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Unsteady mechanisms in shock wave and
boundary layer interactions over a forward-facing
step
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The flow over a forward-facing step (FFS) at Ma∞ = 1.7 and Reδ0 = 1.3718 × 104 is
investigated by well-resolved large-eddy simulation. To investigate effects of upstream
flow structures and turbulence on the low-frequency dynamics of the shock wave/boundary
layer interaction (SWBLI), two cases are considered: one with a laminar inflow and one
with a turbulent inflow. The laminar inflow case shows signs of a rapid transition to
turbulence upstream of the step, as inferred from the streamwise variation of 〈Cf 〉 and
the evolution of the coherent vortical structures. Nevertheless, the separation length is
more than twice as large for the laminar inflow case, and the coalescence of compression
waves into a separation shock is observed only for the fully turbulent inflow case. The
dynamics at low and medium frequencies is characterized by a spectral analysis, where the
lower frequency range is related to the unsteady separation region, and the intermediate
one is associated with the shedding of shear layer vortices. For the turbulent inflow
case, we furthermore use a three-dimensional dynamic mode decomposition to analyse
the individual contributions of selected modes to the unsteadiness of the SWBLI. The
separation shock and Görtler-like vortices, which are induced by the centrifugal forces
in the separation region, are strongly correlated with the low-frequency unsteadiness in
the current FFS case. Similarly as observed previously for the backward-facing steps, we
observe a slightly higher non-dimensional frequency (based on the separation length) of
the low-frequency mode than for SWBLI in flat plate and ramp configurations.
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W. Hu, S. Hickel and B.W. van Oudheusden

1. Introduction

Shock wave/boundary layer interactions (SWBLIs) are omnipresent in high-speed
aerodynamics such as supersonic inlets, over-expanded nozzles, high-speed aerofoils
and space launchers, and have received considerable attention over the past decades
(Green 1970; Dolling 2001). It is reported widely that SWBLIs feature complex unsteady
dynamics over a broadband frequency spectrum. The strong fluctuations of pressure
and friction forces accompanying this flow phenomenon can induce intense localized
mechanical and thermal loads, even possibly leading to the failure of material and
structural integrity (Délery & Dussauge 2009; Gaitonde 2015).

Although SWBLIs are observed on various types and parts of aircraft, two-dimensional
SWBLIs can be abstracted into four canonical configurations: (1) incident (impinging/
reflecting) shock, (2) compression ramp, (3) backward-facing step (BFS), and (4)
forward-facing step (FFS). Many efforts have been made, and much progress was
accomplished by means of advanced flow measurement techniques and well-resolved
numerical simulations, especially for the compression ramp and impinging shock
configurations. As we can see from figure 1, typically the interaction region of those four
configurations forms an approximately triangular structure, consisting of the separation
shock (except for the BFS configuration), shear layer and reattachment shock (Babinsky
et al. 2011). However, there are some differences of the flow structures. For the
impinging/reflecting shock case, the separation bubble is caused by the strong adverse
pressure gradient induced by the incident shock. In the BFS case, the separation is caused
by the sudden geometry expansion at the step edge. In contrast, for the compression
ramp and FFS cases, the separation in these two configurations is produced by the
flow compression due to the contraction of the geometry. In the published literature,
including our previous work (Grilli, Hickel & Adams 2013; Pasquariello, Hickel & Adams
2017; Hu, Hickel & van Oudheusden 2021), the first three SWBLI geometries have
been well investigated, whereas seldom has attention been paid to the FFS. In the FFS
configuration, the boundary layer separates far upstream of the step and reattaches on
the step wall or downstream of the step. Compression waves are generated around the
separation point due to the deflection of the shear layer by the recirculating flow region.
These compression waves then coalesce into a separation shock away from the wall.
A second compression wave system can form in the vicinity of the step as the flow
reattaches on the step wall. An expansion fan is formed as the flow turns around the step
corner in the direction tangential to the upper surface. There may also be a small secondary
separation and reattachment on the upper wall (Zheltovodov 1996).

For all the geometries shown in figure 1, the interaction system features large-scale
unsteady motions whose frequencies are usually one or two orders lower than the boundary
layer integral frequency u∞/δ (Touber & Sandham 2009, 2011). Generally, there are two
main groups of theories regarding the source of the low-frequency unsteadiness, which
are referred to as the upstream and downstream dynamics (Clemens & Narayanaswamy
2014). Theories of the former kind attribute the low-frequency motions of the shock
to the velocity or pressure fluctuations within the incoming turbulent boundary layer
(Plotkin 1975). In extensive existing experimental and numerical studies, these upstream
oscillations of flow variables have been observed in various forms, including the bursting
events in the upstream boundary layer, as inferred from the pressure measurements of
a compression ramp by Andreopoulos & Muck (1987), and elongated superstructures
with low- and high-speed streaks observed in the stereoscopic/tomographic particle
image velocimetry (PIV) and planar laser scattering (PLS) measurements in both the
compression ramp (Ganapathisubramani, Clemens & Dolling 2007) and the incident shock
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Figure 1. Mean flow structures of SWBLIs in canonical two-dimensional configurations (Babinsky et al.
2011): (a) impinging shock, (b) compression ramp, (c) backward-facing step, and (d) forward-facing step.
(PME stands for the Prandtl–Meyer expansion.)

case (Humble et al. 2009). A simple linear restoring model, in which the shock is displaced
by the upstream velocity fluctuations and tends to restore to its mean position driven by the
stability of the mean flow, was proposed to explain the physical connection between the
shock oscillations and the fluctuations inside the upstream boundary layer (Plotkin 1975;
Beresh, Clemens & Dolling 2002). Another model ascribes the low-frequency motions to
the selective amplification/response dynamics of the separation bubble driven by certain
large-scale perturbations in the upstream boundary layer (Touber & Sandham 2011; Porter
& Poggie 2019).

Theories of the second kind consider the low-frequency behaviour as being determined
by the downstream interaction region. There is ample evidence that the low-frequency
motions of the separation shock are related to the unsteady behaviour of the separation
region (Erengil & Dolling 1991; Thomas, Putnam & Chu 1994; Dupont, Haddad &
Debiève 2006). Several hypotheses have been proposed to explain the downstream
dynamics of the low-frequency unsteadiness. Touber & Sandham (2009) found an unstable
global mode inside the separation bubble from their global linear stability analysis, which
excites a forcing source for the low-frequency unsteadiness by displacing the separation
and reattachment points. Grilli et al. (2012) propose that mixing across the separated
shear layer is the main contributor to the low-frequency contraction and expansion
of the separation bubble. Based on direct numerical simulations (DNS) of a Mach
2.25 impinging shock case, Pirozzoli & Grasso (2006) believe that the low-frequency
oscillations are caused by a resonance between the bubble and incident shock. During
this process, acoustic waves are produced by the interaction between coherent structures
in the bubble and the incident shock, and then these acoustic waves propagate upstream,
leading to the low-frequency behaviour of the SWBLI system. Piponniau et al. (2009)
proposed an entrainment-injection model to explain the underlying mechanism of the
low-frequency unsteadiness. They believe that a gradual contraction of the separation
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bubble is caused by a continuous mass entrainment by the separated shear layer, which
is then periodically compensated by a reverse mass flow that causes the dilatation of the
separation bubble. This model was examined further by Wu & Martin (2008) in their
DNS of a compression ramp. Several numerical works reported streamwise-elongated
Görtler vortices originating around the reattachment location in both the impinging shock
and compression ramp configurations (Grilli et al. 2013; Priebe et al. 2016; Pasquariello
et al. 2017). By means of dynamic mode decomposition (DMD) analysis, a group of
low-frequency modes was identified that show a strong correlation of low-frequency shock
dynamics with the momentum streaks induced by Görtler-like vortices (Pasquariello et al.
2017). The Görtler instability is thus a possible forcing mechanism of the low-frequency
SWBLI dynamics.

