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ABSTRACT
A three-dimensional (3D) numerical simulation was performed using a combined stroke swimmer (deformable sphere) in an incompressible
fluid of an infinite domain. The time-dependent deformation of the swimmer surface was assumed independent of the circumferential cross
section in the flow direction of the swimmer. The 3D numerical simulation is an extension of our previous study that considered an axisym-
metric numerical simulation. In particular, different fluid viscosities were considered for the same stroke of the swimmer. The effect of the
swimmer inertia was studied by gradually decreasing the fluid viscosity. When the fluid viscosity decreased, the mean velocity of the swimmer
changed its direction between Re = 0.001 89 and Re = 0.0103. There is a transition between Re = 0.0103 and Re = 9.90 from the axisymmetric
to three-dimensional flow that exhibits planar symmetry.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0121177

I. INTRODUCTION

In a previous study,1 we performed a two-dimensional (2D)
axisymmetric numerical simulation to a combined stroke swimmer
with a focus on the effect of inertia (the term “combined stroke” was
introduced by Felderhof in Ref. 2, Sec. IV C). In particular, a com-
bined stroke swimmer refers to a combination of the potential stroke
swimmer and the squirmer (Secs. IV A and IV B, respectively, in
Ref. 2). In this study, we apply a three-dimensional (3D) numer-
ical simulation to extend simulations to the 3D case. In this way,
extended versions at larger Reynolds numbers for combined stroke
swimmers can be evaluated. In particular, at larger Reynolds num-
bers, we can expect 3D velocity variations impossible to evaluate
with axisymmetric numerical simulations. In addition, the 3D
numerical simulation can be used to study turbulence, which might
affect the combined stroke, the effect of the wall close to the
swimmer, and the interaction between swimmers.3

Here, we pay particular attention to the 3D modeling aspect of
the velocity of the combined stroke swimmer and the fluid velocity
around the swimmer. In addition, we compare the 3D calculation
results with those provided by theoretical predictions and previously
performed axisymmetric calculations.

Significant attention has been paid to the effect of inertia on
microswimmers. Fluid inertia is crucial in the locomotion of organ-
isms of size O(1 mm). Several studies have been conducted to
address this issue. A review in this regard is provided in Ref. 1.
For completeness, we briefly summarize the literature review and
include new relevant publications.

The effect of fluid inertia on the swimming of a deformable
sphere was first studied by Rao.4 He proposed a mathematical
model for the time-dependent ciliary propulsion of a finite micro-
organism. The mechanical forces of the fluid on the organism and
the velocity of free propulsion were calculated. Moreover, Wang
and Ardekani5 theoretically investigated the convective inertial force
acting on a squirmer. Particular attention was paid to the effect
of the convective inertial force on the puller and pusher squirmer.
Ishimoto6 discussed four dimensionless parameters influencing the
swimmer: the Reynolds number (Re = LU/ν), with L and U being
the characteristic length scale and velocity scale of the swimmer and
ν being the kinematic velocity of the fluid; the oscillatory Reynolds
number (Rω = L2/νT), in which T is the characteristic time scale
of the swimmer; the Stokes number RS = (ρp/ρ f )Rω, where ρp and
ρ f are the densities of the swimmer and the fluid, respectively; and
Rg = (RS − Rω)gT/U, in which g is the gravitational acceleration.
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The study discussed the effects of different parameters. Khair and
Chisholm7 used matched asymptotic expansions at small Reynolds
numbers to calculate the swimming velocity of a spherical squirmer
using a second-order expansion of the Reynolds number. An expres-
sion is derived for the speed of propulsion of the swimmer as a
function of the Reynolds number. Furthermore, Li and Ardekani8

numerically investigated the behavior of a single squirmer near a
no-slip wall and the behavior of several squirmers between two
walls. Different modes are found for the single squirmer. The behav-
ior of multiple squirmers between two walls is very different from
the behavior of a single one. Chisholm et al.9 numerically investi-
gated 2D and 3D flows around a squirmer for Reynolds numbers
between 0.01 and 1000. The authors found substantial differences
in the locomotion of a pusher and a puller. The unsteady 3D flow
simulations showed the transition of the flow around the squirmer
from steady and axisymmetric to unsteady and 3D. Dombrowski
et al.10 conducted a numerical study of a spherobot comprising
two spheres of unequal size oscillating in an anti-phase, generating
nonlinear steady streaming flow. These flows enable the swimmer

to propel itself. Spelman and Lauga11 studied a squirmer in the
inertia-dominated limit using the matched asymptotic expansion
method. For this purpose, the authors developed a mathematical
framework to quantify the steady streaming of a spherical body
under arbitrary axisymmetric time-periodic boundary conditions.
They proposed an application of their results for small-scale force
generation and synthetic locomotion. Li et al.12 numerically evalu-
ated the hydrodynamic interaction of swimming organisms in small
to intermediate Reynolds number regimes, that is, Re ∼ O(0.1–100),
where the inertial effects on the hydrodynamic interaction were
significant. Using a squirmer, they found that the inertial effects
change the contact time and dispersion dynamics of a pair of pusher
swimmers.

