

Delft University of Technology

Computing the average inter-sample time of event-triggered control using quantitative
automata

de Albuquerque Gleizer, Gabriel; Mazo, Manuel

DOI
10.1016/j.nahs.2022.101290
Publication date
2023
Document Version
Final published version
Published in
Nonlinear Analysis: Hybrid Systems

Citation (APA)
de Albuquerque Gleizer, G., & Mazo, M. (2023). Computing the average inter-sample time of event-
triggered control using quantitative automata. Nonlinear Analysis: Hybrid Systems, 47, Article 101290.
https://doi.org/10.1016/j.nahs.2022.101290

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.nahs.2022.101290
https://doi.org/10.1016/j.nahs.2022.101290

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Nonlinear Analysis: Hybrid Systems 47 (2023) 101290

G
T

c

h
1

Contents lists available at ScienceDirect

Nonlinear Analysis: Hybrid Systems

journal homepage: www.elsevier.com/locate/nahs

Computing the average inter-sample time of event-triggered
control using quantitative automata✩

abriel de Albuquerque Gleizer ∗, Manuel Mazo Jr
U Delft, Mekelweg 2, Delft, 2628 CD, ZH, The Netherlands

a r t i c l e i n f o

Article history:
Received 29 September 2021
Received in revised form 23 March 2022
Accepted 10 September 2022
Available online xxxx

Keywords:
Event-triggered control
Hybrid systems
Abstractions

a b s t r a c t

Event-triggered control (ETC) is a major recent development in cyber–physical systems
due to its capability of reducing resource utilization in networked devices. However,
while most of the ETC literature reports simulations indicating massive reductions in
the sampling required for control, no method so far has been capable of quantifying
these results. In this work, we propose an approach through finite-state abstractions to
do formal quantification of the traffic generated by ETC of linear systems, in particular
aiming at computing its smallest average inter-sample time (SAIST). The method involves
abstracting the traffic model through l-complete abstractions, finding the cycle of
minimum average length in the graph associated to it, and verifying whether this cycle
is an infinitely recurring traffic pattern. The method is proven to be robust to sufficiently
small model uncertainties, which allows its application to compute the SAIST of ETC of
nonlinear systems.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

In modern control applications, smart sensors, controllers, and actuators communicate with each other through digital
ommunication networks. The standard networked control approach is periodic sample-and-hold control: at every h time
units, sensors sample their values, send them through the network to the controller, which then updates its control
command to the actuators; the command is held constant in between samples. Obviously, small values of the sampling
period h approximate the control performance to that of the idealized continuous controller, but increase bandwidth usage
and radio energy consumption in wireless networks. This single parameter therefore limits the size and applicability of
networked control systems (NCSs), and a natural question that has arisen is how to design aperiodic sampling approaches.
In [1], the idea of sampling based on an event – the error between the current state and the last sampled state exceeding
a threshold – was investigated with the name of Lebesgue sampling (after the Lebesgue integration). This idea was further
developed in [2], where for the first time a framework for asymptotic stabilization of the origin through an event-based
sampling was conceived. This approach is now known as event-triggered control (ETC), and, given the enormous reductions
in sampling it showed in early simulations, immense interested followed. Significant focus was given on event design to
reduce sampling frequency while guaranteeing stability and control performance (e.g. [3–5]), extend ETC to different
control structures [5], or improve practical implementation aspects of ETC, such as the periodic event-triggered control
(PETC) of [6], where event conditions are checked periodically. It is remarkable, however, that until very recently [7],
no method to formally compute ETC sampling performance existed. Typically, ETC papers limit their formal results to

✩ This work is supported by the European Research Council through the SENTIENT project, ERC-2017-STG #755953.
∗ Corresponding author.

E-mail address: g.gleizer@tudelft.nl (G. de A. Gleizer).
ttps://doi.org/10.1016/j.nahs.2022.101290
751-570X/© 2022 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.nahs.2022.101290
http://www.elsevier.com/locate/nahs
http://www.elsevier.com/locate/nahs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nahs.2022.101290&domain=pdf
mailto:g.gleizer@tudelft.nl
https://doi.org/10.1016/j.nahs.2022.101290

G. de A. Gleizer and M. Mazo Jr Nonlinear Analysis: Hybrid Systems 47 (2023) 101290

o

i
s
c
l
s
a
c
c
t
m
m

(
u
f
W
c
o
P
c
b
T
h

m
a
e

a
a
S
f

1

n
d
a
r

stability, control performance, and Zeno-freeness — the absence of Zeno behavior, or infinitely fast sampling in finite
time. Similarly to Zeno-freeness, in PETC it is immediate that its average sampling is in the worst case the same as a
baseline periodic control whose sampling period is the same h as the event checking period of PETC. The critical question
is, how significant are the savings provided by ETC? This is a quantitative question, and as such it requires the computation
f sampling performance metrics for ETC.
As previously mentioned, only recently there has been investigation of ETC traffic patterns, which can be categorized

n two main approaches. The first category [8,9] focuses on understanding the qualitative asymptotic trends of the inter-
ample times (ISTs) of planar linear systems. In [8], the authors conclude that, under some conditions, the ISTs eventually
onverge to a fixed value or exhibit an oscillatory pattern. Despite providing very interesting insights, the results are
imited to two-dimensional state spaces, and do not provide the quantitative information that we consider crucial. The
econd category uses symbolic abstractions [10,11], following on the extensive work on state-space partitioning and
ggregation for abstractions, see [12]. In [10,11], the prediction of ISTs is focused on the scheduling problem: in this
ontext, a scheduler can use finite-state traffic models to request sensor data before events are triggered in order to prevent
ollisions. However, these traffic models do not capture effectively long-term traffic properties of ETC, which hampers
heir use for quantitative analysis. Still in the same category, [13] uses a bisimulation-like algorithm that determines the
next ISTs from a given state, followed by a very conservative estimate of the worst-case average IST by taking the
inimum average of all such m-length sequences.
The present work tackles the precise computation of the smallest (across initial states) average inter-sample time

SAIST) of LTI systems under PETC. The SAIST constitutes a natural metric which directly translates into average resource
tilization in a network. Our approach is based on the abstraction of the model of a closed-loop PETC system into a
inite-state weighted transition system (WTS), where the weight of a transition is the IST generated by its outbound state.
e show that the smallest-in-average cycle (SAC) of the weighted graph associated with the abstraction, which can be

omputed using Karp’s algorithm [14], provides a lower bound of the PETC’s SAIST. Moreover, if σ := k1k2...km is the SAC
f the abstraction and σω is a behavior of the concrete system, the lower bound is proven to be the exact SAIST of the
ETC system. This observation gives rise to the concept of smallest-average-cycle-equivalent simulation (SACE simulation). In
ontrast, if such a cyclic behavior is not exhibited by the PETC system, the abstraction can be further refined until the cycle
reaks, providing tighter bounds. This gives rise to a semi-algorithm to compute average metrics through abstractions.
his is an extension of [7], where this semi-algorithm was proposed and the concept of SACE simulation was introduced;
ere,

(i) we present a general version of the semi-algorithm for verifying the limit average metric of an infinite-state system,
as well as some behavioral conditions for its termination and how to compute uncertainty bounds;

(ii) we prove that, in the general case, working with linear invariant subspaces of a linear map is necessary and sufficient
to prove that a given SAC can repeat infinitely often as a sequence of ISTs (this was only informally argued in [7]);

(iii) we show that the algorithm is robust to sufficiently small model uncertainties — this enables us to elaborate on the
computability of SAIST of linear systems and, moreover, allows the SAIST computation of nonlinear PETC systems;

(iv) we provide more numerical examples and their associated conclusions, including how to decrease the required
amount of computations for the abstraction.

The more general results rely on a behavioral interpretation of dynamical systems [15] and the associated abstraction
ethods [16,17]. The specialized results for PETC SAIST are based on a combination of quotient-based abstractions [12]
nd a behavioral-based analysis. Overall, our new results help consolidating the methodology proposed in [7], equipping
ngineers with a tool to formally estimate the benefits of ETC applications.
This paper follows the following structure: The main problem is stated in Section 2. Background and preliminary results

bout (quantitative) abstractions, including the basic results from [7], are shown in Section 3. Then, a general pseudo-
lgorithm to compute limit average metrics of infinite systems is presented in Section 4, while its specialization for PETC
AIST computation is presented in Section 5. Finally, numerical examples are given in Section 6, and conclusions and
uture work are discussed in 7.

.1. Notation

We denote by N0 the set of natural numbers including zero, N := N0 \{0}, N≤n := {1, 2, . . . , n}, by Q the set of rational
umbers, and by R+ the set of non-negative reals. For a complex number z ∈ C, z∗ denotes its complex conjugate, arg z
enotes its argument, and ℑ(z) denotes its imaginary part. We denote by |x| the Euclidean norm of a vector x ∈ Rn

nd by |A| the 2-induced norm of a matrix A ∈ Rn×m, but if s is a sequence or set, |s| denotes its length or cardinality,
espectively. The set Sn denotes the set of symmetric matrices in Rn. For a symmetric matrix P ∈ Sn, we write P ≻ 0
(P ⪰ 0) if P is positive definite (semi-definite). For a set X ⊆ Ω , we denote by cl(X) its closure, ∂X its boundary, and X̄
its complement Ω \ X . We often use a string notation for sequences, e.g., σ = abc reads σ (1) = a, σ (2) = b, σ (3) = c .
Powers and concatenations work as expected, e.g., σ 2

= σσ = abcabc. In particular, σω denotes the infinite repetition of
σ . For a relation R ⊆ Xa × Xb, its inverse is denoted as R−1 = {(xb, xa) ∈ Xb × Xa : (xa, xb) ∈ R}. Finally, we denote by
π (X) := {x ∈ X | (x , x) ∈ R for some x ∈ X } the natural projection of X onto X .
R a b b a b a a a b

2

G. de A. Gleizer and M. Mazo Jr Nonlinear Analysis: Hybrid Systems 47 (2023) 101290

2

Fig. 1. Block diagram of an ETC system. In PETC, the condition checker is executed periodically.

. Problem statement

Consider a linear time-invariant plant controlled with sample-and-hold state feedback [18] described by

ξ̇(t) = Aξ(t)+ Bυ(t),

υ(t) = K ξ̂(t),
(1)

where ξ(t) ∈ Rnx is the plant’s state with initial value x0 := ξ(0), ξ̂(t) ∈ Rnx is the state measurement available to the
controller, υ(t) ∈ Rnu is the control input, nx and nu are the state-space and input-space dimensions, respectively, and
A,B,K are matrices of appropriate dimensions. The measurements are updated to the controller only at specific sampling
times, with their values being zero-order held on the controller: let ti ∈ R+, i ∈ N0 be a sequence of sampling times, with
t0 = 0 and ti+1 − ti > ε for some ε > 0; then ξ̂(t) = ξ(ti),∀t ∈ [ti, ti+1).