Souverein et al. (2010) proposed that the dominant mechanism of the low-frequency
SWBLI depends on shock strength and Reynolds number. In a weak SWBLI, upstream
effects are the main cause of the low-frequency unsteady motions, while the downstream
dynamics of the separation bubble is the dominant mechanism of the unsteadiness in
strong SWBLI (Clemens & Narayanaswamy 2014). As indicated by Priebe et al. (2016)
and Hu et al. (2021), although the downstream Görtler vortices may be the possible origin
of the low-frequency unsteadiness, there are still certain dependencies on the perturbation
environment provided by the upstream boundary layer.

Specific to the FFS configuration, early experimental works have confirmed the
low-frequency pressure and energy fluctuations in the separation region (Kistler 1964;
Behrens 1971). White & Visbal (2015) calculated the premultiplied power spectral density
of the wall pressure from a numerical simulation, and found that the value of the dominant
low frequency is approximately two orders lower than that of the wall turbulence. Recent
PIV experiments also observed these unsteady motions of the interaction system (Zhang
et al. 2016). The origin of the low-frequency unsteadiness was investigated in several
recent studies. By means of a correlation analysis based on PIV measurements, Murugan
& Govardhan (2016) found that the location of the separation shock is well correlated
to the separation bubble area but only weakly connected to the disturbances within
the upstream boundary layer. On the other hand, the compression waves around the
shock foot are strongly connected to the spanwise-aligned high- and low-speed streaks
in the upstream near-wall boundary layer. Therefore, they believe that the upstream
three-dimensional disturbances contribute most to the low-frequency unsteadiness of the
interaction system in the FFS configuration. Simonenko, Zubkov & Kuzmin (2018) also
observed the longitudinal streaks, generated by a counter-rotating vortex pair, upstream of
the step in their numerical results. Estruch-Samper & Chandola (2018) proposed a physical
mechanism involving both upstream and downstream effects. Different from the physical
model proposed by Piponniau et al. (2009), they also take into account the response of
the upstream boundary layer to the separated shear layer, and believe that the induced
shear layer instabilities are independent of the downstream dynamics according to the
free-interaction theory. The downstream effects are caused by the entrainment of the mass
flow as the shear layer is shedding downstream, and the recharging of the separation bubble
when the shear layer reattaches on the downstream wall. The frequency of the bubble
breathing scales effectively as the ratio of the mass ejection rate to the reversed flow rate.
Based on these observations, they believe that the separated shear layer is the main driver
of the low-frequency unsteadiness.

Similar to the aforementioned studies of impinging shock and compression ramp cases,
there is also no general consensus on the source of the low-frequency unsteadiness in
the FFS configuration. Since the flow topology in the FFS shares many similarities with
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the compression ramp, one can assume that the low-frequency dynamics is governed
by similar mechanisms, such as possible effects of the upstream disturbances, the
counter-rotating vortices and the downstream entrainment-recharging process. However,
it remains an open question whether the conclusions obtained for other configurations,
including our previous work on BFS (Hu et al. 2021), can be applied similarly to
the FFS configuration. To scrutinize the dominant mechanism of the low-frequency
unsteadiness, experiments or simulations with different levels of upstream disturbances
would be required at otherwise identical flow parameters. Towards this end, we perform
well-resolved large-eddy simulations (LES) of two FFS flows at freestream Mach number
Ma = 1.7 and Reynolds number Reδ0 = 13 718 based on the boundary layer thickness, the
first with a low-perturbation laminar inflow boundary layer, and the second with a fully
developed turbulent inflow boundary layer. Both cases are then analysed and compared,
with special attention paid to flow structures and low-frequency dynamics in order to
identify correlations and a possible physical mechanism of the low-frequency unsteadiness
in supersonic FFS flows.

The paper is structured as follows. Details of the numerical methods and the set-up of the
flow configuration are given in § 2. Then the flow topology of the mean and instantaneous
flow is discussed in § 3. The characteristic frequencies of the significant unsteady motions
are analysed using spectral analysis. Finally, dominant modes in the SWBLI are extracted
via a three-dimensional DMD. By comparing the laminar and turbulent cases, a physical
mechanism of the low-frequency unsteadiness source is proposed in § 4. The conclusions,
with a summary of the main results, are presented in § 5.

2. Problem formulation and set-up

2.1. Governing equations
The physical problem is governed by the three-dimensional compressible Navier–Stokes
equations with appropriate boundary and initial conditions, and the constitutive relations
for an ideal gas. These equations are composed of the continuity, momentum and total
energy equations:

∂ρ

∂t
+ ∂

∂xi
(ρui) = 0, (2.1)

∂ρuj

∂t
+ ∂

∂xi

(
ρuiuj + δijp − τij

) = 0, (2.2)

∂E
∂t

+ ∂

∂xi

(
uiE + uip − ujτij + qi

) = 0, (2.3)

where ρ is the density, p is the pressure and ui is the velocity vector. The total energy E is
defined as

E = p
γ − 1

+ 1
2
ρuiui. (2.4)

The viscous stress tensor τij follows the Stokes hypothesis for a Newtonian fluid,

τij = μ

(
∂ui

∂xj
+ ∂uj

∂xi
− 2

3
δij
∂uk

∂xk

)
, (2.5)

and the heat flux qi is determined by Fourier’s law,

qi = −κ ∂T/∂xi. (2.6)
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u

u = 0

u = 99 % of u∞
x

y

h
O

Figure 2. Schematic of the region of interest, which is in the centre part of the computational domain. The
figure represents a typical instantaneous numerical schlieren graph in the x–y cross-section from the turbulent
inflow case. The blue dashed and solid lines signify isolines of u = 0 and u/ue = 0.99 from the mean flow
field.

The fluid is modelled as a perfect gas with specific heat ratio γ = 1.4 and specific gas
constant R = 287.05 J kg−1 K−1, following the ideal gas equation of state

p = ρRT. (2.7)

The dynamic viscosityμ and thermal conductivity κ are functions of the static temperature
T , and are computed according to Sutherland’s law:

μ = μref
Tref + S
T + S

(
T

Tref

)1.5

, (2.8)

κ = γR
(γ − 1)Pr

μ. (2.9)

The parameter values selected for the computations are μref = 18.21 × 10−6 Pa s,
Tref = 293.15 K, S = 110.4 K and Pr = 0.72.

2.2. Flow configuration
The present configuration is an open FFS (i.e. no upper wall) with a supersonic laminar
or turbulent boundary layer inflow, a schematic of which is shown in figure 2. The Mach
number of the freestream flow is Ma∞ = 1.7, and the Reynolds number is Reδ0 = 13 718,
based on the inlet boundary layer thickness δ0 (99 % of u∞) and freestream viscosity.
The freestream flow parameters are summarized in table 1, where the freestream static
flow parameters are marked with subscript ∞, and stagnation parameters are indicated
with subscript ∗. For the laminar inflow case, the size of the computational domain
is ([−120, 40] × [0, 33] × [−8, 8])δ0 in the x, y, z directions, while it is ([−70, 40] ×
[0, 33] × [−8, 8])δ0 for the turbulent case. The FFS is located at x = 0; see figure 2. We
use a much longer upstream length of 120δ0 in the laminar case to avoid that the separation
shock reaches the inflow boundary during the startup transient of the calculation. In
the turbulent case, the upstream turbulent boundary layer is able to resist this upstream
propagation; thus a smaller domain size is allowed, which reduces the computational
effort. The origin O of the Cartesian coordinate system is placed at the bottom corner
of the step. The step height is h = 3δ0, three times the size of the inlet boundary layer
thickness.