In Ref. 1, we provided a detailed description of the theoreti-
cal model developed in Ref. 13. For the sake of completeness, we
summarize the relevant aspects previously published.

Felderhof and Jones13 carried out a theoretical study on the
swimming performance of a sphere immersed in a viscous incom-
pressible fluid with inertia for periodic surface modulations based

FIG. 1. Combined stroke swimmer as a function of the dimensionless time t/Tc for (a) t/Tc = 0, (b) t/Tc = 1/6, (c) t/Tc = 2/6, (d) t/Tc = 3/6, (e) t/Tc = 4/6, (f) t/Tc

= 5/6, and (g) t/Tc = 1.
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on Navier–Stokes equations (e.g., see Refs. 13 and 14). For instance,
their combined stroke swimmer in a cross section of the 3D-
geometry (see Ref. 2) is shown in Fig. 1 for several values of
dimensionless time (time: t; time of the surface modulation: Tc) as
a function of dimensionless coordinates (axial coordinate z, radial
coordinate r, and radius of the swimmer a). From (a) to (d) (see
Fig. 1), the swimmer develops as a function of time, from a deformed
sphere extended in the horizontal direction into a deformed sphere
extended in the vertical direction. From (d) to (g), the swimmer
returns to the deformed sphere that extends in the horizontal direc-
tion. At the starting time t = 0, the velocity of the swimmer during
the period from (a) to (d) is in the left direction. The velocity
increases from 0 to a maximum (negative) value and returns to a
small value. During the period from (d) to (g), the velocity is in
the right direction, increasing to the maximum (positive) value and
then returning to a small value. The positive velocity amplitude dur-
ing periods (d) to (g) is larger than the negative velocity amplitude
during periods (a) to (d). Therefore, the mean velocity of the swim-
mer is in the (positive) direction. A detailed description is provided
below when discussing the results in Sec. IV C (description of the
swimmer).

Furthermore, Felderhof and Jones13 calculated the mean swim-
ming velocity and other properties in terms of the surface modula-
tion and fluid viscosity. The authors found that swimming efficiency
depends on a dimensionless scaling number involving the radius of
the sphere, the time of the swimmer, and the kinematic viscosity
of the fluid. This scaling number–which is similar to the oscillatory
Reynolds number Rω = L2/νT discussed by Ishimoto6–is a measure
of inertia relative to the viscous force. Therefore, it strongly affects
the velocity of swimmers.

This study focuses on the effect of inertia on the combined
stroke swimmer from Ref. 13, in particular, because this type of
swimmer substantially differs from the other swimmers discussed
in the Introduction owing to the time-dependent deformation of its
surface. This time-dependent deformation of its surface gives a more
realistic description of a microswimmer. By decreasing the viscosity
of the fluid (maintaining all other parameters the same), the effect on
the velocity of the swimmer and on the fluid flow around the swim-
mer will be determined. We calculate the mean swimming velocity of
the swimmer and its velocity oscillations due to the time-dependent
movement for the combined stroke swimmer (assuming indepen-
dence of the deformation of the swimmer in the circumferential
xy-direction, which is perpendicular to the axial z-direction). In
addition, we focus on the Reynolds number dependence of the mean
swimming velocity. According to Ref. 14, a flow reversal occurs with
the increasing Reynolds number.

II. COMBINED STROKE SWIMMER
As mentioned, we studied one of the microswimmers described

in Ref. 13 for a sphere in a viscous incompressible fluid with inertia:
the combined stroke swimmer. The details of the flow velocity for
this swimmer are provided for the Stokes limit in Ref. 2. Neverthe-
less, for the sake of completeness, we summarize the central aspects
of Ref. 2. Hence, all equations are taken from Ref. 2.

In spherical coordinates r(r, θ, ϕ), the flow velocity v(r, t) can
be expanded in terms of a set of fundamental solutions ul(r, θ) and
vl(r, θ) of Stokes equations as follows:

v(r, t) = −U(t)ez +
∞
∑
l=1

ml(t)ul(r, θ) +
∞
∑
l=2

kl(t)vl(r, θ)] (1)

with

ul(r, θ) = (a
r
)

l+2
[(l + 1)Pl(cos θ)er + P1

l (cos θ)eθ], (2)

vl(r, θ) = (a
r
)

l
[(l + 1)Pl(cos θ)er +

l − 2
l

P1
l (cos θ)eθ]. (3)

Note that these equations correspond to the flow velocity in the
Stokes limit, where a is the radius of the swimmer, ml(t) and kl(t)
represent the periodic time dependence of the swimmer, and er and
eθ are the unit vectors in the radial and tangential directions, respec-
tively. Pl(cos θ) are Legendre polynomials, and P1

l (cos θ) are the
associated Legendre functions, as in Ref. 2.