In ETC, a triggering condition determines the sequence of times ti. In the case of PETC, this condition is checked only
periodically, with a fundamental checking period h. Throughout this paper, we assume the time units have been scaled
so that h = 1.1 Fig. 1 depicts a simple diagram of a PETC system. We consider the family of quadratic triggering conditions
from [6] with an additional maximum inter-sample time condition:

ti+1 = inf

{
k > ti, k ∈ N

⏐⏐⏐⏐ [
ξ(k)
ξ(ti)

]T

Q
[
ξ(k)
ξ(ti)

]
> 0 or k− ti ≥ k̄

}
, (2)

where Q ∈ S2nx is the designed triggering matrix, and k̄ is the chosen maximum inter-sample time.2 Observing Eq. (2),
we note that the inter-sample time ti+1 − ti is a function of xi := ξ(ti); denoting κ := (ti+1 − ti) as the inter-sample time,
it follows that

κ(xi) = min
{
k ∈ {1, 2, . . . k̄} | xTiN (k)xi > 0 or k = k̄

}
,

N (k) :=
[
M(k)
I

]T

Q
[
M(k)
I

]
, (3)

M(k) := Ad(k)+ Bd(k)K := eAhk +
∫ hk

0
eAτdτBK .

where I denotes the identity matrix. Thus, the event-driven evolution of sampled states can be compactly described by
the recurrence

ξ(ti+1) = M(κ(ξ(ti)))ξ(ti). (4)

Clearly, each initial condition x0 ∈ Rnx leads to infinite sequences of samples {xi} and inter-sample times {ki(x0)}, defined
recursively as

xi+1 = M(κ(xi))xi
ki(x0) := κ(xi).

(5)

Therefore, we can attribute an average inter-sample time (AIST) to every initial state:

AIST(x) := lim inf
n→∞

1
n+ 1

n∑
i=0

ki(x).

1 This time re-scaling can be achieved by simply multiplying A and B with h.
2 Typically, a maximum inter-sample time exists naturally for a system with (P)ETC (see [19]). Still, one may want to set a smaller maximum

inter-sample time so as to establish a ‘‘heart beat’’ of the system. In any case, this is a necessity if one wants to obtain a finite-state simulation of
the system, which is what we do in this paper.
3

G. de A. Gleizer and M. Mazo Jr Nonlinear Analysis: Hybrid Systems 47 (2023) 101290

t

W
o
b
(
t

Using lim inf instead of lim lets us use the limit lower bound in case the regular limit does not exist, making the AIST
metric well-defined.

Objective of this paper We want to devise a method to compute the exact smallest average inter-sample time (SAIST) of
he PETC system (1)–(2); i.e., the minimal AIST across all possible initial conditions:

SAIST := inf
x∈Rnx

lim inf
n→∞

1
n+ 1

n∑
i=0

hki(x). (6)

Furthermore, we want to understand the cases where the exact SAIST computation is not possible, and quantify the
estimation error if the best we can obtain is an approximation.

The way we define SAIST implies that we do not expect that a system’s AIST is irrespective of its initial conditions; as
we shall see later in Section 6, it is possible that multiple AISTs are observed. Hence, in these cases, we conservatively
take the smallest possible one. We argue that the SAIST is an adequate – in fact, fundamental – metric to inform designers
about the average resource utilization that an ETC implementation is expected to achieve. However, the mere application
of Eq. (6) is largely unpromising: how can one choose a sufficiently large n, or how can one exhaustively search for
initial states to obtain one that yields the SAIST? For this reason, we approach the SAIST computation problem through
finite-state abstractions, which we introduce next.

3. Background and preliminary results

An abstraction is a simpler description of a system that preserves desired properties. When working with abstractions,
we refer to the original system as the concrete system. In this paper, we work with finite-state abstractions using the
framework of [12] and its transition systems. Later, we equip these systems with weights following [20], which allows us
to derive metrics such as the SAIST. We then present a special type of finite-state abstraction that preserves SAIST, which
we introduced in [7].

3.1. Transition systems and abstractions

In [12], Tabuada presents the notion of generalized transition systems:

Definition 1 (Transition System [12]). A system S is a tuple (X ,X0, E,Y,H) where:

• X is the set of states,
• X0 ⊆ X is the set of initial states,
• E ⊆ X × X is the set of edges, or transitions,
• Y is the set of outputs, and
• H : X → Y is the output map.

Here we have omitted the action set U from the original definition because we are solely interested in autonomous
systems like (5). A system is said to be finite-state (infinite-state) if the cardinality of X is finite (infinite). System S is said
to be non-blocking if ∀x ∈ X , ∃x′ ∈ X : (x, x′) ∈ E . We call x0x1x2... an infinite internal behavior, or run of S if x0 ∈ X0
and (xi, xi+1) ∈ E for all i ∈ N, and y0y1... its corresponding infinite external behavior, or trace, if H(xi) = yi for all i ∈ N.

e denote by BS(r) the external behavior from a run r = x0x1... (in the case above, BS(r) = y0y1...), by Bω
x (S) the set

f all infinite external behaviors of S starting from state x, and by Bω(S) :=
⋃

x∈X0
Bω
x (S) the set of all infinite external

ehaviors of S. Finally, B≤n(S) is the set of all prefixes of length ≤ n of each trace in Bω(S) (equivalently, the set of its
≤ n)-long external behaviors), and B+(S) is the set of all finite prefixes in Bω(S). A finite sequence β is called transient if
here exists a finite l such that γ βα ∈ Bω(S) implies that |γ | ≤ l and β is not a subsequence of α; equivalently, β cannot
occur infinitely often in any infinite behavior of S.

The ideas of simulation and bisimulation are paramount to establish formal relations between two transition systems.

Definition 2 (Simulation Relation [12]). Consider two transition systems Sa and Sb with Ya = Yb. A relation R ⊆ Xa × Xb
is a simulation relation from Sa to Sb if the following conditions are satisfied:

(i) for every xa0 ∈ Xa0, there exists xb0 ∈ Xb0 with (xa0, xb0) ∈ R;
(ii) for every (xa, xb) ∈ R,Ha(xa) = Hb(xb);
(iii) for every (xa, xb) ∈ R, we have that (xa, x′a) ∈ Ea implies the existence of (xb, x′b) ∈ Eb satisfying (x′a, x

′

b) ∈ R.

When there exists a simulation relation from Sa to Sb, we say that Sb simulates Sa, denoted by Sa ⪯ Sb. When R is a
simulation relation from Sa to Sb andR−1 is a simulation relation from Sb to Sa, we say that Sa and Sb are bisimilar, denoted
by Sa ∼= Sb. Weaker but important relations associated with simulation and bisimulation are, respectively, behavioral
inclusion and behavioral equivalence:
4

G. de A. Gleizer and M. Mazo Jr Nonlinear Analysis: Hybrid Systems 47 (2023) 101290

D
b
b

T

m
l
t
o

D
a
t

f
e
w
a

i
l
t
t

P

I
s

R

Fig. 2. Example of l-complete PETC traffic models, for l = 1 (left), l = 2 (middle), and l = 3 (right).

efinition 3 (Behavioral Inclusion and Equivalence [12]). Consider two systems Sa and Sb with Ya = Yb. We say that Sa is
ehaviorally included in Sb, denoted by Sa ⪯B Sb, if Bω(Sa) ⊆ Bω(Sb). In case Bω(Sa) = Bω(Sb), we say that Sa and Sb are
ehaviorally equivalent, which is denoted by Sa ∼=B Sb.

(Bi)simulations imply behavioral inclusion (equivalence):

heorem 1 ([12]). Given two systems Sa and Sb with Ya = Yb:

• Sa ⪯ Sb H⇒ Sa ⪯B Sb;
• Sa ∼= Sb H⇒ Sa ∼=B Sb.

The main difference between simulation and behavioral inclusion is that, in the former, a relationship between states
ust be established: every transition in the concrete system must have at least one matching transition in the abstraction

eading to related states. Behavioral inclusion is oblivious to state-based descriptions of a system: all one needs is that all
races observed in the concrete system can also be observed in the abstraction. A way of building an abstraction based
n behavioral inclusion is through an l-complete model:

efinition 4 (Strongest l-Complete Abstraction (Adapted from [16,17])). Let S := (X ,X0, E,Y,H) be a transition system
nd Xl ⊆ Y l be the set of all l-long subsequences of all behaviors in Bω(S). The system Sl = (Xl,Bl(S), El,Y,H) is called
he strongest l-complete abstraction (SlCA) of S , where

• El = {(kσ , σk′) | k, k′ ∈ Y, σ ∈ Y l−1, kσ , σk′ ∈ Xl}.
• H(kσ) = k.

The idea behind the SlCA is to encode the states as the l-long behavior fragments of the concrete system. The transitions
ollow the ‘‘domino rule’’: e.g., if the last 4 elements of the behavior up to a given time are abcd, after one step the first 3
lements must be bcd; thus, from having observed abcd alone, a transition from state abcd can lead to any state starting
ith bcd. Finally, the output of a state is its first element. To illustrate how successive l-complete approximations of
system operate, consider a system S with Y = {1, 2} with behavior set {2ω, 12ω, 212ω, (112)ω, (121)ω, (211)ω}. Fig. 2

presents its 1-, 2-, and 3-complete abstractions; as one can see, S1 and S2 have the trivial set of all possible behaviors over
the set Y , but Bω(S3) is smaller, closer to the concrete behavior set. That is, we have Bω(S) ⊆ Bω(S3) ⊆ Bω(S2) ⊆ Bω(S1),
and in this example S3 has fewer spurious behaviors than S2 and S1.

Remark 1. We have made an adaptation from the original definition from [16], where the system is defined on
a behavioral framework [15]; here we present directly a realization of the SlCA as a transition system according to
Definition 1. Schmuck et al. [17] showed that different realizations exist for the SlCA of a system, depending on whether
you encode states based on past, future, or a mix of past and future observations. In Definition 4, we pick the one based
on future observations, which simplifies the encoding (all states are l-long sequences without the need for ‘‘no-output
yet’’ characters, see [16]), and is the tightest abstraction from a simulation relation perspective (see [17, Thm. 5]).

In [17, Theorem 9], it is concluded that a quotient-based approach [12] can create an abstraction bisimilar to the SlCA
n case the concrete system is future-unique, which is the case of deterministic systems. Thus, we shall use the term
-complete for quotient-based abstractions whose states represent the next l outputs of their related concrete states. How
o do it will become clear in Section 5.1, where we build the abstractions of the PETC traffic model. With this in mind,
he following fact is a direct consequence of Theorems 6 and 7 from [17].

roposition 1. Consider a deterministic system S and its SlCA Sl from Definition 4, for some l ≥ 1. Then, S ⪯ Sl+1 ⪯ Sl.

Proposition 1 gives that l-complete abstractions provide a framework of obtaining simulations and their refinements.
t is not a surprising result, since encoding states with more elements of the concrete system’s behavior constrains the
et of behaviors it can generate, even if it increases the number of states in the abstraction.

emark 2. Bisimulation is obtained when Sl+1 = Sl (modulo the names of the states); it is trivial to see that this
only happens when abstracting an autonomous deterministic system if the abstraction is deterministic. In addition,
lim S ∼ S.
l→∞ l =B

5

G. de A. Gleizer and M. Mazo Jr Nonlinear Analysis: Hybrid Systems 47 (2023) 101290

s
m
c
r

D

a

i
t

o

D
L
f

a
s
s
f

3.2. Quantitative automata

While much of the field of formal methods in control is concerned with qualitative analysis, such as establishing safety,
tability, and reachability, often quantitative computations are of interest: examples are computing the decay rate, the
aximum overshoot, or our case, the average sampling period of an ETC system. In [20], Chatterjee et al. established a
omprehensive framework for quantitative problems on finite-state systems, from which we borrow some definitions and
esults, while adjusting notation to keep consistency with the previous section.

efinition 5 (Weighted Transition System (Adapted from [20])). A weighted transition system (WTS) S is the tuple
(X ,X0, E,Y,H, γ), where

• (X ,X0, E,Y,H) is a non-blocking transition system;
• γ : E → Q is the weight function.

