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A generic semiclassical superconducting nanostructure connected to multiple superconducting terminals hosts
a quasicontinuous spectrum of Andreev states. The spectrum is sensitive to the superconducting phases of the
terminals. It can be either gapped or gapless depending on the point in the multidimensional parametric space of
these phases. Special points in this space correspond to setting some terminals to the phase 0 and the rest to the
phase of π . For a generic nanostructure, three distinct spectra come together in the vicinity of a special point: two
gapped phases of different topology and a gapless phase separating the two by virtue of topological protection.
In this paper, we show that a weak interaction manifesting as quantum fluctuations of superconducting phases
drastically changes the spectrum in a narrow vicinity of a special point. We develop an interaction model and
derive a universal generic quantum action that describes this situation. The action is complicated incorporating
a nonlocal in time matrix order parameter, and its full analysis is beyond the scope of the present paper. Here,
we identify and address two limits: the semiclassical one and the quantum one, concentrating on the first-order
interaction correction in the last case. In both cases, we find that the interaction squeezes the domain of the
gapless phase in the narrow vicinity of the point so the gapped phases tend to contact each other immediately
defying the topological protection. We identify the domains of strong coupling where the perturbation theory
does not work. In the gapless phase, we find the logarithmic divergence of the first-order corrections. This leads
us to an interesting hypothesis: weak interaction might induce an exponentially small gap in the formerly gapless
phase.

DOI: 10.1103/PhysRevB.106.125422

I. INTRODUCTION

Superconducting nanostructures and nanodevices have
been in the focus of the condensed matter research commu-
nity for almost six decades, starting from the discovery of
the Josephson effect [1]. Quantum properties of Josephson-
based devices enable sophisticated quantum information
technologies [2–4]. The practical realization of the topological
quantum computing paradigm [5] is seen in semiconductor-
superconductor nanowire-based nanostructures hosting Ma-
jorana states [6,7]. The superconducting nanostructures vary
much in material realization, size, and properties yet can be
universally understood in terms of the spectrum of Andreev
bound states that depends on phase difference between the
superconducting electrodes [8,9]. There are well-established
theoretical tools for analysis and prediction of this spectrum
[8,9]. In this paper, we concentrate on the semiclassical nanos-
tructures with a typical size that is larger then the electron
wavelength. They involve many transport channels so that
their dimensionless (in units of conductance quantum GQ ≡
e2/π h̄) conductance g � 1. The Andreev spectrum is quasi-
continuous with a small level spacing �/g � �, � being the
superconducting energy gap.

Most superconducting nanostructures have two terminals
like Josephson junctions do. In recent years, there has been

a considerable increase of interest in multiterminal supercon-
ducting nanostructures, from both the theoretical [10–22] and
experimental [23–27] side. Partly, this interest was provoked
by the idea that the Andreev levels in N-terminal nanos-
tructures simulate a band structure of (N − 1)-dimensional
material, including its topological properties, and the predic-
tion of quantized transconductance [13,17]. Much research
addresses the Weyl points that appear for N � 4 as topological
singularities in the parameter space [15,16,22,28–30].

As to semiclassical nanostructures, it has been discovered
that, in distinction from most two-terminal ones, the quasicon-
tinuous spectrum may be gapped or gapless depending on a
point in parameter space [11]. It has been recognized that the
gapped phases in a semiclassical structure can be classified
with topological numbers [31,32]. In this case, the presence
of the gapless phase is readily understood: the domains of the
gapless phase should separate the domains of gapped phases
of incompatible topology. In this article, we call this property
topological protection. That has been confirmed experimen-
tally [31,32]. An extensive theoretical investigation of various
topologies of this kind is presented in Ref. [33].

It has been shown that in a wide class of nanostructures two
phases of distinct topology come together in a special point
being separated by a domain of gapless phase that becomes in-
finitesimally thin at the point but yet provides the topological
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FIG. 1. The effect of weak interaction in the vicinity of a special point is drastic on a small interaction-defined scale. Diagrams are in
parameter space coordinates, χ is in the direction of the main axis, and r is the distance from the special point in the perpendicular direction.
(a) No interaction. Two gapped phases of distinct topologies are separated by the gapless phase. (b) Interaction, semiclassical limit. The
gapped phases are separated by a first-order transition (thick line), with no gapless phase in between. The dashed lines bound a domain of
metastable states. The gapless phase domain is squeezed and shifted from the point. The first-order transition line also exists in the gapless
phase. (c) Interaction, quantum limit. The gapless phase domain is squeezed, and the transition lines are shifted (as indicated by arrow). Dark
gray: The domain of strong coupling where the perturbation theory is not applicable.

protection [19] [Fig. 1(a)]. Each multiterminal nanostructure
can be made effectively two-terminal by setting all termi-
nals to two distinct values of the phase. A special point in
N-dimensional parameter space occurs when these phases
are 0 and π ; that is, the nanostructure is spanned between
the opposite values of the superconducting order parameter.
There are 2N−1 − 1 distinct special points in an N-terminal
nanostructure. It has been also shown [19] that for the nanos-
tructures containing tunnel barriers the topological protection
may cease so that the domains of topologically distinct phases
can come into direct contact: The topological protection is
removed in the course of a protection-unprotection transition
(PUT).

In this paper, we concentrate on the close vicinity of a
special point and consider the effect of weak interaction. We
prove that even a weak interaction provides a drastic effect
on the spectrum of Andreev bound states and other charac-
teristics of the nanostructure at a certain scale in parameter
space that is determined by interaction and is small if the
interaction is weak. We develop an interaction model that
encompasses soft confinement and quantum fluctuations in
parameter space. Importantly, we derive a universal effective
action that provides the adequate description of the situation.
The action is compact consisting of four terms only. However,
it is hard to analyze involving a nonlocal order parameter
depending on two times, eventually, a matrix in this space.
The value of the action is obtained by minimization over this
order parameter.

Owing to this complexity, we are not able to provide in
this paper the complete analysis of the action. However, we
identify and address two limits: the semiclassical one where
the quantum fluctuations do not play a crucial role and the
opposite and more interesting limit where the modification
of the spectrum is due to quantum fluctuations of the most
relevant phase. In the semiclassical limit, we get the exact
phase diagram. In the quantum limit, we derive and analyze

the first-order quantum correction that permits us to draw
qualitative conclusions about the phase diagram and formulate
two interesting hypotheses.

Let us already here shortly present the main results ob-
tained (Fig. 1). The phase diagram without interaction is given
in Fig. 1(a). It gives the domains of the gapped and gap-
less phase in N-dimensional parametric space in the vicinity
of the point. There is a single axis—the main axis—in this
space that is orthogonal to the (N − 1)-dimensional sepa-
ration plane between the phases. There is an approximate
axial symmetry at the point so the 2d plot suffices to present
this phase diagram: The coordinate χ is along the main
axis while r gives the distance from the special point in all
N − 1 dimensions orthogonal to the main axis. As promised,
we see in the figure two phases of distinct topology sepa-
rated by a domain of the gapless phase thinning out at the
point.

