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Summary
In recent years cars are increasingly computerized, where the handling of the vehicle can be 
changed to accommodate individual needs. One specific feature in current vehicles that can 
alter the vehicle’s dynamic behavior are driving modes: predetermined vehicle settings that 
drivers can select by the press of a button. Unfortunately user studies showed that the option 
to switch modes is underutilized. Possible explanations include mode confusion: drivers may 
not know when certain vehicle settings could be used best, or they may simply forget the 
current mode (or forget to change mode). Besides changing driving modes when the vehicle 
is stationary, driving modes offer the possibility to switch while driving. In theory, this could 
mean that during a sportier maneuver, such as curve driving or an overtaking maneuver, the 
driver benefits from dynamic vehicle settings. However, in practice, it is unlikely that drivers 
will select their preferred vehicle setting in dynamic driving situations or for short periods. A 
system that automatically changes the vehicle settings for the driver could potentially solve 
these issues.

The aim of this dissertation is to provide new quantitative and qualitative insights into the 
underlying principles to design a system with proactive adaptive vehicle settings: A system 
that automatically changes the vehicle settings to fit the individual and context-dependent 
needs of the driver.

Part 1. Improve the Fundamental Knowledge of Driver Adaptations
The first part of this thesis (Chap 2–4) investigates how people adapt to different road 
environments (road width and curvatures), task instructions, and car characteristics. This 
kind of knowledge would help to develop a system that adapts according to what the human 
driver would want when the location (where they drive), the target (i.e., eco vs. normal vs. 
sport), or the vehicle changes. 

Chapter 2 conceptually replicates three highly-cited experiments on driver 
adaptations that could potentially predict speed adaptations following the introduction of 
changes to the road-vehicle-user system. In this study strong speed adaptations for varying 
road widths were found; however, none of the three well-cited homeostatic measures (i.e., 
experienced risk, experience effort, and safety margins) offered persuasive evidence for 
speed adaptation because they failed either the sensitivity criterion (i.e., the measure should 
increase/decrease if speed was held constant) or the constancy criterion (i.e., the measure 
should homeostatically be held constant if speed adaptations occurred). 

Chapter 3 focuses on the potential interaction between two adaptation strategies 
when encountering a road narrowing: reducing speed or increasing neuromuscular stiffness 
of the arms. A trade-off between these two strategies was expected: for a short risk duration 
(operationalized by road narrowing length), drivers will favor increased neuromuscular 
stiffness over speed reduction; and vice versa for longer risk durations. The neuromuscular 
stiffness was quantified by measuring the grip force exerted by both hands. The results 
showed that all road narrowing conditions induced driver adaptations. However, the tested 
drivers did not consistently select the hypothesized different trade-offs for increasing duration 
of road narrowing: a low correlation was found between speed and grip force adaptations. 
Interestingly, individual trade-offs were consistent: the within-subject variability in speed-grip 
force adaptations was low across the tested risk durations. 

Based on Chapters 2 and 3, it is likely that subjective measures (i.e., perceived risk) and 
physiological measures are too distant from the real driving task and generally suffer from 
a low signal-to-noise ratio to be practically useful. These results led to the notion that it is 
important to measure driver adaptations – rather than predicting using theories. Chapter 
4 gathers data for ninety-one drivers who drove a total of 4617 laps, in two vehicles (Renault 
Mégane or Renault Clio), on two test-track routes (a highway or a mountain road), and with 
two driving instructions (eco or sport). The results showed a strong predictive value for fuel 
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consumption for metrics related to speed, RPM, and throttle position; however, the largest 
variance was attributable to the route type. A subsequent location-specific analysis showed 
that the inter-driver variability in fuel consumption for the entire trip could already be predicted 
by measuring the instantaneous speed just after a single curve (i.e., the speed measured at 
a single curve had a good correlation with the fuel consumption of the total trip). Following 
this conclusion, throughout this thesis location-specific information has been accounted for 
in the analysis before investigating the intended effect of the conditions on driving behavior.

Part 2. Improve the Fundamental Knowledge of the Effect of Offline Vehicle Setting 
Changes on the Vehicle’s Dynamic Behavior, Driving Behavior and Driver Experience.
The second part of the thesis (Chap 5–7) investigates how offline changes in vehicle settings 
(e.g., sound, powertrain settings, steering settings) affect the vehicle's dynamic behavior, 
driving behavior and driver experience. In this part, these questions are addressed for offline 
vehicle setting changes: changes that occur between driving trials and not while driving. In 
this way, transient effects in the data can be removed.

The current sport mode in the commercially available Renault Multi-Sense consists of 
several active components that jointly affect vehicle dynamic behavior. In literature their 
combined effect on the total vehicle’s dynamic behavior for naturalistic driving on actual 
roads was unavailable. Therefore, Chapter 5 provides empirical methodologies, metrics, 
and models to quantify this joint impact on longitudinal, lateral, and vertical vehicle 
dynamics. The results showed strong vehicle dynamic behavioral differences in rear-wheel 
angle, engine torque, longitudinal acceleration, and vertical motion when driving with different 
vehicle settings. This goes beyond knowledge from literature, where the working principle of 
individual vehicle dynamical components is generally tested in a simulated environment or 
on test tracks but does not describe the actual effect on the vehicle’s dynamic behavior for 
naturalistic driving, and for the vehicle dynamic components in congruence.

Chapter 6 and Chapter 7 systematically tested the effect on driving behavior and 
driver experience for various combinations of vehicle settings in an instrumented vehicle 
(Chap 7) and in a driving simulator study (Chap 6). Both chapters found increased sportiness 
perception when combining artificial engine sound and modified throttle mapping (a system 
that increases the acceleration performance given the driver’s throttle input), and when 
presenting drivers with more agile four-wheel steering settings (a system that changes the 
steering responsiveness of the vehicle). Both in simulation and in the real world the increased 
sportiness perception did not result in any changes in speed. Other adaptations in driving 
behavior were observed, for example, drivers opportunistically used the increased available 
acceleration performance to accelerate more strongly to reach their target speed sooner (but 
the average speed remained the same).

Part 3. Improve the Fundamental Knowledge of the Effect of Online Vehicle Setting 
Changes on Driving Behavior and Driver Experience.
The final part of the thesis (Chap 8–9) combines all the learned principles from the previous 
chapters and investigates how online changes in vehicle settings affect driving behavior and 
driver experience.

Chapter 8 tests two interaction designs to adapt vehicle steering dynamics: (1) 
machine-initiated steering setting changes (i.e., proactively by the vehicle) and (2) driver-
initiated steering setting changes (i.e., manually with a press of a button). This chapter 
showed that different driving situations (e.g., overtaking and curve driving vs. straight-
line driving) require different steering dynamics. Both interaction designs objectively led 
to benefits for the driver over the entire route, compared to a non-adaptive, fixed steering 
sensitivity. Interestingly, even though the machine-initiated system resulted in less effort and 
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objectively higher performance increase than the driver-initiated system on average, some 
drivers still preferred the driver-initiated system. A likely explanation is that the driver-initiated 
condition gives drivers the freedom to choose, whereas they give away their freedom in the 
machine-initiated condition. In essence, if drivers want a fixed low (high) steering gain, they 
can select the low (high) steering gain setting at the start of their drive. That is, the driver-
initiated condition can deliver what a fixed low and fixed high steering gain can deliver as 
well, whereas a machine-initiated system imposes the ‘best’ setting on the driver.

Chapter 9 combines all learned principles in a patented proactive eco mode method, 
which was implemented in a real vehicle and evaluated on a real road with expert drivers. 
This chapter describes the design and preliminary testing of a proactive eco mode that 
assists drivers in driving eco-friendly without being limited by the reduced acceleration 
performance to avoid turning off the eco mode (a commonly mentioned issue of the eco 
mode). This method used a pre-recorded database of location-specific driving behavior and 
road topology, in order to proactively switch mode at locations where acceleration is needed. 
Additionally, the system mitigates conflicts in case of misalignment with actual driver needs 
by overruling the proactive eco mode settings. The proactive eco mode was implemented in 
a Renault Talisman and tested with nine drivers driving on French roads. When driving with 
the proactive eco mode, the participants reached their target speed significantly faster while 
having similar energy consumption over the same distance compared to the non-adaptive 
eco mode. Moreover, all nine drivers rated the proactive eco mode as ‘adding value’ and 
rated the system as ‘easier to reach a target speed’ compared to the conventional non-
adaptive eco mode. This chapter suggests that a proactive adaptive system can stimulate 
eco-driving (and its beneficial effects on energy consumption) by location-specific triggering 
of powertrain settings that facilitate acceleration.

Finally, this thesis contains multiple chapters, each of which describes its own individual 
scientific challenges, results, limitations, and conclusions. In Chapter 10, the individual 
contributions are integrated towards overarching conclusions, limitations, and future 
work. In short, five overarching conclusions were drawn:

1. Motivational driving models that use emotions or experiences as a construct are 
theoretically insightful but impractical; driving behavior could better be predicted by 
car state or location-specific variables.

2. A large part of the variability in driving behavior can be explained by location; location 
should be included in the design of an adaptive vehicle setting system.

3. The tested sport mode led to objectively more ‘sporty’ vehicle dynamics.
4. Sport mode settings are clearly perceived but do not cause speeding behavior.
5. Proactive adaptations of vehicle settings can objectively improve acceleration 

performance, lane-keeping, and steering performance, but are not always accepted 
by drivers.   
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Samenvatting
De laatste jaren worden auto's steeds geavanceerder, waarbij het rijgedrag van het voertuig 
kan worden aangepast aan individuele behoeften. In de huidige voertuigen is het mogelijk het 
dynamische gedrag van het voertuig aan te passen door verschillende rijmodussen: vooraf 
bepaalde voertuiginstellingen die bestuurders met één druk op de knop kunnen selecteren. 
Onderzoek onder gebruikers heeft helaas aangetoond dat de mogelijkheid om van modus te 
wisselen nauwelijks tot niet gebruikt wordt. Mogelijke verklaringen hiervoor zijn onder meer een 
'modusverwarring' (oftewel: de ontwetendheid over wanneer een bepaalde voertuiginstelling 
het beste kan worden gebruikt), het niet bewust zijn van de huidige rijmodus of het simpelweg 
vergeten aan te passen van de rijmodus. Rijmodussen bieden de mogelijkheid om zowel bij 
het stilstaan van het voertuig als tijdens het rijden van rijmodus te veranderen. In theorie 
zou dit kunnen betekenen dat de bestuurder tijdens een sportieve manoeuvre, zoals tijdens 
het rijden in bochten of bij het maken van een inhaalmanoeuvre, profiteert van dynamische 
voertuiginstellingen. Echter is het in de praktijk onwaarschijnlijk dat bestuurders hun favoriete 
voertuiginstelling zullen selecteren tijdens dynamische rijsituaties of voor een korte periode. 
Een systeem dat automatisch de voertuiginstellingen voor de bestuurder wijzigt, zou deze 
problemen mogelijk kunnen oplossen.

Het doel van dit proefschrift is om nieuwe kwantitatieve en kwalitatieve inzichten in 
beeld te brengen voor de onderliggende principes om een proactief adaptief systeem te 
ontwerpen: een systeem dat automatisch de voertuiginstellingen aanpast aan de individuele 
en contextafhankelijke behoeften van de bestuurder.

Deel 1. Het Verbeteren van de Fundamentele Kennis van Bestuurder Aanpassingen
Het eerste deel van dit proefschrift (hoofdstuk 2-4) onderzoekt hoe mensen zich aanpassen aan 
verschillende wegomgevingen (wegbreedte en bochten), taakinstructies en autokenmerken. 
Deze kennis draagt bij aan het ontwikkelen van een   systeem dat zich aanpast aan de 
behoefte van de menselijke bestuurder wanneer de locatie (waar ze rijden), het doel (i.e., eco 
vs. normaal vs. sport) of het voertuig verandert.

Hoofdstuk 2 repliceert conceptueel drie veel geciteerde experimenten die mogelijke 
snelheidsaanpassingen zouden kunnen voorspellen na de introductie van veranderingen in 
de auto en/of weg. In deze studie werden sterke snelheidsaanpassingen gevonden voor 
verschillende wegbreedtes. 
Geen van deze drie, tevens vaak naar gerefereerde, homeostatische signalen (i.e., experienced 
risk,  experienced effort en safety margins) bood overtuigend bewijs voor snelheidsaanpassing. 
De verklaring hiervoor ligt bij het niet voldoen aan het ‘gevoeligheidscriterium’ (i.e., de 
waardes zou moeten toenemen/afnemen als de snelheid constant werd gehouden) of het 
‘constantheidscriterium’ (i.e., de waardes zouden homeostatisch constant moeten worden 
gehouden als snelheidsaanpassingen plaatsvonden).

Hoofdstuk 3 richt zich op de mogelijke interactie tussen twee aanpassingsstrategieën 
bij het tegenkomen van een wegversmalling: het verminderen van de snelheid of het vergroten 
van de neuromusculaire stijfheid van de armen. Aanvankelijk werd een interactie tussen deze 
twee strategieën verwacht: de bestuurders zullen voor korte duur (geoperationaliseerd door 
de lengte van de wegversmalling) de voorkeur geven aan verhoogde neuromusculaire stijfheid 
boven snelheidsvermindering; en vice versa voor langere duur. De neuromusculaire stijfheid 
werd gekwantificeerd door de grijpkracht van beide handen te meten. De resultaten toonden 
aan dat alle wegversmallingen leidden tot aanpassingen van de bestuurder. De proefpersonen 
kozen echter niet consequent voor de veronderstelde bestuurdersaanpassingen: er werd 
een lage correlatie gevonden in de aanpassingen in snelheid en grijpkracht. Opmerkelijk is 
de uitkomst dat de individuele compromissen consistent waren: de variabiliteit in snelheid/
grijpkracht-aanpassingen onder de proefpersonen was laag in de geteste wegversmallingen.
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Op basis van hoofdstukken 2 en 3 is het waarschijnlijk dat subjectieve signalen en 
fysiologische metrieken te ver verwijderd zijn van de werkelijke rijtaak en over het algemeen 
lijden aan een lage signaal-ruisverhouding om praktisch bruikbaar te zijn. Deze uitkomsten 
resulteerden in de gedachte dat het essentieel is om aanpassingen van bestuurders te 
meten in plaats van te voorspellen met behulp van theorieën. Hoofdstuk 4 verzamelt gegevens 
van eenennegentig chauffeurs die in totaal 4617 rondes hebben gereden in twee voertuigen 
(Renault Mégane of Renault Clio), op twee testbaanroutes (een snelweg of een bergweg) 
en met twee rijmodussen (eco of sport). De resultaten toonden een duidelijk, voorspellend 
vermogen van het brandstofverbruik gebaseerd op snelheid, toerental en de stand van het 
gaspedaal; de grootste variatie was echter toe te schrijven aan het type route (snelweg vs. 
landweg). Een daaropvolgende, locatiespecifieke analyse toonde aan dat de variabiliteit in 
het brandstofverbruik tussen de bestuurders voor een gehele rit kon worden voorspeld door 
continu de snelheid net na een curve te meten (d.w.z. de gemeten snelheid van een enkele 
curve had een duidelijke correlatie met het brandstofverbruik van de totale rit). Gebaseerd 
op deze uitkomsten is in dit proefschrift bij het maken van analyses rekening gehouden 
met locatiespecifieke informatie, voordat het beoogde effect van de omstandigheden op het 
rijgedrag is onderzocht.

Deel 2. Het Verbeteren van de Fundamentele Kennis van het Effect van Offline 
Veranderingen in Voertuiginstellingen op het Dynamische Gedrag, het Rijgedrag en de 
Rijervaring van het Voertuig.
Het tweede deel van dit proefschrift (hoofdstuk 5-7) onderzoekt hoe offline veranderingen 
in voertuiginstellingen (bijv. geluid, motorinstellingen, of stuurinstellingen) het dynamische 
gedrag, het rijgedrag en de rijervaring van het voertuig beïnvloeden. In dit deel worden 
de vragen over offline wijzigingen in voertuiginstellingen behandeld: veranderingen die 
plaatsvinden tijdens testritten en niet tijdens het rijden. Hierdoor worden dynamische effecten 
die optreden tijdens een modusverandering niet meegenomen in de analyse.

De huidige sportmodus in de commercieel verkrijgbare Renault Multi-Sense bestaat 
uit meerdere actieve componenten die gezamenlijk het dynamische rijgedrag van de auto 
beïnvloeden. In de literatuur was er geen informatie beschikbaar over de invloed van de 
verschillende, gelijktijdig gebruikte systemen van het voertuig op het rijden op echte wegen.
Om die reden biedt Hoofdstuk 5 empirische methodologieën, metrieken en modellen om 
deze gezamenlijke impact op de longitudinale, laterale en verticale voertuigdynamica te 
kwantificeren. De resultaten toonden sterke verschillen in achterwielhoeken, motorkoppel, 
longitudinale versnellingen en verticale bewegingen bij het rijden met verschillende 
voertuiginstellingen. Deze uitkomsten gaan verder dan de kennis vernomen uit de literatuur, 
waar het werkingsprincipe van individuele voertuigcomponenten over het algemeen wordt 
getest in een gesimuleerde omgeving of op een testbaan, maar waarin niet wordt beschreven 
wat het daadwerkelijke effect op het dynamische gedrag van het voertuig en samenhangende 
componenten bij het rijden op een echte weg is.

In Hoofdstuk 6 en Hoofdstuk 7 is het effect van verschillende combinaties in 
voertuiginstellingen op rijgedrag en rijervaring systematisch getest in zowel een 
geïnstrumenteerd voertuig (hoofdstuk 7) als in een rijsimulatoronderzoek (hoofdstuk 6). 
Beide hoofdstukken vonden een verhoogde sportbeleving bij het combineren van kunstmatig 
motorgeluid en het aanpassen van de ‘throttle mapping’ (een aanpassing die de acceleratie-
prestatie van de auto verbeterd ten opzichte van de pedaalinput van de bestuurders) en bij het 
veranderen van de ‘four-wheel steering’-instellingen (een systeem dat de stuurresponsie van 
het voertuig verandert). Zowel in simulatie als in de echte wereld resulteerde de toegenomen 
sportbeleving niet in snelheidsveranderingen. Er werden echter wel andere veranderingen 
in rijgedrag waargenomen, waaronder het opportunistische gebruik van bestuurders van de 
verhoogde beschikbare acceleratie prestaties om sterker te accelereren om hun beoogde 
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snelheid eerder te bereiken.

Deel 3. Verbeter de Fundamentele Kennis van het Effect van Online Wijzigingen in 
Voertuiginstellingen op het Rijgedrag en de Rijervaring.
Het laatste deel van dit proefschrift (hoofdstuk 8-9) brengt alle geleerde principes uit de 
vorige hoofdstukken samen en onderzoekt hoe online veranderingen in voertuiginstellingen 
het rijgedrag en de rijervaring beïnvloeden.

Hoofdstuk 8 test twee interactie ontwerpen van een systeem dat de stuurresponsie 
van het voertuig aanpast: (1) machine-geïnitieerde veranderingen in stuurinstellingen (d.w.z. 
proactief door het voertuig) en (2) bestuurder-geïnitieerde veranderingen in stuurinstellingen 
(d.w.z. handmatig met een druk op de knop). Dit hoofdstuk liet zien dat verschillende rijsituaties 
(bijvoorbeeld inhalen en rijden in bochten vs. rechtdoor rijden) verschillende stuurinstellingen 
vereisen. Beide interactieontwerpen leidden objectief tot voordelen voor de bestuurder over 
het gehele traject, vergeleken met een niet-adaptieve, vaste stuurinstelling. Interessant is 
dat hoewel het door de machine-geïnitieerde systeem gemiddeld tot minder inspanning en 
objectief hogere prestatie leidde dan het door de bestuurder-geïnitieerde systeem, sommige 
bestuurders toch de voorkeur aan het door de bestuurder-geïnitieerde systeem gaven. Een 
vermoedelijke verklaring is dat de bestuurder-geïnitieerde conditie bestuurders de vrijheid 
geeft om te kiezen, terwijl ze in een machine-geïnitieerde conditie deze vrijheid niet hebben. 
Als bestuurders een vaste lage (/hoge) stuurversterking wensen, kunnen ze in wezen de 
instelling voor lage (/hoge) stuurinstelling selecteren aan het begin van hun rit. Dat wil 
zeggen: de door de bestuurder-geïnitieerde conditie kan zowel een vast lage als een vast 
hoge stuurinstelling hebben, terwijl een door de machine-geïnitieerd systeem de bestuurder 
de 'beste' instelling oplegt.

Hoofdstuk 9 combineert alle geleerde principes in een gepatenteerd proactieve 
eco-modus methode, die werd geïmplementeerd in een echt voertuig en is geëvalueerd 
op een echte weg met deskundige chauffeurs. Dit hoofdstuk beschrijft het ontwerp en de 
voorlopige experimenten van een proactieve eco-modus, die bestuurders ondersteunt in 
milieuvriendelijk rijden zonder te worden beperkt door de verminderde acceleratieprestaties 
van het voertuig. De voornaamste reden hiervoor is het voorkomen dat de eco-modus 
wordt uitgeschakeld (dit is een vaak genoemd probleem van de eco-modus). Deze methode 
maakte gebruik van een vooraf opgenomen database van locatiespecifiek rijgedrag en 
weginformatie, om proactief van modus te wisselen op locaties waar acceleratie nodig is. 
Bovendien vermindert het systeem conflicten in het geval van een verkeerde afstemming op 
de werkelijke behoeften van de bestuurder door de proactieve instellingen voor de ecomodus 
te negeren. De proactieve eco-modus was geïmplementeerd in een Renault Talisman en is 
getest met negen chauffeurs rijdend op Franse wegen. Bij het rijden met de proactieve eco-
modus bereikten de deelnemers hun doelsnelheid aanzienlijk sneller terwijl ze over dezelfde 
afstand een vergelijkbaar energieverbruik hadden in vergelijking met de niet-adaptieve eco-
modus. Bovendien beoordeelden alle negen bestuurders de proactieve eco-modus als een 
‘toegevoegde waarde' en het ‘vergemakkelijken van het bereiken van een snelheidsdoel' in 
vergelijking tot de conventionele, niet-adaptieve eco-modus. Dit hoofdstuk suggereert dat 
een proactief adaptief systeem eco-rijden kan stimuleren (en de gunstige effecten ervan op 
het energieverbruik) door middel van het veranderen van motorinstellingen gebasseerd op 
de locatie.

Tot slot bevat dit proefschrift meerdere hoofdstukken, die elk hun eigen individuele 
wetenschappelijke uitdagingen, resultaten, beperkingen en conclusies beschrijven. In 
Hoofdstuk 10 worden de individuele bijdragen geïntegreerd in overkoepelende 
conclusies, beperkingen en toekomstig werk. In het kort werden vijf overkoepelende 
conclusies getrokken:
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1. ‘Motivational driving models’ die emoties of ervaringen als basis gebruiken, zijn 
theoretisch inzichtelijk maar onpraktisch; rijgedrag kan gerichter worden voorspeld 
door middel van voertuig variabelen of locatiespecifieke variabelen.

2. Een groot deel van de variabiliteit in rijgedrag is te verklaren door de locatie. Locatie 
moet worden opgenomen in het ontwerp van een adaptief voertuigsysteem.

3. De geteste sportmodus leidde tot objectief meer ‘sportieve’ voertuigdynamica.
4. De instellingen van de sportmodus worden duidelijk waargenomen, maar veroorzaken 

geen snelheidsverhogingen.
5. Proactieve aanpassingen van voertuiginstellingen kunnen objectief de 

acceleratieprestatie, lane-keeping en de stuurprestatie verbeteren, maar worden niet 
altijd geaccepteerd door de bestuurder.
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1.1. From Passive Vehicle Dynamics to Active Vehicle 
Dynamics
Since the first steam-powered automobile, manufacturers have attempted to improve driver 
comfort and vehicle stability. A substantial contribution was made in the early 1900s by 
the introduction of particular vehicle dynamics (VD) components, including the suspension 
system and power steering. For example, the suspension system, consisting of springs, 
dampers, and linkages, separates the car body from the wheel assembly, thereby reducing 
road vibrations in the car body and ensuring good contact between the tyres and road 
surface for the driver (Anubi, 2013; Savaresi et al., 2010).

At that time, all VD components were passive: mechanically determined and invariant. 
Passive vehicle dynamics components are designed to be functional in a wide range of 
driving situations and a wide variety of driving speeds. Although passive VD components 
have been a proven concept for many decades, this concept is not necessarily optimal. 
The main issue is that different driving situations may benefit from different behavior of the 
vehicle. For lateral vehicle dynamics behavior a speed-dependent trade-off exists: a low-gain 
steering system is preferable at high speeds, whereas at low speeds, a high-gain steering 
system is preferred to accommodate parking maneuvers (Reuter & Saal, 2017). Similarly, for 
vertical vehicle dynamics behavior, there is a trade-off between driver comfort and vehicle 
stability: soft suspension generally improves comfort while a hard suspension improves 
vehicle handling (Sekulić & Dedović, 2011; Sharp & Crolla, 1987).

To improve driver comfort and stability further for all situations, car manufacturers 
introduced active VD components. Active VD components allow the VD behavior to be 
changed while driving. Examples include the active suspension (i.e., springs and dampers), 
the active drivetrain, and the active steering system (Figure 1.1; Crolla, 1996; Shibahata, 
2005). The active suspension utilizes variable damping and variable stiffness to change the 
vertical dynamic behavior of the vehicle. A number of current commercialized vehicles are 
equipped with active damping, while variable stiffness is a concept that is currently still in 
a research phase (Anubi, 2013; Morales et al., 2018). The active drivetrain may facilitate 
adjustments in engine characteristics, throttle mapping, and gear changing control to achieve 
better acceleration performance (Hosoda, 2010) at the cost of higher fuel consumption. The 
active steering system can enable speed-dependent change of a vehicle's lateral response, 
reduce steering effort, and increase stability (Abe, 2013; Cho et al., 2012; Huang & Pruckner, 
2017; Klier et al., 2004). Several active steering systems exist including four-wheel steering 
(4WS), active front steering, steer-by-wire, and direct yaw control (Fahimi, 2013; Shibahata, 
2005).

1.2. Driving modes: Predetermined Vehicle Settings 
the Driver can Select
Besides changing the VD settings as a function of driving speed and road surface, active 
VD components have opened the door to new possibilities where the handling of the vehicle 
can be adapted to accommodate individual needs. To this end, car manufactures have 
introduced driving modes: predetermined vehicle settings that drivers can select by the press 
on a button. 

In general, four driving modes are considered: comfort mode, eco mode, sport/dynamic 
mode, and personal mode, where the latter mode allows the driver to set different combinations 
of vehicle settings (e.g., eco steering with a sport powertrain) (Sheller, 2004; Shibahata, 
2005). According to manufacturers, the comfort mode “favours smooth steering” (Renault, 
2022) and is developed for a “comfortable and economical driving style” (Mercedes-Benz, 
2022), whereas the sport mode “permits an increased responsiveness from the engine and 
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the gearbox” (Renault, 2022) for a “sporty driving style” (Mercedes-Benz, 2022). A detailed 
description is currently missing of how the active VD component parameters are affected 
by the current commercialized driving modes. Literature argues that a more sporty behavior 
could be achieved, for example, by adjusting the gear-changing map (Schoeggl et al., 
2001), shortening the gear shifting period (Achleitner et al., 2005), and increasing the throttle 
responsiveness (Hosoda, 2010). Furthermore, the suspension dynamics are considered more 
sporty when they are stiffer along with stronger dampers (Hilgers et al., 2009; Kim et al., 
2005; Wimmer et al., 2014), and the steering dynamics when the vehicle is more agile (Cho 
et al., 2012; Huang & Pruckner, 2017). 

In addition to VD changes, the driving modes are complemented with changes in the 
cockpit ambience, such as changes in sound (e.g., engine sound enhancement in sport 
mode and noise canceling in comfort mode; Sontacchi et al., 2015), visuals (e.g., changes in 
ambient lighting and instrument cluster; Helander et al., 2013; Jindo & Hirasago, 1997), and 
haptics (e.g., changes in seat position and steering forces; Fankem & Müller, 2014; Kamp, 
2012). It is possible that the psychological effects induced by cockpit ambiance manipulations 
are equally important to the perception and the understanding of driving modes compared to 
the changes in vehicle behavior.

1.3. Underutil ization of Driving Modes
Although driving modes offer the driver a level of personalization, user studies showed that 
the option to switch modes is underutilized. An internal report of Renault indicated that 34% 
of 300 Renault car drivers never switched driving modes. Possible explanations include 
mode confusion: drivers may not know when certain vehicle settings could be used best, or 
simply forget the current mode (or forget to change mode).

Besides changing driving modes when the vehicle is stationary, driving modes offer the 
possibility to switch while driving. In theory this would mean that during a sportier maneuver, 
such as curve driving or an overtaking maneuver, the driver might benefit from the dynamic 
vehicle behavior in sport mode. However, in practice it is unlikely that drivers will select 
their preferred driving mode in dynamic driving situations or for short periods. For example, 

Vertical active VD components
- Variable damping
- Variable stiffness

Longitudinal active VD components
- Engine characteristics
- Throttle mapping
- Gear changing control

 

Lateral active VD components
- Four wheel steering
- Active front steering 
- Steer-by-wire
- Direct yaw control

 

Figure 1.1. Overview of active vehicle dynamic components that can alter the vehicle 
dynamics.
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even though the sport mode might allow for faster and sportier driving during an overtaking 
maneuver, it is not easy or practical for drivers to switch mode while keeping their eyes on 
the road at the same time. This corresponds to results from the above mentioned Renault 
report, which indicated that 78% of the drivers do not use the ‘quick switch’ functionality—a 
functionality where two modes can be switched while driving.
In addition, the selected modes and the requirements for mode selection of such auto-
adaptive systems are predefined and static; the vehicle settings adapted per mode are set 
beforehand and do not allow for within-mode personalization (e.g., do not allow the driver to 
choose a powertrain setting that is between the predefined ‘sport’ and ‘normal’ setting). It is 
likely that different drivers and different situations require different (combinations of) vehicle 
settings. For example, the agile vehicle – associated with the sport mode – could also be 
beneficial for city driving. 

1.4. Automatically Selecting Driving Modes
The driving mode usability could be improved by automatically switching vehicle settings. 
Currently, systems are being developed that automatically switch between modes by BMW 
(Ilmberger, 2014), Audi (Schön, 2018), and Renault (Mouton et al., 2016). These systems 
propose a switch between driving modes based on the observed driving behavior in the past: 
if the driver’s recent behavior was ‘sporty’, the driving mode switches to a sport mode and if 
the driver is driving economically, an eco mode is selected.

While such systems may help drivers to select driving modes that fit their behavior, they 
act on the driver’s previous needs and might fail to take the driver’s needs in the near future 
into account and neither select combinations of vehicle settings. For example, the eco mode 
might lack the power to achieve the desired speed when merging into a highway. The driver 
might require a switch to a higher engine power just before and during the highway entrance 
to help accelerate, not after merging as current adaptive systems would recommend. In 
other words, the settings do not just need to adapt, but proactively adapt (i.e., based on the 
road ahead). Such a proactive principle of preview is a widely known concept in the field of 
driver modeling (e.g., Kolekar, 2021), path planning for autonomous vehicles (e.g., Rahiman 
& Zainal, 2013; Schwarting et al., 2018), and other advanced driver assistance systems such 
as lane-keeping assistance (e.g., Abbink et al., 2012). This thesis explores the potential for 
a so-called proactive adaptive vehicle setting, where the vehicle settings are automatically 
adapted to fit the individual and (future) context-dependent needs of the driver. 

To successfully develop an adaptive system that is accepted by the driver, well-known 
challenges of human-centered adaptive automation – in which a human driver is still in 
the control loop – need to be addressed  (Johnson et al., 2014; Kaber & Endsley, 2004; 
Kaber et al., 2001; Parasuraman, 2000). Inappropriate design of adaptive automation can 
negatively impact driver safety, efficiency, and driver acceptance (Byrne & Parasuraman, 
1996; Parasuraman, 2000). Examples of inappropriate design include not keeping the driver 
engaged in the control loop, not informing the driver of the automation’s functioning, or not 
being responsive to the driver’s direct control input (Abbink et al., 2018; Melman et al., 2020). 
Russell et al. (2016) showed that automatically changing the VD behavior is challenging 
and does not come without risk. The authors showed that if the steering dynamics change 
without informing the driver, a substantial adaptation time is needed before they return to 
their previous steering behavior.  

Another important design aspect is the way the switch is initiated. Miller and Parasuraman 
(2007) argued that there is a trade-off between human workload and unpredictability in 
machine-initiated and driver-initiated systems. Kidwell et al. (2012) showed that machine-
initiated systems tend to reduce the human workload by decreasing the user involvement as 
a result of decreased responsibility in system control, but are also more unpredictable. On 
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the other hand, driver-initiated systems tend to increase the cognitive demand since there is 
an increase in the user's responsibility for system supervision.

1.5. Scientific Challenges for a Proactive Adaptive 
Vehicle Setting System
The scientific challenges to design a proactive adaptive vehicle setting system can be 
divided in three parts, and will be described in more detail below. The interplay of the parts 
is visualized in Figure 1.2.

Part 1: There is limited knowledge about the fundamental mechanisms of driver 
adaptations
What will happen when the vehicle settings continuously adapt to the driver and the 
environment? Before being able to address this question of a dynamically adapting system, 
we first need to understand the underlying mechanisms of driver adaptations to different 
environments (i.e., road width and curvatures), task instructions and vehicle characteristics. 
This kind of knowledge would help improve the understanding of why drivers drive as they 
do in case the location (where they drive), their target (i.e., eco vs. normal vs. sport) and the 
driving mode (sound, powertrain settings, steering settings) changes.

Several theories exist that aim to predict driver adaptations following the introduction of 
changes to the road-vehicle-user system. These theories postulate that drivers exhibit a trade-
off between two conflicting motivations, namely arriving at a destination in time (efficiency) 
versus avoiding dangerous situations (safety), where the driver’s level of subjective risk 
(Näätänen & Summala, 1974; Wilde, 1998), task difficulty (Fuller, 2005), or time/safety margins 
(Gibson & Crooks, 1938; Van Winsum et al., 2000) are regarded as important homeostatic 
variables. Melman et al. (2018) showed that these theories could be used to make predictions 

Aim:
To provide quantitative and qualitative insight into the underlying principles to design a system with proactive adaptive vehicle settings

Conclusions and Discussion  Ch. 10

Part 1.
Improve the fundamental knowledge of driver adaptations 

Part 2. 
Offline changes in vehicle settings

Ch. 2

Ch. 3

Ch. 4

What determines drivers’ speed? 
A replication of three behavioural 
adaptation experiments in a single 
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Figure 1.2. Schematic overview of the three main research parts of this thesis, and their 
respective chapters. Note that the theoretical and empirical knowledge obtained in Parts 1 
and 2 was used to develop the prototypes in Part 3.
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about speed adaptation for a well-defined driving situation, but it is unclear how accurate 
these theories are nor if these theories can practically be used for less controlled situations.

Besides predicting driver adaptations, it is important to understand how to capture driving 
behavior and at what time or location. It is essential to understand how to quantify driving 
behavior, and if this should be described on a trip level or on a meter-to-meter basis? If this is 
clear, the measured driving behavior has the potential to be used as a trigger for an adaptive 
algorithm.

Part 2: There is limited knowledge about the effect of offline vehicle setting changes on 
the vehicle’s dynamic behavior, driving behavior and driver experience.
Even though driving modes exist in current vehicles, it is unclear how the underlying vehicle 
settings changes affect the vehicle's dynamic behavior and how drivers perceive and react 
to these dynamic changes. In literature, the working principle of individual VD components is 
generally tested in a simulated environment or on test tracks (Hilgers et al., 2009; Jeon et al., 
2016). While these studies show the potential of these individual components in a controlled 
environment, the actual effect on the vehicle’s dynamic behavior for naturalistic driving, and 
for the VD components in congruence, remains unclear. 

From the driver perspective, it is unclear how important the contribution of the vehicle’s 
behavioral changes are compared to the sound changes for the driving performance and 
driving experience. On top of this, it is unclear if the different vehicle settings cause drivers 
to adapt their behavior. In scientific literature, there are indications that drivers show adverse 
behavioral adaptations, when driving in more sportive conditions. For example, speeding 
has been found for sports cars that have a higher maximum engine power compared to 
vehicles with lower engine power (e.g., Horswill & Coster, 2002; Krahé & Fenske, 2002). 
Similarly, for the sport mode, it can be hypothesized that the increased perceived sportiness 
causes drivers to drive faster. On the other hand, it can be argued that sporty vehicle settings 
increase drivers’ perceived danger due to the increased feedback received (e.g., increase in 
engine sound and vibrations), and hence, cause a reduction in driving speed.

Part 3. There is limited knowledge about the effect of online changes in vehicle settings 
on driving experience and driving behavior. 
Third, and finally, the complex question of online adaptive systems, in which vehicle settings 
proactively change while driving, need to be considered. Currently, there is no information 
about the transient effects of changing vehicle settings on the closed-loop driver-vehicle 
behavior. Do proactive adaptive vehicle settings improve driver acceptance, safety and 
performance compared to the non-adaptive vehicle settings? Should changes in vehicle 
settings be made by the driver or automatically by the car? What will happen if you allow 
drivers to make their own manual switches in vehicle settings and give them proper 
instructions on how to switch: will drivers switch?