The notation adjustment we have made is including outputs to comply with Tabuada’s transition systems; again, we
ignore the action set as our scope is limited to autonomous systems.

Given a run r = x0x1... of S , we abuse notation denoting by γ (r) = v0v1... the sequence of weights defined by
vi = γ (xi, xi+1). A value function Val : Qω

→ R attributes a value to an infinite sequence of weights v0v1.... Among
the well-studied value functions, the one of our interest is

LimAvg(v) := lim inf
n→∞

1
n+ 1

n∑
i=0

vi.

Similarly, for a finite sequence v of length n, let Avg(v) := 1
n+1

∑n
i=0 vi. We define the smallest and largest LimAvg values of

n automaton respectively as V(S) := inf{LimAvg(γ (r)) | r is a run of S} and V(S) := sup{LimAvg(γ (r)) | r is a run of S}.
Clearly V(S) = −V(−S), where we denote by −S the WTS S with all of its weights negated; thus, we focus on the results
for V in what follows. The following theorem is essentially an excerpt from Theorem 3 in [20], which uses the classical
result from Karp [14]:

Theorem 2. Given a finite-state WTS S,V(S) can be computed in O(|X ||E|). Moreover, system S admits a cycle x0x1...xk
satisfying xi → xi+1, i < k, and xk → x0 s.t. LimAvg(γ ((x0x1...xk)ω)) = V(S).

The cycle mentioned above is a smallest-in-average cycle (SAC) of the weighted digraph defined by S , and can be
recovered in O(|X |) using the procedure of [21].

3.3. Quantitative verification through abstractions

In [7], we have presented some basic results about the relationship between the SAISTs of a system and its abstraction.
First, we start with a simplifying condition for weighted transition systems: a WTS is called simple if for all (x, x′) ∈
E, γ (x, x′) = H(x), i,e., the weight of a transition is equal to the output of its outbound state. Throughout this paper, when
working with a transition system with Y ⊂ Q, we omit the weight function γ , implying that we have a simple WTS. Here,
we recall results from [7].

Proposition 2 ([7]). If two simple WTSs Sa and Sb satisfy Sa⪯B (∼=B) Sb, then V(Sa) ≥ (=) V(Sb) and V(Sa) ≤ (=) V(Sb).

Proof. Since the systems are simple, V(Ss) = Bω(Ss), s ∈ {a, b}. Thus, V(Ss) = inf{LimAvg({yi}) | {yi} ∈ V(Ss)} =
nf{LimAvg({yi}) | {yi} ∈ Bω(Ss)}. Since Bω(Sa) ⊆(=) Bω(Sb), and the inferior of a function on a set can only be smaller
han that of a set contained in it, we have V(Sa) ≥ (=)V(Sb). For V, the same reasoning is applied symmetrically. □

From Proposition 2, abstractions that simulate the concrete system provide a way to underestimate the SAIST and
verestimate the LAIST, thanks to Theorem 2. Equality can be achieved with the following type of abstraction.

efinition 6 (Smallest-Average-Cycle-Equivalent Simulation [7]). Consider two simple WTSs Sa and Sb satisfying Sa ⪯ Sb.
et SAC(Sb) be the set of smallest-in-average cycles of Sb. If there exists a behavior of the form dcω

∈ Bω(Sa) where d is
inite and c ∈ SAC(Sb), then Sb is a smallest-average-cycle-equivalent (SACE) simulation of Sa.

A SACE simulation is a normal simulation with the added requirement that at least one of the SACs of the abstraction is
n actual recurrent behavior of the concrete system, after some finite transient. Clearly, SACE simulation is stronger than
imulation but significantly weaker than bisimulation. Equivalently, a largest-average-cycle-equivalent simulation, or LACE
imulation, can be defined using the maximum average cycle instead. The following result is a straightforward conclusion
rom Proposition 2 and Theorem 2.
6

G. de A. Gleizer and M. Mazo Jr Nonlinear Analysis: Hybrid Systems 47 (2023) 101290

P

R
a
a

e
b

P
f
x

(
≥

g
a
b
a
t

Fig. 3. Summary of relations and results in Section 3. Double-arrows (H⇒) mean implication.

roposition 3 ([7]).3 Consider two simple WTSs Sa and Sb; if Sb is a finite-state SACE simulation of Sa, then V(Sa) = V(Sb).

emark 3. In fact, to use Definition 6 and Proposition 3, it is not needed that the WTSs are simple. One can always turn
WTS into an equivalent simple one by adding artificial states: suppose that (x, y) and (x, z) belong to E and γ (x, y) =
̸= γ (x, z) = b. Add artificial states y′ and z ′ and replace the aforementioned transitions with (x, y′), (x, z ′), (y′, y), (z ′, z),

setting γ (x, y′) = γ (x, z ′) = 0, γ (y′, y) = a and γ (z ′, z) = b. Applying this procedure to the whole system gives a simple
WTS, and again behaviors are equal to sequences of weights. The LimAvg value of any run of this modified system is half
of the value of the original equivalent run (since we are adding zeros at every other transition).

For the cases where obtaining a SACE simulation of V(Sa) is not possible, one may still be interested in computing an
stimate of the error V(Sa)− V(Sb). In [7], the maximal value V(Sb) was used to this end, but a better approximation can
e found by inspecting the maximal average cycle of the attractors of Sb.

roposition 4. Let Sa := (Xa,Xa, Ea,Y,Ha) and Sb := (Xb,Xb, Eb,Y,Hb) be two simple WTSs, R be a simulation relation
rom Sa to Sb, and A ⊂ Xb be a strongly forward invariant set4 of Sb. If there exists xb ∈ A such that (xa, xb) ∈ R for some
a ∈ Xa, then V(Sa) ≤ V((A,A, Eb,Y,Hb)) ≤ V(Sb).

Proof. First, it is a simple exercise to see that (X ,X ′, E,Y,H) ⪯ (X ,X , E,Y,H) if X ′ ⊆ X . Now, take (xa, xb) ∈
R where xb ∈ A. Then, (Xa, {xa}, Ea,Y,Ha) ⪯ Sa. At the same time, with the same relation R we can ver-
ify that (Xa, {xa}, Ea,Y,Ha) ⪯ (Xb, {xb}, Eb,Y,Hb). Therefore, by Proposition 2, V((Xa, {xa}, Ea,Y,Ha)) ≥ V(Sa), and
V((Xb, {xb}, Eb,Y,Hb)) ≥ V((Xa, {xa}, Ea,Y,Ha)). Because V(·) ≥ V(·), we get that V((Xb, {xb}, Eb,Y,Hb)) ≥ V(Sa).

Now, because A is strongly forward invariant, every run of (Xb, {xb}, Eb,Y,Hb) contains only states in A. Thus,
Xb, {xb}, Eb,Y,Hb) ∼=B (A, {xb}, Eb,Y,Hb) ⪯ (A,A, Eb,Y,Hb). Then, applying Proposition 2 again gives V((A,A, Eb,Y,Hb))
V(Sa).
Finally, because (A,A, Eb,Y,Hb) ⪯ Sb, Proposition 2 also gives that V(Sb) ≥ V((A,A, Eb,Y,Hb)). □

When the abstraction Sb is finite, its smallest strongly invariant sets are simply the attractive strongly connected
components (SCCs) of the graph associated with Sb. Obtaining the SCCs of a graph with n vertices and m edges has
complexity O(n+m) [14] and in fact is part of the steps to compute its smallest (or largest) average cycle.

Fig. 3 summarizes the main concepts and preliminary results of this section.

4. Limit average from l-complete abstractions

In this section we provide some results on the computation of the infimal limit average of a simple WTS S through
the use of its SlCA Sl. The first result is an obvious conclusion from combining Proposition 1 with 2:

Proposition 5. Consider a simple WTS S and its SlCA Sl (Definition 4), for some l ≥ 1. It holds that V(Sl) ≤ V(S).

Considering the idea of SACE simulation, a simple conceptual algorithm that can compute the exact value of V(S) is
iven in Alg. 1. The idea is to increment l until the smallest-in-average cycle of Sl is verified in the concrete system. The
lgorithm requires one to be able to compute the SlCA of a given system (line 3) and to verify the existence of periodic
ehavior (line 5); these steps will be discussed for PETC traffic on Section 5. As we will see now, Alg. 1 is in fact a semi-
lgorithm; depending on the behavior of S , it may not terminate. The following result shows under which conditions
here is a finite l such that V(Sl) = V(S).

3 The concept of SACE simulation and its related results have been recently expanded to non-autonomous WTSs in [22], where the objective was
to design sampling strategies instead of evaluating them. This expansion is not needed for the scope of this paper.
4 A strongly forward invariant set A ⊆ X is a set that satisfies ∀x ∈ A, (x, x′) ∈ E H⇒ x′ ∈ A.
7

G. de A. Gleizer and M. Mazo Jr Nonlinear Analysis: Hybrid Systems 47 (2023) 101290

α

P
σ

s
h
o
t

t

S

f

i

r
V

w

o
v
a

T
m
s

Algorithm 1 Computation of V(S)

Input: A simple WTS S with Y ⊂ Q, |Y| <∞
Output: l, Sl, V, σ

1: l← 1
2: while true do
3: Build Sl ▷ (Definition 4)
4: V← V(Sl), σ ← SAC(Sl) ▷ [14,21]
5: if σω

∈ Bω(S) then
6: return
7: end if
8: l← l+ 1
9: end while

Theorem 3. Consider a simple finite WTS S and assume that there exists a finite m ∈ N such that every infinite behavior
∈ Bω(S) satisfies Avg(β) ≥ V(S), for every non-transient subsequence β of α with |β| = m. Then there exists a finite l such

that the l-complete simulation Sl of S satisfies V(Sl) = V(S).

roof. First we prove that, if β is transient, then there exists l large enough such that β cannot be a subsequence of
ω for any cycle σ of Sl. For that, suppose by contradiction that, ∀L, ∃l ≥ L for which a cycle σ of Sl exists s.t. β is a
ubsequence of σω; w.l.o.g., assume that l > m. Then, there exists a word γ β of length l that is a subsequence of σω;
ence, |γ | = l−m. This holds because for any natural number p, σ pβ is a subsequence of σ pσω

= σω . Now, by definition
f Sl, γ β ∈ Bl(S). Since l can be chosen arbitrarily large, β can occur arbitrarily late in a behavior of S , thus contradicting
he fact that it is transient.

Therefore, there exists l large enough such that, for every cycle σ of Sl, every m-long subsequence β of σω is non-
ransient. From Theorem 2, one such cycle satisfies V(Sl) = LimAvg(σω). Let p := |σ |. Then, σm has length pm and as such
it can be divided in p non-transient subsequences βi, not necessarily distinct, of length m. Now,

V(Sl) = LimAvg(σω) = LimAvg((σm)ω) = Avg(σm) =
1
p

p∑
i=1

Avg(βi) ≥ V(S).

ince, by Proposition 5, V(Sl) ≤ V(S), it holds that V(Sl) = V(S). □

Theorem 3 states that it is sufficient for it to exist an m large enough such that every ‘‘persistent’’ m-long behavior
ragment β of S has higher or equal average than V(S). Intuitively, constraining the assumption of β occurring infinitely
often has the idea of excluding transient behaviors β , which do not affect the LimAvg value. For cases where β can occur
nfinitely often in some behavior, but βω is not a behavior of S , one can construct counterexamples in which V(Sl) < V(S)
for all l:

Example 1. Consider a system S with behavior set Bω(S) = {(1n2n)ω | n ∈ N}. Obviously, V(S) = 1.5. However, for any
l, (1l)ω ∈ Bω(Sl), hence V(Sl) = 1 for any l.