The interaction is characterized by a dimensionless con-
ductance G � g, weaker interaction corresponding to larger
G. The semiclassical limit of the action holds for G � g �
G/ ln G. A new exponentially small scale of χ emerges, χ0 =
exp(−πG/g). The resulting phase diagram at this scale is
presented in Fig. 1(b). We see that the two gapped phases are
separated by a first-order transition at sufficiently small r, and
the gap remains finite at the point. The domain of the gapless
phase is squeezed and shifted from the point. This implies the
absence of topological protection like in the tunnel-junction
nanostructures discussed in Ref. [19].

Figure 1(c) presents the results in the quantum limit where
g � G/ ln G. We also see the squeezing of the gapless do-
main: its boundaries are shifted by the value of 1/G in
the vertical direction. This defines a new small scale of χ .
The blacked region in the figure gives the domain of strong
coupling where the perturbation theory does not work: at
the boundaries between the gapless and gapped phases and
around the special point. We also find that in the gapless phase
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the first-order correction logarithmically diverges at small
energies.

This inspires us to put forward two hypotheses that should
be proved or disproved in the course of further analysis of
the strong-coupling case. The first hypothesis is that there is
no gapless phase and topological protection in the vicinity
of the special point: we draw this from continuity with the
semiclassical limit. The second hypothesis is motivated by the
logarithmic divergence. The divergence may lead to the for-
mation of the interaction-induced exponentially small gap in
the gapless phase. In this way, the gapped-gapless boundaries
are crossovers rather than transitions, and the gapless phase is
formally an artifact of the noninteracting approximation.

To formally summarize the choice of approximation
schemes, and the conditions validating them, we always as-
sume g � 1 (semiclassical nanostructure) and G � 1 (weak
interaction). In addition, we assume G � g. With this, we
can disregard the back-action of the nanostructure on the
environment and consider the nanostructure in the field of
Gaussian fluctuations to be averaged over. The structure of the
action near the special point makes this averaging nontrivial.
We distinguish two cases: (i) semiclassical, where G � g �
G/ ln G and we can resort to a saddle-point approximation for
the averaging, and (ii) quantum, g � G/ ln G, where we can
account for the fluctuation in a perturbation theory.

The structure of the paper is as follows. In Sec. II we
introduce and motivate the interaction model in use. We will
sketch the derivation of the total action from the quantum
circuit theory in Sec. III. In Sec. IV we will give several repre-
sentations of the resulting universal action, discuss the scales,
and define the limits. In Sec. V we shortly summarize the
results for the spectrum near the special point in the absence
of interaction. We study the semiclassical limit in Sec. VI.
A more interesting quantum limit is considered in Sec. VII
where we address the first-order interaction corrections. We
elaborate on a simplified action that describes the gapped-
gapless phase transition in Sec. VIII. In Sec. IX we formulate
hypotheses to be confirmed in the course of future research
and finally conclude.

II. INTERACTION MODEL

In superconducting nanostructures, the electromagnetic in-
teraction is usually manifested and described as quantum
fluctuations of superconducting phase [8,34]. The scale of
the fluctuations is determined by a typical impedance Z of
the electromagnetic environment, 〈(�φ)2〉 � GQZ . The usual
estimation for this impedance is the impedance of free space,
with this 〈(�φ)2〉 � α, α being the fine-structure constant.
This is why the electromagnetic interaction in superconduct-
ing nanostructures is usually weak and therefore irrelevant.

Thus motivated, we set the interaction model by embed-
ding the nanostructure into a linear circuit (Fig. 2). The phases
of the superconducting terminals, ϕi, i labeling the terminals,
are allowed to fluctuate while the circuit softly confines these
values to time-independent ϕ̄i that play the role of external
parameters set in an experiment. We employ the Matsubara
temperature technique (see, e.g., [35]), so the phases at the
terminals are the functions of imaginary time, ϕi(τ ), and the

ns ns ct ns

(a) (b) (c)

FIG. 2. Interaction model in use. (a) A multiterminal nanos-
tructure biased by ideal superconducting terminals with the phases
0, ϕ1−3. (b) Embedding it into a linear circuit makes the terminal
phases subject to fluctuations, ϕ0−3(τ ), and provides the interaction.
The circuit confines these quantum variables to 0, ϕ̄1−3. (c) At low
frequencies/energies, the circuit can be presented with inductances
and capacitances. Cross-inductances (cross-capacitances) are not
shown.

partition function is a path integral over these functions (h̄ = 1
in our system of units),

Z =
∫ ∏

i,τ

dϕi(τ )e−S , (1)

S = Sns({ϕi(τ )}) + Sct({ϕi(τ ) − ϕ̄i}), (2)

Sct = 1

2

∫
dτdτ ′Ai j (τ − τ ′)δϕi(τ )δϕ j (τ

′), (3)

where Ai j (τ ) is related to the frequency-dependent admit-
tance of the embedding circuit, and summation over repeating
terminal indices is implied. The circuit action thus confines
the fluctuations δϕi(τ ) ≡ ϕi(τ ) − ϕ̄i. We are interested in low
frequencies where the circuit action is readily expressed in
terms of the inverse conductance and capacitance matrices of
the circuit,

Sct =
∫

dτ

(
h̄2

4e2
(Ľ)−1

i j δϕi(τ )δϕ j (τ ) + 4e2

h̄2 Či j ϕ̇i(τ )ϕ̇ j (τ )

)
,

(4)

where we denote with a “check” the matrices in the space of
the terminals. We have implemented a very similar model to
describe an interaction effect on Weyl points in superconduct-
ing nanostructures [28].

For a generic point in the parameter space of supercon-
ducting phases, one expects a smooth dependence of the
nanostructure action on ϕi(τ ) so it can be expanded up to the
second order in δϕi,

Sns = S (0)
ns + h̄

2ekBT
Iiδϕ

i + 1

2

∑
ω

Ai j
ns(ω)δϕi

ωδϕ
j
−ω. (5)

The first-order derivatives are proportional to the supercon-
ducting currents Ii in the terminals while the second-order
terms are related to the frequency-dependent admittance of
the nanostructure. Combining this with the circuit action, we
readily obtain two rather trivial and dull corrections to the
total action. One is classical and accounts for inductive energy
induced by the nanostructure currents in the external circuit,

δScl = 1
2 IiI jLi j . (6)
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Another one is the renormalization of the nanostructure action
by the quantum fluctuations

δSq = 1

2

∑
ω

Ai j
ns(ω)

〈〈
δϕi

ωδϕ
j
−ω

〉〉
, (7)

with 〈〈
δϕi

ωδϕ
j
−ω

〉〉 = 4e2

h̄2 [Ľ−1 + ω2Č]−1
i j . (8)

For estimations, it is instructive to take the superconduc-
tive energy scale and represent h̄2

4e2 (Ľ)−1 � G�; G � 1 can
be regarded as dimensionless conductance characterizing the
external circuit rather than the nanostructure. With this, the
action of the nanostructure is estimated as g�, the relative
semiclassical correction as g/G, and the relative quantum cor-
rection as 1/G. The interaction is weak provided G � g � 1.

