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Abstract

Economic theory is built on the assumption that people are omniscient utility maximizers.

In reality, this is unlikely to be true and often people lack information about all alternatives

that are available to them; either because the information is unavailable or that the cost of

searching for and evaluating that information is high. In this paper, we develop a simple and

tractable model that captures satisficing behavior. We show that the model can retrieve con-

sistent parameters under a large range of experimental conditions. We test our model on

synthetic data and present an empirical application. We discuss the implications of our

results for the use of satisficing choice models in explaining choice.

Introduction

Economic theory is built on the assumption that people are omniscient utility maximizers.

That they have complete information about all available options, knowledge of their prefer-

ences and the ability to calculate their expected utility from choosing any one option. While

these assumptions are useful for welfare analysis, they may not fully describe how people make

choices in real life. Indeed, people routinely make decisions that cannot readily be described

by the standard model of rationality [1–9]. Simon [1] argued that people lack the memory and

cognitive abilities to be perfectly rational; or that they actively choose to avoid the (significant)

cognitive effort associated with searching for and evaluating all possible alternatives available

to them. Instead, people are “boundedly rational”. The idea of bounded rationality is built on

the premise that people rarely have complete information about alternatives nor do they have

perfect knowledge of their preferences, but learn about both through the (costly) search for

information and deliberation [1, 10, 11].

The search for information about alternatives has interesting implications for choice. First,

it is at odds with the standard model of expected utility maximization. That model assumes

that people have complete information about all available alternatives. Let us call this collection

of alternatives the grand choice set, and it includes every single possible (relevant) alternative.

When an individual searches for alternatives, their choice set is growing with one alternative

per period of search. Let us call these smaller choice sets, which are proper subsets of the grand

choice set, their consideration sets. In optimal search theory, this process of growing the con-

sideration set would continue until the expected gains from continuing to search would be less

than or equal to the marginal cost of continuing to search [12, 13]. At this point, a choice will
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be made among the alternatives present in the consideration set. This choice can still be com-

pensatory and made by an individual maximizing utility. However, it is not necessarily true

that the alternative maximizing utility in the consideration set is the ‘global’ utility maximizing

alternative, indicating that the chosen alternative may be suboptimal. Furthermore, this pro-

cess also implies that people can continue to search for additional alternatives even after a sat-

isfactory or utility maximizing alternative has been found. Indeed, Stüttgen et al. [14] find

evidence that people keep searching after having found a satisfactory alternative, which the

authors argue may be a way of confirming that the choice they made was a good one. To

use the terminology in Aribarg et al. [7], this would be a typically sequential and stochastic

process.

That said, Simon [1] argues that even this might be too complex a decision for people to

make and that decisions might not even involve maximization of some function at all. Rather

people make a sequence of decisions based on whether or not the utility of the current alterna-

tive exceeds some threshold utility. We formally define the threshold utility in the next section

of the paper. We also note that it is not necessary to work within the framework of utility, but

as economists, we find it useful to do so. As such, the decision process is one in which each

alternative is evaluated sequentially and the first one exceeding the threshold utility is chosen.

For example, imagine you are on holiday in a new city and are going out for dinner. How do

you decide where to go? Do you consider every restaurant in the city and choose the one that

gives the highest expected utility based on the menu, distance from the hotel, renown and ser-

vice? Probably not. It is more likely that you engage in a type of satisficing process where you

evaluate a set of restaurants sequentially, and subject to how hungry you are, choose the first

one that has an acceptable menu, distance to the hotel, renown and service. The utility derived

from the marginal restaurant meeting all these minimum requirements (later: aspiration lev-

els) is the threshold utility and the chosen restaurant is the first one giving a utility higher than

this, i.e., exceeds the minimum on at least one attribute level. We want to make clear that satis-

ficing differs from other non-compensatory decision rules such as lexicographic choices and

elimination-by-aspects. Continuing with our restaurant example: A decision maker choosing

lexicographically will choose a restaurant based on their perceived most important attribute;

whereas a decision maker who eliminates-by-aspects will gradually reduce the number of res-

taurants by iteratively excluding those that do not meet minimum acceptable attribute cut-off

levels until a single chosen restaurant remains. As stated above, a satisficing choice may or

may not be utility maximizing. If the first satisfactory restaurant encountered happens to be

the one that gives the highest global utility, then that choice is also utility maximizing. How-

ever, any other choice is by definition satisfactory, but not maximizing [15, 16].

Several authors have found evidence that people in experimental settings make decisions

that are (partly) consistent with a satisficing decision rule [8, 11, 17–20] (for a more thorough

review of the literature see the review sections in Sandorf and Campbell [8], González-Valdés

and Ortúzar [19], Manski [10], Papi [16] and Aribarg et al. [7]). For example, Caplin et al. [21]

develop a theoretical model of search and satisficing, which they test on choice process data

that allows the experimenter to track participants’ choices. They find that when people work

under a time constraint, they tend to choose the first option that meets their aspiration level.

Reutskaja et al. [18], on the other hand, use eye-tracking, as opposed to choice process data, to

determine the order in which alternatives were evaluated. They impose a strict time constraint

with a monetary penalty for participants who spent more time than they were allotted, and

they find that participants’ choices are partly consistent with satisficing. In a different eye-

tracking study, Stüttgen et al. [14] find that participants stop searching for new alternatives

when they find one that is satisfactory. Manski [10] explores satisficing in the context of delib-

eration costs. He shows that if the cost of learning about one’s preferences is prohibitively
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high, then people will resort to a no deliberation strategy, which involves choosing the first

alternative they encounter. If costs are positive, but not prohibitive, people will engage in satis-

ficing behavior, and if costs are low, possibly zero, people will optimize, e.g., maximize utility.

Satisficing decisions are not limited to the domain of frequent or infrequent decisions. Giger-

enzer [22] argues that moral decisions can be so difficult and mentally taxing that satisficing is

particularly prevalent in this context.

Herbert Simon’s idea of satisficing has been quite successful but has received limited inter-

est from choice modelers. To the authors’ knowledge, only a few papers have developed mod-

els that can identify satisficing behavior in more traditional discrete choice data (e.g., see

Sandorf and Campbell [8] and González-Valdés and Ortúzar [19]), and none are necessarily

readily implemented within existing software. González-Valdés and Ortúzar [19] describe a

“stochastic” satisficing model where an alternative is deemed satisfactory if all attribute levels

are deemed satisfactory. Their model dismisses the notion of utility completely and relies on a

set of acceptability functions. The model is stochastic in the sense that it assumes a random

starting point and direction to model the search path. To overcome the implications of find-

ings by Stüttgen et al. [14] they assume that people choose the first acceptable alternative and

do not continue to search. Sandorf and Campbell [8] on the other hand developed a model to

systematically explore the use of the satisficing decision rule. Specifically, they considered 944

possible satisficing rules (threshold utilities) and allowed respondents to revise their rules

throughout the choice sequence, which is in line with aspiration adaption [23]. While only a

minority chose according to a satisficing rule, the implications for welfare estimates were

significant.

Any model trying to capture satisficing behavior needs to make assumptions concerning i)

when information search starts, ii) the direction of information search, and iii) when search

stops. In addition, a properly specified model needs to address potential search costs. The

assumptions i)-iii) implies that the search path is observable. This is generally not the case

with standard discrete choice data. Eye-tracking can help, but to fully observe the search path,

mechanisms to detect and track this must be in place at the design and implementation stages.

If the search path is observable, then determining i)-iii) is trivial.

Sandorf and Campbell [8] developed and applied a satisficing model to data obtained from

a standard stated preference survey that was not designed to detect satisficing behavior. To

estimate the model they had to assume that people evaluated alternatives in a particular order.

Specifically, they assumed that alternatives were evaluated in the direction of reading, i.e.,

from left to right. In this paper, we develop a simple satisficing model that accommodates

choosing the first alternative with utility exceeding some threshold level of utility. This thresh-

old utility is estimated along with the marginal utility parameters. To test the performance of

our model, we run a series of Monte-Carlo simulations on data generated assuming people are

utility maximizing, i.e., a standard multinomial logit model, and data generated assuming peo-

ple are satisficing, i.e., the simple satisficing model. In addition to satisficing, we also allow for

other secondary decision rules, for example, choose the first and choose the last. We show that

our model can retrieve the true parameters under various assumptions about the level of the

threshold utility. A benefit to the simple satisficing model is that it can be run on standard

data, using, for example, the same assumptions as in Sandorf and Campbell [8], but is best

suited when evaluation order is known. For this reason, we also test the model on stated choice

experiment data designed to compare the standard way of displaying all alternatives at the

same time to one in which respondents actively choose between revealing another alternative

or select their preferred alternative from those they have already revealed. Our results show

that our model nests a “choose the first alternative” strategy, which is analogous to the no

deliberation strategy in Manski [10], and a utility maximization strategy, which is analogous to
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the optimization strategy in Manski [10]. We discuss the implications of our results for welfare

analysis and prediction.

Econometric approach

To introduce notation, we assume that a decision maker faces a choice between J different

alternatives provided in the complete and exhaustive choice set Cn. Decision makers are

indexed by n 2 {1, 2, . . ., N} and alternatives by j 2 {1, 2, . . ., J}. The utility, denoted by u, deci-

sion maker n receives from choosing the jth alternative can be described by the random utility

function in Eq 1.

unj ¼ vnj þ εnj ¼ βxnj þ εnj; ð1Þ

where xnj is a column k-vector of the attributes of alternative j encountered by individual n, β
is a conformable row k-vector of unknown marginal utility parameters to be estimated and εnj
is an idiosyncratic random disturbance term. The observable part of utility (i.e., vnj) is made

up of βxnj and the unobservable part of utility is made up of εnj. Under the assumption that εnj
is a deviate from an identically and independently (i.i.d.) extreme value distribution with vari-

ance π2/6, the probability that alternative j is chosen by individual n can be represented by a

conditional logit model [24, 25]:

Prðjn j Xn; βÞMNL ¼
expðβxnjÞX

j2Cn

expðβxnjÞ
:

ð2Þ

All terms in Eq 2 are as defined above. The probability in Eq 2 follows from the classic util-

ity maximization problem and we assume that the choice is made from the grand choice set of

alternatives.

Satisficing model

When people make choices, they do not always choose the utility maximizing alternative. One

possibility is that they choose the first alternative exceeding some minimum level of acceptable

utility. Let us define the minimum level of utility, or threshold utility, as t. The threshold utility

is a function of the aspiration levels for each of the attributes making up an alternative. The

threshold utility then is the (marginal) utility derived when all aspiration levels are met and as

such is directly informed by a decision maker’s preferences. This then connects Selten’s [23]

view of aspiration levels with our notion of a threshold utility and, furthermore, provides a

mechanism for how the threshold utility changes in response to revised aspiration levels [23].

For example, assume that you are in the market to buy a car. Furthermore, when it comes to

cars, you only care about the engine size and fuel economy. The absolute minimum for buying

a new car is that it is better than your current car. This implies that the aspiration levels are set

to the levels of your current car and that the threshold utility is the utility derived from owning

your current car. In other words, the threshold would be based on some kind of status-quo sit-

uation. If this was indeed the threshold and you were satisficing, you would buy the first car

you see that is better than your car subject to your budget constraint. This is rather unlikely. It

is more likely that you have a minimum set of aspiration levels, e.g., a minimum engine size

and a minimum level of fuel economy. Once these are decided upon, the preferences for these

aspiration levels lead to the derived threshold utility. The threshold utility then is fully deter-

mined by your preferences and aspiration levels.