1.6. Thesis Aim
This dissertation aims to provide new quantitative and qualitative insights into the underlying 
principles to design a system with proactive adaptive vehicle settings: A system that 
automatically changes the vehicle settings to fit the individual and context-dependent needs 
of the driver.
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1.7. Context and Approach

This dissertation is a collaboration between Group Renault, ENSTA Paris and the Delft University of 
Technology. In this collaboration, I made use of TU Delft’s lab experiments and Renault’s test facilities, 
vehicles and driving modes. The driving mode, highlighted in this dissertation, is Renault’s Multi-Sense®. 
The Multi-Sense modes (i.e., comfort, sport, eco, MySense) impact not only parameters concerning the 
vehicle dynamics (e.g., adaptations in rear-wheel steering, drivetrain, and dampers), but also cockpit 
ambience (e.g., engine sound enhancement, color of ambient lighting, and dashboard interface) (Renault, 
2022).

This dissertation is divided according to the three scientific challenges described in Section 
1.5.
 
Since this thesis aims to develop a system that adapts according to what the human 
driver would want, the first step is to understand how and why humans adapt their driving 
behavior. For this reason, Part 1 (Chap 2–4) aims to get a better understanding of the 
fundamental mechanisms behind driver adaptations to environmental changes and to vehicle 
characteristics.

• Chapter 2 conceptually replicates three highly cited experiments on driver adaptations.
• Chapter 3 focuses on the interaction between two adaptation strategies when 

encountering a road narrowing (i.e., reducing speed or increasing neuromuscular 
stiffness of the arms). 

• Chapter 4 looks into how people adapt to instructions that correspond to mode 
changes. More specifically, we instructed drivers to adopt a normal or eco driving 
style and probed which metrics were able to capture this behavior best. This chapter 
investigated triggers that are suited for offline mode changes (advice that is based on 
the trip level or based on the driver’s profile), but also for online mode changes (i.e., 
calculated on a meter-to-meter basis).

Part 2 (Chap 5–7) depicts the effect of offline changes in vehicle settings on the vehicle's 
dynamic behavior, driving behavior and driver experience. In this part, these questions are 
addressed for offline vehicle setting changes: changes that occur between driving trials and 
not while driving. In this way, transient effects in the data can be removed.

• Chapter 5 provides quantitative insight into the extent to which the Multi-Sense 
driving modes impact the vehicle’s lateral, longitudinal and vertical dynamic behavior. 
These results combined with the analysis method may help guide the future driving 
mode design explained in the following chapters. 

• Chapter 6 looks into how modified throttle mapping and artificial engine sound 
enhancement impact drivers’ sportiness perception and driving behavior. A fixed-
based driving simulator was used to test the effect in a controlled environment.

• Chapter 7 builds on the experimental protocol used in Chapter 6. This chapter 
investigates the effect of different combinations of sport mode settings on driving 
behavior and driver experience. Specifically, it is hypothesized that the sport mode 
increases perceived sportiness and encourages faster driving. Oppositely, the sport 
mode may increase drivers’ perceived danger, causing them to homeostatically drive 
more slowly. These hypotheses were tested using an instrumented vehicle on a test 
track. 

Finally, Part 3 (Chap 8, Chap 9) combines all the learned principles and investigates the effect 
of online changes in vehicle settings on driving behavior and driver experience. 

• Chapter 8 tests two interaction designs to adapt vehicle steering dynamics: machine-
initiated steering setting changes (i.e., proactively by the vehicle) and driver-initiated 
steering setting changes (i.e., manually with a press on a button).
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• Chapter 9 combines all learned principles in a patented proactive eco mode method, 

which was implemented in a real vehicle and evaluated on a real road with expert 
drivers.

Of note, except for the introduction and discussion, each chapter contains a paper that is either 
submitted or published, and they have been preserved in their original format. Therefore, the 
earlier published papers (Chap 2–5) are written in British English, whereas the later published 
papers are written in American English (Chap 1, Chap 6–10).
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2.1. Introduction
2.1.1. The Effects of Speed on Road Safety 
Worldwide, 1.3 million people die in traffic each year, making road traffic accidents the eighth 
leading cause of death (Lozano et al., 2013). Excessive speed has long been considered a 
primary cause of traffic accidents (Aarts & Van Schagen, 2006; Elvik et al., 2004; Treat et al., 
1979). An increase of speed does not only relate to an increased probability of being involved 
in an accident, it also aggravates the severity of accidents (Elvik et al., 2004).
When considering the aforementioned dangers of speeding, it is disconcerting that drivers 
tend to drive faster when receiving technological support or when encountering a less 
demanding environment. For example, drivers have been found to drive with higher speeds 
on well-lit roads than on reference roads without lighting (Assum et al., 1999), as a result 
of which the attainable safety benefit (i.e. safer driving due to better visibility) is partially 
negated by the risks of increased driving speed. Such decreases in safety as a result of a 
higher adopted speed are manifestations of a more general phenomenon called behavioural 
adaptation (Elvik, 2013; Hiraoka et al., 2010; OECD, 1990; Oviedo-Trespalacios et al., 2017; 
Saad, 2006; Sullivan et al., 2016). Although behavioural adaptation manifested as speeding 
has often been found (e.g. Dragutinovic et al., 2005; Janssen & Nilsson, 1993), the underlying 
psychological mechanisms of speed adaptation are still poorly understood (Vaa, 2007).

2.1.2. The Need For Understanding Behavioural Adaptation
There are several reasons why the determinants of speed adaptation need to be understood. 
First, a good understanding is important for designing effective educational and enforcement 
measures. Second, knowledge about speed adaptation may benefit the design of new ADAS 
to strike a more favourable balance between technology mediated safety improvement and 
motivationally inspired consumption of the offered safety. For example, we have previously 
shown that haptic steering feedback does not yield speed adaptation if the system disables 
itself when driving above a threshold speed (Melman et al., 2017). A good understanding of 
behavioural adaptation may allow for improvements of the algorithms and threshold settings 
of such technology. Third, knowledge of the determinants of speed choice may prove useful in 
the design of automated driving technology that behaves in a human-like (anthropomorphic) 
manner, rather than to adhere rigidly to a particular speed limit. It is expected that automated 
driving systems are better accepted if they behave anthropomorphically (e.g. Elbanhawi et 
al., 2015; Kolekar et al., 2017; Waytz et al., 2014).

2.1.3. Three Previous Experiments on Speed Adaptation
A large number of motivational theories of behavioural adaptation have been proposed, but 
the impact of three theories has been particularly large (Vaa, 2007): (1) the risk homeostasis 
theory (Wilde, 1982), (2) the task difficulty homeostasis theory (Fuller, 2005) and (3) the field 
of safe travel theory (Gibson & Crooks, 1938). These three theories, in turn, have received 
support from three well-cited experiments, respectively: (1) Taylor (1962), (2) Fuller et al. 
(2008) and (3) Van Winsum and Godthelp (1996). In each of these three experiments, it is 
was found that an internal or external variable is sensitive to changes in driving speed, or 
alternatively, remains constant if drivers’ change their speed. These three experiments, which 
are the focus of the present study, are detailed below.

Experiment 1: constancy of galvanic skin response (GSR) in self-paced driving (Taylor, 
1964)
Taylor (1962, 1964) proposed that experienced risk (i.e., anxiety level or tension) is the variable 
being regulated by drivers. In his research, Taylor measured the galvanic skin response (GSR, 
also known as electrodermal activity, as an indicator for experienced risk) of 12 participants 
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who each drove 100 km on roads near London. Results showed that the mean GSR level 
per road segment did not exhibit a substantial correlation (r = -0.04) with the mean speed 
per road segment (Figure 2.1, left). In other words, the mean GSR was about the same 
regardless of whether participants were driving slowly in a busy shopping area with a high 
police-recorded accident rate per kilometre, or fast in a country road with a low accident 
rate per kilometre. These findings together with the fact that the mean GSR did correlate 
with driver experience (i.e. novice drivers had a higher mean GSR rate), led Taylor (1962) to 
conclude ‘that drivers adjust their speed so that the apparent accident risk, as indicated by 
their rate of production of the GSR, tends to remain constant whatever the conditions’. The 
work of Taylor has been influential. For example, in a review, Vaa (2007) discussed Taylor’s 
‘GSR-constancy’ principle, whereas Wilde (1982, 2009) used Taylor’s findings to support his 
risk homeostasis theory (Figure 2.1, left). Indeed, according to Wilde (1982), ‘these findings 
were very instrumental in the development of the theory’.

Experiment 2: sensitivity of self-reported task difficulty in forced-paced driving (Fuller et 
al., 2008)
In a more recent paper, Fuller (2005) introduced ‘task difficulty homeostasis’ as a key sub-
goal in driving, stating that ‘what drivers attempt to maintain is a level of task difficulty’ (p. 
461). Fuller pointed out that task difficulty is equivalent to the construct mental workload, as 
can be measured using self-reports such as the six-item NASA-TLX or the unidimensional 
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Figure 2.1. Relationship between speed adaptation theory (i.e. a non-operationalised set 
of statements), testable hypotheses and experimental observations (framework based on 
Meehl, 1990) Left = Experiment 1: Mean GSR level as a function of average speed on 40 road 
segments. Data from Taylor (1962). Middle = Experiment 2: Mean ratings of task difficulty (1 
= extremely easy, 7 = extremely difficult) as a function of driving speed in videos. Data from 
Fuller et al. (2008, Figure 6, assuming N = 40). Right = Experiment 3: Mean minimum TLC as 
a function of mean minimum speed in curves of different radius (Van Winsum and Godthelp 
1996). Speed increased substantially (60%) with increasing curve radius, while TLC showed 
only a moderate increase of 14% between the minimum and maximum curve radii.
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Rating Scale Mental Effort (RSME). Fuller further argued that speed is the primary means for 
drivers to keep their experienced task difficulty at a desired level, and found support for this 
theory in two experiments in which participants watched videos played at different speeds 
(Fuller et al., 2008). In one of these experiments, forty participants answered after each video 
‘How difficult would you find it to drive this section of road at this speed?’ on a scale from 1 
(extremely easy) to 7 (extremely difficult). The results of this forced-paced (i.e. non-interactive) 
task showed a sensitivity to different road types, and a monotonic relationship between video 
speed and participants’ ratings of task difficulty (Figure 2.1, middle). More recently, Lewis-
Evans and Rothengatter (2009) replicated the results of Fuller (2005) in a driving simulator, 
in which participants steered themselves and the results showed a similar but non-linear 
association between speed and reported task difficulty.

Experiment 3: constancy of time-to-line crossing in self-paced driving (Van Winsum & 
Godthelp, 1996)
In 1938, Gibson and Crooks defined a ‘field of safe travel’ that defines the possible paths 
that the car may take without being obstructed. Gibson and Crooks argued that drivers 
attempt to control their car to keep it in the middle of this field. In the 1930s, the field of safe 
travel was not operationalised, but recently, time-based safety margins have been proposed 
as a suitable candidate. In a review, Summala (2007) explained: ‘Gibson and Crooks (1938) 
… demonstrate how roadway, obstacles and other road users modify this space – safety 
zone. They also implied that safety zone – and stopping distance within it – is an objectively 
measurable concept’. One time-based operationalisation of this field is the measure time-
to-line-crossing (TLC), defined as the time it takes for the vehicle to cross the lane markers 
if holding the steering wheel in a steady position at the same speed (Summala, 2007; Van 
Winsum et al., 2000). Put differently, TLC represents the amount of time a driver has for 
‘error neglecting’ (Godthelp, 1988) or ‘satisficing’ (Goodrich & Boer, 2000; Summala, 2007) 
until a corrective action is needed. Van Winsum and Godthelp (1996) showed in a driving 
simulator study that the minimum TLC in curves remained approximately constant with curve 
radius (see Figure 2.1, right), and they suggested ‘TLC to be a regulating mechanism that 
determines how speed is controlled’ (p. 439).

2.1.4. Present Study
As explained above, three influential speed adaptation theories have received corroboration 
from three now-classic experiments (Figure 2.1). In the present paper, we are not concerned 
with evaluating these three theories per se. Rather, our aim is to systematically test the three 
corresponding hypotheses in one single experiment.

The three experiments (Figure 2.1) were concerned with either constancy or sensitivity. 
We argue that a measure purporting to describe speed adaptation should meet both criteria. 
That is, the measure under consideration needs to remain constant when task demands 
change during self-paced driving (i.e. when speed adaptation is an option). This criterion 
was satisfied for GSR and TLC in Figure 2.1 left and right, respectively, as these variables 
remained approximately constant when the task demands (speed) changed. Second, the 
measure needs to be sensitive when task demands change during forced-paced driving (i.e. 
when speed is fixed and speed adaptation is not an option). Sensitivity was demonstrated 
for self-reported reported task difficulty in Figure 2.1 (middle), where speed adaptations were 
restricted.

Sensitivity alone is insufficient to validate a measure of speed adaptation, because 
sensitivity is uninformative about whether drivers actually use the variable to adjust their 
speed in self-paced conditions. Constancy alone is insufficient, as even random data or 
an entirely irrelevant measure would satisfy this criterion. This latter point was already 
recognised by Taylor (1962), who admitted that his results are ‘of course consistent with the 
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radically different assumption that the time rate of production of GSR is constant because it 
has nothing to do with the risk of driving’.1

The present study examined which of the three hypotheses [(1) regulation of experienced 
risk, (2) regulation of experienced task difficulty or (3) regulation of safety margins] provides the 
most appropriate description of speed adaptation, in terms of both sensitivity and constancy. 
We performed a driving simulator experiment in which participants drove on a road with 
cones demarcating the entire driving lane. Participants completed two forced-paced runs 
(i.e. fixed speed of 90 and 130 km/h, respectively) and one self-paced drive, each run at four 
different lane widths. We selected lane width as independent variable because lane width 
is a salient indicator of task demand, which, by virtue of the speed-accuracy trade-off, was 
expected to exhibit a strong relationship with self-paced driving speeds (De Vos et al., 1999; 
Lewis-Evans & Charlton, 2006; Liu et al., 2016; Zhai et al., 2004).

Participants reported every 20 s how much effort their current task took (cf. Fuller et al., 
2008), and we measured their TLC (cf. Van Winsum & Godthelp, 1996) as well as their GSR (cf. 
Taylor, 1964) while driving. Other psychophysiological measures (i.e. heart rate and heart rate 
variability) were recorded as well. The measures were compared with each other regarding 
constancy and sensitivity. Because different measures have different scale characteristics 
(e.g. self-reported task difficulty ranges from 0 to 10, while TLC can range from 0 to infinity 
on a straight road) and can be expected to respond nonlinearly to changes in lane width or 
speed (Lewis-Evans et al., 2011), we introduce a purely nonparametric method to compare 
the measures.

2.2. Methods
2.2.1. Participants
Twenty-four participants (17 male, 7 female) between 19 and 31 years old (M = 24.6, SD 
= 2.4) with normal or corrected-to-normal vision volunteered for this study. In response to 
the question of how often they drove in the past 12 months, one participant reported to 
drive every day, four drove 4–6 days a week, six drove 1–3 days per week, seven drove 
once a month and six drove less than once a month. Regarding mileage in the past 12 
months, the most frequently selected answers were 1001–5000 km (8 respondents) and 
1–1000 km (8 respondents), followed by 10,001–15,000 km (4 respondents), 5001–10,000 
km (3 respondents) and 20,001–25,000 km (1 respondent). Twenty participants reported prior 
experience in a driving simulator, with a mean among all 24 participants of 5.3 times (SD = 
10.6 times). All participant held a valid driver’s licence (M = 5.8 years, SD = 2.5).

No exclusion criteria were applied regarding behaviours that are known to influence heart 
rate variability (HRV) and GSR, such as coffee consumption less than 2 h before the start 
of the experiment (11 participants), or being a smoker (2 participants) (Barutcu et al., 2005; 
Manzano et al., 2011; Villarejo et al., 2012). However, it was not permitted to smoke or drink 
coffee in between the experimental sessions.

2.2.2. Apparatus
Participants drove in a fixed-base simulator at the Control and Simulation Department at the 
faculty of Aerospace Engineering, Delft University of Technology (Figure 2.2). Self aligning 
torques of the steered front wheels were provided by a MOOG FCS ECol8000 S steering 
motor running at 2,500 Hz. A single-track model (heavy sedan of 1.8 m wide) was used 
to simulate the vehicle dynamics. The simulated vehicle had an automatic gearbox and its 
maximum attainable speed was 210 km/h. The environment was shown using three DLP 
projectors (BenQ W1080ST 1080p Full HD), together providing a horizontal and vertical field-
of-view of, respectively, 180° and 40°. The images were displayed with a frame rate of 60 Hz, 
whereas the simulation and data logging were updated at 100 Hz. The front of the driver’s 
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car was visualised to facilitate more accurate perception of the car’s position relative to the 
road boundaries. Constant car vibrations (‘road rumble’) were simulated with a seat shaker 
implemented in the driver’s seat. 

The GSR and electrocardiographic (ECG) data were measured at 1,000 Hz using a wireless 
hub (Plux Wireless Biosignals S.A., Portugal). The physiological sensors were synchronised 
with the simulator using a 5-volt synchronisation pulse, which was initiated by the simulator 
at the start of each run. For the GSR measurement, one pregelled Ag/AgCl electrode was 
placed inside the hand palm and one on the side of the wrist (see also Strong, 1970). The 
ECG local triode configuration was placed on the middle of the left chest.

2.2.3. Speed Conditions
All participants completed three runs, each run in a different speed condition: 

1. A forced-paced condition in which the driving speed was fixed at 90 km/h (FP90).
2. A forced-paced condition in which the driving speed was fixed at 130 km/h (FP130).
3. A self-paced condition in which participants could adjust their speed by means of the 

gas and brake pedals (SP).
These conditions were counterbalanced across participants.

2.2.4. Lane Width Conditions and Road Environment
All participants drove each of the three runs on a single-lane 25-km long road. During each 
run, the participant encountered four segments of 6 km, each having a different lane width: 
3.6, 2.8, 2.4 and 2.0 m. Cones were placed on the white lines to avoid that drivers would use 
the area outside the white lines or the hard shoulders. The lane widths allowed for a lateral 
deviation from the lane centre of 0.9, 0.5, 0.3 and 0.1 m, respectively, on each side of the 
1.8-m-wide car before a line crossing. The lane width order was counterbalanced between 
runs, such that each of the 24 runs had a unique lane width order.

Each lane width segment (6 km long) consisted of five curves with 750-m inner radius 
and two curves with 500-m inner radius, yielding a curve/straight distance ratio of 32/68 per 
segment. Segments 1–4 were identical, except that the curves of Segments 1 and 3 were 
left/right mirrored with respect to the curves in Segments 2 and 4. A transition of lane width 
took place in a curve of 750-m radius. A road sign was placed 20 m before the lane-width 
transitions to support driver’s awareness of the upcoming transition (Figure 2.3). Trees and 
cones were placed alongside the road to enhance participants’ perception of speed. The 
cones were placed with a distance of 8 m between cones. A cone hit (defined as an incidence 
where the lateral error become greater than 0.9, 0.5, 0.3 or 0.1 m, depending on road width) 

Figure 2.2. The fixed-based driving simulator used for the experiment.
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was both visualised (i.e. red dot on the side where the car hit the cone) and made audible (a 
loud tone was played). No on-road obstacles and no traffic were simulated.

In order to make the driving task more challenging, the simulated car was subjected to 
a lateral force perturbation, applied to the car’s centre of gravity. This lateral force was an 
unpredictable multi-sine signal consisting of five frequencies ranging from 1/15 to 1/4 Hz, 
and having maximum amplitude of 1000 N for the summed signal. The lateral force ensured 
participants needed to steer actively also on straight segments, but was not consciously 
noticed by most of the participants (the experimenter asked this after the experiment).

2.2.5. Procedures
Participants read and signed an informed consent form, which explained the purpose, 
instructions and procedures of the study. The consent form stated that ‘the purpose of 
this driving-simulator study is to investigate driving behaviour, subjective experience, 
physiological activity, workload and comfort while driving under different task demands (i.e. 
lane widths)’. Participants were asked to keep both hands on the steering wheel in a ten-
to-two position at all times, and were instructed to minimise the number of cone hits. The 
consent form further stated that every 20 s a beep would be produced to indicate that the 
participant had to orally report a number to the following question: ‘From 0 to 10, how much 
effort does the current driving task takes you?’, where 0 is No effort, 5 is Moderate effort and 
10 is A lot of effort. The answers were audio-recorded and typed down by the experimenter 
during the experiment. The instructions (driving task and effort question) were also orally 
explained to ensure that all participants understood this. No speed advice was provided and 
participants’ questions regarding speed were not answered. The speedometer was visible to 
the participants (see Figure 2.2). 

Before entering the driving simulator, participants completed a questionnaire regarding 
their driving experience as well as a Driver Behaviour Questionnaire (DBQ) consisting of 
seven violation items (De Winter & Dodou, 2016). A previous meta-analysis indicated that the 
DBQ violations scale has a moderately strong relationship (r = 0.24) with recorded measures 
of speed and speeding (De Winter et al., 2015). After completing the questionnaires, the GSR 
and ECG electrodes were placed and a 1-min ‘rest’ state was measured for the physiological 
variables (i.e. GSR and ECG).

Prior to the experiment, participants were familiarised with the simulator by means of a 
forced-paced training run followed by a self-paced training run. In the forced paced training 
run, the speed was fixed at 110 km/h, the average speed of the two forced-paced test 

Figure 2.3. Simulator environment including the car front, transition signs and cone hit 
warning (i.e. red dot accompanied by a sound of 82 dB).
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conditions. During the second training run, a beep was played every 20 s in order familiarise 
the participant with answering the ‘effort’ question. The roads of the two familiarisation 
runs (3.7 km each) contained the same curves and lane widths as the experimental runs. In 
both training runs, the four lane widths were presented in ascending order. This allowed the 
participants to get an indication of the range of lane widths in order to calibrate their self-
reported effort ratings. 

The main experiment consisted of three runs, one speed condition per run. The three 
speed conditions and the four lane widths were counterbalanced across participants. After 
each run, the participant was informed about the number of cone hits and requested to step 
out of the simulator for a 10-min break and to complete two questionnaires: a NASA Task 
Load Index (NASA-TLX) (Hart & Staveland, 1988) to assess workload, the short version of 
the Dundee Stress State Questionnaire (DSSQ) to assess stress and fatigue (Matthews et al., 
1999), and a simulator sickness item. In the latter, participants indicated whether they were 
feeling simulator sickness on a scale from 1 to 6 (1 = not experiencing any nausea, no sign of 
symptoms, 2 = arising symptoms [like a feeling in the abdomen], but no nausea, 3 = slightly 
nauseous, 4 = nauseous, 5 = very nauseous, retching, 6 = vomiting). The experimenters 
would ask the participant to leave the experiment in case that he or she provided a response 
of 4 or higher. The entire experiment, including placing the electrodes and completing all 
questionnaires, took approximately 1.5 h per participant.

2.2.6. Dependent Measures
Measures per lane width
The data corresponding to the first 500 m and last 400 m of each lane width segment of 6 
km were discarded in order to exclude transition effects (i.e. accelerations and decelerations) 
between lane widths. The following measures were calculated per lane width across 5.1 km 
of driving per segment.

Speed and accuracy
• Mean Speed (km/h).
• Percentage Time Off-Road (%). This is the percentage of time that the car drove 

outside the cone boundaries. 
• Mean and Maximum Absolute Lateral Error (m). The absolute lateral error was defined 

as the distance between the middle of the car and the centre of the lane. The absolute 
lateral error and percentage time off-road are measures of lane-keeping accuracy.

Regulation of experienced effort
Mean Self-Reported Task Effort (SRTE) (0–10). Participants reported every 20 s how much 
effort the current task takes from 0 (No effort) to 10 (A lot of effort). Note that we did not use 
Fuller et al. (2008) original wording (‘How difficult would you find it to drive this section of 
road at this speed?’) because (a) Fuller’s specific wording does not apply to a self-paced 
task and (b) our observations from a pilot test suggested that participants tended to interpret 
the word ‘difficult’ in relation to the objective task demands (i.e. the lane width) rather than 
subjective experience. In order to better comply with Fuller’s hypothesis, we used the word 
‘effort’, which appears to be more in line with how difficult the participants subjectively 
experience the task at a particular moment (and see Kahneman, 1973, for a treatise of the 
effort construct).

Regulation of safety margins
• Median Time-to-Line-Crossing (TLC) (s). The TLC was computed using a trigonometric 

method (Van Winsum et al., 2000). TLC represents the time it would take for part of 
the vehicle to leave the lane under the assumption of constant speed and constant 
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steering wheel angle. The TLC was assumed to be 0 s when driving outside the lane 
boundaries.

• 15th percentile of Time-to-Line-Crossing (TLC15th) (s). This measure represents the 
15th percentile of the raw TLC values (Godthelp et al., 1984). A low TLC15th or low 
median TLC means that drivers adopted small safety margins.

Regulation of experienced risk
• Mean Galvanic Skin Response (GSR) (μS). The raw GSR signal from the left and right 

hands was averaged. This averaged signal was filtered using a low-pass filter (cut-off 
frequency of 5 Hz) to reduce extraneous noise.

• Mean GSR Rate (μS/min). The rate was obtained by subtracting two adjacent sampling 
points of the combined mean GSR signal (explained above), taking the absolute value, 
and dividing this by the time step in minutes (cf. Taylor, 1964). The mean GSR may be 
regarded as a measure of the tonic level of the skin response, changing within tens of 
seconds to minutes. The mean GSR rate is a measure of the faster phasic response 
(Alberdi et al., 2016; Figner & Murphy, 2011; Nagai et al., 2004).

• Mean Heart Rate (HR) (bpm).
• SDNN (ms). This time-domain heart rate variability measure is defined as the standard 

deviation of the normal-to-normal (NN) intervals in the ECG signal. A low SDNN is 
indicative of high workload (Fallahi et al., 2016; Heikoop et al., 2017).

• LF/HF Ratio. This frequency-domain heart rate variability measure is defined as the 
ratio between the low frequencies and high frequencies of the NN intervals in the 
ECG signal, and offers information about sympathetic and parasympathetic activity 
(Berntson et al., 1997). An increase in the LF/HF ratio is indicative of increased 
workload (Hayashi et al., 2009; Hjortskov et al., 2004). The LF/HF ratio and SDNN 
were calculated after applying an NN artefact filter using software provided by Vollmer 
(2016).

Auxiliary measures
• Steering Reversal Rate (reversals/s). This is the frequency with which the steering 

wheel reversed direction. It was calculated by determining the local minima and 
maxima of the steering wheel angle; if the difference between two adjacent peaks 
was greater than 2 deg, it was counted as a reversal. The  steering wheel angle was 
first filtered with a low-pass Butterworth filter with a cut-off frequency of 2 Hz.

Measures per speed condition
The following measures were calculated per speed condition.

• NASA-TLX (%). After each run, participants were asked to indicate their perceived 
workload for the entire run on six items: Mental Demand, Physical Demand, Temporal 
Demand, Performance, Effort and Frustration. Items were scored on a 21-point scale 
from Very low (0%) to Very high (100%), except for Performance, which ranged from 
Perfect (0%) to Failure (100%). The overall workload was calculated as the arithmetic 
mean of the six items (Byers et al., 1989). 

• Dundee Stress State Questionnaire (DSSQ). The short multidimensional DSSQ is 
an operationalisation of stress and fatigue. Thirty statements were asked regarding 
engagement, distress and worry (Matthews et al., 1999). Items were scored from 0 
(Definitely false) to 4 (Definitely true). The overall engagement,  distress and worry 
scores ranged from 0 (minimum possible) to 32 (maximum possible).
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2.2.7. Statistical Analyses for Assessing the Effect of Lane Width and Speed
For each dependent measure and for each of the three speed conditions, a matrix of 24 
× 4 numbers was computed (24 participants x 4 lane width conditions). This matrix was 
rank transformed according to Conover and Iman (1981) to account for possible violations 
of the assumption of normality. The rank-transformed matrix, consisting of numbers from 
1 to 96, was submitted to a repeated measures ANOVA with lane width as within-subject 
factor. Similarly, for each of the dependent measures, the scores for FP90 and FP130 were 
rank transformed according to Conover and Iman (1981). The resulting matrix, consisting of 
numbers from 1 to 48 (24 participants × 2 speed conditions), was submitted to a repeated 
measures ANOVA with the two speed conditions as within-subject factor.

2.2.8. Nonparametric Index Design to Evaluate Speed Adaptation
We defined the amount of speed adaptation explained by a given measure using Kendall’s 
coefficient of concordance (W), which ranges from 0 to 1 (Kendall & Smith, 1939). A perfect 
measure of speed adaptation meets the following four criteria:

Constancy
1. WSP = 0: no concordance during self-paced driving. For example, for SRTE, WSP = 0 

means that participants rated the SRTE of the 2.0-, 2.4-, 2.8- and 3.6-m-wide lanes in 
no consistent order, and thus lane width had no consistent effect on SRTE.

Sensitivity
2. WFP90 = 1: full concordance during forced-paced driving at 90 km/h. For example, for 

SRTE, WFP90 = 1 means that participants driving in the FP90 condition unanimously 
rated the 2.0-, 2.4-, 2.8- and 3.6-m-wide lanes in the same order. That is, for SRTE, 
all participants found the 2.0-m lane more effortful than the 2.4-m lane, the 2.4-m 
lane more effortful than the 2.8-m lane and the 2.8-m-wide lane more effortful than 
the 3.6-m lane.

3. WFP130 = 1: full concordance during forced-paced driving at 130 km/h.
4. W∆FP = 1: full concordance between FP130 and FP90. For example, for SRTE, W∆FP = 

1 means that all participants regarded FP130 as more effortful than FP90.

The above four concordance values were used to calculate an overall speed adaptation 
(OSA) score (Equation 2.1), which applies equal weight to sensitivity (WFP130, WFP90 & W∆FP) 
and constancy (WSP). OSA can range between -1 (i.e. poorest possible speed adaptation 
measure with constancy 1 and sensitivity 0) and 1 (i.e. perfect speed adaptation measure 
with constancy 0 and sensitivity 1). A score of 0 occurs if the measure were uncorrelated with 
the experimental conditions (e.g. if totally random data were measured) or if the measure 
were equally sensitive during SP and FP.

     

(2.1) 

2.3. Results
All participants finished the experiment; none of the participants responded a score of 3 
(slightly nauseous) or higher for the simulator sickness item. Specifically, from 72 responses 
(24 participants x 3 runs), there were 68 responses ‘Not experiencing any nausea’, and 4 
responses of ‘Arising symptoms’.
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2.3.1. Descriptive Statistics and Effects of Lane Width
Tables 2.1–2.3 show the means and standard deviations per lane width and per dependent 
measure, for the FP130, FP90 and SP conditions, respectively. These tables also contain the 
results of the repeated measures ANOVAs regarding lane width.

Tables 2.1–2.3 show that the wider the lane, the higher the mean absolute lateral error 
and maximum lateral error. Lane width also had strong effects on the TLC measures and 
on SRTE. For the five physiological measures (mean GSR, mean GSR rate, HR, SDNN, LF/
HF ratio), the effect of lane width was substantially weaker. Only the effects of SDNN were 
statistically significant in all three speed conditions, with the 3.6-m-wide lane yielding higher 
SDNN (indicative of lower workload) than the 2.0-m-wide lane.

Figure 2.4 shows (1) the mean speed, (2) the cumulative number of cone hits, (3) the mean 
SRTE, (4) the mean TLC and (5) the mean GSR as a function of travelled distance. It can be 
seen that over the entire trajectory, participants adopted a higher mean speed for the wider 
lanes. Furthermore, for the three widest lanes (i.e. 3.6, 2.8 m and 2.4 m) participants had 
similar mean acceleration (on straight segments) and deceleration (before curved segments) 
patterns. For the 2.0-m-wide lane, however, participants adopted a relatively constant mean 
speed across the 5.1-km-long segment. Figure 2.4 and Tables 2.1–2.3 further show that 
substantially more cones were hit for the 2.0-m-wide lane than for the three wider lanes.

Figure 2.4 shows that GSR does not clearly differentiate between the different lane widths, 
nor between the three speed conditions. The TLC and SRTE, however, are both clearly 
sensitive to lane width, with wider lanes yielding higher TLC and lower SRTE. Furthermore, 
SRTE shows to be a measure of speed adaptation. To illustrate, for the narrowest road (blue 
lines), SRTE was higher for FP130 than for SP, whereas for the widest road (red lines), SRTE 
was lower. Put differently, it appears that participants in the SP condition, to some extent, 
homogenised their own task demands. A similar pattern is seen for the median TLC across 
participants (Figure 2.4). These speed adaptations are described in further detail in the 
following section.

2.3.2. Comparing the Speed Adaptation Measures
Tables 2.1–2.3 and Figure 2.4 described the sensitivity of the measures to lane width, for 

 2.0 m 2.4 m 2.8 m 3.6 m
Dependent measures M M M M p  value, F (3,69)

Mean speed (km/h) 91.7 123.5 135.3 148.4 p = 7.27e-24
(21.1) (15.7) (16.9) (18.6) F = 90.49

Percentage time off-road (%) 15.64 1.69 0.25 0.31 p = 2.17e-28
(7.48) (1.54) (0.64) (0.77) F = 130.65

Mean absolute lateral error (m) 0.057 0.097 0.116 0.203 p = 1.73e-36
(0.012) (0.017) (0.027) (0.046) F = 241.07

Maximum absolute lateral error (m) 0.305 0.391 0.439 0.781 p = 2.17e-28
(0.166) (0.092) (0.138) (0.358) F = 130.65

Self-reported task effort (0-10) 6.99 3.81 3.30 2.32 p = 9.50e-24
(1.35) (1.48) (1.54) (1.38) F = 89.61

Median TLC (s) 1.24 2.15 2.57 2.96 p = 7.94e-25
(0.46) (0.43) (0.60) (0.67) F = 98.04

TLC15th (s) 0.23 1.14 1.39 1.65 p = 1.42e-30
(0.33) (0.22) (0.26) (0.30) F = 154.81

Mean GSR (µS) 7.38 7.70 7.62 7.74 p = 0.664
(3.34) (3.32) (3.21) (3.44) F = 0.530

Mean GSR rate (µS/min) 8.73 8.71 8.75 9.75 p = 0.550
(8.57) (8.18) (6.07) (8.82) F = 0.71

Mean HR (bpm) 79.73 78.49 78.54 78.94 p = 0.282
(11.61) (10.63) (11.70) (11.11) F = 1.30

SDNN (ms) 47.43 51.97 55.92 55.46 p = 0.047
(16.20) (17.31) (20.30) (22.75) F = 2.79

LF/HF ratio (ms) 1.09 1.09 1.07 1.10 p = 0.935
(0.39) (0.45) (0.40) (0.45) F = 0.142

Steering reversal rate (deg/s) 0.79 0.63 0.63 0.61 p = 1.34e-05
(0.24) (0.19) (0.20) (0.18) F = 10.10

Lane width

Table 2.1. Means (M), standard deviations (SD), and results of the repeated measures ANOVA 
(p, F) per dependent measure and lane width, for the self-paced condition (SP).
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each speed condition. However, to assess speed adaptation, the effect sizes for a measure 
need to be evaluated for the forced-paced conditions relative to the self-paced condition, as 
shown in Table 2.4. Here, the index of interest is the overall speed adaptation (OSA) score, 
as defined in Equation 2.1.

Table 2.4 shows that both the SRTE and median TLC are somewhat successful in 
describing speed adaptation, with OSA scores for these measures being greater than 0 

 2.0 m 2.4 m 2.8 m 3.6 m
Dependent measures M M M M p  value, F (3,69)

Mean speed (km/h) 90 90 90 90
(0) (0) (0) (0)

Percentage time off-road (%) 16.62 0.79 0.05 0.02 p = 1.01e-28
(7.37) (1.00) (0.15) (0.08) F = 134.07

Mean absolute lateral error (m) 0.059 0.091 0.112 0.179 p = 2.10e-29
(0.011) (0.020) (0.025) (0.047) F = 141.43

Maximum absolute lateral error (m) 0.294 0.331 0.386 0.547 p = 1.02e-28
(0.114) (0.063) (0.084) (0.151) F = 134.07

Self-reported task effort (0-10) 6.73 3.31 1.76 0.86 p = 6.81e-29
(1.77) (1.39) (1.27) (0.97) F = 135.91

Median TLC (s) 1.15 2.77 3.76 4.88 p = 5.65e-55
(0.28) (0.37) (0.50) (0.60) F = 884.63

TLC15th (s) 0.17 1.53 2.12 2.75 p = 5.04e-62
(0.25) (0.20) (0.17) (0.22) F = 1430.17

Mean GSR (µS) 7.86 7.56 7.70 7.76 p = 0.200
(4.52) (4.29) (4.34) (4.14) F =1.59

Mean GSR rate (µS/min) 7.51 6.81 6.55 6.57 p = 0.74
(6.99) (5.85) (4.81) (4.22) F =0.42

Mean HR (bpm) 77.62 78.22 76.80 77.22 p = 0.661
(11.31) (11.50) (9.68) (11.19) F = 0.53

SDNN (ms) 49.92 64.05 60.83 58.35 p = 1.90e-4
(23.59) (37.46) (28.75) (18.50) F = 7.57

LF/HF ratio (ms) 1.08 1.22 1.18 1.27 p = 0.005
(0.43) (0.45) (0.56) (0.42) F = 4.65

Steering reversal rate (deg/s) 0.78 0.53 0.45 0.41 p = 9.12e-21
(0.21) (0.17) (0.15) (0.16) F = 69.21

Lane width

Table 2.2. Means (M), standard deviations (SD) and results of the repeated measures ANOVA 
(p, F) per dependent measure and lane width, for the forced-paced condition at 90 km/h (FP90).