2.3. Numerical method
We use the LES method proposed by Hickel, Egerer & Larsson (2014) to solve the
governing equations (2.1)–(2.9), in which the sub-grid scale model is fully merged into
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Shock boundary-layer interactions at a forward-facing step

Ma∞ u∞ δ0 Re∞ T∗ p∗ p∞

1.7 469.85 m s−1 1 mm 1.3718 × 107 300 K 1 × 105 Pa 20 259 Pa

Table 1. Main flow parameters of the laminar inflow and turbulent inflow cases.

a nonlinear finite-volume scheme provided by the adaptive local deconvolution method
(ALDM) (Hickel, Adams & Domaradzki 2006; Hickel et al. 2014). The ALDM uses
nonlinear flow sensors to adjust the model dynamically for isotropic or anisotropic
turbulence (such as in boundary layers), to switch it off in smooth laminar flows, and
to activate a shock-capturing mechanism. The resulting scheme allows us to capture
shock waves while smooth waves and turbulence are propagated accurately without
excessive numerical dissipation with a similar spectral resolution (modified wavenumber)
as provided by sixth-order central difference schemes (Hickel et al. 2014). The viscous flux
is discretized by a central difference scheme, and time marching is achieved by an explicit
third-order total variation diminishing Runge–Kutta scheme (Gottlieb & Shu 1998). This
LES method has been validated successfully for various supersonic flow cases, including
SWBLIs on a flat plate (Matheis & Hickel 2015; Pasquariello et al. 2017) and compression
ramp (Grilli et al. 2012, 2013), and transition between regular and irregular shock patterns
in SWBLI (Matheis & Hickel 2015), as well as being used in our previous work on SWBLI
in transitional and turbulent BFS flows (Hu, Hickel & van Oudheusden 2019; Hu et al.
2021). More details about the numerical method can be found in the related literature
(Hickel et al. 2006, 2014).

A block Cartesian mesh with local refinement is used to provide appropriate boundary
layer resolution at reasonable cost. The mesh is generated beforehand and not dynamically
adapted for the simulations presented in this paper. Information between the Cartesian grid
blocks is exchanged through ghost cells, which are communicated via the message passing
interface (MPI) library. At regular block interfaces, these ghost cells contain a copy of
the solution of the neighbour block. At irregular block interfaces, the ghost cell solution
(density, momentum and energy) is obtained by third-order conservative interpolation.
Fluxes across an irregular block interface are always computed on the fine side, and the
sum of the fine side fluxes is used on the coarse side.

Boundary conditions are imposed as follows. The step and wall are assumed to be
adiabatic surfaces with no-slip velocity conditions. At the outflow, all the flow variables
are extrapolated. On the top of the domain, non-reflecting boundary conditions based
on Riemann invariants are imposed. Periodic boundary conditions are applied in the
spanwise direction. For the laminar inflow case, an undisturbed compressible self-similar
zero-pressure-gradient laminar boundary layer profile is imposed at the inlet. To eliminate
any downstream-originating perturbations reaching the inflow boundary through the
subsonic wall layer, a selective frequency damping method is applied in a small region
downstream of the laminar inlet (Åkervik et al. 2007; Casacuberta et al. 2018). For
the turbulent inflow case, we generate appropriate unsteady inflow conditions with the
digital filter technique (Klein, Sadiki & Janicka 2003). Data from Petrache, Hickel &
Adams (2011) are used to specify realistic integral length scales and mean boundary layer
profiles.
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Figure 3. Details of the numerical grid in an x–y plane near the forward-facing step.

Grid Gx Gz Gf

Number of cells 15.3 × 106 15.3 × 106 30.6 × 106

�x+
max ×�y+

max ×�z+
max 72 × 0.9 × 18 36 × 0.9 × 36 36 × 0.9 × 18

Tu∞/δ0 500 500 500
�t u∞/δ0 0.25 0.25 0.25

Table 2. Numerical parameters for the grid sensitivity study.

2.4. Grid sensitivity study
Three grids with different resolutions, denoted by Gx, Gz and Gf , are considered to
study the grid sensitivity. All three meshes are sufficiently refined near all walls with
y+ ≤ 0.9 (except the singular step corner where y+ ≈ 1.0). The configuration Gf is the
finest grid and used for the main computations, the topology of which is displayed in
figure 3. To evaluate the grid sensitivity, the number of cells in the streamwise direction
is halved for configuration Gx, while the number of cells in the spanwise direction is
halved for Gz. The resulting spatial resolution �x+

max ×�y+
max ×�z+

max in wall units is
72 × 0.9 × 18 for grid Gx, 36 × 0.9 × 36 for Gz, and 36 × 0.9 × 18 for Gf , for the entire
domain (�x+

max ≈ 1.0 on the vertical step wall). The temporal resolution, i.e. the time
step, is approximately �t u∞/δ0 = 2.5 × 10−3 for all grid configurations, corresponding
to a Courant–Friedrichs–Lewy condition CFL ≤ 0.5. The numerical parameters of these
three grid configurations are summarized in table 2. After an initial transient of 600δ0/u∞
during which the flow field reached a fully developed statistically steady state, statistics
were collected every �t u∞/δ0 = 0.25 over an interval of another 500δ0/u∞, yielding an
ensemble size of 2000 instantaneous events.

To examine the grid sensitivity, the van Driest transformed mean velocity profile and
Reynolds stresses in Morkovin scaling are extracted at x/δ0 = −50.0, where Reτ = 370
and Reθ = 2100 based on the obtained statistics, as shown in figure 4. For comparison,
figure 4 also includes the theoretical law of the wall, as well as the incompressible DNS
data of Schlatter & Örlü (2010) at Reτ = 360 and Reθ = 1000. The mean velocity profiles
for all three grid configurations are in excellent agreement with both the logarithmic law
of the wall (with the constants κ = 0.41 and C = 5.2) and the DNS data. In terms of the
Reynolds stresses, all grid levels give very similar results, but the two coarser grids Gx and
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Figure 4. Mean profiles of the upstream turbulent boundary layer in inner scaling at x/δ0 = −50.0 with Reτ =
370 and Reθ = 2100: (a) van Driest (VD) transformed mean velocity profile; (b) Reynolds stresses Rij. The
normal Reynolds stresses

√
〈u′u′〉+,

√
〈v′v′〉+, and

√
〈w′w′〉+ are scaled by ξ = √

ρ/(ρwu2
τ ), and the Reynolds

shear stress 〈u′v′〉+ is scaled by ξ = ρ/(ρwu2
τ ). Dot-dashed lines denote the law of the wall; solid lines denote

the selected grid Gf ; dotted lines denote the grid Gx; and dashed lines denote the grid Gz. The grey circles
denote incompressible DNS data of Schlatter & Örlü (2010) at Reτ = 360 and Reθ = 1000.

Gz show slightly higher peaks of the streamwise Reynolds stress. The Reynolds stresses
obtained on mesh Gf are in excellent agreement with the reference DNS data. All results
shown in the remaining sections have been obtained on the finest mesh, Gf .

3. Results

3.1. Mean flow organisation
The flow field over an FFS displays the typical characteristics of an SWBLI system, as
shown in figure 5. The step height or separation height is chosen as the reference length
in the following discussion for consistency with previous work (Piponniau et al. 2009;
Estruch-Samper & Chandola 2018). The incoming flow is deflected upwards by the step,
which results in the formation of compression waves upstream of the step. As the detached
flow travels over the recirculating region and reattaches on the step wall, compression
waves are generated near the step corner. The reattached shear layer undergoes a centred
Prandtl–Meyer expansion (PME) at the convex step corner. There is a very small separation
bubble and a weak reattachment shock on the upper wall behind the step; see figure 6(b).
Further downstream, the boundary layer starts to relax towards an equilibrium state. There
are some noticeable differences between the laminar and turbulent cases. In the turbulent
case, the compression around the separation location is stronger and results in a separation
shock with an angle of approximately 45.6◦ with respect to the streamwise direction. The
laminar case shows a much more gradual compression and a longer separation length due
to the lower resistance to the adverse pressure gradient.

