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Disadvantaged communities
have lower access to urban
infrastructure

Leonardo Nicoletti, Mikhail Sirenko and Trivik Verma
Faculty of Technology, Policy and Management, Delft University of Technology, The Netherlands

Abstract
Disparity in spatial accessibility is strongly associated with growing inequalities among urban
communities. Since improving levels of accessibility for certain communities can provide them with
upward social mobility and address social exclusion and inequalities in cities, it is important to
understand the nature and distribution of spatial accessibility among urban communities. To
support decision-makers in achieving inclusion and fairness in policy interventions in cities, we
present an open and data-driven framework to understand the spatial nature of accessibility to
infrastructure among the different demographics. We find that accessibility to a wide range of
infrastructure in any city (54 cities) converges to a Zipf’s law, suggesting that inequalities also appear
proportional to growth processes in these cities. Then, assessing spatial inequalities among the
socioeconomically clustered urban profiles for 10 of those cities, we find urban communities are
distinctly segregated along social and spatial lines. We find low accessibility scores for populations
who have a larger share of minorities, earn less and have a relatively lower number of individuals
with a university degree. These findings suggest that the reproducible framework we propose may
be instrumental in understanding processes leading to spatial inequalities and in supporting cities to
devise targeted measures for addressing inequalities for certain underprivileged communities.

Keywords
urban accessibility, equity, public policy, open-source data, machine learning

Introduction

Cities are places of consumption that provide a variety of amenities and services to their citizens
Jayne (2005). Cities with high-capital investments and technological dominance have become
attractive for migrants who are highly skilled, well-educated and well-paid Huang and Wei (2011);
Scott (2017). As authors of Ref. Nijman and Wei (2020) argue in a comprehensive review of urban
inequalities, national and regional level policies around globalisation, migration and free-market
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investments have catapulted the urban economy, but the benefits have not accrued equitably across
urban populations, and as cities grow, the benefits of living in them are increasingly unequally
distributed HeinrichMora et al. (2021). Akin to the notion that to survive a decline, cities must make
attractive amenities accessible for increasingly rich workers Glaeser et al. (2001), and the re-
sponsibility (Sustainable Development Goal 10 - Reduced Inequalities suggests that there is a
mutual understanding among world governments to tackle inequalities as a global challenge)
United-Nations (2017) of equitably addressing urban inequalities also lies with municipal au-
thorities Seskin and McCann (2012).

Over time, the dynamics of gentrification, the housing market, residential segregation and de jure
practices like exclusionary zoning laws Higginbotham et al. (1990); Parekh and Gaztambide-
Fernández (2017) have pushed low-income minority groups to live in deteriorated urban areas
receiving a minor share of public investments Rothstein (2015, 2017). Such processes have resulted
in the concentration of urban poverty and the creation of strong inequalities among urban com-
munities Bayón and Saravı́ (2018); Hajnal (1995); Musterd et al. (2017); Sydes (2019); Walks and
Bourne (2006). Through sociological investigations and observations, scholars have illustrated how
urban inequalities are related to interlinked social factors across spatial and temporal scales Nijman
and Wei (2020). In general, depending on their socioeconomic status McFarlane and Rutherford
(2008), some communities benefit from access to a wide range of urban services such as mobility,
health, education and community space, while others are segregated in neighbourhoods where they
struggle to access resources within the city Delafontaine et al. (2011); Tao et al. (2014); Mayaud
et al. (2019); Neutens (2015); Van Wee and Geurs (2011). People living in areas with a poor
concentration of accessible services and amenities tend to snowball into low levels of education,
poor physical and mental health, disproportionate job opportunities and social exclusion Gobillon
and Selod (2007); Glaeser et al. (2009); Massey et al. (1987); Rothstein (2017), thus lacking upward
mobility.

As authors of Ref. Klinenberg (2018) posit in their book that building better social infrastructure
will result in more resilient and less unequal societies, it is an account of how urban infrastructure
can facilitate shared spaces through which civic life can be rebuilt and improved for vastly un-
derprivileged communities. Fortunately, globally, cities have implemented policies aimed at im-
proving the quality of urban infrastructure, and at reducing inequalities in accessibility among urban
communities Barcelona (2015); Bogota (2011); London (2019); Paris (2018); Singapore (2016). In
the United States and Canada alone, more than 400 municipalities have implemented policies to
encourage the development of ‘complete street’ Seskin and McCann (2012). Such policies aim to
create socially inclusive communities with improved access to services, shops and recreation,
healthy and active lifestyles, more walking and less driving, attractive public spaces and improved
economic vitality Seskin and McCann (2012).