 2.0 m 2.4 m 2.8 m 3.6 m
Dependent measures M M M M p  value, F (3,69)

Mean speed (km/h) 130 130 130 130
(0) (0) (0) (0)

Percentage time off-road (%) 25.99 2.76 0.28 0.03 p = 1.47e-37
(11.03) (2.41) (0.44) (0.12) F = 260.62

Mean absolute lateral error (m) 0.075 0.106 0.123 0.197 p = 2.88e-30
(0.022) (0.020) (0.023) (0.042) F = 151.21

Maximum absolute lateral error (m) 0.411 0.448 0.467 0.643 p = 5.81e-12
(0.199) (0.149) (0.106) (0.132) F = 28.02

Self-reported task effort (0-10) 7.77 4.46 3.26 1.41 p = 5.83e-32
(1.54) (1.53) (1.69) (1.16) F = 172.10

Median TLC (s) 0.65 2.00 2.72 3.53 p = 5.66e-48
(0.28) (0.42) (0.43) (0.56) F = 545.73

TLC15th (s) 0.02 0.95 1.43 1.88 p = 1.60e-55
(0.07) (0.19) (0.17) (0.15) F = 918.50

Mean GSR (µS) 7.56 7.40 7.35 7.43 p = 0.787
(3.08) (3.00) (3.14) (3.44) F = 0.35

Mean GSR rate (µS/min) 7.92 6.71 7.38 8.33 p = 0.446
(5.44) (4.15) (5.90) (7.16) F = 0.90

Mean HR (bpm) 79.49 77.50 77.45 77.14 p = 0.152
(12.57) (11.43) (11.50) (11.82) F = 1.82

SDNN (ms) 52.92 54.61 51.48 61.92 p = 0.029
(25.86) (19.53) (19.04) (28.92) F = 3.19

LF/HF ratio (ms) 1.09 1.13 1.05 1.14 p = 0.265
(0.49) (0.47) (0.32) (0.33) F = 1.35

Steering reversal rate (deg/s) 0.93 0.67 0.58 0.50 p = 8.40e-19
(0.28) (0.24) (0.20) (0.18) F = 57.83

Lane width

Table 2.3. Means (M), standard deviations (SD), and results of the repeated measures ANOVA 
(p, F) per dependent measure and lane width, for the forced-paced condition at 130 km/h 
(FP130).
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Figure 2.4. Selected variables as a function of travelled distance per lane width. Colours 
correspond to the four lane widths, and line styles correspond to the three speed conditions 
(for clarity, the bottom three plots do not show the FP90 condition, and the bottom two 
do not show the 2.8 m lane width). From top to bottom: (1) curvature (1/curve radius), (2) 
mean speed across participants, (3) cumulative number of cone hits summed across, (4) 
mean self-reported task effort (SRTE) across participants (sampled every 20 seconds), and (5) 
median TLC across participants. For visualization purposes, the median TLC was low pass 
filtered with a cut-off frequency of 0.005/m, (6) mean galvanic skin response (GSR) across 
participants.
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(0.06 and 0.17, respectively). However, the GSR and GSR rate do not perform much better 
than random chance, with OSA values of 0.01 and 0.03, respectively. The measures of heart 
rate variability (SDNN, LF/HF ratio) yield OSA values greater than 0 as well (0.07 and 0.09, 
respectively). It is noteworthy that the highest OSA among all measures (0.43) occurred for 
the steering reversal rate (Table 2.4).

Figure 2.5 shows the means across participants per lane width and per speed condition 
for six selected measures. In agreement with Table 2.4 and Figure 2.4, SRTE is a relatively 
successful measure of speed adaptation (i.e. OSA > 0) as it dropped less strongly with lane 
width for SP than for FP. Similarly, the increase of TLC with lane width was less steep for SP 
than for FP. Figure 2.5 further shows that the GSR measures were insensitive to lane width 
in all three speed conditions. Overall, steering reversal rate is the most successful measure 
of speed adaptation, as SRR remained relatively constant in the SP condition (i.e. low WSP), 
while being sensitive to lane width (i.e. high WFP130 and WFP90) (Table 2.4).

2.3.3. Supplementary Analyses
As shown above, the physiological measures exhibit low sensitivity to lane width, which 
may suggest that these measures are statistically unreliable. However, this was clearly not 
the case. Figure 2.6, for example, illustrates that the heart rate reliably reflected individual 
differences (ρ = 0.90). Furthermore, a temporal effect can be distinguished: the mean heart 
rate decreased from Run 1 (M = 80.6 bpm, SD = 11.3) to Run 3 (M = 76.5, SD = 10.8). This 
run effect was further analysed by submitting a 24 × 3 (24 participants × 3 speed conditions) 
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Figure 2.5. Scores of participants (asterisks) and means across participants (horizontal lines) 
per lane width (x-axis) and per speed condition (colour). Top left: self-reported task effort 
(SRTE); Top middle: median time-to-line-crossing (TLC); Top right: galvanic skin response rate 
(GSR rate); Bottom left: mean speed; Bottom middle: steering reversal rate (SRR); Bottom 
right: heart rate variability (SDNN).
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matrix with rank-transformed numbers to a repeated-measures ANOVA, but now with the 
run number as within-subject factor. The results, which can be found in the supplementary 
materials, show that from the 17 measures, the mean  HR and DSSQ Worry are significantly 
different between Run 1 and Run 3.

Finally, the correlation matrices in the supplementary material reveal several noteworthy 
patterns. In particular, participants with a higher mean HR tend to have a lower SDNN and a 
higher LF/HF ratio. Additionally there are strong correlations between mean GSR and mean 
GSR rate, as well as between DSSQ Distress and the NASA  TLX (ρ between 0.61 and 0.84). 
In addition, driving experience (yearly mileage) correlated with the NASA TLX (ρ = -0.35, 
-0.17, -0.48 for SP, FP90 and FP130, respectively). Low correlations were found between the 
physiological measures and mileage (|ρ| < 0.15).

2.4. Discussion
2.4.1. Main Findings Regarding the Three Speed Adaptation Hypotheses
We aimed to test which of three regulatory hypotheses [(1) experienced risk, (2) experienced 
task difficulty or (3) safety margins] best describes the phenomenon that drivers adopt a 
higher speed when task demands are lowered. The three hypotheses were tested on both 
constancy: does the corresponding measure (i.e. GSR, SRTE, TLC) remain constant during 
self-paced driving?, and sensitivity: does the corresponding measure change as a function 
of lane width (4 lane widths) and imposed speed (2 fixed speeds) forced-paced driving? 
Previous research on this topic never tested the constancy criterion (GSR and TLC) and the 
sensitivity criterion (SRTE) in a single experiment, and compared the results. 

Our driving simulator experiment showed that the task demand manipulation was 
successful in evoking speed adaptation: participants drove faster when the lane was wider. 
This effect, which is represented by a Kendall W of 0.81 (Table 2.3), serves as a useful 
confirmation that speed adaptation occurs when task demands are lowered Lewis-Evans 
and Charlton 2006). 

Because the dependent measures respond non-linearly to changes in task demands (see 
Figure 2.5, for an illustration), a purely nonparametric index, called overall speed adaptation 
(OSA), was used. The OSA score can range between -1 and 1, where positive values mean 
that speed adaptation is captured by the measure; that is, the sensitivity to changes in task 
demand in forced paced driving conditions is greater than the sensitivity to task demand 
under self-paced conditions. Table 2.4 showed positive scores of 0.01, 0.06 and 0.17 

Figure 2.6. Mean heart rate during Run 1 versus Run 3. The markers represent values per 
participant (small squares) and means across 24 participants (large square).
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for GSR, SRTE and TLC, respectively, which are still far from the perfect OSA = 1 score. 
Thus, results show that SRTE and TLC  describe some speed adaptation, but none of the 
three tested measures provides a persuasive description of speed adaptation. The tested 
regulatory hypotheses failed either the criterion of sensitivity or the criterion of constancy.

2.4.2. Insufficient Sensitivity of GSR
The mean GSR and mean GSR rate exhibited clear individual differences (as evidenced by 
the test–retest correlations exceeding 0.80, see Table 2D in Supplementary material), but 
did not significantly co-vary with lane width or with the imposed speed in the forced-paced 
conditions. This lack of sensitivity may have several causes.

First, the GSR signal exhibited large fluctuations that were uncorrelated with the 
experimental conditions. This suggests that GSR reflects high-frequency dynamics of the 
sympathetic nervous system, which may have overwhelmed the subtle changes in driver 
tension in response to lane width. The measurement instruments themselves may have also 
been a factor here. Although we did follow Taylor’s (1964) method of measuring GSR on the 
hands, it is possible that turning of the steering wheel may have interfered with the GSR and 
ECG recordings (Bernardi et al., 1996; Sun et al., 2012). Thus, within-subject noise may have 
been an important factor reducing sensitivity. Future research could place the electrodes on 
other locations of the body, such as the neck (Wen et al., 2017). 

Second, it is possible that GSR does not reflect changes in driver tension in simulated 
driving. Taylor (1962)  measured drivers’ GSR during real-world driving and found that GSR 
exhibited a strong correlation with  participants’ age (ρ = -0.64) and years since obtaining the 
first driver’s licence (ρ = -0.85), but such strong correlations were not found in this study (|ρ| 
< 0.15 between participants’ GSR levels and mileage).

Third, the GSR may have operated at a different time scale than the time scale with which 
lane width and speed were manipulated. In our study, all measures were calculated per 5.1-
km segment of driving of which the first 500 m and last 400 m of each lane width were 
discarded to exclude transition effects. The GSR rate may have a more phasic characteristic 
and could therefore be especially responsive during these transition period only (e.g. Christie, 
1981). Future research could examine how drivers respond to transitions in task demands. 

Fourth, it could be argued that GSR is not a sensitive proxy of experienced risk (e.g. 
Kinnear et al., 2013), and that Taylor’s (1964) hypothesis, which states that drivers regulate 
their level of experienced risk, is false.

2.4.3. Insufficient Constancy of TLC and SRTE
Although TLC and SRTE were highly sensitive to both lane width and imposed speed, these 
measures were not constant during self-paced driving. Participants reported that wide lanes 
were less effortful to drive on (i.e. lower SRTE) than narrow lanes, even though participants 
drove considerably faster on the wider lanes. Here, it is possible that participants reported 
in congruence to what they saw (i.e. lane width itself ) rather than what they subjectively 
experienced (i.e. experienced effort), or it is possible that Fuller et al. (2008) was wrong in the 
sense that drivers do not regulate their experienced task difficulty.

Similarly, we found that the wider the lane, the higher the observed TLC, which may be 
due to the causal relationship between speed and TLC (see also the observed correlation 
between speed and median TLC: ρ = -0.51 in the Supplementary material). If maintaining the 
same driving path, infeasible high speeds of 350–800 km/h (exceeding the maximum vehicle 
speed of 210 km/h) would have to be adopted on the widest lanes in order to acquire the 
same TLC as on the narrowest lane (estimated using data in Table 2.1). Thus, although TLC 
may be kept constant in some cases, such as when drivers adapt their speed to different 
curve radii (Van Winsum & Godthelp, 1996), it failed the constancy criterion when it came to 
lane width.
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2.4.4. A Promising Alternative Measure of Speed Adaptation: Steering Reversal Rate
The three behavioural adaptation hypotheses, compared in this paper, focus on subjective 
effort and physiological stress as well as objective risk in the form of TLC. None of the 
hypotheses targets objective effort. The steering reversal rate (SRR), a widely used measure 
of steering activity (McLean & Hoffmann, 1975; Östlund et al., 2005), which may be seen as 
an objective measure of effort (Boer & Ward, 2003), had the highest OSA score (0.43) of the 
included measures.

SRR Yielded High Sensitivity for Forced-Paced Driving
During forced-paced driving, participants exhibited a higher SRR when the lane was narrower 
(i.e. WFP90 & WFP130 were high, see Table 2.4) and a higher SRR when the imposed speed was 
higher (i.e. W∆FP was high). These findings replicate early on-road research by McLean and 
Hoffmann (1972) which concluded that ‘the proportion of high-frequency (>0.4 Hz) steering 
control movements increases with increasing speed and decreasing lane width, that is, 
increases as the driving situation becomes ‘tighter’ (435).

The high sensitivity of SRR to lane width (i.e. high WFP90 & WFP130) can be explained by the 
fact that a larger absolute lateral error is permitted on a wider lane, and thus less frequent 
steering input is needed to stay in the lane. Second, a decrease of lane width is accompanied 
by an increase of visual saliency and thus perceptual accuracy of the vehicle state relative to 
the environmentally imposed constraints; that is, the distance and splay   angles to the lane 
edges are more clearly visible when the lane is narrower (Li & Chen, 2010). Indeed, steering 
activity is closely related to maintaining a certain vehicle state in response to perturbations 
such as external forces on the vehicle and perceptual inaccuracies (e.g. Van Leeuwen et al., 
2015). Third, the cone warnings provided  salient feedback to the driver that he or she had to 
make a steering correction; these cone warnings occurred more frequently on the narrower 
lanes (see Tables 2.1–2.3). 

The high sensitivity of SRR to imposed speed (i.e. high W∆FP) can be explained by visual 
cues as well: differences in heading angles are better detectable at a higher speed due to 
the effects of optic flow (see Crowell & Banks, 1993), thus providing incentives for steering 
corrections. Furthermore, a higher driving speed demands more frequent steering input due 
to the approximately quadratic increase in lateral displacement as a function of speed, as 
occurs with any vehicle (Wohl, 1961).

SRR Yielded High Constancy for Self-Paced Driving
In the self-paced condition, drivers kept a relatively constant SRR for different lane widths (i.e. 
WSP was low). The relatively high OSA score (0.43) suggest that drivers attempt to regulate 
a certain control activity by means of adjusting their speed. The role of control activity in 
speed adaptation deserves further investigation, for example, in future experiments with a 
greater range of physical steering demands (e.g. sharp curves) and different task demands 
(e.g. higher traffic density). 

2.4.5. Measurement Considerations and Temporal Effects
We found that some of the dependent measures were highly correlated (see supplementary 
material), which indicates that a common factor may be extracted. Thus, speed adaptation 
may best be explained using multiple measures simultaneously. Visual scanning activity, 
which was not included in the present study, may be a fruitful additional measure of speed 
adaptation. To illustrate, it is possible that participants adapted to a decrease in task 
demands (i.e. increase in lane width, or a reduction in imposed speed) by engaging in extra 
visual scanning or by engaging in a visually distractive non-driving task. When a higher 
driving demand is short lived as in a slow sharp curve or a brief narrowing of a lane, drivers 
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may temporarily increase their vigilance and posture to compensate the increased demand 
with increase capability. In this context, the objective measure of risk as with TLC shows an 
increase in risk but the perceived risk is constant because more mental effort is invested 
temporarily. Future research could use eye-trackers, postural sensors or brain imaging, to 
try to obtain a more complete picture of how drivers respond to changes in task demands. 

In our study, temporal effects, in terms of the run order, were found for some measures (self-
reported worry, mean heart rate). It may be argued that these temporal effects are themselves 
triggers of speed adaptation. On a longer time scale, it has been found that drivers’ conviction 
rates rise in the first few years after obtaining a driver’s licence (Bjørnskau & Sagberg, 2005; 
Harrington, 1972), which may be an adaptation to an increasing fearlessness while driving. 
Studies in which drivers’ feelings and physiological measurements are recorded across 
multiple months are recommended to gain insight into speed adaptation during a learning 
process. Of course, it is also possible that the observed run order effects in our experiment 
simply reflect that participants became accustomed to the experimental apparatus.

2.4.6. Theoretical Implications
We conceptually replicated three experiments that have been important in shaping extant 
behavioural adaptation theories (Figure 2.1). The fact that none of the three regulatory 
hypotheses convincingly described speed adaptation in our relatively simple experiment 
raises doubts about the validity of the three corresponding theories.

One may argue that the theories in Figure 2.1 are oversimplifications of actual driving 
and that more sophisticated theories exist nowadays. Indeed, in recent years, the theories 
reported in Figure 2.1 have been substantially revised. For example, Fuller’s (2005) task 
difficulty homeostasis theory has been extended into a Risk Allostasis Theory by including 
drivers’ dispositions to comply with the speed limit (Fuller, 2011). Based on work of Fuller 
(2005), Kinnear and Helman’s (2011) proposed a revised task-capability interface, a diagram 
with 28 blocks that are interconnected with arrows. Similar extensions also exist for Gibson 
and Crooks’ field of safe travel  (Papakostopoulos et al., 2017). One can argue that these 
sophisticated theories are more correct than the theories reported in Figure 2.1, because 
they include more factors that are known to influence driver behaviour. Although adding 
blocks and arrows may indeed provide a better fit to observed driving behaviour, such 
complexity is not necessarily theoretically convincing due to the risk of overfitting (Box, 
1976; Preacher, 2003; Roberts & Pashler, 2000). According to the well-known principle of 
parsimony, a theory/model should be as simple as possible, not any simpler. We recommend 
that researchers first determine which regulatory mechanisms occur in car driving, before 
devising complex models. Our findings concerning steering reversal rate calls for more 
research into its possible role in speed adaptation.

2.4.7. Experimental Validity
The task demands in our driving simulator experiment were manipulated by changing the road 
width and imposed speed. It is possible to devise other types of task demand manipulations, 
including changes in traffic characteristics, weather conditions and road infrastructure (e.g. 
intersections, road signage). Also, our participants were mostly university students, which 
may hamper the generalisability of the present findings.

Another limitation is that driving in a fixed-base simulator may not sufficiently trigger driver 
behavioural adaptation, even though our simulator provided a large visual field of view (which 
improves speed perception), and incentives (task instructions, audio-visual feedback) were 
offered to minimise the number of cone hits. The lack of physical crash risk in a simulator 
could have induced a lower variety of tension levels as compared to an on-road research 
(e.g. see Healey & Picard, 2005 for an on-road measurement of GSR). Participants in 
our simulator did drive considerably faster on wide lanes than on narrow lanes. On-road 
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experiments, in which tension variability is higher, are likely to result in even greater range of 
speeds. Nevertheless, there are clear advantages of using a driving simulator. In particular, a 
simulator allows for accurate measurements of vehicle state, and for limiting the number of 
confounding variables. As pointed out by Taylor (1962), traffic jams or other events beyond a 
driver’s control may prevent drivers from adopting their preferred speed (see also De Winter et 
al., 2007, showing that traffic turns a self-paced task into a forced-paced one). Participants in 
the simulator all drove in an identical environment, and could drive at a speed they preferred 
without being impeded.

In hindsight, we can conclude that the driving condition with the narrowest lane clearly 
evoked different driving behaviour than the other three lane widths, with participants barely 
accelerating on the straights, presumably in an attempt to minimise the number of cone hits 
(Figure 2.4). Additionally, participants experienced substantially more cone hits in the 2.0-m 
lane width condition than with the other three lane widths. Although our nonparametric OSA 
index can deal with nonlinearities, it would be worth exploring whether ceiling/floor effects or 
threshold effects occur at the extreme ranges of speed and road widths (see Lewis-Evans, 
2012 for an extensive treatise on nonlinear effects in self-reported measures during driving). 
Thus, whether the lane width of 2.0 m should be regarded as an outlier, or whether it is 
part of the full spectrum of task demand conditions, is a topic for further research. Also, 
participants were required to report their experienced effort every 20 s. It is possible that 
this secondary task itself required some effort or caused some tension and that may have 
manifested mostly in the 2-m-wide lane, which was already so narrow that the small amount 
of cognitive distraction may have been detrimental.

Lastly, this experiment was conducted with a relatively small sample size of 24 participants. 
Whether the SRR is truly a superior measure of speed adaptation needs to be verified in 
future on-road experiments with larger samples. Based on our results it is concluded that 
TLC and SRTE can describe some of the observed speed adaptation. The steering reversal 
rate shows promise in capturing speed adaptation, prompting further research into the role 
of conservation of control activity in car driving.

Note
1.    It is noted that Taylor (1962, 1964) presented some evidence that his GSR recordings were sensitive to task demands. For example, 

he showed that GSR exhibited a strong negative correlation with participants’ age and years of licensure (ρ = -0.64 and -0.85, 
respectively, based on data reported in Taylor, 1962; Figures 5 and 6). Taylor (1962) also noted that participants’ GSR was elevated 
during certain events, such as when trying to ‘squeeze’ their vehicle between other moving vehicles. These findings suggested that 
GSR is a reliable and sensitive measure of experienced risk. However, the correlation with years of licensure was based on a small 
sample of drivers (N = 12), while no quantitative data were provided regarding sensitivity to the external events.
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Appendix 2 – Correlation matrices
Table 2A. Spearman rank-order correlation matrix for the self-paced condition (SP).

Dependent measures 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1. Mean speed 1.00
2. Percentage time off-road 0.24 1.00
3. Mean absolute lateral error 0.10 0.75 1.00
4. Maximum absolute lateral error 0.24 0.48 0.60 1.00
5. Self-reported task effort (SRTE) -0.08 -0.22 -0.32 -0.23 1.00
6. Median TLC -0.50 -0.73 -0.45 -0.41 -0.10 1.00
7. TLC15th -0.63 -0.78 -0.51 -0.43 -0.08 0.91 1.00
8. Mean GSR -0.01 -0.31 -0.19 -0.15 -0.15 0.37 0.32 1.00
9. Mean GSR rate 0.14 -0.01 -0.06 0.13 0.07 -0.04 -0.11 0.74 1.00
10. Mean HR -0.01 -0.31 -0.40 -0.11 0.25 0.34 0.17 0.10 0.10 1.00
11. SDNN 0.01 0.28 0.33 0.18 0.04 -0.33 -0.16 -0.14 -0.13 -0.58 1.00
12. LF/HF ratio 0.08 -0.14 -0.21 0.09 0.25 0.09 -0.08 0.03 0.16 0.44 -0.52 1.00
13. Steering reversal rate 0.08 0.24 -0.05 -0.06 0.33 -0.64 -0.41 -0.11 0.13 -0.30 0.37 -0.13 1.00
14. Overall NASA TLX -0.49 0.18 0.19 -0.02 0.31 0.06 0.07 -0.05 -0.06 0.07 0.05 -0.23 0.11 1.00
15. DSSQ Engagement 0.14 0.02 0.07 0.11 0.02 -0.24 -0.07 -0.28 -0.16 -0.27 0.05 0.16 0.30 0.00 1.00
16. DSSQ Distress -0.46 0.11 0.04 -0.16 0.31 0.15 0.12 -0.07 -0.18 0.30 -0.03 -0.13 -0.09 0.84 -0.26 1.00
17. DSSQ Worry -0.52 -0.15 0.04 -0.02 0.27 0.38 0.39 0.05 -0.10 0.41 0.06 -0.11 -0.23 0.51 -0.32 0.66 1.00
18. DBQ 0.25 0.04 -0.29 -0.50 0.18 -0.11 -0.14 -0.02 -0.06 0.14 -0.08 0.01 0.15 -0.21 -0.05 -0.10 -0.30 1.00
19. Mileage 0.58 0.02 0.04 0.09 0.02 -0.25 -0.27 0.06 0.15 -0.07 0.14 0.09 0.11 -0.35 0.33 -0.32 -0.47 0.24

Note. p  < 0.05 for |ρ | ≥ 0.41, p  < 0.01 for |ρ | ≥ 0.52 and p  < 0.001 for |ρ | ≥ 0.63.

Table 2B. Spearman rank-order correlation matrix for the forced-paced condition at 90 km/h 
(FP90).
Dependent measures 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1. Mean speed
2. Percentage time off-road 1.00
3. Mean absolute lateral error 0.70 1.00
4. Maximum absolute lateral error 0.48 0.76 1.00
5. Self-reported task effort (SRTE) -0.23 -0.26 -0.35 1.00
6. Median TLC -0.75 -0.40 -0.34 -0.18 1.00
7. TLC15th -0.81 -0.57 -0.49 -0.05 0.93 1.00
8. Mean GSR -0.31 -0.14 -0.09 -0.22 0.44 0.31 1.00
9. Mean GSR rate -0.09 -0.11 -0.05 -0.12 0.15 0.01 0.82 1.00
10. Mean HR -0.45 -0.20 -0.26 0.15 0.38 0.35 0.27 0.16 1.00
11. SDNN 0.40 0.01 -0.03 -0.13 -0.27 -0.30 -0.08 -0.03 -0.41 1.00
12. LF/HF ratio -0.31 -0.15 -0.19 0.02 0.35 0.31 -0.03 0.03 0.45 -0.41 1.00
13. Steering reversal rate 0.39 0.07 0.16 0.20 -0.71 -0.66 -0.09 0.16 -0.37 0.36 -0.12 1.00
14. Overall NASA TLX 0.43 0.27 0.08 0.24 -0.45 -0.44 0.09 0.19 0.28 0.13 0.00 0.25 1.00
15. DSSQ Engagement 0.23 0.25 0.19 -0.13 -0.07 -0.19 -0.19 -0.11 -0.14 0.14 0.16 0.17 -0.02 1.00
16. DSSQ Distress 0.04 -0.15 -0.12 0.33 -0.19 -0.05 0.20 0.13 0.33 0.00 -0.18 0.12 0.71 -0.36 1.00
17. DSSQ Worry -0.14 -0.06 -0.36 -0.07 0.38 0.32 0.40 0.13 0.26 0.27 0.04 -0.12 0.15 0.01 0.18 1.00
18. DBQ -0.05 -0.37 -0.45 0.28 -0.14 -0.08 -0.14 0.07 0.30 -0.14 0.09 0.08 0.07 -0.06 0.07 -0.13 1.00
19. Mileage -0.14 -0.15 -0.01 0.02 0.22 0.17 -0.05 0.05 -0.03 0.07 0.00 -0.06 -0.17 0.23 -0.26 -0.09 0.24
Note. p  < 0.05 for |ρ | ≥ 0.41, p  < 0.01 for |ρ | ≥ 0.52 and p  < 0.001 for |ρ | ≥ 0.63. For FP90 no speed correlations are shown because the speed 
was fixed, and thus no correlations are applicable. 
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Table 2D. The results of the repeated measures ANOVA (p, F), Spearman correlation 
coefficient (ρ) between Run 1 and 3, and Means (M) per dependent measures with the session 
order as within-subjects factor.

Dependent measures p -value F (2,46) ρ                       
Run 1-3

M                     
Run 1

M         
Run 2

M             
Run 3

Mean speed (km/h) 0.955 0.05 113.9 115.5 114.9
Percentage time off-road (%) 0.279 1.31 0.41 6.24 4.85 5.01
Mean absolute lateral error (m) 0.026 3.98 0.69 0.123 0.112 0.119
Maximum absolute lateral error (m) 0.157 1.93 0.39 0.492 0.433 0.435
Self-reported task effort (0-10) 0.407 0.92 0.33 3.73 4.00 3.76
Median TLC (s) 0.892 0.12 -0.05 2.50 2.56 2.53
TLC15th (s) 0.678 0.39 -0.34 1.25 1.28 1.28
Mean GSR (µS) 0.955 0.05 0.81 7.68 7.48 7.61
Mean GSR rate (µS/min) 0.209 1.62 0.86 8.70 7.37 7.36
Mean HR (bpm) 5.14∙10-5 12.33 0.90 80.62 77.14 76.52
SDNN (ms) 0.851 0.16 0.75 56.61 53.48 56.13
LF/HF ratio (ms) 0.905 0.10 0.92 1.15 1.11 1.12
Steering reversal rate (deg/sec) 0.923 0.08 0.63 0.66 0.61 0.61
Overall NASA TLX (%) 0.849 0.16 0.27 50.80 51.77 50.24
DSSQ Engagement (0-32) 0.711 0.34 0.67 23.54 24.04 24.83
DSSQ Distress (0-32) 0.152 1.96 0.31 12.71 13.04 10.79
DSSQ Worry (0-32) 5.50∙10-3 8.88 0.73 7.88 5.54 5.21

Table 2C. Spearman rank-order correlation matrix for the forced-paced condition at 130 
km/h (FP130)
Dependent measures 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1. Mean speed
2. Percentage time off-road 1.00
3. Mean absolute lateral error 0.75 1.00
4. Maximum absolute lateral error 0.64 0.78 1.00
5. Self-reported task effort (SRTE) -0.06 -0.18 0.05 1.00
6. Median TLC -0.76 -0.59 -0.57 -0.02 1.00
7. TLC15th -0.78 -0.67 -0.63 0.05 0.91 1.00
8. Mean GSR -0.26 -0.35 -0.28 -0.05 0.32 0.31 1.00
9. Mean GSR rate 0.08 -0.17 0.01 0.01 -0.05 0.04 0.72 1.00
10. Mean HR -0.19 -0.22 -0.15 0.03 0.30 0.21 0.07 -0.06 1.00
11. SDNN 0.04 -0.01 0.05 -0.05 -0.24 -0.06 0.33 0.30 -0.51 1.00
12. LF/HF ratio -0.43 -0.35 -0.23 0.07 0.39 0.37 0.12 0.11 0.62 -0.33 1.00
13. Steering reversal rate 0.30 0.02 0.15 0.13 -0.73 -0.65 -0.09 0.18 -0.16 0.19 -0.08 1.00
14. Overall NASA TLX 0.50 0.22 0.46 0.40 -0.48 -0.47 -0.12 0.11 -0.01 -0.17 -0.19 0.34 1.00
15. DSSQ Engagement -0.28 -0.16 -0.02 0.08 -0.02 0.02 -0.34 -0.16 0.01 -0.09 0.25 0.32 -0.03 1.00
16. DSSQ Distress 0.12 -0.16 0.14 0.46 -0.13 -0.03 -0.05 0.13 0.02 -0.23 0.07 0.14 0.61 -0.01 1.00
17. DSSQ Worry 0.09 0.13 0.32 0.15 0.05 0.05 0.00 -0.05 0.09 -0.06 0.10 0.01 -0.09 -0.14 0.11 1.00
18. DBQ -0.06 -0.10 -0.25 -0.07 -0.06 -0.10 0.05 -0.01 0.33 0.01 0.15 0.23 -0.31 -0.17 -0.37 -0.08 1.00
19. Mileage -0.34 -0.14 -0.19 -0.28 0.26 0.21 0.10 0.02 -0.02 0.08 -0.03 -0.12 -0.48 0.17 -0.51 -0.27 0.24
Note. p  < 0.05 for |ρ | ≥ 0.41, p  < 0.01 for |ρ | ≥ 0.52 and p  < 0.001 for |ρ | ≥ 0.63. For FP130 no speed correlations are shown because the speed 
was fixed, and thus no correlations are applicable.
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How Road Narrowing Impacts 
the Trade-off Between Two 

Adaptation Strategies: 
Reducing Speed and Increasing 

Neuromuscular Stiffness



When drivers encounter a road narrowing two potential adaptation strategies 
come into play that may increase safety margins: decreasing speed and increasing 
neuromuscular stiffness of the arms. These two adaptionstrategies have so far 
been studied in isolation. We expect that there is a trade-off between these two 
strategies, and that risk duration would impact a driver’s selection of the trade-
off. Specifically, we hypothesized that for a short risk duration, drivers will favour 
increased neuromuscular stiffness over speed reduction; and vice versa for longer 
risk durations. Twenty-six participants drove in a driving simulator and encountered 
different risk durations; realized by road narrowings (from 3.6 m to 2.2 m) of 
varying lengths (10 m, 100 m, 250m, and 500 m). The neuromuscular stiffness was 
quantified by measuring the grip force exerted by both hands. The results show 
that all road narrowing conditions successfully induced driver adaptations, as a 
significant reduction in speed and increase in grip force was observed. However, the 
tested drivers did not consistently select the hypothesized different trade-offs for 
increasing duration of road narrowing: a low correlation was found between speed 
and grip force adaptations. Interestingly, individual trade-off were consistent: the 
within-subject variability in speed-grip force adaptations was low across the tested 
risk durations. Future research should further elucidate the underlying motivations 
for these individual adaptation strategies.

Published as:
Melman, T., Kolekar, S. B., Hogerwerf, E. W. M., & Abbink, D. A. (2020). How road narrowing impacts the trade-off 
between two adaptation strategies: Reducing speed and increasing neuromuscular stiffness. Proceedings of 
the 2020 IEEE International Conference on Systems, Man, and Cybernetics (pp. 3235–3240). Toronto, Canada. 
https://doi.org/10.1109/SMC42975.2020.9283172
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3.1. Introduction
The ability to adapt is intrinsic to humans and imperative to cope with events in the driving 
scene. Literature provides evidence for different adaptation strategies across different 
experimental conditions, such as adapting speed, neuromuscular properties, and steering 
strategy when driving on different lane widths (McLean & Hoffmann, 1972; Melman et al., 
2018; Pronker et al., 2017; Van der Wiel et al., 2015), adapting speed when approaching 
a curve (Van Winsum & Godthelp, 1996) or a one-lane bridge (Charlton & Starkey, 2016); 
adapting time headway and speed when driving in fog (Brooks et al., 2011) or behind a 
lead vehicle (Saffarian et al., 2012) and adapting steering strategy when perturbed by lateral 
wind gusts (Wierwille et al., 1983). These voluntary adaptations to changes in driving scene 
and task demand can be accompanied by involuntary adaptations such as an increase in 
galvanic skin response (i.e., sweat production), heart rate, respiratory rate, pupil diameter, 
and eye scanning behavior (Heikoop et al., 2018; Rendon-Velez et al., 2016). 

The psychological mechanisms behind driver adaptations are yet to be elucidated. As 
Melman et al. (2018) argued, several theories have postulated that drivers exhibit a trade-off 
between two conflicting motivations, namely arriving at a destination in time (efficiency) versus 
avoiding dangerous situations (safety), where the driver’s level of subjective risk (Näätänen 
& Summala, 1974; Wilde, 1998), task difficulty (Fuller et al., 2008), or time/safety margins 
(Gibson & Crooks, 1938; Van Winsum et al., 2000) are regarded as important homeostatic 
variables.

As indicated above, many researchers have shown the existence of steady-state driver 
adaptations, but few take the non-steady state and interaction between different driver 
adaptations into account. For example, a driving simulator study by Van der Wiel et al. (2015) 
showed an increase in neuromuscular stiffness to reducing road width (2.5 m and 4.5 m) while 
driving at two different fixed speeds (70 and 120 km/hr). The authors of that paper suggested 
that in real life, it would be likely that drivers prefer to reduce speed and thereby reduce 
the need for the energy-consuming increase in neuromuscular stiffness. Although fixing the 
driving speed can be beneficial to reduce between-driver variability, it inhibits a realistic 
understanding of the interaction between driver adaptations. Additionally, most studies (e.g., 
McLean & Hoffmann, 1972; Melman et al., 2018; Pronker et al., 2017; Van der Wiel et al., 
2015) use fixed lengths of narrow road sections which only allows for investigation of steady-
state driver adaptations due to fixed risk durations. In this paper, we aim to investigate the 
non steady state interaction between two commonly found adaptations strategies: speed 
and neuromuscular stiffness adaptations for different risk durations. 

Speed adaptation has strong implications on road safety. In essence, higher speed 
reduces a driver’s time to respond in an emergency scenario, increases the severity of the 
impact, and the probability of being involved in a crash (Aarts & Van Schagen, 2006; Elvik, 
2013; Elvik et al., 2004; Hedlund, 2000). Adapting the neuromuscular stiffness improves 
robustness to perturbations but is an energy-consuming strategy (Gribble et al., 2003). 
Previous studies have estimated neuromuscular stiffness by adding perturbations on the 
steering wheel (Abbink et al., 2011; Antonin et al., 2015; Van der Wiel et al., 2015), or by 
measuring EMG signals which are intrusive and generally have low signal to noise ratio (Pick 
& Cole, 2006). Previous studies reported an inverse relation between neuromuscular stiffness 
and grip force during driving (Kuchenbecker et al., 2003; Nakamura et al., 2011; Pronker et 
al., 2017), allowing for a non-obtrusive measurement with a good signal to noise ratio. These 
findings motivated us to use grip force measurements. 

In this study, a decrease in road width was utilized to induce speed and neuromuscular 
stiffness adaptations, as a change in road width is known to cause drivers to adjust their 
driving speed (Charlton & Starkey, 2016; McLean & Hoffmann, 1972) and neuromuscular 
stiffness (Pronker et al., 2017; Van der Wiel et al., 2015). To investigate the interaction 
between speed and neuromuscular stiffness adaptations, we created different risk durations 
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by exposing the driver to four different lengths of road narrowing. 

In summary, this study examines to what extent the duration of increased risk (i.e., the 
length of a road narrowing) influences the drivers’ speed and neuromuscular stiffness strategy 
(measured by grip force). We expect that there is a trade-off between these two strategies, 
and that risk duration would impact a driver’s selection of the trade-off. Specifically, we 
hypothesized that for a short risk duration, drivers will favour increased neuromuscular 
stiffness over speed reduction; and vice versa for longer risk durations (Figure 3.1).

3.2 Method
3.2.1. Participants
Twenty-six participants (9 female) 20 to 32 years old (M =25.9, SD = 3.2) volunteered in this 
study. All participants had normal or corrected to normal eyesight and had a valid driver’s 
license for at least one year (M = 6.5, SD = 3.4).

3.2.2. Apparatus
The experiment was conducted in a fixed-based driving simulator. The scenery was visualized 
using three LCD projectors with a horizontal and vertical field-of-view of 180º and 40º. The 
simulation data was logged at 100 Hz. Vehicle dynamics were simulated with a single-track 
model (heavy sedan of 1.8m wide), with an automatic gearbox and self-aligning torques were 
imposed on the steering wheel. Car vibrations (‘road rumble’) were simulated with a seat 
shaker implemented in the driver’s seat. During the experiment, participants could control the 
speed of the vehicle, and the speedometer was displayed on the dashboard. 