Example 2. Consider the system S = ([0, 1], [0, 1], E, {0, 1},H) where E = {(x, x+ a mod 1)} and H(x) = 1 if x < a and
0 otherwise. When a is irrational, S is called an irrational rotation. Because it is ergodic with respect to the Lebesgue
measure [23], LimAvg(α) = a for any α ∈ Bω(S). Thus, V(S) = a is irrational. Since for every finite l, V(Sl) is a
ational number (as a consequence of Theorem 2 and the fact that Sl is finite), V(Sl) ̸= V(S). Finally, from Proposition 5,
(Sl) ≤ V(S), thus V(Sl) < V(S) for all finite l.

Note that, for Example 2, the minimum number of 1s in a behavior fragment of length n is ⌊na⌋, hence V(Sl) = ⌊la⌋
l ,

hich asymptotically approaches a as l goes to infinity. For Example 1, we cannot obtain this asymptotic approximation.
The conditions in Theorem 3 do not imply that the SAC σ of Sl satisfies σω

∈ Bω(S); thus, we may have equality
f LimAvg values without a SACE simulation. Therefore, under these conditions, Alg. 1 can be interrupted with the exact
alue, but with no certificate that this is the case. Its termination is guaranteed when there is a cyclic minimizing behavior,
nd additionally that the other behaviors have limit average values strictly larger than that of the cycle:

heorem 4. Consider a simple WTS S , and suppose S satisfies the premises of Theorem 3. Furthermore, assume there exists an
-long sequence σ such that σω

∈ Bω(S), and that every non-transient subsequence β , |β| = m of every behavior α ∈ Bω(S)
atisfies LimAvg(βω) > V(S) if β is not a subsequence of σω . Then Alg. 1 terminates with V = V(S).
8

G. de A. Gleizer and M. Mazo Jr Nonlinear Analysis: Hybrid Systems 47 (2023) 101290

m
p
H
b

E

w

5

f

The proof requires some technical results on cyclic permutations of sequences and we leave it for the appendix. The
ain insight is that the conditions of Theorem 4 imply that, for sufficiently large l, Sl has only one SAC σ , modulo cyclic
ermutations, which attains the minimum value; at the same time, for large enough l, this σ satisfies σω

∈ Bω(S).
ereafter, we say that a system satisfying the premises of Theorem 4 has an isolated SAC. This does not mean that the
ehavior of S is simple, or that a finite-state bisimulation of it exists:

xample 3. Consider the doubling map system S = ([0, 1], [0, 1], E, {0, 1},H) where E = {(x, 2x mod 1) | x ∈ [0, 1]}
and H(x) = 0 if x < 1/2 and 1 otherwise. The behavior of this system is (0+1+)ω , its smallest cycle is 0ω with value
zero (obtained with x0 = 0). This system does not admit a finite-state bisimulation, but its 1-complete abstraction
is S1 = {{0, 1}, {0, 1}, {(0, 0), (0, 1), (1, 0), (1, 1)}, {0, 1}, Id}, where Id is the identity operator. Clearly, S1 is a SACE
simulation of S (in fact, it is behaviorally equivalent, but not bisimilar). The system S satisfies the premises of Theorem 4
ith m = 1.

Now that we have the general framework for the computation of V(S), we see how to apply it for PETC traffic.

. Computing the SAIST of PETC

We start by describing the evolution of sampled states and ISTs of a PETC system, cf. Eq. (5), as a transition system
ollowing Definition 1:

S :=(Rnx ,Rnx , E,Y,H), where
E = {(x, x′) ∈ Rnx × Rnx | x′ = M(κ(x))x},
Y = {1, 2, . . . , k̄},
H = κ.

(7)

System S is our concrete infinite-state system, for which we want develop an algorithm like Alg. 1. For this we need to
be able to (i) build an l-complete abstraction of the system, (ii) compute its SAC, and (iii) check if its minimum mean cycle
exists in the concrete system. Naturally, Karp’s algorithm [14,21] constitute the tool for task (ii). In the next section we
present how to obtain l-complete abstractions of S. Then, in Section 5.2, we show how can a cyclic behavior be verified to
be trace of S. Finally, we present the full algorithm and discuss its robustness and applicability in subsequent subsections.

5.1. l-complete PETC traffic models

As mentioned in Section 3.1, for autonomous deterministic systems such as S from Eq. (7), a quotient-based approach
can be used to obtain its SlCA Sl. The idea is to divide the state-space X into regions Xy1y2...yl , where the first l elements
of any behavior in Bω

x (S), for any x ∈ Xy1y2...yl , are exactly y1, y2, . . . , yl. If S is deterministic, this division generates
a partition, as from one state x there exists only one infinite behavior. In [7,13], we have used this idea to construct
finite-state PETC traffic models abstracting system (7), coming up with the following relation:

Definition 7 (Inter-Sample Sequence Relation [7]). Given a sequence length l, we denote by Rl ⊆ Rnx × Y l the relation
satisfying (x, k1k2...kl) ∈ Rl if and only if

x ∈ Qk1 , (8a)

M(k1)x ∈ Qk2 , (8b)

M(k2)M(k1)x ∈ Qk3 , (8c)

...

M(kl−1)...M(k1)x ∈ Qkl , (8d)

where

Qk := Kk \

⎛⎝k−1⋂
j=k

Kj

⎞⎠ = Kk ∩

k−1⋂
j=1

K̄j,

Kk :=

{
{x ∈ X |xTN (k)x > 0}, k < k̄,
Rnx , k = k̄.

(9)

Eq. (9), from [11], defines the sets Qk, containing the states from which the next trigger happens exactly after k time
units. Eq. (8) states that a state x ∈ Rnx is related to a state k1k2...kl of the abstraction if its generated inter-sample time
sequence for the next l samples is k , k , . . . , k .
1 2 l

9

G. de A. Gleizer and M. Mazo Jr Nonlinear Analysis: Hybrid Systems 47 (2023) 101290

u

D

Remark 4. Setting l = 1 gives a quotient state set [12] of S in (7), while larger values of l can be seen as refinements
sing the bisimulation algorithm of [12, Chapter 8].

efinition 8. Given an integer l ≥ 1, the l-complete PETC traffic model is the system Sl := (Xl,Xl, El,Y,Hl), with

• Xl := πRl (X),
• El = {(kσ , σk′) | k, k′ ∈ Y, σ ∈ Y l−1, kσ , σk′ ∈ Xl},
• Hl(k1k2...kl) = k1.

The model above partitions the state-space Rnx of the PETC into subsets associated with the next l inter-sample times
these states generate, i.e., it is an l-complete abstraction, but also a quotient-based model. Computing the state set, πRl (X),
requires determining whether or not, for each k1k2...kl ∈ Y l, its associated conjunction of quadratic inequalities in Eq. (8)
admits a solution x ∈ Rnx ; only if it does, then σ ∈ Xl. This can be determined using a nonlinear satisfiability-modulo-
theories (SMT) solver such as Z3 [24], see Remark 55 The output map Hl is the next sample alone, and the transition
relation is based on the domino rule, as in Definition 4.

Remark 5. To verify if a sequence σ := k1k2...kl exists using an SMT solver, one solves the query ∃x ∈ Rnx : Eq. (8) holds.
This requires unfolding the memberships of Eq. (8) into the conjunctions of quadratic inequalities by applying Eq. (9). For
example, suppose we want to verify the sequence σ = (3, 2). First we convert x ∈ Q3, which is equivalent to xTN (1)x ≤ 0
and xTN (2)x ≤ 0 and xTN (3)x > 0 if 3 < k̄, or just xTN (1)x ≤ 0 and xTN (2)x ≤ 0 if 3 = k̄. Then we add constraints
associated to M(3)x ∈ Q2, which are xTM(3)TN (1)M(3)x ≤ 0 and xTM(3)TN (2)M(3)x > 0, to the constraint set. Finally,
because we are interested in non-trivial solutions, we say that x is non-zero by adding, e.g., xTx > 0 or xTx = 1. The
final SMT query to check whether (3, 2) is a behavior of the system then becomes ‘‘∃x ∈ Rn such that xTN (1)x ≤ 0 and
xTN (2)x ≤ 0 and xTN (3)x > 0 and xTM(3)TN (1)M(3)x ≤ 0 and xTM(3)TN (2)M(3)x > 0 and xTx > 0.

5.2. Verifying SACE equivalence

In this subsection, we are interested in determining whether a sequence of outputs (k1k2...km)ω =: σω is a possible
behavior of system S in Eq. (7). This is equivalent to finding a run {xi} whose trace is σω . From now on, we denote by
Qσ , or σ -cone, the set of all points x ∈ Rnx satisfying Eq. (8) with l = m and by Mσ := M(km)M(km−1) · · ·M(k1). For the
formal results, consider the following classes of square matrices:

Definition 9 (Mixed Matrix). Consider a matrixM ∈ Rn×n and let λi, i ∈ N≤n be its eigenvalues sorted such that |λi| ≥ |λi+1|

for all i. We say that M is mixed if, for all i < n, |λi| = |λi+1| implies that ℑ(λi) ̸= 0 and λi = λ∗i+1.

Remark 6. Mixed matrices cannot have eigenvalues with the same magnitude, except for complex conjugate pairs. Every
mixed matrix is diagonalizable, but the converse does not hold (e.g., the identity is not mixed). The set of mixed matrices is
full Lebesgue measure. With a non-pathological choice of h,6 the matrices M(1),M(2), . . .M(k̄) from Eq. (3) are all mixed,
even if K is chosen to place poles of A+BK in the same point of the complex plane; it is sensible (but not guaranteed) to
expect that their products are also mixed. From a linear systems perspective, all modes of a mixed matrix have different
speeds.

Definition 10 (Matrix of Irrational Rotations). A matrix M ∈ Rn×n is said to be of irrational rotations if the arguments of
all of its complex eigenvalues are irrational multiples of π.

Remark 7. If M has a pair of complex conjugate eigenvalues whose argument is a rational multiple of π, i.e., pπ/q,
where p, q ∈ N, then the corresponding eigenvalues of Mq are real. The set of real matrices of rational rotations is
Lebesgue-measure zero but dense in Rn×n.

If Mσ is mixed and of irrational rotations, one can verify if σω is a behavior of S from Eq. (7) by checking the linear
invariants of Mσ :

Theorem 5. Consider system (7) and let σ ∈ Ym,m ∈ N, be a sequence of outputs. (i) If Mσ is nonsingular and there exists a
linear invariant A of Mσ such that A\ {0} ⊆ Qσ , then σω

∈ Bω(S). Moreover, if (ii) Mσ is additionally mixed and of irrational
rotations, then σω

∈ Bω(S) implies that there exists a linear invariant A of Mσ such that A ⊆ cl(Qσ).