The deformation ξ may be written analogously as follows:

ξ =
∞
∑
l=1

Ml(t)ul(a, θ) +
∞
∑
l=2

Kl(t)vl(a, θ). (4)

The deformation has radial and tangential components and
describes an arbitrary axisymmetric deformation of the spherical
surface. For a periodic deformation with period Tc = 2π/ω, we have

Ml(t) = a(μls cos ωt − μlc sin ωt), (5)

Kl(t) = a(κls cos ωt − κlc sin ωt), (6)

with dimensionless coefficients μls, μlc, κls, κlc. The values of the
coefficients for the combined stroke swimmers are as follows:
κ2s = 5

3(
230
413)

1/2μ1c and κ3c = 27
59 μ1c. The value of μ1c can be freely

selected; it determines the deformation amplitude of the swimmer.
The dimensionless amplitude is selected as ϵ = μ1c/a. The remaining
coefficients are set to 0.

Figure 1 shows the deformation of the combined stroke swim-
mer [calculated from Eq. (4)] as a function of time t/Tc for several
time steps. More details are provided in Sec. IV A.

The purpose of this study is to investigate the flow development
for the swimmer and the surrounding fluid (using 3D numerical cal-
culations) due to the time-dependent deformations of the combined
stroke swimmer.

III. NUMERICAL METHOD
The swimmer moves oscillatory due to the time-dependent

deformation with the mean velocity in the Newtonian reference
frame [the deformation of the swimmer can be calculated using
Eqs. (4)–(6)]. We performed the calculations in the moving refer-
ence frame, where the acceleration/deceleration is different from
the absolute acceleration/deceleration in the Newtonian reference
frame. Therefore, the equation of motion must be modified accord-
ingly using a force term. The term fi represents the accelera-
tion/deceleration of a swimmer relative to the Newtonian reference

AIP Advances 12, 105004 (2022); doi: 10.1063/5.0121177 12, 105004-3
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frame. It maintains the swimmer in the same position, causing a
velocity field far from the swimmer. Therefore, the equation of
motion is given as follows:

∂u
∂t
+ u ⋅ ∇u = −1

ρ
∇p + ν(∇2u) + fi, (7)

where ρ denotes the fluid density, u denotes the fluid velocity, t
denotes the time, p denotes the pressure, ν denotes the kinematic vis-
cosity of the fluid, and fi denotes the force term. The methodology
to maintain the swimmer in the same position makes the modeling
of the swimmer problem possible.

The time-dependent force on the swimmer can be obtained
from flow equations. This force and the density of the swimmer can
be used to determine the acceleration/deceleration of the swimmer
in the Newtonian frame of reference via Newton’s law and, hence,
the force term fi in the moving frame of reference. Moreover, the
density of the swimmer was set equal to the fluid density, as was also
in Ref. 2.

The computational domain was cylindrical, given by r = 0 to
14a and z = −13a to 13a, where a is the radius of the swimmer, r is
the radial coordinate, and z is the axial coordinate. The swimmer is
located at r = 0, z = 0. An example of the geometry and grid for one
of the models of the swimmer in the cylindrical domain is shown
in Fig. 2.

As explained before, the swimmer was maintained at the same
position, and a velocity field far from the swimmer was generated.
This velocity field at a large distance from the swimmer was the same
at all positions far from the swimmer. The z-direction corresponded
to the flow direction of the swimmer. Far from the swimmer, the
velocity (in the z-direction) depends on time, and no fluid flows in
other directions (r, θ).

A stretched grid was used for numerical calculations of the
cylindrical domain (the total number of grid cells was 1 664 000).

FIG. 2. The swimmer in the cylindrical domain.