Even though nuanced variations of the definition of Accessibility exist Biazzo et al. (2019);
Hewko et al. (2002); Levinson and King (2020), more generally it refers to the ease with which
residents within a city can reach amenities or opportunities (destinations, social interactions and
jobs) Hansen (1959). It is a general measure adopted by planners to understand how land-use and
transport systems shape the quality of life of residents in a city and identify where equitable
developments can improve the life of marginalised communities Levinson and King (2020). Studies
that attempt to inform policy by quantitatively highlighting urban inequalities in cities usually
measure variability in access for residents to specific spatial factors, such as access to transit, health or
green space infrastructure, and by specific demographic attributes, such as income or ethnicity Jang et al.
(2017);Mayaud et al. (2019); Xiao et al. (2017). These findings are especially useful for decision-makers
to tailor policies toward their specific communities Seskin and McCann (2012). However, inequalities
among communities are shaped differently depending on the diversity in distribution of resources and
compounded by several other spatial and economic factors Moro et al. (2021), and adopting utilitarian
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(or case-specific) approaches may prevent in addressing the causes of inequalities in urban regions
Farmer (2011). Therefore, systematically understanding the variability in spatial distribution of access
and the associated demographic distribution is instrumental in designing targeted and equitable policies
for addressing urban inequalities.

Using open data, we present a framework to understand and evaluate the differences in access to
urban infrastructure afforded to various demographics within cities around the world. By taking into
consideration more than 50 types of urban amenities, we quantify accessibility to different cate-
gories of basic services for 54 cities, globally. Despite the geo-political differences that exist across
these cities, we find that accessibility in all cities is characterised by a log-normal distribution. We
infer the existence of this law by comparing the distribution of accessibility to the spread of
population density in those regions. By taking into consideration several categories of socio-
economic attributes, we characterise city-specific urban communities and assess inequalities in
accessibility in 10 of those cities (due to data-availability). Our findings reveal the existence of
structural inequalities for similar archetypes of urban communities across all North American cities
within our data. This approach supports us in investigating the nature of inequalities in access and its
relationship with different socioeconomic aspects of urban communities, thus providing evidence to
derive tailored policies in addressing inequalities in an equitable manner.

Our goal is twofold: First, we investigate the nature of spatial factors that relate to accessibility in
any given city, and in turn urban inequalities. Then, because of its flexible nature, the framework can
be adapted to the local values of decision-makers with regards to accessibility, and provide support
in identifying region-specific social groups suffering from inequalities in access within their regions.

Materials and methods

Data-driven framework

To understand the nature of inequalities that citizens face in accessibility to urban infrastructure, we
introduce a data-driven framework that facilitates comparison of accessibility scores of groups of
individuals that share similar demographic and socioeconomic attributes (e.g. age, ethnicity, in-
come, employment and mobility) within and across cities worldwide (Figure 1). This framework is
based on three types of data sets (see Section Data Description). First, we use census data from
governmental agencies to identify which population groups are predominant within a certain area –
these are called social groups (see Section Data Description for detailed information on census
data). We use consensus clustering (see Section Clustering Method in SI) to identify social groups
using variables of interest. In parallel, we perform a network analysis on the street networks and
urban amenities data to quantify and map accessibility to urban infrastructure at the block level.
Finally, we measure inequalities by comparing the distribution of accessibility across social groups
that were identified through consensus clustering. In the spirit of contributing to open data and
research PapersWithCode (2020), our framework is fully automated and documented as open code
on GitHub.

We apply this framework to 54 cities across six continents as reported in the Tables in the
Supplementary Information (SI). We measure accessibility for all 54 cities and examine the
variability in its distribution for the city population on a subset of those cities: New York City (NY),
Chicago (IL), San Francisco (CA), Los Angeles (CA), Houston (TX), Seattle (WA), Miami (FL),
Toronto (ON), Vancouver (BC) and Montreal (QC). Within this subset, the municipal authorities of
each city have made strong policy efforts to provide equitable accessibility to urban services within
their municipal jurisdiction Seskin and McCann (2012). In addition, open data programs run by the
municipal governments of these cities provide aggregated demographic and socioeconomic var-
iables for the complete population.
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Data description

Census data. To characterise population demographics, we use 2016 demographic data from
Statistics Canada StatCan (2018) at the Dissemination Area (DA) level, and 2017 demographic data
estimates from the United States Census at the Census Block Group (CBG) US-Census-Bureau
(2019) level. In order to capture a full spectrum of demographic attributes, we consider 46 census
variables relating to ethnicity and minority status, income level, marital status, household com-
position, language abilities, education level and type, employment status, occupation type and
commuting mode. Several scholars agree that many of these socioeconomic variables are related to
factors explaining inequalities in cities Nijman andWei (2020), although the evidence is scattered in
the literature through case studies specific to cities or types of infrastructure.

Streets and amenities. To characterise street networks and urban amenities, we use OpenStreetMap
(2020) to collect data on pedestrian infrastructure and geographically allocated places of interest
(POI): hospitals, schools, supermarkets, restaurants, schools, etc. POIs are returned by the
OpenStreetMap API as amenity names and their associated geographical location (i.e. longitude and
latitude). Pedestrian infrastructure networks are returned by the OpenStreetMap API as networks of
nodes and edges, where each node represents a street intersection and each edge represents a
segment of road with walkable or bikable features. Next, we group POI types into a set of different
categories (see SI for a complete list of amenities and their associated category). This source is
inconsistent in terms of data completeness and quality. The street network can be incomplete in
several rural and developing parts of the world. The number of amenities in OSM can be twice as
high as the real number (for instance, the number of POIs categorised as schools for Helsinki is
around 250, whereas the real (from the city’s administrative data base) is 100). In some cases, this
happens because the name of buildings occurs twice or thrice, like school buildings A and B.