Just as we cannot observe an individual’s utility function, we cannot observe their aspiration

levels nor the resulting threshold utility. For this reason, and to avoid trying to determine each
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individual aspiration level, we make probabilistic statements about whether or not the utility

of the alternative exceeds the threshold. Let us define the threshold tn as being comprised of an

observable component τ to be estimated and an unobservable component �n, such that tn = τ +

�n. We assume that �n is i.i.d. and follows an extreme value distribution and furthermore that

the differences in the unobserved parts of unj and tn (i.e., εnj and �n, respectively) are logistically

distributed with the scale parameter being unity. This implies that the threshold utility deter-

mining a satisfactory alternative is independent of the utility experienced from any given alter-

native. While this assumption may seem restrictive at first glance, we argue that it is, in fact,

quite trivial. To see this, we need to emphasize that within a given decision context and deci-

sion maker, there is only one threshold utility and that this utility is fully determined by a

given decision maker’s preferences. This follows directly from the discussion above relating to

aspiration levels. To continue with our new car example, before you even begin looking at a

new car, you have an idea about what would be satisfactory levels of engine size and fuel econ-

omy, i.e., you already have established aspiration levels and consequently a threshold utility for

what would be an acceptable car fully informed by your preferences. When you encounter a

new alternative, i.e., you look at a new car, the utility you derive is a function of that alterna-

tive’s attributes and determined by your preferences. The utility you derive from this new

alternative is independent of previously seen alternatives and your threshold utility since all

are determined by the same set of underlying preferences for the attributes comprising these

alternatives. Note that this implicitly assumes that there is no preference learning as you view

more cars. A point which we remark on again below.

Having established this, we can express the probability that alternative j yields utility greater

than the threshold using a logistic function:

Prðunj > tn j xnj; β; tÞ ¼ Prðvnj þ εnj > tþ �nÞ ¼ Prðεnj � �n > t � vnjÞ

¼
1

1þ expðt � βxnjÞ
:

ð3Þ

Inherent in the satisficing model is the assumption that decision makers consider alterna-

tives sequentially. This opens up for the possibility that a decision maker revises the threshold

as they progress through the search and evaluation process [1, 8, 23]. This adjustment of the

threshold may reflect a learning process, either of preferences or the range of possible alterna-

tives in the market. Let us continue with the car example. Before visiting dealerships, it is

important to you that your next car has good fuel economy and a large engine, but that fuel

economy is the most important. As you visit different dealerships, you realize that there is a

trade-off between the two and that a larger engine usually comes at the cost of worse fuel econ-

omy. Consequently, you may adjust your aspiration level for engine size down [23] and it fol-

lows that threshold utility also adjusts down. Despite the importance of aspiration adaption

[23] in satisficing models, to keep the model simple and tractable, we assume that the threshold

is stable throughout the entire decision process. Obviously, extending the model in this direc-

tion would be interesting. One possibility would be to parameterize τ with specific (possibly

individual level) aspiration levels such that the threshold utility tnt would reflect changing aspi-

ration as individuals progress through the sequence of alternatives. This also provides another

way to think about the threshold utility function as it is specified here: It is simply estimated as

a constant with none of the attributes specified meaning that it is a collective parameter that

would capture overall changes in threshold utility without capturing individual changes in

aspiration levels. Importantly, whether the aspiration levels are specified in the function does

not affect the ability of the model to capture potential search costs, which can also be added to

the threshold function.
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Given the sequential manner in which decision makers consider alternatives, the probabil-

ity of an alternative being chosen in a satisficing model must account for the probability that

all subsequent alternatives were not chosen:

Pr jn j Xn; β; t; Satisficingð Þ ¼

Prðunj > tn j xnj; β; tÞ if j ¼ 1; or;

Prðunj > tn j xnj; β; tÞ
Q

j2f1;...;j� 1g
ð1 � Prðunj > tn j xnj; β; tÞÞ if j > 1:

8
<

:
ð4Þ

The probability that none of the alternatives in the choice set yield utility that exceeds the

threshold utility is simply one minus the sum of the probability of an alternative being chosen

in a satisficing model over all alternatives:

Prðun < tn j Xn; β; tÞ ¼ 1 �
X

j2Cn

Prðjn j Xn; β; t; SatisficingÞ; ð5Þ

where 0< Pr(un< tn j Xn, β, τ) < 1.

Given the strict inequality Pr(un< tn j Xn, β, τ)> 0, there remains a probability that the

choice task contains no satisfactory alternative, meaning that, after evaluating all possible alter-

natives, a decision maker must switch to another, secondary, decision strategy. Therefore, Pr

(un< tn j Xn, β, τ) can be interpreted as the probability of decision maker n switching to a sec-

ondary decision rule after they have evaluated all J alternatives in choice set Cn and established

that none of them meet their acceptable threshold utility. The overall choice probability then

becomes the satisficing probability plus the choice probabilities derived conditional on the sec-

ondary decision rule weighted by the probability that this rule is enacted:

Prðjn j Xn; β; t; 1
st : Satisficing; 2nd : �Þ ¼ Prðjn j Xn; β; t; SatisficingÞ

þPrðun < tn j Xn; β; tÞPrðjn j �Þ;
ð6Þ

where 1st:Satisficing and 2nd:� signify the primary and secondary decision making rules,

respectively, and Pr(jn j �) is the probability of choice conditional on the secondary decision

making strategy. The secondary decision rule may entail a combination of decision making

strategies and possible heuristics. In this paper, we consider four such secondary, or backup,

strategies: i) utility maximization; ii) choose the opt-out; iii) choose the last; and, iv) choose at

random.

The first strategy is where the decision maker chooses the utility maximizing alternative,

which is represented by a conditional logit expression:

Pr jn j Xn; β;RUMð Þ ¼
expðβxnjÞ
P

j2C
expðβxnjÞ

: ð7aÞ

Secondly, we consider the strategy where the decision maker chooses to opt-out or chooses

the explicitly offered status-quo option:

Pr jn j Opt-outð Þ ¼
1 if j ¼ opt-out or status-quo; and;

0 otherwise:

(

ð7bÞ

The third strategy is the situation where the decision maker simply chooses the last alterna-

tive in the choice set. This may, for example, arise due to a lack of recall or because alternatives

are only temporarily available (e.g., as in the case when choosing a car parking space [26]). The
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conditional probability of choice under this strategy is given by:

Pr jn j Lastð Þ ¼
1 if j ¼ J; and;

0 otherwise:

(

ð7cÞ

Finally, we consider the strategy where the decision maker chooses a random alternative

after establishing that none of the available alternatives provide utility greater than the thresh-

old. This leads to the following conditional probability:

Pr jn j Randomð Þ ¼
1

J
: ð7dÞ

Properties of the model

The model outlined in Eq 6 benefits from nesting three different models. As the threshold, τ,

goes to −1 every single alternative will have a utility higher than the threshold (i.e., limτ!−1

Pr(un< tn j Xn, β, τ) = 0). In this case, choosing the first alternative that exceeds the threshold

involves choosing the first alternative you are presented with. If search costs are subtracted

from the threshold utility, then this becomes analogous to the no deliberation strategy outlined

by Manski [10]. Indeed, letting the threshold be a function of cost is an interesting (and sim-

ple) extension of the proposed model in the current paper. The choice probability under a no

deliberation strategy is equal to 1 and will approach 1 under a satisficing strategy as τ goes to

−1. The consequence of this is that if the threshold utility is sufficiently low such that τ identi-

fies every choice as a satisficing choice, then the log-likelihood value of the model will tend to

zero. This is expected when the model perfectly describes the data generation process. Con-

versely, as τ goes to +1, none of the alternatives will give a utility that is higher than the

threshold (i.e., limτ!+1 Pr(un< tn j Xn, β, τ) = 1). The model will, therefore, collapse to the

model associated with the secondary decision rule. In this case, the model has the same fit and

retrieves the same parameters as the secondary model, but is less parsimonious.

While the probability of the threshold utility being higher than the utility of all alternatives

in the choice set in Eq 5 is, appropriately, unaffected by the order in which alternatives are

evaluated, the satisficing choice probability in Eq 4 and, thus, the joint choice probability in

Eq 6 are affected. Therefore, the evaluation order must be known. In cases where this is not

known, it will be necessary to rely on simplifying assumptions. For example, if the position of

alternatives is known, one could assume that people process alternatives from left to right or

top to bottom in a sequential manner [8, 27]. Of course, the suitability of this assumption is

an empirical decision and should be considered on a case-by-case basis, requiring discretion

and objective judgment on behalf of the analyst (see Sandorf and Campbell [8] for a discussion

and Campbell and Erdem [28] and for a related discussion on the influence of position on

information processing). It is also necessary to assume that people choose the first alternative

exceeding their threshold utility. If they choose the second or third alternative exceeding the

threshold, they cannot have chosen according to a satisficing decision rule.

Similarly, if opting-out is an option, or if there is an explicitly offered status-quo option, it

will be necessary to make assumptions regarding the order in which the opt-out alternative is

evaluated. If individuals consider it as a reference point it is effectively the first encountered

alternative. In this case, opt-out or status-quo choices would be consistent with satisficing

behavior in situations where individuals deem this option to be both satisfactory and sufficient

and do not evaluate any of the non-opt-out or non-status-quo alternatives. Depending on the

decision context this could be difficult to distinguish from not entering the market to begin
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with. Conversely, in situations where individuals evaluate options before choosing to opt-out

or the status-quo alternative, it is effectively the final alternative in the choice task. Ultimately,

this must be determined by the analyst.

A further aspect of the model is that the probability of switching to a secondary decision

rule depends also on the number of alternatives in the choice set. As one would expect, as the

choice set grows in terms of the number of alternatives the probability that the secondary deci-

sion rule is needed reduces. This comes directly from taking the product in calculating the

satisficing probability in Eq 4. But more obviously, as the number of alternatives increases the

likelihood of encountering a satisfactory alternative can also be expected to increase, all else

being equal.

We assume that all individuals use satisficing as their primary decision making rule and

that they use one of four decision rules as their secondary rule. Admittedly, this has the poten-

tial of predicting choice outcomes that may be at odds with outcomes driven by resource

rational decision making. Furthermore, in reality, every individual will use a strategy (or com-

bination of strategies) that may be unique to them and that is likely to be highly dependent on

the choice context. Hence, the assumption of persistent use of the same primary and secondary

rule is a simplification. This limitation could, of course, be potentially relaxed through the use

of probabilistic decision rule process models that accommodate heterogeneity in decision

making strategies across individuals (e.g., see Hensher et al. [29]). This form of model recog-

nizes that an individual’s actual decision making process is unobserved and cannot be known

with certainty, but probabilistic statements about the likelihood of competing decision strate-

gies being their true strategy can be reached based on their observed choices. However, this

goes beyond the aims and scope of the paper. The purpose of the current paper is to develop a

simple and tractable model to capture satisficing behavior. Readers interested in an application

of this type of model to systematically explore satisficing behavior are directed to Sandorf and

Campbell [8].

We assume that the threshold utility is stable throughout the entire decision process. As

discussed above, this assumption can be relaxed by parameterizing τ to reflect changing aspi-

ration levels as individuals progress through the sequence of alternatives and choice tasks.

Moreover, following Güth [30] and Güth et al. [31], there may be a desire to investigate if

satisficing behavior is absorbable (i.e., whether individuals continue to use it as a decision

rule when they become aware of it). It is, however, challenging to separately explore absorb-

ability and threshold revision within the current framework because it is difficult to know

whether changes in τ are driven by a change in decision rule once they are aware that they

satisfice, i.e, τ goes to +1 to collapse to a secondary rule, or if it is because aspiration levels

change in light of experience. While parameterizing τ will help get closer to separately identi-

fying the two, confounding between the constants and the threshold parameters is likely to

remain.

Related, for this paper, we assume a constant τ, which implies that everyone has the same

observable threshold utility. A pure satisficing strategy lies where τ uniquely identifies all

choices in the data. For obvious reasons, this may require τ to be individual-specific, and in

many, but not all, settings it makes sense to set the threshold utility to be equal to or higher

than the utility of the opt-out or status-quo alternative. As discussed above, to move away

from the status-quo, the new situation has to be at least as good. To fully capture satisficing

behavior, an easy extension to the model involves reparameterization of τ to accommodate

the potential influence that individual ability, motivation and a range of other, perhaps unob-

served, factors have on the likelihood to satisfice; or to fully specify the alternative in terms of

aspiration levels to allow for changing threshold utilities through adapted aspiration levels. Of

course, there is also scope for further specifications to accommodate preference heterogeneity.
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Indeed, this may be, in fact, a necessary step to, at least partially, alleviate potential confound-

ing concerns between β and τ.

