduces the
performance.

C. Currency Exchange Market

A currency exchange market can be described as a network
where the vertices represent currencies, and the edges indi-
cate the pairwise exchange rates. If all pairs of currencies are
exchangeable, the vertex setV and edge setE make up a complete
graph. For any currencies i, j, k ∈ V , we expect an arbitrary-free
condition, ri/jrj/k = ri/k with the exchange rate ri/j between
i and j, i.e., the exchange path i → j → k provides no gain or
loss over a direct exchange i → k. If we represent the exchange
rates as edge flows fij = log(ri/j), this can be translated into
the fact that f is curl-free, i.e., fij + fjk + fki = 0. Therefore,

TABLE I
CURRENCY EXCHANGE RATES CAPTURED FROM YAHOO!FINANCE, NOT

ARBITRAGE-FREE

TABLE II
THE GRADIENT COMPONENT, ARBITRAGE-FREE, PROVIDES A FAIR MARKET

an ideal exchange edge flow is a gradient flow. This idea was
exploited in [9], [23] to assess arbitrage possibilities in exchange
markets, and provide arbitrage free exchange rates, respectively.

Here, we illustrate how we can analogously remove arbitrage
opportunities via a simplicial filter that preserves only the gra-
dient component of a given exchange rate flow. For a complete
graph, there are two distinct eigenvalues, zero and N0, for the
lower or upper Hodge Laplacian. Then, based on Corollary
1 we can extract the gradient component via H1 = 1

N0
L1,�.

Similarly, filter H1 = 1
N0

L1,u can extract the curl component,
which indicate possible arbitrage opportunities.

In Table I, we show a real-world exchange market of seven
currencies at 2021/07/12 10:30 UTC from the Currency Con-
verter Yahoo!Finance. We built an SC formed by the seven
currencies and all the 2-, 3-cliques, where the edge flow f is
the logarithm of the exchange rates in the upper triangular part
without the diagonal in Table I. If one unit of currency yields
more than 0.3% benefit or loss after two successive exchanges,
we say the corresponding exchange rates are non-arbitrage-free.
By computing the curl B�

2 f , we can identify six such triangles
(up to machine precision) that are not arbitrage-free., e.g., USD-
JPY-AUD (1 USD would yield 1.0041 USD), EUR-JPY-AUD,
and HKD-GBP-JPY. By applying a filter H1 = 1

N0
L1,� on the

exchange rate flows, we can extract its gradient flow, leading to
the arbitrage-free exchange rate flow in Table II. This yields
essentially the same results as solving the LS optimization
problem considered in [9]. This simple example demonstrates
the use of simplicial filters to generate an efficient financial
market. Especially in a complete market, the form of the filters
is trivial and the computational cost is much smaller compared
to solving the LS problems.

D. London Street Network: Fast PageRank of Edges

PageRank, as a ranking scheme for web pages, can be studied
in terms of a random walk on a graph, which can be used
to measure the centrality of a node. PageRank was extended
to the edge space to assess the topological importance of an
edge in [35]. The input edge flow f is an indicator vector
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Fig. 10. PageRank analysis of the street network of London. Top left: network
illustration. Top right: Frequency responses of the grid-based designed filter of
order 9 and the Chebyshev filter of order 61 w.r.t. the desired continuous fre-
quency response. Bottom left: Spectral norm error of the Chebyshev polynomial
filter of different orders. Bottom right: Continuous frequency response errors of
the Chebyshev filter of different orders.

which has value one on the edge of interest and zeros on the
rest, then a PageRank vector π follows the linear system [35,
Def. 6.2], (γI+ L1,n)π = f , with L1,n being the normalized
1-Hodge Laplacian1 [35, Def. 3.3] and γ > 0. The solution
is π = (γI+ L1,n)

−1f with the PageRank operator HPR :=
(γI+ L1,n)

−1, which does not require to construct the edge
space random walk matrix [35, Thm. 3.4] compared to a power
iteration implementation. For an indicator edge flow f of edge i,
the absolute values of the entries ofπ are the influence measures
edge i has on the edges and the signs the influence orientations
w.r.t. the reference orientations [35]. Furthermore, the overall
importance of an edge can be assessed with the �2-norm ‖π‖2
of its PageRank vector π. By extracting the gradient component
πG,we can study the importance of this edge w.r.t. the gradient
space via its �2-norm ‖πG‖2 or relative norm ‖πG‖2

‖π‖2 ; likewise
for the curl and harmonic components.