Close to the boundary of the swimmer, the grid size was small
(0.0055a, where a is the swimmer radius). As the distance from the
boundary increased, the grid size was increased. The ANSYS Flu-
ent code was used. The following analysis methods were applied:
pressure–velocity coupling (coupled) and spatial discretization
(gradient: least square cell-based method, pressure: PRESTO (pres-
sure staggering option); momentum, second-order upwind). The
dynamic mesh method was applied: smoothing (linear elastic
solid; Poisson’s ratio 0.045). The boundary condition at the sur-
face of the domain parallel to the z-direction was made of a moving
wall (x-velocity = 0, y-velocity = 0, and z-velocity equal to the main
flow at a large distance from the swimmer). The flow velocity for
the boundary condition at the domain surfaces perpendicular to the
z-direction was x-velocity = 0, y-velocity = 0, and z-velocity equal
to the main flow at a large distance from the swimmer. The no-slip
condition was considered for the boundary condition at the surface
of the swimmer. We applied a cylindrical domain in all simulations.
We benchmarked our results with those of Ref. 15. The agreement
is very good. (See F4. Verification of the numerical results.) In addi-
tion, the number of grid points and the time step was studied (see F2
and F3).

The following time-wise procedure was used for carrying out
the computational analysis:

Select the viscosity and the time step.
Calculate the velocity in the z-direction (axial direction) and

y-direction (radial direction) as a function of time.
Determine the mean velocity in the z-direction and y-direction.
Determine the fluctuating velocity in the z-direction.
Determine the streamline pattern in the y–z cross section.
Determine the contour plot of the streamwise component of

the velocity in the wake of the swimmer.

IV. RESULTS
A. Introduction

The dimensionless scaling number s proposed in Ref. 13 was
used. s is defined by the radius of the sphere a, the time period

FIG. 3. Numerical results for the dimensionless oscillating velocity and dimension-
less mean velocity of the swimmer as a function of the dimensionless time for
ϵ = 0.050 and s = 0.792.
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FIG. 4. Result corresponding to Fig. 3 for a particular instant. Left: dimensionless z-velocity (instantaneous axial velocity) in a y–z cross section of the domain when the
swimmer is at the peak of its velocity. Middle: dimensionless y-velocity (instantaneous radial velocity) at the same instant. These velocities are an order of magnitude larger
than those of the swimmer, as shown in Fig. 3. Right: instantaneous x-vorticity in the y–z cross section.

of the swimmer Tc, and the kinematic viscosity of the fluid ν:
s = a(π/Tcν)1/2. As previously mentioned, this is similar to the oscil-
latory Reynolds number Rω = L2/νT discussed in Ref. 6. Moreover,
s is defined as the ratio of the radius a of the swimmer to the Stokes
length StL = (ν/ω)1/2: s = 1√

2
a

StL
. Thus, s is a measure of the ratio

of the swimmer radius to the fluid boundary layer in the surface of
the swimmer. For large values of s, the boundary layer is thin. Fur-
thermore, s is a measure of inertia. Smaller and larger values of s
indicate smaller and larger inertia values, respectively. Using a dif-
ferent combination of a, Tc, and ν with the same value of s yields
the same result for the numerical simulation when the value of the
deformation amplitude ϵ is the same.

B. Calculations
Transient calculations were performed. t = 0 is the state of rest

from which the swimmer starts. Typically, four cycles of oscillation
are sufficient before the time-averaged quantities can be calculated.
We discuss the results for the dimensionless mean velocity and

FIG. 5. Instantaneous velocity in the axial direction along the symmetry
axis of the swimmer between the points (x/a = 0, y/a = 0, z/a = −15) and
(x/a = 0, y/a = 0, z/a = 15) for the left panel of Fig. 4.

dimensionless oscillating velocity of the swimmer for a dimension-
less deformation amplitude of ϵ = 0.050 and several values of s. The
mean velocity was defined as the average running velocity over the
length of the period of the swimmer. (Hence, the mean velocity is
time-dependent.) The equation of motion was solved numerically
with respect to a reference system attached to the swimmer. There-
fore, the oscillating and mean velocities were determined at a large
distance from the swimmer. The smallest value of s (s = 0.792) was
selected expecting a thick boundary layer. After that, we decreased
the viscosity for each new computation by a factor of ten. Overall,
we performed six calculations each time with an s factor of 100.5

larger. Thus, the following six values of s were considered: s = 0.792,
s = 2.506, s = 7.926, s = 25.06, s = 79.26, and s = 250.60. The respec-
tive values of the Reynolds number (defined as Re = Uma/ν;
Um: mean velocity) were Re = 0.001 89, Re = 0.0103, Re = 0.196,
Re = 1.69, Re = 9.90, and Re = 99.27. These values can only be deter-
mined after the calculation. In particular, the values were obtained
using the limiting mean velocities. The results for several values of s
are shown in Figs. 3, 4, 9, 10, 15, and 16.

FIG. 6. Streamline pattern in the y–z cross section of the swimmer.
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FIG. 7. Instantaneous velocity in the y-direction along the points (x/a = 0, y/a
= −15, z/a = 1.1) to (x/a = 0, y/a = 15, z/a = 1.1).