Analytical example

To illustrate, in Table 1 we show how the choice probabilities of an alternative being chosen

under satisficing are dependent on τ, evaluation order and the secondary decision making

rule. For demonstration purposes, we assume τ 2 {−3, 0, 3, 6}, there are five alternatives to

choose from (i.e., J = 5), the observed utilities vj 2 {−2, −1, 0, 1, 2}, and that the alternatives are

either evaluated from the one that provides the lowest observed utility to the one that provides

the highest observed, or vice versa. For the case where the secondary decision rule is to choose

the opt-out alternative, we show only the results for when it is assumed to be the first evaluated

alternative since the results for when individuals evaluate all options before choosing the opt-

out can be ascertained from the choose the last strategy.

From Table 1, we see that irrespective of evaluation order, with relatively small thresholds

(in this example where τ� −3) there is practical certainty that the choice set contains an alter-

native that exceeds the utility threshold (i.e., Pr(u < t j v, τ� −3)� 0). Note also that with very

Table 1. Choice probability of an alternative being chosen under satisficing (for different satisficing thresholds and evaluation order of alternatives).

vj Alternatives evaluated from lowest to highest Alternatives evaluated from highest to lowest

-2.000 -1.000 0.000 1.000 2.000 2.000 1.000 0.000 -1.000 -2.000

τ = -3.000 Pr(u < t j v, τ) = 0.000

Pr(uj > t j vj, τ) 0.731 0.881 0.953 0.982 0.993 0.993 0.982 0.953 0.881 0.731

Pr(j j vj, τ, Satisficing) 0.731 0.237 0.031 0.001 0.000 0.993 0.007 0.000 0.000 0.000

Pr (j | vj, τ, 1st:Satisficing, 2nd:RUM 0.731 0.237 0.031 0.001 0.000 0.993 0.007 0.000 0.000 0.000

Pr (j | vj, τ, 1st:Satisficing, 2nd:Opt-out 0.731 0.237 0.031 0.001 0.000 0.993 0.007 0.000 0.000 0.000

Pr (j | vj, τ, 1st:Satisficing, 2nd:Last 0.731 0.237 0.031 0.001 0.000 0.993 0.007 0.000 0.000 0.000

Pr (j | vj, τ, 1st:Satisficing, 2nd:Random 0.731 0.237 0.031 0.001 0.000 0.993 0.007 0.000 0.000 0.000

τ = 0.000 Pr(u < t j v, τ) = 0.010

Pr(uj > t j vj, τ) 0.119 0.269 0.500 0.731 0.881 0.881 0.731 0.500 0.269 0.119

Pr(j j vj, τ, Satisficing) 0.119 0.237 0.322 0.235 0.076 0.881 0.087 0.016 0.004 0.001

Pr (j | vj, τ, 1st:Satisficing, 2nd:RUM 0.119 0.237 0.323 0.238 0.083 0.887 0.090 0.017 0.005 0.002

Pr (j | vj, τ, 1st:Satisficing, 2nd:Opt-out 0.130 0.237 0.322 0.235 0.076 0.891 0.087 0.016 0.004 0.001

Pr (j | vj, τ, 1st:Satisficing, 2nd:Last 0.119 0.237 0.322 0.235 0.087 0.881 0.087 0.016 0.004 0.012

Pr (j | vj, τ, 1st:Satisficing, 2nd:Random 0.121 0.239 0.324 0.237 0.078 0.883 0.089 0.018 0.006 0.003

τ = 3.000 Pr(u < t j v, τ) = 0.598

Pr(uj > t j vj, τ) 0.007 0.018 0.047 0.119 0.269 0.269 0.119 0.047 0.018 0.007

Pr(j j vj, τ, Satisficing) 0.007 0.018 0.046 0.111 0.220 0.269 0.087 0.031 0.011 0.004

Pr (j | vj, τ, 1st:Satisficing, 2nd:RUM 0.014 0.037 0.098 0.251 0.601 0.650 0.227 0.082 0.030 0.011

Pr (j | vj, τ, 1st:Satisficing, 2nd:Opt-out 0.605 0.018 0.046 0.111 0.220 0.867 0.087 0.031 0.011 0.004

Pr (j | vj, τ, 1st:Satisficing, 2nd:Last 0.007 0.018 0.046 0.111 0.818 0.269 0.087 0.031 0.011 0.602

Pr (j | vj, τ, 1st:Satisficing, 2nd:Random 0.126 0.138 0.166 0.230 0.340 0.389 0.207 0.150 0.131 0.124

τ = 6.000 Pr(u < t j v, τ) = 0.972

Pr(uj > t j vj, τ) 0.000 0.001 0.002 0.007 0.018 0.018 0.007 0.002 0.001 0.000

Pr(j j vj, τ, Satisficing) 0.000 0.001 0.002 0.007 0.018 0.018 0.007 0.002 0.001 0.000

Pr (j | vj, τ, 1st:Satisficing, 2nd:RUM 0.012 0.032 0.086 0.234 0.636 0.636 0.234 0.086 0.032 0.012

Pr (j | vj, τ, 1st:Satisficing, 2nd:Opt-out 0.972 0.001 0.002 0.007 0.018 0.990 0.007 0.002 0.001 0.000

Pr (j | vj, τ, 1st:Satisficing, 2nd:Last 0.000 0.001 0.002 0.007 0.990 0.018 0.007 0.002 0.001 0.972

Pr (j | vj, τ, 1st:Satisficing, 2nd:Random 0.195 0.195 0.197 0.201 0.212 0.212 0.201 0.197 0.195 0.195

https://doi.org/10.1371/journal.pone.0275339.t001
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small thresholds practically all of the choice probability is allocated to the first evaluated alter-

native. Whereas, with relatively high thresholds (in this case where τ� 6) the probability that

any alternative yields utility above the threshold is practically zero and, as a result, the contri-

bution of the satisficing choice probabilities to the likelihood function is, in effect, zero (i.e., Pr

(u< t j v, τ� 6)� 1). It is important to point out that the non-infinite boundaries of τ that

produce values of Pr(u< t j v, τ) that are distinguishable from 0 and 1 depends entirely on the

observed utilities assumed here. Indeed, the effect of τ on the satisficing choice probabilities

depends on its relative magnitude to the observed utilities. This aside, we can see that τ affects

the overall joint likelihoods under the settings used in this analytical demonstration. With rela-

tively low values of τ we can see that the probability of requiring a secondary decision making

strategy is very small. In such cases, the joint likelihoods for the four secondary strategies are,

therefore, practically equivalent to the satisficing choice probabilities. However, as τ increases,

the satisficing choice probabilities get smaller meaning that the choice shares for the secondary

strategies make a larger contribution to the likelihood function. As τ approaches its infinite

boundary, effectively all of the likelihood is explained by the backup decision rule.

Even though the full choice set comprises the same alternatives, Table 1 clearly shows that

different evaluation sequences can lead to markedly different probabilities. This difference is

most stark with relatively low values of τ (since more of the likelihood is explained by the satis-

ficing choice probabilities). Take, for instance, the case where τ = −3 and focusing on the alter-

native with the highest observable utility of 2. When alternatives are evaluated from the one

that provides the lowest utility to the highest utility, the respective joint choice probabilities

are practically zero. However, in the case where the alternatives are evaluated in the opposite

order, the respective joint choice probabilities are effectively one. In this example, not until τ
� 6, in which case the backup strategy essentially explains all of the likelihood function, do we

find the joint probabilities to be relatively commensurate for the utility maximizing and ran-

dom choice secondary strategies. For the choose opt-out and last alternative backup strategies,

however, the probabilities are more commensurate at the non-infinite boundaries of τ, which

is because sequence order plays an additional role in both strategies. Under the settings of this

analytical example, τ� 1.80 yields the most comparable probabilities for the alternative with

the highest utility in these backup strategies. This is especially the case for choosing the last

alternative secondary decision rule, where the probabilities are practically equivalent, albeit the

probabilities for the other alternatives remain somewhat different.

Synthetic application

Data

To test the performance of our model and how well it retrieves the true parameters under vary-

ing experimental conditions we run a series of Monte-Carlo simulations. Our Monte-Carlo

strategy involves a variety of generation processes. To test the ability of the model to correctly

retrieve the parameters under designs with varying numbers of alternatives, we generate data

where J 2 {2, 3, 4, 5, 6, 8, 10, 25, 50} alternatives. Each alternative is described by four generic

attributes: AttA and AttB, which have binary (0, 1) levels; AttC, which takes levels between 0

and 1 in 0.01 increments; and, Cost, which has levels between €5 and €30 in €0.50 increments.

Thus, the full factorial consists of 20,604 profiles (i.e., two levels for AttA times two levels for

AttB times 101 levels for AttC times 51 levels for Cost). We assume that the true parameters

were: 0.5 for AttA, 0.8 for AttB, -1.6 for AttC, and -0.1 for Cost, and that the alternative-spe-

cific constants are all zero.

We generate data based on different assumptions regarding the level of the threshold utility.

The threshold utilities are derived by generating the full factorial design, which consists of all
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possible combinations of the levels of the attributes, and for each profile generate Eq 1 based

on 1,000 simulated draws of ε per profile. We then derive the minimum, maximum and inter-

mediate ventile utility values for the simulated full factorial design, thus producing 21 values of

τ, which are reported in Table 2. This leads to 189 (i.e., nine settings relating to the number of

alternatives times 21 settings relating to τ) different simulation treatments. Each treatment

consists of 1,000 individuals answering a single choice task. We note that a panel of repeated

choice contexts could also be accommodated under this framework. However, in this data gen-

eration process, we assume preference homogeneity and a constant threshold meaning that

having a panel would be redundant. Though it is recognized that the ability to identify satisfi-

cing behavior and the threshold employed by a given individual will be higher in panel data

since a behavioral rule that is respected over a sequence of multiple choices is, clearly, more

convincing than one observed in a single choice (see Sandorf and Campbell [8] for an

exploration of this issue). The experimental design for each simulated dataset was generated

at random. Since idiosyncratic results can arise from a single sample, we generate multiple

replications of the experimental design. In total, we generate 1,000 replications for the 189

treatments.

The individual counterfactual choices are produced by identifying the first alternative

where unj� t. If unj< t8j the choices are determined based on the four models in Eq 7. In this

case, this, respectively, involves identifying the alternative with the largest utility value, the first

(i.e., opt-out) alternative, the last alternative, or a random alternative.

Analysis

For every dataset generated, we estimate two candidate models: (i) the naïve specification

based solely on the respective secondary decision rule (where we retrieve parameter estimates

for the marginal utilities and alternative-specific constants for the first and last alternatives);

and, (ii) the specification where satisficing is used as the primary decision rule and the respec-

tive strategy as the secondary decision rule (where we, again, retrieve parameter estimates for

the marginal utilities and alternative-specific constants for the first and last alternatives in

addition to the threshold utility). Strictly speaking, the naïvely specified model is only esti-

mated for the treatment where the utility maximizing alternative is chosen as the backup

strategy. For the other secondary decision rule settings, the shares are conditional only on the

data and can be established deterministically since they are equal to the sample shares for the

respective decision rule. We retrieve alternative-specific constants for the first and last alterna-

tives to shed light on the potential misinterpretation of alternative-specific constants under

satisficing behavior. We omitted these constants from the expressions in Section to avoid

cluttering.

Estimating both candidate models allows us to compare the effects under correctly specified

and misspecified cases and to make inferences regarding the consequences of the naïve

assumption. Combined, this leads to a total of 1,512,000 (i.e., 189 simulation treatments times

1,000 replications times four secondary decision rules times two model specifications) models

to estimate.