Figure 1. Framework for evaluating equity in accessibility to urban infrastructure.

4 EPB: Urban Analytics and City Science 0(0)



Further, the cities we have selected have a reliable amount of data ð> 80%Þ available from
OpenStreetMap, and in most cases, the data is complete even in the developing world Barrington-
Leigh and Millard-Ball (2017).

Population grids. Data on population density for every city is retrieved from the European Com-
mission’s 2015 Global Human Settlement Layer (GHSL) GHSL (2015). This data is retrieved in the
form of a grid of 250m by 250m squares (0.0625 km2 spatial units exactly the same size as units used
for accessibility analysis) and their associated population density values covering the entire world.
Gridded population covers the whole world versus census data which is only available in case study
cities (Canada and United States). Gridded population is an estimate developed using a compu-
tational method and a multitude of raw data sources as described in the GHSL methodology GHSL
(2015).

Year mismatch in the collection of data sets. The data sets we have used in this analysis have been
collected and catalogued across different years. The census data is from the year 2016 (Canada) and
2017 (United States). The mismatch is not relevant to us because we want to produce the latest
estimates from both country-specific sets of cities. For comparison of cities’ accessibility, it would
be beneficial to use the same year for census information, and also for the OpenStreetMap data set,
but we were aiming to illustrate our results toward policymakers who we think should have the latest
estimates for their city. Thus, the street networks were extracted in the year 2019 at the time we
started the study. The GHSL grid data of population density is from 2015. This does not cause any
problems for comparison as we do not expect population densities to change drastically within a
couple of years. Further, we are not making any inferences about certain people but a group as a
whole, and do not expect neighbourhoods to gentrify within a year in any city in the world.

Accessibility score

To compute accessibility, we use the amenity location point data (from here on called Points of
Interest (POI)) and the pedestrian street network data collected from OpenStreetMap, where each
node represents a street intersection (green circles in Figure 2) and each edge represents a pedestrian
road segment (black lines). We classify each POI into one of seven categories of accessibility
(categories are marked as red circles): Mobility, Active Living, Entertainment, Food Choices,
Community Space, Education and Health and Well-being (Supplementary Note 1). Next, each POI,
in each category, is assigned to the nearest edge on the pedestrian network. For each node on the
network, we calculate the routing distance (weighted shortest path along the pedestrian network) to
the nearest POI, essentially representing a distance weighted feature of a POI as in the classical
definition of accessibility Hansen (1959). Each node on the network is then assigned a value
representing the distance in metres to the nearest POI. This process is repeated for each category of
POIs, resulting in each node being assigned seven accessibility values. Previous studies on
quantifying accessibility in cities have focused on measuring the Euclidean distance to services
Gastner and Newman (2006). However, the ease with which residents can access services in a city is
limited by urban form and land-use and the routing distance is a better proxy for the accessibility Xu
et al. (2020). (Figure 2)

Note that POIs do not warrant equal importance for all people and contribute differently to
addressing inequalities Klinenberg (2018). For example, improving access to a pharmacy or library
might be more important to a social group than access to a public transport station. Maslow’s
hierarchy of needs suggests, that in general, humans have three important needs in their living
environment: Physiological, Safety and Security and Social needs Maslow (1954). This suggests
that similar POIs can be classified into categories for ease of analysis and to reflect more broadly on
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the concept of accessibility and inequalities. So, to capture the essential aspects of urban acces-
sibility, we classify each POI into one of seven categories of accessibility: Mobility, Active Living,
Entertainment, Food Choices, Community Space, Education and Health and Well-being
(Supplementary Note 1). We choose these categories to reflect on the needs of peoples (as
specified by Maslow) and broader attributes of functional and livable urban spaces: transportation,
public health, food security, cultural capital and social cohesion Kenworthy (2006); Leby and
Hashim (2010). We (the 3 co-authors) carried out a subjective assignment of the POI to the seven
categories. Then we deliberated on where we differed and found resolution within the context of
needs and livable urban spaces.

Operationally, the methodology works as follows: With the use of Python’s open-source OSMnx
library Boeing (2017), we filter OpenStreetMap according to different keys (‘public transport’,
‘leisure’ and ‘amenity’). We create a geospatial point data set, consisting of 50 types of urban
amenities, of all the POIs considered in each city. In total, we collect 1, 678, 000 POIs across all 54
cities. SI reports the number of points collected for each city.