In a special point, the properties of the nanostructure can
be drastically changed by a small variation of the phases and
the expansion (5) does not make sense. In the next section, we
will address the derivation of the appropriate action Sns in the
vicinity of the special point.

III. DERIVATION OF THE ACTION NEAR
A SPECIAL POINT

In general, the nanostructure action is computed from the
Nambu-structured electron Green functions Ĝ(τ, τ ′; r, r) de-
fined in each point r of the structure that are subject to
time-dependent superconducting order parameters �ieiϕi (t ) in
the adjacent superconducting leads. We will use the method of
quantum circuit theory [8] which is a finite-element approx-
imation to the actual coordinate-dependent Green functions
that is suitable for semiclassical nanostructures. The line of
derivation is similar to that of [19] yet it is adjusted to time-
dependent fields.

A. Quantum circuit theory

In quantum circuit theory, the nanostructure is represented
as a set of nodes connected by connectors: the scatterers
characterized by a set of transmission coefficients Tp. In each
node, the Green function is represented as a matrix Ĝ that in-
corporates Nambu structure and two time indices. The matrix
satisfies

Ĝ2 = 1̂, TrĜ = 0. (9)

The total action is a sum of contributions of the connectors.
A contribution of a connector is expressed in terms of the
Green functions at its ends, ĜA,B:

S = 1

2

∑
p

Tr

{
ln

[
1 + Tp

4
(ĜAĜB + ĜBĜA − 2)

]}
. (10)

Here, the trace incorporates imaginary time, Tr[A] =∫ β

0 TrNambu[A(τ, τ )]dτ , with β = 1/kBT .
It is convenient to incorporate the information about the

transmission distribution to the characteristic function of a
connector F (x) defined as

F (x) =
∑

p

ln

[
1 − Tp

2
(1 − x)

]
, (11)

where the sum is over all transmission eigenvalues. For a
tunnel junction FT (x) = −(GT /2GQ)(1 − x), for a ballistic
contact FB(x) = (GB/GQ) ln[ 1+x

2 ], and for a diffusive connec-
tor FD(x) = (GD/8GQ) arccos(x)2.

With this, a connector action reads

S = 1
2 Tr{F ((ĜAĜB + ĜBĜA)/2)}. (12)

A subset of nodes are terminals where the Green functions
are fixed to (ηz is a Pauli matrix in Nambu space)

Ĝi(τ, τ
′) = e−iηzϕi (τ )/2G(0)

i (t − t ′)eiηzϕi (τ ′ )/2 (13)

with G(0)
i to be given in energy representation as

G(0)
i (ε) = 1√

�2
i + ε2

[
ε �i

�i −ε

]
. (14)

Importantly, the overall action has to be minimized with
respect to Ĝ in all nodes. The result of the minimization will
give the actual Sns({ϕi(τ )}).

B. Rubber thread representation

Let us here recall the representation of the quantum circuit
theory that looks naive but is in fact very instructive energizing
common intuition. In this subsection, we restrict ourselves to
time-independent ϕi.

In this case, the Green functions in the nodes can be min-
imized separately at each energy and are 2 × 2 Hermitian
matrices to be represented with real vectors Ĝ(ε) → 
g · 
η. The
vectors are associated with points on a sphere, since Ĝ2 = 1
implies 
g2 = 1. Eventually, 
g are in either the upper or lower
hemisphere depending on the sign of ε.

The connectors are associated with rubber threads connect-
ing the nodes, and the action with the elastic energy of the
threads that depends on the angle between the vectors 
gA,B

at the ends of a thread. The elastic energy tries to bring all
nodes to one point. However, the vectors 
g are fixed in the
terminals, and the whole nanostructure is associated with a
rubber thread network pinned at the terminals and spanned
over the hemisphere to minimize the elastic energy [Fig. 3(a)].

The case ε = 0 is special. In this case, the pins are exactly
at the equator. The z coordinate of a node is associated with
the density of states at this node, the superconductivity vanish-
ing at the north pole. Depending on the positions of the pins,
the network can be either spanned over the equator [gapped
phases; Figs. 3(b) and 3(c)] or over the whole hemisphere
[gapless phase; Fig. 3(d)].

C. The special symmetry at a special point

In general, the minimization of the action unambiguously
determines Ĝ as functions of the terminal Ĝi. However, there
is an ambiguity precisely at a special point and zero energy.
The rubber thread representation helps to understand why. In a
special point, all pins are at precisely opposite positions at the
equator: let us call them west and east poles. The network is
spanned over an arc connecting the poles. Elastic energy does
not fix the position of the arc given by the angle ψ [Fig. 3(e)].
There is an extra symmetry: the symmetry of rotations about
the axis passing through the poles.
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FIG. 3. Rubber thread representation of quantum circuit theory. (a) Four-terminal, four-node, eight-connector network. Finite ε; the
terminals are above the equator. (b) Zero energy; terminals are at the equator, the network spanned along the equator. Gapped phase. (c) Gapped
phase of different topology. (d) Gapless phase: The nodes are spanned over the hemisphere, while the terminals are pinned at the equator. (e)
Special point. The terminals are located at opposite points of the sphere (west and east pole). The network is spanned along the arc, and the
action is degenerate with respect to ψ .

We fix the Green functions of the terminals to the y axis,
Ĝi = ζiηy, where ζi = ±1 gives if a given terminal is at the
west or east pole. We parametrize the ambiguous Green func-
tions in the nodes as follows:


ga = (− sin θa cos ψ, cos θa,− sin θa sin ψ ). (15)

Here and in the following, we index the terminals with
i, k, l, . . . and the nodes with the letters from the beginning of
the alphabet: a, b, c. The total action is a sum over connectors
and does not depend on ψ ,

S =
∑
i,a

Fia(ζi cos θa) +
∑
a>b

Fab( cos(θa − θb)), (16)

while θa are specific for a nanostructure and are determined
from the minimization of the above action. Here, Fab refers
to a connector connecting the nodes a and b, and Fia to a
connector connecting the node a and the terminal i.

Now we come to an important step: in the limit of low ener-
gies, which is relevant near a special point, the rotational angle
is not a number; it can be an arbitrary matrix in two times,
ψ → ψ̂ ≡ ψ (τ, τ ′). This matrix parametrizes the whole set
of degenerate solutions for time-dependent Green functions at
the special point:

Ĝa = eiηyψ̂/2

[
0 ieiθa

−ie−iθa 0

]
e−iηyψ̂/2. (17)

This high degeneracy, either for a number ψ or for the
whole matrix ψ̂ , implies that in order to describe the situation
in the vicinity of a special point, we have to consider the terms
that break the special symmetry described and actually fix ψ̂ .
This ψ̂ can be regarded a specific order parameter for the
vicinity of the special point.