The mean separation length can be quantified by the location of zero mean skin friction
〈Cf 〉, shown in figure 6. Note that the inlet boundary condition is at x/δ0 = −120.0
(x/h = −40) for the laminar case, and x/δ0 = −70.0 (x/h = −23.3) for the turbulent
case. The mean skin friction of both cases shows qualitatively the same behaviour,
indicating the compression and separation upstream of the step. The curve of the laminar
case decreases gradually and reaches the value 〈Cf 〉 = 0 at x/h ≈ −25. Then the mean
skin friction remains at an almost constant low level upstream of the separation bubble
(x/h <= −11.0), suggesting that the boundary layer remains laminar far upstream of
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Figure 5. Density contours of the time- and spanwise-average flow fields for (a) the laminar case and (b) the
turbulent case. The black dashed and solid lines denote isolines of u = 0.0 and u/ue = 0.99. The white dashed
line signifies the isoline of Ma = 1.0.
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Figure 6. Streamwise distribution of the mean skin friction: (a) the region of interest over a large streamwise
range; and (b) a zoom of the region near the step. The time- and spanwise-averaged values are indicated by
the black solid lines (laminar case) and blue dashed lines (turbulent case). The vertical dotted lines denote the
mean separation (top) and reattachment (bottom) locations for the two cases.
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the step. Although this shows that the boundary layer actually separates at x/h ≈ −25
already, significant reversed flow is identified only downstream from x/h = −11.7 as 〈Cf 〉
remains near zero for −25 < x/h < −11.7. The mean skin friction continues to decrease
slowly in the fore part of the recirculation region (x/h < −2.3). Then 〈Cf 〉 drops drastically
towards an overall minimum 〈Cf 〉 ≈ −2.7 × 10−3 close to the step, followed by a sharp
increase across the step as the flow reattaches on the FFS wall at y/h = 0.6; see also
figure 5(a). Further downstream, the flow reattaches again on the upper wall of the step
at x/h ≈ 0.15 following a small separation region (negative 〈Cf 〉 values occur in the
range 0 < x/h < 0.15). Downstream of this location, the mean skin friction increases
significantly and reaches a local maximum 〈Cf 〉 ≈ 3.3 × 10−3 at x/h = 0.6. After a
smooth decrease of 〈Cf 〉, the mean skin friction remains at a typical turbulent level with
〈Cf 〉 ≈ 2.8 × 10−3 downstream.

For the turbulent case, the curve of the mean skin friction follows a trend similar to that
of the laminar case, but with a very different level and gradient. The initial variation of
the skin friction in the turbulent case (−23.3 < x/h < −20) is caused by the digital filter
technique as the turbulent boundary layer needs to develop physically meaningful coherent
structures over a short distance (3.3h). After the initial transient region, the mean skin
friction decreases slowly in the region x/h < −7.8, as the local Reynolds number increases
along the streamwise distance. Then 〈Cf 〉 drops abruptly upstream of the separation point
(x/h = −4.3). The mean skin friction remains at a relatively constant negative level in the
fore part of the separation bubble. At x/h = −1.1, the mean skin friction starts to drop
drastically and reattaches its minimum very close to the wall. As the recirculating flow
reattaches on the vertical wall of the step at y/h = 0.7 (see also figure 5b), 〈Cf 〉 reaches a
zero value. Behind the step, 〈Cf 〉 follows a trajectory similar to the laminar case, but with
a larger length of the second separation bubble (Lr = 0.23h).

The separation length obtained for our turbulent inflow case (Ls = 4.3h) is centred
within the range reported for existing experiments (normalized by the step height
Ls ≈ 3.9h–5.1h); see table 3. The flow parameters and observed separation length of
our LES are almost identical to those in the experiments of Czarnecki & Jackson (1975).
Zukoski (1967) states in a review paper that the normalized separation length is Ls ≈ 4.2h
and is roughly independent of the step height and Mach number if δ/h < 0.83 and
2.0 < Ma < 4.0 in the turbulent regime, and that Ls/h increases if the Mach number
decreases, which is also consistent with the results for the current set-up (Ma∞ = 1.7).

Figure 7 provides a comparison of the mean wall pressure distribution along the
streamwise direction for the laminar and turbulent cases. The wall pressure of the laminar
case remains at a constant value 〈pw〉/p∞ ≈ 1.0 upstream of the separation region, and
starts to increase slowly from x/h ≈ −28. From x/h = −9.3, the wall pressure grows more
rapidly and reaches a plateau value 〈pw〉/p∞ ≈ 1.4 between −2.3 ≤ x/h ≤ −1. Close
to the step, 〈pw〉 increases significantly to a local maximum 〈pw〉/p∞ = 1.6 as the flow
reattaches on the step. Immediately behind the step, the wall pressure drops drastically and
then returns to its initial level after undergoing expansion and reattachment on the upper
wall. For the turbulent case, the wall pressure ratio starts to increase at about x/h = −9 and
forms a plateau at 〈pw〉/p∞ ≈ 1.81 inside the recirculation region. This plateau pressure
is close to the value 1.84 obtained from the empirical formulation pw/p∞ = 0.5Mae + 1
reported in FFS cases and other SWBLI cases (Pasquariello et al. 2017; Estruch-Samper
& Chandola 2018). It then drops drastically by approximately 75 % of the maximum at the
step corner due to the expansion, and then rises again to its initial (freestream) value as the
flow reattaches on the upper wall. Our present LES results for the turbulent case agree well
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References Ma Re∞, m−1 δ0/h Ls/h

Czarnecki & Jackson (1975) 1.6 1.9 × 107 0.3 4.2
Estruch-Samper & Chandola (2018) 2.0 6.5 × 107 0.13 3.9
Estruch-Samper & Chandola (2018) 3.0 6.1 × 107 0.14 4.3
Estruch-Samper & Chandola (2018) 3.0 8.4 × 107 0.14 4.3
Murugan & Govardhan (2016) 2.5 2.82 × 107 0.5 4.1
Spaid (1972) 2.9 4.8 × 106 0.74 4.2
Zukoski (1967) 3.0 3.9 × 108 0.33 4.2
Chandola, Huang & Estruch-Samper (2017) 3.9 7.01 × 107 0.17 5.1
Zukoski (1967) 3.9 1.2 × 107 0.6 4.5
Behrens (1971) 4.0 1.2 × 107 0.5 4.25
Present turbulent case 1.7 1.37 × 107 0.33 4.3

Table 3. Comparison of the reattachment length reported in various experimental turbulent FFS studies.
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Figure 7. Streamwise distribution of the mean wall pressure. The time- and spanwise-averaged values are
indicated by the black solid line (laminar case) and blue dashed line (turbulent case). The vertical dotted lines
denote the mean separation locations for the two cases. The grey circles denote experimental results from
Czarnecki & Jackson (1975) at Ma = 2.2 and Re∞ = 6.5 × 107 m−1 in a turbulent flow. The red horizontal
line represents the value 〈pw/p∞〉 = 1.84 obtained by empirical correlations pw/p∞ = 0.5Mae + 1.

with the experiments of Chandola et al. (2017) conducted in a turbulent flow at Ma = 2.2
and Re∞ = 6.5 × 107 m−1 (see figure 7).

3.2. Instantaneous flow organization
Instantaneous snapshots of vortical structures for the laminar and turbulent cases are
illustrated by means of isosurfaces of the λ2 vortex criterion (Jeong & Hussain 1995)
in figure 8. For the laminar inflow case, distinct turbulent spots emerge in the direct
vicinity of the separation line (x/h = −25). At x/h = −8, these spots grow rapidly to
cover the whole span. The evolution of the coherent vortices, including the formation
of the streamwise streaks and the ensuing breakdown, suggests that the boundary layer
undergoes a bypass transition, as also reported by Kreilos et al. (2016) and Marxen &
Zaki (2019). Entering the region with a stronger recirculation and inflectional velocity
profile, the disturbances are amplified significantly, and large hairpin vortices are produced
along the shear layer. The multi-scale vortices downstream of the step suggests that the
laminar–turbulent transition is completed, which reinforces observations based in the skin
friction coefficient in figure 6.
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Figure 8. Instantaneous vortical structures, visualized by isosurfaces of λ2 = −0.12. A numerical schlieren
based on a z = 0 slice with |∇ρ|/ρ∞ = 0–1.4 is included. The laminar case at tu∞/δ = 900 is shown
(a) upstream of the separation bubble, (b) close to the bubble, and (c) shows the turbulent case at tu∞/δ = 700.
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Figure 9. Contours of the time- and spanwise-average standard deviations of the streamwise velocity,
normalized by u∞: (a) the laminar case, and (b) the turbulent case. The black dashed and solid lines denote
isolines of u = 0.0 and u/ue = 0.99.