Next, we use OSMnx to download street networks for the pedestrian street infrastructure of each
city. Using the street network data, we interpolate nodes within identical 0.0625 km2 spatial units in
a grid matching those resulting from the analysis of social groups. By averaging distances from the
nodes that fall within each spatial unit to nearest amenities of each category (that may or may not be
in the same spatial unit), we compute the average walking distance within every spatial unit of a city
to each of the seven categories of basic amenities. Finally, we weigh and aggregate average walking
distances into a walking distance measure D using the following equation

Di ¼ log

 X
c

wcdc
i

!
, (1)

where dci is the average walking distance from nodes that fall within spatial unit i to the nearest
amenity of a given category c, and w (category-wise constant across all spatial units and cities) is the

Figure 2. Diagram illustrating the calculation of Accessibility Scores using hexagons, intersections and
amenity (POI) categories c.
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weight attributed to that category. See SI for the values of weights to reproduce this analysis. The use
of a logarithmic function captures the outliers in the measurement and makes comparison easier
within and across cities. Using a min–max scaler function, we normalise measureDwithin each city
so we can normatively rank walking distances of every spatial unit relative to each city

~Di ¼ Di � minðDiÞ
maxðDiÞ � minðDiÞ: (2)

Finally, we subtract ~Di from 1 to obtain an accessibility score A, where large values indicate high
accessibility and low values indicate low accessibility

Ai ¼ 1� ~Di: (3)

It is important to note that in our study, we are not interested in the number of amenities at a
specific location, rather, the location of the nearest amenity is important. This is because of the
nature of the accessibility score that we compute between individual locations and individual points
of interest. Traditional measurements of accessibility Hansen (1959) directly quantify the op-
portunities at each location, which could either be the count of points of interest or other attributes
about each point of interest, like attractiveness or availability. Even though we measure accessibility
to a specific category (for example, pharmacies and health facilities), not all POIs from that specific
category carry the same level of opportunity (i.e. some pharmacies might be better quality than
others). This can be a limiting factor of the measurement we present here. However, due to the
flexibility built in the framework, this measurement of accessibility can be swapped for any other
measurement with relative ease to produce new insights into the multidimensional nature of
accessibility.

Results

There is more to the scale-free nature of accessibility

To examine how accessible urban infrastructure is for residents in a city, we first define a mea-
surement of accessibility A (see Section Methods for details) that quantifies the ease with which
residents within a city can reach amenities Biazzo et al. (2019); Levinson and King (2020) (for
example, Mobility, Active Living, Entertainment, Food Choices, Community Space, Education, or
Health andWell-being) by walking or by using a form of active transportation (e.g. bicycle or roller-
blades) Vale et al. (2016). Active accessibility measures play a central role in shaping accessibility
policy worldwide Seskin and McCann (2012); Orozco et al. (2019) by demonstrating how well
urban dwellers have access to basic services in the immediate proximity of their place of residence.
We make the choice of defining accessibility as active for two reasons: First, there are many cities
that do not have any reasonable forms of public transportation and presuppose participation in
society through private modes of transportation like cars – using a more general definition of
accessibility will only facilitate a comparison among limited car-dependent urban regions. Second,
our work is responding to policy efforts in promoting more active accessibility in cities around the
world United-Nations (2017).

Regardless of how each city has evolved, the accessibility score A 2 [0, 1] for the spatial units
(see SI for details) of any given city is either normally distributed (see Figure 3(a)) or a mixture of
normal distributions (see SI for a detailed analysis of the distributions). As A is defined using a
logarithm, a log-normal relationship governing the distribution of accessibility across the world could
be explained following the economic and spatial integration of settlements into a larger urban area
Cristelli et al. (2012): Access (as a resource that is developing with the growth of an urban region) may
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have evolved log-normally as a result of the overall effects of factors such as economic, technological
or demographic changes Parr and Suzuki (1973) (also see Ref. Parr and Suzuki (1973) for justification
of using a log-normal distribution). Although accessibility score Ai of a given spatial unit i across a city
is inversely proportional to the natural log of its rank in accessibility (see Figure 3(b)) following
Ai ¼ �0:3þ 1:25ðlnðAr

i Þ where Ar
i is the rank of the spatial unit i in the distribution of a specific city,

there is a cut-off to the distribution implying that certain regions may not be economically well
integrated Cristelli et al. (2012), depending on the sprawl size of the city Gabaix (1999).

Since accessibility is only defined as a measure of infrastructural provision, decision-makers may
argue that regions with lower populations may not necessitate the same investment of resources in
providing better levels of accessibility compared to urban centres. To ground the discussion of
accessibility in urban policy, we measure the cumulative size of population that has accessibility A
lower than a in a city using a separate Global Human Settlement Layer (GHSL) data set of
population residing in similar sized spatial units Freire et al. (2016); Schiavina et al. (2019) (see
Section Methods for details about GHSL population grids). Figure 4(a) shows that, in many North
American cities, while there is a large number of spatial units with high accessibility scores (for
example, A > 0.3), there is a large proportion of the population with low accessibility scores (i.e. A <
0.3), evident from the difference in area between the density curves. In Houston and Seattle, for
example, around 90% of the population resides in spatial units that have a score A of less than 0.3. In
those cities, accessibility only benefits a few residents. Figure 4(b) presents this distribution for all
54 cities within our study. It shows that, in cities where curves are heavily shifted to the right and