D. Symmetry-breaking terms

As discussed in [19], there are actually three distinct terms
of this sort. The first term corresponds to deviations of the
terminals from the equator at nonzero energy: the energy term.
The second one describes the first-order corrections owing to
the shift of the terminals along the equator: the shift of the
phases in N-dimensional parameter space from the special
point. Since it is linear in phase deviations, it is sensitive to the
shift along a single direction in the N-dimensional parameter

space, which we call the main axis. The third term describes
the influence of the shift in the direction perpendicular to the
main axis: it has to be the second-order term.

To compute the first term, we expand the Green functions
of the terminals as

ĜT = ζT ηy + ε

� i
ηz (18)

and collect first-order corrections induced in the connectors
adjacent to the nodes. This gives

S1 = −g̃Tr[ε̂ sin ψ̂], (19)

g̃ =
∑
i,a

1

�i
F ′

ia(cos θa) sin θa. (20)

The constant g̃ has a meaning of the maximum inverse level
splitting of Andreev states. The above expression is for the
case of short nanostructure � � ETh, ETh being the Thouless
energy. In the general case, we need to take into account at the
circuit theory level the so-called “leakage” terminals [8] that
account for finite volume of the nodes. This gives an addition
to g̃ in terms of inverse level spacings δa

S in all nodes,

g̃ → g̃ +
∑

a

1

δa
. (21)

Thus in the opposite limit � � ETh, g̃ is the inverse level
spacing for normal electron states in the whole structure.

Next, we consider the effect of phase deviations χi(τ ) from
the special point, ϕi(τ ) = π/2 + πζi + χi(τ ). The expansion
of the terminal Green functions reads

Ĝi = ζiηy − ζiχ̂iηx, (22)

where χ̂i ≡ χ (τ )δ(τ − τ ′). Collecting the first-order correc-
tions to the action of adjacent connectors gives

S2 =
∑

i

FiTr[χ̂i cos ψ̂], (23)

Fi = ζi

∑
a

F ′
ia(cos θa) sin θa. (24)

Fi is a dimensionless vector in the space of the terminals with
the amplitude proportional to the dimensionless conductance
g of the structure.
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The computation of the third term is more involved since
it concerns the second-order corrections. It is contributed by
the first-order terms coming from the second-order deviations
of the terminal Green functions and the quadratic reaction of
the network on the first-order deviations of those. To find the
latter, we expand the Green functions in all nodes till quadratic
terms in their deviations ŵ, find the terms coupling these
deviations and first-order deviations of the terminal Green
functions, and minimize with respect to w. The result reads
(Û ≡ eiψ̂ )

S3 = 1

2

∑
i, j

Hi jTr[Û χ̂iÛ χ̂ j + Û −1χ̂iÛ
−1χ̂ j], (25)

Ȟ being the matrix in the space of the terminals. It is dimen-
sionless and also scales as the dimensionless conductance g of
the nanostructure. Eventually, the vector χi in this expression
has to be orthogonal to Fi, since the second corrections in
these direction are negligible in comparison with the first-
order term taken into account in Eq. (23).

Its concrete expression is rather clumsy,

Ȟ = 2 + 1
2 B̌T Q̌−1B̌ + 1

2 ǍT P̌−1Ǎ, (26)

where the matrices Ǎ, B̌ connect the terminals and nodes,

Aai = 1
2 (F ′′

ai sin2 θa + ζiF ′
ai cos θa), (27)

B̌ai = 1
2ζiF ′

ai cos(θa), (28)

and Q̌, P̌ are matrices in the space of the nodes,

Pab = 1

2
δab

{
−

∑
i

Aai −
∑

c

[F ′
ac cos(θa − θc)

− F ′′
ac sin2(θa − θc)]

}

− F ′
ab cos(θa − θb) + F ′′

ab sin2(θa − θb), (29)

Qab = −δab

[∑
i

Bai + 1

2

∑
c

F ′
ac cos(θa − θc)

]
+ F ′

ab.

(30)

In all the above expressions, F ′
ab ≡ F ′

ab( cos(θa − θb)), F ′
ai ≡

F ′
ai( cos(θa)), and similarly for F ′′.
The actual ψ̂ as a functional of χ (τ ) is found by mini-

mization of all three symmetry-breaking terms. Therefore the
answer for the relevant part of the nanostructure action reads

Sns = min
ψ̂

[S1 + S2 + S3]. (31)

IV. THE ACTION

In this section, we will present the resulting action in sev-
eral equivalent forms, discuss the energy and parametric space
distance scales, and establish the relevant simpler limits. We

collect the results of the previous sections into the following
form:

S = min
ψ̂

Tr

[
−g̃ε̂ sin ψ̂ + Fiχ̂i cos ψ̂

+ 1

2
Hi j (Û χ̂iÛ χ̂ j + Û −1χ̂iÛ

−1χ̂ j )

]

+
∫

dτ

(
h̄2

4e2
(L̂)−1

i j δχi(τ )δχ j (τ ) + 4e2

h̄2 Ci j χ̇i(τ )χ̇ j (τ )

)
,

(32)

δχ ≡ χ (τ ) − χ̄ . Let us do the following rescalings and coor-
dinate changes. First of all, we make the energy dimensionless
measuring it in units of �: ε = ε/�. Here � is the super-
conducting energy gap if it is the same in all leads or the
maximum of �i. Its precise value is not important since near
the special point the relevant energy scale is much smaller
than �. We define g ≡ g̃� as the measure for dimensionless
conductance of the nanostructure. Next, we change the co-
ordinates in the phase parametric space. The coordinate in
the direction of the main axis is defined as χ = −Fiχi/g,
χ being dimensionless and small as far as we are in close
vicinity of the special point. We project the matrix Hi j/g into
N − 2 directions orthogonal to the main axis, diagonalize it,
and introduce the dimensionless coordinates rk = √

Hkh(k)
j χ j ,

Hk , h(k)
j being the eigenvalues and corresponding eigenstates

of this matrix. We disregard the capacitance terms in the
circuit action assuming that the frequency scale of the relevant
quantum fluctuations is much smaller than 1/

√
LC. With this,

we rewrite the action as follows:

S = g

2
min

ψ̂

[−Tr(Û †Â − Û r̂kÛ r̂k + H.c.)]

+ G

2
Tr

[
(δχ̂2) + Gk

G
δχ̂δr̂k + Gkl

G
δr̂kδr̂l

]
(33)

with

A, A† = χ̂ ± iε. (34)

Here, we rewrote the inverse inductance matrix in new
coordinates in the parameter space. The nanostructure is char-
acterized by dimensionless conductance g, and the circuit by
the dimensionless conductance G � g, the larger value G cor-
responding to smaller interaction. Two dimensionless energy
scales are defined by |χ̄ |, ∑

k r̄2
k ≡ r2. Without interactions,

|χ | > 4r2 corresponds to the gapped phase, |χ | < 4r2 to the
gapless one.