Table 2. Threshold utilities.

%ile 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

τ -7.74 -3.76 -3.29 -2.96 -2.69 -2.45 -2.23 -2.03 -1.83 -1.64 -1.44 -1.25 -1.04 -0.83 -0.60 -0.35 -0.06 0.30 0.77 1.52 23.83

https://doi.org/10.1371/journal.pone.0275339.t002
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Results

Observed choice shares by decision rule. In Fig 1, we compare the average share (across

the 1,000 sample simulations) of simulated choices that are consistent with satisficing. We see

that if the threshold is very low, practically all choices are consistent with satisficing. This is

quite logical. With a sufficiently low threshold, any alternative encountered would be better

and should be chosen under satisficing. As the threshold utility increases, the probability of

satisficing decreases. If none of the alternatives meets the satisficing threshold, then the deci-

sion maker has to revert to their secondary decision rule. Crucially, the probability of satisfi-

cing depends on the number of available alternatives. We see that even at higher utility

thresholds, the probability of satisficing remains high when many alternatives exist. Again, this

is quite logical. If you can search through many alternatives, chances are higher that at least

one of them will exceed the threshold. However, for sufficiently high thresholds, this probabil-

ity drops rapidly to zero.

For the sake of brevity, the observed share for the secondary decision strategies as a function

of the level of the threshold are presented and discussed in Appendix A in S1 Appendix. We

observe that the share of choices that are consistent with the secondary decision rule increases

with the threshold, which follows the same logic as above. This is found for all secondary deci-

sion rules apart from choosing the opt-out alternative, where a u-shaped pattern is observed

because the opt-out is the first alternative encountered in our case. Across all decision rules,

the share of choices consistent with the backup strategy reduces as the number of alternatives

increases.

Correctly predicted. Since comparisons of model fit are possible for only the treatments

where the utility maximizing alternative is chosen as the backup strategy (i.e., because the

shares under the naïve models are established deterministically for the other secondary deci-

sion rules), we compare the percentage of choices that are correctly predicted as having the

largest choice probability [32]. The weakness of this as a measure of goodness to fit is acknowl-

edged—see Train [33] (page 69)—but is chosen as a way to allow more direct comparison

across treatments. In Fig 2, we show the average (across the 1,000 sample simulations) percent-

age difference in correctly predicted, with the share observed for naïve specification being the

subtrahend, broken down by the secondary decision rule.

Fig 1. Share of choices consistent with satisficing.

https://doi.org/10.1371/journal.pone.0275339.g001
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Fig 2. Change in choices correctly predicted under satisficing model relative to the naïve baseline model. (a) Data generated on

basis of choose the utility maximizing alternative secondary decision rule. (b) Data generated on basis of choose the opt-out alternative

secondary decision rule. (c) Data generated on basis of choose the last alternative secondary decision rule. (d) Data generated on basis of

choose a random alternative secondary decision rule.

https://doi.org/10.1371/journal.pone.0275339.g002
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Looking firstly at the results for the utility maximizing treatment in Fig 2a, the difference

between the correctly predicted choices under the two candidate models is negligible at the

infinite boundaries of τ. But note, this result for the lower infinite boundary is driven by the

alternative-specific constant for the first alternative, which ensures the model fits are equiva-

lent. Recall that the alternative-specific constants were zero in the data generation process,

meaning that, while both models describe choices equally well at the lower extreme of τ, the

naïve baseline model leads to biased behavioral inferences. As the threshold increases, the

probability that this is true is decreasing. This stems from the fact that the model fits, and

hence share of correctly predicted, of both models converge as the threshold increases. Of

course, the satisficing model is less parsimonious with one additional parameter meaning that

the gains achieved under the satisficing model will eventually be outweighed by the loss of par-

simony. We note that the speed at which the models converge depends on the number of alter-

natives. Specifically, we see that as the number of alternatives grows, the increase in the share

of choice correctly predicted peaks higher for higher thresholds. Thus, the implications of not

considering satisficing behavior may be greater with larger choice sets even when the threshold

utility is relatively high. This mirrors closely the results found above and the logic for why this

is true is the same: as the number of alternatives grows, the probability that one of them will be

satisfactory is also increasing. All this aside, we emphasize that the average increase in choices

correctly predicted is relatively modest, at the maximum ranging between 1.78 percent and

7.60 percent for the case where J = 2 and J = 50, respectively. Looking at how this equates in

terms of improvement in model fit, we find that the maximum average increase in model fit of

the satisficing model ranges between around 25 and 760 log-likelihood units for J = 2 and

J = 50, respectively. While both represent an improvement in model fit even after accounting

for the loss of parsimony caused by the estimation of an additional parameter, it equates to an

average increase of the choice probabilities of between just 1.6 and 7.8 percent, respectively.

Thus, accounting for satisficing is unlikely to yield any substantial gains in model fit. Of

course, model fit is not the only factor to consider as not accounting for satisficing may have

implications for key behavioral outputs.

For choosing the opt-out alternative treatment in Fig 2b the satisficing model explains

choices much better, especially so as the number of alternatives increases and at extreme values

of τ. This latter observation stems from the fact that at both extremes more of the choice prob-

ability is allocated to the opt-out alternative because the first alternative exceeds the acceptable

utility in the former and because none of the alternatives exceeds this threshold in the latter. In

Fig 2c the naïve model assigns zero probability to the chosen alternative, whereas the satisfi-

cing model with choosing the opt-out alternative secondary decision rule predicts them per-

fectly. But the difference in correctly predicted drops as the value of τ increases, such that both

models predict the last alternative being chosen. As τ approaches its upper infinite boundary

this difference approaches zero. This is the case regardless of the number of alternatives, but τ
approaches its upper infinite boundary sooner when there are fewer alternatives. In Fig 2d, a

similar pattern to Fig 2a is observed. With a random choice secondary decision rule, the naïve

model assigns 1/J to all chosen alternatives. At the lower infinite boundary of τ, where the first

presented alternative is the chosen one, the satisficing model predicts the choice perfectly pro-

ducing a difference in the likelihood of 1 − 1/J. However, as the threshold increases, more

weight is allocated to the secondary decision rule resulting in a smaller difference in the share

of choices correctly predicted.

Retrieving the true parameters. In addition to choice prediction, it is important to assess

if the threshold utility τ is retrieved well. We use the root-mean-square errors (RMSEs) as indi-

cators of our model’s ability to retrieve the true parameters. The RMSE is a measure of the

magnitude of the difference between the estimated parameters and the true parameters used in
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the data generating process. It represents the standard deviation of the difference between pre-

dicted and actual values over the 1,000 replications, thus giving a single measure of the predic-

tive power for a parameter of interest for all candidate models.

In Fig 3, we plot the RMSE share of estimated values of τ. For the data generated assuming

the utility maximization secondary decision rule the plot in Fig 3a reveals that the threshold

utility parameter is estimated relatively well for non-extreme threshold values. Thinking about

the evidence above, this is, in fact, the region where we expect our satisficing model to work

well. With a very low threshold, chances are very high that the utility of the first encountered

alternative is higher. As such, it does not matter what value τ takes, the predicted probability is

the same. The same argument holds for very large values of τ since any value of τ above this

point will, for all intents and purposes, lead to the same predicted probabilites. Fig 3 appears to

contradict this, but note that all models used the data generation parameters as starting param-

eters. As the threshold increases, the value of τ moves less from its original position. So, our

model is only able to correctly identify the threshold parameter within a reasonable region.

This result does follow from the properties of our model and mirrors the results of Manski

[10]. Finally, we note that our ability to correctly identify the threshold parameter is dependent

on the number of alternatives. In particular, as the number of alternatives increases a higher

threshold is generally required to estimate it correctly. This suggests there to be a “Goldilocks”

number of alternatives for this particular satisficing model (and maybe for satisficing models

in general). It is clear that with too few alternatives, we tend to estimate the threshold better

when it is relatively low, and with too many alternatives, we tend to estimate it better as it

increases. Under the assumptions in this paper (and specific parameters of the data generating

process), the threshold utility is generally best estimated (over the threshold range) when there

are either five or six alternatives. The intuition is quite clear. With fewer alternatives, there is a

reduced chance of seeing alternatives that exceed the threshold, and with many you are practi-

cally guaranteed to see one that exceeds the threshold. Given the probabilistic nature of our

model, an alternative that yields utility that is minisculely smaller than the threshold leads to a

probability of 0.5 in Eq 3. This could be what leads to the observed pattern. We do remark that

more research is needed before this result can be generalized.

Empirical application

Data

Our experimental design aims to overcome the inherent limitation in the standard way of dis-

playing alternatives in a stated choice experiment. We propose an approach that involves

respondents actively revealing alternatives. This mimics a real world search process. We had to

find a good that is relatively cheap so that people buy it with some frequency, yet rich enough

in attributes to induce search. In this experiment, we use a decision maker’s choice among bot-

tles of wine. The choice of wine is likely to capture both those who search for a particular bottle

of wine that match their preferences and those who do not.

To decide on which attributes to include in our experiment, we relied on the information

displayed on the shelves in the supermarket, information commonly displayed on the super-

market’s websites, attributes discussed on wine review websites and feedback from our infor-

mal focus groups. Based on this, we selected seven attributes: 1) country of origin, 2) color of

the wine, 3) alcohol by volume, 4) grape variety, 5) characteristic of the wine, 6) whether the

wine was organic, and 7) price. Next, we scraped the websites of three large supermarket

chains in the UK to get the attribute information for all the wines they sell. We limited the lev-

els of the “country of origin” and “grape variety” attributes to include only the eight most com-

mon countries and ten most common grape varieties (determined based on the results from
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Fig 3. Accuracy of τ̂ . (a) Data generated on basis of choose the utility maximizing alternative secondary decision rule. (b) Data

generated on basis of choose the opt-out alternative secondary decision rule. (c) Data generated on basis of choose the last alternative

secondary decision rule. (d) Data generated on basis of choose a random alternative secondary decision rule.

https://doi.org/10.1371/journal.pone.0275339.g003
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the web-scraping). We limited the “characteristic of the wine” attribute to be on five-point

scales ranging from dry to sweet for white and rosé wines and light to full-bodied for red

wines, and we limited price to include 35 levels at varying increments. The full factorial

included 1,848,000 possible combinations of our attributes. We excluded all infeasible combi-

nations, e.g., grape variety and color, and characteristic of the wine and grape variety, which

left us with 381,920 possible wines. Using the web-scraped wine data, we calculated a set of

probability weights to establish the likelihood of each experimentally designed wine bottle

being available in the supermarket. We used these weights to sample individual random pro-

files from the restricted factorial each time an individual entered the survey. The idea was that

the alternatives available to a respondent would mimic (probabilistically) the wine selection in

the supermarket and that the respondent will see a larger proportion of more familiar and

likely wines as opposed to more unfamiliar and unlikely wines. Importantly, this random

experimental design process assures that we have a lot of variation in our data, meaning that

we eliminate order and path dependency in choices between respondents, such that any behav-

ioral or choice patterns we detect are unlikely to be an artifact of the experimental design. Fur-

thermore, given that respondents reveal alternatives sequentially, not all alternatives allocated

to the individual design will be seen and considered by the respondent. Using a random design

ensures that our ability to make inferences about the parameters is not systematically affected

by respondents not revealing all alternatives. Lastly, the search path is also varied randomly

but remains observed by the analyst, which should average out any path-dependency effects

that might exist in the real world. As such our experimental data should cleanly predict behav-

ior and provide testable hypotheses for real world data.

The survey was programmed in Shiny [34], which is an R package, and the data was gath-

ered at the end of January 2020. In total, 4,121 respondents were randomly allocated to one of

10 treatments, each designed to test a specific aspect of search and preference learning. In the

present paper, we rely on the first four of these:

• Treatment 1: Standard stated choice experiment with three alternatives and a “buy none”

and comprises 554 individuals who, combined, made 4,774 choices.