Experiment setup: The operator HPR can be interpreted as
a low pass filter which attenuates the high gradient and curl
frequencies. But to implement it we need to invert a matrix.
Instead, we propose here a faster variant via a simplicial filter
H1 := H1(L1,n) built on the normalized Hodge Laplacian. To
find the filter coefficients, we considered a grid-based design and
a Chebyshev polynomial with a desired response, g(λ) = 1

γ+λ

with λ ∈ [0, 1] and γ = 0.01.
We implemented the PageRank operator in the street network

of London with 82 crossings (nodes), 130 streets (edges) and
12 triangles, as shown in the top left of Fig. 10 [44], [45]. We
considered a grid-based design with 200 samples within the
eigenvalue interval and a filter order of 9 and implemented the
Chebyshev polynomials H1 of different orders.

Results: From Fig. 10, we see that the performance of the grid-
based design decreases heavily when the filter order is larger than
9 due to the numerical instability, while a Chebyshev design
allows a more accurate design as shown in Fig. 10.

We then computed the PageRank results of all edges with a
Chebyshev filter of order 61 and obtained the norms of their three

1L1,n admits a similarity transformation to its symmetric version, so its
eigenvalues are real and carry the simplicial frequency notion.

Fig. 11. PageRank vectors analysis. The scattered squares are the edges
whose PageRank vectors contain the top-five largest absolute (Top) and relative
(Bottom) total norm, gradient, curl and harmonic norms. The left figures show
the PageRank values w.r.t. edge indices. The rights figures show the highlighted
edges in the network with shaded grey indicating the total norm, green the
gradient norm, blue the curl norm and red the harmonic norm.

Fig. 12. Examples of the PageRank vectors of four edges. The edge width and
color indicates the magnitude of the PageRank result on that edge. The labeled
edges are the chosen edges, also with the largest PageRank results.

components in the absolute and relative senses. From Fig. 11,
we can identify the most influential streets (dark grey) in the
network, as the indicator flow on these streets induce a PageRank
vector with the largest total norm. The streets (green) that have
the biggest influence on the gradient space are the ones on which
a traffic change leads to congestion on the intersections as the
traffic flows on them have a large divergence. The red streets
induce the most impact on the harmonic space and the blues
ones on the curl space, where the traffic flows tend to induce a
global or local cyclic flow, thus a small chance of congestion.
The influences are measured in a relative sense in the bottom
figures, and we notice that most streets would not cause a large
influence on the curl space.

Finally, we show the simplicial PageRank vector of four
edges to assess where their influences are concentrated in
Fig. 12. Edge 19 (top left), sitting in the gradient space,
has a large influence in terms of gradient flow components
on the surrounding edges to which congestion on edge 19
would spread, as shown in Fig. 11. Edge 27 (top right) has a
large influence on edges that form 1-dimensional “hole” [16],
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Fig. 13. Chicago road network gradient component extraction. (a): Filter
frequency responses with different designs. (b): Left: SFT of the extracted
gradient component in frequency range [0,1]. Right: Approximation errors of
Chebyshev filters of different orders and the extracted gradient component.

containing mostly harmonic components. This may imply that
a traffic change on edge 27 would less likely cause congestion.
Edge 45 (bottom left), whose PageRank result has a large total
norm, as seen in Fig. 11, acts similar as edge 27. Edge 96
(bottom right) induces smaller influences than the other three,
but they reach further in the network. The most influenced
edges are its direct upper neighbors, as also seen in the bottom
(blue) of Fig. 11, where congestion would rather not happen.