To avoid a long detour in our exposition, we leave the proof to the appendix, instead providing here a depiction of the
idea behind it: In Fig. 4, we have m = 1 and Y = {1, 2}, and the blue cone splits R3, the state space, in Q1 and Q2; the two

5 Alternatively, this query may be solved approximately through convex relaxations as proposed in [11]. Using relaxations implies finding
inter-sample sequences that may not be exhibited by the real system. This still generates a simulation relation, but containing more spurious
behaviors.
6 Typically, only countably many values of h will render M(k) non-mixed for a given k.
10

G. de A. Gleizer and M. Mazo Jr Nonlinear Analysis: Hybrid Systems 47 (2023) 101290

v

Fig. 4. Illustration of Theorem 5 in R3 . The blue cone splits R3 into Q1 and Q2 the line is an invariant of M(1) and the plane is an invariant of
M(2). Points indicate distinct sample trajectories {xi}.

plots have different matrices M(1). Runs {xi} that generate the trace 1ω are solutions of the linear system xi+1 = M(1)xi,
one such example being depicted with white dots. Likewise, black dots show a run generating the trace 2ω , and it has to
be a solution of xi+1 = M(2)xi. In the example on the left, the black line is supported by one real eigenvector of M(1) and,
as it belongs to Q1, at least solutions on top of this eigendirection are runs of the PETC system S. In our example, this
eigenvector is associated with a dominant mode of M(1), so solutions starting close to it converge towards it. The plane
depicted on the left of Fig. 4 is an invariant of M(2) associated to complex conjugate eigenvalues. Solutions starting in
this plane stay in this plane, spiraling towards the origin (in case the PETC implementation is stabilizing), which confirms
that 2ω is also a behavior of S. The example on the right shows the defective case where the converse does not hold: for
that, assume that Q1 does not include its depicted blue boundary; however, the black line representing an eigendirection
of M(1) runs precisely on this boundary. In this example, the white dots represent a run {xi} in Q1, thus generating the
trace 1ω , but no invariant of M(1) is a subset of Q1. Because the depicted mode of M(1) is dominant, there are solutions
that start close to its associated eigendirection that stay in Q1 forever.

Based on Theorem 5, in the non-defective cases we can verify a cyclic behavior σω by taking the finitely many linear
invariants A of Mσ and checking if A \ {0} ⊆ Qσ , or, more explicitly, taking σ = k1k2...km,

A \ {0} ⊆ Qk1 ,

M(k1)A \ {0} ⊆ Qk2 ,

...

M(km−1)...M(k1)A \ {0} ⊆ Qkm .

(10)

Because each Qk is an intersection of quadratic sets (see Eq. (9)), we must be able to check whether a linear space is a
subset of a given quadratic set, which is nothing but a positive-(semi)definiteness check:

Proposition 6 ([7]). Let A be a linear subspace with basis v1, v2, . . . , vm, and let V be the matrix composed of the vectors vi
as columns. Let Q ∈ Sn be a symmetric matrix and define Qn := {x ∈ Rn

| xTQx ≥ 0} and Qs := {x ∈ Rn
| xTQx > 0}. Then,

A \ {0} ⊆ Qn (resp. Qs) if and only if VTQV ⪰ 0 (resp. VTQV ≻ 0).

5.3. SACE simulation algorithm

Combining the l-complete traffic models from Section 5.1 with the stopping criterion based on checking linear
invariants from Section 5.2, we specialize Algorithm 1 into Algorithm 2 to generate a finite-state SACE simulation of the
PETC traffic model S , together with the computation of its SAIST V(S). In the outer loop, the relation Rl and corresponding
finite-state system Sl are built, followed by the computation of one of its SACs σ . Then, an inner loop looks for linear
subspaces A of Mσ satisfying A \ {0} ⊆ Qσ (Theorem 5); because Mσ is assumed to be mixed and of irrational rotations7
, it suffices to verify 1-dimensional subspaces for real eigenvectors and 2-dimensional subspaces for complex conjugate
ones8; if one is found, the algorithm terminates. Otherwise, l is incremented and the main loop is repeated. Hereafter, we
say that a linear invariant subspace of a mixed matrix is basic if it is the span of a real eigenvector or of a pair of complex
conjugate eigenvectors.

7 Any matrix is arbitrarily close to a mixed matrix of irrational rotations; numerically checking if it is otherwise is not robust. A more thorough
discussion about this is available in Section 5.4.
8 If a larger dimensional subspace A′ is a subset of Qσ , any smaller dimensional subspace A ⊂ A′ will also be. Thus, there is no benefit in
erifying subspaces that are combinations of smaller real linear subspaces.
11

G. de A. Gleizer and M. Mazo Jr Nonlinear Analysis: Hybrid Systems 47 (2023) 101290

1
1

a
w
t

D
i

r
t

T
w

Algorithm 2 PETC SAIST computation algorithm

Input: Y and M(k),Qk,∀k ∈ Y
Output: l, Sl, σ , SAIST

1: l← 1
2: while true do
3: Build Rl and Sl ▷ (Definitions 7 and 8)
4: SAIST← V(Sl), σ ← SAC(Sl) ▷ [14,21]
5: for all A ∈ BILS(Mσ) do ▷ BILS = basic invariant linear subspaces
6: if A satisfies Eq. (10) with k1, k2, ..., km = σ then
7: return
8: end if
9: end for
0: l← l+ 1
1: end while

In order to state formal results about the correctness of Algorithm 2, we need to account for the conditions in
Theorem 5.

Definition 11 (Normalized Distance). The normalized distance between a point x ∈ Rn and a set A ⊆ Rn, denoted by
dn(x,A) is defined as infl∈A

(
1− lTx

|l||x|

)
. The normalized distance between two sets is dn(A,A′) := infl∈A dn(l,A′).

As the quantity lTx
|l||x| is the cosine of the angle between the vectors l and x, the normalized distance varies between 0

nd 1, measuring how close x is, modulo magnitude, to the set A. It is a more sensible choice of distance when dealing
ith homogeneous sets than the Euclidean distance, which would be zero as the origin is always in or arbitrarily close
o such sets. This distance is needed for some technical results that come later, as well as for the following definition.

efinition 12 (Regularity). A sequence of ISTs σ := k1k2...km is said to be regular if (i) Mσ is nonsingular, mixed, and of
rrational rotations, and (ii) for every invariant linear subspace A of Mσ , we have that dn(A, ∂Qσ) ≥ ϵ for some ϵ > 0.

Regularity of a sequence σ prevents that one of the invariants of Mσ intersect ∂Qσ (the case in the right of Fig. 4),
equiring a minimal ϵ clearance to its boundary. The following result establishes conditions for the termination of Alg. 2;
he proof is in Appendix A.

heorem 6. Suppose that S from Eq. (7) has an isolated smallest-in-average cycle σ that is regular. Then, Alg. 2 terminates
ith SAIST = V(S).

The conditions of Theorem 6 are the same behavioral conditions as in Theorem 4: the system must exhibit a minimizing
periodic behavior, and competing infinite behaviors must be composed of subsequences that have average value strictly
larger than the minimal value. Additionally, the smallest cycle must be regular, which is not a limiting assumption.
Therefore, the algorithm may not terminate when, for example, a minimizing behavior is aperiodic. In this case, we may
still expect increasingly better estimates of V(S) with larger values of l.

5.4. Robustness and computability

Algorithm 2 relies on the matrices M(k) from Eq. (3), whose elements are typically transcendental. Therefore, one may
wonder if the algorithm, or more generically a given l-complete SACE traffic model, is robust to small round-off errors
when computing those matrices, as well as other small model mismatches. In this section, we are going to see that this
is true given that some mild assumptions are satisfied. For this, we need proper definitions.

Definition 13 (Perturbed PETC System). Given a PETC system (1)–(2) and its data A,B,K ,Q , k̄, the PETC system with data
Ã, B̃, K̃ , Q̃ , k̄ is called a δ-perturbation of the former if

⏐⏐⏐A− Ã
⏐⏐⏐ ≤ δ,

⏐⏐⏐BK − B̃K̃
⏐⏐⏐ ≤ δ, and

⏐⏐⏐Q − Q̃
⏐⏐⏐ ≤ δ. Furthermore, the

traffic model S̃ cf. Eq. (7) of a δ-perturbation of system (1)–(2) is denoted a δ-perturbation of S .

Remark 8. Considering Footnote 1, Definition 13 also encompasses variations in the actual checking period h.

Definition 14 (ϵ-Inflation). The ϵ-inflation of a quadratic cone {x ∈ Rn
| xTQx ≥ (>)0} is the set {x ∈ Rn

| xT(Q + ϵI)x ≥ (>
)0}, for ϵ > 0. An ϵ-inflation of the intersection of quadratic cones is defined as the intersection of the ϵ-inflations.
12

G. de A. Gleizer and M. Mazo Jr Nonlinear Analysis: Hybrid Systems 47 (2023) 101290

P

e
m
s
f
s

5

t
r
s

Let Pδ(S) be the set of all δ-perturbations of S. We have the following results.

roposition 7. Let S , Eq. (7), be the traffic model of system (1)–(2). If Sl is an l-complete model thereof (Definition 8), then
there exists δ > 0 such that Sl is an l-complete model of every S̃ ∈ Pδ(S) if there exists an ϵ > 0 such that the following
conditions hold:

• For every σ ∈ Bl(S), there exists x ∈ Qσ s.t. dn(x, ∂Qσ) > ϵ; and
• for every σ /∈ Bl(S), every ϵ-inflation of Qσ is empty.

Proof. By Definition 8, Sl is an SlCA of every S̃ ∈ Pδ(S) if

1. σ ∈ Bl(S) H⇒ σ ∈ Bl(S̃),∀S̃ ∈ Pδ(S), and
2. σ /∈ Bl(S) H⇒ σ /∈ Bl(S̃),∀S̃ ∈ Pδ(S).

For item 1, we must have a non-zero vector x ∈ Q̃σ , where Q̃σ is the σ -cone of the δ-perturbation S̃. Because
dn(x, ∂Qσ) > ϵ, we have that the normalized distance to the complement of Qσ satisfies dn(x, Q̄σ) > ϵ. By continuity,
this implies that dn(x, ¯̃Qσ) > 0 for small enough δ, and hence x ∈ Q̃ H⇒ σ ∈ Bl(S̃). Likewise, for item 2, we cannot have
a vector x ∈ Q̃σ ; by continuity, for small enough δ, Q̃σ is a subset of the ϵ-inflation of Qσ , which is empty, and therefore
σ /∈ Bl(S̃). □

The conditions in Proposition 7 rule out marginal cases of degeneracy, and are expected to hold in general for
sufficiently small ϵ. I.e., if σ is a behavior of S and Qσ has a non-empty interior (equivalent to dn(x, ∂Qσ) > ϵ for some x
and ϵ), then sufficiently small perturbations to the sets whose intersection givesQσ do not render it empty; symmetrically,
if σ is not a behavior of S , not only Qσ must be empty, but small perturbations on the sets whose intersection composes
Qσ must retain its emptiness, thus not creating a new behavior.

Proposition 8. Let σω be a cyclic behavior of S from Eq. (7). Then, if σ is regular, there exists some δ > 0 such that
σω
∈ Bω(S̃), for all S̃ ∈ Pδ(S).