C. Description of the swimmer
Although the mean shape of the combined stroke swimmer is

a sphere, the time-dependent behavior of its surface makes it very
different from the behavior of a sphere with constant diameter in
a cross-flow. The combined stroke swimmer generates its own flow
field due to the time-dependent deformation of its surface.

Figure 3 shows the numerical dimensionless mean velocity and
numerical dimensionless oscillating velocity of the swimmer for
s = 0.792 (Re = 0.001 89) as a function of dimensionless time. Note
that the oscillating velocity is much larger than the mean velocity
(as mentioned before, the results were obtained at a large distance
from the swimmer).

In Fig. 4, the z-velocity (axial velocity) and y-velocity (radial
velocity) distributions in the fluid are shown when the swimmer is

at the peak of its dimensionless oscillating velocity. At this point,
strong positive and negative velocities, with different velocity values,
are generated by the swimmer in the axial direction (z-direction)
of the fluid at the top and bottom of the swimmer due to the
deformation of the swimmer. Figure 5 shows the velocity in the
axial direction computed along the symmetry axis of the swimmer
(x/a = 0, y/a = 0, z/a = −15) to (x/a = 0, y/a = 0, z/a = 15) for the
left panel of Fig. 4. As can be seen, velocities close to the swimmer
are larger than those at large distances from the swimmer. Figures 6
and 7 show the streamline pattern in the y–z direction and the
velocity distribution in the y-direction through the streamline pat-
tern, respectively. The vortices in the streamline pattern agree with
the vorticity distribution shown in Fig. 4. In the radial direction
(x-direction or y-direction), the fluid velocities on both sides of the
swimmer are the same. In Fig. 4, the vorticity in the x-direction is
also shown. In addition, a contour plot has been made (see Fig. 8
for Re = 0.001 89) of the streamwise component of the velocity in
the wake region behind the swimmer (again at the moment that
the swimmer is at the peak of its velocity). Its orientation is in the
y-normal direction (left) and in the x-normal direction (right). A 2D
axisymmetric flow exists.

A similar analysis for different planes was also performed for
other points in time in the period Tc of the swimmer. No asymmetry,
3D effects, or vorticity shedding was found at any time. That can also
not be expected at the small value of Re = 0.001 89.

In the reference system of the moving swimmer, the behavior
of the swimmer can be summarized as follows: The deformation
of the swimmer generates (by its own action) strong flow veloc-
ities in the fluid. The penetration of these flows depends on the
deformation amplitude of the swimmer and fluid viscosity. For a
large viscosity (s = 0.792), the penetration depth is considerable.
The time-dependent deformation of the swimmer causes an oscil-
latory movement of the swimmer with a net (mean) velocity. The
mean velocity of the swimmer is small compared with the maximum
oscillating velocity of the swimmer. The maximum oscillating veloc-
ity of the swimmer is small compared with the flow velocities in the
fluid generated by the deformation of the swimmer.

FIG. 8. Contour plot of the stream-
wise component of the velocity in the
wake region in front of the swimmer for
Re = 0.001 89. Its orientation is in the
y-normal direction (left) and in the
x-normal direction (right). A 2D axisym-
metric flow exists.
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FIG. 9. Numerical results for the dimensionless oscillating velocity and dimen-
sionless mean velocity of the swimmer as function of the dimensionless time for
ϵ = 0.050 and s = 250.60.

At s = 0.792, the fluid flow outside the swimmer is viscosity-
driven, and the inertial forces do not show an evident effect.
However, at larger values of s, the inertial effects become relevant.
Therefore, a comparison of the results for s = 0.792 (Re = 0.001 89)
and s = 250.60 (Re = 99.27) is necessary. The results are shown in
Figs. 3–8 for a small value of Re (Re = 0.001 89) and Figs. 9–12 for
a large value (Re = 99.27). In Fig. 4, there is a smooth and gradual
fluid velocity distribution close to the swimmer. At a large value of
Re (see Fig. 10), the fluid velocity distributions and vorticity are very
different. The axial velocity has two strong peaks of opposite sign at
certain opposite distances from the swimmer. In addition, the vortic-
ity distribution is strongest at certain distances from the swimmer.
In Fig. 11, the streamline pattern in the y-normal direction of the
swimmer is shown. As mentioned, the fluid velocity is generated by
the swimmer. At the top side of the swimmer where the velocity is
positive, the streamlines follow an almost straight direction. At the

FIG. 11. Streamline pattern in the y-normal direction of the swimmer.

bottom side where the velocity is negative, the streamlines follow two
curved paths and an intermediate straight direction in agreement
with the left side of Fig. 10.