For the turbulent case, the near-wall region features small-scale vortices in the incoming
boundary layer. Since the shear layer over the separation bubble is inviscidly unstable,
the vortical structures are enhanced due to strong Kelvin–Helmholtz (K–H) instability.
However, a clear signature of spanwise-aligned K–H vortices is not observed because it is
overwhelmed by the energetic turbulent structures already present in the incoming shear
layer. The amplification of the vortical structures across the separated shear layer was also
reported by Mustafa et al. (2019).

Figure 9 presents the root-mean-square (r.m.s.) fluctuations of the streamwise velocity
component,

√
〈u′2〉 (normalized by u∞), for the two cases. Large values of

√
〈u′2〉 are

observed to occur along the shear layer, between the boundary layer edge and isoline of
〈u〉 = 0, for both cases. The laminar case has a peak value of approximately 0.20 in the
free shear layer, while the maximum is 0.17 for the turbulent case. While the turbulent
case displays weaker fluctuations along the shear layer, larger fluctuations occur along
the separation and reattachment shock. Contours of the wall-normal velocity fluctuations√

〈v′2〉 show similar features (figure 10), but the energetic regions occur closer to the
vertical step wall, as reported also by Murugan & Govardhan (2016). The maximum values
of

√
〈v′2〉 are 0.16 near the step wall and 0.12 within the free shear layer for the laminar

case; for the turbulent case, the corresponding values are 0.12 near the step and 0.08 in the
shear layer. These observations suggest that the shear layer instability is stronger and the
separation shock is weaker in the laminar inflow case.

To better visualize the vortical structures near the wall, contours of the streamwise
velocity gradient ∂u/∂y in a wall-parallel plane at �y/δ0 = 0.01 at a random time instant
are provided in figure 11. For the laminar case, the velocity gradient is homogeneous far
upstream of the step (not shown in the figure) as the incoming boundary layer is laminar.
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Figure 10. Contours of the time- and spanwise-average standard deviations of the wall-normal velocity,
normalized by u∞: (a) the laminar case, and (b) the turbulent case. The black dashed and solid lines denote
isolines of u = 0.0 and u/ue = 0.99.

In the separation zone, the contours of ∂u/∂y show large streamwise streaks. From the
weighted power (spatial) spectral density (PSD) of ∂u/∂y, we observe a peak at a small
spanwise wavenumber kz = 2, both upstream and downstream of the step, corresponding
to a spanwise wavelength λz = 0.5h = 1.5δ0. For the turbulent case, the contours provide
evidence of a streamwise preferential orientation of the near-wall coherent structures
upstream of the separation region. Behind the step, streamwise-oriented features are
observed again, which suggests large-scale streaks with a spanwise alternation of high
and low velocity. Similar to the previous case, the dominant disturbance in the turbulent
case also has a spanwise wavenumber at kz ≈ 2, yielding again a dominant wavelength
λz ≈ 0.5h ≈ 1.5δ0, which is in good agreement with the reported spanwise wavelength of
the characteristic vortical structures λz ≈ 2δ in previous numerical and experimental work
(Ginoux 1971; Pasquariello et al. 2017; Priebe & Martín 2012).

3.3. Spectral analysis
The frequency characteristics of the interaction are first quantified by the frequency-
weighted PSD of selected flow variables. Figure 12 shows the PSD of the wall pressure at
different streamwise locations. For this spectral analysis, pressure signals were sampled at
frequency tsu∞/h = 12 (fsδ0/u∞ = 4) with 2000 snapshots, excluding the initial transient
stage (tu∞/δ0 < 600) of the simulation, which gives a resolved frequency range 0.003 ≤
tu∞/h ≤ 6. Welch’s method with a Hanning window was employed to compute the PSD
using eight segments with 50 % overlap. In the following analysis, we use the Strouhal
number based on the step height, Sth = fh/u∞, to characterize the frequency of the
unsteady behaviour. Overall, both cases display a broadband frequency spectrum, with
different leading frequency at different streamwise locations. For the turbulent inflow
case, the spectrum upstream of the recirculation region (x/h = −20.0,−16.0) shows a
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Figure 11. Contours of the streamwise velocity gradient ∂u/∂y in the x–z plane at the wall distance �y/δ0 =
0.01, and the corresponding weighted power spectral density kzP(kz) versus the spanwise wavenumber kz
(black line x/h = −4.2; blue line x/h = 1.0): (a) the laminar case, and (b) the turbulent case.

clear energetic bump centred around the characteristic frequency (u∞/δ0, corresponding to
Sth = 3) of the incoming turbulent boundary layer (Dolling 2001). For the laminar inflow
case, the energy level of the pressure fluctuations is two orders of magnitude lower than
that of the turbulent case upstream of the separation region. Within the separation bubble
(x/h > −11.6 for the laminar case, x/h > −4.3 for the turbulent case), the prevailing
frequency shifts to an intermediate range Sth = 0.2–1.0. In addition, a noteworthy
low-frequency bump occurs for Sth < 0.2 in the separation region, most clearly visible at
the station x/h = −1.0. Since the laminar inflow case completed transition already inside
the separation region and shares similar low-frequency and medium-frequency contents
with the turbulent case, mainly the latter case is analysed further hereafter.

As reported in previous work (Pasquariello et al. 2017; Hu et al. 2021), the
low-frequency unsteadiness is usually associated with the motions of the shock and
separation bubble, while the medium-frequency dynamics is related to the shedding of
vortices in the separated shear layer. We therefore examine the frequency characteristics
of several flow variables to verify if these conclusions apply similarly to the FFS
cases. The spanwise-averaged streamwise velocity within the separated shear layer and
the reattachment location on the FFS wall both show the dominant medium-frequency
unsteadiness. These data are extracted with the same sampling frequency as the
aforementioned pressure signal. The location of the spanwise-averaged reattachment point
yr is the y coordinate of the intersection between the isolines of the streamwise velocity
u = 0 and the step wall. As shown in figure 13(a), a frequency around Sth = 0.3 appears
energetically dominant for the shear layer velocity signal, which supports the suggestion
that the medium frequency is the characteristic frequency of the shear layer vortices. In
addition, a local peak at a lower frequency Sth = 0.1 is observed in the spectrum. The
shear layer vortices eventually impinge on the step wall, which explains that a similar
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Figure 12. Frequency-weighted PSD of the wall pressure at different locations: (a) the laminar case, and
(b) the turbulent case. Note that the upstream stations are scaled differently for the laminar inflow case to
improve visibility.

medium-frequency content is also observed in the spectrum of the reattachment location;
see figure 13(b). In addition, there are energetic disturbances with higher frequencies
related to the turbulence when the flow reattaches on the wall. It is worth noting that the
reattachment point usually moves upwards and downwards at different speeds. To examine
this velocity difference at the frequency range, the gradient of the reattachment coordinates
dyr/dt is calculated with the same sampling frequency fsδ0/u∞ = 4 and then filtered by
a low-pass filter with passing frequency fpδ0/u∞ ≤ 0.2. In the given temporal range, the
mean value of the positive gradient is 0.0030, and that of the negative gradient is −0.0032,
which suggest that the reattachment point has a larger speed when moving downwards.
Therefore, it takes a shorter time for the attachment point to move downwards, and the
probability P(dyr/dt < 0) is smaller (0.46 in total), as shown in figure 14.