Proof. From Theorem 5, we have that σω
∈ Bω(S) H⇒ A ⊆ cl(Qσ) for a basic linear invariant subspace A of Mσ . From

regularity of σ , dn(A, ∂Qσ) > ϵ. Together with A ⊆ cl(Qσ), we have that dn(A, Q̄σ) > ϵ. Since σ is regular, Mσ is mixed
by definition. Then, by continuity of eigenvalues and eigenvectors, for small enough δ, the perturbed eigenvalues λ̃i are
qualitatively unchanged: λi ∈ R H⇒ λ̃i ∈ R, ℑ(λi) ̸= 0 H⇒ ℑ(λ̃i) ̸= 0, and |λi| > |λi+1| H⇒ |λ̃i| > |λ̃i+1|. Thus,
if A is a line associated to a real eigenvalue, so is the corresponding basic linear subspace Ã of M̃σ ; and likewise if A is
a plane corresponding to complex conjugate eigenvalues of irrational rotations: even if M̃σ is not of irrational rotations,
the plane Ã is one of its invariants. In addition, dn(A, Ã) < d, where d diminishes with δ. Hence, for small enough δ we
have that dn(A, Q̄σ) > ϵ H⇒ dn(Ã, ¯̃Qσ) > 0 H⇒ Ã \ {0} ⊆ Q̃σ . Therefore, applying again Theorem 5, we conclude
that σω

∈ Bω(S̃),∀S̃ ∈ Pϵ(S). □

These two propositions combined give the following result:

Theorem 7. Let S , Eq. (7), be the traffic model of system (1)–(2), and let Sl be its SACE simulation. If its smallest-in-average
cycle σ is regular and Sl satisfies the premises of Proposition 7, then there exists δ > 0 such that Sl is SACE simulation of every
S̃ ∈ Pδ(S).

Theorem 7 has two interesting implications. The first is that sufficiently small round-off errors on the matrices M(k)
and Q of Eq. (3) do not affect the correct computation of V(S); hence, V(S) is computable for a class of linear systems,
ven though M(k) typically contains transcendental numbers. The second implication is that, informally, we can apply our
ethod to nonlinear systems, as long as the closed loop ETC system is asymptotically stable and the involved functions are
ufficiently smooth. Asymptotic stability implies that the state converges to a ball of any radius, no matter how small, in
inite time; therefore, the sequence of sampling times up to this point do not affect the system’s SAIST. Inside a sufficiently
mall ball, the nonlinear flow belongs to a convex combination of δ-perturbations of its linearization about the equilibrium.
If the linearized system S satisfies the premises of Theorem 7, the SAIST of the nonlinear system is equal to V(S).

.5. An improved algorithm

Verifying the existence of each l-long behavior to obtain Rl and Sl (line 3 of Alg. 2) has exponential complexity on
he number of variables [13,25]. To reduce the number of times these problems are solved, we propose a more efficient
efinement approach than performing the full (l+1)-complete abstraction. At every iteration of Alg. 2, we only refine the
tates of the abstraction associated with the previous SAC. This procedure is explained in Algorithm 3, where Xσ is the
set of states that compose the SAC.9

9 In fact, the corrected Karp’s algorithm in [21] returns sequence of states that generate the SAC, from which determining the SAC is trivial.
Algorithm 3 needs the states, hence we use the function SAC∗ which returns both the states X and the behavioral cycle σ itself.
σ

13

G. de A. Gleizer and M. Mazo Jr Nonlinear Analysis: Hybrid Systems 47 (2023) 101290

1

1
1
1
1
1
1
1
1
1
2
2

(
o
t

6

(
p
i
t

Algorithm 3 Fast PETC SAIST computation algorithm

Input: S1 and M(k),Qk,∀k ∈ Y
Output: d, Sd, σ , SAIST

1: d← 1 ▷ d is the depth of the algorithm
2: while true do
3: SAIST← V(Sl), (Xσ , σ)← SAC∗(Sl) ▷ [14,21]
4: for all A ∈ BILS(Mσ) do ▷ BILS = basic invariant linear subspaces
5: if A satisfies Eq. (10) with k1, k2, ..., km =: σ then
6: return
7: end if
8: end for
9: Xd+1 ← Xd \ Xσ ▷ Remove states to be refined
0: for all (α, β) ∈ Ed such that α ∈ Xσ and |α| ≤ |β| do ▷ If |α| > |β| no new candidate is generated via the domino

rule
1: k← β(|α|) ▷ The |α|-th element of β

2: γ ← αk ▷ New candidate: sequence of length |α| + 1 given the Domino rule
3: if ∃x ∈ Rnx such that k1k2...kl =: γ satisfies Eqs. (8)–(9) then ▷ Nonlinear SMT
4: Xd+1 ← Xd+1 ∪ {γ }

5: end if
6: end for
7: Ed+1 ← {(kσ , σk′) | k, k′ ∈ Y, kσ , σk′ ∈ Xd+1} ▷ Domino rule
8: Hd+1(kσ)← k for all kσ ∈ Xd+1
9: Sd+1 ← (Xd+1,Xd+1, Ed+1,Y,Hd+1)
0: d← d+ 1
1: end while

Table 1
SAIST values for the example of Section 6.1.
a 0.1 0.2 0.3 0.4 0.5

l 50∗ 15 26 12 10
SAIST 1.572 2.74 3.42 5 6
CPU time [s] 327 41 147 29 45
∗ Algorithm interrupted before finding a verified cycle.

To illustrate this approach, see Fig. 2, where three steps of this refinement approach are executed in the example of
Fig. 5: in depth 3, the SAC is already (1, 1, 2)ω , but it requires only 6 verifications: 1, 2, (1, 1), (1, 2), (1, 1, 1) (disproved) and
1, 1, 2); the 3-complete model would require up to 2+4+8 = 14 verifications to obtain the same SAC. The disadvantage
f this approach is that the obtained graph is more connected (as we have fewer states but more behaviors), and thus
he computation of an upper bound using Proposition 4 often gives too distant values.

. Numerical examples

In what follows we present three different numerical examples. They can be reproduced by using ETCetera [26]
https://gitlab.tudelft.nl/sync-lab/ETCetera), a tool to generate abstractions of ETC systems for scheduling, metric com-
utation (this paper) and sampling strategy design. It contains an implementation of Algorithms 2 and 3, including an
nterface with Z3 to solve the nonlinear SMT problems associated with verifying a sequence σ (Remark 5). To reproduce
he results of this paper, the following scripts within ETCetera can be used:

• examples/nahs_example1_traj.py for Fig. 6;
• examples/nahs_example1_table.py for Table 1 and other data presented in Section 6.1;
• examples/nahs_example2_table.py for Table 2 (beware, this takes hours to finish);
• examples/nahs_example3.py for the SAIST bounds in Section 6.3 and Fig. 7.
14

https://gitlab.tudelft.nl/sync-lab/ETCetera

G. de A. Gleizer and M. Mazo Jr Nonlinear Analysis: Hybrid Systems 47 (2023) 101290

l

a

Table 2
SAIST values for the example of Section 6.2.
a 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

l 1 18∗ 14 8 6 7 6 5 9
SAIST 1 1.921 3 3 3 4 4 4 9.5
CPU time [s] 2 3056 1551 95 185 236 153 40 2955

Fig. 5. Illustration of Alg. 3.

Fig. 6. ISTs and their running average for the example of Section 6.1 with a = 0.2 from a pseudo-randomly generated initial state. The dashed black
ine represents the computed SAIST.

Fig. 7. Left: running average of ISTs of five nonlinear PETC simulations and of five corresponding linear PETC simulations, with the dashed black
line representing the estimated SAIST. Right: ISTs for one nonlinear PETC simulation and the corresponding ISTs predicted by the linear PETC model,
with the state norm overlaid on a secondary axis.

6.1. A two-dimensional linear system

We start by considering the example from [7]: the system (1) with

A =
[

0 1
−2 3

]
, B =

[
0
1

]
, K =

[
0 −5

]
,

nd the triggering condition of [2], |ξ(t)− ξ̂(t)| > a|ξ(t)| for some 0 < a < 1, which can be put in the form Eq. (2).
Checking time was set to h = 0.05, and maximum inter-sample time to k̄ = 20. Using a Python implementation
of Algorithm 2 with Z3 [24] to solve Eq. (8), we attempted to compute its SAIST through a SACE simulation for a ∈
{0.1, 0.2, 0.3, 0.4, 0.5}. Table 1 presents the SAIST for each a, as well as the l value (Definition 8) where it was obtained.
Only for a = 0.1 the algorithm did not terminate before l = 50: for this case, the actual k̄ of the system was 3, and
all M(k), k ≤ 3, have complex eigenvalues. Thus, it is possible that it does not have periodic behaviors, similarly to the
irrational rotation of Example 2. Nonetheless, applying Proposition 4 gives an upper bound for V(S) of 1.596; hence, we
know that 1.572 ≤ V(S) ≤ 1.596, giving an uncertainty of only 0.024. For the other cases, trivial cycles were found for
15

G. de A. Gleizer and M. Mazo Jr Nonlinear Analysis: Hybrid Systems 47 (2023) 101290

f
p
a

t

u
P
a
e
d
i

7

t
t
t
w
s
t
u

a = 0.4 (5ω) and a = 0.5 (6ω), but it took a few iterations to break, e.g., the 2ω loop. Interestingly, the simplest cycles
or a = 0.2 and a = 0.3 had length, respectively, 27 and 28, showing that PETC can often lead to very complex recurring
atterns (see an example in Fig. 6). In addition, the case of a = 0.4 has two verified cyclic behaviors, 5ω and 6ω , while with
= 0.5 three cycles are obtained: 6ω, 7ω and 8ω: this confirms that a single PETC system can exhibit multiple different

periodic behaviors.
The results were generated on a MacBook Pro 2017 using a single processor. As Table 1 shows, even for l = 50 the

CPU time was kept under 10 min.

6.2. A three-dimensional linear system

With nx = 3, the computational time involved in solving the existence problem of Eq. (8) increased significantly.
Therefore we applied Alg. 3 to system (1)–(2) with

A =

[0 1 0
0 0 1
1 −1 −1

]
, B =

[0
0
1

]
,K =

[
−2 −1 −1

]
,

with h = 0.1, k̄ = 20 and the triggering condition |ξ(t)− ξ̂(t)| > a|ξ(t)|. This time, some parallelization was also
applied: at most 10 threads of an Intel

®
Xeon

®
W-2145 CPU were used, solving multiple instances of Eq. (8) in parallel

whenever possible. Table 2 shows the results for multiple choices of a, where l now is the largest length of any state in
he abstraction. The algorithm was set to a maximum depth of 200, which was only reached for a = 0.2. The CPU times
varied dramatically, in some cases taking less than a minute, whilst in others reaching an hour. The most interesting thing
we observe is that, even though the SAIST never decreases with a as expected, there is not a consistent increase on its
values after a = 0.3. This is reasonable considering the results of Section 5.4: for small enough perturbations of the ETC
system’s parameters, the same cycle may still be present (Proposition 8). Interestingly, for a = 0.9 there is a substantial
jump in the SAIST value.

6.3. A nonlinear system

Consider now the PETC triggering rule |ξ(t)− ξ̂(t)| > a|ξ(t)| with h = 0.05, a = 0.452 applied to the following
nonlinear jet engine system [27]:

ξ̇1(t) = −ξ2(t)− 1.5ξ1(t)2 − 0.5ξ1(t)3

ξ̇2(t) = υ(t),

υ(t) = ξ̂1(t)− 0.5(ξ̂1(t)2 + 1)(y(t)+ ξ̂1(t)2y(t)+ ξ̂1(t)y(t)2),

where y(t) = (ξ̂1(t)2 + ξ̂2(t))/(ξ̂1(t)2 + 1). The origin of the closed-loop system is asymptotically stable,10 therefore we
can obtain its SAIST through its linearized model around the origin, which is of the form (1) with

A =
[
0 −1
0 0

]
, B =

[
0
1

]
, K =

[
1 −0.5

]
.