• Treatment 2: Standard stated choice experiment with six alternatives and a “buy none” and

comprises 541 individuals who, combined, made 4,652 choices.

• Treatment 3: Standard stated choice experiment with nine alternatives and a “buy none” and

comprises 518 individuals who, combined, made 4,437 choices.

• Treatment 4: Sequential search stated choice experiment where a respondent could reveal

up to nine alternatives by clicking a button and comprises 424 individuals who, combined,

made 3,691 choices.

Our experimental setup falls under what Artinger et al. [35] would classify as satisficing

under risk, where an individual is unaware of the available alternatives but has some informa-

tion about their distribution, e.g., prior knowledge about types of wines or ranges of the attri-

bute levels, or how costly it is to search (in our search treatment (i.e., treatment 4), the search

cost was very close to zero). It is possible to work out what is the optimal choice, and, indeed,

in our search treatment, a satisficing decision maker will choose the first alternative exceeding

the utility threshold, however, a non-satisficing decision maker can choose among all revealed

alternatives, i.e., perfect recall and availability. Regardless, there is a risk that the chosen alter-

native is suboptimal in the sense that there might be a better unrevealed alternative out there.

To show respondents how to answer the choice tasks, we created short instructional videos.

The information was presented neutrally and was consistent across all treatments. To achieve
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this we created the videos using screen capture software and used Amazon Polly from AWS to

create the voice-over. Respondents were instructed to watch the video carefully before pro-

ceeding with the choice tasks. Example tasks and the instruction videos can be found at

https://choice-tasks.inspire-project.info/.

Respondents were randomly recruited from the UK population aged 18 and over. We did

not use any quota sampling to ensure that our samples were representative of the target popu-

lation. Our data collection effort was approved by the General University Ethics Panel of the

University of Stirling (#: GUEP611). All respondents received an information sheet and were

asked to complete an online consent form. The consent form asked respondents to tick a series

of boxes to indicate that they understood the information provided to them and that they con-

sented to participate. Only respondents who consented entered the survey.

Results

Observed choice shares. Before continuing with the estimation results, we first consider

the observed choice shares by alternative for the four treatments in Table 3. This reveals that

there is a general downward trend in the share of choices as we move from the leftmost alterna-

tive (i.e., j = 1) to the rightmost alternative (i.e., j = 4, j = 7 and j = 10 in treatments 1, 2 and 3 as

well as 4, respectively). While clearly not unequivocal evidence, it signals that there may be an

inherent tendency to process the alternatives from left to right and to choose accordingly. This

decline in choice share appears to get progressively more pronounced as the number of alterna-

tives grows. In treatment 4, where the information search was controlled, the downward trend

is especially stark, since the share of times each subsequent alternative was revealed (and thus

part of the presented choice task) dropped (see final column). Indeed, the final alternative was

revealed in less than 10 percent of cases (incidentally, this was mainly in the first choice task).

Inspecting further, we find that in almost 60 percent of all choices respondents choose their last

revealed alternative where additional alternatives were not revealed. On the face of it, this choice

behavior is consistent with satisficing. However, upon further inspection, it is found that in just

over 50 percent of these cases the status-quo alternative was chosen without revealing any non-

status-quo alternatives. This makes it difficult to say for sure if a satisficing decision rule was

adopted or if these choices are an artifact of some form of status-quo effect. Indeed, almost

25 percent of respondents in treatment 4 always choose the status-quo alternative (which is

considerably higher compared to treatments 1, 2 and 3) and 20 percent never revealed another

alternative. In any case, this still leaves over one-quarter of all choices in treatment 4 to be the

respondent’s last revealed alternative where it is not the status-quo or final alternative.

Table 3. Choice breakdown by alternative.

j Choice shares (percent) Revealed share (percent)

Treatment 1 Treatment 2 Treatment 3 Treatment 4 Treatment 1 Treatment 2 Treatment 3 Treatment 4

1 28.84 22.03 19.65 45.38 100.00 100.00 100.00 100.00

2 23.48 13.54 12.10 18.67 100.00 100.00 100.00 69.47

3 26.90 16.85 14.24 10.00 100.00 100.00 100.00 53.05

4 20.78 16.04 12.40 8.45 100.00 100.00 100.00 46.74

5 12.64 10.25 6.58 100.00 100.00 39.39

6 10.08 7.66 4.25 100.00 100.00 29.29

7 8.81 6.33 2.76 100.00 100.00 21.70

8 6.13 1.65 100.00 15.55

9 6.18 1.35 100.00 11.08

10 5.05 0.89 100.00 8.18

Always j = 1 12.09 9.43 9.07 22.41 0.00 0.00 0.00 18.16

https://doi.org/10.1371/journal.pone.0275339.t003
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Estimation results. For the empirical data, we focus only on the utility maximization

case and estimate two naïve specifications where it is the only decision rule (which we label

RUM-OptOut and RUM-ASCs) and two specifications where it is the secondary decision

rule enacted only if none of the alternatives meets the satisficing threshold (which we label

SAT-OptOut and SAT-ASCs). The difference between the specifications is that in RUM-Opt-

Out and SAT-OptOut, we only estimate an alternative-specific constant for the ‘none-of-

these-bottles’ alternative and in RUM-ASCs and SAT-ASCs, we estimate the full J − 1 alterna-

tive-specific constants relative to the ‘none-of-these-bottles’ alternative. Results for treatments

1, 2, 3 and 4 are presented in Tables 4–7, respectively.

Table 4. Estimation results for treatment 1.

RUM-OptOut SAT-OptOut RUM-ASCs SAT-ASCs

Price -0.087�� (0.007) -0.090�� (0.007) -0.087�� (0.007) -0.090�� (0.008)

Country of origin

Chile -0.039 (0.095) -0.051 (0.100) -0.039 (0.095) -0.048 (0.100)

France 0.041 (0.065) 0.046 (0.068) 0.039 (0.065) 0.044 (0.069)

Italy 0.009 (0.073) 0.010 (0.076) 0.010 (0.074) 0.011 (0.076)

New Zealand -0.108 (0.094) -0.112 (0.098) -0.104 (0.095) -0.105 (0.098)

South Africa -0.182� (0.090) -0.183 (0.093) -0.183� (0.090) -0.182 (0.093)

Spain 0.019 (0.075) 0.024 (0.078) 0.011 (0.075) 0.016 (0.079)

USA -0.290�� (0.078) -0.299�� (0.081) -0.294�� (0.078) -0.303�� (0.081)

Grape

Cabernet Sauvignon 0.249�� (0.089) 0.259�� (0.094) 0.249�� (0.090) 0.260�� (0.095)

Chardonnay 0.268�� (0.097) 0.277�� (0.103) 0.271�� (0.098) 0.279�� (0.103)

Chenin Blanc 0.061 (0.085) 0.056 (0.088) 0.056 (0.086) 0.053 (0.089)

Malbec 0.146 (0.091) 0.145 (0.095) 0.145 (0.092) 0.147 (0.095)

Merlot 0.310�� (0.084) 0.315�� (0.088) 0.301�� (0.085) 0.308�� (0.088)

Pinot Grigio 0.310�� (0.089) 0.320�� (0.094) 0.309�� (0.089) 0.317�� (0.093)

Pinot Noir 0.219�� (0.076) 0.224�� (0.079) 0.222�� (0.076) 0.228�� (0.079)

Sauvignon Blanc 0.242� (0.102) 0.242� (0.107) 0.251� (0.103) 0.254� (0.107)

Tempranillo 0.080 (0.090) 0.082 (0.094) 0.073 (0.090) 0.074 (0.093)

Character

Red wine 0.028 (0.019) 0.029 (0.020) 0.030 (0.019) 0.030 (0.020)

White wine 0.116�� (0.023) 0.123�� (0.024) 0.119�� (0.023) 0.124�� (0.025)

Organic 0.075 (0.043) 0.078 (0.045) 0.071 (0.043) 0.072 (0.045)

Alcohol by volume 0.032 (0.021) 0.033 (0.022) 0.032 (0.021) 0.034 (0.022)

ASC

j = 1 0.255 (0.283) 0.166 (0.296)

j = 2 -0.277 (0.284) -0.242 (0.294)

j = 3 -0.125 (0.286) -0.040 (0.304)

j = 4 -0.393 (0.285) -0.272 (0.312)

τ 2.131�� (0.373) 2.043�� (0.553)

Log-likelihood -6,371.815 -6,368.449 -6,352.218 -6,351.631

Observations 4,774 4,774 4,774 4,774

K 22 23 24 25

�r2 0.034 0.034 0.037 0.036

AIC 12,787.631 12,782.899 12,752.436 12,753.261

BIC 12,929.991 12,931.731 12,907.739 12,915.035

https://doi.org/10.1371/journal.pone.0275339.t004
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Comparing RUM-OptOut and SAT-OptOut for treatments 1–3 (standard stated prefer-

ence), we see that considering satisficing leads to an improvement in fit of 3.4, 56.8 and 185.2

log-likelihood units, respectively. This suggests that even in standard data, considering satisfi-

cing under the assumption of a left-to-right search path is important. However, in the models

where we estimate the full J − 1 set of alternative-specific constants, the story is somewhat

moderated. It is clear that RUM-ASCs and SAT-ASCs across the three treatments fit the data

better than both RUM-OptOut and SAT-OptOut. Furthermore, we notice that all alternative-

Table 5. Estimation results for treatment 2.

RUM-OptOut SAT-OptOut RUM-ASCs SAT-ASCs

Price -0.084�� (0.008) -0.089�� (0.008) -0.086�� (0.008) -0.088�� (0.008)

Country of origin

Chile 0.011 (0.088) -0.001 (0.094) 0.019 (0.088) 0.011 (0.091)

France 0.109 (0.062) 0.124 (0.066) 0.113 (0.062) 0.122 (0.066)

Italy 0.105 (0.071) 0.111 (0.076) 0.106 (0.071) 0.112 (0.075)

New Zealand 0.158� (0.080) 0.173� (0.085) 0.166� (0.081) 0.168� (0.083)

South Africa -0.007 (0.079) 0.005 (0.084) 0.000 (0.078) 0.005 (0.082)

Spain 0.074 (0.071) 0.065 (0.076) 0.080 (0.071) 0.075 (0.073)

USA -0.084 (0.080) -0.094 (0.085) -0.077 (0.080) -0.085 (0.083)

Grape

Cabernet Sauvignon 0.156 (0.080) 0.191� (0.086) 0.162� (0.081) 0.178� (0.085)

Chardonnay 0.120 (0.096) 0.113 (0.102) 0.121 (0.096) 0.121 (0.099)

Chenin Blanc 0.105 (0.085) 0.116 (0.090) 0.100 (0.085) 0.112 (0.089)

Malbec 0.181� (0.085) 0.212� (0.092) 0.201� (0.086) 0.214� (0.090)

Merlot 0.179� (0.076) 0.209� (0.082) 0.183� (0.076) 0.196� (0.080)

Pinot Grigio 0.431�� (0.090) 0.459�� (0.098) 0.429�� (0.091) 0.449�� (0.095)

Pinot Noir 0.006 (0.069) 0.024 (0.073) 0.014 (0.069) 0.022 (0.072)

Sauvignon Blanc 0.308�� (0.091) 0.324�� (0.099) 0.306�� (0.091) 0.315�� (0.095)

Tempranillo 0.064 (0.079) 0.071 (0.084) 0.077 (0.080) 0.080 (0.082)

Character

Red wine 0.055� (0.022) 0.054� (0.023) 0.054� (0.022) 0.054� (0.023)

White wine 0.116�� (0.023) 0.123�� (0.025) 0.116�� (0.023) 0.120�� (0.024)

Organic 0.053 (0.042) 0.063 (0.044) 0.054 (0.042) 0.059 (0.044)

Alcohol by volume 0.013 (0.021) 0.012 (0.022) 0.014 (0.021) 0.013 (0.022)

ASC

j = 1 0.465 (0.297) 0.086 (0.319)

j = 2 -0.432 (0.302) -0.370 (0.314)

j = 3 -0.207 (0.303) -0.084 (0.322)

j = 4 -0.254 (0.303) -0.074 (0.334)

j = 5 -0.506 (0.304) -0.286 (0.345)

j = 6 -0.741� (0.305) -0.489 (0.356)

j = 7 -0.876�� (0.303) -0.593 (0.365)

τ 1.710�� (0.320) 1.990�� (0.343)

Log-likelihood -8,702.515 -8,645.718 -8,604.934 -8,603.495

Observations 4,652 4,652 4,652 4,652

K 22 23 27 28

�r2 0.036 0.042 0.046 0.046

AIC 17,449.030 17,337.437 17,263.868 17,262.990

BIC 17,590.821 17,485.673 17,437.885 17,443.452

https://doi.org/10.1371/journal.pone.0275339.t005
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specific constants are negative and tend to become larger (in absolute terms) as we move from

left to right in the choice task. This implies that alternatives further to the right, all else equal,

are less likely to be chosen relative to the ‘none-of-these-bottles’ alternative. The most notable

finding when comparing RUM-OptOut and SAT-OptOut is that accommodating satisficing

Table 6. Estimation results for treatment 3.