Figure 15(a) displays the temporal evolution of the spanwise-averaged separation point
xs, as well as the associated frequency-weighted PSD. The separation point is defined
as the streamwise location where appreciable flow reversal is first observed (near-wall
streamwise velocity u/u∞ < 0.0). Note that the variation of the mean separation point
follows a sawtooth-like trajectory, along which its value drops drastically when the
separation point moves upstream while it undergoes a less rapid relaxation when the
separation position shifts downstream. The irregular and aperiodic variation of the
separation point suggests that the motions of the separation location involve a wide range
of time scales, as reported by Dussauge, Dupont & Debiève (2006) and Priebe et al. (2016),
although the dominant one is the low-frequency one around Sth ≈ 0.1 shown in the PSD
spectra. An additional small peak at a medium frequency Sth ≈ 0.4 can be observed for
the separation point location. It is reasonable to assume that this variable shares common
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Figure 13. Temporal evolution and corresponding frequency-weighted PSD fP( f ) of (a) the
spanwise-averaged streamwise velocity within the shear layer (x/h = −3.69, y/h = 0.83), and (b) the
spanwise-averaged reattachment location.
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Figure 14. Probability of the gradient of the reattachment coordinates, P(dyr/dt).

frequencies with the shear layer velocity because the vortex shedding is usually initiated
by the separation of the shear layer. Figures 15(b,c) show the temporal variation of the
shock angle η and separation bubble volume A. The shock angle is defined as the angle
between the isoline of y/h = 1.0 and |∇p| δ0/p∞ = 0.26. The separation bubble volume is
the area enclosed by the isoline of u = 0, the lower wall and the vertical step wall. Overall,
the variation of the shock angle η and separation bubble volume A show less irregular
features, indicating that the dynamics of these two signals does not involve significant
multi-frequency unsteady contents. This is evidenced by the corresponding spectra in
figure 15, where we observe very clearly a low-frequency peak at Sth ≈ 0.15 for the shock
angle, and at Sth ≈ 0.08 for the separation bubble volume.

Similar to the reattachment point, these low-frequency signals also have different rates
at different states. When the size of the separation bubble increases (the gradient of the
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Figure 15. Temporal evolution and corresponding frequency-weighted PSD of the spanwise-averaged
(a) separation location xs, (b) separation shock angle η, and (c) volume of the main separation bubble per
unit spanwise length A.

bubble volume dA/dt is positive), the process of the expansion is slower than the speed
of shrinking. In the given temporal range, the mean value of the positive gradient of the
bubble volume is 0.0145 and that of the negative gradient is −0.0167. Figure 16 shows
the probability of various values of dA/dt, indicating that the probability of positive and
negative dA/dt is 0.0041 and 0.0061, respectively. Generally, the separation bubble volume
decreases when the reattachment point moves downwards. Therefore, the larger average
shrinking rate of the bubble is consistent with the faster downward movement of the
reattachment location (see figure 14).

To find the connection between the above signals, a statistical analysis was carried out
via the coherence Cxy and phase θxy. The definitions of the spectral coherence and phase
are given by

Cxy( f ) = ∣∣Pxy( f )
∣∣2
/
(
Pxx( f )Pyy( f )

)
, 0 ≤ Cxy ≤ 1, (3.1)

θxy( f ) = Im{Pxy( f )}/Re{Pxy( f )}, −π ≤ θxy ≤ π, (3.2)

where Pxx is the PSD of x(t), and Pxy signifies the cross-PSD between signals x(t) and
y(t).
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Figure 16. Probability of the changing rate of the separation bubble volume, P(dA/dt).
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Figure 17. Statistical (a) coherence and (b) phase between the spanwise-averaged coordinate of the separation
point and the angle of the separation shock.

Figure 17 shows C and θ for the relation between the separation location and shock
angle. A coherence value C = 0.29 is observed at Sth ≈ 0.1, which shows that the
separation point and bubble size are nonlinearly related to each other at this specific low
frequency. On the other hand, the two signals have a phase difference of roughly θ ≈ 0.5π
at this low frequency. Physically, when the separation location moves downstream (the
value of xs increases), the separation shock foot follows by turning counter-clockwise (the
value of η increases), and vice versa. The high level of coherence at higher frequency
(Sth = 0.4) is caused by the shedding vortices.

Figure 18 displays the statistical connection between the separation point and the volume
of the separation bubble. We observe significant coherence at frequencies Sth < 0.1,
accompanied with phase θ ≈ −π. That is, the bubble size increases when the separation
point moves upstream at low frequencies. The phase difference, however, changes at higher
frequencies Sth ≈ 0.15, where θ ≈ 0.25π. These results confirm previous observations
that there is no simple linear relation between separation length and bubble volume (Adler
& Gaitonde 2018).

For the signals of the reattachment location and the bubble size in figure 19, significant
correlation can be found for a broad range of frequencies (Sth > 0.1). The near-zero θ
implies that these two signals are approximately in phase for the low-frequency range,
meaning that an upwards motion of the reattachment point is accompanied by an increase
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Figure 18. Statistical (a) coherence and (b) phase between the spanwise-averaged streamwise coordinate of
the separation point and the volume of the separation bubble.
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Figure 19. Statistical (a) coherence and (b) phase between the spanwise-averaged wall-normal coordinate of
the reattachment point and the volume of the separation bubble.

of the bubble size. At frequencies Sth > 0.1, the separation bubble will expand (increasing
A) if the separation point moves downstream (increasing xs) and the reattachment location
moves upwards (increasing yr). In this dilatation process of the bubble, the separation
length reduces, while the separation height becomes larger, which suggests that the volume
of the separation bubble depends mainly on the separation height (the reattachment
location in the current case) at Sth > 0.1, whereas the separation length is in phase with
the bubble size at lower frequency frequencies Sth < 0.1.

3.4. Dynamic mode decomposition analysis of the three-dimensional flow field
We have applied DMD (Schmid 2010) to identify the modal dynamics and energetic
flow structures contributing to the broadband frequency spectrum. In § 3.3, we identified
two types of dominant frequencies in the unsteady interaction system. However, some
of the signals were extracted from the spanwise-averaged field, like the separation
and reattachment locations; therefore a three-dimensional DMD analysis is required
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Figure 20. (a) Eigenvalue spectrum from the standard DMD. (b) Normalized magnitudes for DMD modes
with positive frequency, grey shaded by their growth rate βk.

for the analysis of possible effects of spanwise variant flow structures. A spatial
subdomain is extracted from the simulated flow domain for the three-dimensional DMD
analysis in order to reduce the computational effort. The considered subdomain is
Lx × Ly × Lz = ([−25, 15] × [0, 8] × [−8, 8])δ0, covering the most interesting region,
with a downsampled spatial resolution in all directions. Since the frequencies above the
characteristic frequency of the turbulent integral scale u∞/δ0 are not our current interest,
the present DMD analysis of the three-dimensional subdomain is performed based on
1000 equal-interval snapshots with the same time range as for the previous signals and a
smaller sampling frequency fsδ0/u∞ = 2, which yields a frequency resolution 2 × 10−3 ≤
f δ0/u∞ ≤ 1 (equivalent to 6 × 10−3 ≤ Sth ≤ 3). The calculated eigenvalue spectrum and
magnitudes of the corresponding DMD modes are displayed in figure 20. The resulting
DMD modes come as complex conjugate pairs, and most of them are well distributed along
the unit circle |μk| = 1 except for a few decaying modes within the circle, which means
that the resulting modes are sufficiently saturated (Rowley et al. 2009). In figure 20(b),
the shown modes are grey shaded by their growth rate βk. The darker the vertical lines,
the less decaying the modes. Here, the strongly decaying modes (|μk| ≤ 0.96) have been
removed because they do not contribute to the long-time flow development.