E. Chicago Road Network: Gradient Component Extraction

We now conduct the subcomponent extraction on a real-world
larger network. On the Chicago road network with 546 nodes,
1088 edges, and 112 triangles [47], we perform the gradient
component extraction of the measured traffic flow, which is
not divergence-free, via filter H1 built on the lower Hodge
Laplacian. It is challenging to perform the filter design in this
setting because some simplicial frequencies are close to each
other, leading to the ill-conditioning of the LS design. This can
be avoided by the Chebyshev polynomial design. This requires a
continuous desired frequency response to perform the gradient
component extraction, which ideally is an indicator function
1λ>0 with λ ∈ [0, λG,max]. Here we use the logistic function
gG(λ) =

1
1+exp−k(λ−λ0) with the growth rate k > 0 and the mid-

point λ0. If the smallest gradient frequency is close to 0, a large
k and a small λ0 are required to achieve a good approximation
of the ideal indicator function.

We applied different filter design methods. For the LS-based
methods, we set a filter order of 9 to avoid ill-conditioning and
we considered the decoupled solver. Moreover, we treated the
eigenvalues with a difference smaller than 0.3 as the same for the
LS design, leading to 30 “different” eigenvalues. For the grid-
based design, we uniformly sampled 100 points in the interval
[0, λG,max]withλG,max = 10.8 approximated by a 50-step power
iteration. Lastly, we set k = 100 and λ0 = 0.01 for the logistic
function in the Chebyshev polynomial design.

As seen in Fig. 13(a), the Chebyshev polynomial of an
order 39 only has one frequency response smaller than 0.9
at the smallest gradient frequency, while at the remaining

frequencies, it is able to well preserve the gradient component.
The other methods have a poorer performance especially at small
gradient frequencies. We then compared the gradient compo-
nent extracted by above grid-based and Chebyshev polynomial
filters. Fig. 13(b) (left) reports the SFT of the extracted flows
at frequencies smaller than 1. The Chebyshev polynomial has
a good extraction ability as it performs well even at the very
small frequencies where the grid-based design fails. Fig. 13(b)
(right) shows the filter design and the extraction errors of the
Chebyshev polynomial of different orders. The extraction error
cannot be further reduced because the traffic flow contains large
components at the small frequencies and the logistic function,
after all, is an approximate of the indicator function.

VII. CONCLUSION

We proposed a simplicial convolutional filter as a matrix poly-
nomial of the Hodge Laplacians for simplicial signal processing.
It generates an output as a linear combination of the shifted sim-
plicial signals. This shift-and-sum operation is analogous to the
convolutions of time series, images and graph signals and allows
for a distributed filter implementation. In the frequency domain,
the filter acts as a pointwise multiplication respecting the convo-
lution theorem. Furthermore, the lower and upper Hodge Lapla-
cians encode lower and upper adjacencies, respectively. For an
edge flow, its lower shifting propagates the flow to its neighbors
via the common incident nodes, while the upper one via the
common triangles. By assigning two different sets of coefficients
on the lower and upper parts in the filter, we can differentiate the
lower and upper adjacencies. Via the Hodge decomposition, we
see that this corresponds to an independent control of the filter on
the gradient and curl spaces in the frequency domain. To achieve
a desired frequency response, different filter design approaches
are considered with pros and cons. The filter provides a faster
and distributed solution for subcomponent extraction, simplicial
signal denoising and other tasks in exploiting the higher-order
connectivities of the network.

APPENDIX A
PROOF OF PROPOSITION 1

Due to the distributivity of matrix-vector multiplication,
we have L1,�(af1 + bf2) = aL1,�f1 + bL1,�f2, and L1,u(af1 +
bf2) = aL1,uf1 + bL1,uf2. Then, by working out the expression
H1(af1 + bf2) and using the distributivity w.r.t the addition, the
linearity proof completes. Since we have Ll

1,�L1,� = L1,�L
l
1,�,

and similarly for forL1,u, andL1,�L1,u = 0, the shift-invariance
holds. The same proof applies to the general case with k �= 1.