RUM-OptOut SAT-OptOut RUM-ASCs SAT-ASCs

Price -0.083�� (0.008) -0.085�� (0.009) -0.084�� (0.009) -0.084�� (0.009)

Country of origin

Chile -0.048 (0.087) -0.063 (0.093) -0.060 (0.089) -0.061 (0.089)

France -0.026 (0.063) -0.060 (0.070) -0.038 (0.064) -0.037 (0.065)

Italy -0.046 (0.068) -0.052 (0.076) -0.057 (0.070) -0.058 (0.070)

New Zealand -0.014 (0.086) 0.011 (0.095) -0.010 (0.088) -0.010 (0.088)

South Africa -0.079 (0.080) -0.075 (0.086) -0.093 (0.082) -0.093 (0.082)

Spain -0.050 (0.066) -0.050 (0.073) -0.051 (0.068) -0.050 (0.068)

USA -0.304�� (0.075) -0.354�� (0.080) -0.327�� (0.077) -0.326�� (0.077)

Grape

Cabernet Sauvignon 0.436�� (0.080) 0.472�� (0.084) 0.440�� (0.081) 0.439�� (0.081)

Chardonnay 0.242�� (0.093) 0.245� (0.100) 0.253�� (0.094) 0.252�� (0.094)

Chenin Blanc 0.175 (0.091) 0.169 (0.097) 0.181 (0.093) 0.181 (0.093)

Malbec 0.222�� (0.082) 0.272�� (0.088) 0.244�� (0.084) 0.243�� (0.084)

Merlot 0.197� (0.083) 0.213� (0.087) 0.201� (0.084) 0.202� (0.084)

Pinot Grigio 0.409�� (0.089) 0.429�� (0.096) 0.428�� (0.091) 0.427�� (0.091)

Pinot Noir 0.242�� (0.071) 0.279�� (0.077) 0.244�� (0.073) 0.245�� (0.073)

Sauvignon Blanc 0.346�� (0.094) 0.363�� (0.102) 0.346�� (0.097) 0.347�� (0.097)

Tempranillo 0.285�� (0.082) 0.344�� (0.086) 0.299�� (0.082) 0.299�� (0.082)

Character

Red wine 0.051� (0.020) 0.048� (0.022) 0.049� (0.021) 0.050� (0.021)

White wine 0.127�� (0.023) 0.127�� (0.025) 0.126�� (0.024) 0.126�� (0.024)

Organic 0.128�� (0.040) 0.134�� (0.042) 0.129�� (0.040) 0.129�� (0.040)

Alcohol by volume 0.063�� (0.020) 0.067�� (0.021) 0.067�� (0.020) 0.067�� (0.020)

ASC

j = 1 1.413�� (0.296) 0.844�� (0.318)

j = 2 -1.140�� (0.304) -1.141�� (0.304)

j = 3 -0.968�� (0.306) -0.970�� (0.306)

j = 4 -1.117�� (0.304) -1.118�� (0.304)

j = 5 -1.304�� (0.311) -1.306�� (0.312)

j = 6 -1.598�� (0.311) -1.600�� (0.311)

j = 7 -1.802�� (0.306) -1.802�� (0.306)

j = 8 -1.826�� (0.306) -1.828�� (0.307)

j = 9 -1.826�� (0.308) -1.828�� (0.309)

j = 10 -2.020�� (0.308) -2.023�� (0.309)

τ 2.407�� (0.306) 7.137�� (0.000)

Log-likelihood -9,759.748 -9,573.560 -9,533.002 -9,533.000

Observations 4,437 4,437 4,437 4,437

K 22 23 30 31

�r2 0.043 0.061 0.064 0.064

AIC 19,563.497 19,193.121 19,126.004 19,128.000

BIC 19,704.247 19,340.268 19,317.936 19,326.330

https://doi.org/10.1371/journal.pone.0275339.t006
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leads to very modest increases in model fit: 0.6, 1.4 and 2 × 10−3 log-likelihood units for treat-

ments 1, 2 and 3, respectively. This is not surprising given the estimated values of τ, which are

large relative to the other estimated parameters, indicating that no satisfactory alternative was

found and a decision maker defaults to their backup strategy. As a result, support for satisficing

Table 7. Estimation results for treatment 4.

RUM-OptOut SAT-OptOut RUM-ASCs SAT-ASCs

Price -0.107�� (0.011) -0.108�� (0.011) -0.106�� (0.011) -0.110�� (0.011)

Country of origin

Chile -0.140 (0.116) -0.143 (0.118) -0.143 (0.116) -0.126 (0.126)

France -0.093 (0.086) -0.092 (0.088) -0.093 (0.087) -0.067 (0.094)

Italy 0.014 (0.101) 0.023 (0.104) 0.013 (0.101) 0.093 (0.113)

New Zealand -0.020 (0.123) -0.026 (0.125) -0.020 (0.123) -0.004 (0.130)

South Africa -0.132 (0.108) -0.139 (0.111) -0.131 (0.109) -0.135 (0.117)

Spain -0.113 (0.094) -0.114 (0.095) -0.115 (0.095) -0.101 (0.099)

USA -0.447�� (0.105) -0.452�� (0.107) -0.448�� (0.106) -0.432�� (0.114)

Grape

Cabernet Sauvignon 0.282� (0.118) 0.285� (0.119) 0.282� (0.119) 0.287� (0.124)

Chardonnay 0.484�� (0.142) 0.489�� (0.144) 0.480�� (0.142) 0.470�� (0.148)

Chenin Blanc 0.340�� (0.129) 0.346�� (0.131) 0.341�� (0.129) 0.346� (0.138)

Malbec 0.276� (0.121) 0.282� (0.124) 0.276� (0.122) 0.306� (0.129)

Merlot 0.274� (0.114) 0.286� (0.116) 0.273� (0.115) 0.310� (0.123)

Pinot Grigio 0.430�� (0.122) 0.436�� (0.124) 0.427�� (0.122) 0.449�� (0.128)

Pinot Noir 0.350�� (0.099) 0.359�� (0.101) 0.352�� (0.100) 0.389�� (0.105)

Sauvignon Blanc 0.518�� (0.150) 0.526�� (0.154) 0.519�� (0.151) 0.552�� (0.161)

Tempranillo 0.174 (0.114) 0.179 (0.116) 0.176 (0.114) 0.194 (0.120)

Character

Red wine 0.093�� (0.027) 0.094�� (0.028) 0.092�� (0.027) 0.094�� (0.029)

White wine 0.133�� (0.036) 0.134�� (0.037) 0.133�� (0.036) 0.129�� (0.038)

Organic 0.039 (0.059) 0.044 (0.060) 0.038 (0.059) 0.074 (0.064)

Alcohol by volume 0.036 (0.029) 0.035 (0.030) 0.036 (0.029) 0.032 (0.031)

ASC

j = 1 -0.188 (0.422) -0.254 (0.429)

j = 2 0.145 (0.424) 0.240 (0.456)

j = 3 0.178 (0.428) 0.355 (0.459)

j = 4 0.258 (0.430) 0.526 (0.460)

j = 5 0.284 (0.434) 0.693 (0.462)

j = 6 0.282 (0.435) 0.856 (0.462)

j = 7 0.242 (0.459) 1.010� (0.487)

j = 8 0.147 (0.470) 1.278� (0.503)

j = 9 0.414 (0.453) 2.046�� (0.492)

j = 10 0.281 (0.480) 2.892�� (0.581)

τ 2.804�� (0.557) 2.399�� (0.135)

Log-likelihood -3,670.398 -3,667.829 -3,667.282 -3,640.319

Observations 3,691 3,691 3,691 3,691

K 22 23 30 31

�r2 0.046 0.046 0.044 0.051

AIC 7,384.796 7,381.657 7,394.564 7,342.639

BIC 7,521.496 7,524.571 7,580.973 7,535.262

https://doi.org/10.1371/journal.pone.0275339.t007
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behavior in these treatments is small. That said, we want to emphasize that in these treatments,

the evaluation order is unknown and we assume that alternatives are processed in the direction

of reading. We recognize that this assumption is questionable given that a decision maker

might just as easily start in the middle or at the right side of the choice task. It is also increas-

ingly likely that this assumption is violated as the number of alternatives increases (which

might explain the minuscule improvement in model fit for treatment 3). This issue aside,

although not directly comparable (due to potential scale differences) the marginal utility

parameters estimated in both candidate models are broadly equivalent in terms of the sign,

magnitude and significance.

However, our results do have important implications for the behavioral interpretation of

the alternative-specific constants in both a satisficing and non-satisficing model. In the models

where we estimate only the ‘none-of-these-bottles’ alternative, the large increase in model fit

associated with the inclusion of τ suggests that it has large explanatory power. However, the

fact that its inclusion when we estimate J − 1 alternative-specific constants does not lead to a

large improvement in model fit suggests that in standard data, τ acts like a generative constant

that explains the ordering effect normally captured by the full set alternative-specific constants

when these are not included. Furthermore, in the naïve model specifications, the alternative-

specific constants capture the general downward trend in choice proportions from the leftmost

alternative to the rightmost alternative. But in the satisficing model, this is captured by τ, leav-

ing the alternative-specific constants to capture the average influence of factors that are not

explained by the attributes or the left-right processing of alternatives. Indeed, our Monte-

Carlo simulations show considerable bias in the alternative-specific constants when we fail to

estimate the threshold when the data generating process is satisficing.

Whereas the evaluation order was unknown in treatments 1–3, in treatment 4 it is known.

When comparing RUM-OptOut and SAT-OptOut, we see that the improvement in model fit

from estimating τ is very small. Interestingly, we see that in terms of log-likelihood value,

SAT-OptOut and RUM-ASCs both comparably fit the data, but when we consider the AIC

and BIC statistics SAT-OptOut fits the data much better. This further underlines the result

above that τ is a generative constant and that its ability to explain the alternative-specific con-

stants is much greater the more closely tied the alternative-specific constants are to the actual

order in which alternatives were evaluated. Remember that in treatment 4 alternatives could

only be chosen if they were in fact revealed. Thus, the fact that the alternative-specific con-

stants are increasingly positive implies that, once they are revealed, alternatives that appear

later in the sequence are more likely to be chosen. This is a logical finding given that latter

alternatives are less likely to be revealed if an alternative appearing earlier in the sequence

exceeded some minimum level of acceptable utility. The fact that this expectation is only cor-

roborated in the satisficing model provides further support for its use when the evaluation

order is known. Comparing RUM-ASCs and SAT-ASCs, we do see an improvement in the

model fit of almost 30 log-likelihood units. While this improvement in model fit is supported

even after accounting for the loss of parsimony, we admit that it is a relatively small gain com-

pared to what could be achieved under alternative-specifications (e.g., accounting for unob-

served heterogeneity). But this improvement in fit is all the more striking given the insights

from the synthetic application that accounting for satisficing is unlikely to yield any substantial

gains in model fit. It also reinforces the need to know the evaluation order for this type of

model, only then are you likely to observe any meaningful improvement in model fit. Once

more, the estimated marginal utility parameters are fairly consistent.