It may seem that the most pronounced interaction effect
comes from the fluctuations of rk . Naively, the coefficient r2

in front of the second term would be replaced by 〈〈r2〉〉 and
would remain finite even at r̄ = 0 resulting in a finite width
of the separating gapless phase domain. More careful analysis
shows that this does not happen. Owing to the ordering of
the operators r̂ and Û the renormalization of the coefficient in
front of the second term is absent at r̄ = 0 and is proportional
to r̄2. Therefore, the fluctuations of rk eventually lead to in-
significant corrections � G−1 to the coefficient in front of the
second term. This inspires us to disregard the fluctuations of
r̂. Indeed, they do not seem to lead to any new terms in the
normalization since they enter the action in the second order.
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In contrast to this, the fluctuations of χ enter the action in the
first order. So in further analysis, we disregard the fluctuations
of rk skipping the last two terms in the action (33). A word
of caution is in order: we have not actually computed the
renormalizations induced by the fluctuations of rk to prove
their insignificance by a direct calculation.

With these assumptions, let us look at the limits. To start
with this, let us assume no fluctuations of χ as well and
replace it with a time-independent value. It may seem that this
would lead to a trivial correction like the one given by Eq. (6)
and would not modify the spectrum significantly. However,
the inverse inductance of the nanostructure logarithmically
diverges at r2 → 0, ∂E/∂χ = −(g/π )χ ln(1/|χ |), so it suc-
cessfully competes with the formally larger confining term at
an exponentially small scale of χ , χ0 ≡ exp(−πG/g). This
scale defines an interesting quasiclassical limit detailed in
Sec. VI.

Let us understand the significance of quantum fluctuations
in this limit. The quantum fluctuation of χ can be generally
estimated as

〈〈χ2〉〉 � εs

G
, (35)

εs being the relevant frequency scale. In the semiclassical
regime this scale is defined by χ0. Comparing the fluctuation
and χ0 itself, 〈〈χ2〉〉 ↔ χ2

0 , we obtain that the quantum fluctu-
ations can be neglected if χ0 � 1/G, that is, if g � πG/ ln G.
Since g � G, this sets a rather narrow but relevant range of g.

If g � πG/ ln G, the quantum fluctuations destroy the log-
arithmic divergence and the nanostructure contribution to the
action does not compete with that of the circuit, Sns � Sct.
The way to proceed in this case is to expand e−S in terms of
Sns keeping the first term of the expansion. The nanostructure
is thus characterized by Sns averaged over Gaussian quantum
fluctuations produced by the circuit,

Sns =
∫ ∏

τ

dχτSns({χ (τ )}) exp

(
−G

2

∫
dτ [χ (τ ) − χ̄]2

)
.

(36)

We compute the first-order (∝ G−1) interaction correction in
Sec. VII. To estimate where it becomes significant, we com-
pare 〈〈χ2〉〉 with χ taking χ as the relevant frequency scale.
With this, the interaction leads to significant modification of
the spectrum at small scale χ � 1/G [Fig. 1(c)].

If we depart from the special point in the orthogonal direc-
tion at distances r2 � 1/G, the interaction is significant in a
narrow strip at the boundary between the gapped and gapless
phase, which is shifted by � G, χc = 4r2 − 0.79/G (as com-
puted in the next section). To estimate the width of strip δχc,
we compare it with the quantum fluctuation [Eq. (35)] taking
into account that the relevant frequency scale is defined by
δχc itself, εs � χc(δχc/χc)3/2 (see Sec. VIII for details). This
gives δχc � G−1(χcG)−1 [Fig. 1(c)].

Let us complete this section with giving several equivalent
forms of the action that are convenient for concrete calcula-
tions. If we neglect the fluctuations of rk , we can rescale the
action measuring frequency in units of 4r2 and introducing

rescaled X ≡ χ/(4r2). In this form, the action reads

S = 4r2g

2
min

ψ̂

−
[

Tr

(
Û †Â − Û 2

4
+ H.c.

)]

+ 1

2λ
Tr[(X̂ − X̄ )] (37)

with λ = (4r2G)−1, Â = X̂ + iε̂.
Apart from an insignificant constant, the third term con-

taining two Û matrices can be presented as a minimum over
an additional Hermitian operator p̂,

1

2
Tr[Û r̂kÛ r̂k + Û †r̂kÛ

†r̂k]

= min
p̂k

Tr

[
p̂2

2
+ i p̂(Û r̂k − r̂kÛ

†)

]
. (38)

This suggests the following form of the action:

S = g

2
min
ψ̂,p̂k

−
[

Tr

(
Û †Â −

∑
k

p̂2
k/2 + H.c.

)]

+ G

2
Tr[(χ̂ − χ̄ )2] (39)

with A = χ̂ − i2 p̂k r̂k + iε̂.
The latter trick can be also applied to the rescaled form

of the action [Eq. (37)]. In this case, we may use a single
auxiliary operator p̂ that can be regarded as an addition to ε̂.
So it is convenient to rewrite the action as

S = 4r2g

2
min

ˆψ,ε̃

−{
Tr[Û †Â + Â†Û − (ε̂ − ˆ̃ε)2]

}

+ 1

2λ
Tr[(X̂ − X̄)] (40)

with A = X̂ + i ˆ̃ε.

V. NONINTERACTING SPECTRUM

Let us reproduce the results without interaction [Fig. 1(a)]
obtained in [19] and extend those for the needs of the present
paper. In this case, we can replace fluctuating χ̂ with a con-
stant χ regarding it as a parameter. We will use the rescaled
action given by Eq. (40). All operators involved are diagonal
in energy representation so we replace them by the corre-
sponding eigenvalues. The minimization with respect to ψ̂

gives

U ≡ eiψ = X + iε̃√
ε̃2 + X 2

(41)

and that with respect to ε̃ gives ε̃(ε) in the following implicit
form:

ε = ε̃

(
1 − 1√

X 2 + ε̃2

)
. (42)

Let us first solve these equations at zero energy. If |X | > 1,
the only solution of Eq. (42) is ε̃(0) = 0. With this, U (0) =
sgn(X ), ψ (0) = π/2[1 − sgn(X )], and the density of states
� sin ψ (ε) is zero. We are in a gapped phase, topologi-
cally distinct phases being realized at positive/negative X .
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FIG. 4. The spectrum of the nanostructure without interaction;
see also Fig. 1(a). We plot the gap in the gapped phases (solid line)
and the density of states in the gapless phase |χ | < 4r2.

If |X | < 1, another solution is realized, ε̃(0) = √
1 − X 2. This

gives a nonzero density of states at zero energy:
ν

νmax
=

√
1 − X 2. (43)

We are in the gapless phase separating the gapped ones.
To find the gap in the gapped phases, we look at the solu-

tions at imaginary ε and find the root of ∂ε/∂ε̃ = 0. This gives
the gap

Eg = 4r2
(|X |2/3 − 1

)3/2
, (44)

so the gap closes at |X | = 1 and approaches |X | at |X | � 1.
We plot these results in Fig. 4.

We can also compute the energy of the nanostructure. For
our purposes, we only need its derivative with respect to X ,
which is given by

∂E

∂X
= −4r2g

∫
dε

2π
cos ψ (ε) = −4r2g

∫
dε

2π

X√
X 2 + ε̃2

.