A contour plot has been made (see Fig. 12) for Re = 99.27 of the
streamwise component of the velocity in the wake region behind the
swimmer (at the moment that the swimmer is at the low end of its
velocity). A 3D flow is shown that exhibits planar symmetry in the
wake of the swimmer. The symmetry plane passes through the axis
of translation. Its orientation is in the y-normal direction (Fig. 12,
left) and in the x-normal direction (Fig. 12, right). Additional cal-
culations have been made for Re = 0.0103 (axisymmetric flow) and

FIG. 10. Result for Fig. 9. Left: dimensionless z-velocity (instantaneous axial velocity) in a y–z cross section of the domain at the moment that the swimmer is at the low-end
of its velocity. Middle: dimensionless y-velocity (instantaneous radial velocity) at that same moment. These velocities are an order magnitude larger than the velocities of
the swimmer shown in Fig. 9. Right: instantaneous x-vorticity in the y–z cross section.
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FIG. 12. Contour plots of the stream-
wise component of the velocity in the
wake region behind the swimmer for
Re = 99.27. A 3D flow exists, which
exhibits planar symmetry in the wake of
the swimmer. The flow is planar symmet-
ric. Its orientation is in the y-normal direc-
tion (left) and in the x-normal direction
(right).

Re = 9.90 (3D flow) (see Figs. 13 and 14). Hence, there is a transi-
tion between Re = 0.0103 and Re = 9.90 from the axisymmetric to
three-dimensional flow.

Chisholm et al.9 found for the squirmer that at larger Reynolds
number (say, Re = 100) the flow is still planar symmetric but
unsteady and that the wake structure is more complicated. At
Re = 158, they found that the planar structure is broken. Between
Re = 9.90 and Re = 100, we also find for the combined stroke

swimmer a 3D flow of the fluid around the swimmer that exhibits
planar symmetry. The planar flow structure is (still) unbroken. Due
to the time-dependent deformation of the surface of the combined
stroke swimmer, the flow is also time-dependent. If the time-
dependent velocity (instead of the time-mean velocity) is applied to
the Reynolds number, it shows large fluctuations during a period
of the swimmer. Hence, it is difficult to compare the results of
Chisholm et al.9 with our results.

FIG. 13. Contour plots of the stream-
wise component of the velocity in the
wake region in front of the swimmer for
Re = 0.0103. A 2D axisymmetric flow
exists.

FIG. 14. Contour plots of the stream-
wise component of the velocity in the
wake region behind the swimmer for
Re = 9.90. A 3D flow exists, which
exhibits planar symmetry in the wake of
the swimmer. The flow is planar symmet-
ric. Its orientation is in the y-normal direc-
tion (left) and in the x-normal direction
(right).
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FIG. 15. Comparison of the dimensionless mean velocity Ured (see Fig. 9 in
Ref. 14) and our dimensionless mean velocity. U/aω was converted into Ured .
Two calculations were performed in Ref. 14: one for the swimmer characterized
by the mode coefficients specified in their Eq. (6.15) (green line with closed green
circles) (FJ2) and one for the same stroke without linear motion (black line with
open black circles) (FJ1). The results of our six calculations (black line and closed
black squares) are provided at log10(s) = −0.101, 0.398, 0.899, 1.398, 1.899, and
2.398. See Sec. V (paragraph four) for further details.

D. Comparison between the numerical
results and the theory

To compare the dimensionless reduced mean velocity Ured of
Ref. 14 with the dimensionless mean velocity U/aω obtained in this
study, we converted U/aω into Ured. The results are presented in

Fig. 15. Felderhof and Jones14 performed two calculations: one for
the swimmers, characterized by the mode coefficients specified in
Eq. (6.15) in their study, and one for the same stroke without linear
motion. (The term ”linear motion” implies the movement of the
swimmer as calculated in first order of the amplitude of the dis-
placements. This movement is due to the force resulting from the
potential dipole mode.) Felderhof and Jones14 showed that the dis-
tortion of a spherical surface could cause oscillatory motion of the
sphere. In the first order, the motion is linear in terms of the ampli-
tude of the distortion. In an earlier study13 on swimming in a fluid
with inertia, the first-order velocity was set to zero. They viewed this
now as a kinematic condition obtained only when the reaction force
is fully absorbed by the sphere without affecting its surface motion.
However, in general, the effect of the oscillatory reaction force must
be considered.

The results in Fig. 15, with respect to the Newtonian reference
frame, show a good agreement for all values of s between the numer-
ical simulation (black line with closed black squares) and the theory
for the swimmer characterized by the mode coefficients specified in
Eq. (6.15) (green line with closed green circles). The mean velocity
is positive for small values of s and negative for large values. These
results agree with our expectations.