The grip force was measured using Tekscan 4256E pressure sensors attached to gloves 
(Figure 3.2). The sensor consists of 349 sensils (i.e., individual pressure-sensing locations) 
with a spatial resolution of 7.1 sensors/cm2. During this study, the total sum of all sensils 
for the left and right hand were recorded. The grip force data was logged at 20 Hz and 
synchronized with the simulator data.

3.2.3. Road Conditions and Environment
During the experiment, participants drove 35 kilometres on a 3.6 m wide road. Participants 
encountered four different straight road-narrowing lengths (10 m, 100 m, 250 m, and 500 
m). For each road-narrowing length, the road width reduced from 3.6 m to 2.2 m, allowing 
0.9 m and 0.2 m lateral deviation on either side of the car, respectively (Figure 3.2). Every 
participant drove the four road-narrowing lengths eight times, which were presented in a 
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adaptation and grip force adaptation.
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counterbalanced order. All road-narrowings occurred on a straight road section, and were 
preceded and succeeded by a 200 m wide section. The road narrowing sections were 
separated by straights and curves sections to allow the drivers to reach their preferred speed. 
Speed perception was enhanced by means of trees alongside the road. Cones were placed 
along the entire road, and a car front was visualized to facilitate perception of the car’s position 
relative to the road boundaries. A vibration that mimicked rumble strips was implemented 
on the steering wheel to give additional feedback to the driver when the car was outside the 
lane boundary. A multi-sine torque perturbation consisting of 6 low frequencies (ranging from 
0.25 to 18 Hz) was applied to the steering wheel to mimic environmental disturbances (e.g., 
wind) that require the participants to steer even on long straight sections. The total multi-sine 
was scaled to low torques (M = 0, SD = 0.13 Nm) to ensure that the driver was not disrupted 
during driving due to the perturbation.

3.2.4. Experimental Procedure
Before the start of the experiment, the grip sensors were calibrated using a bulb shaped 
dynamometer, which ensured a good pressure distribution over all sensils. Participants 
were instructed to apply a force of 5 kg, 10 kg, 15 kg and a maximum force to the hand 
dynamometer. To get familiar with the driving simulator, each participants performed a 
training trial of 7 minutes on the wide road with no lane narrowing. During the experiment 
participants were instructed to drive as they normally would do while not hitting any cones, 
and to keep their hands in a 10-to-2 position. The experimenter stood next to the participants 
during the experiment and after each narrow section, the participants answered the question: 
‘How much effort did it cost you to successfully drive this section?’. Participants responded 
with a number between 1 (no effort) and 10 (a lot of effort). In total the experiment took 
approximately 1 hour.

3.2.5. Dependent Measures
For all dependent measures, the wide section metric was calculated between 200 m to 150 
m before the road narrowing starts. The narrow road is calculated over the middle 5 meters 
of the narrow road section.

Effect of road width
• Mean speed (km/h). The mean speed was calculated over all 32 wide sections combined 

and over all 32 narrow sections combined.
• Mean grip force (N). The mean grip force of both hands combined was calculated over 

all 32 wide sections combined and over all 32 narrow sections combined.

Figure 3.2. The used grip force sensors (left), and the simulator environment (right) for the 
500m road narrowing including the car front.
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Effect of road width length
• Delta speed (km/h; ∆Speed). The mean speed difference between the wide section 

relative to the narrow section. 
• Delta grip (N; ∆Grip force). The mean grip force difference between the wide section 

relative to the narrow section. 
• Self-reported task effort (1-10; SRTE). After each narrow section, the participants 

reported how much effort the current task takes from 0 (no effort) to 10 (a lot of effort). 
• Time off-road (s). The amount of time for which the car was outside the cone boundaries 

for then arrow road section.

3.2.6. Statistical Analysis
For each dependent measure, the mean of all eight repetitions was computed. These values 
were collected in a 26 x 4 matrix (26 participants and 4 road width lengths). First, the matrix 
was rank-transformed according to Conover and Iman (1981), to account for possible 
violations of the assumption of normality. This rank-transformed matrix with values ranging 
from 1 to 104 was submitted to a repeated-measures ANOVA with the four narrow-road 
lengths as a within-subject factor. A post-hoc paired t-test was performed with Bonferroni 
corrections applied to the six pairwise comparisons between the narrow road lengths. To 
investigate the effect of road width (section 3.2.5.), a paired t-test was used, after rank-
transformation (i.e., with values ranging from 1-52).

3.3. Results
Figure 3.3 shows the lateral position, speed, and grip force averaged over all participants, 
for the entry (200 m before road narrowing), narrow section, and the exit (200 m after road 
narrowing). At the entry, the 10 m road narrowing results in slightly delayed and less speed 
reduction compared to the three longer narrow road lengths. An increase in grip force can 
be seen for all four conditions before entering the narrow section. Drivers maintain an almost 
constant speed, and a constant grip force over the entire narrow road section, with a small 
increase and decrease at the start and end of the section. At the exit, drivers increased speed 
and decreased grip force to approximately the speed at which they drove before they entered 
the entry section.

3.3.1. Effect of Road Width
The mean speed and mean grip force for all 32 wide combined and 32 narrow sections 
combined are shown in Figure 3.4. Participants drove with a lower mean speed and had a 
higher grip force on the narrow roads as compared to the wide roads. Confirming that road 
width reduction is indeed a good method to induce speed and grip force adaptations.

3.3.2. Effect of Narrow Road Length
Figure 3.5 visualizes the results for the four dependent measures, including the individual 
results for each participant averaged over eight repetitions. The results of the repeated-
measures ANOVA show a significant effect for the narrow-road length for all four dependent 
measures. The post-hoc analysis identified a significantly smaller speed reduction for the 10 
m compared to the 100 m section only. The grip force increment was lower for the 10 m than 
for the 100 m, 250 m and 500 m section. No significant differences were found for ∆Speed, 
∆Grip force between the other narrow road lengths. The SRTE and time off-road progressively 
increased with narrow road lengths; between all narrow road lengths comparisons.
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3.3.3. Interaction Between Speed and Grip Force Adaptation
Figure 3.6-left shows a scatter plot of ∆Speed and ∆Grip force. A small positive correlation 
(ρ = 0.15) was found, suggesting no trade-off between speed and grip force adaptations. 
Figure 3.6-middle visualizes the individual strategies adopted by all participants between 
10 m and 500 m, Different individual strategies can be identified; for example, some drivers 
mainly adapted their speed (e.g., participant no. 4, 11, 26, 25; visualized with a red line in 
Figure 3.6-middle with an abs slope < 0.03), some adapt only grip force (e.g., participant no. 
7, 15, 17, 21; visualized with a green line in Figure 3.6-middle with an abs slope > 0.5), adapt 
both speed and grip force (e.g., participant no. 13, 22, 16, 14), whereas others show minimal 
adaptation (e.g., participant no. 3, 5, 6, 10).

Figure 3.6-right shows the mean and the standard deviation (SD) over the eight repetitions 
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for the 100 m condition for each driver. Compared to the inter-subject variability (i.e., 100 m 
SD: ∆Speed = 11.3 km/hr, ∆Grip force = 1.42 N), a lower intra-subject variability was found 
(i.e., 100 m mean SD: ∆Speed = 6.7 km/hr, ∆Grip force = 1.25 N). This indicates that the 
individual participants adopted consistent strategies within themselves.

3.3.4. Learning Effect due to Repetitions
The effect of the repetition order of the experiment is shown in Figure 3.7 for the lateral 
position, speed and the grip force as a function of the travelled distance averaged over all 
participants for each repetition. When drivers become more familiar with a driving task they 
increased their speed and decreased their grip force. In the 10 m section, the highest speed 
is observed for the 8th repetition and the grip force decreases over the eight repetitions 
averaged over all participants, indicating a learning effect.

10 100 250 500
Length narrow road (m)

-40

-30

-20

-10

0

10
Sp

ee
d 

(k
m

/h
r)

**

F(3,75) = 4.92, p = 0.004

10 100 250 500
Length narrow road (m)

0

1

2

3

4

5

6

7

G
rip

 fo
rc

e 
(N

)

**
*

***
F(3,75) = 12.7, p = 8.47e-7

10 100 250 500
Length narrow road (m)

0

0.5

1

1.5

2

2.5

3

Ti
m

e 
of

f-r
oa

d 
(s

)

***
***

*
***

F(3,75) = 25.92, p = 1.31e-11

10 100 250 500
Length narrow road (m)

1

2

3

4

5

6

7

8

9

10

SR
TE

 (-
)

***

***
***

***
***

***
F(3,75) = 115.6, p = 4.74e-28
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-40-200
Speed (km/hr)

0

1

2

3

4

5

6

G
rip

 fo
rc

e 
(N

)

 = 0.15
10m
100m
250m
500m

-40-200
Speed (km/hr)

0

1

2

3

4

5

G
rip

 fo
rc

e 
(N

)

 1

 2

 3
 
4 5

 6

 7

 8

 9

 10
 11

 
12

 13

 14
 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25  26

-40-200
Speed (km/hr)

0

1

2

3

4

5

6

7

8

G
rip

 fo
rc

e 
(N

)

 1

 2

 3
 4

 5

 6

 7
 8

 9

 10  11
 12

 13

 14
 15

 16

 17

 18
 19

 
20

 21

 22

 23

 24

 25

 26

100m

Speed adapters
Grip adapters
Both adapters or small effect

Figure 3.6. Left: a scatter plot of ∆Grip force and ∆Speed for the four different road narrowing 
lengths. Middle: visualizes the adaptation between the 100 m and 500 m narrow road length. 
Speed adapters and grip force adapters are visualized by red (abs slope < 0.03) and green 
lines (abs slope > 0.5), respectively. Right: The mean (triangle) and the standard deviation 
(error bars) over all the 8 repetitions on the 100 m section for each driver.
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3.4. Discussion 
In this driving simulator study, we expected that there would be a trade-off between two 
adaptation strategies (speed and neuromuscular stiffness), and that the risk duration would 
impact a driver’s selection of the trade-off. Specifically, we hypothesized that for a short risk 
duration, drivers will favour increased neuromuscular stiffness (operationalized by grip force) 
over speed reduction; and vice versa for longer risk durations (Figure 3.1).

Our results showed that road width manipulation was successful in evoking speed and 
grip force adaptations: participants reduced speed and increased grip force when road width 
reduced (Figure 3.3 and Figure 3.5), which is in accordance to literature (Melman et al., 2018; 
Pronker et al., 2017; Van der Wiel et al., 2015). However, only a low positive correlation 
was found between the two adaptation strategies across drivers (ρ = 0.15), indicating that 
no trade-off exists. A possible reason for the apparent lack of trade-off may be due to the 
large variety in individual adaptation strategies that are consistently adopted by each driver. 
As visualized in Figure 3.6-middle some drivers adapt as hypothesized (Figure 3.1) with an 
increased speed and decreased grip force, whereas others adapt only speed, grip force or 
show minimal adaptation. Participants showed to be consistent within their own adaptation 
strategy, over the eight repetitions of each narrow road section (Figure 3.6-right). The large 
inter-driver variability and consistent intra-driver choice for adaptation strategies points 
towards an ecological fallacy (Selvin, 1958), indicating that conclusions about the behaviour 
of an individual should not be made based on the results of the entire group.

The results also showed that longer narrow road sections were subjectively perceived more 
effortful and objectively performed worse (i.e., higher time off-road; Figure 3.5). Interestingly, 
the adaptation strategies that could be utilized to reduce the task difficulty (i.e., reduce the 
speed) or to be more robust to perturbations (i.e., increase grip force), seem to have been 
sparingly employed by most drivers.

One could argue that the fact that this study was performed in a fixed-base driving 
simulator, which has the advantage of the ability to perform many repetitions in a consistent 
environment, but lacks physical risk and has limited speed and depth perception, might 
explain the limited effect of speed and grip force adaptions (Figure 3.5). However, this is 
unlikely, as strong speed and grip force adaptations (Figure 3.3) were found between the 
wide and narrow road sections. Similar adaptations were also found in on-road experiments 
(De Waard et al., 1995; Fitzpatrick et al., 2000). Additionally, the relative validity (i.e., the effect 
sizes between the pairwise comparisons) is high for simulators (Klüver et al., 2016).

We also reflected on whether the lengths of the narrow road section might have been 
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insufficient to investigate the trade-off. The average time a driver drove on the narrow section 
was approximately 25 s, which could have been insufficient to cause discomfort for the driver 
to stimulate a change in the adaptation strategy. This is supported by the observation in 
Figure 3.5, where the SRTE is still increasing and has not reached a steady-state value. This 
suggests that larger road narrowing lengths should be investigated to examine the trade-
off hypothesis. The only difference in speed and grip force adaptations were found with 
respect to the 10 m section. Figure 3.4 and 3.5 revealed a different entrance strategy and less 
speed reduction and grip force increase, for the 10 m section compared to the longer road 
sections. This could suggest that drivers decide their strategy (positioning, speed, and grip 
force adaptation) before entering the narrow section and hence the length of the section had 
little effect on their adaptation behaviour.

Previous literature has shown that when drivers become more familiar with a driving task 
they increase their speed (Colonna et al., 2016). Such a learning effect in speed was found 
in this study, along with a reduction in the grip force over the eight repetitions averaged 
over all participants (Figure 3.7). A similar effect in neuromuscular property changes using 
electromyography (EMG) was observed in non-driving (Osu et al., 2002) and driving (Pick & 
Cole, 2007) tasks. However, the grip force sensor output degraded over time which could also 
have influenced the results (Brimacombe et al., 2009). In short, the grip force demonstrates 
itself to be a promising non-obtrusive method to capture neuromuscular adaptations as long 
as the sensor degradation is mitigated via calibration.

Although further investigation is needed to understand if longer narrow road sections were 
required to evoke a coherent trade-off across participants, the fact that participants adapted 
their speed and grip force to road narrowing, and adopted consistent individual strategies 
highlights the possibility of an ecological fallacy and the importance of investigating the 
interaction between adaptation strategies on an individual level. All-in-all the quest for better 
understanding steady-state and non-steady state driver adaptations, their interaction, and 
their underlying mechanisms continues.

3.5. Conclusions
• The interaction between different driver adaptation strategies is a seldom studied topic.
• Road narrowing is an effective method to induce speed and grip force adaptations 

(Figure 3.3). 
• The twenty-six drivers did not consistently select the hypothesized trade-off for 

increasing duration off road narrowing: a low correlation was found between speed and 
grip force adaptations (Figure 3.6).

• Individual trade-off were consistent: the within-subject variability in speed-grip force 
adaptations was low across the tested risk durations (Figure 3.6). 

• Grip force measurement is a novel and non-obtrusive way to quantify neuromuscular 
stiffness adaptations. 

• The results highlight the possibility of an ecological fallacy and the importance of 
investigating the interaction between adaptation strategies on an individual level.
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Multivariate and Location-specific 
Correlates of Fuel Consumption: 

A Test Track Study



Current predictors of fuel consumption are typically based on computer simulations 
or data collections in real traffic, where the route and vehicle type are not under the 
researcher’s control. Here, we predicted fuel consumption using test track data, an 
approach that allowed for location-specific predictions. Ninety-one drivers drove a 
total of 4617 laps, in two vehicles (Renault Mégane, Renault Clio), on two routes 
(highway and mountain), and with two eco-driving instructions (normal and eco). 
A multivariate analysis at the level of laps showed a strong predictive value for 
metrics related to speed, RPM, and throttle position, but with a considerable amount 
of variance attributable to route and vehicle type. A subsequent location-specific 
analysis showed that the predictive correlation of driving speed and throttle position 
fluctuated strongly during the lap and at some locations even became negative. 
We conclude that there is considerable potential in instantaneous location-specific 
prediction of fuel consumption.

Published as:
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4.1. Introduction
With the rise in CO2 levels in the atmosphere, the reduction of fuel consumption is becoming 
an increasingly important topic. Under the pressure of strict regulations, car manufacturers 
are forced to produce increasingly efficient vehicles. Not only the vehicle technology itself 
but also the behaviour of the driver has a significant impact on fuel consumption. Studies 
show that eco-driving can reduce fuel consumption, and thereby pollutant emissions (Ho et 
al., 2015; Saboohi & Farzaneh, 2009), by 5% if compared to normal driving, or even more if 
compared to aggressive driving (for reviews about the effect of eco-driving on fuel efficiency, 
see Alam & McNabola, 2014; Huang et al., 2018; Xu et al., 2016).

Various authors have investigated optimal fuel-efficient driving through computer 
simulations. Maintaining a constant speed, shifting up early, and avoiding excessive pedal 
movements have been shown to be essential factors in minimising fuel consumption (Dib et 
al., 2014; Mensing et al., 2013; Saboohi & Farzaneh, 2009; Sarkan et al., 2019). Mensing et al. 
(2013) concluded through computer simulations that, for optimal eco-driving, drivers should 
accelerate quickly to a relatively low cruising speed. They also recommended early and 
gentle deceleration, followed by late and hard braking. Whether these optimal behaviours 
are realistic or desirable was not discussed in their research. For example, while extreme 
late braking can be optimal in terms of fuel consumption, it is not something drivers would 
normally do for safety and comfort reasons.

Although it is known how drivers should behave to drive ecologically, relatively little 
information is available about how ecologically-friendly drivers actually drive. Knowing how 
drivers drive is important for developing eco-driving feedback and training (Allison & Stanton, 
2018; Caban et al., 2019; Sanguinetti et al., 2020). For example, drivers could receive an eco-
score on their dashboard that reflects the impact of their current driving behaviour on fuel 
consumption (Sanguinetti et al., 2020; Vaezipour et al., 2015). Such an eco-score should be 
calibrated on realistic human driving behaviour, not based on modelled behaviour that may 
not be acceptable in the real world.

Real-world studies provide relevant insight into individual differences in ecological driving 
styles (Ericsson, 2001; Lois et al., 2019). Ericsson (2001), for example, investigated driving 
behaviour data for 19,230 driving periods collected in real traffic. A significant variation in fuel 
consumption was observed, with an average of 10 litres per km and a standard deviation 
of about 6 litres per km. Among other things, it was found that engine speeds above 3500 
rpm explained part of the variance in fuel consumption. However, the strongest effect on fuel 
consumption was found for a “stop factor”, which was related to the number of stops per 
kilometre and the percentage of time the vehicle was stationary. This finding is not necessarily 
due to individual differences in driving behaviour, but rather due to traffic conditions such as 
the presence of traffic lights along the route. What this finding shows is that naturalistic 
driving studies inherently contain confounding factors that hamper understanding of what 
constitutes fuel-efficient driving behaviour. In particular, such studies do not control external 
factors that influence fuel consumption, such as the presence of curves, inclinations, traffic 
lights, and the impact of surrounding traffic.

As noted above, there is a paucity of research on how drivers drive ecologically. Although 
route selection and trip planning have been cited as an important factor in reducing fuel 
consumption (Sanguinetti et al., 2017; Sivak & Schoettle, 2012; Zhou et al., 2016), field studies 
typically do not control for it. This problem was also recognised by Lois et al. (2019), who 
stated: “to the best of our knowledge, there are no studies in the literature that analyse key 
factors for fuel consumption and eco-driving, controlling external factors.” In a field study, 
they measured the fuel consumption of 1156 trips from 24 drivers, and observed that external 
factors had a key role in fuel consumption. The authors created a statistical model in the form 
of a path analysis, which included two external factors that were found to be predictive of fuel 
consumption: road congestion and the slope of the road. Lois et al.’s method is a promising 
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approach to controlling for route-related effects. Still, this method is not entirely satisfactory 
for understanding the effects of external factors, because the control for external factors was 
applied in the form of a statistical correction rather than an experimental manipulation. 

In our work, we have attempted to close this research gap by using instrumented vehicles 
on a test track. The availability of a test track makes it possible to expose drivers to a specific 
route, measure fuel consumption on a meter-to-meter basis, and remove the influence of 
uncontrolled traffic elements such as traffic lights and other road users. The instrumented 
vehicles recorded the vehicle location using GPS along with CAN bus data. Drivers were 
given the task of either complying with an eco-score or driving as they normally would, for two 
instrumented vehicle types and two route types with fundamentally different characteristics. 
The first route type was a sharply curved mountain route and the second route type was a 
highway.

The purpose of this paper is to predict fuel consumption from driving behaviour 
measurements, in order to allow informed design choices for eco-driving feedback and 
training applications. We use two methods of predicting fuel consumption: a multivariate 
analysis at the level of a trip (defined herein as a lap on the mountain or highway route in a 
given vehicle)  and a location-specific method. We show, using the first method, that driving 
metrics have a strong predictive value for fuel consumption, and that a large part of the 
variance in the driving metrics is attributable to the route type and the vehicle type. These 
sources of variance would be a disturbance when predicting fuel consumption from driving 
metrics based on different routes and vehicles combined. Another limitation of trip-related 
metrics is that valuable information is lost due to the aggregation of, for example, driving 
behaviour on curves and straights. In the second part of this paper, we demonstrate that it 
is sensible to develop location-specific predictors of eco-driving. In this study, a location-
specific predictor refers to driving behaviours (e.g., throttle position) at a specific travelled 
distance along the lap on the test track. More specifically, we correlated drivers’ behaviours 
on a meter-to-meter basis with their fuel consumption for all other laps driven (leave-one-
out validation). By means of a location-specific analysis, route features that can impact fuel 
consumption, such as curvature and road inclination, are implicitly controlled. Finally, we 
make conclusions and recommendations for location-specific fuel consumption predictions.

4.2. Method
This study uses data initially collected to monitor the wear of vehicle components. In this 
study, we use this data for the above-described purpose.

4.2.1. Participants
Ninety-one test drivers from Renault participated in this study. All participants regularly drove 
on the test track and were familiar with both routes (highway and mountain) and vehicle types 
(Renault Mégane and Renault Clio). These drivers were not professional test drivers; that 
is, their primary job did not consist of testing vehicle performance. Due to Renault’s ethical 
and privacy protocols, driver-related information regarding age, gender, and yearly mileage 
cannot be made public.

4.2.2. Vehicles
Two vehicle types were used in this experiment: a Renault Mégane IV and Renault Clio IV 
(Table 4.1), both having a manual transmission. For each vehicle type, two identical vehicles 
were used for the experiment: one for eco-driving and one for normal driving, resulting in a 
total of four vehicles used in this experiment. These four vehicles were equipped with a GPS 
tracker and a CAN-bus that allowed for recording signals associated with vehicle motion, 
steering, and pedal movements at a sampling frequency of 100 Hz.
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4.2.3. Route Types
This experiment was performed on Renault’s test circuit in Aubevoye, France. Two types of 
routes were used in this study: a 4.1 km long highway section containing a two-lane highway 
with a recommended speed of 100 km/hr, and a 5.7 km long two-lane mountain section with 
a maximum altitude difference of approximately 50 m. The highway sections and mountain 
sections were extracted from the total dataset using the recorded GPS locations, as shown in 
Figure 4.1. The routes did not feature intersections or traffic lights. Table 4.2 shows the total 
number of laps driven per task instruction, route type, and vehicle type. Appendix A provides 
an overview of the driven conditions for all 91 participants.

4.2.4. Eco-Driving Training
In this experiment, two task instructions were given: an eco-instruction to drive as economically 
as possible, and a normal driving instruction. If drivers were assigned to the ‘normal’ task, 
they were asked to drive as they normally would. If drivers were assigned to the eco-driving 
task, they were asked to drive with an average Renault eco-score of at least 90% of 100%. 
The eco-score, ranging from 0% (non-eco) to 100% (eco), is a Renault in-house developed 
score, computed from longitudinal accelerations/decelerations, driving speed, and late gear 
changing behaviour (i.e., driving with a high engine RPM). A Renault expert trained five group 
leaders, who, in turn, trained the rest of the participants identically. During the two-hour 
training, the participants first drove on the test track with their own driving style. After this 
run, the eco-expert gave advice on speed, acceleration, braking, and shifting behaviour to 
optimise fuel consumption.

4.2.5. Experimental Protocol
The data were collected 24 hours a day over a period of 3.5 months. Every 8 hours, two drivers 
were assigned a vehicle and had to drive approximately 300 km. No specific instructions 
were given on where to drive. Drivers did not know that the highway and mountain sections 
were extracted and analysed separately. While driving, the average eco-score of the session 
was shown as a number on the display.

4.2.6. Part 1: Predicting Fuel Consumption From Lap-Level Metrics
Measured CAN-bus signals
From the CAN-bus data, 11 signals were obtained/derived. These signals reflect longitudinal 
driving behaviour (7 signals), lateral driving behaviour (3 signals), as well as fuel consumption 
(see Table 4.3, left column for the 10 longitudinal and lateral signals). The speed x longitudinal 
acceleration signal (va) is known to be predictive of fuel consumption (Ericsson, 2001) and is 

Vehicle type Year of 
manufacture

Engine 
Model Fuel type

Engine 
displacement 

(cm3)

Max 
power 
(hp)

Curb 
weight 

(kg)

Emission 
legislation

Wheelbase 
length (mm)

Renault Clio 2017 K9K 628 Diesel 1461 90 1071 Euro 5 2589
Renault Mégane 2017 K9K 656 Diesel 1461 110 1205 Euro 6 2669

Tabel 4.1. Vehicle information for the two types of vehicles used in this experiment.

Mégane Clio Mégane Clio Mégane Clio Mégane Clio
Number of drivers 34 25 24 21 35 34 23 26
Total laps driven 665 585 449 481 784 665 536 452

Normal Eco-driving
Highway MountainHighway Mountain

Tabel 4.2. The number of participants who drove with and without eco-score feedback, for 
the highway and mountain, and for the Mégane and the Clio.
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a surrogate for inertial power (Fomunung et al., 1999). We used va2 to remove the distinction 
between negative and positive values. The raw measured fuel consumption had a minimum 
measurement step size of 80 ml, and an update rate that varied between 100 ms and a 
number of seconds. The cumulative fuel consumption data were interpolated to 100 Hz with 
trapezoids between connecting points. To calculate the instantaneous fuel consumption in 
cm3/km (used in the location-specific analysis, see Section 4.2.7), the difference values of 
the cumulative fuel consumption were divided by the vehicle speed at every sampling point.

Figure 4.1. Left: top view of the route types (mountain and highway). Right: an example of 
the GPS data for the route types. The start and end-points are visualised with a green and red 
asterisk, respectively. The driving direction is indicated by arrows.

Signal Description

Speed (km/hr) -
The 10th, 25th, 50th, 75th, 90th percentiles of the absolute values of the signal.
Number of times the absolute acceleration was greater than 1.5 m/s2

Relative positive acceleration (m/s2; RPA). The RPA correlates with fuel   

consumption (Ericsson, 2001), and is calculated as                   , where

x = total distance, v  = speed,       = positive accelerations count, negative ones are 
ignored.

Throttle position (%) The percentage where no throttle was used.
Brake pressure (bar) The number of brake presses (#).
Engine RPM (RPM) -
Eco-score (%) Number of times eco-score below 50 (#).
(Velocity*longitudinal acceleration)2 (va 2 ; m2/s3) -

Lateral acceleration (m/s2) The 10th, 25th, 50th, 75th, 90th percentiles of the absolute values of the signal.
The 10th, 25th, 50th, 75th, 90th percentiles of the absolute values of the signal.
Steering reversal rate (SRR). The steering reversal rate was defined as the number of 
times that the steering wheel was reversed (McLean and Hoffmann, 1975). It was 
calculated by determining the local minima and maxima of the steering wheel angle, 
and if the difference between two adjacent peaks was greater than 2 deg, it was 
counted as a reversal.

Steering wheel angle speed (deg/s) The 10th, 25th, 50th, 75th, 90th percentiles of the absolute values of the signal.

Longitudinal acceleration (m/s2)

Steering wheel angle (SWA; deg)

Longitudinal signals

Lateral signals

1
𝑥𝑥𝑥𝑥
�𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎+𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑎𝑎𝑎𝑎+

Tabel 4.3. The used signals (left column) and the 25 additional driving metrics calculated 
from these signals (right). For each longitudinal and lateral signal, the following metrics were 
calculated: mean, standard deviation, maximum, minimum, and 10th, 25th, 50th, 75th, 90th 
percentiles (see Appendix 4.2 for all 110 metrics).
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Calculated driving metrics
For each longitudinal and lateral signal, the following driving metrics were calculated per 
lap: mean, standard deviation, maximum, minimum, 10th, 25th, 50th, 75th, 90th percentiles (10 
signals x 9 metrics = 90 in total). From the 90 metrics, 7 were removed because of a lack of 
variation (e.g., the minimum brake pressure). Twenty-five additional metrics were calculated 
from the longitudinal and lateral signals (see Table 4.3). Accordingly, a total 108 metrics of 
driving behaviour (90 – 7 + 25 = 108) were obtained, which were thought to be predictive of 
fuel consumption (based on Ericsson, 2001; Fomunung et al., 1999; Lois et al., 2019). From 
the fuel consumption signal, the mean fuel consumption per km (cm3/km), and the mean fuel 
consumption per second (cm3/s) were calculated (2 metrics). Appendix 2 provides the full list 
of all 110 metrics.

Principal component analysis
We performed a principal component analysis (PCA) on a matrix of 110 metrics x 4617 laps 
(all laps combined, see Table 4.2). A PCA extracts the major sources of variance in terms 
of component scores and loadings. The first principal component in our 110-dimensional 
dataset contains the direction with the largest variation, and the 110th component the 
smallest. The correlation between variables and factors is described by the component 
loadings, where 0 means no correlation and 1 means a perfect correlation with the principal 
component. Before conducting the PCA, all metrics were rank-transformed to create a uniform 
distribution. Oblique rotation of the loadings was performed to improve the interpretability of 
the components (Fabrigar et al., 1999).

Cohen’s d effect size to describe the effect of eco-driving, route type, and vehicle type
The impact of eco-driving, route type, and vehicle type for each driving metric was calculated 
using the average Cohen’s d effect size, according to Eqs. 4.1–4.4.

Effect of eco-driving instructions

(4.1)
with,

  

(4.2)

where s is the pooled standard deviation, and M the mean of the score on the metric for the 
two compared conditions.

Effect of route type

(4.3)

with, h = highway, and m = mountain.
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Effect of vehicle type 

(4.4)

with, Mé = Mégane, and C = Clio.

4.2.7. Part 2: Location-Specific Analysis
The location-specific analysis correlated the total fuel consumption of drivers with their 
driving behaviour for every 5 meters of the route along the track. The road location was 
computed using a combination of the GPS start location (Figure 4.1) and a distance meter 
that used wheel speed as input signal.

Spearman’s leave-one-out correlation 
The Spearman’s leave-one-out correlation was calculated for all laps where drivers drove the 
same route at least twice in a given vehicle type and eco-driving condition. The correlation 
coefficient was calculated between (1) driving speed (km/hr), throttle position (%), or the current 
fuel consumption (cm3/km) for each 5-m segment, and (2) the average fuel consumption 
over all the driver’s laps in the same vehicle type and eco-driving condition, except for the 
lap used to calculate the value in (1). Speed and throttle position were selected because, 
in many studies, they are considered related to fuel consumption (e.g., Ma et al., 2015), 
whereas the current fuel consumption is the signal from which the total fuel consumption 
was constructed. 

The location-specific correlation coefficient was computed for the highway route and 
mountain route separately. The computation of the location-specific correlation coefficient 
for the speed signal for the highway route can be illustrated as follows. Suppose a driver 
drove 30 laps on the highway with the Mégane in the eco-driving condition. One lap was 
used to record the speed every 5 meters, and the other 29 laps were used to calculate 
the driver’s fuel consumption in cm3/km. This procedure was repeated 30 times for this 
participant, with the next lap removed and the remaining 29 laps used to calculate average 
fuel consumption. Together this resulted in 30 data points of the mean speed every 5 m and 
the overall fuel consumption for this driver. This procedure was performed for all drivers and 
all four combinations of route type and eco-driving instructions (1. Mégane & eco, 2. Mégane 
& normal, 3. Clio & eco-driving, 4. Clio & normal), provided the driver had driven at least twice 
in that condition (i.e., 4 drivers were removed, see Appendix A). Accordingly, a total of 2697 
data points were collected for every 5 m of the highway route. In turn, for every 5 m of the 
highway route, Spearman’s rank-order correlation between speed and fuel consumption (n 
=  2697) was computed. A strong positive correlation would mean that drivers with a higher 
speed at that particular location had a higher overall fuel consumption.

The same procedure was followed for the throttle position and current fuel consumption 
as predictor signals. Also, the same procedure was used for computing the location-specific 
correlations for the mountain route (1915 data points from a total of 64 drivers).
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4.3. Results
Figure 4.2 shows the mean fuel consumption, mean eco-score, and mean speed per eco-
driving instruction, route type, and vehicle type. The mean eco-scores confirm that all drivers 
have fulfilled the task of having an average eco-score of at least 90% when driving in the 
eco-driving condition.

4.3.1. Part 1: Predicting Fuel Consumption From Lap-Level Metrics
Effect of eco-driving, route, and vehicle type on driving metrics
Eco-driving resulted in a lower fuel-consumption per km for both routes and both vehicles 
as compared to normal driving (Figure 4.2, left). The beneficial effect on eco-driving was 
greatest for eco-driving compared to normal driving (d = 3.05; this corresponds to a 23.2% 
fuel reduction), followed by driving on the highway route versus the mountain route (d = 
-1.64; 12.7% fuel reduction), and driving in the Clio instead of the Mégane (d = 0.48; 3.4% 
fuel reduction).

Table 4.4 shows the Cohen’s d effect sizes for the eco-driving instructions, route type, and 
vehicle type, for the 50 metrics with the highest effect sizes for eco-driving instructions. Table 
4.4 shows that both longitudinal and lateral metrics are affected by eco-driving (i.e., d > 2.0). 
The strongest Cohen’s d values for eco-driving were found for the eco-score-related metrics, 
a result that can be explained by the task instructions given to participants. Furthermore, 
strong effects of eco-driving were found for longitudinal acceleration-related metrics (e.g., 
90th percentile of the absolute value, maximum values, and the RPA), engine-RPM-related 
metrics (e.g., 90th percentile, 75th percentile, and maximum values), and throttle-related 
metrics (e.g., 90th and 75th percentiles), mean va2, and mean speed (see also Figure 4.2). As 
for lateral driving-related metrics, eco-driving had a large impact on the 50th percentile of 
absolute lateral acceleration, 50th percentile of the abs steering wheel angle (SWA), and mean 
SWA speed compared to normal driving. These results show that longitudinal and lateral 
driving metrics are highly indicative of fuel consumption.

Many of the metrics in Table 4.4 not only distinguish between eco-driving and normal 
driving, as described above, but are also sensitive to vehicle type, and especially to route 
type (with Cohen’s d values up to 20.12, see Appendix B for more detail about the route 
and vehicle Cohen’s d values). The strongest effects for route type were found for metrics 

Figure 4.2. Mean fuel consumption per km (left), eco-score (middle), and driving speed (right) 
as a function of driving task, vehicle type, and route type.
Each marker indicates, for one driver, the mean value averaged over all his/her driven laps.
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calculated from lateral acceleration, steering wheel angle, steering wheel angle speed, and 
driving speed. The strongest effects for vehicle type were found for metrics calculated from 
the steering wheel angle, steering wheel angle speed, and the longitudinal acceleration.

Association between fuel consumption and driving metrics 
Figure 4.3 shows examples of Spearman’s rank-order fuel consumption correlations (which 
are also shown in Table 4.4) for three driving metrics: the eco-score, va2, and SD throttle 
position. A strong association between the eco-score and fuel consumption per km can 
be seen (ρ = 0.73). Interestingly, SD throttle position, a fairly simple metric, had a similar 
correlation with fuel-consumption (ρ = 0.71) as the Renault eco-score. The strongest 
correlation with fuel consumption (see also Table 4.4) was found for the va2 metric (ρ = 0.83). 

Figure 4.3. The Spearman’s correlation (ρ) of the fuel consumption for three metrics (one 
marker represents one lap). No distinction is made between
the Clio and Mégane.