Figure 3. (A) Statistical distribution of accessibility for Chicago, Montreal, San Francisco, Los Angeles, New
York City, Philadelphia, Vancouver, Miami, Seattle and Houston, showing log-normal behaviour. (B) The
scale free relationship between a spatial unit’s accessibility A and the rank of its accessibility
(Ai ¼ �0:3þ 1:25ðlnðAri ÞÞ. The dots represent equal sized grid-cells within and across all cities.
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which start to resemble the sigmoid curve S(x), S(x) = 1/1 + e�k(x�0.5) where k = 10), there is a larger
share of people that benefits from higher accessibility scores, and the share of people with lower
accessibility scores is smaller. Cities like Zurich, for example, come close, but no city resembles the
sigmoid function. In this context, S(x) can be used as a benchmark for accessibility within cities, a
hypothetical scenario where 50% of the population has at least an accessibility score A of 0.5. See SI
for more details on descriptive statistics of accessibility for all cities.

Through this analysis, we are not attempting to resolve the regionalisation debate Cristelli et al.
(2012), wherein, depending on the number of spatial units taken into account, the distribution of A
may transform. Our data represents administrative units of each city, which may differ from

Figure 4. (A) Cumulative density of accessibility and cumulative population proportion. On the y-axis, the
dotted line represents the log of the cumulative density of accessibility, and the triangle symbol line
represents the log of the cumulative density of population proportion. The x-axis represents the accessibility
score A. (B) Cumulative population proportion versus accessibility score A for the 54 cities studied. S(x),
where S(x) = 1/1 + e�k(x�0.5) where k = 10, can be used as a benchmark for accessibility within cities, where
50% of the population has at least an accessibility score A of 0.5. The dots and triangles represent equal sized
0.0625 km2 spatial units within and across all cities.
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economically functional units, especially for smaller cities Dijkstra et al. (2019) (see Section
Methods for data description). To partly address this concern, we use a cumulative function to
account for sampling biases in low access regions Newman (2005) in illustrations in Figure 4.

To understand this relationship better – the cumulative density (spatial units) of accessibility
(CDF(A)) and the cumulative population density of accessibility (CDF(p)) – we present a ranking
and a quadrant grid in Figure 5. Figure 5(a) represents a ranking of cities using S(x) as a benchmark
where 50% of the population has at least an accessibility score A of 0.5. Cities are ranked according
to the normalised mean absolute error (MAE) between a city’s population curve and the benchmark
function S(x). In Figure 5(b), we plot each city’s area under its (normalised) CDF(A) and CDF(p)
against each other. Each of the four quadrants of this grid represents a unique scenario. Cities that
fall in the top left quadrant (Q1) represent a scenario where a large number of spatial units have high
accessibility scores, but the majority of the population is concentrated in spatial units of lower
accessibility. In the particular case of Amsterdam in our data set, the city witnesses very high levels
of tourism every year. Most spatial units in the city centre that have very high access also see a huge
crowd of foreign visitors Gemeente-Amsterdam (2022). Other spatial units in the city that are more
residential have lower levels of relative access within the city, but much better absolute levels of
access when compared to other cities. This scenario is not observed in other cities where tourism is
not so prevalent, hence the scarcity of points within this quadrant. Cities that fall in the top right

Figure 5. (A) Ranking of cities using S(x) as a benchmark where 50% of the population has at least an
accessibility score A of 0.5. Cities are ranked according to the normalised mean absolute error (MAE)
between a city’s population curve and the benchmark function S(x). (B) The four quadrants of accessibility
versus population densities. Q1 represents a scenario where a large number of spatial units have high
accessibility scores but the majority of the population is concentrated in spatial units of lower accessibility.
Q2 represents a scenario where a large number of spatial units have low accessibility scores and the majority
of the population is concentrated in spatial units of low accessibility. Cities in Q3 provide highly accessible
amenities to the most dense regions, with very limited pockets of less accessible urban areas. Quadrant Q4
has cities where both low and high density spatial units have higher levels of access, but the cities may be more
sprawled with some regions where access is low.
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quadrant (Q2) represent a scenario where a large number of spatial units have low accessibility
scores and the majority of the population is concentrated in spatial units of low accessibility. This
scenario is very common for the United States of America (USA) (for example, Los Angeles,
Houston or Seattle) which is entrenched in policies steering away from public transportation, and a
majority of the urban area is characterised by low-density suburban built environment English
(2022). Cities that fall in quadrant Q3 provide highly accessible amenities to the most dense regions,
with very limited pockets of less accessible urban areas, but may be undervaluing areas with low
density. Quadrant Q4 illustrates cities where both low and high density spatial units have higher
levels of access, but the cities may be more sprawled with some regions where access is low. A key
observation in this figure is that cities that may appear similar to each other (for example, in their
morphology, street network density, or griddedness of blocks) appear in different quadrants here.
For example, New York City, although very similar to Chicago, is categorised more closely with
Houston or Seattle. This can be explained by the fact that accessibility score comparison occurs
within a city’s spatial units, and Figure 5(b) (although a comparison among cities) illustrates a sense
of inequality within a city. While New York might resemble Chicago in its structure and absolute
accessibility, within New York, a large part of the population resides in spatial units with lower
accessibility compared to New York’s most accessible spaces.