Figure 16 shows the remaining velocity distributions as a func-
tion of s in the reference system chosen to move with the swimmer.
At large distances from the swimmer, the mean fluid velocities
are positive; therefore, the mean swimmer velocities are negative
(Fig. 15). As can be seen in Fig. 16, the mean velocity strongly
depends on the value of s.

In Fig. 17, we compared the oscillating velocities of the swim-
mer at ϵ = 0.050 for three different values of the scale number

FIG. 16. Numerical results for the dimen-
sionless oscillating velocity and dimen-
sionless mean velocity of the swimmer
as a function of the dimensionless
time for ϵ = 0.050 and for s = 2.506,
s = 7.926, s = 25.06, and s = 79.26.
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FIG. 17. Solid lines indicate the numer-
ical value of the dimensionless oscil-
lating velocity for s = 0.792, s = 25.06,
and s = 79.26. The dashed lines repre-
sent the value based on the theoretical
predictions in Ref. 16. To enable a com-
parison between the numerical and the-
oretical results, the mean velocity of the
numerical results was subtracted from
the total flow velocity.

(s = 0.792, s = 25.060, and s = 79.26) with the prediction obtained in
Ref. 16 (without incorporating the mean velocity contribution). To
enable a comparison between the numerical and theoretical results,
the mean velocity for the case of the numerical results was also

subtracted in Fig. 17 from the total flow velocity. Although the
mean velocity agrees well with the numerical simulation and the-
ory, Fig. 17 shows that the oscillating velocity for the theoretical and
numerical results does not agree well, particularly for small values

FIG. 18. Numerical results for the dimen-
sionless lift force of the swimmer as a
function of dimensionless time for three
values of s.
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FIG. 19. Numerical results for the
dimensionless oscillating velocity of the
swimmer for the axisymmetric and
3D simulations as a function of the
dimensionless time for ϵ = 0.050 and
s = 0.792.

of s. This theory is described in Sec. III (pages 4–6) in Ref. 16. In
this study, a first-order calculation was performed for the motion
of the swimmer. However, the first-order calculation might not be
sufficient for the correct determination of the oscillating velocity of
the swimmer.

E. 3D and unsteady flow
Due to the deformation of its interface, the combined stroke

swimmer is continuously changing its shape as a function of time.
Therefore, it is by definition unsteady whether it is axisymmetric or
3D. The time-dependence of its velocity is already given in Figs. 3, 9
and 16 for six values of s.

Between Re = 9.90 and Re = 100, we already found for the com-
bined stroke swimmer a 3D flow of the fluid around the swimmer

that exhibits planar symmetry (Figs. 12 and 14). Once the flow enters
a 3D state, the combined stroke swimmer will no longer be force-
free, in general. Examining the hydrodynamic forces gives some
interesting results. Figure 18 shows the lift force Cl perpendicular
to the direction of translation as a function of dimensionless time
for three increasing values of s. Cl is made dimensionless by means
of F/(0.5 ∗ ρ ∗U2 ∗A), where F is the lift force and ρ is the density of
the fluid. As the velocity of the swimmer is continuously changing,
a constant value of U = 1 m/s was selected rather arbitrary. For the
same reason, the cross-section A was selected by the cross section of
the swimmer without deformation. As can be seen from Fig. 18 for
small values of s (s = 25.06 and smaller values), there is no lift-force.
However, for s = 79.26 and s = 250.60, the lift force is evident. For
s = 250.60, the Reynolds number runs from Re = 400 to Re = 2600

FIG. 20. Numerical results for the dimen-
sionless oscillating velocity of the swim-
mer as a function of the dimensionless
time for ϵ = 0.050 and s = 79.26 for two
grid sizes: 0.80 and 1.66 M.

FIG. 21. Numerical results for the
dimensionless oscillating velocity of the
swimmer for the case s = 0.792 as a
function of the dimensionless time for
Δt = 0.000 062 5 and Δt = 0.000 125.

AIP Advances 12, 105004 (2022); doi: 10.1063/5.0121177 12, 105004-11

© Author(s) 2022

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

when the velocity of the swimmer as a function of time is considered
for the Reynolds number. Hence, the presence of the lift force can be
expected.

F. Verification of the numerical calculations
1. Comparison between the axisymmetric
and the 3D models

To check the reliability of our code, we made an axisymmet-
ric version of it next to the 3D version and compared the results at
large viscosity. At large viscosity, the 3D effects do not play a role
and the results must be the same. Therefore, in Fig. 19, the axisym-
metric calculation for s = 0.792 is compared with the 3D calculation
for s = 0.792, as shown in Fig. 3. The maximum and minimum val-
ues of U/(aω) agree rather well. The general shapes are slightly
different.