(45)

This integral can be easily evaluated by transforming the inte-
gration variable with the help of Eq. (42). Note the logarithmic
divergence at ε → ∞, which we cut at |ε| ≈ |ε̃| = ωD � |X |,
ωD being the cutoff energy. With this, the result in the gapped
phase reads

∂E

∂X
= −4r2g

2π
X

[
ln

(
2ωD

|X |
)

+ Z (X )

]
, (46)

Z (X ) ≡ − π

4|X | + �(1 − |X |)
2

[√
1 − X 2

+ X arctan

(√
1 − X 2

X

)]
. (47)

Thus, in the gapless phase, Z (X ) acquires an addition given by
the second term in Eq. (47). There is a singularity at |X | = 1
manifesting the second-order transition described in detail by
Eq. (80) in Sec. VIII.

VI. SEMICLASSICAL LIMIT

In this section, we concentrate on the semiclassical limit of
the interacting problem. As outlined in Sec. IV, it is realized at

G � g � G/ ln G. We can disregard the fluctuations of χ (τ )
treating it as a time-independent variable χ . However, in the
close vicinity of the special point the external circuit fails
to confine χ to the parameter χ̄ , as expected in the nonin-
teracting limit G � 1. The reason for this is the logarithmic
divergence of the inverse inductance of the nanostructure that
was just quantified in the previous section. The actual value
of χ has to be determined from the minimization of the action
given by Eq. (33) or Eq. (40),

∂E (χ )

∂χ
+ G(χ − χ̄ ) = 0. (48)

We will use the rescaled action. With Eq. (46), the above self-
consistency equation reads

X

{
ln

[
2ωD

|X | + Z (X )

]}
= G

πg
(X − X̄ ). (49)

Actually, it resembles a well-known BCS self-consistency
equation (see, e.g., [36]) for the superconducting order pa-
rameter �, X playing the role of �, that relies on a similar
logarithmic divergence of a response function. We will get rid
of the explicit cutoff ωD by the very same method as in BSC
theory: We substitute (G/πg) with ln(2ωD/χ0), which defines
a new exponentially small scale

χ0 = 2ωD exp

(
−πG

g

)
, (50)

and also rescale the external parameter Xr = X̄ (G/πg). With
this, the self-consistency equation becomes an expression for
Xr in terms of X ,

Xr = −X [ln(χ0/|X |) + Z (X )]. (51)

This is the rescaled equation so r2 → 0 corresponds to χ0 �
1. In this limit, one can neglect Z (X ). At Xr = 0, that is,
precisely at the special point, we encounter two stable so-
lutions X = ±χ0 corresponding to two gapped phases with
the gap χ0, and an unstable solution at X = 0. The unstable
solution corresponds to a local maximum of the action rather
than to a minimum. These two stable solutions coexist up to
|X| � χ0/e. Their actions differ except at Xr = 0, where we
encounter the line of first-order transition [Fig. 1(b)]. From
these two, the solution with the lesser action is a physical one.

For further qualitative analysis, it is instructive to plot
Eq. (51) for several values of χ0 (Fig. 5), where the resem-
blance to van der Waals isothermes becomes apparent. We see
that the line of constant Xr gives either one (at χ0 < 2) or three
solutions (at χ0 > 2) for X , two of them being stable. The
first-order transition line thus ends at χ0 = 2 (this corresponds
to the critical distance 4r2 = 0.5χ0 in non-rescaled units). The
lines defining the transition from one to two stable solutions
[dashed lines in Fig. 1(b)] are computed from the positions of
the extrema of the curves drawn in Fig. 5 and were obtained
by the implicit plot

Xr = X 2Z ′(X ) − 1, (52)

ln χ0 = ln |X | − Z (X ) − XZ ′(X ) + 1. (53)

The solutions with |X | < 1 correspond to the gapless
phase. Substituting X = ±1 to Eq. (51) gives the lines of
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FIG. 5. The semiclassical limit. Solving the self-consistency
equation (51). The curves Xr (X ) resembling van der Waals isotherms
are plotted for several values of χ0 given in the curve labels. Stable
solutions for Xr = 0.5 are given by black dots. The solutions within
the gray strip correspond to gapless phase.

phase transitions between the gapless and gapped phases Xr =
±(π/4 − ln χ0). We note that the gap disappears already at
the first-order transition line, at χ0 = exp(π/4) ≈ 2.19 (in
non-rescaled coordinates, this corresponds to 4r2 = 0.46χ0).
Therefore, the first-order transition at χ0 > exp(π/4) is ac-
companied by an abrupt change of topological index. Since
we define the topological protection as a property of two
distinct gapped phases to be separated by a gapless one, this
is a failure of topological protection, a phenomenon similar to
that described in [19] for nanostructures without interaction.

The same first-order transition at 2 < χ0 < exp(π/4) sepa-
rates two distinct gapless phases bearing no topological index.
The full phase diagram is presented in Fig. 1(b) in coordinates
4r2/χ0, Xr/χ0.

We expect the quantum fluctuations to provide tunnel cou-
pling between the distinct minimums of the action. This will
result in a nondegenerate ground state even at Xr = 0 that is
a quantum superposition of two topologically distinct gapped
states.

VII. QUANTUM CORRECTIONS

In this section, we consider the limit of g � G/ ln G where
we can average the nanostructure action and all quantities
involved over the Gaussian fluctuations of χ produced by the
external circuit [see Eq. (36)]. Such averaging is impossible
to do in general owing to the complexity of the resulting
nonlinear action. We restrict ourselves to the evaluation of the
first-order correction.

A most straightforward way to proceed is to take the nanos-
tructure action given by Eq. (37), regard the time-dependent
part of X , x(τ ), as a perturbation entering the minimization
equations for Û , solve those by subsequent iterations to the
second order in δχ ,

Û = Û (0) + Û (1) + Û (2), (54)

Û (1) = Âx̂B̂, (55)

Û (2) = Ĉx̂D̂x̂Ê , (56)

Û (0), Â − Ê being the operators diagonal in energy repre-
sentation, and average this over the fluctuations employing
〈〈x(τ )x(τ ′)〉〉 = λδ(τ − τ ′). That results in the correction

δU (τ − τ ′) = λ

∫
dτ1C(τ − τ1)D(0)E (τ1 − τ ′), (57)

to be compared with U (0)(τ − τ ′).
We proceed in an equivalent, slightly more difficult but

more instructive way. We take the nanostructure action given
by Eq. (40) and substitute there the operators Û , ˆ̃ε in a diag-
onal form plus nondiagonal deviations. We expand the action
up to the second order in these deviations thereby accounting
for the fluctuations of X in this order, minimize the result-
ing quadratic action, and average over the fluctuations. This
results in an additional ∝ λ term in the action, that is a
functional in diagonal elements of the operators. Subsequent
minimization over the diagonal elements permits us to find the
interaction correction to those.