Scenario analysis. While the improvement in model fit may not be large from explicitly

considering satisficing, the failure to do so has significant implications for prediction. Con-

sider, that you manage a store and need to place bottles of wine on the shelf. Supposing the
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collection of nine relatively “superior” and nine relatively “inferior” bottles, as shown in

Table 8. Our classification of superior” andinferior” bottles are informed by the esti-

mated marginal utilities. Compared to the inferior bottles, the superior bottles are cheaper and

have combinations of non-price attributes that were found, on average, to have higher mar-

ginal utilities. As a result, the superior bottles yield higher utility compared to the inferior bot-

tles. The questions for you as a manager are: What bottles to place on the self? and; What is the

optimal order in which to place these bottles? As an analyst, we ask a slightly longer question:

What is the optimal selection and order in which to place the bottles conditional on how cus-

tomers make decisions? The implications, as we will show, are clear. If you believe that people

are utility maximizing and consider all bottles before making a choice, the order does not mat-

ter. However, if you believe that people are satisficing, then placing the bottles on the shelf as if

they are utility maximizing may lead to suboptimal orderings and consequently a loss in sales

revenue.

In Tables 9 and 10, we show simulation results of the optimal order based on the actual

parameter estimates from each of our empirical models. Specifically, we identify the arrange-

ment (and subset) of bottles that maximize the expected revenue, E Revenueð Þ, generated

from a single representative consumer: E Revenueð Þ ¼
PJ

j¼1
Pr j j X; β̂; t̂
� �

xpj, where

Pr j j X; β̂; t̂
� �

denotes the probability for alternative j conditional on scenarios X and esti-

mated parameters β̂ and, where applicable, t̂; and, xpj is the price of alternative j. For this

analysis we consider bottles A–I and bottles R–Z in Table 8 and the “none-of-these-bottles”

option. Results are shown in Tables 9 and 10, respectively.

Focusing firstly on the arrangement of the superior bottles (Table 9) where self space is lim-

ited to three bottles (akin to treatment 1), there are 3! 9

3

� �
¼ 504 possible arrangements. All

four models for treatment 1 identify that the optimal arrangement includes bottles F, H and I,

but the optimal order differs by model. Based on the RUM-OptOut model, where utility maxi-

mizing is assumed, the optimal arrangement leads to an expected revenue of £3.87 per repre-

sentative consumer. Note, however, if utility maximization is the incorrect assumption and the

Table 8. Bottles considered in scenario analysis.

Bottles A–I (superior bottles) Bottles R–Z (inferior bottles)

A B C D E F G H I R S T U V W X Y Z

Price (£) 4.00 4.00 4.00 4.50 4.50 4.50 4.50 5.00 5.50 15.50 16.00 16.50 17.00 17.00 18.00 18.00 18.00 20.00

Country of origin

Australia ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

France ✓ ✓ ✓ ✓ ✓

Italy ✓ ✓

USA ✓ ✓ ✓

Grape

Blend ✓ ✓ ✓ ✓ ✓ ✓

Cabernet Sauvignon ✓ ✓ ✓ ✓

Malbec ✓ ✓

Merlot ✓ ✓ ✓

Pinot Noir ✓

Tempranillo ✓ ✓

Character (Red wine) 5 4 5 4 5 4 5 5 4 3 4 5 5 4 2 4 4 1

Organic ✓ ✓ ✓ ✓ ✓ ✓ ✓

Alcohol by volume (%) 13.0 13.5 15.0 11.5 12.0 12.5 13.5 12.5 14.5 12.0 13.5 12.5 12.0 11.5 10.0 12.0 14.5 11.5

https://doi.org/10.1371/journal.pone.0275339.t008
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consumer instead adopts a satisficing decision rule, this arrangement will yield a lower

expected revenue of £3.68. That is, revenue will be overpredicted by almost £0.20 per con-

sumer when in fact the consumer satifices. If instead, the manager arranges the bottles accord-

ingly to the SAT-OptOut model, where consumers are believed to satisfice, a revenue of £3.79

can be expected. Note that since the bottles are optimally arranged (with satisficing accounted

for) this estimate is higher than the respective estimate predicted using the RUM-OptOut

arrangement. This difference of £0.11 is the expected loss in revenue due to a suboptimal

ordering of bottles that arises when the consumer is assumed to be a utility maximizer when in

fact the consumer satisfices. It is crucial to note that there is no expected revenue loss from

assuming satisficing when in fact utility maximization is adopted. That is, the optimal arrange-

ments under RUM-OptOut and SAT-OptOut both predict the same revenue under utility

maximization. This insight, leads to a straightforward recommendation for the manager to

base the predictions on a satisficing model, even if utility maximizing is assumed to be the

true behavior, as bottle order is less consequential for revenue predictions under utility

Table 9. Predictions or expected revenue and optimal arrangement for bottles A–I (superior bottles).

Best arrangement Expected revenue (£) conditional on Difference

Utility maximization Satisficing

Treatment 1

RUM-OptOut F,H,I� 3.87 [3.70,4.04] 3.68 [3.35,3.93] -0.19 [-0.56, 0.12]

SAT-OptOut F,I,H 3.87 [3.70,4.04] 3.79 [3.44,4.06] -0.09 [-0.47, 0.24]

Difference 0.00 [0.00,0.00] 0.11 [0.06,0.16] 0.11 [0.06,0.16]

RUM-ASCs H,I,F 3.91 [3.73,4.08] 3.71 [3.30,3.94] -0.20 [-0.64, 0.10]

SAT-ASCs F,I,H 3.90 [3.72,4.07] 3.73 [3.33,3.96] -0.17 [-0.60, 0.13]

Difference -0.01 [-0.02, 0.00] 0.02 [-0.01, 0.06] 0.03 [0.00,0.07]

Treatment 2

RUM-OptOut D,H,I,E,F,G� 3.93 [3.78,4.06] 3.63 [3.22,3.94] -0.29 [-0.72, 0.04]

SAT-OptOut E,I,H,D,F,G� 3.86 [3.73,3.99] 3.83 [3.39,4.16] -0.03 [-0.49, 0.32]

Difference -0.06 [-0.07,-0.05] 0.20 [0.16,0.24] 0.26 [0.22,0.30]

RUM-ASCs F,I,H,D,G,E 3.99 [3.84,4.13] 3.79 [3.56,3.95] -0.21 [-0.47, 0.02]

SAT-ASCs E,I,H,F,D,G 3.88 [3.74,4.01] 3.88 [3.65,4.04] 0.00 [-0.26, 0.22]

Difference -0.11 [-0.14,-0.09] 0.09 [0.07,0.11] 0.20 [0.17,0.24]

Treatment 3

RUM-OptOut A,C,E,G,F,H,D,I,B� 3.87 [3.75,3.98] 4.19 [3.93,4.37] 0.31 [0.04,0.54]

SAT-OptOut B,I,H,E,F,D,G,C,A� 3.87 [3.75,3.98] 4.19 [3.93,4.37] 0.31 [0.04,0.54]

Difference 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00]

RUM-ASCs G,I,H,E,D,F,B,A,C 4.01 [3.88,4.13] 3.97 [3.85,4.09] -0.04 [-0.20, 0.13]

SAT-ASCs G,I,H,E,D,F,A,B,C 3.97 [3.85,4.09] 4.01 [3.88,4.13] 0.04 [-0.13, 0.21]

Difference -0.04 [-0.06,-0.02] 0.03 [0.02,0.05] 0.07 [0.05,0.10]

Treatment 4

RUM-OptOut I,H,F,D,G,E,B,A,C 2.92 [1.65,4.05] 2.77 [1.59,3.87] -0.15 [-1.81, 1.57]

SAT-OptOut I,H,G,E,D,F,B,C,A 2.90 [1.65,3.98] 2.79 [1.59,3.87] -0.12 [-1.80, 1.58]

Difference -0.02 [-1.71, 1.70] 0.01 [-1.63, 1.65] 0.03 [-2.33, 2.39]

RUM-ASCs I,H,F,G,E,D,A,C,B 2.91 [1.66,3.97] 2.73 [1.55,3.77] -0.17 [-1.83, 1.48]

SAT-ASCs H,I,E,D,F,G,A,C,B 2.84 [1.62,3.90] 2.77 [1.56,3.80] -0.07 [-1.71, 1.59]

Difference -0.07 [-1.74, 1.60] 0.03 [-1.60, 1.66] 0.10 [-2.23, 2.45]

Notes:

� signifies that there is more than one best arrangment; 95 percent confidence intervals are reported in square brackets.

https://doi.org/10.1371/journal.pone.0275339.t009
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maximization. Moreover, the mistake of wrongly assuming satisficing is small compared to the

mistake of wrongly assuming utility maximizing. Turning attention to predictions arising

from the RUM-ASCs and SAT-ASCs models, we observe a similar pattern. This said, the

expected revenue loss of £0.02 associated with incorrectly assuming utility maximizing when

in fact the true behavior is satisficing is considerably smaller. This is not surprising given that

the alternative-specific constants in the RUM-ASCs model do capture the general downward

trend in choosing bottles further along the shelf. Moving to the situation where self space is

limited to six bottles (akin to treatment 2) the task for the manager is to identify the best

arrangement out of 6! 9

6

� �
¼ 60; 480 possible arrangements. Again, all four models suggest the

same subset of bottles, but different orderings. The predictions retrieved from RUM-OptOut

and SAT-OptOut reinforce the inferences derived from treatment 1. When alternative-specific

constants are accommodated, however, the simulations suggest that the mistake of wrongly

assuming utility maximizing is larger (in absolute terms) compared to the mistake of wrongly

Table 10. Predictions or expected revenue and optimal arrangement for bottles R–Z (inferior bottles).