The variation in accessibility by urban profiles

Above, we presented results on the static distribution of accessibility in any given city without
differentiating among the resident population. Cities in the third quadrant of Figure 5(b) have a high
median accessibility, indicating that most of the population is also able to easily access urban
infrastructure in their vicinity. In comparison, many cities fall in quadrant 2, where the accessibility
distribution is characterised by shorter tails and wider humps (hence more inequalities prevalent
among its residents – in Ref. Van Wee and Geurs (2011), authors discuss how a Gini index measure
can be used to assess levels of accessibility using density based distributions of accessibility). While
this analysis of accessibility as a resource is useful, it might prevent recognition of structural
inequalities in the distribution of this resource. To provide appropriate support to decision-makers in
addressing socioeconomic inequalities in cities, we examine the relationship of accessibility
distributions with socioeconomic attributes of households within the spatial units of a city using
Chicago, IL (USA), as an illustrative example.

We cluster households using socioeconomic attributes to form urban profiles where households
within a profile are similar to each other than across profiles (see Section Methods for description of
census data and SI for clustering methodology). We selected attributes that were largely available in
the census data across Canada and USA: ethnicity and minority status, income level, marital status,
household composition, language abilities, education level and type, employment status, occupation
type and commuting mode. A complete list of demographic attributes is provided in the SI. By using
consensus clustering Likas et al. (2003) on this set of attributes associated with Dissemination Areas
(DA) (in Canada) and Census Block Groups (CBG) (in USA) (see Section Methods for modelling
details), we identified a set of urban profiles for each city in our original subset (in the Methods
section we explain the choice for the subset sample for further analysis). For instance, five urban
profiles are identified for the city of Chicago:

(1) Low-income mixed (LIMix)
(2) Low-income minority (LIM)
(3) Medium-income white (MIW)
(4) High-income white (HIW)
(5) Medium-income white suburban (MIW-Suburban)
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We observe that the resulting clusters vary between 3 and 5 by city because of each city’s unique
socioeconomic distribution. The difference in the number of profiles for various cities is also
affected by the choice of the consensus function used to evaluate the performance of clustering (see
SI for clustering performance metrics). For example, for Chicago, IL (USA), based on the k-modes
consensus function, the most appropriate number of clusters is equal to 5. Importantly, for some
cities, the difference in the metric values is hardly distinguishable. In such cases, we try to minimise
the resulting number of clusters while preserving subjective cluster interpretability.

Next, to establish a relationship between the accessibility score A and urban profiles, we in-
terpolate each city’s clustered DAs or CBGs onto equally sized spatial units. Although Chicago’s
median accessibility of 0.51 makes it generally more accessible than other cities, investigating
accessibility scores for each of Chicago’s urban profiles reveals more nuanced socioeconomic
differences. On average, urban areas inhabited by the most disadvantaged group in Chicago are 27%
less accessible than those inhabited by the least disadvantaged group. Figure 6(a) visually depicts
the spatial differences in accessibility for each urban profile, largely indicating the disparity in
accessibility between groups (2) LIM and (4) HIW, where a clear difference in contrast is visible
between the areas where the two groups live. Figure 6(b) illustrates the distribution of accessibility
across the urban profiles in Chicago. We observe that in Chicago, urban profile (5) MIW-Suburban,
represents a small fraction (10.7%) of spatial units mostly located in suburban areas where low
accessibility scores are likely reflective of personal lifestyle choices rather than discriminatory

Figure 6. (A) Spatial representation of the five clustered social groups for Chicago and the spatial distribution
of accessibility for Chicago, where each spatial unit (an equal sized square of 0.0625 km2) has its own
accessibility score. (B) The statistical distribution of accessibility for each of Chicago’s clustered social groups.
(C) Statistical distribution of normalised key demographic attributes for each of Chicago’s clustered social
groups. (D) A parallel coordinates chart illustrating each social group’s median accessibility scores dis-
aggregated across amenity types.
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outcomes of public policy Mikelbank (2004). We also observe that the (2) LIM urban profile has the
least median accessibility across the other groups (sans profile (5) MIW-Suburban). The prevalent
socioeconomic features of this profile are characterised by the lowest levels of income, the highest
percentage of individuals who identify as visible minorities, the lowest number of individuals with
university education, and the highest rates of unemployment (Figure 6(c)). In contrast, the group
with the highest median accessibility – (4) HIW – is in stark contrast with group (2) LIM, displaying
diverging distributions for each socioeconomic attribute (Figure 6(c)). If we break down acces-
sibility by category of amenities (Figure 6(d)), we observe that in Chicago, the highest degrees of
inequality are found in access to infrastructure related to Food Choices, Entertainment, Active
Living and Health and Well Being. These results highlight areas for intervention, where urban
planners may focus equitable accessibility policies in the city of Chicago. The results of other cities
of the subset are reported in the SI, and we can observe that in a majority of the subset of cities, low-
income communities who also have a larger share of minorities, earn less and are less educated and
typically have lower access to urban amenities compared to other communities in the region.