To start, we rewrite the action employing the Lagrange
multiplier M̂ to ensure unitarity of U ,

Sns = 4r2g

2
min

Û ,M̂,ε̃
−{Tr[Û †Â + Â†Û

− (ε̂ − ˆ̃ε)2 − M̂(ÛÛ † − 1)]}. (58)

We separate the operators into diagonal and nondiagonal
parts (we skip hats for diagonal operators): Â = A + â, M̂ =
M + m̂, Û = U + û, â = x̂ + i p̂. The action up to the terms
quadratic in diagonal elements reads

Sqd = −4r2g

2
Tr[û†â + â†û − p̂2 − m̂(uU † + Uû†) − Mûû†].

(59)

The minimization of this part with respect to all variables
except x̂ gives

Sqd = −4r2g

2

∑
k,l

|Ul − U ∗
k |

2Dkl
|xkl |2, (60)

Dkl ≡ (Mk − 1)|Uk|2 + (Ml − 1)|Ul |2 + 1
2 |Ul − U ∗

k |2, (61)

where k, l index the discrete Matsubara energies. Here,
|Uk|2 �= 1: although the matrix Û is unitary, it also contains
nondiagonal elements. The averaging over the quantum fluc-
tuations yields the quantum correction to the action,

Sq = −4r2g

2
λ(kBT )

∑
k,l

|Ul − U ∗
k |

2Dkl
(62)

≡ −4r2g

2
Sq. (63)

To obtain the quantum corrections to the quantities, one has to
minimize it with the diagonal part of the action,

S0 = − 4r2g

2

∑
k

[U ∗
k Ak + A∗

kUk − (εk − ε̃k )2

+ Mk (|Uk|2 − 1)]. (64)
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FIG. 6. The interaction correction to “unitarity” of the Green’s
function matrix versus X . The gapped phase, zero energy. The cor-
rection is of the order of λ and remains finite at the critical point
X = 1.

The resulting minimization equations read (U ≡ R + iY with
real R, Y )

X − MR + 1

2

∂Sq

∂R
= 0, (65)

1 − R2 − Y 2 + 1

2

∂Sq

∂M
= 0, (66)

Y (1 − M ) + ε + 1

2

∂Sq

∂Y
= 0, (67)

with ε̃ − ε = Y .
To give an example of practical calculation, let us evaluate

a “correction to unitarity” given by Eq. (66) that quantifies
the importance of fluctuation-induced nondiagonal matrix el-
ements in U . We compute ∂SM,

∂Sq

∂Ml
= 2(−YlYk + RlRk − 1)

(Ml + Mk − 1 − RkRl + YlYl )2
. (68)

We concentrate on zero energy and gapped phase, so we
substitute Ml = X, Rl = 1,Yl = 0 and Mk = √

ε̃2 + X 2, Rk =
X/

√
ε̃2 + X 2, Yk = ε̃/

√
ε̃2 + X 2 and change the integration

variable to ε̃ as we did to derive Eq. (46). This gives (see Fig. 6
for the plot)

|U0|2 − 1

λ
=

√
X − 1

X + 1

2X (X + 3)

(1 + X )2

(
1 − arctan(

√
X 2 − 1)

π

)

+ 8(2 − X )

3π (1 + X )2
− 1. (69)

The correction remains finite at the critical point, |U |2 −
1 = λ(2/3π − 1), although there is a square-root singularity
in this point. At X → ∞(r → 0) |U |2 − 1 = −λ(2/3π )/X .
In non-rescaled units, this implies that the correction amounts
to 50% at r = 0, χ = 4/3πG, as shown in Fig. 1(b).

Let us compute the interaction-induced shift of the critical
point that is located at X = 1 for λ = 0. We regard the total
action as a function of four real parameters ya = (R,Y, M, ε̃)
at zero energy. The critical point is determined from the con-
dition det∂a∂bS = 0 under the constraint ∂aS = 0. We find

the matrix ∂a∂bS0, diagonalize it at the critical point λ = 0,
and bring in as small perturbations the shift of the parameters
and the interaction correction action Sq. The condition of zero
eigenvalue then reads

δM = 1

2

∂2Sq

∂Y 2
, (70)

where δM is contributed by δX and the first-order correction
computed from Eqs. (65), (66), and (67). With this, the shift
of the critical point

δX = 1

2

(
∂2Sq

∂Y 2
− ∂Sq

∂R
+ ∂Sq

∂M

)
. (71)

Substituting the values at the critical point to the derivatives
of Sq and performing integration over ε̃ yields

δX = −λ

(
2

3π
− 1

)
≈ −0.79λ. (72)

In non-rescaled coordinates, it corresponds to the shift of the
phase boundary in the main axis direction by �χ = ±0.79/G.

It is important to notice that the denominator in the expres-
sion for Sq, Eq. (62), vanishes at low energies in the gapless
phase,

Dkl ∝ |εk| + |εl |, (73)

provided the energies are of opposite sign, sgn(εk )sgn(εl ) =
−1. This form of the denominator manifests the existence
of low-energy modes. The presence of low-energy modes
might seem surprising; however, in the next section we reveal
that the gapless phase may be related to a breaking of a
continuous symmetry, so this is just a manifestation of the
Goldstone mechanism. This feature in the denominator might
lead to low-energy divergences in the first-order interaction
corrections under consideration. However, it does not; rather,
the correction exhibits specific nonanalytical terms in their
low-energy expansion (εD � 1 being the cutoff energy),

A(ε) = A(0) + ε ln(εD/|ε|), (74)

while this dependence is analytical in noninteracting quanti-
ties.

To illustrate, we compute the correction to Y given by

Y (1) = 2

M − R2

(
MY

∂Sq

∂M
− RY

∂Sq

∂R
+ R2 ∂Sq

∂Y

)
. (75)

At low energies of the opposite sign, the integrand takes the
following form:

Y (1)(ε) = λ
X 2

2(1 − X 2)3/2

∫ ∞

0

dε′

2π

[
2
ε − ε′

ε + ε′ − (ε − ε′)2

(ε + ε′)2

]
.

(76)

This yields

Y (1)(ε) = const. + 3λX 2

4π (1 − X 2)3/2
ε ln

[
εD

|ε|
]
. (77)

We shall compare this with the low-energy dependence of
Y without interaction:

Y (ε) =
√

1 − X 2 + ε
X 2

1 − X 2
. (78)
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This signals the breakdown of the perturbation theory at ar-
bitrary weak interaction: the energy dependence is dominated
by correction at an exponentially small energy scale:

ε� � εD exp

(
−

√
1 − X 2

3λ

)
. (79)

This energy scale increases upon approaching the critical
point; see the discussion in the following section.

VIII. NEAR THE BOUNDARY

In this section, we derive a simplified action valid near the
phase transition line separating the gapped and gapless phases.
This action resembles the Landau Hamiltonian commonly
incorporated for the description of the second-order phase
transitions. However, the order parameter is a matrix with two
time indices. We derive the proper scaling of the action.

It is convenient to start from the action in the form given by
Eq. (37). We note that at X > 0 in the gapped phase and near
the phase transition ψ̂ � 1 so we can expand U in powers of
ψ̂ . With this,

Sns = 4r2g

2
min

ψ̂

Tr

[
−2εψ̂ + (a + ˆ̃a)

ψ̂2

2
+ ψ̂4

4

]
. (80)

Note that we set X = 1 in the coefficient in front of the
fourth-order term since the whole approximate is only valid
at X ≈ 1. Here, a ≡ (X − 1)/2 is the critical parameter of the
second-order phase transition; ˆ̃a ≡ ã(τ ) is its time-dependent
fluctuation. A similar separate second-order transition occurs
at X ≈ −1. It is described by the same action with obvious
redefinitions of ψ̂ and a.