Best arrangement Expected revenue (£) conditional on Difference

Utility maximization Satisficing

Treatment 1

RUM-OptOut U,V,Y� 8.57 [7.58,9.55] 8.50 [7.41,9.54] -0.08 [-1.53, 1.37]

SAT-OptOut U,Y,V 8.57 [7.58,9.55] 8.56 [7.48,9.61] -0.01 [-1.48, 1.44]

Difference 0.00 [0.00,0.00] 0.06 [0.01,0.13] 0.06 [0.01,0.13]

RUM-ASCs Y,V,U 8.61 [7.63,9.59] 8.39 [7.40,9.37] -0.22 [-1.62, 1.18]

SAT-ASCs U,V,Y 8.61 [7.63,9.58] 8.40 [7.40,9.38] -0.21 [-1.61, 1.19]

Difference -0.01 [-0.05, 0.03] 0.01 [-0.09, 0.11] 0.01 [-0.08, 0.12]

Treatment 2

RUM-OptOut T,U,V,W,Y,X� 9.99 [8.87,11.08] 10.68 [9.22,12.00] 0.68 [-1.11, 2.44]

SAT-OptOut W,X,Y,U,V,T� 9.83 [8.75,10.87] 10.68 [9.22,12.00] 0.84 [-0.93, 2.57]

Difference -0.16 [-0.32, 0.01] 0.00 [0.00,0.01] 0.16 [0.00,0.32]

RUM-ASCs V,Y,U,X,T,W 9.99 [8.87,11.08] 9.98 [8.86,11.01] 0.00 [-1.55, 1.52]

SAT-ASCs W,Y,U,V,X,T 9.83 [8.80,10.84] 10.16 [9.00,11.24] 0.33 [-1.21, 1.83]

Difference -0.16 [-0.33, 0.02] 0.17 [0.06,0.30] 0.33 [0.12,0.54]

Treatment 3

RUM-OptOut R,U,X,S,T,V,Z,Y,W� 9.95 [8.78,11.10] 12.69 [11.57,13.70] 2.74 [1.17,4.28]

SAT-OptOut Z,W,X,Y,V,U,T,S,R� 9.95 [8.78,11.10] 12.70 [11.58,13.72] 2.75 [1.18,4.29]

Difference 0.00 [0.00,0.00] 0.01 [0.01,0.02] 0.01 [0.01,0.02]

RUM-ASCs X,V,Y,T,U,S,W,R,Z 10.04 [8.82,11.17] 9.99 [8.81,11.13] -0.05 [-1.68, 1.65]

SAT-ASCs X,V,Y,T,U,S,W,R,Z 9.99 [8.76,11.15] 10.05 [8.88,11.19] 0.06 [-1.56, 1.75]

Difference -0.05 [-0.11, 0.02] 0.06 [-0.03, 0.15] 0.11 [0.00,0.22]

Treatment 4

RUM-OptOut V,T,X,U,Y,W,Z,R,S 7.20 [3.84,10.50] 6.86 [3.66,10.04] -0.33 [-4.96, 4.26]

SAT-OptOut V,T,X,U,W,Y,Z,R,S 7.05 [3.74,10.33] 6.99 [3.68,10.20] -0.06 [-4.78, 4.54]

Difference -0.15 [-4.70, 4.37] 0.13 [-4.27, 4.52] 0.27 [-6.17, 6.56]

RUM-ASCs V,T,X,U,Y,W,Z,R,S 7.23 [3.71,10.68] 7.35 [3.83,10.81] 0.12 [-4.84, 5.04]

SAT-ASCs V,T,U,Y,X,S,Z,R,W 7.10 [3.77,10.42] 7.47 [3.89,10.97] 0.36 [-4.43, 5.30]

Difference -0.13 [-4.86, 4.48] 0.12 [-4.75, 4.92] 0.25 [-6.33, 7.10]

Notes:

� signifies that there is more than one best arrangment; 95 percent confidence intervals are reported in square brackets.

https://doi.org/10.1371/journal.pone.0275339.t010
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assuming satisficing. If there is space for all nine bottles (as in treatments 3 and 4) the manag-

er’s task is identify the optimal ordering from 9! = 362, 880 possible arrangements. For these

treatments, we find a somewhat different story. The differences between models are relatively

small, meaning that, while the recommendation for the manager to defaultly generate predic-

tions on the satisficing model still holds, it is of lesser consequence. The predicted difference

between the two behavioral rules appears of greater relevance. For example, for the RUM-Opt-

Out model in treatment 3, there is a difference of £0.31 per representative consumer. In short,

making an incorrect assumption on the behavioral rule is more costly than using the incorrect

model.

Switching attention to the optimal arrangement of inferior bottles (Table 10), we find simi-

lar results. The most notable difference, however, is that the loss of revenue from failing to

consider satisficing is potentially larger in absolute terms as the number of bottles to arrange

increases. However, these estimates are largely insignificant. This result is rather unsurprising.

The inferior bottles of wine tend to be expensive bottles with less desirable attributes, e.g.,

grape variety and country of origin. Even when compared to other inferior bottles of wine,

they are unlikely to be chosen under either decision rule. However, given that they are all

expensive, the potential loss from an incorrect assumption about the underlying decision rule

is greater in absolute terms.

Tables 9 and 10 separately identifies the optimal arrangement for superior and inferior bot-

tles of wine, respectively. In effect, the bottles the manager has to arrange are relatively homo-

geneous in terms of expected utility. With this in mind, a suboptimal arrangement is likely to

have a modest impact on predicted revenue. For the sake of brevity, we show the optimal

arrangement when there is a mixture of superior and inferior bottles in Appendix B in S1

Appendix. As expected, the differences are generally of a much higher magnitude. Therefore,

the implications of not using the correct behavioral rule are heightened when the bottles are

more varied. This is an additional factor that the manager should be cognizant of.

Conclusion

Choice modelers are increasingly interested in capturing and explaining non-utility maximiz-

ing decision processes. Several researchers have developed models to capture decision rules

such as elimination-by-aspects [3] and random regret minimization [2], but few have looked

at satisficing [8, 19]. In this paper, we set out to develop a simple satisficing choice model that

is equally applicable to revealed and stated preference data. A satisficing individual will choose

the first alternative (option) with a utility higher than some threshold level of utility. The use-

fulness of the model proposed in the current paper lies in its ability to explain choices. The

model has the desirable property that it nests a no deliberation, or choose-the-first, strategy on

the one hand and a secondary decision strategy on the other hand. The secondary decision

strategy can be any the analyst deems appropriate.

We test the performance of our model using a series of Monte-Carlo simulations on data

generated using the secondary decision rules and data generated using a satisficing model. We

find that our satisficing model does better than the corresponding secondary decision rules at

retrieving the true parameters for low to high levels of the utility threshold. For very high util-

ity thresholds, the secondary decision rule models do just as well and are more parsimonious.

That said, a pure satisficing decision rule, even one that is framed in the context of utility, is

still a non-compensatory decision rule in the sense that no real trade-offs between alternatives

are made. This has implications for the applicability of the model in welfare analysis for both

revealed and stated preference data.
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The empirical data uses a novel experimental design procedure that allows us to control the

search path. Specifically, in one treatment participants received alternatives sequentially. At

each point in time, respondents decided whether to choose among currently revealed alterna-

tives or keep searching. This way of modeling satisficing is much more in line with the idea

put forth by Simon [1]. An exploration of the observed choice shares revealed a large share of

choices in this treatment were consistent with satisficing behavior. The model confirmed this.

However, for standard treatments, where all alternatives were shown at once, the gains in

model fit did not materialize. Although care is needed when drawing conclusions based on a

single study, this suggests, that although our satisficing model can be applied to any revealed

and stated preference data, unless the evaluation order is known its usefulness is likely to be

relatively limited.

An important finding following our work is the implication for how to interpret and think

about alternative-specific constants. In standard choice models that do not account for satisfi-

cing, the alternative-specific constants capture the general downward trend in choice propor-

tions from the leftmost alternative to the rightmost alternative. But in the satisficing model,

this is captured by the threshold parameter, leaving the alternative-specific constants to cap-

ture the average influence of factors that are not explained by the attributes or the left-right

processing of alternatives. Furthermore, excluding all alternative-specific constants bar the one

for the opt-out alternative and estimating the utility threshold suggests that the utility thresh-

old can be viewed as a generative constant in that it captures and explains the part of the alter-

native-specific constants that are associated with ordering effects. Depending on the data

generation process, the gain in explanatory power for estimating the threshold can be quite

substantive. Furthermore, from a practical decision making standpoint, the satisficing model

is better equipped to identify the optimal order of alternatives to present to a decision maker

to maximize the likelihood of an alternative being chosen. For example, from a store owner’s

perspective, what is the optimal order in which to place bottles on a shelf to maximize revenue?

We show using simulation that a store owner assuming that their customers are satisficers can

expect somewhat higher revenues compared to one that assumes they are utility maximizing.

Finally, it is acknowledged that the results are based on the condition that preferences and

the threshold are homogeneous for choice observations. For obvious reasons, these are strong

assumptions unlikely to hold in reality. To fully capture satisficing behavior, easy extensions to

the model involve accounting for preference heterogeneity and the reparameterization of the

threshold to accommodate search costs; observed and unobserved individual-specific factors

that may affect the likelihood of satisficing; or aspiration levels to allow for more explicit

updating of the threshold utility in response to learning. Although this is expected that this

facilitates the estimation of the utility thresholds and, in doing so, better explains the presence

of satisficing behavior, more research to properly investigate these aspects is warranted.

Supporting information

S1 Appendix.

(PDF)

Author Contributions

Conceptualization: Erlend Dancke Sandorf, Danny Campbell.

Data curation: Erlend Dancke Sandorf, Danny Campbell.

Formal analysis: Erlend Dancke Sandorf, Danny Campbell.

PLOS ONE A simple satisficing model

PLOS ONE | https://doi.org/10.1371/journal.pone.0275339 October 10, 2022 28 / 30

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0275339.s001
https://doi.org/10.1371/journal.pone.0275339


Funding acquisition: Erlend Dancke Sandorf, Danny Campbell.

Investigation: Erlend Dancke Sandorf, Danny Campbell, Caspar Chorus.

Methodology: Erlend Dancke Sandorf, Danny Campbell, Caspar Chorus.

Project administration: Erlend Dancke Sandorf, Danny Campbell.

Resources: Erlend Dancke Sandorf, Danny Campbell.

Software: Erlend Dancke Sandorf, Danny Campbell.

Validation: Erlend Dancke Sandorf, Danny Campbell.

Visualization: Erlend Dancke Sandorf, Danny Campbell.

Writing – original draft: Erlend Dancke Sandorf, Danny Campbell, Caspar Chorus.

Writing – review & editing: Erlend Dancke Sandorf, Danny Campbell, Caspar Chorus.

References
1. Simon HA. A Behavioral Model of Rational Choice. The Quarterly Journal of Economics. 1955; 69

(1):99–118. https://doi.org/10.2307/1884852

2. Chorus CG, Arentze TA, Timmermans HJP. A Random Regret-Minimization model of travel choice.

Transportation Research Part B: Methodological. 2008; 42(1):1–18. https://doi.org/10.1016/j.trb.2007.

05.004

3. Tversky A. Elimination by aspects: A theory of choice. Psychological Review. 1972; 79(4):281–299.

https://doi.org/10.1037/h0032955

4. Lapersonne E, Laurent G, Le Goff JJ. Consideration sets of size one: An empirical investigation of auto-

mobile purchases. International Journal of Research in Marketing. 1995; 12(1):55–66. https://doi.org/

10.1016/0167-8116(95)00005-M

5. Gilbride TJ, Allenby GM. A Choice Model with Conjunctive, Disjunctive, and Compensatory Screening

Rules. Marketing Science. 2004; 23(3):391–406. https://doi.org/10.1287/mksc.1030.0032

6. Aribarg A, Foutz NZ. Category-Based Screening in Choice of Complementary Products. Journal of Mar-

keting Research. 2009; 46(4):518–530. https://doi.org/10.1509/jmkr.46.4.518

7. Aribarg A, Otter T, Zantedeschi D, Allenby GM, Bentley T, Curry DJ, et al. Advancing Non-compensa-

tory Choice Models in Marketing. Customer Needs and Solutions. 2018; 5(1):82–92. https://doi.org/10.

1007/s40547-017-0072-0

8. Sandorf ED, Campbell D. Accommodating satisficing behaviour in stated choice experiments. Euro-

pean Review of Agricultural Economics. 2019; 46(1):133–162. https://doi.org/10.1093/erae/jby021

9. Chorus C, van Cranenburgh S, Daniel AM, Sandorf ED, Sobhani A, Szep T. Obfuscation maximization-

based decision-making: Theory, methodology and first empirical evidence. Mathematical Social Sci-

ences. 2020. https://doi.org/10.1016/j.mathsocsci.2020.10.002

10. Manski CF. Optimize, satisfice, or choose without deliberation? A simple minimax-regret assessment.

Theory and Decision. 2017; 83(2):155–173. https://doi.org/10.1007/s11238-017-9592-1

11. Hey JD, Permana Y, Rochanahastin N. When and how to satisfice: an experimental investigation. The-

ory and Decision. 2017; 83(3):337–353. https://doi.org/10.1007/s11238-017-9600-5

12. Stigler GJ. The Economics of Information. Journal of Political Economy. 1961; 69(3):213–225. https://

doi.org/10.1086/258464

13. Weitzman ML. Optimal Search for the Best Alternative. Econometrica. 1979; 47(3):641–654. https://doi.

org/10.2307/1910412
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