From the previous spectral analysis, two types of frequencies have been identified. These
frequencies are also significant in figure 20(b). Therefore, two corresponding families
of modes are defined in the spectrum, a low-frequency family at Sth < 0.2 (family A)
and a medium-frequency family at 0.2 ≤ Sth ≤ 1.0 (family B), and the different features
characteristic for each family are investigated. In addition, an extra family of modes at
Sth > 1.0 (family C, close to the characteristic frequency of the turbulent integral scale)
is also analysed. Based on the growth rate and magnitudes of the modes, three modes are
selected from the frequency spectrum, each of which is a representative of a single family,
marked as mode φ1, φ2 and φ3, respectively. Table 4 gives the non-dimensional frequency,
magnitude and growth rate of these selected modes. All of them have relatively large
magnitude with |ψk| > 0.4, and small growth rate with |βk| < 0.02, which indicates that
they have a relevant contribution to the evolution of the flow field over the full analysed
time span.

The selected mode φ1 has frequency Sth = 0.0377, which has the same order of
magnitude as the data (Sth = 0.017) reported by Estruch-Samper & Chandola (2018).
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Mode Sth Stδ StL |ψk| βk

φ1 0.03771 0.01257 0.16215 0.41265 −0.017209
φ2 0.34908 0.11636 1.50104 0.48313 −0.016515
φ3 1.34607 0.44869 5.78810 0.52279 −0.012177

Table 4. Information for the selected modes.
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Figure 21. Isosurfaces of the pressure fluctuations from DMD mode φ1 with phase angle (a) θ = 0 and
(b) θ = 3π/4, including only the real part. Red indicates p′/p∞ = 0.03; blue indicates p′/p∞ = −0.03.
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Figure 22. Real part of DMD mode φ1 indicating contours of modal (a) pressure fluctuations and
(b) streamwise velocity fluctuations, on the slice z = 0. The different lines indicate features of the mean flow
field: green solid line, the separation shock; black dashed line, dividing streamline; green dashed line, the
streamline passing through x/δ0 = 0, y/δ0 = 3.75.

Figure 21 shows the pressure fluctuations from mode φ1 at two different phase angles.
The main features of the pressure fluctuations are large structures along the separation
shock and the reattachment shock. The sign switch between the two displayed phase angles
indicates the oscillation of the shock. Note that the fluctuations around the separation
and reattachment shocks are also moving in the spanwise direction, suggesting a slight
wrinkling of the shocks. Figure 22(a) provides the pressure fluctuations of φ1 at the
slice z = 0. Again, large fluctuations are observed around the separation and reattachment
shocks. There are also waves induced by the separation shock propagating along the
streamwise direction.

The fluctuations of the streamwise velocity component from DMD mode φ1 are given
in figure 23. From the isosurfaces of u′/u∞ = ±0.2, we observe pairs of longitudinal
streamwise structures, which emerge around the separation location and extend into the
free shear layer and towards the downstream boundary layer. Considering the contours of
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Figure 23. Isosurfaces of the streamwise velocity fluctuations from DMD mode φ1 with phase angle
(a) θ = 0 and (b) θ = 3π/4, including only the real part. Red indicates u′/u∞ = 0.2; blue indicates u′/u∞ =
−0.2 .

the streamwise velocity fluctuations on the z = 0 slice in figure 22(b), we find that these
high- and low-speed structures are located mainly along the shear layer.

The streaks visualized by the isosurfaces of the streamwise velocity fluctuation are a
possible result of momentum transport by counter-rotating streamwise vortices. Therefore,
we plot the contours of the modal streamwise vorticity and projected streamlines at two
phase angles, as shown in figure 24. The counter-rotating vortices are illustrated clearly
by the in-plane streamlines. Additionally, these vortices move in both the spanwise and
wall-normal directions, and their strength is also changing with the phase angle. At the
given instants (θ = 3π/16 and θ = 7π/16), the spanwise wavelength of the vortex pair
is ranging from 0.5h to 0.6h. Based on these observations, we believe that the dynamics
represented by the low-frequency mode φ1 involves the flapping motions of the separation
and reattachment shock, as well as oscillating Görtler-like vortices in the shear layer.

To better illustrate the flow dynamics corresponding to a selected DMD mode, we
reconstructed the real-valued flow field by superimposing the individual mode φi onto
the mean flow φm, expressed as q(x, t) = φm + af × Re{αiφi eiωit}, where αi and af are
the amplitude and optional amplification factor of the considered mode φi. Animations of
the dynamic flow field reconstructed with a single mode using this procedure are provided
as supplementary movies available at https://doi.org/10.1017/jfm.2022.737. Movies 1 and
2 (reconstructed from mode φ1) show clearly the flapping motion of the separation shock
and the counter-rotating Görtler vortices. Other modes from the low-frequency branch A
were found to share very similar flow features with the selected mode φ1.

For the medium-frequency mode φ2, the characteristic frequency is Sth ≈ 0.349, which
is in good agreement with the experimental results (Sth ≈ 0.4) of Estruch-Samper &
Chandola (2018). The pressure isosurfaces in figure 25 exhibit large spanwise-aligned
structures arranged along the free shear layer. These significant fluctuations represent the
travelling shear layer vortices. In the contours of the modal spanwise-averaged pressure
fluctuations in figure 26, the radiation of the waves along the shear layer is obvious. The
emission of these structures induces disturbances along the streamwise direction in the
supersonic part of the flow field. This observation of the propagating pressure waves is in
agreement with the results from a global linear stability analysis of an impinging shock
case in a laminar regime (Guiho, Alizard & Robinet 2016).

Figure 27 shows isosurfaces of the streamwise velocity fluctuations associated with
mode φ2. Here, Λ-shaped structures are observed in the free shear layer and alternate
along both the spanwise and streamwise directions. Supplementary movies 3 and 4
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Figure 24. Contours of the streamwise vorticity from DMD mode φ1 with phase angle (a) θ = 3π/16 and
(b) θ = 7π/16, in the z–y plane at x/δ0 = −6.0. Black arrow lines represent the streamlines on the slice.
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Figure 25. Isosurfaces of the pressure fluctuations from DMD mode φ2 with phase angle (a) θ = 0 and
(b) θ = 3π/4, including only the real part. Red indicates p′/p∞ = 0.03; blue indicates p′/p∞ = −0.03.
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Figure 28. Isosurfaces of the pressure fluctuations from DMD mode φ3 with phase angle (a) θ = 0 and
(b) θ = 3π/4, including only the real part. Red indicates p′/p∞ = 0.06; blue indicates p′/p∞ = −0.06.

(reconstructed from mode φ2) visualize the convection of shear layer vortices and the
propagation of the Mach-like waves. These observations confirm that this mode, which
is representative of the mid-frequency dynamics, is indeed related to the advection of the
shear layer vortices. Similar observations were also reported in the two-dimensional DMD
analysis of an incident shock case (Pasquariello et al. 2017).

Considering the high-frequency mode φ3, the pressure fluctuations provided in figure 28
show the evolution of small-scale vortices. These spanwise-aligned vortices are weakly
visible also in the upstream turbulent boundary layer and amplified in the free shear layer.
The streamwise displacement of the fluctuations at different phase angles indicates the
advection of these coherent vortices. From the streamwise velocity fluctuations of mode φ3
in figure 29, we can also observe that these vortices originate from the upstream turbulence
and are considerably amplified in the separated shear layer. The frequency of this mode
is close to the typical frequency of the turbulence considering the thicker boundary layer
downstream of the step. Hence this mode can be associated with the advection of turbulent
structures that results from an amplification of the incoming turbulence by the separation
bubble; cf. the stability analysis of Guiho et al. (2016) for an incident shock SWBLI case.