We ran Alg. 2 and stopped it with l = 100, obtaining an approximate value of V(S) = 8.882. Using Proposition 4, an
pper bound of 8.892 was obtained, thus giving an error of 0.01. Fig. 7 shows ISTs and their running averages for five
ETC simulations starting each from a different pseudo-randomly generated initial state, for both the nonlinear model
nd the linearized model. It can be seen that the running averages in both cases converge to the predicted SAIST value,
ven though the averages are significantly different in the beginning of the simulation. The right plot shows how the
ifference between ISTs based on the nonlinear model and the linear model diminish as the state norm approaches zero:
n the plotted simulation there is no error after the state norm is below 0.03 (around time instant 400).

. Conclusions

We have presented a method to compute the sampling performance of PETC, namely its minimum average inter-sample
ime, by means of an abstraction called SACE simulation. For this we rely on methods of abstracting and refining to obtain
ighter simulations, and getting their smallest-in-average cycle through Karp’s algorithm. A SACE simulation requires that
his cycle, repeated ad infinitum, is a behavior of the concrete system; for this, we need to find an invariant of the system,
hich is possible for PETC of linear systems through the inspection of linear invariants of an associated discrete-time linear
ystem. In the generic case – quotient sets with non-empty interior and linear invariants not touching the boundary of
he cones they belong to – a SACE simulation is proven to be robust to small model uncertainties, which allows us to
se the presented method to a large class of nonlinear systems. Even if an exact SACE simulation is not obtained, every

10 For stability analysis of PETC of nonlinear systems, see, e.g., [28].
16

G. de A. Gleizer and M. Mazo Jr Nonlinear Analysis: Hybrid Systems 47 (2023) 101290

a
c
a
r
i
n
b
s
(
s

h
a
g
o
i

p
c

C

I
a

D

a

A

simulation provides a lower bound to the SAIST, and upper bounds can also be computed from the abstractions. Our
numerical results indicate that these bounds can be very close after sufficient refinements.

As with most applications of finite-state abstractions, our approach suffers from the ‘‘curse of dimensionality’’: with
three-dimensional system the computation can reach nearly an hour to complete. In fact, it can be argued that this
urse is more severe in our case than in most control and verification applications, since we rely on strongest l-complete
bstractions, which require no spurious behavior fragments of length up to l. This may prevent the usage of most
eachability tools to this end, as over- or under-approximations can create such spurious behaviors or remove potentially
mportant ones. This is one of the reasons why we have used Z3 for our implementation, as it is one of the few exact
onlinear SAT solvers available. Nevertheless, the robustness results we have presented indicate that exactness may not
e necessary in most cases. With this in mind, we plan to use approximate nonlinear SMT solvers such as dReal [29] to
tart addressing the issue of dimensionality. An additional approach to tackle the computational complexity is employing
massive) parallelization: in fact, all candidate l-long behaviors (line 3 of Alg. 2) can be checked in parallel provided
ufficient resources are available.
It is interesting to observe that the problem of computing the (smallest) limit average metric of an infinite system is

ighly dependent on its infinite behavior properties: systems with aperiodic behavior can make it impossible to obtain
SACE simulation, but other pathological behaviors can be even worse, such as the infamous (1n2n)ω , where not even a
ood approximation can be achieved. Better behavioral understanding of systems is crucial for the further development
f quantitative verification methods. Part of this behavioral understanding of ETC sampling is currently the subject of our
nvestigation.

Finally, natural extensions of this line of work are ongoing, such as extending it to systems with disturbances, in
articular stochastic noise [30], as well as the usage of abstractions for synthesis of sampling strategies that maximize the
losed-loop SAIST [22].

RediT authorship contribution statement

Gabriel de Albuquerque Gleizer: Conceptualization, Methodology, Software, Writing – original draft, Visualization,
nvestigation, Formal analysis. Manuel Mazo Jr: Conceptualization, Supervision, Writing – review & editing, Project
dministration, Funding acquisition.

eclaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
ppeared to influence the work reported in this paper.

ppendix A. Proof of Theorem 4

The proof relies on the notion of cyclic permutations. A word σ ′ is called a cyclic permutation of σ := a0a1...an if
σ ′ = aiai+1...ana0a1...ai−1 for some i ≤ n. For example, the cyclic permutations of 1234 are 1234, 2341, 3412, and 4123.
Clearly, all n-long subsequences of σω are precisely the cyclic permutations of σ . Now we introduce the following Lemmas:

Lemma 1. Let σ ∈ Yn and σ ′ ∈ Yn be cyclic permutations of each other. If σ = αa and σ ′ = αb, where α ∈ Yn−1 and
a, b ∈ Y , then a = b and thus σ = σ ′.

Proof. Let σ = a0a1...an−1. Then σ ′ = aiai+1...an−1a0...ai−1 for some i > 0 (if i = 0 the result is trivial). If their (n−1)-long
prefixes are equal, then aj = aj+i mod n for all j < n− 1. In particular, take j = i− 1; then ai−1 = a2i−1 mod n = a3i−1 mod n =

· · · = aki−1 mod n, where k is the smallest number such that ki − 1 mod n = n − 1 (in the worst case, k = n, for i and n
coprime). Thus, ai−1 = aki−1 mod n = an−1, concluding the proof. □

Lemma 2. Let σ ∈ Yn and σ ′ ∈ Yn be cyclic permutations of each other. If σ ̸= σ ′, then there is a subsequence α of length
n of σσ ′ that is not a cyclic permutation of σ .

Proof. Let σ = a0a1...an−1. Then σ ′ = aiai+1...an−1a0...ai−1 for some i > 0. We have σσ ′ = a0a1...an−1aiai+1...an−1a0...ai−1.
Suppose, for contradiction, that every n-long subsequence of σσ ′ is a cyclic permutation of σ . Let us look at the first

nontrivial subsequence, σ1 := a1...an−1ai. Because a1...an−1a0 is a cyclic permutation of σ , from Lemma 1 we get that
a0 = ai. Now let us apply induction: suppose that for some J < n, aj = ai+j mod n for all j < J; we are going to show that this
also holds for j = J . First, suppose that J < n−i; then σJ = aJaJ+1...an−1aiai+1...ai+J−2ai+J−1 = aJaJ+1...an−1a0a1...aJ−2ai+J−1.
Again, because aJaJ+1...an−1a0a1...aJ−1 is a cyclic permutation of σ , apply Lemma 1 to obtain ai+J−1 = aJ−1. Second, suppose
that J ≥ n − i. Then, σJ = aJ ...an−1ai..an−1a0a1...ai+J−n−1 = aJ ...an−1a0..an−i−1a0a1...ai+J−n−1. Note that ak = ak+n mod n =

ak+n−i as long as k+ n− i < J , i.e., k < i+ J − n. Thus, σJ = aJ ...an−1a0..an−i−1an−i...aJ−2ai+J−n−1. Again, apply Lemma 1
to get that ai+J−n−1 = aJ−1. We have that J − 1 + i mod n = i + J − n − 1, since n > J ≥ n − i; our hypothesis is thus
confirmed. The fact that aj = ai+j mod n for all j < n implies that σ ′ = aiai+1...an−1a0...ai−1 = a0a1...an−1−ian−i...an−1 = σ ,
which contradicts the fact that σ ̸= σ ′. □
17

G. de A. Gleizer and M. Mazo Jr Nonlinear Analysis: Hybrid Systems 47 (2023) 101290

p

(

A

i

B

L
Q
a
r

P
l
t
s
i

h
t
e

H

n
θ

a

w
{

Proof of Theorem 4. From Theorem 3, there is an l large enough such that V(Sl) = V(S). It is easy to see that taking
l ≥ m ensures that σ is a cycle of the graph associated to Sl.

We prove that, because now LimAvg(βω) > V(S) for every β that is not a subsequence of σω (thus not a cyclic
ermutation of σ), the SAC of Sl is unique up to cyclic permutations. Suppose, for contradiction, that another cycle σ ′ is

a SAC of Sl, with |σ ′| = p. As in the proof of Theorem 3, we divide (σ ′)m into p subsequences of length m, obtaining

V(Sl) = LimAvg((σ ′)ω) = LimAvg(((σ ′)m)ω) = Avg((σ ′)m) =
1
p

p∑
i=1

Avg(βi).

If (i) some βi is not a cyclic permutation of σ , 1
p

∑p
i=1 Avg(βi) > V(Sl), which yields the contradiction. Now, suppose

ii) that every βi is a cyclic permutation of σ ; since σ ′ is not the same cycle as σ , it cannot be that βi = βj for all i, j ≤ p.
If βi ̸= βj for some i, j, suppose without loss of generality that they are adjacent in (σ ′)ω , i.e., either j = i+ 1 or i = p and
j = 1. Then we have from Lemma 2 that there exists an m-long subsequence of βiβj that is not a cyclic permutation of σ .
Thus, σ ′ has at least one subsequence β ′ with average larger than V(S), which brings us back to case (i). The contradiction
is thus achieved in all cases.

Concluding, Sl has only one cycle σ (modulo cyclic permutations) that attains its minimum value. Hence, running
Karp’s algorithm (Theorem 2) retrieves it; by assumption, σω

∈ Bω(S), thus the algorithm terminates at line 6. □

ppendix B. Proof of Theorem 5

Before the main proof, we need some definitions. Given a map f : X → X and the discrete-time autonomous system
defined by xi+1 = f (xi), we call the forward orbit of x the set O(x) := {f n(x) | n ∈ N}. The ω-limit set of x, denoted by ω(x)
s the set of cluster points of O(x), or alternatively,

ω(x) =
⋂
n∈N

cl({f k(x) | k > n}).

y definition of closure, if O(x) ⊂ A ⊂ X , then ω(x) ⊂ cl(A).
We introduce the following Lemma.

emma 3. Let M ∈ Rn×n be a nonsingular mixed matrix and Q ⊆ Rn be a homogeneous set, i.e., it satisfies x ∈ Q H⇒ λx ∈
,∀λ ∈ R \ {0}. If there exists a trajectory ξ : N→ Rnx satisfying ξ(k+ 1) = Mξ(k) and ξ(k) ∈ Q ∀k ∈ N, then there exists
linear subspace A that is an invariant of Mq and satisfies A ⊆ cl(Q), where q ∈ N. Furthermore, q = 1 if M is of irrational
otations.

roof. Because Q is homogeneous, ξ(k) ∈ Q for all k implies that the normalized trajectory ξ(k)/|ξ(k)| ∈ Q for all k;
ikewise, for any constant c ̸= 0, we have that cξ(k)/|ξ(k)| ∈ Q. Therefore, let us investigate the ‘‘normalized’’ version of
he iteration xi+1 = Mxi: this is defined by the map f : Bn

→ Bn, where Bn is the unit ball in Rn and f (x) = Mx/ |Mx|. Our
trategy is to first determine what is ω(x); then, we will prove that the set {cω(x) | c ∈ R\{0}}, a radial expansion of ω(x),
s a linear subspace of M . Because ω(x) ⊆ cl(Q) and x ∈ Q H⇒ cx ∈ Q, we conclude that {cω(x) | c ∈ R \ {0}} ⊆ cl(Q).