Figure 4.4. Scatter plot of the first two principal component scores (left and middle), and the 
first and third principal component scores (right) of all laps
(n = 4617, one marker represents one lap). The colours indicate the route type (left), eco-
driving condition (middle), and vehicle type (right).
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Rank Signal name Metric
Eco-driving 
instructions 
(normal-eco)

Route type 
(highway - 
mountain)

Vehicle type 
(Mégane - Clio)

17 Fuel consumption per km mean 3.05 -1.64 0.48 1.00
22 Fuel consumption per s mean 2.86 1.92 0.33 0.67
49 Principal component 1 - 2.09 -15.30 1.57 0.57
2 Principal component 2 - 3.96 -0.31 0.08 0.80
81 Principal component 3 - 1.15 -3.88 -5.13 0.39
1 Eco SD 4.18 -0.08 0.21 0.68
3 Eco 10th perc -3.90 -0.03 -0.20 -0.71
4 Eco min -3.81 1.03 0.00 -0.64
5 Eco mean -3.54 0.24 -0.31 -0.73
6 Engine RPM max 3.48 -1.00 0.34 0.76
7 Eco # times below 50 3.47 -1.78 0.30 0.74
8 Engine RPM 90th perc 3.44 -0.10 0.38 0.71
9 Engine RPM 75th perc 3.43 0.11 0.47 0.69
10 Longitudinal acceleration 90th perc of abs 3.35 -5.98 -0.29 0.72
11 Engine RPM mean 3.22 0.65 0.51 0.64
12 va 2 90th perc 3.21 -1.78 -0.13 0.83
13 Throttle max 3.18 -0.80 -0.64 0.68
14 Longitudinal acceleration RPA 3.16 -3.89 -2.75 0.75
15 Longitudinal acceleration SD 3.13 -5.22 -0.33 0.75
16 Engine RPM SD 3.09 -1.98 0.17 0.72
18 Engine RPM 50th perc 3.04 0.64 0.50 0.62
19 Longitudinal acceleration 75th perc of abs 2.94 -5.51 -1.26 0.73
20 Eco 25th perc -2.93 0.22 -0.39 -0.75
21 Brake pressure mean 2.88 -3.96 -0.81 0.67
23 Long acceleration 90th perc 2.86 -4.57 -0.93 0.74
24 Brake pressure SD 2.84 -3.69 -0.64 0.71
25 va 2 75th perc 2.78 -1.33 -0.88 0.81
26 Longitudinal acceleration max 2.77 -5.45 -0.98 0.62
27 va 2 mean 2.77 -1.52 -0.31 0.83
28 Speed 90th perc 2.74 4.45 0.06 0.12
29 Engine RPM 25th perc 2.72 1.22 0.56 0.52
30 Brake pressure max 2.62 -3.16 -0.39 0.69
31 Speed 75th perc 2.46 4.69 0.09 0.09
32 Longitudinal acceleration 10th perc -2.46 5.09 0.26 -0.59
33 Throttle SD 2.46 -0.91 -0.90 0.71
34 Speed max 2.45 3.80 0.04 0.14
35 Lateral acceleration 50th perc of abs 2.39 -2.25 0.07 0.74
36 Throttle 90th perc 2.37 -0.03 -0.99 0.67
37 Speed SD 2.37 -1.99 0.08 0.78
38 Longitudinal acceleration min -2.34 3.38 0.13 -0.71
39 Engine RPM 10th perc 2.33 1.64 0.55 0.40
40 va 2 50th perc 2.32 -0.57 -1.76 0.67
41 Eco 50th perc -2.28 0.17 -0.42 -0.71
42 Longitudinal acceleration 50th perc of abs 2.24 -4.09 -2.41 0.64
43 Longitudinal acceleration 75th perc 2.24 -2.74 -3.11 0.64
44 Longitudinal acceleration # of hard brakes 2.23 -4.01 -0.64 0.62
45 va 2 SD 2.21 -1.24 0.28 0.80
46 Steering wheel angle 50th perc of abs 2.16 -8.55 1.59 0.64
47 Throttle mean 2.15 1.14 -0.83 0.58
48 Speed mean 2.11 6.31 0.08 0.05
50 Speed 50th perc 2.05 6.27 0.11 0.04
Note. A larger than 0 means higher values for normal than eco, highway than mountain, and Mégane than Clio.

Cohen's d Spearman's 
correlation with fuel 
consumption (4617 

data points)

Table 4.4. Fifty metrics with the highest Eco-driving Cohen’s d effect sizes, and the 
corresponding correlation with fuel consumption for all driven laps (4617 data points).

Principal component analysis (PCA)
Figure 4.4 shows the principal component scores for all laps (n = 4617) with colour markings 
for the route type (left), eco-driving (middle), and vehicle type (right). The first principal 
component is primarily composed of (i.e., high factor loadings) metrics that yielded strong 
Cohen’s d values for route type in Table 4.4 (i.e., speed, lateral accelerations, SWA, and SWA 
speed, see Appendix B for all factor loadings). Likewise, the second principal component is 
mainly composed of metrics that yielded strong Cohen’s  d̄  values for eco-driving in Table 
4.4 (i.e., eco-score, speed, fuel consumption, throttle position, engine RPM, va2). The third 
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principal component is composed of metrics that proved sensitive to vehicle type (i.e., SWA, 
va2, longitudinal acceleration). In total, the first three principal components captured 74.9% 
of the total variance (1. route: 45.7%, 2. eco-driving: 21.8%, 3. vehicle type: 7.4%). 

4.3.2. Location-Specific Analysis
Figure 4.5 (highway) and Figure 4.6 (mountain) show the results of the location-specific 
analysis. These figures show the mean and standard deviation of recorded signals of all laps 
for both normal driving (highway: n = 1250, 53 drivers; mountain: n = 930, 38 drivers) and 
eco-driving (highway: n = 1449, 54 drivers; mountain: n = 988, 38 drivers) as a function of 
travelled distance for the two vehicles combined. In addition to the three selected predictor 
signals, we also visualised the instantaneous curvature (yaw rate/speed) to provide an insight 

Figure 4.5. Location-specific results for the highway route for the normal (n = 1250, 53 
drivers) and eco-driving (n = 1449, 54 drivers) conditions. The bottom figure shows the leave-
one-out correlation (n = 2697, 84 drivers).

Figure 4.6. Location-specific results for the mountain route for the normal (n = 930, 38 
drivers) and eco-driving (n = 988, 38 drivers) conditions. The bottom figure shows Spearman’s 
leave-one-out correlation (n = 1915, 64 drivers).
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into the sharpness of the curves, and the brake pedal position to provide a more complete 
picture of driving behaviour. The bottom panels of Figures 4.5 and 4.6 show the location-
specific correlations between overall fuel consumption and driving speed, between overall 
fuel consumption and throttle position, and between overall fuel consumption and current 
fuel consumption, for the highway route (n = 2697, 84 drivers) and mountain route (n = 1915, 
64 drivers), respectively.

The figures illustrate that, in the eco-driving condition, participants on average drove 
a substantially slower speed compared to normal driving, for most of the highway and 
mountain routes. For some sharp curves of the mountain road, the mean speeds in the 
two groups were equivalent. Lower and later throttle presses (positive values in the third 
subplot), and less braking (negative values in the third subplot) were found for eco-driving 
compared to normal-driving. Finally, when eco-driving a lower current fuel consumption was 
found compared to normal driving.

The bottom graphs of Figures 4.5 and 4.6, show that the correlation coefficient depends 
on the route and the location along the route. Higher peak correlations occur for driving speed 
(highway route: ρ = 0.69, mountain route: ρ = 0.83) than for fuel consumption (highway route: 
ρ = 0.56, mountain route: ρ = 0.71) and throttle position (highway route: ρ = 0.56, mountain 
route: ρ = 0.72). The throttle and fuel consumption exhibit a more volatile correlation with 
fuel consumption than the driving speed. The correlations for fuel consumption and throttle 
position decrease considerably, and even become negative, at the beginning of turns. Figure 
4.7 shows a scatter plot for the maximum and minimum correlation of the mountain route 
(indicated with triangle and circles in Figure 4.6, respectively). A negative correlation for 
speed (ρ = -0.13), throttle (ρ = -0.50), or fuel consumption (ρ = -0.38) means that drivers 
with a higher driving speed, deeper throttle depression, and higher fuel consumption at that 
particular location had a lower overall fuel consumption. 

Figure 4.7. Scatter plots of the maximum (left) and minimum (right) Spearman’s leave-one-
out correlation between mean fuel consumption and three driving metrics. The triangles and 
circles in Figure 4.6 mark the location of the maximum and minimum, respectively.
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4.4. Discussion
The purpose of this study was to predict fuel consumption from driving behaviour 
measurements, with the underlying motivation to allow improvements in eco-driving feedback 
and training applications. In the first part of the analysis, we correlated 110 driving metrics 
and three PCA components with fuel consumption at the level of laps on the test track. 
The goal of this analysis was to determine which metrics are most strongly associated with 
fuel use, to examine how these metrics are associated with each other, and to investigate 
how much these metrics are influenced by route and vehicle type. In the second part of the 
analysis, we examined which part of the route is predictive of fuel consumption by correlating 
driving behaviour at a large number of points along the route with drivers’ fuel consumption 
for the entire route.

Part 1: Predicting fuel consumption from lap-level metrics
Compared to normal driving, eco-driving resulted in a 23.2% reduction in fuel consumption 
per kilometre, corresponding to a Cohen’s d of 3.05 (i.e., a large difference; more than 3 
times the standard deviation). Compared to the literature, such fuel reduction benefits are 
on the higher side (see also Alam & McNabola, 2014; Huang et al., 2018; Xu et al., 2016), 
which can be explained by the eco-score received on the dashboard, the extensive eco-
training received for all 91 drivers, and the lack of surrounding traffic and traffic lights. In 
summary, the experimental methods (i.e., the eco-driving training, and test track setting) 
were successful in eliciting vastly different driving styles and corresponding fuel consumption 
levels to be analysed further.

The metrics that proved to be most sensitive to the eco-driving instructions (i.e., metrics 
yielding the largest eco-driving Cohen’s d) were metrics associated with engine RPM, 
longitudinal acceleration, and throttle input. Note that a high eco-driving Cohen’s d for a 
particular metric does not imply that this metric is a practical index of eco-driving. In fact, 
the speed and longitudinal metrics had a high Cohen’s d for eco-driving, but an even higher 
Cohen’s d̄  for route type, which indicates that these metrics are more influenced by the driven 
route than the adopted eco-driving style. We advocate that, ideally, an eco-score should 
correlate strongly with consumption and should be interpretable in different road environments 
and for different vehicles. In other words, when driving in an energy-demanding environment 
(e.g., mountain), drivers should not receive a notification that they drive eco-unfriendly. Of 
course, such information might still be valid if drivers need to be informed that they selected 
an eco-unfriendly route, but in practice, drivers may not be able to adjust their route. Similar 
statements were made by Andrieu and Saint Pierre (2012), Shi et al. (2015) and Dib et al. 
(2014), who proposed to normalise fuel consumption to the road environment. 

The principal component analysis results complement the findings described above, 
where the largest part of the variance (45.7%) in the metrics was attributable to the route 
type. High component loadings were found for metrics related to speed, lateral acceleration, 
and steering wheel angle, suggesting that especially these metrics are impacted by route 
type (Appendix B). The second component showed high loadings for engine RPM, va2, 
throttle, speed, and eco-score metrics. It had a large correlation with fuel consumption, but 
a small correlation with route and vehicle type, making it interesting to be used as an eco-
score in future research. Finally, for the third component (vehicle type), high loadings were 
obtained for the 10th percentile of the absolute longitudinal acceleration, the 10th percentile 
of va2, and the 75th percentile of the steering wheel angles. These effects may be attributable 
to vehicle-specific factors such as the steering wheel gain, pedal mapping, and engine type.

The first part concludes that driving metrics are highly predictive of fuel consumption 
but with a considerable amount of variance attributable to route and vehicle type. There is 
a substantial amount of literature on the effects of eco-driving behaviour, vehicle type, and 
route features on fuel consumption and driving metrics (Brundell-Freij & Ericsson, 2005; Ma 
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et al., 2015; Wang & Boggio-Marzet, 2018). Compared to the literature, our experimental 
protocol allowed for a more controlled investigation of eco-driving behaviour (participants 
were allocated to an eco-driving condition), vehicle type (in the real world, sporty drivers may 
choose to drive a sportier vehicle), and route (in the real word, drivers can determine their 
own route). The large influence of route and vehicle type on fuel consumption makes most 
of the metrics in their current form limitedly useful for providing drivers with advice on their 
driving style. 

Part 2: Location-specific analysis
In the second part of this paper, we correlated driving behaviour along the lap with drivers’ 
fuel consumption for all laps driven. We demonstrated that it makes sense to develop 
location-specific predictors of eco-driving, as high leave-one out correlations with fuel 
consumption were found for specific locations of the route. The highest correlation was 
found for driving speed, for both the highway route (ρ = 0.69) and the mountain route (ρ = 
0.83). The correlations showed strong fluctuations along the route, with negative correlations 
when approaching particular curves. The negative correlations mean that, for that specific 
location, drivers who adopted a higher speed, throttle, or fuel consumption per km, ended up 
with lower fuel consumption over the entire route.  Keeping momentum while approaching a 
curve is advantageous because, if a higher speed is maintained throughout the curve, less 
acceleration is needed after the curve. Our findings correspond to Ma et al. (2015), who 
showed that the largest fuel consumption differences between driving styles were found in 
the acceleration and deceleration phases.

Our findings emphasise the importance of developing location-specific fuel-consumption/
driving style predictors. Currently, researchers employ artificial intelligence and large amounts 
of data to create increasingly accurate predictors (Martinez et al., 2017). We argue that, at 
one point, adding more trip-level data, or measuring for longer periods of time, will not 
improve the accuracy of fuel-economy predictions anymore, but including location-specific 
information could. Note that the Cohen’s d, calculated per lap, already corrects for route and 
vehicle type, but it is not location-specific. If fuel consumption predictions are conducted at 
a trip level, valuable location-specific information is lost due to the aggregation of data. This 
was clearly visible from the correlation between the mean speed and fuel consumption: with, 
on the one hand, a very weak correlation when computed per lap (i.e., combining all route, 
vehicle, and eco-driving instructions: ρ = 0.05; Table 4.4) and, on the other hand, the highest 
leave-one-out correlation (for the mountain route ρ = 0.83 and the highway route ρ = 0.69), 
along with a strong eco-driving  Cohen’s d (d = 2.11). The low mean speed correlation with 
fuel consumption when calculated per lap can be explained by a formal fallacy (also known 
as the Simpson’s paradox; Simpson, 1951), where, in a given environment, driving faster 
normally increases fuel usage, while between environments, driving faster reduces fuel usage 
(i.e., highway driving yields better fuel economy than driving in the mountains). A location-
specific eco-driving predictor would be able to resolve this fallacy. In theory, a location-
specific predictor would not even need a (long) observation window, but allows for an almost 
immediate prediction of the driver’s overall fuel consumption or driving style based on the 
driver’s current behaviour. Extending our location-specific predictor with external information 
such as information about congestion (Lois et al., 2019), static traffic features (traffic signs, 
traffic lights, parked vehicles), and dynamic features (other road users) may lead to even 
more powerful predictions. 

Future studies should investigate the robustness of a location-specific predictor for other 
types of environments, and determine general rules for the “best” location to create a location-
predictor. Based on our results, we hypothesise that the acceleration and deceleration 
phases are particularly suitable because these are the periods where the standard deviation 
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of the fuel consumption is large between drivers (e.g., beginning and the end of a curve, or 
near traffic lights). To practically implement a real-world location-predictor in eco-feedback 
systems this would require a mapping of not only road type (e.g., curvature and slope), but 
also the location-specific driving behaviour of a variety of drivers (a “Tesla-like” approach). 
As an alternative to such an exhaustive mapping, a more general set of rules could be 
established: for example an average road curvature of 500-m has a correlation with driving 
metric and fuel consumption of Y1, whereas the acceleration phase at a traffic light has a 
correlation of Y2. The use of location-specific information with real-vehicle CAN-data would 
be feasible (Melman et al., 2021).

Although this test track study allowed for a controlled driving behaviour study with 
real vehicles, it lacks interaction with other road elements, such as other road users and 
traffic lights. Future studies should investigate how our results generalise to more realistic 
conditions. To maintain the high control that allows for the systematic analysis used in this 
study, we recommend that future research is conducted with surrounding vehicles traffic on 
a test track.  It can be expected that drivers will change their eco-driving behaviour when 
driving in front of or behind other vehicles, such as during car following. Finally, we note that 
some of our effect sizes should be interpreted with caution, as correlation does not imply 
causation. For example, the high eco-driving Cohen’s  d for the metric ‘50th percentile of the 
absolute steering wheel angle’ does not imply that drivers should be advised to steer less if 
they want to improve their fuel economy. This finding can be explained by an underlying cause 
known from vehicle dynamics: taking a turn at a lower driving speed requires a somewhat 
smaller steering wheel angle.

We conclude that driving metrics, when calculated per lap, are strongly correlated with 
fuel consumption in that lap. However, a large part of the variance in the driving metrics 
was attributable to the route type, making trip-level metrics less suitable for real-time driver 
feedback. We demonstrated that location-specific measurements offer powerful and near-
instantaneous fuel consumption predictions for specific locations on the route. These findings 
may pave the way for new eco-driving applications.
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Table 4A. Number of laps each participant drove the highway section and mountain section for eco-driving 
and normal-driving and the two vehicle types.

Appendix 4A. Number of laps per participant and 
experimental condtion

Participant Highway Mountain Highway Mountain Highway Mountain Highway Mountain
1 0 0 0 0 0 19 0 28
2 28 0 0 0 0 0 0 0
3 0 8 0 0 0 0 0 0
4 35 15 0 0 0 0 0 0
5 0 0 17 49 0 0 16 16
6 0 0 8 3 8 0 0 0
7 16 19 0 21 0 0 0 0
8 37 0 0 0 0 0 0 0
9 5 27 0 0 0 28 0 0
10 0 0 19 0 0 0 23 0
11 0 0 5 43 0 0 38 7
12 0 0 0 0 36 10 0 0
13 0 13 0 0 0 0 0 0
14 17 15 19 0 0 0 0 0
15 0 0 19 0 0 0 0 0
16 0 0 0 0 21 0 0 0
17 0 0 33 0 0 0 0 24
18 24 10 0 0 0 0 0 0
19 0 0 8 33 0 0 0 23
20 19 13 0 0 0 0 0 0
21 0 0 0 24 0 0 17 0
22 0 0 0 0 0 0 14 0
23 0 0 0 0 20 62 0 0
24 0 0 0 0 29 0 0 0
25 0 18 0 0 21 0 17 8
26 0 0 0 0 20 0 13 0
27 0 0 0 0 43 0 0 0
28 0 0 0 0 0 0 1 10
29 0 0 0 0 13 45 0 0
30 0 0 49 33 20 20 26 0
31 0 0 0 0 9 0 0 0
32 9 23 0 0 0 0 0 0
33 0 0 0 0 0 0 0 23
34 7 0 0 0 0 0 14 0
35 11 0 8 3 0 0 28 0
36 0 0 17 0 0 24 0 0
37 0 0 0 0 0 34 0 0
38 34 0 10 0 0 0 22 0
39 0 0 30 56 62 7 19 40
40 3 0 0 0 0 0 0 0
41 26 0 0 0 0 0 0 0
42 1 28 0 22 0 0 23 0
43 0 0 29 50 0 0 0 0
44 41 22 0 0 0 0 0 0
45 0 0 25 14 0 0 28 5
46 0 0 0 0 0 38 0 0
47 37 0 0 0 0 0 0 0
48 11 14 15 31 0 0 0 0
49 0 0 24 0 0 20 0 0
50 11 14 8 20 19 0 0 0
51 0 0 25 0 0 0 12 37
52 0 0 0 0 0 0 5 0
53 0 0 0 0 30 0 43 0
54 0 0 0 0 3 34 0 0
* (Continued on the next page)

Normal Eco Normal Eco
ClioMégane
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Table 4A. (continued)

Participant Highway Mountain Highway Mountain Highway Mountain Highway Mountain
55 0 0 14 0 0 0 0 0
56 0 0 0 13 0 0 13 0
57 0 0 14 15 25 1 0 0
58 0 4 0 0 26 1 0 0
59 0 0 24 0 0 0 0 0
60 0 0 0 11 0 0 6 21
61 0 0 34 0 0 0 32 7
62 0 0 0 27 0 0 3 40
63 12 24 20 0 0 20 0 0
64 11 0 0 0 0 0 0 0
65 5 3 0 0 16 0 0 0
66 0 0 0 0 11 0 0 0
67 0 0 20 0 0 0 0 3
68 31 0 0 0 22 0 15 0
69 0 0 22 0 0 0 0 0
70 0 0 0 0 33 0 18 2
71 36 38 0 0 0 0 16 9
72 20 42 0 0 0 15 0 0
73 16 7 0 0 0 0 0 0
74 0 0 0 0 0 0 34 0
75 0 0 68 0 0 0 15 16
76 73 0 28 17 0 0 0 6
77 3 0 0 0 42 0 0 0
78 0 0 0 0 0 0 23 29
79 0 22 0 0 0 0 0 0
80 0 0 32 25 0 0 0 0
81 0 0 0 0 20 31 0 0
82 20 20 0 0 0 10 0 0
83 0 0 0 0 0 0 11 19
84 3 15 0 0 14 13 0 23
85 13 0 27 10 0 0 0 5
86 29 0 29 0 0 0 17 0
87 3 35 52 15 22 18 12 32
88 0 0 0 0 0 0 25 11
89 18 0 3 1 0 0 40 8
90 0 0 14 0 0 0 0 0
91 0 0 15 0 0 31 26 0
# of different 
drivers 34 24 35 23 25 21 34 26

# of driving 
sections 665 449 784 536 585 481 665 452

Normal Eco Normal Eco
ClioMégane
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Table 4B. Cohen’s d effect size, Spearman’s correlation with fuel consumption, and the PCA loadings for all 
110 driving metrics.

Appendix 4B. List of all  110 driving metrics, PCA 
loadings and their corresponding analysis results

Eco-driving 
instructions 
(normal-eco)

Route type 
(highway - 
mountain)

Vehicle type 
(Mégane - 

Clio)

PCA 1 
Route

PCA 2  
Eco

PCA 3  
Vehicle

Principal component 1 2.09 -15.3 1.57 0.57
Principal component 2 3.96 -0.31 0.08 0.8
Principal component 3 1.15 -3.88 -5.13 0.39

1 Fuel consumption per km mean 3.05 -1.64 0.48 1 0.29 0.73 0.07
2 Fuel consumption per s mean 2.86 1.92 0.33 0.67 -0.41 0.91 -0.03
3 Eco mean -3.54 0.24 -0.31 -0.73 -0.11 -0.86 0.01
4 Eco std 4.18 -0.08 0.21 0.68 0.05 0.84 -0.01
5 Eco min -3.81 1.03 0 -0.64 -0.09 -0.78 0.01
6 Eco 10th perc -3.9 -0.03 -0.2 -0.71 -0.07 -0.85 0
7 Eco 25th perc -2.93 0.22 -0.39 -0.75 -0.21 -0.83 0.03
8 Eco 50th perc -2.28 0.17 -0.42 -0.71 -0.17 -0.83 0.08
9 Eco 75th perc -1.14 NaN NaN -0.46 0 -0.61 0.06
10 Eco 90th perc -0.41 -0.52 NaN -0.2 0.11 -0.38 0.09
11 Eco # bellow eco 50 3.47 -1.78 0.3 0.74 0.35 0.73 -0.03
12 Speed mean 2.11 6.31 0.08 0.05 -0.83 0.62 -0.1
13 Speed std 2.37 -1.99 0.08 0.78 0.26 0.69 0.08
14 Speed max 2.45 3.8 0.04 0.14 -0.79 0.66 -0.06
15 Speed min 1.2 8.28 -0.21 -0.17 -0.81 0.41 -0.12
16 Speed 10th perc 0.92 7.4 0.02 -0.11 -0.82 0.45 -0.12
17 Speed 25th perc 1.47 7.21 0.08 -0.01 -0.83 0.55 -0.11
18 Speed 50th perc 2.05 6.27 0.11 0.04 -0.84 0.6 -0.1
19 Speed 75th perc 2.46 4.69 0.09 0.09 -0.82 0.64 -0.09
20 Speed 90th perc 2.74 4.45 0.06 0.12 -0.81 0.67 -0.09
21 Long acc mean 0.14 3.76 -4.08 0.01 -0.88 0.15 0.63
22 Long acc std 3.13 -5.22 -0.33 0.75 0.63 0.46 0.21
23 Long acc max 2.77 -5.45 -0.98 0.62 0.65 0.26 0.27
24 Long acc min -2.34 3.38 0.13 -0.71 -0.57 -0.53 -0.08
25 Long acc 10th perc -2.46 5.09 0.26 -0.59 -0.72 -0.21 -0.21
26 Long acc 25th perc -1.43 4.62 0.38 -0.42 -0.65 -0.09 -0.26
27 Long acc 50th perc 0.49 1.8 -2.61 0.04 -0.82 0.1 0.72
28 Long acc 75th perc 2.24 -2.74 -3.11 0.64 -0.02 0.42 0.72
29 Long acc 90th perc 2.86 -4.57 -0.93 0.74 0.52 0.45 0.3
30 Long acc 10th perc of abs 0.23 -2.34 -6.04 0.15 -0.17 -0.14 1
31 Long acc 25th perc of abs 0.9 -3.4 -3.25 0.41 0.14 0.02 0.84
32 Long acc 50th perc of abs 2.24 -4.09 -2.41 0.64 0.28 0.29 0.63
33 Long acc 75th perc of abs 2.94 -5.51 -1.26 0.73 0.52 0.38 0.39
34 Long acc 90th perc of abs 3.35 -5.98 -0.29 0.72 0.66 0.4 0.2
35 Long acc # of hard acc/dec 2.23 -4.01 -0.64 0.62 0.77 0.24 0.16
36 Long acc RPA 3.16 -3.89 -2.75 0.75 0.2 0.47 0.6
37 Throttle mean 2.15 1.14 -0.83 0.58 -0.48 0.82 0.25
38 Throttle std 2.46 -0.91 -0.9 0.71 0.03 0.74 0.36
39 Throttle max 3.18 -0.8 -0.64 0.68 0.02 0.75 0.26
40 Throttle min NaN NaN NaN -0.02 -0.01 0 -0.08
41 Throttle 10th perc NaN 0.86 NaN -0.08 -0.22 0.02 -0.15
42 Throttle 25th perc 0.1 3.24 -0.18 -0.15 -0.68 0.2 -0.17
43 Throttle 50th perc 1.19 1.41 -0.37 0.37 -0.6 0.61 0.17
44 Throttle 75th perc 1.72 -0.17 -0.87 0.72 -0.18 0.74 0.42
45 Throttle 90th perc 2.37 -0.03 -0.99 0.67 -0.2 0.79 0.4
46 Throttle % no throttle -0.54 -1.93 -0.11 0.13 0.65 -0.24 0.2
47 Brake pressure mean 2.88 -3.96 -0.81 0.67 0.61 0.4 0.19
48 Brake pressure std 2.84 -3.69 -0.64 0.71 0.55 0.49 0.16
49 Brake pressure max 2.62 -3.16 -0.39 0.69 0.52 0.54 0.11
50 Brake pressure 90th perc 0.96 -1.37 -0.76 0.37 0.31 0.14 0.28
51 Brake pressure # of brakes 1.36 -3.93 0.1 0.51 0.82 0.12 0.08
52 Engine RPM mean 3.22 0.65 0.51 0.64 -0.09 0.96 -0.15
53 Engine RPM std 3.09 -1.98 0.17 0.72 0.35 0.64 0.11
54 Engine RPM max 3.48 -1 0.34 0.76 0.2 0.82 0.03
55 Engine RPM min 1.28 2.17 0.04 0.1 -0.56 0.51 -0.09
56 Engine RPM 10th perc 2.33 1.64 0.55 0.4 -0.31 0.85 -0.25
57 Engine RPM 25th perc 2.72 1.22 0.56 0.52 -0.21 0.92 -0.22
58 Engine RPM 50th perc 3.04 0.64 0.5 0.62 -0.09 0.93 -0.17
59 Engine RPM 75th perc 3.43 0.11 0.47 0.69 0.02 0.93 -0.12
60 Engine RPM 90th perc 3.44 -0.1 0.38 0.71 0.06 0.91 -0.05
61 va2 mean 2.77 -1.52 -0.31 0.83 0.21 0.81 0.2
62 va2 std 2.21 -1.24 0.28 0.8 0.32 0.8 0.03
* (Continued on the next page)

PCA loadingsCohen's dRank Driving metric Spearman's 
correlation with 

fuel consumption 
(4617 data points)
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Table 4B. (continued)

Eco-driving 
instructions 
(normal-eco)

Route type 
(highway - 
mountain)

Vehicle type 
(Mégane - 

Clio)

PCA 1 
Route

PCA 2  
Eco

PCA 3  
Vehicle

63 va2 max 1.89 -1.13 -0.16 0.73 0.3 0.73 0.09
64 va2 10th perc 0.63 -0.27 -3.68 0.16 -0.42 -0.01 1.05
65 va2 25th perc 1.33 -0.6 -2.53 0.43 -0.26 0.23 0.93
66 va2 50th perc 2.32 -0.57 -1.76 0.67 -0.15 0.59 0.65
67 va2 75th perc 2.78 -1.33 -0.88 0.81 0.09 0.75 0.38
68 va2 90th perc 3.21 -1.78 -0.13 0.83 0.27 0.79 0.16
69 Lat acc mean 0 12.87 -1.1 -0.23 -0.94 0.26 0.08
70 Lat acc std 1.69 -3.63 0.13 0.66 0.75 0.38 0.03
71 Lat acc max 0.85 -2.63 -0.16 0.55 0.76 0.23 0.08
72 Lat acc min -0.94 3.64 -0.08 -0.57 -0.76 -0.27 -0.04
73 Lat acc 10th perc -1.77 5.55 -0.42 -0.63 -0.82 -0.3 -0.01
74 Lat acc 25th perc -1.93 8.75 -2 -0.53 -0.98 -0.16 0.21
75 Lat acc 50th perc -0.33 15.02 -2.72 -0.33 -1.02 0.1 0.28
76 Lat acc 75th perc 1.66 2.46 -0.15 0.2 -0.68 0.69 -0.04
77 Lat acc 90th perc 1.59 -1.7 -0.02 0.7 0.44 0.6 0.05
78 Lat acc 10th perc of abs 1 -1.43 -1.96 0.27 -0.06 0.03 0.66
79 Lat acc 25th perc of abs 1.96 -3.56 -2.18 0.52 0.45 0.13 0.51
80 Lat acc 50th perc of abs 2.39 -2.25 0.07 0.74 0.46 0.65 0.03
81 Lat acc 75th perc of abs 1.77 -2.8 0.08 0.71 0.62 0.49 0.06
82 Lat acc 90th perc of abs 1.34 -3.1 0.05 0.63 0.72 0.35 0.05
83 SWA mean 1.49 14.94 1.95 -0.17 -0.67 0.42 -0.41
84 SWA std 1.45 -17.48 2.11 0.57 1.02 0.2 -0.28
85 SWA max 0.92 -15.16 2.15 0.48 1.06 0.13 -0.34
86 SWA min -0.6 20.12 -1.57 -0.5 -0.97 -0.09 0.18
87 SWA 10th perc -0.96 15.61 -1.04 -0.53 -0.9 -0.09 0.06
88 SWA 25th per -0.02 15.3 -0.22 -0.33 -0.84 0.2 -0.12
89 SWA 50th perc 1.23 6.51 1.33 -0.2 -0.72 0.37 -0.28
90 SWA 75th perc 1.74 -0.25 2.2 0.42 0.36 0.65 -0.71
91 SWA 90th perc 1.75 -10.85 2.6 0.54 1.04 0.2 -0.33
92 SWA 10th perc of abs 0.96 -4.26 0.53 0.44 0.82 0.14 -0.08
93 SWA 25th perc of abs 1.73 -9.06 1.11 0.5 0.92 0.14 -0.09
94 SWA 50th perc of abs 2.16 -8.55 1.59 0.64 0.92 0.28 -0.13
95 SWA 75th perc of abs 1.86 -12.75 2.33 0.58 1.01 0.23 -0.27
96 SWA 90th perc of abs 1.31 -15.92 2.22 0.53 1.04 0.17 -0.32
97 SWA SRR 0.65 -2.11 0.61 0.41 0.75 0.17 -0.15
98 SWA speed mean -0.11 -1.33 0.14 0.1 0.26 -0.08 0.05
99 SWA speed std 1.18 -7.8 0.99 0.54 0.95 0.17 -0.12
100 SWA speed max 0.41 -3.89 0.33 0.4 0.89 -0.02 -0.04
101 SWA speed min -0.32 5.02 -0.45 -0.38 -0.89 0.05 0.03
102 SWA speed 10th perc -1.31 5.8 -0.67 -0.53 -0.9 -0.16 0.03
103 SWA speed 25th perc -0.9 3.63 7.27 -0.39 -0.54 -0.02 -0.34
104 SWA speed 50th perc NaN NaN NaN -0.01 -0.02 0.02 0
105 SWA speed 75th perc 0.76 -5.11 -5.71 0.35 0.59 -0.1 0.39
106 SWA speed 90th perc 1.32 -6 0.76 0.53 0.91 0.15 -0.06
107 SWA speed 25th perc of abs NaN NaN NaN 0.15 0.13 0.01 0.24
108 SWA speed 50th perc of abs 0.79 -5.1 -14.88 0.37 0.59 -0.07 0.38
109 SWA speed 75th perc of abs 1.31 -5.69 0.89 0.53 0.96 0.16 -0.14
110 SWA speed 90th perc of abs 1.34 -7.69 0.92 0.54 0.93 0.18 -0.09

PCA loadingsCohen's dRank Driving metric Spearman's 
correlation with 

fuel consumption 
(4617 data points)
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OFFLINE CHANGES IN 
VEHICLE SETTINGS



How Do Driving Modes Affect the 
Vehicle’s Dynamic Behaviour? 



Several modern vehicles provide the option to select a driving mode. However, the 
literature contains no empirical studies that investigate how driving modes affect 
the vehicle’s dynamic behaviour in regular on-road driving. We examined for which 
CAN-bus signals the differences between Renault’s Multi-Sense® comfort and sport 
modes are most apparent. We gathered data on a 26.3 km route containing a rural 
and highway section. A single person drove the route four times in comfort mode 
and four times in sport mode. By statistically analysing and ordering 887 CAN-bus 
signals, we found strong differences between the two modes for rear-wheel angle, 
engine torque, longitudinal acceleration, and vertical motion. Parameter identification 
of a quarter car model identified a 3.5 times higher damping coefficient for the sport 
mode compared to the comfort mode. Due to four-wheel steering, compared to the 
comfort mode, the sport mode yielded a higher lateral acceleration and yaw rate for 
a given steering wheel angle and driving speed. In conclusion, this study provides 
quantitative insight into the extent to which the Multi-Sense driving modes impact 
the vehicle’s lateral, longitudinal, and vertical dynamic behaviour. The results and the 
analysis methods help guide future driving mode designs.

Published as:
Melman, T., De Winter, J. C. F., Mouton, X., Tapus, A., & Abbink, D. A. (2021). How do driving modes affect 
the vehicle’s dynamic behaviour? Comparing Renault’s MultiSense sport and comfort modes during on-road 
naturalistic driving, Vehicle System Dynamics, 59, 485–503. https://doi.org/10.1080/00423114.2019.1693049
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5.1. Introduction
5.1.1. Driving Modes
In recent years, cars have evolved from vehicles having invariable characteristics to vehicles 
of which the dynamic characteristics can be changed using active springs, dampers, 
drivetrain, and steering systems (Crolla, 1996). These active dynamic components aim to 
improve comfort (e.g., by reducing vibrations in vehicle’s body; Rajamani, 2011) and stability 
(Abe, 1999; Reuter & Saal, 2017; Yu et al., 2008). On top of this, some vehicle models offer 
the option to alter the parameters of the active dynamic components by selecting different 
driving modes (e.g., sport or comfort mode). These driving modes intend to offer distinct ride 
experiences, e.g., a comfort mode for a “smooth and silent ride” versus a sport mode for a 
“shaky adventurous ride” (Kissai et al., 2018; Sheller, 2004; Shibahata, 2005). 

Nowadays, many car brands offer the driver the possibility to manually select one 
of the three basic driving modes such as Eco, Comfort, or Sport. One particular system, 
highlighted in this paper, is Renault’s Multi-Sense®. The Multi-Sense modes (i.e., comfort, 
sport, eco, neutral) impact not only parameters concerning the vehicle dynamics (e.g., rear-
wheel steering, drivetrain, and dampers), but also cockpit ambience (e.g., colour of ambient 
lighting, dashboard interface) (Renault, 2018).

A number of studies have examined the potential of driving modes in areas such as fuel/
energy management (Chau et al., 2017; Jeon et al., 2002; Mohd et al., 2017), chassis control 
(Hilgers et al., 2009; Kim et al., 2005; Wimmer et al., 2014), or adaptation to personal driving 
styles (Jeon et al., 2016). The existing literature focuses on the functionality of individual 
active vehicle components, where a distinction can be made between active components 
that affect longitudinal/lateral (Section 5.1.2) and vertical vehicle dynamics (Section 5.1.3). 
However, to the best of our knowledge, no empirical studies in the current literature investigate 
differences in vehicle behaviour as a function of different driving modes.

5.1.2. Active Lateral and Longitudinal Vehicle Dynamics
The characteristics of the steering system are known to influence the subjective steering 
feel and comfort (Boller, 2017; Pfeffer et al., 2008; Tagesson, 2017) as well as lane-keeping 
performance (Nagai & Koike, 1994; Shyrokau et al., 2018). An important parameter is the 
steering ratio, which is the ratio between the driver’s steering wheel angle and the front wheel 
angle. In most conventional cars, the steering ratio and turning radius are mechanically linked 
and invariant (Trzesniowski, 2017). Invariant steering systems allow drivers to develop a 
reliable mental model (Russell et al., 2016). However, invariant systems cannot accommodate 
differences in desired steering responsiveness for different driving situations. For example, at 
high speed (e.g., highway driving), a low-gain steering system may be preferred as the driver 
requires small steering angles and high accuracy. At low speed, accuracy and stability are 
less critical, and a high-gain steering system may be preferred to accommodate a parking 
manoeuvre (Reuter & Saal, 2017).

Various active steering systems exist, such as four-wheel steering (4WS), active front 
steering, steer-by-wire, and direct yaw control (Shibahata, 2005; Strandroth et al., 2012). 
These systems enable functionalities such as speed-dependent change of vehicle agility 
(faster lateral movement of the vehicle with the same steering input), manoeuvrability (change 
in turning radius), steering effort (lower steering torques to achieve a similar lateral response), 
and stability (active safety by superposition of the steering angles or rear wheel angle in case 
of 4WS) (Abe, 1999, 2013; Cho et al., 2012; Huang & Pruckner, 2017; Klier et al., 2004).                            