Accessibility is inequitably distributed across urban profiles

We rank each urban profile based on their relative attribute values of income, education, minority
status and employment census variables. In each city, we choose the two groups at each extreme and
classify them as either ‘most disadvantaged’ (lowest income, lowest levels of education, highest
proportion of minorities, highest unemployment) or ‘least disadvantaged’ (highest income, highest
levels of education, lowest proportion of minorities and lowest unemployment). In highly unlikely
cases where the differences in socioeconomic variables are negligible between two groups, we
combine them together and treat them as one. In each city, by comparing spatial units pertaining to
either group with their associated accessibility scores, we calculate the probability density functions
of each group’s respective accessibility. The assessment of equity is determined by computing the
relative change between the two groups’ median accessibility as follows,

AΔðx, yÞ ¼ Ax � Ay

Ay
, (4)

where Ax and Ay are the respective median accessibility scores of the ‘least disadvantaged’ and ‘most
disadvantaged’ groups.

Figure 7 shows results from all 10 North American cities (subset of this work). We find that
inequalities in access to urban infrastructure are present in the majority (6 out of 10) of cities we
studied. The most disadvantaged groups are structurally under-served by urban infrastructure as
compared to least disadvantaged groups. When accessibility is aggregated by category of amenities
(Figure 7), there is a gap in access to food, culture and entertainment, active living and health
infrastructure, which is all more accessible in spatial units where the least vulnerable populations
reside. The subset analysis illustrates that in North American cities, public transit options (rep-
resented by the mobility infrastructure) are scarcely distributed: they are either very few Tomer et al.
(2020) and difficult to access or have poorly evolved through complex processes of institutions,
government and corporate practices that shape the choices of communities to be car-dependent
English (2022).

Discussion

Our goal in this paper was to investigate the spatial relationship of accessibility and urban in-
equalities. We found that the spatial distribution of accessibility to infrastructure follows a universal
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log-normal paradigm, indicating stratified urban communities (some with increasingly high access,
and others with lower levels of access). In accordance with Zipf’s laws of cities Gabaix (1999), and
considering the economic integration of urban regions Cristelli et al. (2012), some cities exhibit a
widening inequality across social and spatial lines. Our findings suggest that the distribution of
amenities in cities plays a significant role in how inequalities in access to urban infrastructure
manifest. The most socioeconomically disadvantaged groups are structurally under-served by urban
infrastructure as compared to least disadvantaged groups. When dis-aggregating accessibility over
the types of urban amenities, there is an overall gap in access to food, culture and entertainment,
active living and health infrastructure, which is all more accessible in spatial units where the least
vulnerable profiles reside. The societal impacts of these general inequality patterns in access to
infrastructure can be serious. For example, in a study of 11,599 Philadelphia householdsMayer et al.
(2014), the authors report that households who reported very difficult access to fruits and vegetables
were more likely to also report food insecurity in their household. In this context, poor access to food
options in communities that are already marginalised socioeconomically can contribute to per-
petuate structural inequalities among urban communities. While these findings are not surprising
and have been reported in multiple contexts and cases studies Moro et al. (2021); Nijman and Wei
(2020); Pereira et al. (2019), a framework to assess equity is an important step to understand the
global state of inequalities in accessibility from a spatial perspective. Through this research, we have
unified previous social, empirical and theoretical work and identified the general social groups that
suffer from inequitable accessibility to urban amenities.

Our research provides a holistic and reproducible framework for municipalities worldwide to
redress inequalities in access to infrastructure. Because of its flexible nature, the framework can be
adapted to incorporate the multiple values of stakeholders with regards to accessibility, and support
in identifying spatial regions and social groups suffering from inequalities in access. Starting with
global case studies of countries, regions or political contexts, a lot of scholarly work can be re-
produced or extended and strengthened with our framework and access to open data. For example,
in Ref. Pereira et al. (2019), authors concluded that white and high-income communities in Brazil

Figure 7. Median accessibility scores for most advantaged and least advantaged groups aggregated by city (A)
and category (B) for 10 North American cities.
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have more access to jobs and education than black and poor communities, irrespective of transport
options considered. Thus, by combining measures of active accessibility and dynamic measures of
opportunities, such an approach can understand the big picture better, and identify pockets of poorly
accessible neighbourhoods that also have lower access to job and other opportunities across an
urban region. Similarly, combining our insights with work of scholars in Ref. Xu et al. (2020),
policymakers could derive targeted and equitable measures for facilitating the distribution of
amenities in neighbourhoods that are most in need of such resources. Although studying overall
accessibility levels do not support particular communities in understanding their needs and con-
textual factors that perpetuate inequalities, our proposed approach can provide an empirical
foundation to narrow down on opportunities for decision-makers to investigate further in remedying
poor levels of access and inequalities. When moving to a local case study of access to particular
infrastructure, this study can support scholars and policymakers in identifying situation specific
factors for their neighbourhoods. This can be achieved by supplementing such a case study with
other data sets that expand on in-depth socioeconomic conditions of social groups over time, and
how active accessibility indicators have shaped in and around the region in conjunction.