Now we investigate case by case depending on the eigenvalues λi of M . Since M is mixed, it is diagonalizable, and
ence the trajectory ξ(k) can be decomposed as

∑n
i=1 aiviλ

k
i , where vi are the eigenvectors of M satisfying |vi| = 1, and

he coefficients ai are chosen such that ξ(0) =
∑n

i=1 aivi. Let m ≤ n such that ai = 0 for i < m, hence λm is the dominant
igenvalue for this initial condition. Throughout, let x := ξ(0)/ |ξ(0)|.
Case 1: λm is real. Then

lim
k→∞

ξ(k)
|ξ(k)|

= lim
k→∞

amvmλk
m + · · · + anvnλ

k
n

|amvmλk
m + · · · + anvnλk

n|

= lim
k→∞

amvm + · · · + anvn

(
λn
λm

)k⏐⏐⏐⏐amvm + · · · + anvn

(
λn
λm

)k
⏐⏐⏐⏐ = lim

k→∞

amvm

|amvm|
= ±amvm.

ence, the set {cω(x) | c ∈ R \ {0}} is the line {±cvm | c ∈ R \ {0}} = {cvm | c ∈ R \ {0}}, which is an invariant of M .
For the next cases, λm and λm+1 form a complex conjugate pair, thus vi+1 = v∗i . Denote by θ := arg λm.
Case 2: θ/π /∈ Q. Using a similar approach as Case 1, we get limk→∞ ξ(k)/|ξ(k)| = ±(vmeiθk + vm+1e−iθk). Because θ is

ot a rational multiple of π , {kθ | k ∈ N} is a dense subset of [0, 2π] and, therefore, ω(x) = cl{±(vmeiθk) + vm+1e−iθk |
∈ k ∈ N} which is equal to the ellipse B := {vmeiα + vm+1e−iα | α ∈ [0, 2π)}. The set {cx | x ∈ B, c ∈ R \ {0}} is the

unique plane supported by vm and vm+1, and as such is an invariant of M .
Case 3: θ/π = p/q, where p, q ∈ N are co-prime. The m-th and (m + 1)-th eigenvalues of M have the form re±ipπ/q,

nd as a consequence the corresponding eigenvalues of Mq are λ
q
m = λ

q
m+1 = rq ∈ R. The geometric multiplicity

of λ
q
m is 2, since Mq is also diagonalizable. Thus, we have that limk→∞ ξ(qk)/|ξ(qk)| = amvi + am+1vi+1 =: z . Hence,

e have ω(x) ⊇ {cz | c ∈ R \ {0}}, a line that is an invariant of Mq. Finally, this line is a subset of cl(Q), since
cz | c ∈ R \ {0}} ⊆ ω(x) ⊆ cl(Q). □
18

G. de A. Gleizer and M. Mazo Jr Nonlinear Analysis: Hybrid Systems 47 (2023) 101290
Proof of Theorem 5. Statement (i), A \ {0} ⊆ Qσ implies σω
∈ B(S), is straightforward. Take any point x ∈ A ⊆ Qσ . By

definition of Qσ , we have that x ∈ Qk1 ,M(k1)x ∈ Qk2 , . . ., and M(km−1) · · ·M(k1)x ∈ Qkm . The (m+ 1)-th element of the
run starting from initial state x is x′ = M(km)M(km−1) · · ·M(k1)x = Mσ x. Since A is an invariant of Mσ and this matrix
is nonsingular, x′ ∈ A \ {0}. Thus, the behavior from x is σBx′ (S). Applying the same reasoning recursively with x′ in the
place of x, we conclude that Bx(S) = σω .

Statement (ii) follows from Lemma 3, by applying it with Q = Qσ and M = Mσ , and using the fact that Qσ is an
homogeneous set. □

References

[1] K.J. Åström, B. Bernhardsson, Comparison of Riemann and lebesgue sampling for first order stochastic systems, in: Proceedings of the 41st IEEE
Conference on Decision and Control, 2002, Vol. 2, IEEE, 2002, pp. 2011–2016.

[2] P. Tabuada, Event-triggered real-time scheduling of stabilizing control tasks, IEEE Trans. Automat. Control 52 (9) (2007) 1680–1685.
[3] X. Wang, M.D. Lemmon, Event design in event-triggered feedback control systems, in: Decision and Control, 2008. CDC 2008. 47th IEEE

Conference on, IEEE, 2008, pp. 2105–2110.
[4] A. Girard, Dynamic triggering mechanisms for event-triggered control, IEEE Trans. Automat. Control 60 (7) (2015) 1992–1997.
[5] W. Heemels, K.H. Johansson, P. Tabuada, An introduction to event-triggered and self-triggered control, in: Decision and Control (CDC), 2012

IEEE 51st Annual Conference on, IEEE, 2012, pp. 3270–3285.
[6] W.P.M.H. Heemels, M.C.F. Donkers, A.R. Teel, Periodic event-triggered control for linear systems, IEEE Trans. Automat. Control 58 (4) (2013)

847–861.
[7] G. de A. Gleizer, M. Mazo Jr., Computing the sampling performance of event-triggered control, in: Proc. of the 24th Int’L Conf. on Hybrid

Systems: Computation and Control, HSCC ’21, ACM, 2021.
[8] R. Postoyan, R.G. Sanfelice, W.P.M.H. Heemels, Inter-event times analysis for planar linear event-triggered controlled systems, in: Decision and

Control, 2019. CDC 2019. 58th IEEE Conference on, IEEE, 2019, pp. 3601–3606.
[9] A. Rajan, P. Tallapragada, Analysis of inter-event times for planar linear systems under a general class of event triggering rules, in: 2020 59th

IEEE Conference on Decision and Control, CDC, IEEE, 2020, pp. 5206–5211, http://dx.doi.org/10.1109/CDC42340.2020.9304406.
[10] A.S. Kolarijani, M. Mazo Jr., A formal traffic characterization of LTI event-triggered control systems, IEEE Trans. Control Netw. Syst. (2016).
[11] G. de A. Gleizer, M. Mazo Jr., Scalable traffic models for scheduling of linear periodic event-triggered controllers, IFAC-PapersOnLine 53 (2)

(2020) 2726–2732.
[12] P. Tabuada, Verification and Control of Hybrid Systems: A Symbolic Approach, Springer Science & Business Media, 2009.
[13] G. de A. Gleizer, M. Mazo Jr., Towards traffic bisimulation of linear periodic event-triggered controllers, IEEE Control Syst. Lett. 5 (1) (2021)

25–30.
[14] R.M. Karp, A characterization of the minimum cycle mean in a digraph, Discrete Math. 23 (3) (1978) 309–311.
[15] J.C. Willems, Paradigms and puzzles in the theory of dynamical systems, IEEE Trans. Automat. Control 36 (3) (1991) 259–294.
[16] T. Moor, J. Raisch, Supervisory control of hybrid systems within a behavioural framework, Systems Control Lett. 38 (3) (1999) 157–166.
[17] A.-K. Schmuck, P. Tabuada, J. Raisch, Comparing asynchronous l-complete approximations and quotient based abstractions, in: 2015 54th IEEE

Conference on Decision and Control, CDC, IEEE, 2015, pp. 6823–6829.
[18] K.J. Åström, B. Wittenmark, Computer-Controlled Systems: Theory and Design, Courier Corporation, 2013.
[19] G. de A. Gleizer, M. Mazo Jr., Self-triggered output feedback control for perturbed linear systems, IFAC-PapersOnLine 51 (23) (2018) 248–253.
[20] K. Chatterjee, L. Doyen, T.A. Henzinger, Quantitative languages, ACM Trans. Comput. Log. (TOCL) 11 (4) (2010) 1–38.
[21] M. Chaturvedi, R.M. McConnell, A note on finding minimum mean cycle, Inform. Process. Lett. 127 (2017) 21–22.
[22] G. de A. Gleizer, K. Madnani, M. Mazo Jr., Self-triggered control for near-maximal average inter-sample time, in: 2021 60th IEEE Conference

on Decision and Control (CDC), 2021, pp. 1308–1313, http://dx.doi.org/10.1109/CDC45484.2021.9682986.
[23] W. de Melo, S. van Strien, One-Dimensional Dynamics, in: Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern

Surveys in Mathematics, Springer, Berlin Heidelberg, 2012.
[24] L. de Moura, N. Bjørner, Z3: An efficient SMT solver, in: International Conference on Tools and Algorithms for the Construction and Analysis

of Systems, Springer, 2008, pp. 337–340.
[25] S. Basu, R. Pollack, M.-F. Roy, On the combinatorial and algebraic complexity of quantifier elimination, J. ACM 43 (6) (1996) 1002–1045.
[26] G. Delimpaltadakis, G. de A. Gleizer, I. van Straalen, M. Mazo Jr., ETCetera: beyond event-triggered control, in: 25th ACM International

Conference on Hybrid Systems: Computation and Control, in: HSCC ’22, Association for Computing Machinery, New York, NY, USA, 2022,
http://dx.doi.org/10.1145/3501710.3519523.

[27] G. Delimpaltadakis, M. Mazo Jr., Isochronous partitions for region-based self-triggered control, IEEE Trans. Automat. Control 66 (3) (2020)
1160–1173.

[28] R. Postoyan, A. Anta, W.P.M.H. Heemels, P. Tabuada, D. Nešić, Periodic event-triggered control for nonlinear systems, in: 52nd IEEE Conference
on Decision and Control, IEEE, 2013, pp. 7397–7402.

[29] S. Gao, S. Kong, E.M. Clarke, dReal: An SMT solver for nonlinear theories over the reals, in: International Conference on Automated Deduction,
Springer, 2013, pp. 208–214.

[30] G. Delimpaltadakis, L. Laurenti, M. Mazo Jr., Abstracting the sampling behaviour of stochastic linear periodic event-triggered control systems,
in: 2021 60th IEEE Conference on Decision and Control (CDC), 2021, pp. 1287–1294, http://dx.doi.org/10.1109/CDC45484.2021.9683751.
19

http://refhub.elsevier.com/S1751-570X(22)00085-1/sb1
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb1
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb1
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb2
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb3
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb3
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb3
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb4
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb5
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb5
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb5
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb6
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb6
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb6
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb7
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb7
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb7
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb8
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb8
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb8
http://dx.doi.org/10.1109/CDC42340.2020.9304406
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb10
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb11
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb11
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb11
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb12
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb13
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb13
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb13
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb14
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb15
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb16
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb17
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb17
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb17
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb18
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb19
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb20
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb21
http://dx.doi.org/10.1109/CDC45484.2021.9682986
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb23
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb23
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb23
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb24
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb24
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb24
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb25
http://dx.doi.org/10.1145/3501710.3519523
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb27
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb27
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb27
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb28
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb28
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb28
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb29
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb29
http://refhub.elsevier.com/S1751-570X(22)00085-1/sb29
http://dx.doi.org/10.1109/CDC45484.2021.9683751

	Computing the average inter-sample time of event-triggered control using quantitative automata
	Introduction
	Notation

	Problem statement
	Background and preliminary results
	Transition systems and abstractions
	Quantitative automata
	Quantitative verification through abstractions

	Limit average from l-complete abstractions
	Computing the SAIST of PETC
	l-complete PETC traffic models
	Verifying SACE equivalence
	SACE simulation algorithm
	Robustness and computability
	An improved algorithm

	Numerical examples
	A two-dimensional linear system
	A three-dimensional linear system
	A nonlinear system

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Appendix A. Proof of Theorem 4
	Appendix B. Proof of Theorem 5
	References