Four-wheel steering enables active rear-wheel steering in addition to the front axle (Fahimi, 
2013). With 4WS, at low speed, the rear wheels countersteer the front wheels (Figure 5.1a), and 
at high speed, they are turned in the same direction (Figure 5.1b). Countersteering shortens 
the virtual wheelbase (see Figure 5.1b), resulting in a smaller turning radius compared to 
no 4WS, whereas parallel steering increases the virtual wheelbase (see Figure 5.1a). Thus, 
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for a constant steering wheel angle and constant speed, countersteering results in a higher 
steady-state yaw rate and lateral acceleration compared to parallel steering. Additionally, 
parallel steering results in a faster build-up of the lateral acceleration towards a target value 
as compared to regular front steering (Furukawa et al., 1989; Herold & Wallbrecher, 2017; 
Nalecz & Bindemann, 1988, 1989; Whitehead, 1988). For parallel steering, the transfer 
function of steering wheel angle to lateral acceleration has a low phase shift as the vehicle 
can generate rear-wheel slip angles without the need for a vehicle sideslip angle, reducing 
the time required to reach a steady-state condition. 

Active longitudinal vehicle dynamics components include engine characteristics, throttle 
response, and gear switching control (Shinagawa et al., 2015). 

5.1.3. Active Vertical Vehicle Dynamics
The suspension system includes the springs, dampers, and linkages that separate the car 
body (sprung mass) from the wheel assembly (unsprung mass). It has the function to improve 
the comfort of the vehicle occupants (i.e., reduce road vibrations in the car body) and to 
provide desirable handling specifications and contact between the tyres and road surface 
(Anubi, 2013; Savaresi et al., 2010). Where soft components, in general, improve ride comfort, 
a hard suspension improves handling specifications (Ikenaga, Lewis et al., 2000; Sekulić & 
Dedović, 2011; Sharp & Crolla, 1987; Yamashita et al., 1994). Passive suspension systems 
can only offer a compromise between these conflicting criteria (Els et al., 2007; Merker et al., 
2002), resulting in sub-optimal vehicle characteristics.

Active suspension components enable online changes of the stiffness and damping 
settings. Current commercialised vehicles utilise variable damping in combination with 
passive springs but typically do not use variable stiffness, a concept that is currently in a 
research phase (Anubi, 2013; Morales et al., 2018; Sun et al., 2017). Besides variable damping 
and stiffness, active suspension mechanisms can apply control strategies to minimize the 
impact of braking and cornering on the body (active body control, active roll control) and to 
compensate for road irregularities (Furukawa et al., 1989; Trächtler, 2004; Wen et al., 2017). 
The performance of these components strongly depends on the implemented controller 
design (e.g., Choi et al., 2001; Guglielmino et al., 2008; Koch & Kloiber, 2014; Petek et al., 
1995; Savaresi et al., 2010).

Driving modes could affect the functionality of these components (Hilgers et al., 2009; Kim 
et al., 2005). For example, for a sport driving mode, a higher variable damping parameter 

Figure 5.1. Steering configurations: a) Parallel steering; b) Countersteering. For a constant 
front steering angle, the turn radius is smaller for countersteering as compared to parallel 
steering (Herold & Wallbrecher, 2017).
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could be utilised to feed more vibrations to the driver. For a comfort mode, softer damping 
would be used to remove these vibrations.

5.1.4. The need for understanding the impact of driving modes on the vehicle’s dynamic 
behaviour
As pointed out above, a substantial body of literature exists on the behaviour of individual 
active components. However, no empirical studies investigate how these individual active 
components are affected by driving modes. Furthermore, for actual roads, the impact of 
driving modes on the vehicle’s dynamic behaviour is unknown. In the present exploratory 
study, we aimed to quantify the vehicle’s dynamic changes between the Renault Multi-
Sense® comfort and sport modes. According to Renault (2018), the comfort mode ‘favours 
smooth steering’ and the sport mode ‘permits an increased responsiveness from the engine 
and the gearbox.’. We aimed to make the dynamical effects of these modes transparent in the 
scientific literature. Accordingly, we gathered naturalistic driving data on a route containing 
a rural road and highway road section. A single driver drove the same route four times in 
comfort mode and four times in sport mode. Based on logged CAN-bus data (887 signals 
associated with rigid body motions, steering, and powertrain responses), we investigated 
which vehicle state variables discriminate the two modes, and used that selection to analyse 
the vehicle’s longitudinal, lateral, and vertical dynamic behaviour in more detail. Changes in 
damping characteristics were quantified by identifying the damping coefficient in a simulation 
model of the suspension travel.

5.2. Experimental Design
5.2.1. Test Driver
One test driver (first author, male, 26 years old, eight years licensed to drive) participated 
in this study. In the past 12 months, the test driver drove 1 to 3 times a week, with a yearly 
mileage of about 10,000 to 15,000 km.

5.2.2. Apparatus
In the study, the test driver drove a 2015 Renault Talisman (Figure 5.2c) equipped with Multi-
Sense and a CAN-bus for data gathering. The 887 CAN signals were recorded at frequencies 
ranging from 10 Hz to 100 Hz. The GPS location was recorded (sampled at 0.5 Hz) using an 
iPhone SE and the ‘GPS tracker’ application.

5.2.3. Road Trajectory
The driver drove on roads in France (near Versailles). The route consisted of a 9.1 km long rural 
road section (Figure 5.2a), and on a 14.5 km long highway road section (Figure 5.2b), which 
together are referred to as the combined route (23.6 km). The rural road section contained 
single-lane and two-lane sections, with very little traffic (< 2 cars per drive). The highway road 
section included two highway exits and two entries and had an advisory speed of 110 km/h. 
On the highway, low-density traffic was encountered. 

5.2.4. Procedure
The driver was given the task to drive as he normally would, and with similar average speed 
for both the sport and comfort modes. The driver was familiar with the roads and with both 
modes before the start of the experiment. The two sections were driven on two separate 
days, with on the first day the rural road section was driven, and on a second day, the highway 
section was driven. Each road section was driven four times in sport mode and four times in 
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comfort mode in alternating order (starting with the sport mode for the rural road on day one 
and starting with comfort at the highway on day two). Between each driven section, there 
was a 5-minute break to mitigate fatigue. Furthermore, after the first four drives (2x sport and 
2x comfort) there was a one-hour long break. For the highway road, the driver performed 
multiple overtaking manoeuvres. The combined route took 27 minutes (14 minutes for the 
rural road section, and 13 minutes for the highway road).  On both days it was a clear day 
with an external temperature on day one (rural road) of 19ºC and on day two (highway) of 21 
ºC. Finally, the first day there was 33 litre in the fuel tank at the start of the experiment, and 
on day two 27 litres.

5.2.5 Dependent Measures
Ordering the data
The following procedure was performed to find which measures discriminate between the 
comfort and sport modes. For each of the eight drives per road type (i.e., four drives in 
comfort mode & four drives in sport), we calculated for both sections (highway and rural 
road separately) and for all 887 CAN measures, the mean value of each of the signals, the 
standard deviation of each signal (a measure of variation), and the mean absolute successive 
difference of each signal (a measure of the amount of sample-to-sample fluctuations in the 
signal). Next, Cohen’s d (Equation 5.1, Cohen, 1988) was computed as a measure of effect 
size between the four values for the sport mode and the four values for the comfort mode for 
the rural road and the highway separately. Cohen’s d describes how much two samples (i.e., 
sport and comfort) differ from each other.

(5.1)

With μk the sample mean of the four values of a particular mode, s the pooled standard 
deviation, and  sk the standard deviation of the four values of a particular mode. An illustration 
of the meaning of Cohen’s d is provided in Appendix A.

Figure 5.2. (a) rural road section (9.1 km), (b) highway section (14.5 km), (c) 2015 Renault 
Talisman equipped with Multi-Sense used in the experiment. The start/end is visualised with 
an S-sign, and the driven direction for the rural road is indicated with an arrow.
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5.2.6. Simulation Model
Quarter car model to identify the sprung damper coefficient
A quarter car linear oscillatory model of the suspension travel (Karnopp, 2009; Yoshimura 
et al., 2001) was used to estimate the sprung damper coefficient, bs (bs > 0). A constraint 
optimisation was performed to fit the model-based suspension travel on the empirically 
obtained suspension travel from the highway and rural road sections, per driving mode.

Table 5.1 provides the meaning and value of each parameter used in the simulation model. 
The values for the vehicle’s sprung and unsprung mass and stiffness were obtained from 
Renault. These provided values yield a natural frequency for the sprung mass and unsprung 
mass of 1.48 Hz and 10.30 Hz, respectively. Using the equation of motion of this system, 
the transfer function can be derived for the suspension travel (i.e., the difference between 
sprung mass distance and unsprung mass distance (X1 – X2) as a response to the road 
disturbance frequency input D) (Equation 5.2). The road disturbance frequencies D (Hz) are 
linearly spaced between 0.47 Hz and 12 Hz.

(5.2)     

The power spectral density (PSD) of the suspension travel can be calculated using Equation 
5.3. 

 (5.3)

where H(f) is the complex frequency function from Equation 5.2, and  is the PSD of 
the roughness of asphalt concrete pavement in good conditions, as a function of temporal 
excitation frequency (Equation 5.4; see Sekulić & Dedović, 2011; Wong, 2001, for a more 
detailed explanation). 

 

(5.4)

In Equation 5.4 a roughness coefficient (Csp) of 7.5•10-7 m was used for the rural road section, 
and 1.6•10-7 m for the highway section. We assumed a fixed velocity (V) of 11 m/s, and 20 
m/s for respectively the rural road, and the highway, and wavenumber (N) of  2.59 (rural 
road) and 2.32 (highway; which is, according to Wong, 2001, a value for a ‘good pavement’ 
condition).

5.3. Results
5.3.1. Driving Behaviour
Table 5.2 shows no substantial differences in mean speed (< 0.7 km/h), brake depression, 

Vehicle type Year of 
manufacture

Engine 
Model Fuel type

Engine 
displacement 

(cm3)

Max 
power 
(hp)

Curb 
weight 

(kg)

Emission 
legislation

Wheelbase 
length (mm)

Renault Clio 2017 K9K 628 Diesel 1461 90 1071 Euro 5 2589
Renault Mégane 2017 K9K 656 Diesel 1461 110 1205 Euro 6 2669

Table 5.1. Parameters used in the quarter car model. Numbers were provided by Renault. 
Parameter bs was estimated using our model identification process.
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and absolute yaw rate between the sport and comfort mode, for the combined route. For 
the sport mode, a substantially higher mean absolute rear-wheel angle, mean engine speed, 
mean gear number, mean throttle position, mean lateral and mean longitudinal acceleration, 
compared to the comfort mode.

Figures 5.4 and 5.5 show common driving-related measures as a function of travelled 
distance across all repetitions for the rural road and highway, separately. From top to bottom 
Figure 5.4 and 5.5 show among the four repetitions: (1) the mean speed, (2) the mean engine 
speed, (3) the mean brake pressure, (4) the mean steering wheel angle, (5) the mean yaw rate, 
and (6), the mean rear wheel angle for both comfort mode and sport mode. Over the entire 
route, no substantial difference in speed and brake pressure can be seen for the two modes. 
Regarding longitudinal dynamics, the engine speed was higher for sport as compared to 
comfort. In terms of lateral dynamics, the results show higher rear-wheel angles, but smaller 
steering wheel angles for the sport mode as compared to the comfort mode. No clear 
differences can be observed for the yaw rate. The differences in the vehicle’s vertical, lateral, 
and longitudinal dynamic behaviour will be analysed in more detail in Sections 5.3.2–5.3.5.

5.3.2. Most-Discriminating Measures Between Comfort and Sport Mode
The Cohen’s d effect sizes for the 30 most-discriminating measures (i.e., largest Cohen’s 
d values) for the rural road and the highway are shown in Figures 5.6 and 5.7 respectively. 
The largest differences in means occurred for engine speed (RPM), engine-torque related 
values, and throttle, mostly because the car drove longer at a lower gear in sport mode 
(see Table 5.2), resulting in a higher available torque (Table 5.2), and lower throttle input 
percentage (Table 5.2). The largest differences in standard deviations occurred for engine 
speed (RPM), throttle position, and rear-wheel angle. Finally, the largest differences in high-
frequency variation (i.e., the mean absolute difference) were found for the suspension travel 

Figure 5.3. The quarter car linear oscillatory model used to model the suspension travel (X1 
– X2) for different road disturbance frequencies (D).

Mégane Clio Mégane Clio Mégane Clio Mégane Clio
Number of drivers 34 25 24 21 35 34 23 26
Total laps driven 665 585 449 481 784 665 536 452

Normal Eco-driving
Highway MountainHighway Mountain

Table 5.2. The mean and standard deviation (SD) results of the four repetitions for the comfort 
and sport for the combined route, rural road, and highway.
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(described in more detail in Section 5.3.3) and rear-wheel angle (described in more detail in 
Section 5.3.4).

5.3.3. Vertical Dynamics
Power spectral density of suspension travel to identify the damping coefficient
The suspension travel time response of the four repetitions, for the rural road and highway 
separately, were combined in one data vector and submitted to MATLAB’s p-Welch power 

Figure 5.4. For the rural road section, six recorded variables averaged across four repetitions 
as a function of travelled distance (left) and for a selected travelled distance interval (right). 
From top to bottom: mean speed, mean engine speed, mean brake depression, mean 
steering wheel angle, mean yaw rate, and mean rear wheel angle.

Figure 5.5. For the highway section, six recorded variables averaged across four repetitions 
as a function of travelled distance (left) and for a selected travelled distance interval (right). 
From top to bottom: mean speed, mean engine speed, mean brake depression, mean 
steering wheel angle, mean yaw rate, and mean rear wheel angle.
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spectral density estimator (Hayes, 2009; Stoica & Moses, 2005; Welch, 1967). Due to the high 
impact of the pavement roughness and vehicle speed, on the vehicle’s oscillatory behaviour, 
the results were identified separately for both the highway (low pavement roughness and 
high speed) and rural road (high pavement roughness and low speed). The power spectral 
density estimate for the sport and comfort mode and the fitted quarter car model are shown 
in Figure 5.8. The constraint optimization, which fitted the model-based suspension travel 
on the observed data, identified a 3.38 x higher damper setting for sport (1585 Ns/m) than 

Figure 5.6.  For the rural road section: the ranking of the absolute value of Cohen’s d, i.e., 
the 30 most discriminative measures between the sport mode and comfort mode out of 887 
measures. Left: mean of the signal, Middle: standard deviation of the signal, Right: mean 
absolute successive difference of the signal.

Figure 5.7.  For the highway section: the ranking of the absolute value of Cohen’s d, i.e., 
the 30 most discriminative measures between the sport mode and comfort mode out of 887 
measures. Left: mean of the signal, Middle: standard deviation of the signal, Right: mean 
absolute successive difference of the signal.
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for comfort (469 Ns/m) for the highway section and a 3.32 x higher damper setting for sport 
(1079 Ns/m) than for comfort (325 Ns/m) for the rural road section. A higher suspension travel 
power was found for comfort than sport around the natural frequencies of the sprung mass 
and unsprung mass of 1.48 Hz and 10.30 Hz, respectively. The natural frequencies locations 
are identical for sport and comfort mode.

5.3.4. Lateral Dynamics
Figure 5.9a, 5.10a, and 5.11a illustrate the impact of vehicle speed and steering wheel angle 
on the rear-wheel angle, yaw rate, and lateral acceleration. Figure 5.9b, 5.10b, and 5.11b 
show the slopes of fitted linear regression lines for speed bins of 5 km/h for a combination of 
the combined route and the four repetitions. 

Figure 5.9a shows that between 20 and 30 km/h more countersteering is performed for 
the sport than for the comfort mode, whereas for speeds between 80 and 90 km/h more 
parallel steering is performed for comfort than for sport. This effect is visualised for all 
speeds ranges between 0 and 115 km/h in Figure 5.9b. More countersteering is executed 
(i.e., a stronger negative slope value of the rear wheel angle vs. steering wheel angle) for 
sport than compared to comfort mode for speeds between 15 and 80 km/h. Above 55 km/h 
parallel steering (positive slope) is exhibited for comfort mode, whereas no parallel steering 
is available for the sport mode.

Figure 5.10 shows that higher yaw rates are obtained for sport mode than for comfort 
mode. The yaw rate difference is especially visible when the parallel steering strategy is 
executed (i.e., speeds above 55 km/h). 

Figure 5.11 illustrates the effect of vehicle speed on the lateral acceleration response 
to a steering wheel deviation. For the sport and comfort mode, the same steering wheel 
angle results in higher lateral accelerations when the speed becomes higher. Above 40 km/h, 
higher lateral accelerations are observed for the sport mode compared to the comfort mode.

Figure 5.8. Power spectral density of the vibrations of the suspension travel for the highway 
section (a) and the rural road section.
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5.3.5. Longitudinal Dynamics
Figure 5.12 shows the mean longitudinal acceleration (m/s2) as a function of brake pressure 
input (bar) and throttle input (%) for the comfort and sport modes for the combined route 
and the four repetitions combined. The results show an increased longitudinal acceleration 
for sport mode than for comfort mode for throttle inputs between 20% and 40%. No clear 
differences can be seen for the decelerations in comfort mode.  

Figure 5.9. Rear-wheel angle as a function of steering wheel angle for the sport (red) and 
comfort mode (blue). (a) Steering wheel angle and rear wheel angle between 20 and 30 km/h 
(light) and 80 and 90 km/h (dark). (b) The slope of the linear regression between steering wheel 
angle and rear wheel angle per 5 km/h speed bin. Results are based on the combined route 
and the four repetitions combined.

Figure 5.10. Yaw rate as a function of steering wheel angle for the sport (red) and comfort 
mode (blue). (a) Steering wheel angle and yawrate between 20 and 30 km/h (light) and 80 and 
90 km/h (dark). (b) The slope of the linear regression between steering wheel angle and yaw 
rate per 5 km/h speed bin. Results are based on the combined route and the four repetitions 
combined.
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5.4. Discussion
In this exploratory study, we aimed to quantify the differences in the vehicle’s dynamic 
behaviour between the Renault Multi-Sense sport mode and comfort mode in naturalistic 
driving conditions. We gathered driving data on a combined route (26.3 km) containing a 
rural road and highway section, using a single driver driving the same route four times in 
comfort mode and four times in sport mode. The data were analysed for differences between 
sport and comfort mode in three steps: (1) an analysis of 11 selected measures, to analyse 
differences in general driving behaviour, (2) an investigation of which vehicle state variables 
best discriminate between the two driving modes, based on calculating the Cohen’s d effect 
size of metrics (mean, standard deviation, and mean absolute difference) for all 887 CAN-bus 

Figure 5.11. Lateral acceleration as a function of steering wheel angle for the sport (red) 
and comfort mode (blue). (a) Steering wheel angle and lateral acceleration between 20 and 
30 km/h (light) and 80 and 90 km/h (dark). (b) The slope of the linear regression between 
steering wheel angle and lateral acceleration per 5 km/h speed bin. Results are based on the 
combined route and the four repetitions combined.

Figure 5.12. The raw (thin lines) and mean (thick lines) longitudinal acceleration as a function 
of the brake and throttle depression for the sport and comfort repetitions for the combined 
route.
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signals, and (3) a detailed analysis of the vehicle’s lateral, longitudinal and vertical dynamic 
behaviour for the obtained signals in step 2.

In the first set of analyses, differences between sport and comfort modes were observed 
in RPM, rear-wheel angles, steering angle (for large steering angles).  Important for this study, 
no substantial difference between sport and comfort mode in mean driving speed (< 0.7 
km/h) was found, indicating a consistent driving speed across modes and repetitions, as was 
intended. Additionally, no substantial differences were found for the mean yaw rate, which is 
to be expected, since the same yaw rate is needed to drive the same route. 

In the second set of analyses, the sorted Cohen’s d effect sizes revealed strong differences 
for longitudinal variables (i.e., drivetrain related signals such as engine speed, engine torque, 
throttle, gear ratio), lateral dynamic behaviour variables (i.e., such as rear-wheel angles), 
and vertical dynamic variables (i.e., such as the suspension travel). The results contained 
several redundancies in CAN signals with the same meaning (e.g., vehicle speed in km/h, and 
vehicle speed in mph), or signals that are causally related (e.g., current gear ratio, and engine 
speed), or are unimportant to the present study (e.g., air-conditioning power). The inclusion 
of unimportant measures could have been prevented by manually selecting CAN signals, but 
would be at the cost of a lower generality.

In the third set of analyses, differences found in longitudinal, lateral, and vertical dynamic 
behaviour were further analysed. The longitudinal dynamic behavioural results showed that 
by shifting the car into sport mode, the car initiates a more aggressive throttle response 
especially for throttle inputs above 20%, and remaps its gear ratios so that the car will hold 
onto gears longer (i.e., higher maximum torque available and more relative engine power), 
with higher RPMs and a lower fuel efficiency compared to comfort mode. For the first time, 
these results provide evidence that the Multi-Sense sport and comfort modes substantially 
affect longitudinal dynamic behaviour.

For lateral dynamic behaviour, the sport mode resulted in a higher mean absolute rear-
wheel angle, due to a difference in rear-wheel steering present above 20 km/h (Figure 5.9). 
Countersteering and parallel steering are widely proposed rear-wheel steering control 
strategies (Furukawa et al., 1989; Herold & Wallbrecher, 2017; Sano et al., 1986; Whitehead, 
1988). In our study, a clear speed-dependent rear-wheel steering control strategy was 
observed, with at lower speeds (15–80 km/h) more countersteering for sport than comfort 
mode, and at higher speeds (> 50 km/h) parallel steering for comfort mode, and no rear-
wheel steering for sport mode. For a given steering input at speeds above 40 km/h, the 
sport mode (which used no rear-wheel steering at high speeds), caused a higher yaw rate 
and a higher lateral acceleration compared to the comfort mode (which used parallel rear-
wheel steering). These results are in line with literature showing that for a given steering input 
parallel steering results in a reduced steady-state yaw rate and reduced steady-state lateral 
acceleration (Nalecz & Bindemann, 1989). Our contribution is that we showed for the first 
time how the four-wheel steering strategy is utilized by different driving modes. 

The quarter car model identified a 3.83 times (highway) and 3.32 times (rural road) higher 
damper value for the sport than for the comfort mode. Therefore, when driving in sport 
mode, the higher value of shock absorber damping provides lower oscillatory movements 
at exciting frequencies approximating the resonance frequencies, whereas the amplitudes of 
the driver’s vertical acceleration are increased (Sekulić & Dedović, 2011). The manufacturer-
provided sprung, and unsprung mass and stiffness resulted in an accurate estimate of the 
natural frequencies (Figure 5.8). A visual inspection of Figure 5.8 shows a broadening of the 
natural frequencies for the empirical data, a phenomenon that is not captured by the quarter 
car model. This broadening could be caused by energy losses due to the non-linearity of 
the damping, non-static parameters (mass, stiffness, and damping changes while driving), 
or one of the many assumptions in the quarter car model. Indeed many assumptions are 
made in the quarter car model (i.e., fixed speed, static model parameters, linear damping 
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approximation, only 1 wheel modelled, vertically aligned dampers, fixed asphalt roughness, 
equally distributed input frequencies), resulting in inaccuracies. Nevertheless, it needs to be 
noted that the quarter car model is an effective model to comprehend the order of difference 
between the average variable damping settings of the sport and comfort mode, and is widely 
used to model suspension dynamics (Karnopp, 2009; Sekulić & Dedović, 2011; Sharp & 
Crolla, 1987).

Limitations and Future work
Despite the 887 available CAN-bus signals, some vehicle-related signals (e.g., roll, pitch, 
sprung-mass acceleration, and wheel load) and driver-related signals (e.g., driver steering 
torque) were not part of the CAN-bus dataset. This makes it impossible, for example, to 
show the effect of driving mode on road holding (i.e., instantaneous wheel load) and vehicle 
comfort (i.e., sprung-mass vertical acceleration). For many of these signals, the effect can 
be deduced from the results in this paper. In this study, we investigated changes in vehicle 
dynamics measured by the CAN signals, using the built-in sensors of the vehicle. Future 
studies could add additional sensors to complement our analyses.

In this study, we used a data-driven approach to quantify the main dynamical differences 
between sport and comfort mode. It is, of course, true that the working mechanisms of the 
active components are known by Renault. However, these are merely software codes and 
hard to interpret. For actual roads, the impact of driving modes on the total vehicle’s dynamic 
behaviour was not yet documented. That is, how much driving modes affect the vehicle’s 
dynamic behaviour was previously unclear in the scientific literature. We aimed to make this 
effect transparent for the first time, and we showed, for example, for the lateral dynamics, 
not only the on-road control strategy (i.e., the rear wheel strategy), but also the effect of this 
control strategy on vehicle’s dynamical behaviour (i.e., lateral acceleration and yaw rate).  

We quantified the differences in vehicle dynamics between two given driving modes. Future 
research could use the opposite approach, namely, to develop new driving modes based on 
desired vehicle dynamics. For example, the quarter car model could be used to determine to 
what extent the damping coefficients should be adjusted for generating a driving mode with a 
particular ride height characteristic. Additionally, based on collected vehicle dynamics data, 
it should be possible to classify driving modes. For example, based on observed front and 
rear wheel angles as well as observed lateral accelerations and ride height fluctuations, the 
current vehicle dynamic behaviour could be classified as ‘sport-like’ or ‘comfort-like’. Based 
on this classification, novel control strategies, such as model-predictive control techniques 
(e.g., Canale et al., 2006; Giorgetti et al., 2006) could be utilised to create desired vehicle 
behaviours. This approach would allow for comparisons of vehicle characteristics between 
different vehicle brands and types. 

In this study, we aimed to constrain driving style by giving the driver the task to ‘drive with 
the same speed’. This approach allowed for a valid comparison of the differences between 
the two modes, but it prevented behavioural adaptations on behalf of the driver. Previous 
studies have shown that changes in vehicle dynamics and assistance systems instigate 
driver adaptations such as driving with a higher speed or driving closer to a lead vehicle 
(Martens & Jenssen, 2012; Mehler et al., 2014; Melman et al., 2017; Saad, 2006). It can 
be hypothesized that drivers in sport mode will adapt their driving style towards sportier 
behaviour. During this experiment, one vehicle and one driver were used. Future research 
should investigate how the results relate to different vehicles, driving modes of different car 
brands, and a large pool of drivers. 

Finally, the impact of Multi-Sense modes on subjective driving experience is a matter of 
future study. Besides changes in vehicle dynamics, changes in audio-visual cues can be 
expected to contribute to driving experience and system acceptance. The present results 
and analysis methods may help guide future studies that evaluate how drivers use and 
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experience different driving mode designs.

5.5. Conclusions
Before conducting this study, there was a lack of knowledge about how driving modes affect 
the vehicle's dynamic behaviour in normal driving conditions on real roads. In this study, 
we aimed to quantify the differences in vehicle dynamics between the sport and comfort 
mode of Renault’s Multi-Sense®, by statistically analysing 887 CAN-bus signals. This study 
showed that during naturalistic driving:

• The driving modes affect lateral dynamics due to four-wheel steering. Compared 
to the sport mode, the comfort mode uses less countersteering at low speeds and 
more parallel steering at high speeds (> 50 km/h). The four-wheel steering strategy 
results in a higher steady-state lateral acceleration and yaw-rate for the sport mode 
compared to comfort mode. 

• Driving modes affect the longitudinal dynamics due to changes in engine settings. 
In the sport mode, the car has a more sensitive throttle response for throttle inputs 
above 20%, holds onto gears longer, and maintains a higher torque and RPMs, at the 
expense of lower fuel efficiency, as compared to comfort mode.

• Driving modes affect the vertical dynamics due to different damping settings. An about 
3.5 times higher damper coefficient was identified for the sport mode compared to 
the comfort mode.

• Driving modes are more than a ‘gimmick’ but substantially change how the vehicle 
responds to the driver’s control input. Future studies are needed to investigate the 
impact of these changes on drivers’ behaviour, acceptance, and safety.
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Figure 5A. The scores of the four repetitions (asterisks) and means of four repetitions 
(horizontal lines) for the sport and comfort mode. The whiskers represent the mean±1 
standard deviation. Cohen’s d represents the number of times the pooled standard deviations 
fits between the two means.

Appendix 5A - Cohen’s d  visualised



Creating the Illusion of 
Sportiness: Evaluating Modified 
Throttle Mapping and Artificial 

Engine Sound for Electric 
Vehicles



Modern computerized vehicles offer the possibility to change vehicle parameters 
with the aim of creating a novel driving experience, such as an increased feeling of 
sportiness. For example, electric vehicles can be designed to provide an artificial 
sound, and the throttle mapping can be adjusted to give drivers the illusion that 
they are driving a sports vehicle (i.e., without altering the vehicle’s performance 
envelope). However, a fundamental safety-related question is how drivers perceive 
and respond to vehicle parameter adjustments. As of today, human-subject research 
on throttle mapping is unavailable, whereas research on sound enhancement is 
mostly conducted in listening rooms, which provides no insight into how drivers 
respond to the auditory cues. This study investigated how perceived sportiness and 
driving behavior are affected by adjustments in vehicle sound and throttle mapping. 
Through a within-subject simulator-based experiment, we investigated (1) Modified 
Throttle Mapping (MTM), (2) Artificial Engine Sound via a virtually elevated rpm 
(AES), and (3) MTM and AES combined, relative to (4) a Baseline condition, and (5) 
a Sports car that offered increased engine power. Results showed that, compared 
to Baseline, AES and MTM-AES increased perceived sportiness and yielded a lower 
speed variability in curves. Furthermore, MTM and MTM-AES caused higher vehicle 
accelerations than Baseline during the first second of driving away from a standstill. 
Mean speed and comfort ratings were unaffected by MTM and AES. The highest 
sportiness ratings and fastest driving speeds were obtained for the Sports car. In 
conclusion, the sound enhancement not only increased the perception of sportiness 
but also improved drivers’ speed control performance, suggesting that sound is 
used by drivers as functional feedback. The fact that MTM did not affect the mean 
driving speed indicates that drivers adapted their ‘gain’ to the new throttle mapping 
and were not susceptible to risk compensation.
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6.1. Introduction
Drivers use their vehicles as more than just a means to arrive at their destinations. As explained 
by Rothengatter (1988), road user behavior is to an extent governed by the “pleasure of 
driving fast” (p. 605). Indeed, a portion of road users appears to be attracted to sporty driving, 
as evidenced by the sales of sports cars or vehicle models that offer high engine power and 
agile handling characteristics (JATO, 2021). As an alternative, several manufacturers produce 
vehicles that can provide a sporty driving experience via a sport mode the driver can select. 
The sport mode has gained a substantial presence on the car market today (Audi, 2021; 
BMW, 2021; Mercedes-Benz, 2021; Porsche, 2021; Renault, 2021; Volvo, 2021).

According to manufacturers, the sport mode “permits an increased responsiveness from 
the engine and the gearbox” (Renault, 2021) and offers a “sporty driving style” (Mercedes-
Benz, 2021). The Sport mode may encompass technology that increases the throttle 
sensitivity, road holding, and agility of the vehicle (De Novellis et al., 2015; Melman et al., 
2021; Shibahata, 2005). This includes the active drivetrain (e.g., changes in engine mapping 
and gear shifting; Shinagawa et al., 2015; Wehbi et al., 2017), active suspension, and four-
wheel steering (Furukawa et al., 1989; Herold & Wallbrecher, 2017). Additionally, sport modes 
can be accompanied by mechanical sound enhancement, which concerns the adjustment 
of physical elements of the drivetrain and the active control of valves that redirect the engine 
airflow and influence the exhaust sound (Ambrosino et al., 2011; Jackson, 2013)

In recent decades, several techniques have been developed to increase perceived 
sportiness without altering the vehicle dynamics and without requiring costly components or 
mechanical adjustments to the vehicle. Two of such techniques are Artificial Engine Sound 
and Modified Throttle Mapping.

6.1.1. Artificial Engine Sound (AES)
Artificial Engine Sound (AES) refers to a system that produces synthetic sounds through 
the cabin speakers. AES has been proposed for electric vehicles (e.g., Bräunl, 2012; Fang 
& Zhang, 2017; Govindswamy & Eisele, 2011; Min et al., 2018; Nyeste & Wogalter, 2008;). 
However, current research on sounds for electric vehicles mostly focuses on pedestrian 
safety (e.g., Faas & Baumann, 2021; Karaaslan et al., 2018). Considerably less research is 
available that focuses on the experience of drivers inside the electric vehicle.

Psychoacoustics research has shown that perceived sportiness can be increased by 
adjusting characteristics of the sounds, such as loudness, roughness, sharpness, and 
tonality (Krüger et al., 2004; Kwon et al., 2018). However, a limitation of psychoacoustics 
studies is that they are typically conducted in listening rooms. As Jennings et al. (2010) 
argued, “perception of the sounds of on-road cars is affected by stimuli for other senses 
(e.g., visual and vibrational), and the fact that an assessor is also concentrating on driving” (p. 
1263). To illustrate, research in a listening room by Park et al. (2019) found that loudness was 
predictive of perceived sportiness (r = 0.84) but negatively predictive of perceived comfort (r 
= -0.83), consistent with the generally accepted “trade-off hypothesis of pleasantness and 
power” (Bisping, 1995, p. 1203). A driving simulator study by Hellier et al. (2011), however, 
found that drivers regarded no engine noise at all as uncomfortable. Hence, it appears that 
sound perception may be different in listening rooms as compared to active driving.

Very little research on perceived sportiness in real vehicles is available. An exception is 
Zeitler and Zeller (2006), who let acoustical experts rate the interior sounds of different vehicles 
on a test track. Their results showed that perceived sportiness was strongly correlated with 
the sound volume increase during engine load (i.e., while accelerating). However, engine 
performance (e.g., actual sportiness) and acoustic feedback were confounded; that is, the 
vehicles that delivered more power were also those that produced a sporty sound. In a 
follow-up experiment, they tried to disentangle these two effects using AES and found that 
vehicle sounds and engine torque independently contributed to perceived sportiness.
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Apart from investigating the effects of AES on perceived sportiness, it is essential to 
examine the extent to which AES influences driving behavior. Previous research suggests 
that the presence and volume of vehicle sound affect driving speeds. More specifically, it 
has been found that a reduction in engine volume or the lack of engine sound causes drivers 
to drive faster (Hellier et al., 2011; Horswill & McKenna, 1999), underestimate their speed 
(Evans, 1970; Horswill & McKenna, 1999; Horswill & Plooy, 2008), and show poorer speed 
control (Denjean et al., 2012; McLane & Wierwille, 1975; Merat & Jamson, 2011). These 
findings are consistent with the notion that engine sound acts as an information source that 
facilitates perception and control, or as argued by Hellier et al. (2011): “engine noise can be 
characterised as ‘feedback’ rather than ‘noise’” (p. 598).

In summary, although the above-mentioned studies indicate that the presence and 
volume of sound affect driving behavior, there appears to be a lack of research about how 
drivers perceive and respond to sound enhancement techniques that could be applied in 
electric vehicles, such as AES. Furthermore, research on vehicle sound has to date been 
predominantly conducted in listening rooms, a setting which cannot provide information 
about drivers’ speed adaptation.

6.1.2. Modified Throttle Mapping (MTM)
A second approach that may increase perceived sportiness without requiring mechanical 
components is Modified Throttle Mapping (MTM). MTM is defined as the software-based 
adjustment of the relationship between the driver’s throttle input and the engine throttle input. 
Through MTM, for a given driver throttle input, the engine produces more torque while the 
maximum torque (i.e., the torque for 100% driver throttle input) remains the same. Note 
that MTM is not the same as modified ‘engine mapping’, i.e., the adjustment of engine 
characteristics through changes in fuel injection, air charge, ignition timing, and valve timing, 
and other factors that influence engine performance (Barker, 1982; Holliday et al., 1998).

Research describes different ways of changing the throttle mapping and the corresponding 
effect on vehicle performance (e.g., Hosoda, 2010; Melman et al., 2021; Schoeggl et al., 
2001), but only a few studies have investigated the effects of MTM on driving behavior. The 
few studies that did investigate human-in-the-loop effects of MTM used intelligent controllers, 
such as a throttle pedal for regulating the desired engine torque and desired wheel torque 
(Boris et al., 2010) or a throttle pedal that caused the vehicle to decelerate more strongly 
upon releasing the pedal in critical car-following situations (Mulder et al., 2010).

6.1.3. Aim and Hypotheses
Little is known about how drivers perceive and respond to vehicle parameter adjustments 
that intend to provide a sporty driving experience for electric vehicles, such as MTM and AES 
technology. It is important to investigate this topic with a view to road safety. If such systems 
reduce vehicle controllability and increase driving speed, this could be seen as undesirable. 

The current study aimed to investigate how drivers perceive and respond to AES and 
MTM—two systems that intend to provide a sporty driving experience for electric vehicles, 
and which do not change the vehicle’s performance envelope in any way. The individual 
and combined contributions of MTM and AES were compared to a Baseline condition and 
a vehicle that offered increased engine power (‘sports car’). The sports car was included to 
investigate how the results for AES and MTM compare to a car that offers actually increased 
sportiness. The combined condition (AES-MTM) was included to examine whether or not the 
effects of MTM and AES are additive.

The expected effects of MTM and AES can be explained using theory from the field of 
manual control (e.g., McRuer & Jex, 1967). Figure 6.1 shows a model of human driving 
behavior in a speed control task, based on Weir and Chao (2007) and McRuer et al. (1977). 
Here, the human outputs a foot movement (‘throttle driver’), which via the throttle mapping 
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(a variable gain, i.e., a multiplication factor) results in an input to the vehicle model (‘throttle 
engine’, describing how much torque is requested from the car). The car model outputs the 
current driving speed, which is fed back to the driver via visual and auditory pathways. The 
driver perceives these two feedback sources with a time delay. Additionally, the driver is 
represented by a gain, which describes how strongly the driver responds to the difference 
between the perceived speed and the desired speed. The desired speed represents the 
speed at which the driver wishes to drive at a particular moment; it is dependent on many 
factors, including the environment (road curvature, road width), the driver’s personality, and 
the driver’s risk assessment based on the visual and auditory information received.