APPENDIX B
PROOF OF PROPOSITION 2

Since the permutation matrix Pk is orthogonal, i.e., PkP
�
k =

P�
kPk = I, we have that (PkLk,�P

�
k )

l1 = PkL
l1
k,�P

�
k , and sim-

ilarly (PkLk,uP
�
k )

l2 = PkL
l2
k,uP

�
k . Thus, we can express the

permuted simplicial filter as

H̄k = h0I+

L1∑
l1=1

αl1(PkLk,�P
�
k )

l1 +

L2∑
l2=1

βl2(PkLk,uP
�
k )

l2

= h0I+

L1∑
l1=1

αl1PkL
l1
k,�P

�
k +

L2∑
l2=1

βl2PkL
l2
k,uP

�
k
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= Pk

(
h0I+

L1∑
l1=1

αl1L
l1
k,� +

L2∑
l2=1

βl2L
l2
k,u

)
P�

k

= PkHkP
�
k . (42)

The output on the permuted SC can be written as s̄ko := H̄ks̄
k =

H̄k(Pks
k) = PkHkP

�
kPks

k = PkHks
k := Pks

k
o . The proof

completes.

APPENDIX C
PROOF OF PROPOSITION 3

The diagonal matrix Dk satisfies that DkD
�
k = D�

kDk =
I. Following from that, we have that (DkLk,�D

�
k )

l1 =

DkL
l1
k,�D

�
k , and similarly (DkLk,uD

�
k )

l2 = DkL
l2
k,uD

�
k . Fol-

lowing the same procedure in (42), we have

H̄k = h0I+

L1∑
l1=1

αl1(DkLk,�D
�
k )

l1 +

L2∑
l2=1

βl2(DkLk,uD
�
k )

l2

= DkHkD
�
k .

(43)
Thus, the filter output on the reoriented simplices can be
expressed as s̄ko := H̄ks̄

k = H̄k(Dks
k) = DkHks

k := Dks
k
o .

The proof completes.

APPENDIX D
PROOF OF PROPOSITION 4

We show the proof for each item.
1) First, we show that the image of L1,� is equivalent to

the gradient space im(B�
1 ). (i) To show im(L1,�) ⊆ im(B�

1 ):
From L1,� = B�

1B1, for any non-zero x ∈ im(L1,�), we have
x = L1,�y, and we can always find a vector z = B1y ∈ R

N0

such that x = B�
1 z; (ii) To show im(B�

1 ) ⊆ im(L1,�): for every
non-zero x ∈ im(B�

1 ), we can find some y ⊥ ker(B�
1 ) such

that x = B�
1 y �= 0. This implies y ∈ im(B1), so there exists

some z ∈ R
N1 such that y = B1z and x = B�

1B1z = L1,�z,
and hence im(B�

1 ) ⊆ im(L1,�). Combining (i) and (ii), we have
that im(L1,�) = im(B�

1 ).
Second, we show that the eigenvectors UG of L1,� associated

with nonzero eigenvalues span the image of L1,�. As L1,� is
positive semidefinite (PSD), thus, diagonalizable, the geometric
multiplicity of every eigenvalue equals to the algebraic mul-
tiplicity. That is, all the eigenvectors are linearly independent
and form an eigenbasis. Then, matrix UG has a full column
rank. Furthermore, for any x ∈ im(L1,�), we have x = L1,�y =
UGΛGU

�
Gy, i.e., x ∈ im(UG) and im(L1,�) ⊆ im(UG). Due

to dim im(L1,�) = rank(L1,�) = NG, matrix UG spans the im-
age of L1,� and the gradient space im(B�

1 ).
2) The proof of 2) follows similarly as the proof of 1).
3) For arbitrary eigenvectors uG in UG and uC in UC, we

have uG = 1
λG

L1,�uG and uC = 1
λC

L1,uuC. Thus, from (1),

their inner product follows u�
GuC = 1

λGλC
u�
GL1,�L1,uuC = 0,

i.e., UG ⊥ UC. Moreover, from the definition of L1, ma-
trix [UG UC] contains the eigenvectors of L1 associated with
nonzero eigenvalues. The Hodge decomposition indicates that
im(B�

1 )⊕ im(B2) = im(L1). By combining with 1) and 2), we
have that im(B�

1 ) = im(UG) and im(B2) = im(UC).

4) As L1 is PSD, the eigenvectors associated to zero eigenval-
ues are linearly independent. Any vector x ∈ ker(L1) follows
L1x = 0, which means x is an eigenvector associated with
an eigenvalue 0, i.e., ker(L1) = im(UH) with dimension NH.
Moreover, we have ker(L1) = ker(L1,�) ∩ ker(L1,u) from the
definition of L1, then the columns of UH can be used as eigen-
vectors of L1,� or L1,u associated with zero eigenvalues. From
3) and ker(L1) = im(UH), we have UH ⊥ UG andUH ⊥ UC.
Thus, matrix [UH UC] (or [UH UG]) provides the eigenvectors
of L1,� (or L1,u) associated with zero eigenvalues, and the proof
completes.

5) From 3) and 4), we have that matrix U1 collects all
eigenvectors ofL1. From 1), 2), and 4), we have thatU1 provides
all eigenvectors for L1,� and L1,u.

APPENDIX E
PROOF OF PROPOSITION 5

With condition i), we can eigendecompose the operator G
as diag(g) = U�

1GU1, then the equivalence between G and
H1 can be achieved through a set of linear equations in the
spectral domain, i.e., H1(λi) = gi, for all i = 1, . . . , N1. Based
on condition ii), this set of linear equations is equivalent to
linear system (26) and (27) with 1 +DG +DC equations. With
the filter order requirement in condition iii), the Vandermonde
matrices ΦG and ΦC have full row rank. Thus, there exist at
least one solution to problem (26) and the proof completes.

APPENDIX F
PROOF OF PROPOSITION 6

The cost function J in problem (27) is convex w.r.t. variables,
h0, α and β. Thus, we could find the optimality condition by
setting the gradients of the cost function w.r.t. the three variables
to zeros, given by⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∇h0
J = h0 − g0 + (h01+ΦGα− gG)

�1

+ (h01+ΦCβ − gC)
�1 = 0,

∇αJ = Φ�
G(h01+ΦGα− gG) = 0,

∇βJ = Φ�
C(h01+ΦCβ − gC) = 0.

(44)

First, consider the case where we have that ‖ΦGΦ
†
G − I‖F =

0 and ‖ΦCΦ
†
C − I‖F = 0, i.e., ΦGΦ

†
G = I and ΦCΦ

†
C = I,

then the solution (28) results in that (ĥ01+ΦGα̂− gG) = 0

and (ĥ01+ΦCβ̂ − gC) = 0, which satisfies the optimality
condition (44).

Second, consider the general case that ‖ΦGΦ
†
G − I‖F �= 0

and ‖ΦCΦ
†
C − I‖F �= 0. By substituting the solution (28) into

the optimality condition (44), we have⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∇h0
J =

(
(ΦGΦ

†
G − I)(gG − g01)

)�
1

+
(
(ΦCΦ

†
C − I)(gC − g01)

)�
1,

∇αJ = Φ�
G(ΦGΦ

†
G − I)(gG − g01),

∇βJ = Φ�
C(ΦCΦ

†
C − I)(gC − g01).