If we neglect the fluctuations ˆ̃a and the term with ε, the
action describes the transition between the symmetric phase
ψ̂ = 0 at a > 0 and the symmetry-broken phase ψ̂2 = −a.
The symmetry-broken solution is highly degenerate if the
eigenvalues of ψ̂ , ±√−a, are of different sign: any unitary
transformation ψ̂ → U −1ψ̂Û would produce a distinct so-
lution of the same energy. The term with ε plays the role
of a peculiar anisotropy term that breaks the degeneracy
and makes the solutions for ψ̂ unique on both sides of the
transition. Without fluctuations, ψ̂ is diagonal in energy, and
ψ (ε) = −ψ (ε). Its equilibrium value is computed from 2ε =
aψ + ψ3. At a > 0, ψ (ε) is an analytical function of ε at ε →
0. This comforts the fact that it describes the gapped phase:
the gap may be defined as the energy of the lowest singularity
of ψ (ε) in the complex plane of ε. Correspondingly, ψ (ε)
is nonanalytical in the gapless phase: ψ (ε) = sgn(ε)

√−a at
small energies.

We consider here the quantum limit where we can just
average the action and ψ̂ over Gaussian fluctuations of
ã, 〈〈ã(τ )ã(τ ′)〉〉 = (λ/4)δ(τ − τ ′). The averaged 〈ψ (ε)〉 be-
come complex functions of energy, yet the transition point
is defined in the same way; 〈ψ (ε)〉 is an analytical function
above the transition point and nonanalytical otherwise.

Let us determine the scale of a at which the fluctuations
become important, the perturbation theory does not work,
and deviations of 〈ψ (ε)〉 that form a noninteracting limit are
significant. Equating the scales of three terms in Eq. (80), we
see that the scale as determines the scale of ψ̂ , ψs = (as)1/2,

and the energy, εs = asψs = a3/2
s . The fluctuation of a is esti-

mated as (�a)2 = λεs. Equating this to a, we obtain as = λ2.
In non-rescaled coordinates, this reproduces the estimation
δχs/χs � G−2 from the previous section [see also Fig. 1(c)].

The scaling implies that

〈ψ (ε)〉 = a1/2
s F

(
a/as, ε/a3/2

s

)
. (81)

The noninteracting values are reproduced at large values of the
arguments of this scaling function. For practical applications,
one also needs to account for the shift of the transition point
[Eq. (72)] that comes from the higher-energy fluctuations and
does not conform this scaling which takes place in a small
vicinity of the shifted transition point.

Let us note that the exponentially small low-energy scale
ε� found in the previous section [Eq. (79)] also conforms to
this scaling. Near the critical point, but at |a| � as, it can be
expressed as

ε� � a3/2
s (a/as)3/2 exp

[
−2

3

( |a|
as

)1/2]
. (82)

So it becomes of the order of all other scales at a � as. This
provokes a hypothesis that we formulate in the concluding
section.

IX. CONCLUSIONS AND HYPOTHESES

There are a few examples of condensed matter models
where an arbitrary weak interaction qualitatively changes the
fermionic spectrum; the superconductivity is the most famous
one. In this paper, we predict a drastic effect of weak inter-
action on the Andreev spectrum near the special points in
multiterminal semiclassical superconducting nanostructures.

This is a generic effect to arise in any nanostructure.
Our approach is valid for normal nanostructures but also
for superconducting ones, provided they are smaller than the
superconducting coherence length. It can be experimentally
observed by studying the tunneling to these nanostructures at
low energies (see, e.g., [31]).

We have developed a general interaction model and came
up with a simple universal action describing the situation. This
is a complex nonlocal and nonlinear quantum field theory
that cannot be analytically treated by existing methods. Its
numerical study is plausible but requires a significant effort
in view of the matrix nature of the order parameter. In this
paper, we have analytically studied a semiclassical limit and
the first-order interaction correction in the quantum limit.

In both limits, our results indicate that the effect on the
spectrum is drastic in the close vicinity of the special point
at the scale defined by interaction. The domain of the gapless
phase is squeezed. In the semiclassical limit, we see the failure
of the topological protection as defined in the article: two
gapped phases of distinct topology come into contact not
being separated by a gapless phase.

We would like to put forward two hypotheses to be con-
firmed or disproved in the course of further research. The first
hypothesis is that the gapped phases are in direct contact at
the special point also in the quantum limit. This hypothesis
is based on continuity: one can go from the semiclassical to
quantum limit by changing the parameter g. An alternative
would be a phase transition upon this change.
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The second hypothesis is provoked by an exponentially
small low-energy scale ε� found in the gapless phase. It may
be that a gap develops at this energy scale, and the gapless
phase without interaction always becomes gapped in the pres-
ence of an arbitrary weak interaction, even far from the special
point. In this case, the phase transition between the gapped
and gapless phase would become a crossover not separating
distinct phases. The fact that ε� conforms to the critical scaling
supports this hypothesis.

The hypotheses put forward, as well as the main results
of this article, and the results of [19], can be proven ex-
perimentally. The easiest and the most popular measurement
is a transport one where current/voltage bias is applied to
the leads, and voltages/currents are measured in the leads
[23]. Unfortunately, such transport measurement, as well as
any measurement involving a finite, even very small voltage
difference between the superconducting leads, does not work
here. The point is that the nanostructure has to be kept in
the vicinity of the special point. No phase motion induced by
voltage difference is allowed, and all superconducting termi-
nals should be closed into superconducting loops to assure the
proper phase bias.

An experimental solution here should involve an Andreev
spectroscopy of a kind. That can be realized by connecting
a normal lead to the nanostructure via a tunnel junction, as
in [31,32]. Another possibility is a microwave Andreev spec-
troscopy (see [3,4,14] and references therein). In principle, the
latter does not require any additional lead.

The spectroscopic measurements of this type are readily
done, yet only a few access the multiterminal nanostructures.
An extra experimental difficulty is the requirement to indepen-
dently control the fluxes in multiple superconducting loops.
This is the only way to tune the superconducting phases to the
vicinity of the special point. Such control has been recently
realized for two loops in a two-terminal device [37]. The
extension of this technique to multiterminal nanostructures
will be highly interesting.

For both methods, the gap and the density of states above
the gap is the quantity to look at. For tunneling spectroscopy,
those are detected by current measurement. For microwave
spectroscopy, the density of states is detected as extra dissipa-
tion above the threshold frequency defining the gap. However,
any spectroscopic method would also produce the quasipar-
ticles. It is a design task to assure that their concentration
remains sufficiently low in the course of a measurement.

To support open science and open software initiatives and
to comply with institutional policies, we have published all
relevant code and instructions for running it on the Zenodo
repository [38].
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