If drivers apply a particular ‘throttle driver’, this will result in a higher ‘throttle engine’ when 
driving with MTM (i.e., high MTM gain) compared to without (i.e., low MTM gain). Accordingly, 
MTM was hypothesized to increase perceived sportiness and vehicle acceleration compared 
to without. However, it can be expected that the effect of MTM on driving speed is only short-
lasting, as visual feedback is dominant in driving (e.g., Sivak, 1996). This hypothesis can be 
further motivated from the viewpoint of open-loop versus closed-loop control (Jagacinski 
& Flach, 2003). That is, MTM is expected to increase vehicle acceleration (and thus speed) 
for short-term ‘open-loop’ leg movements involved in pressing the pedal but will not affect 
‘closed-loop’ driving speed. Note that Figure 6.1 depicts a closed-loop situation, where the 
driver uses auditory and visual feedback to control the car’s speed. In the context of Figure 
6.1, an increase of MTM gain is expected to result in a reciprocal decrease in the driver gain, 
so that the driving speed is unaffected.

In the current study, AES was implemented through an increase of the ‘virtual rpm’, where 
we assumed an electric vehicle that generated the sound of a combustion engine. When 
driving with AES enabled (i.e., high AES gain), fluctuations in driving speed result in larger 
fluctuations in engine sound pitch as compared to Baseline (i.e., a condition with a low 
AES gain). In other words, the enabling of AES can be expected to strengthen the auditory 
feedback loop, making drivers better aware of speed fluctuations, and thus contributing to a 
more accurate estimate of driving speed relative to the desired driving speed (see Hellier et 
al., 2011 for a similar argumentation regarding vehicle sound in general). It is noted that visual 
feedback is processed relatively slowly compared to the other sensory modalities (Hosman & 
Stassen, 1998). This may be especially true when it comes to the perception of longitudinal 
ego-speed, which requires the driver to extract (changes in) optical flow and edge rate 

Figure 6.1. Schematic representation of a driver driving with Modified Throttle Modification 
(MTM) and Artificial Engine Sound (AES). This figure assumes a fixed-base driving simulator, 
which means that the driver is not provided with physical motion feedback.
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information (Larish & Flach, 1990) (but note that the speedometer provides a more direct 
indication of speed). Hence, auditory feedback may have an important role in speed control.

In addition to the mechanisms depicted in Figure 6.1, AES may influence the desired driving 
speed itself. As pointed out above, increasing the engine sound volume leads to a lower 
driving speed. In the same vein, the increased virtual rpm can be expected to result in lower 
driving speeds. This hypothesis is consistent with the phenomenon of risk compensation, 
which predicts that drivers increase their speed when provided with protective or assistive 
technology, or conversely reduce their speed when provided with technology that reduces 
protection or increases the perceived risk (Fuller, 2005; Melman et al., 2018; Wilde, 1998). 

The hypothesized effects for MTM and AES are summarized in Table 6.1. 

6.2. Method
6.2.1. Participants
Thirty-two participants (6 females) between 19 and 35 years old (M = 23.4, SD = 3.1) with 
normal or corrected-to-normal vision volunteered for the driving simulator experiment. 
Regarding the question ‘On average, how often did you drive a vehicle in the last 12 months’, 
3 participants reported every day, 5 reported 4 to 6 days a week, 12 reported 1–3 days a 
week, 11 reported once a month to once a week, and 1 never. Regarding mileage in the 
past 12 months, the most frequently selected response category was 1001–5000 km (14 
respondents), followed by 5001–10000 km (7 respondents, 10001–15000 km (4 respondents), 
and 15001–20000 km (4 respondents). The research was approved by the Human Research 
Ethics Committee (HREC) of the Delft University of Technology, and all participants provided 
written informed consent.

6.2.2. Apparatus
The experiment was conducted in a fixed-base simulator (see Figure 6.2). The steering wheel 
and pedals used in the simulation were from a Sensodrive Senso-Wheel running at 1 kHz. 
The simulation was developed using JOAN (Beckers et al., 2021), an open-source software 
framework developed at the TU Delft that builds on the CARLA open-source simulator 
(Version 0.9.8; Dosovitskiy et al., 2017). The vehicle dynamics were simulated by the Unreal 
Engine using PhysX (Unreal, 2021). The scenery was shown via a 65-inch 4k TV with a 60 
Hz refresh rate. The virtual camera settings provided a 90-deg horizontal field of view. The 
simulation and data logging were updated at 100 Hz. The sound of the vehicle’s engine was 
presented via Beyerdynamic DT-770 Pro 32 Ohm headphones. The car’s interior and bonnet 
were included in the visualization to enhance the perception of road position and vehicle 
speed and were the same for all conditions (Figure 6.2). The vehicle speed was shown 
digitally in light blue font above the bonnet.

Table 6.1.
Hypothesized effects of the two systems on perceived sportiness and driving behavior relative 
to a Baseline condition

Perceived sportiness Driving speed
Artificial Engine Sound (AES) Higher Lower mean and lower variability
Modified Throttle Mapping (MTM) Higher Higher (short term)
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6.2.3. Independent Variables and Design
Participants drove five trials, one of the following five conditions per trial:

1. Baseline
2. Artificial engine sound (AES) 
3. Modified throttle mapping (MTM)
4. Modified throttle mapping and artificial engine sound combined (MTM-AES)
5. Sports car

The five conditions were presented according to a balanced within-subject design 
(Williams design).

For the Baseline, AES, MTM, and MTM-AES conditions, the simulated vehicle was a 2-m 
wide sedan of 2316 kg. It had a maximum engine torque of 350 Nm, a maximum speed of 
149 km/h, and a drag coefficient of 0.24. The vehicle was modeled after an electric vehicle, 
with a single-gear gearbox and a nearly constant engine torque for different speeds. The 
Sports car offered increased engine power. It was modeled after the same heavy sedan and 
visually identical to the other four conditions, but with an increased maximum torque of 550 
Nm and a maximum speed of 203 km/h.

For the Baseline, AES, MTM, and MTM-AES conditions, the same interior sound of a 
vehicle driving at constant speed was used (Volkswagen Golf V 1.6 FSI running at 2140 
rpm; Soundsnap, 2021a). This sound was looped, and the playback speed of the interior 
sound was slowed down or sped up depending on the vehicle speed and momentary engine 
torque (‘throttle engine’), hence providing a virtual rpm. In this way, the vehicle sound was 
informative about vehicle speed and engine torque. The Sports car had a higher rpm and 
was based on another sound sample (Audi A4 B8 20TDI running at 3050 rpm; Soundsnap, 
2021b), which produced a more racy sound at high virtual rpm. Figure 6.3 shows how the 
virtual rpm depended on vehicle speed and engine torque, for Baseline, AES, and the Sports 
car. The mapping shown in Figure 6.3 was based on extensive pilot testing, where it was 
made sure that the differences between conditions were noticeable and within a realistic rpm 
range.

The MTM condition changed the relationship between the driver’s throttle depression 
(‘throttle driver’) and the normalized requested engine torque (‘throttle engine’), without 
affecting the maximum engine power (Figure 6.4). For a ‘throttle driver’ value of 27%, the 
difference in ‘throttle engine’ between Baseline (15%) and MTM (49%) was maximal (34%). 

Figure 6.2. The experimental environment with a participant driving in the fixed-based 
simulator. The digital speedometer can be seen in light blue font, just above the bonnet.
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The throttle mappings were based on pilot tests, where it was made sure that the difference 
between Baseline and MTM was noticeable while retaining controllability. For the Sports car, 
a linear throttle mapping was used, where 0% ‘throttle driver’ corresponded to 0% ‘throttle 
engine’, and 100% ‘throttle driver’ corresponded to 100% ‘throttle engine’.

Figure 6.3. Virtual engine speed (rpm) as a function of vehicle speed and throttle engine. The 
data used to create this graph were obtained from the data recordings of the experiment.

Figure 6.4. The modified throttle mapping. ‘Throttle driver’ was measured by a displacement 
sensor attached to the throttle pedal, whereas ‘throttle engine’ was determined by software. 
Note that ‘throttle driver’ could become slightly smaller than 0 when releasing the pedal or 
exceed 100% when fully depressing the pedal. In the analysis, all values above 100 and 
below 0 were rounded to 100 and 0, respectively. The ‘throttle driver’ range from 0 to 100% 
corresponded to a physical pedal depression of about 75 mm at an exerted force of about 
35 N.
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6.2.4. Road Environment
The participants drove five trials on the same single-lane road (3.6 m wide and 8.1 km long). 
Trees, buildings, landscapes, and guardrails were placed next to the road. The route was 
divided into an acceleration section, a straight section, and a curvy section (Figure 6.5). 

The first 2.6 km consisted of an acceleration task where drivers were requested to 
accelerate four times to 60 km/h. The locations of the accelerations were indicated via stop 
signs and speed limit signs next to the road. The acceleration section was implemented 
to ensure that all drivers strongly accelerated at least four times per condition. The middle 
2 km was a straight section where participants could choose a speed at which they felt 
comfortable. The straight allowed an investigation of the participants’ speed choice.

The last 3.5 km consisted of a curvy section that contained curves with an inner radius of 
100, 150, and 250 m. Each curve type appeared three times, and the curves were connected 
by straight sections with a length of 50 or 100 m. No traffic and no on-road obstacles were 
simulated. The curvy section allowed investigating naturalistic deceleration and acceleration 
for curves. 

6.2.5. Procedure
Participants first read and signed a consent form and completed a questionnaire regarding 
their demographics and driving experience. Participants were asked to drive as they usually 
would and adhere to the traffic rules identified by road signs next to the road. Next, the 
participants were requested to sit in the simulator.

Before each condition, a three-minute training run was performed on a road consisting 
of straights and curves. During each training trial, the participants were asked to familiarize 
themselves with the upcoming condition by accelerating, decelerating, and curve driving.

In each experimental trial, participants drove in one of the five conditions (Baseline, MTM, 
AES, MTM-AES, or Sports car). After each trial, participants stepped out of the simulator and 
completed a questionnaire about their driving experience. The experiment took approximately 
75 minutes per participant.
 
6.2.6. Dependent Measures
A distinction is made between self-reported experience and driving behavior.

Self-reported experience. 
After each trial, participants completed a questionnaire containing 14 questions on a five-
point Likert scale. The first four questions investigated drivers’ perceived effort for Q1 
braking, Q2 steering, Q3 accelerating, and Q4 maintaining speed, on a scale of low to high. 
This was followed by three questions regarding the perception of the vehicle: Q5 engine 
responsiveness (low to high), Q6 brake responsiveness (high to low), and Q7 engine sound 
of the vehicle (high to low).

Finally, seven questions were asked using a semantic differential scale. Participants had 
to answer whether they had experienced the vehicle as Q8 sporty/not sporty, Q9 dangerous/
safe, Q10 comfortable/not comfortable, Q11 undesirable/desirable, Q12 raising alertness/
sleep-inducing, Q13 irritating/likable, and Q14 sluggish/quick. In the analysis, answers to Q6, 
Q7, Q8, and Q10 were mirrored such that the results were expressed on a scale from low to 
high.

Of note, Q8 was the main question of interest in this research (i.e., perceived sportiness), 
whereas Q10, Q11, and Q13 assessed acceptance (Q11 and Q13 were from the satisfaction 
dimension of an acceptance survey of Van der Laan et al., 1997). Q1, Q2, and Q6 were 
negative control questions that were expected not to be affected by any of the experimental 
conditions, whereas Q3, Q5, Q7, and Q14 were positive control questions, expected to be 
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affected by at least one of the experimental conditions. Finally, Q4, Q9, and Q12 assessed 
additional experiences of interest, namely whether participants found it difficult to control the 
speed of the vehicle (Q4), whether they found the vehicle safe (Q9), and how the experimental 
conditions affected their overall arousal level (Q12).

Principal component analysis on the questionnaire results.
To identify underlying dependencies and to increase the interpretability of the 14 questionnaire 
items, a principal component analysis (PCA) was performed. A matrix with responses for 
160 trials (32 participants x 5 trials per participant) and 14 items was normalized to a mean 
of 0 and a standard deviation of 1 and submitted to PCA. The first two components were 
retained, and component scores per participant and experimental condition were computed 
after oblique rotation (Promax).

Driving Behavior. 
The driving behavior measures were calculated separately for the straight and curvy 
sections (Figure 6.5). For the straight section, the first 800 m and last 400 m were discarded 
to investigate steady-state driving. For the curvy section, the entire 3.5 km was used. The 
following measures were calculated:

• Mean speed (km/h). A measure for road safety: an increase in speed reduces a driver’s 
time to respond in an emergency scenario and increases the probability of being 
involved in a crash (Aarts & Van Schagen, 2006; Pei et al., 2012).

• Standard deviation (SD) of the speed (km/h). A higher SD speed indicates that drivers 
were not able or willing to maintain a constant speed.

• Mean absolute longitudinal acceleration (m/s2). This is a measure indicative of the 
‘fluency’ and sportiness of driving. A high mean absolute longitudinal acceleration 
can be seen as sporty driving behavior (Ericsson, 2001; Martinez et al., 2018).

• Mean throttle driver (%). A measure of how deeply drivers pressed the accelerator on 
average.

• Mean throttle engine (%). This measure indicates how much engine torque was 
delivered on average. Together, ‘throttle driver’ and ‘throttle engine’ allowed examining 
how drivers adapted to the MTM condition.

• Throttle driver released time (%). In the literature, this measure is also referred to as 

Figure 6.5. Top view of the 8.1 km driven route consisting of three sections: an acceleration 
section, a straight section, and a curvy section.
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coasting. Coasting has been interpreted as indicative of uncertainty or a delay in 
decision-making (Houtenbos et al., 2017; Yeo et al., 2010). It can also be seen as a 
consequence of having accelerated too much, resulting in an overshoot of speed and 
a subsequent throttle release.

Additionally, an analysis was performed for the acceleration section, where the first 
second of the four acceleration phases (i.e., accelerating from standstill) was averaged per 
experimental condition. The start of each trial was determined based on the moment the 
throttle position exceeded 0%.

6.2.7. Statistical Analyses
For each measure, a matrix of 32 x 5 numbers was obtained (32 participants and 5 conditions). 
For each condition in this matrix, the mean, standard deviation (SD), and 95% within-subject 
confidence interval (CI) were computed. The 95% within-subject confidence intervals were 
calculated according to Morey (2008), where the matrix was normalized by subtracting for 
each participant the mean of all conditions from the five condition observations before using 
the standard method for determining the 95% CI. The CI was adjusted with a correction factor 
based on the number of experimental conditions (Morey, 2008). According to Cumming and 
Finch (2005), non-overlapping CIs correspond to a p-value smaller than 0.006.

6.3. Results
6.3.1. Self-Reported Experience
Figure 6.6 shows the means and within-subject 95% confidence intervals for the 14 
questionnaire items. Compared to Baseline, AES and MTM-AES resulted in increased 
perceived sportiness (Q8), perceived engine responsiveness (Q5), and perceived quickness 
(Q14). Furthermore, AES and MTM-AES were clearly perceived overall (Q7), whereas 
desirability (Q11) and likability (Q13) did not show significant differences from Baseline.

MTM-AES resulted in an increased self-reported effort to maintain speed compared to 
AES, and a similar trend was evident for MTM versus Baseline (Q4). The effects of MTM on 
the other questionnaire items, including sportiness (Q8), were not significant. For the three 
negative control questions (brake effort [Q1], steering effort [Q2], and brake response [Q6]), 
no significant differences were observed between the five conditions.

The Sports car yielded lower acceleration effort (Q3), higher perceived engine 
responsiveness (Q5), and higher perceived sportiness (Q8) than the other four conditions. 
Additionally, the Sports car was regarded as less sleep-inducing (Q12) and quicker (Q14). 
Finally, the Sports car was liked (Q13) and regarded as desirable (Q11).

The principal component analysis loadings are shown in Table 6.2. The first principal 
component is primarily composed of questions related to sportiness and acceleration of the 
vehicle. The second principal component is mainly composed of questions that correspond 
to comfort, safety, likability, and desirability. In total, the first two principal components 
captured 53.2% of the variance (PC1–Sportiness; 36.8%, PC2–Positive Affect: 16.4%).
The mean PC1-Sportiness scores (95% CI) for Baseline, MTM, AES, MTM-AES, and Sports 
car were -0.813, [-1.083, -0.543], -0.542 [-0.824,-0.261], 0.000 [-0.256, 0.256], 0.201 [-0.078, 
0.480], and 1.153 [0.874, 1.432]. The mean PC2–Positive affect scores (95% CI) for Baseline, 
MTM, AES, MTM-AES, and Sports car were 0.078 [-0.291, 0.447], -0.156 [-0.542, 0.230], 
0.196 [-0.167,0.559], -0.187 [-0.513, 0.139], and 0.069 [-0.198, 0.336]. Thus, the PC1–
Sportiness scores were substantially elevated for the Sports car, as well as the AES and 
MTM-AES conditions, whereas no clear differences between the five conditions were found 
in PC2–Positive Affect.
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6.3.2. Driving Behavior
Figure 6.7 shows the road curvature, driving speed, throttle driver, and throttle engine, 
averaged over all participants as a function of traveled distance. It can be seen that 
participants adhered to the traffic signs and accelerated four times to 60 km/h (in accordance 
with the instructions), and adopted an average speed during the straight section of 115–120 
km/h. In the subsequent curvy section, drivers can be seen to slow down more for sharper 
curves. Over the entire track, drivers adopted lower throttle inputs when driving with MTM 
and MTM-AES compared to Baseline and AES.

Effects of MTM (MTM vs. Baseline & MTM-AES vs. AES)
Table 6.3 shows the means, standard deviations, and non-overlapping confidence intervals 
for the driving behavior measures. Figure 6.7 and Table 6.3 show that for both sections, 
participants applied a significantly lower ‘throttle driver’ for MTM compared to Baseline and 
AES, whereas no significant differences were found for ‘throttle engine’. In other words, 
participants adapted to the MTM condition by pressing the throttle less deeply. Furthermore, 

Figure 6.6. The questionnaire results for the 14 questions for the five conditions. The figure 
depicts the means (circles) and within-subject 95% confidence intervals (whiskers). The 
questionnaire numbers for the negative control questions (Q1, Q2, Q6) are indicated in red.

PC1
Sportiness

PC2 
Positive Affect

Q1. Brake effort 0.00 -0.26
Q2. Steering effort -0.16 -0.52
Q3. Acceleration effort -0.78 -0.15
Q4. Speed control effort 0.09 -0.62
Q5. Engine responsiveness 0.83 0.02
Q6. Brake responsiveness -0.08 0.01
Q7. Engine sound 0.5 -0.24
Q8. Sportiness 0.83 0.08
Q9. Safety -0.35 0.72
Q10. Comfort 0.02 0.77
Q11. Desirability 0.41 0.64
Q12. Sleep inducing -0.78 0.19
Q13. Likability 0.44 0.64
Q14. Quickness 0.87 0.13

Table 6.2. Promax-rotated PCA loadings for the first two principal components (PC)
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Figure 6.7. The mean driving behavior per condition averaged over all 32 participants; from 
top to bottom: road curvature, speed, acceleration, throttle driver, and throttle engine. The 
vertical lines demarcate the acceleration, straight, and curvy sections. Note that the vehicle 
speed does not drop to exactly 0 km/h during the acceleration section; this is because 
participants stopped their vehicle at slightly different distances on the road.
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for MTM and MTM-AES, the throttle-released time was about twice as high as Baseline 
and AES. The results for the first second of the acceleration phase (i.e., accelerating from 
standstill) showed a higher mean acceleration for MTM and MTM-AES compared to Baseline 
and AES.

Figure 6.8 depicts the distribution for ‘throttle driver’ and ‘throttle engine’ for all participants 
combined for the curvy section. It can again be seen that, compared to Baseline and AES, 
MTM and MTM-AES resulted in substantially lower ‘throttle driver’ values (Figure 6.8, top). 
For ‘throttle engine’, the mean was equivalent between conditions (see Table 6.3), but 
the distribution of ‘throttle engine’ (Figure 6.8, bottom) showed clear differences between 
conditions. More specifically, for MTM and MTM-AES, low ‘throttle engine’ levels (5–40%) 
were underrepresented, and high ‘throttle engine’ levels (40–75%) were overrepresented 
compared to Baseline and AES. For the Sports car, a lower ‘throttle engine’ was found 
compared to the other conditions. This can be explained by the fact that the Sports car had 
more engine power, and thus a lower ‘throttle engine’ was needed to drive at a particular 
speed (see also Table 6.3).

Figure 6.9 shows the participants’ mean acceleration during the first 3 s after driving 
away. It shows that drivers adopted significantly higher accelerations when driving with MTM 
and MTM-AES than Baseline and AES. The increased acceleration for MTM compared to 
Baseline, which was described above, is clearly visible. After about 1.5 s, the accelerations 
were equivalent for Baseline, MTM, AES, and MTM-AES conditions.

Effects of AES (AES vs. Baseline & AES vs. MTM)
Table 6.3 shows that no significant effects of AES on mean driving speed were found. 
However, AES resulted in a decreased SD speed and decreased mean absolute acceleration 
while driving through curves. In other words, AES induced more fluent driving behavior 
compared to Baseline.

Table 6.3. Mean (M) and standard deviation (SD) for each dependent measure, and the 
within-subject 95% confidence interval comparison. Non-overlapping confidence intervals 
are denoted by ‘x’

Baseline MTM AES MTM-AES Sports car
(1) (2) (3) (4) (5)
M M M M M

(SD ) (SD ) (SD ) (SD ) (SD ) 1-2 1-3 1-4 1-5 2-3 2-4 2-5 3-4 3-5 4-5

Mean acceleration 1.10 1.37 1.06 1.36 1.70
during the first second  (m/s2) (0.45) (0.35) (0.37) (0.33) (0.71)

Mean speed (km/h) 115.71 120.28 114.64 114.73 124.98
(22.02) (22.27) (23.27) (23.08) (29.86)

SD speed (km/h) 2.37 1.41 2.39 1.84 5.40
(3.48) (1.16) (2.46) (1.37) (5.94)

Mean abs acceleration (m/s2) 0.14 0.09 0.16 0.11 0.29
(0.17) (0.07) (0.18) (0.09) (0.25)

Mean throttle driver (%) 66.59 52.07 66.22 45.17 50.10
(17.05) (29.84) (15.49) (27.18) (22.16)

Mean throttle engine (%) 60.63 65.49 60.28 60.51 50.10
(20.48) (21.14) (18.86) (19.14) (22.15)

Throttle driver released time (%) 0 0.22 0.02 0.44 1.67
0 (0.83) (0.11) (2.04) (5.50)

Mean speed (km/h) 81.44 84.42 81.72 83.54 84.93
(15.54) (15.20) (16.89) (15.35) (15.95)

SD speed (km/h) 8.91 8.06 7.71 7.34 8.65
(2.75) (2.28) (2.76) (2.19) (3.03)

Mean abs acceleration (m/s2) 0.54 0.50 0.45 0.44 0.57
(0.26) (0.21) (0.21) (0.19) (0.30)

Mean throttle driver (%) 50.88 28.22 51.56 26.85 32.77
(5.73) (9.28) (6.33) (9.27) (6.28)

Mean throttle engine (%) 43.01 44.62 43.29 44.01 32.76
(7.56) (7.13) (8.26) (7.30) (6.27)

Throttle driver released time (%) 4.84 8.68 3.09 6.95 7.53
(5.39) (5.86) (4.02) (5.63) (7.91)

Acceleration section

Straight section

Curvy section

Conditions Confidence interval (x = non-overlapping)

x

x

x

x

xxx

x

x

x

x x

xx

x x x x x

x

xxx

x x x x x

x

x xxx

x x x
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Effects of Sports car
Compared to the other four conditions, the Sports car yielded a high mean speed (on the 
straight section, not in the curvy section), a high SD speed, and a high mean absolute 
acceleration. The highest mean acceleration during the 1-s acceleration phase was found for 
the Sports car. In other words, the Sports car resulted in sporty driving behavior.

Figure 6.8. ‘Throttle driver’ and ‘throttle engine’ distribution of all participants for the curvy 
section. The fraction is plotted in the middle of each bin. The bin width is 5%, where the first 
bin includes the scalar 0, the second bin includes values greater than 0 and less than or equal 
to 5, and so on. The last bin contains the scalar value 100. The sum of all fractions equals 1 
for each condition.

Figure 6.9. Mean vehicle acceleration for 0–60 km/h acceleration phases, averaged over 
repetitions and participants during the first 3 s. The ‘full throttle’ lines are added as a reference.
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6.4. Discussion
This study investigated the effects on perceived sportiness and driving behavior of Modified 
Throttle Mapping (MTM) and Artificial Engine Sound (AES) relative to a vehicle without these 
systems (Baseline) and a vehicle that offered increased engine power together with a sporty 
engine sound (Sports car). Below we discuss the results using the framework presented in 
Figure 6.1.

6.4.1. Artificial Engine Sound (AES)
On a scale of 1 to 5, the mean perceived sportiness ratings for Baseline, MTM, AES, MTM-
AES, and Sports car were 1.72, 1.84, 2.78, 2.97, and 3.91, confirming the hypothesis that 
AES has a positive effect on perceived sportiness. AES was also clearly noticed and yielded 
high ratings of vehicle quickness and responsiveness. However, AES did not increase 
perceived sportiness to the extent of driving the Sports car. The principal component analysis 
complemented these findings, where a strong effect of AES and MTM-AES compared to 
Baseline was found on the PC1–Sportiness dimension, whereas PC2–Positive Affect scores 
were relatively unaffected by the experimental conditions. In other words, AES increased 
perceived sportiness without compromising comfort. 

Regarding driving behavior, the AES and MTM-AES conditions yielded improved speed 
control (i.e., lower SD speed) while driving through curves compared to Baseline. In other 
words, AES induced fluent rather than sporty driving behavior. These results can be 
interpreted using Figure 6.1. That is, a plausible explanation would be that due to the more 
rapid change in virtual rpm for AES compared to Baseline, changes in engine torque were 
more readily noticed via the auditory feedback loop, which in turn improved speed control. 
These effects may be especially manifest in our fixed-base simulator, which did not provide 
vestibular feedback. Several previous studies agree on the importance of sound in vehicle 
speed control, but these studies typically investigated the impact of sound in driving tasks 
where the speedometer was not visible, possibly increasing the impact of auditory feedback 
(Denjean et al., 2012). Merat and Jamson (2011) found an increase in speed variability 
compared to a baseline condition, especially for a ‘no sound & no speedometer’ condition’. 
We found improvements in speed control even though the speedometer was permanently 
visible to the driver. With the presence of a speedometer, visual feedback delays can be 
expected to be smaller compared to when no speedometer is available, as the speedometer 
provides a direct reading. Note that the speed variability benefits were statistically significant 
only for the curvy section, possibly because the visual demands from the roadway were 
higher during curve driving, as a result of which participants were unable to glance at the 
speedometer. In summary, the results indicate that AES increased perceived sportiness and 
improved speed control performance.

AES and MTM-AES did not significantly affect participants’ mean driving speed relative 
to Baseline. This finding is inconsistent with the risk compensation mechanism outlined 
in the Introduction, based on which we hypothesized that the elevated virtual rpm would 
entice drivers to drive more slowly. Previous research has found that drivers slow down 
when provided with a more demanding environment (e.g., narrower lanes; Melman et al., 
2020; driving in fog; Brooks et al., 2011) or when driver assistance systems are disabled 
(e.g., Janssen & Nilsson, 1993; Melman et al., 2017). According to Elvik et al. (2009), the 
degree of risk compensation can be predicted by the noticeability of the intervention and the 
‘size of the engineering effect’ of the intervention, where the latter is defined as the safety 
benefits caused by the intervention if the driver would not change his behavior. Although AES 
was clearly noticeable in our study according to the questionnaire outcomes, there was no 
engineering effect since AES did not affect the vehicle dynamics. In other words, AES did not 
offer a safety benefit, nor did it instigate drivers to drive faster.

Although no speed increase was found for MTM and AES, the Sports car did induce 
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higher driving speeds and higher mean absolute acceleration than the other conditions. Put 
differently, the Sports car resulted in sporty driving behavior. This finding is not entirely self-
evident. Previous cross-sectional research indicates that sporty vehicles are driven in a more 
risky manner than non-sporty vehicles, but the causal direction of this association remained 
unproven (Horswill & Coster, 2002). The present study showed that the Sports car yielded a 
10 km/h higher mean speed on the straight than MTM-AES, confirming that the availability of 
more engine power caused drivers to drive faster.

Earlier psychoacoustics research showed a decrease in comfort and acceptance for more 
sporty (rough, loud) sounds (Krüger et al., 2004; Kwon et al., 2018; Wang et al., 2014), whereas 
we found no significant effects of comfort and acceptance for AES compared to Baseline. 
In fact, the Sports car yielded the highest self-reported desirability and likeability among the 
five conditions. The difference between our findings and previous research may have arisen 
because our participants were driving on a challenging trajectory that included curves. The 
sound, therefore, had a functional role (e.g., to aid in speed perception, see Figure 6.1), which 
may have contributed to improved comfort and acceptance (as also pointed out by Hellier 
et al., 2011). Furthermore, our sample consisted of predominantly young males, who may be 
accepting of sporty sounds.

6.4.2. Modified Throttle Mapping (MTM)
MTM caused substantially higher vehicle accelerations than Baseline, but this was not 
reflected in ratings of sportiness, quickness, acceleration effort, or engine responsiveness. 
These findings are inconsistent with our hypothesis that stated that MTM would increase 
perceived sportiness. The absence of effects of MTM in the self-report questionnaire 
suggests that participants may have hardly been aware of the altered throttle mapping. As 
pointed out above, in fixed-base simulators, accelerations can be sensed via the auditory 
and visual senses only (Boer et al., 2000; De Groot et al., 2011; Greenberg et al., 2003). It is 
recommended that future studies on the perception of MTM are conducted in a real vehicle, 
allowing for vestibular feedback. In reference to Figure 6.1, this would require an additional 
feedback loop in the form of motion feedback (McRuer & Weir, 1969, and for state-of-the-art 
manual control models incorporating vestibular motion feedback, see Mulder et al., 2017).

Consistent with our hypothesis, participants adapted to the MTM by pressing the throttle 
less deeply in such a way that their mean driving speed was unaffected. In the context of 
Figure 6.1, drivers quickly adapted their ‘driver gain’ to the increase in ‘MTM gain’. Previous 
research concurs that human operators can adapt to different control gains (De Winter & De 
Groot, 2012; Jenkins & Connor, 1949). An early review by McRuer and Jex (1967) showed 
that the range of optimum gains is wide, with only small deviations in self-reported handling 
qualities for 300–400% changes in the gain of the controlled vehicle. These findings are 
consistent with our study, which showed that drivers appeared to have hardly noticed the 
MTM.

Although MTM yielded the same mean ‘throttle engine’ as the Baseline condition, it 
yielded a different ‘throttle engine’ distribution. These findings can be explained directly by 
the throttle mapping, as depicted in Figure 6.4. For example, for the MTM condition, ‘throttle 
engine’ values between 0 and 40% were obtained for only a small range of ‘throttle driver’ 
(0–18%).

Of note, MTM yielded a relatively high self-reported effort for speed control and throttle-
release times that were about twice as high as the Baseline condition. It seems that the 
sensitive MTM pedal led to high pedal movements, as characterized by overshoot (i.e., 
high ‘throttle engine’) and subsequent releasing of the pedal. A likely explanation is that 
high control gains amplify the influence of motor noise, so that higher gain requires more 
corrective effort (Chapanis & Kinkade, 1972; De Winter & De Groot, 2012; Jenkins & Connor, 
1949). In other words, when driving with MTM, drivers fully adapted their ‘throttle engine’ to 
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achieve the same mean speed as Baseline, but at the cost of corrective pedal adjustments 
and effort. On the flipside, the advantage of a higher gain is that the required amplitude of 
limb movement is smaller. 

6.4.3. MTM and AES Combined 
A visual inspection of the results in Figure 6.6 and Table 6.3 reveals no clear MTM x AES 
interaction effects. For example, the results for perceived sportiness (Q8) suggest that the 
effects of MTM and AES are additive, with ‘the whole’ (i.e., effects of MTM-AES vs. Baseline) 
being approximately equal to the ‘sum of its parts’ (i.e., MTM vs. Baseline and AES vs. 
Baseline). The lack of interaction is supported by two-way repeated-measures ANOVAs 
using the results for Baseline, MTM, AES, and MTM-AES conditions as input. All 27 ANOVAs 
revealed a non-significant MTM x AES interaction effect (p > 0.05 for each of the dependent 
variables, i.e., 14 self-reports and 13 performance measures). This lack of interaction may 
be surprising because the MTM-AES system is interactive in nature, as AES allows for a 
more direct perception of engine torque (see Figure 6.3). For example, MTM yielded higher 
throttle-released times than Baseline, something that should theoretically be better audible 
to participants when AES is enabled compared to when AES is disabled. Future research 
should employ larger sample sizes to be able to detect MTM x AES interactions that may 
exist.

6.4.4. Practical Implications and Recommendations
The current MTM implementation is easily translated to a real vehicle as it is based on a 
commercially available product that performs the same digital manipulation (DTE Systems, 
2021). Similarly, electric vehicles could be equipped with an AES system similar to the one in 
this study. It should not be forgotten that a driving simulator itself provides only an illusion of 
driving (Hancock, 2009). In real electric vehicles, there is also ambient sound (e.g., tires, wind) 
and vibrations, which may require active sound cancellation to provide a veridical synthetic 
sound. Furthermore, as recommended above, research in real vehicles is still needed.

It is noted that the current implementations of AES and MTM, although justified based on 
pilot testing, represent only one point in the large design space that exists. The current study 
involved pitch adjustments in engine sound, tested in acceleration, straight driving, and curve 
driving tasks. Other options would be to apply continuous auditory feedback to support 
braking, lane-keeping, car-following, or automation mode awareness (e.g., Bazilinskyy et al., 
2019; Bringoux et al., 2017). 

Apart from investigating other sounds and throttle mappings, it would be interesting to 
investigate how other technologies affect perceived sportiness and driving behavior. Sport 
modes commonly use red ambient light (Helander et al., 2013; Nieke et al., 2016; Renault, 
2021) and a sporty instrumented cluster (e.g., see Jindo & Hirasago, 1997; Jung et al., 
2010; Petiot et al., 2015). Other techniques to increase perceived sportiness are to increase 
steering torques and center point emphasis of the steering system (Fankem & Müller, 2014), 
shortening the gear shift stroke (Hosoda, 2010), changing the seat so that it has high side 
supports (Kamp, 2012), and recreating the road feedback between front-wheel slip and 
steering force that has been lost due to power steering (Uselmann et al., 2015).
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6.5. Conclusions
This study was concerned with examining how drivers perceive and respond to electric-
vehicle parameter adjustments that intend to provide a sporty driving experience. Modified 
Throttle Mapping (MTM) and Artificial Engine Sound (AES) were tested—systems that affect 
the ‘gain’ of the accelerator pedal and the auditory feedback provided to drivers, respectively, 
and which do not enhance the car’s performance envelope. The results showed the following 
effects relative to the Baseline condition:

• AES increased perceived sportiness, whereas MTM did not.
• AES and MTM did not affect perceived comfort.
• AES yielded improved speed control in curves.
• MTM increased vehicle acceleration from a standstill.
• AES and MTM yielded average driving speeds that were comparable to Baseline. 
• No AES x MTM interaction effects were found.

These novel findings may have utility for vehicle manufacturers. Throttle mapping (i.e., 
MTM gain as depicted in Figure 6.1) is a component of every vehicle, but so far, no research 
seems to have examined its effects on driving behavior and perception. Research into the 
effects of sound on driving behavior has so far mainly focused on the presence/absence or 
volume of sound and not on sound enhancement as could be applied in electric vehicles. 
Furthermore, research on vehicle sound has to date been predominantly conducted in 
listening rooms, a setting which, as argued in the Introduction, is not realistic. In listening 
rooms, sporty sounds tend to be perceived as uncomfortable, whereas in our study, sporty 
sounds were not seen as uncomfortable but rather contributed to improved speed control 
performance. 

In addition to its applied value, this study offers fundamental insights into human 
perception and behavior. The current findings were interpreted using principles from manual 
control theory, as shown in Figure 6.1, where we highlighted the role of driver adaptation 
(drivers fully adapted their own gain to the increased MTM gain) and feedback loops (drivers 
used the artificial sound as a feedback channel that aided in speed control). Furthermore, no 
risk compensation occurred, i.e., in the context of Figure 6.1, the ‘desired speed’ remained 
unaffected.

In more general terms, our study indicates that findings from complex tasks, such as 
driving, can be interpreted with the help of qualitative representations from control theory, 
a notion emphasized by several psychologists and human factors scientists before (Flach, 
1990; Jagacinski, 1977; Sheridan, 2004) but which is still undervalued (Mansell & Marken, 
2015).

Supplementary Material
The data, analysis scripts, and videos of the experiment can be downloaded via the following 
link https://doi.org/10.4121/16644697
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Do Sport Modes Cause Behavioral 
Adaptation?