2. Number of grid points
In Fig. 20, the numerical results for the dimensionless oscillat-

ing velocity of the swimmer are given as a function of the dimen-
sionless time for ϵ = 0.050 and s = 79.26 for two grids with a large
difference in the number of grid cells: 0.80 and 1.66 M. This anal-
ysis was performed to verify whether the number of grid cells was
sufficient for an accurate calculation of the swimmer. As can be
seen, the two results are similar; thus, the accuracy condition is
satisfied.

3. Sensitivity of the time step (Δt )
Figure 21 shows the numerical result for the dimensionless

oscillating velocity of the swimmer for s = 0.792 and time step
Δt = 0.000 062 5. It also shows the results for Δt = 0.000 125 from
Fig. 3 for the same s = 0.792. The results agree well; the mean veloc-
ity of the swimmer is the same for the two-time steps, whereas the
oscillating velocities differ slightly. As the calculation for time step
Δt = 0.000 062 5 required considerable computer time, all calcula-
tions were performed for Δt = 0.000 125.

FIG. 22. Comparison of Cd as a function of time for Re = 100 and Re = 300
with the literature result [the final literature value of Cd = 1.09 for Re = 100 and
Cd = 0.67 (averaged value) for Re = 300].

FIG. 23. Comparison of the fluctuating Cd value as a function of time for Re = 300
with the literature result (the final literature value of fluctuating Cd for Re = 300 is
between 0.663 and 0.672). The Strouhal number Sr = 0.133 is in agreement with
the literature result.

4. Comparison with literature result
for flow past a sphere

Calculations were made of the combined stroke swimmer with-
out surface deformation (constant sphere) and with a constant
incoming velocity at the inlet of the flow domain. In this way, the
code was compared with the well-known literature results for a flow
past a sphere (see, for instance, Ref. 15). Two comparisons were
made: steady-state laminar flow at Re = 100 and time-dependent
laminar flow at Re = 300. In Figs. 22 and 23, the results for Cd
as a function of time are given. The agreement between the code
calculations and literature results is good.

V. CONCLUSION
After Re = 9.90 and up to Re = 100, we found a 3D flow of

the fluid around the swimmer that exhibits planar symmetry. The
planar flow structure is (still) unbroken. For values smaller than
Re = 0.0103, the flow is axisymmetric (2D). Hence, there is a tran-
sition between Re = 0.0103 and Re = 9.90 from the axisymmetric to
three-dimensional flow.

The time-dependent deformation of the swimmer causes an
oscillatory movement of the swimmer with a net (mean) velocity.
The mean velocity is small compared with the maximum oscillat-
ing velocity of the swimmer. The maximum oscillating velocity of
the swimmer is small compared with the flow velocities in the fluid
generated by the deformation of the swimmer.

We presented the numerical results for the combined stroke
swimmer for a series of fluids with the successively decreasing kine-
matic viscosity. The Reynolds number for different values of the
scaling number s was calculated from the limiting mean swimming
velocity, ranging from Re = 0.001 89 to Re = 99.27.

The results in Fig. 15 (in the Newtonian frame of reference)
show a good agreement for all values of s between the numerical
simulations and the theory for the swimmer characterized by the
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mode coefficients specified in Eq. (6.15) proposed by Felderhof and
Jones.14,17 The mean velocity is positive for small values of s and
negative for large values, matching our expectations.

In a previous study1 (using the immersed boundary solver for
axisymmetric calculation), we performed a similar calculation and
compared our numerical simulations with the theory for a swim-
mer characterized for the same stroke without linear motion (see
Fig. 15) (black line with black circles). The previous findings agreed
well. However, we understood later on that the numerical results
must agree with a swimmer characterized by the mode coefficients
specified in Eq. (6.15) in the work of Felderhof and Jones. There-
fore, we revised the calculation (using the ANSYS Fluent code,
for 3D calculation) and improved the simulation results in this
study.

In simulations, the deformation of the microswimmer was
independent of the viscosity of the fluid. In nature, it may propel
different deformations depending on fluid viscosity. This can be
applied in our simulations.

We intend to use the 3D model to study complicated geome-
tries, such as the movement of a swimmer close to a wall or two or
more swimmers close to each other. For such studies, a 3D numeri-
cal simulation is required as the axisymmetric numerical simulation
of the previous study can no longer be used.

The real significance and originality of our study is the influ-
ence of the deforming surface of the swimmer. It makes in our
opinion a further step toward the behavior of a real swimmer
although further steps are still necessary. In particular, the study of
the interaction of two or more swimmers and also the influence of
the swimmer close to a wall is important.

A disadvantage of our method is the large computer time,
which is necessary for calculations, in particular, at small viscosity of
the fluid surrounding the swimmer. At small viscosity, the boundary
layer at the surface of the swimmer becomes thin and a very small
time step is necessary.
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