4. Physical mechanism of the low-frequency unsteadiness

The present FFS case exhibits unsteady dynamics at non-dimensional low frequencies
similar to those observed for SWBLI on flat plates, compression ramps and BFS. Similar to
the compression ramp (Grilli et al. 2013), the main flow topology of the FFS case consists
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Figure 29. Isosurfaces of the streamwise velocity fluctuations from DMD mode φ3 with phase angle (a) θ = 0
and (b) θ = 3π/4, at slice z = 0, including only the real part. Red indicates u′/u∞ = 0.4; blue indicates
u′/u∞ = −0.4.

of a separation shock, free shear layer, separation bubble and reattachment shock (not
as prominent as for the compression ramp). Therefore, the streamwise profiles of the
mean skin friction and wall pressure have very similar trends for FFS and ramp cases
(Priebe et al. 2016). However, differences of 〈Cf 〉 and 〈pw〉 curves are observed due to the
confinement by the step wall. As we can see in figures 6 and 7, there is a drastic rise of 〈Cf 〉
and a smaller second plateau of 〈pw〉 around the step, which are not observed for the ramp
and incident shock cases (Priebe & Martín 2012). The variations of these parameters inside
the separation bubble are usually related to the multi-frequency unsteadiness (Priebe et al.
2016; Pasquariello et al. 2017).

The instantaneous flow field shown in § 3.2 visualizes the main unsteady phenomena,
including the breathing bubble, oscillation of the separation and reattachment shocks,
the shear layer, and the high- and low-speed streaks, which also occur in ramp,
impinging shock and BFS configurations. As characterized by the DMD analysis of the
three-dimensional flow field, the low-frequency DMD modes include unsteady shock
motions and counter-rotating streamwise vortices. These Görtler-like vortices are relatively
weak compared to other unsteady dynamics such that they do not show up in the vortical
visualization of the complete flow field (see figure 8). The medium-frequency modes, on
the other hand, are associated with the shedding of vortices within the shear layer. Similar
observations have been reported in the impinging shock and ramp shock interaction
configurations, as well as in our previous work related to the BFS (Hu et al. 2021).

Piponniau et al. (2009) found that the separation bubble is highly intermittent based
on their conditional average of the bubble size, and proposed an entrainment-injection
model to explain the dynamics of the low-frequency unsteadiness. This model associates
the low-frequency motion of the shear layer with an unbalanced mass budget within the
separation bubble. In the current FFS case, we also observe a strong intermittency of the
bubble size with large-scale variations in magnitude (see figure 15) for the expanding and
contracting phase, as illustrated schematically in figure 31. In the contraction process, the
fluid from the separation region is entrained by the coherent structures along the mixing
layer in the initial phase of the separation. After a certain distance, these vortices are shed
from the shear layer and enter the downstream outer flow carrying mass with themselves,
which causes a mass deficit of the separation bubble. The separated region shrinks with
a downward motion of the reattachment location and an upstream shift of the separation
point. Accordingly, the foot of the separation shock moves upstream. The continuous loss
of the mass inside the bubble, however, cannot be maintained. There must be a reverse
mass transfer such that the separation bubble will expand.
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Figure 30. (a) Curvature h/R and (b) Görtler number Gt, along the mean streamline passing through x/h = 0
and y/h = 1.25 (for the fully turbulent case). Vertical dashed lines indicate the separation and reattachment
points. The horizontal dot-dashed line denotes the critical Gt in a laminar flow.

To ensure a continuous breathing of the separated region, the mass of the injection
should be equal to the total amount of mass discharging through the shear layer. We
also expect that it takes several periods of the shedding vortices before they drain out a
considerable amount of fluid mass. Therefore, it is reasonable to assume that the frequency
of the breathing motions is smaller than that of the shedding behaviour, which agrees
with the findings in §§ 3.3 and 3.4. Based on the above reasoning, we believe that the
entrainment-injection model is also applicable for the FFS configuration.

However, there must be a mechanism to support the large-scale motions of
the interaction region. The current DMD suggests that the spanwise oscillation of
counter-rotating Görtler-like vortices may be the driver behind the low-frequency
unsteadiness, as we proposed in the previous BFS case (Hu et al. 2021). The Görtler
number defined as

Gt = θ3/2

0.18δ∗ |R|1/2 , (4.1)

indicates whether such vortices can form (Smits & Dussauge 2006), where R is the
radius of curvature of the streamline, δ∗ is the boundary layer displacement thickness,
and θ is the boundary layer momentum thickness. Figure 30 shows the curvature h/R
and Görtler number Gt along the streamline of the mean flow inside the shear layer
(shown in figure 22). As we can see, two distinct peaks are observed in the distribution
of the curvature, located around the separation and reattachment points. This strong
curvature induces strong Görtler instability, corresponding to the high levels of Gt around
the separation and reattachment locations. At −6.5 ≤ x/h ≤ −3.3 and 0 ≤ x/h ≤ 1, the
Görtler number is larger than the critical value Gt = 0.6, above which local Görtler
vortices will emerge in a laminar flow (Smits & Dussauge 2006). Therefore, we believe that
the Görtler instability is the cause of the Görtler-like vortices, visualized by the streamwise
velocity fluctuations (figure 23) and streamlines (figure 24) from DMD mode φ1.

The separation location on any given slice z = z1 moves as a result of the spanwise
translation of Görtler vortices, as illustrated by figure 31. In the contraction process
(from t1 to t2), when the counter-rotating Görtler-like vortices move towards the positive
spanwise direction, the streamwise velocity u will become negative from u = 0 at the
z = z1 location (see the schematic in figure 31a), which means that the flow direction
reverses from t1 to t2 at this specific location. The upstream movement of the separation
point leads to the upstream flapping of the separation shock. Correspondingly, the
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Figure 31. Sketch of the entrainment-injection model sustained by the Görtler vortices: (a) contraction
process and (b) dilatation process.

reattachment point shifts downwards, and mass is entrained by the shear layer. The
consecutive oscillations of the interaction region result in a wrinkling of the shock and the
breathing of the bubble. Oppositely, if the Görtler-like vortices move towards the negative
spanwise direction from t1 to t2 (see the schematic in figure 31b), then the separation
point will (at t = t1) become a part of the attached flow (at t = t2) at slice z = z1, and the
separation shock will move downstream.

In terms of the magnitude of the low frequencies, the current results for an FFS
yield a Strouhal number range 0.02 < Sth < 0.2 , close to the frequencies obtained in
other canonical incident shock and ramp cases (0.01 < Sth < 0.2, normalized by the
height of the separation bubble). Based on the above analysis, we believe that the
entrainment-injection model can explain the low-frequency unsteadiness of SWBLI.

5. Conclusions

The low-frequency unsteady dynamics of the SWBLI over an FFS at Ma = 1.7 and
Reδ0 = 13 718 has been analysed based on well-resolved LES. The instantaneous vortical
visualizations indicate that the unsteady behaviour is similar to what we observe in the
BFS case, including the vortex shedding in the separated shear layer, the breathing of the
separation bubble, and the flapping motion of the main shock. From the spectral analysis,
we observe that there is a broadband low/medium-frequency dynamics in the interaction
region, which we classify into two branches with dominant frequencies at Sth = 0.01–0.2
and Sth = 0.2–1.0 in the current FFS case. The medium-frequency content is associated
with the shedding of shear layer vortices, while the unsteady separation region – more
specifically, the size of the separated region – and the position and angle of the separation
shock constitute the low-frequency dynamics.

Three-dimensional DMD analysis was applied to identify individual single-frequency
modes that represent the observed unsteady behaviour. Similar to what we observed in
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the BFS case (Hu, Hickel & van Oudheusden 2020), the extracted low-frequency mode φ1
suggests that there is a statistical link between the shock motions and unsteady Görtler-like
vortices. The flow features displayed by the medium-frequency mode φ2 represent the
advection of shear layer vortices.

Based on the above observations and analysis, we consider that the physical mechanism
of the low-frequency unsteadiness in the FFS is very similar to the one for other canonical
SWBLI cases. We believe that the unsteady Görtler-like vortices impose an unsteady
forcing on the interaction system that sustains the low-frequency motions of shocks and
separation bubble.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.737.
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