Although this work supports in identifying general levels of accessibility for various urban
communities, the results are bound to the definition of accessibility. The accessibility score we
define is based on the importance attributed to each category encoded as a weight (same set of
attributions for all spatial units and cities). If the weights are changed drastically, the distributions
change quite considerably. Following the work of Maslow (1954), we agree that changing these
weights drastically mean little to our understanding of the basic needs of peoples. In case where
decision-makers pander to different politics where our needs change or must change considerably
(and thus the weights), the associated distributions of accessibility will paint a different picture
recognising the goals of policymakers as opposed to the present levels of access that are afforded to
communities. As our framework design is modular and flexible, in that these weights can be
changed, the associated distributions of accessibility can help in understanding local measures of
access and contextualising them within the larger policy goals of the city itself. In this article, we
propose a strict weighting setup based on a similar approach as illustrated in the section on Ac-
cessibility Score above. Building upon Maslow’s work Maslow (1954), we classify Mobility and
Health andWell-being as the most important categories of accessibility. These are followed by Food
Choices and Education. Finally, the remaining categories of Community Space, Active Living and
Nightlife are placed in the third tier. To assign a weight to each of these categories, we reviewed the
complete streets policy document Seskin and McCann (2012) and chose weights representative of
service importance as reflected in over 400 studied reviewed by this policy analysis framework.
Based on this evidence, we deliberated and assigned a weight of 0.2, 0.15 and 0.1, respectively,
making a sum of 1 for the weights (see SI for exact weights matching categories). We propose two
avenues for future work in this regard. In one, more practice-oriented work can be done to decipher
the needs of communities through public participation methods. These can be translated to weights
that are region specific and compared more broadly to city-wide levels of access. In two, a the-
oretical approach can be used carry out a sensitivity analysis (for instance, a Sobol Salteli sampling)
on the weights to evaluate the robustness of the [different] definition of accessibility. The outcome of
such an analysis; results of the changes in distributions of the accessibility density plots can support
in multiple policy goals where negotiations might be necessary among decision-makers and
stakeholders for further development.

Urban planning varies in practice across cities around the world. Diverse and competing values
and regulatory policies around market instruments usually govern how accessibility to amenities is
shaped Nijman and Wei (2020); Huang and Wei (2011). This is coupled with more bottom-up
processes of change within neighbourhoods (effects of local economies, segregation and gentri-
fication) that are shaped by the availability (or lack thereof) of good quality infrastructure. While all
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of the subset cities that we have studied have implemented policies targeted at improving equity in
accessibility Seskin andMcCann (2012), the presence of such a gap in accessibility indicates that de
facto processes of urban change and de jure policies (whether discriminatory government actions of
the past Higginbotham et al. (1990); Parekh and Gaztambide-Fernández (2017), or utilitarian
policies and neoliberal market investments Farmer (2011)) still perpetuate social inequalities in
today’s urban communities. Additionally, these results show that present accessibility policies must
be more ambitious, so as to reduce the inequalities that exist in access to infrastructure to acceptable
levels and improve the minimum access affordability for multiple urban communities.
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273–297.

Xiao Y, Wang Z, Li Z, et al. (2017) An assessment of urban park access in shanghai–implications for the social
equity in urban china. Landscape and Urban Planning 157: 383–393.

Xu Y, Olmos LE, Abbar S, et al. (2020) Deconstructing laws of accessibility and facility distribution in cities.
Science Advances 6(37): eabb4112.

Leonardo Nicoletti is a Master’s graduate from the Engineering and Policy Analysis Program at
Delft University of Technology. He is a Visualisation Engineer and Information Designer focussing
on Data Journalism.

Mikhail Sirenko is a postdoc at the Resilience Lab at Delft University of Technology affiliated with
the 4TU Resilience Engineering Centre on an EU Project called HeROS. His research interests are
data science and visualisation and simulation models. Currently, he is working on urban resilience.

Trivik Verma is an Assistant Professor at Delft University of Technology. His research focusses on
tackling challenges of urbanisation in an equitable and just manner. Specifically, he is using methods
in spatial data science, complex network analyses and participatory mapping to develop com-
putational tools for advancing the theories and practices of urban science.

Nicoletti et al. 19


	Disadvantaged communities have lower access to urban infrastructure
	Introduction
	Materials and methods
	Data-driven framework
	Data description
	Census data
	Streets and amenities
	Population grids
	Year mismatch in the collection of data sets

	Accessibility score

	Results
	There is more to the scale-free nature of accessibility
	The variation in accessibility by urban profiles
	Accessibility is inequitably distributed across urban profiles

	Discussion
	Acknowledgements
	Declaration of conflicting interests
	Funding
	ORCID iD
	Supplemental Material
	References