(45)

For any matrix A ∈ R
m×n with singular values σi, i =

1, . . . ,min{m,n}, we have that ‖A‖F = (
∑min{m,n}

i=1 σ2
i )

1
2 . If
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it holds ‖ΦGΦ
†
G − I‖F → 0 and ‖ΦCΦ

†
C − I‖F → 0, i.e.,

the Frobenius norms approach to zero, the number of triv-
ial (zero) singular values of ΦGΦ

†
G − I and ΦCΦ

†
C − I in-

creases. Accordingly, the number of trivial entries in (ΦGΦ
†
G −

I)(gG − g01) and (ΦCΦ
†
C − I)(gC − g01) increases, which

corresponds to a suboptimal condition of (44), i.e., the gradients
∇h0

J(ĥ0, α̂, β̂) → 0, ∇αJ(ĥ0, α̂) → 0 and ∇βJ(ĥ0, β̂) →
0. The proof completes.

APPENDIX G
PROOF OF PROPOSITION 7

Since the operator G corresponds to the desired continuous
harmonic, gradient and curl frequency responses, it can be
diagonalized by U1. Therefore, we have that

‖G−Hc‖2 = ‖U1(g(Λ)− H̃1(Λ))U�
1 ‖2

= ‖g(Λ)− H̃1(Λ)‖2 = max
i=1,...,N1

|g(λi)− H̃1(λi)| (46)

where the diagonal matrix g(Λ) has entries g(λi) = g0 for λi ∈
QH, g(λi) = gG(λi) for λi ∈ QG and g(λi) = gC(λi) for λi ∈
QC. The frequency response H̃1(λi) for λi ∈ Q is given in (37).
Moreover, based on the definition of B1(L1) and B2(L2) we
have that

max
i=1,...,N1

|g(λi)− H̃1(λi)| ≤ max {B1(L1), B2(L2)} = B.

(47)
The proof completes.

APPENDIX H
PROOF OF LEMMA 1

We first show the equivalence between the two projection
operator forms. From the Hodge decomposition, the gradient,
the curl and the harmonic components are in the subspaces
im(B�

1 ), im(B2) and ker(L1), respectively. Furthermore, from
Proposition 4, we have that im(B�

1 ) = im(UG), im(B2) =
im(UC) and ker(L1) = im(UH). Thus, each subcomponent can
be obtained as the orthogonal projection of f onto the subspace
spanned by the eigenbasis, i.e., the LS estimate. The gradient
projection is PG := UGU

�
G, the curl one PC := UCU

�
C and

the harmonic one PH := UHU
�
H. This can be shown via the

SFT as well, i.e., fG = UGf̃G = UGU
�
Gf , likewise for the other

two.
Second, the simplicial filter H1 can implement the gradient

projector PG = UGU
�
G, if and only if we have that

H1 = UGU
�
G = [U⊥

G UG]

[
0

ING

][
(U⊥

G)
�

U�
G

]
, (48)

withU⊥
G = [UH UC]. We have thatH1 = U1H̃1U

�
1 from (22).

Thus, (48) is equivalent to problem (26) with g0 = 0, gC =
0 and gG = 1. With L1 = DG and L2 = DC, there admits a
unique solution {h0,α,β} to system (26). Similar procedure
can be followed for the implementation of the curl and harmonic
projectors. The proof completes.

APPENDIX I
PROOF OF COROLLARY 1

To implement the projector PG via H1 with L2 = 0 (β = 0),
from (48), it is equivalent to set g0 = 0 for λi ∈ QH ∪ QC and
g(λi) = 1 for λi ∈ QG in (23), i.e., g = [0 1�

DG
]�. This returns

problem (26) without ΦC and β, i.e.,

min
h0,α

∥∥∥∥∥
[
1

0

ΦG

][
h0

α

]
− g

∥∥∥∥∥
2

2

. (49)

If L1 = DG, the system matrix is square and any two rows
are linearly independent, it admits a unique solution of h0 = 0
and α = Φ−1

G
1. Similar procedure can be followed for the curl

projector PC. The proof completes.
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