A key question in transportation research is whether drivers show behavioral 
adaptation, that is, slower or faster driving, when new technology is introduced into 
the vehicle. This study investigates behavioral adaptation in response to the sport 
mode, a technology that alters the vehicle’s auditory, throttle-mapping, power-steering, 
and chassis settings. Based on the literature, it can be hypothesized that the sport 
mode increases perceived sportiness and encourages faster driving. Oppositely, the 
sport mode may increase drivers’ perceived danger, homeostatically causing them 
to drive more slowly. These hypotheses were tested using an instrumented vehicle 
on a test track. Thirty-one drivers were asked to drive as they normally would with 
different sport mode settings: Baseline, Modified Throttle Mapping (MTM), Artificial 
Engine Sound enhancement (AESe), MTM and AESe combined (MTM-AESe), and 
MTM, AESe combined with four-wheel steering, increased damping, and decreased 
power steering (MTM-AESe-4WS). Post-trial questionnaires showed increased 
perceived sportiness but no differences in perceived danger for the three MTM 
conditions compared to Baseline. Furthermore, compared to Baseline, MTM led to 
higher vehicle accelerations and, with a smaller effect size, a higher time-percentage 
of driving above the 110 km/h speed limit, but not higher cornering speeds. The 
AESe condition did not significantly affect perceived sportiness, perceived danger, 
and driving speed compared to Baseline. These findings suggest that behavioral 
adaptation is a functional and opportunistic phenomenon rather than mediated by 
perceived sportiness or perceived danger.

Published as:
Melman, T., Tapus, A., Jublot, M., Mouton, X., Abbink, D. A., & De Winter, J. C. F. (2022). Do sport modes cause behavioral 
adaptation? Transportation Research Part F: Traffic Psychology and Behaviour. https://doi.org/10.1016/j.trf.2022.07.017
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7.1. Introduction
The ability to adapt to changing circumstances is essential when it comes to driving through 
traffic. For example, experienced drivers are able to anticipate hazards and decelerate in 
time where necessary (Underwood et al., 2011; Vlakveld, 2011). However, sometimes drivers 
adapt in a way that is unexpected, a phenomenon referred to as behavioral adaptation 
(OECD, 1990). More specifically, behavioral adaptation has been defined as “those behaviors 
which may occur following the introduction of changes to the road-vehicle-user system and 
which were not intended by the initiators of the change” (OECD, 1990, p. 23). Behavioral 
adaptation may manifest itself as a “continuum of effects ranging from a positive increase in 
safety to a decrease in safety.” The term risk compensation (Elvik et al., 2009) is often used 
to describe behavioral adaptation that results in decreased safety, such as faster driving or 
driving with shorter headways.

Concerns about behavioral adaptation are frequently raised when introducing advanced 
driver assistance systems (ADAS) (for reviews, see Rudin-Brown & Jamson, 2013; Saad, 
2006; Sullivan et al., 2016). Specific examples include adopting shorter headways when 
driving with a forward collision warning system (Reinmueller et al., 2020) and driving faster 
when using a lane-keeping assistance system (Melman et al., 2017). In these cases, the 
intended safety benefits of ADAS are not realized to the fullest extent because drivers take 
more risks when receiving assistance. It should be emphasized that behavioral adaptation is 
not necessarily a negative occurrence. Cocron et al. (2011), for example, noted that drivers of 
electric vehicles are aware of the fact that their vehicles emit little noise and therefore report 
driving more cautiously in the vicinity of pedestrians and cyclists.

Behavioral adaptation may also occur when the vehicle’s capabilities themselves are 
changed. In a cross-sectional study, Horswill and Coster (2002) showed positive correlations 
between observed vehicle speed and physical characteristics of the vehicle, such as engine 
power. Other examples of behavioral adaptation are vehicles that are driven faster in the 
snow when fitted with studded tires (Rumar et al., 1976) or shorter gaps that are accepted 
when vehicles have better acceleration capabilities (Evans & Herman, 1976).

Understanding behavioral adaptation is increasingly relevant now that a growing number 
of vehicles allow the vehicle’s characteristics to be adjusted through so-called driving modes, 
such as the sport or eco mode (for examples of this technology, see Audi, 2021; BMW, 2021; 
Mercedes-Benz, 2021; Porsche, 2021; Renault, 2021; Volvo, 2021). Through the press of 
a button, driving modes aim to offer a different driving experience through adjustments in 
auditory, visual, and haptic feedback. In the sport mode, for example, the vehicle settings 
are altered to create a more sportive experience. This includes adjustments in the powertrain 
settings such as a sportier throttle mapping (i.e., a more sensitive throttle pedal) and a more 
aggressive gear-changing strategy (i.e., staying longer in lower gears), but also adjustments 
that do not affect vehicle handling but aim to change the driver’s perception, such as artificial 
engine sound enhancement and dashboard lighting.

According to Elvik et al. (2009), the degree of behavioral adaptation depends on whether 
road users experience a benefit in changing behavior, such as time gain. In the above-
mentioned examples of vehicle modifications, this is clearly the case. For example, vehicles 
fitted with studded tires allow for a higher cornering speed than vehicles with regular 
tires. Sport modes do not affect the theoretical performance envelope of the vehicle (i.e., 
maximum engine power and maximum tire grip remain the same) but increase the effective 
performance envelope (i.e., make it less effortful to accelerate) and intend to create the 
subjective experience of sportiness. So far, no research in real vehicles seems to exist that 
has examined its effects on driving behavior. Although it may be expected that drivers exploit 
the sport mode to accelerate to a cruising speed more quickly, whether the sport mode 
also causes behavioral adaptation in the form of driving fast through curves or speeding is 
unknown.
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Two alternative mechanisms may explain drivers’ choice of speed when driving in a sport 
mode. On the one hand, it can be hypothesized that sportier auditory, visual, and haptic 
feedback encourages drivers to increase driving speed because drivers associate a sportier 
vehicle with a more sportive driving style. In the literature, speeding has been found for sports 
cars that have a higher maximum engine power (and thus higher maximum speed) compared 
to vehicles with lower engine power (e.g., Horswill & Coster, 2002; Krahé & Fenske, 2002; 
Melman et al., 2021b). Similarly, for the sport mode, it can be hypothesized that the increased 
perceived sportiness causes drivers to drive faster.

On the other hand, sporty vehicle settings can be argued to increase drivers’ perceived 
danger due to the increased feedback received (e.g., increase in engine sound and 
vibrations), and hence, cause a reduction in driving speed, a mechanism consistent with the 
risk homeostasis theory (Wilde, 1998). In the same vein, it has been argued that older models 
of cars are driven at a slower speed than modern cars, speculatively because these cars 
provide a more dangerous experience, with more noise and vibrations (Fosser & Christensen, 
1998). Previous psychoacoustic studies concur that increased engine volume or the presence 
of engine sound causes drivers to drive slower (Hellier et al., 2011; Horswill & McKenna, 
1999) and more accurately estimate their speed (Evans, 1970; Horswill & Plooy, 2008). Note 
that the risk homeostasis theory has been extensively criticized, primarily because it seems 
to suggest that any safety-related intervention will fail to have an effect on accident rates, 
something that is clearly incompatible with the available evidence (Evans, 1986; Vaa, 2007). 
At the same time, there is much support for the notion that drivers adapt their driving speed 
to the situation in conjunction with the risk they perceive (e.g., Kolekar et al., 2021; Trimpop, 
1996; Wilde, 2013).

As literature provides us with two competing hypotheses, we decided to examine the effect 
of sport mode settings on drivers’ speed. The present study measured behavioral adaptation 
operationalized as driving speed in an instrumented vehicle while driving the same test-track 
route for different combinations of active components used in a commercial sport driving 
mode. More specifically, we tested five conditions: (1) Baseline (equivalent to Renault’s eco 
mode), (2) Modified Throttle Mapping (MTM), (3) Artificial Engine Sound enhancement (AESe), 
(4) MTM and AESe combined (MTM-AESe), and (5) MTM, AESe combined with four-wheel 
steering, increased variable damping, and decreased power steering assistance (MTM-AESe-
4WS). The settings of each system are the same as the one used in Renault’s MultiSense 
sport mode and were previously described in Melman et al. (2021a). Condition 5 (MTM-
AESe-4WS) is identical to Renault’s sport mode (i.e., it incorporates all systems used in 
sport mode except the cockpit lighting color adjustments and dashboard interface), whereas 
Condition 4 (MTM-AESe) is the combination of Condition 2 (MTM) and Condition 3 (AESe). In 
the analysis, we investigated the effects of the systems on longitudinal driving behavior (i.e., 
speed and acceleration), combined with a location-specific analysis to discover where on the 
test track differences between the conditions emerged.

Apart from measuring driving speed and other vehicle-state variables, a post-trial 
questionnaire was used to measure the two constructs underlying our hypotheses: perceived 
sportiness and perceived danger. Several additional items were included that could help 
clarify why or how drivers adapt their behavior. More specifically, we queried the extent to 
which participants noticed relevant vehicle characteristics (see Elvik et al., 2009, who pointed 
out that the degree of behavioral adaptation depends on the noticeability of the feedback), 
and we measured the perceived effort in steering and accelerating (see Fuller, 2005; Melman 
et al., 2018, who noted that perceived effort might govern behavioral adaptation).

The current study is a conceptual replication of a fixed-base simulator study (Melman 
et al., 2021b) that investigated how perceived sportiness and driving behavior are affected 
by artificial engine sounds and modified throttle mapping (i.e., a more sensitive throttle 
pedal). In that study, the enhanced engine sound was simulated via a virtually elevated rpm, 
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whereas the current study amplifies the natural engine sounds through the in-cabin speakers. 
The modified throttle mapping was similar in both studies. The elevated rpm sound led to 
increased perceived sportiness as assessed through self-reports, whereas no statistically 
significant increase or decrease in driving speed was observed, i.e., behavioral adaptation 
did not occur. The same study also showed that modified throttle mapping only led to 
higher vehicle accelerations just after driving away from a standstill, while cruising speed 
was unaffected, which again indicates that behavioral adaptation did not occur. However, 
whether these results replicate in a production vehicle is still unknown. Human perception is 
substantially different in a real vehicle than in the driving simulator that was used because the 
driving simulator produced no vibratory or vestibular feedback, and drivers in simulators do 
not experience physical risk (De Winter & De Groot, 2012; Melman et al., 2021b).

7.2. Methods
7.2.1. Participants
Thirty-one participants (29 males, 1 female, 1 ‘preferred not to say’) between 20 and 59 
years old (M = 44.3, SD = 10.6) volunteered for the test track experiment. The participants 
were all employees of Renault, Paris, and the majority were engineers and technicians. 
In response to the question ‘On average, how often did you drive a vehicle in the last 12 
months’, 9 participants reported every day, 14 reported 4 to 6 days a week, 7 reported 1–3 
days a week, and 1 reported once a month to once a week. Regarding mileage in the past 12 
months, 2 reported 1001–5000 km, 5 reported 5001–10000 km, 9 reported 10001–15000 km, 
8 reported 15001–20000 km, 2 reported 20001–25000 km, 2 reported 25001–30000 km, and 
3 reported 35001–50000 km. To the question ‘How often do you drive on the CTA track?’ (i.e., 
the test track of Renault), 6 drivers reported never having driven it, 5 reported less than once 
a month, 10 reported between once a week and once a month, 5 reported once a week, and 
5 reported 1–3 times a week. All participants reported having heard of the eco, comfort, and 
sport modes. Twenty-four participants had driven the sport mode at least once. The research 
was approved by Renault, and all participants provided written informed consent. 

7.2.2. Experimental vehicle
The instrumented vehicle used in the current study was a Renault Talisman Phase 2 (see 
Figure 7.1-left), engine type R9M, 1.6 L Diesel, with a maximum engine power of 160 kW, a 
maximum speed of 207 km/h, an automatic transmission, and a 0 to 100 km/h acceleration 

Figure 7.1. The experimental vehicle, a Talisman phase 2 (left), with the VBOX GPS antenna 
(right)
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time of 9.6 s. The vehicle was equipped with the Paris Initiale option, which included four-
wheel steering, variable damping, and a Bose sound system comprising 13 speakers and a 
subwoofer. The experimental conditions and corresponding vehicle settings were switched 
using a mobile phone connected to a dSPACE MicroAutoBox. The CAN signals were recorded 
at frequencies between 10 Hz and 100 Hz. The GPS location and acceleration were recorded 
using a Vbox at 100 Hz (see Figure 7.1-right) and calibrated each day. Finally, the same 
dashboard interface and blue ambient lighting colors were used for all conditions to prevent 
drivers from being informed about the used condition via visual information.

7.2.3. Independent variables and design
All participants drove in all of the following five conditions, where the first condition was 
identical to Renault’s eco mode, the fifth condition was identical to Renault’s sport mode, 
and Conditions 2, 3, and 4 represented a combination of eco- and sport-mode features.

1. Baseline
2. Modified throttle mapping (MTM)
3. Artificial engine sound enhancement (AESe)
4. Modified throttle mapping and artificial engine sound enhancement combined   

 (MTM-AESe)
5. Modified throttle mapping, artificial engine sound enhancement, four-wheel   

 steering, increased variable damping, and decreased power steering combined   
 (MTM-AESe-4WS).

The MTM condition involved an altered throttle mapping, where a given driver’s throttle 
depression (‘throttle driver’) resulted in a higher normalized requested engine torque (‘throttle 
engine’) (see Figure 7.2-left). Additionally, MTM increased the gear shift point in the rpm 
range (i.e., allowing a higher rpm before changing gears). For example, for a ‘throttle driver’ 
of 40%, the gear changed from 3rd to 4th at 35 km/h for Baseline, whereas for MTM, this was 
43 km/h. The effect of this gear-changing strategy on the gear distribution for this experiment 
is shown in Figure 7.2-right. Finally, for the MTM condition, engine braking was done at 
higher engine speeds. The maximum engine power (160 kW) was the same for all conditions.

The AESe condition artificially amplified the natural engine sounds through the in-cabin 
speakers. More specifically, compared to Baseline, AESe increased the engine’s second 
harmonic by 3 dB for engine speeds below 2000 rpm, by 7 dB for engine speeds between 

0 20 40 60 80 100
Throttle driver (%)

0

20

40

60

80

100

Th
ro

ttl
e 

en
gi

ne
 (%

)

Baseline, AESe
MTM, MTM-AESe, MTM-AESe-4WS

1 2 3 4 5 6
Gear (#)

0

10

20

30

40

50

Pe
rc

en
ta

ge
 o

f t
im

e 
(%

)

Baseline, AESe
MTM, MTM-AESe, MTM-AESe-4WS

Figure 7.2. The modified throttle mapping (left) and the gear distribution during the driven 
route for all participants (right). Both graphs were created using the data recordings of the 
experiment.
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2000 and 3500 rpm, and no enhancement was provided above 3500 rpm. The AESe setting 
was identical to the AESe setting used in Renault’s sport mode. Subjectively, this resulted in 
a roaring engine sound. 

The MTM-AESe-4WS condition added four-wheel steering, increased vertical damping, 
and decreased power steering to the MTM and AESe conditions. The four-wheel steering 
system applied countersteering, where the rear wheels were turned in the opposite direction 
from the front wheels to increase the vehicle’s yaw response (i.e., a smaller steering wheel 
angle was required to drive through a curve). These effects are visualized in Figure 7.3 
(see also Melman et al., 2021a, for more detailed information). The suspension damping 
coefficient increased about 3.5 times for MTM-AESe-4WS compared to Baseline (Melman 
et al., 2021a). The power steering assistance decreased, resulting in higher driver steering 
torques (see Figure 7.3).

It is noted that while 4WS involves dedicated hardware, MTM and AESe are software-
based, i.e., these features aim to increase the perceived sportiness of the vehicle without 
requiring potentially costly hardware (Melman et al., 2021b). It is further noted that all five 
conditions offered the same dynamic envelope of the vehicle, i.e., if the throttle were fully 
depressed, the acceleration and gear-changing moments of the car would be identical. 
However, the presumed mechanisms of MTM and AESe on behavioral adaptation are quite 
different: MTM offers higher instantaneous acceleration capabilities than Baseline since, 
with MTM, the vehicle generally drives in a lower gear. Consequently, the driver can acquire 
a target speed more easily, without pressing the throttle deeply. In comparison, the AESe 
condition changes nothing to the responsiveness of the vehicle; any change in driving speed 
would be due to the illusion of driving a sportier vehicle (Melman et al., 2021b).

The participants each drove the five conditions in counterbalanced order. Because a 
complete permutation of the five conditions would require a very high number of participants 
(5 × 4 × 3 × 2 × 1 = 120), a more economical counterbalancing method was used, as defined 
by Williams (1949). For five conditions, Williams proposes a counterbalancing approach 
involving ten different orders. This was repeated three times for the first 30 participants in our 
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experiment, with one additional order for the last participant.
 

7.2.4. Road Environment
The experiment was performed on Renault’s test circuit in Aubevoye, France. The participants 
drove on a 10.4 km route. The route consisted of a stop-and-go section (0.6 km; Figure 7.4), 
where drivers had to stop the vehicle and drive away from a standstill. The stop-and-go 
section was analyzed separately, resulting in a 9.8 km total route for the general analysis. 
The route consisted of a one-way two-lane road with a speed limit of 110 km/h and 90 km/h, 
except for the connection between two test tracks that consisted of a two-way single-lane 
road with a speed limit of 50 km/h (see Figure 7.4). Before entering the northern part of the 
test track, drivers had to stop in front of a stop sign and turn right. Very little traffic was 
encountered during the experiment; out of the 155 trials (5 conditions x 31 participants), only 
five trials encountered one or more vehicles. The experiment was conducted in dry weather 
for all drivers (the experiment was conducted in June 2021).

7.2.5. Procedure
The study was advertised, without stating the aim, in the general Renault newsletter that was 
sent to all employees. The participants read and signed a consent form and completed a 
questionnaire on their demographics, driving experience, and familiarity with the test track. 
The instruction sheet mentioned that the purpose of the study was to investigate their driving 
behavior and feelings while driving with different driving-experience enhancement systems. 
It also mentioned that the experiment consisted of five trials driven on the test track and that 
in each trial they would be supported by a different set of driving-experience enhancement 
systems. Participants were asked to drive as they usually do on the test track and adhere to 
the traffic rules indicated by road signs next to the road. 

The first trial of the experiment was a familiarization run to let the driver become familiar 
with the route and the Baseline conditions. The participants were told that this trial would not 
be analyzed. During the first trial only, the experimenter, who was sitting next to the driver, 
gave navigation instructions, and the stop-and-go was practiced. After the familiarization 
trial, the car was parked, and the experiment started. 

In each experimental trial, participants drove in one of the five conditions (Baseline, 
MTM, AESe, MTM-AESe, or MTM-AESe-4WS). The participants were not informed about 
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Figure 7.4. The experimental route on the Renault test track in Aubevoye, France. The driving 
direction is indicated by arrows, and the connection is driven in both directions.
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the settings of the conditions in this blinded experiment, and the dashboard did not give 
an indication of the vehicle settings that were currently active. After each trial, participants 
stepped out of the vehicle and completed a paper-and-pencil questionnaire about their 
driving experience. During the entire experiment, the experimenter was sitting next to the 
driver without talking. The entire experiment took approximately 75 minutes per participant. 
The consent form and the personal details questionnaire were written in French, and the 
post-trial questionnaire was written in English to replicate Melman et al. (2021b).

 
7.2.6. Dependent Measures
The dependent measures were categorized into self-reported experience and driving behavior, 
similar to the simulator study by Melman et al. (2021b). The driving behavior measures were 
calculated for the route excluding the stop-and-go section (9.8 km). Furthermore, for all 
measures (except the stop-and-go section), speeds below 10 km/h were excluded from the 
data to remove the influence of the stop sign on the measures.

Self-Reported Experience. 
After each trial, participants completed a questionnaire containing 14 items on a five-point 
scale. The first four items investigated drivers’ perceived effort for Q1 accelerating, Q2 
steering, Q3 braking, and Q4 maintaining speed, from low to high. This was followed by 
four items that investigated whether the drivers perceived the vehicle settings: Q5 throttle 
responsiveness (low to high), Q6 brake responsiveness (low to high), Q7 engine sound (quiet 
to loud), and Q8 steering responsiveness (low to high). Finally, seven items polled whether 
participants had experienced the vehicle as Q9 not sporty/sporty, Q10 not likable/likable, 
Q11 not comfortable/comfortable, Q12 safe/dangerous, Q13 not agile/agile, and Q14 raising 
awareness/sleep-inducing. The two main items were Q9 (perceived sportiness) and Q12 
(perceived danger). 

Driving Behavior. 
The following driving behavioral measures were calculated over the total track, excluding the 
stop-and-go section:

The speed measures below are the main measures of interest.
• Mean speed (km/h). Mean speed is often used as an index of road safety: an increase 

in speed reduces the available time to respond in an emergency scenario and 
increases the probability of being involved in a crash (Aarts & Van Schagen, 2006; 
Pei et al., 2012).

• Max speed (km/h). The maximum speed that was recorded.
• Mean cornering speed (km/h). This measure shows the speeds driven during the 

cornering sections for instantaneous curvatures (calculated by the yaw rate/speed) 
greater than 0.7 deg/m. Using this threshold, 16% of the route was categorized as 
‘curve’.

• Percentage above 110 km/h (%). The percentage of time above the 110 km/h speed 
limit was calculated as a percentage of the total time driven in the 110 km/h speed 
limit section. 

In additional, we calculated nine longitudinal driver behavior measures that provide more 
insight into how drivers drove with the different combinations of sport mode components.

• Mean absolute longitudinal acceleration (m/s2). A high mean absolute longitudinal 
acceleration can be seen as sporty driving (Ericsson, 2001; Martinez et al., 2018).

• Mean throttle driver (%). A measure of how deeply drivers pressed the accelerator on 
average. A lower value is expected for the three MTM conditions compared to AES 
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and Baseline, as less ‘throttle driver’ is needed to drive with a certain speed (see also 
the simulator study by Melman et al., 2021b).

• Max brake pressure (bar). This measure indicates how hard the driver braked. Hard 
braking is an indication of sportive driving or approaching a curve at high speed.

• Throttle driver release time (%). In the literature, this measure is also referred to as 
coasting and has been interpreted as indicative of uncertainty or a delay in decision-
making (Houtenbos et al., 2017; Yeo et al., 2010). It is also a corollary of having 
accelerated too much, resulting in an overshoot of speed and a subsequent throttle 
release. This measure was previously found to be strongly affected by modifications 
in throttle mapping (Melman et al., 2021b).

• Fuel consumption per km (cm3/km). An additional measure to quantify the impact of 
different sport mode components on fuel consumption. Higher fuel consumption is 
expected when driving with the MTM conditions compared to Baseline due to the 
altered gear-changing strategy (i.e., driving in a lower gear).

• Mean gear. A measure that captures the average used gear and is expected to be 
lower for the MTM than Baseline due to the more sportive gear changing strategy.

For the stop-and-go section, the following measure was calculated:
• Mean acceleration during the first five seconds (m/s2). This measure indicates sporty 

driving. The start of each trial was determined based on the moment the throttle 
position exceeded 0%. A previous simulator study showed higher accelerations when 
driving with MTM compared to Baseline (Melman et al., 2021b).

7.2.7. Statistical Analyses
For each measure and each of the five experimental conditions, the mean and standard 
deviation (SD) across the 31 participants was computed. Pairwise comparisons between 
conditions were performed using paired-samples t-tests. Because of the large number of 
statistical comparisons made, a conservative alpha value of 0.005 was adopted (Benjamin 
et al., 2018). A reviewer noted that a conservative alpha value might cause Type II errors and 
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Figure 7.5. The questionnaire results per item and experimental condition. The figure depicts 
the means (circles) and within-subject 95% confidence intervals calculated according to 
Morey (2008). Q1–Q4 concern perceived effort, Q5–Q8 concern perceived driving mode 
features, and Q9–Q14 concern other aspects of subjective experience. The bottom of each 
figure shows the Cohen’s dz for MTM, AESe, MTM-AESe, and MTM-AESe-4WS compared to 
Baseline (|dz| > 0.367: p < 0.05, |dz| > 0.545: p < 0.005).
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may therefore give the unfair impression that no behavioral adaptation exists. Therefore, we 
also report results for a more liberal alpha value of 0.05. We caution the reader that a number 
of the observed statistically significant effects could be false positives. Finally, within-subject 
effect sizes dz were calculated according to Faul et al. (2007).

Table 7.1. Means, standard deviation (in parenthesis), and pairwise comparisons for each 
dependent measure.

Baseline MTM AESe MTM-
AESe

MTM-
AESe-
4WS

1 2 3 4 5 1-2 1-3 1-4 1-5
79.40 80.15 78.79 79.73 80.85 0.24 -0.23 0.08 0.51
(5.63) (5.40) (5.45) (5.88) (5.85)
115.01 116.92 114.03 116.12 116.84 0.35 -0.16 0.21 0.31
(8.04) (7.60) (8.45) (8.48) (7.83)
48.45 48.40 48.08 48.09 48.60 -0.03 -0.25 -0.15 0.09
(3.55) (3.31) (3.73) (3.71) (3.93)
5.93 7.55 5.54 6.98 8.50 0.38 -0.12 0.27 0.51

(9.45) (9.36) (9.04) (9.51) (12.02)
0.727 0.772 0.727 0.773 0.783 0.72 0.01 0.61 0.96

(0.103) (0.120) (0.111) (0.113) (0.104)
27.88 18.59 28.02 18.60 19.12 -4.97 0.10 -4.08 -4.96
(3.34) (2.86) (3.42) (2.88) (3.29)
24.21 23.03 23.68 24.25 24.34 -0.35 -0.16 0.01 0.04
(4.75) (3.95) (4.73) (4.98) (3.45)
35.50 37.35 35.22 37.44 36.74 0.65 -0.10 0.63 0.62
(5.66) (6.44) (6.38) (6.22) (5.92)
84.55 88.98 86.75 90.41 90.94 0.59 0.24 0.59 0.82

(11.00) (12.14) (13.53) (13.08) (10.45)
5.10 4.76 5.07 4.74 4.77 -3.04 -0.49 -3.27 -4.57

(0.13) (0.21) (0.17) (0.21) (0.15)

1.92 2.20 1.91 2.28 2.28 0.74 -0.01 1.11 1.13
(0.45) (0.44) (0.46) (0.37) (0.44)

Maximum speed (km/h)

Conditions

Mean speed (km/h)

Pairwise comparisons

Max brake pressure (bar) 

Mean throttle driver (%)

Mean abs long acc (m/s2)

Percentage above 110 km/h (%)

Mean cornering speed (km/h)

Stop-and-go section
Mean acceleration during the first five 
seconds (m/s2)

Mean gear (-)

Fuel consumption (cm3/km)

Throttle driver released time (%)

0 1 2 3 4 5
Time (s)

0

0.5

1

1.5

2

2.5

3
M

ea
n 

ac
ce

le
ra

tio
n 

(m
/s

2 )

Baseline
MTM
AESe
MTM-AESe
MTM-AESe-4WS

Figure 7.7. Mean vehicle acceleration after driving away from the stop-and-go section per 
condition, averaged over all participants during the first 5 s at the start and stop location.

Note. The effect sizes are color-coded from -1.5 (red) to 0 (white) to 1.5 (green). |dz| > 0.367: p < 0.05 
(marked in italics), |dz| > 0.545 (marked in boldface): p < 0.005.
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7.3. Results
7.3.1. Self-Reported Experience
Figure 7.5 shows the means and 95% confidence intervals for the 14 self-report items described 
in the section ‘dependent measures’. Compared to Baseline, MTM, MTM-AESe, and MTM-
AESe-4WS resulted in significantly (p < 0.005) higher reported engine responsiveness (Q5) 
and reduced acceleration effort (Q1), while AESe, MTM-AESe, and MTM-AESe-4WS resulted 
in higher perceived engine sound (Q7). Furthermore, four-wheel steering (MTM-AESe-4WS) 
resulted in significantly (p < 0.005) higher perceived steering effort (Q2) but not a significant 
difference (p > 0.05) in steering responsiveness (Q8) and agility (Q13) compared to Baseline.

The perceived sportiness (Q9) was significantly (p < 0.005) higher for MTM (M = 3.32), 
MTM-AESe (M = 3.58), and MTM-AESe-4WS (M = 3.97) compared to Baseline (M = 2.32). 
Perceived danger (Q12) showed no significant differences (p > 0.05) from Baseline (M = 
2.48) for MTM (M = 2.32), AESe (M = 2.42), MTM-AESe (M = 2.45), and MTM-AESe-4WS (M 
= 2.16). Additionally, it was found that likeability (Q10) was higher for MTM (p < 0.005) and 
MTM-AESe-4WS (p < 0.05) compared to Baseline. The MTM conditions (MTM, MTM-AESe, 
and MTM-AESe-4WS) resulted in significantly (p < 0.005) lower ‘sleep inducing’ ratings 
(Q14) than Baseline. No significant differences were found for the comfort (Q11) and speed 
control effort (Q4) ratings. Finally, it was interesting that the MTM, AESe, and MTM-AESe-
4WS conditions increased perceived brake responsiveness (Q6) even though the brake pedal 
itself was not modified.

 
7.3.2. Driving Behavior
Table 7.1 shows the means, standard deviations, and results of the pairwise comparisons. The 
mean speed, maximum speed, and speed limit violation time for the three MTM conditions 
(MTM, MTM-AESe, MTM-AESe-4WS) were higher compared to Baseline, although often 
not statistically significant (p > 0.05). The mean cornering speed was equivalent for the five 
conditions and did not differ significantly (p > 0.05) from the Baseline condition. 

On an absolute scale, the speed differences between conditions were rather small. 
Indicatively, participants’ mean speed, maximum speed, mean cornering speed, and driving 
time above the speed limit were 0.75 km/h higher, 1.91 km/h higher, 0.05 km/h lower, and 
1.63% higher in MTM compared to Baseline (see Table 7.1). For MTM-AESe-4WS compared 
to Baseline, the values for these four respective measures were 1.45 km/h, 1.84 km/h, 0.15 
km/h, and 2.57% higher (see Table 7.1).

The lowest speed was found for AESe, but not significantly different from Baseline on 
any of the four speed-related measures. However, the mean gear was significantly (p < 0.05) 
lower for AESe compared to Baseline, suggesting that AESe evoked a cautious driving style. 
Table 7.1 further shows that participants adopted a more sporty driving style with MTM (MTM, 
MTM-AESe, and MTM-AESe-4WS) than Baseline, with higher mean absolute accelerations 
and more throttle fluctuations (higher throttle-release time).

Figure 7.6 shows the mean speed, throttle, and braking as a function of traveled distance. 
Furthermore, Figure 7.6 shows the speed difference for the three MTM conditions averaged 
(i.e., the average of MTM, MTM-AESe, and MTM-AESe-4WS) relative to Baseline and AESe 
averaged. Compared to Baseline/AESe, the largest speed differences (up to 5.5 km/h) were 
found when accelerating out of curves, after the stop sign, and after the stop-and-go section. 
In other words, the results indicate that it is during the acceleration phases that the difference 
between the MTM conditions and Baseline/AESe was largest. 

Figure 7.7 shows the participants’ mean acceleration during the first 5 s after driving away 
from the stop-and-go section per condition. This figure confirms that drivers adopted higher 
accelerations when driving with MTM, MTM-AESe, and MTM-AESe-4WS than with Baseline 
and AESe. After about 5 s, the accelerations were equivalent for all five conditions, in line with 
the simulator study by Melman et al. (2021b).
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Finally, the fuel consumption was higher for MTM-AESe and MTM-AESe-4WS compared 
to Baseline. This is possibly the result of the gear-change strategy, where the vehicle stayed 
longer in lower gears (see Table 7.1).

7.4. Discussion 
Two competing hypotheses regarding the effect of sport mode settings on behavioral 
adaptation were considered in this research: a speed increase due to increased perceived 
sportiness (cf. Horswill & Coster, 2002) and a speed reduction due to increased perceived 
danger (cf. Wilde, 1998). We tested these two hypotheses by means of a test-track experiment 
using an instrumented vehicle for different combinations of sport mode components. More 
specifically, we investigated five conditions: Baseline, Modified Throttle Mapping (MTM), 
Artificial Engine Sound enhancement (AESe), MTM and AESe combined (MTM-AESe), and 
MTM, AESe combined with four-wheel steering, increased damping, and decreased power 
steering (MTM-AESe-4WS).

The results suggest that the drivers, in the aggregate, noticed each sport mode setting. 
That is, compared to Baseline, participants reported increased engine responsiveness for 
MTM (Q5), a higher engine sound volume for AESe (Q7), and an increased effort required 
to steer (Q2) for the MTM-AESe-4WS condition. These findings suggest that necessary 
preconditions for behavioral adaptation were present.

The sport mode was hypothesized to increase perceived sportiness and thus encourage 
faster driving. The hypothesis of faster driving was not supported for the AESe condition; in 
fact, perceived sportiness was unaffected, and there were some tendencies for slower driving 
with AESe compared to Baseline. However, the hypothesis received mixed support for the 
MTM feature: compared to Baseline, the three MTM conditions yielded increased perceived 
sportiness ratings and caused increased speeds while accelerating out of curves (Figure 7.6) 
or while accelerating from a standstill (Figure 7.7). The MTM condition also caused, albeit with 
a small effect size, an elevated percentage of time driving above the 110 km/h speed limit. 
However, the MTM conditions did not cause statistically significant differences in cornering 
speed compared to Baseline. Thus, MTM appeared to cause increased accelerations but 
not faster cornering. Note that the higher mean speed of the MTM conditions compared to 
Baseline can directly be explained by the increased accelerations (in fact, achieving a higher 
mean acceleration while maintaining the same average speed is only possible if adopting 
a lower speed on the remaining part of the track). In conclusion, the findings suggest that 
behavioral adaptation was functional and opportunistic (i.e., increased acceleration to target 
speeds because of the given opportunity to accelerate more easily) rather than instigated 
by drivers feeling ‘sporty’ and hence adopting a riskier driving style. The current findings 
correspond to the examples cited in the introduction, where behavioral adaptation was said 
to be more likely when the technology offers a benefit to the driver.

The presumed cause of the increased acceleration is that, for a given throttle depression 
in the 10–60% range, the MTM conditions yielded higher instantaneous engine power 
compared to the Baseline condition (see Figure 7.2-left). In addition to the more sensitive 
pedal (and in contrast to the driving simulator study by Melman et al. (2021b), which simulated 
an electric engine without gears), more instantaneous engine power was available because 
the MTM conditions were driven in a lower gear (see Figure 7.2-right). Consequently, if the 
driver presses the pedal to a certain level, acceleration will be higher for MTM compared 
to Baseline. The driver, in turn, adapts to the sensitive pedal by pressing it less deeply 
(see ‘throttle driver’ in Figure 7.6 and see Melman et al., 2021b, for further explanation in 
the context of open-loop vs. closed-loop driver control). The present acceleration results 
replicate findings from an earlier simulator-based study by Melman et al. (2021b). However, 
in this driving simulator experiment, no effect of MTM was found on perceived sportiness, 
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which the authors attributed to the lack of vestibular feedback and large inter-driver variability 
in a driving simulator.

The competing hypothesis was that the sport modes would cause an increase in perceived 
danger, in turn causing drivers to compensate by adopting a lower speed compared to 
the Baseline condition. This hypothesis is rejected since the MTM feature did not cause a 
reduction but rather a small increase in driving speeds, as discussed above. In addition, the 
sport modes did not cause an increase in perceived danger. In fact, perceived danger was 
even slightly lower for the MTM-AESe-4WS condition than for the Baseline condition (2.16 
vs. 2.48 on the 5-point scale).

A limitation of the current study was that it was conducted with predominantly experienced 
male drivers. They were familiar with the test track and may have driven faster than the 
average driver would. Another validity threat is that the daily work of most participants 
consisted of studying vehicle chassis behavior, as a result of which they may express socially 
desirable opinions about products of their own company. However, as we noticed in another 
study in which employees participated in a truck driving study in which they evaluated human 
-machine interface concepts (Bazilinskyy et al., 2019), the opposite may be the case. Our 
impression was that participants in the current experiment were open-minded, critical, and 
consciously tried to observe the differences between the vehicle conditions. Future studies 
should investigate how these results translate to different groups of drivers.

In the current study, there were speed limit signs next to the road, which may have 
produced a ceiling effect on driving speeds, although participants still drove faster than the 
110 km/h speed limit for 5.5 to 8.5% of the time (see Table 7.1). Future research could 
replicate our findings on different types of roads and for different types of speed limits. In 
addition, it would be useful to repeat the current study as part of a field operational test, 
in which drivers may participate for a period of months and may tend to forget they are 
participating in an experiment. This would also allow for exploring other aspects of behavioral 
adaptation, such as the interaction with other road users. Finally, it should be noted that 
although the MTM condition was well-liked (Q10) relative to the Baseline condition, it caused 
an increase in fuel consumption of about 6%. In other words, the increased capabilities and 
likeability ratings come at the price of increased cost. The relatively low likeability score for the 
Baseline condition is consistent with a driving-simulator experiment by Allison et al. (2022), 
which found that asking drivers to engage in eco-driving behaviors had a negative impact 
on drivers’ overall mood. It can therefore be expected that eco modes will be underutilized 
in real traffic.

7.5. Conclusions
The current study investigated behavioral adaptation in response to the sport driving mode. 
Two alternative hypotheses were tested: (1) increased speed due to increased perceived 
sportiness and (2) decreased speed due to increased perceived danger. The following 
conclusions are drawn:

• The sport mode setting that makes it easier for drivers to accelerate (i.e., modified 
throttle mapping) increases perceived sportiness, is well-liked, and causes increased 
speeds while accelerating out of curves or from a standstill. However, the MTM 
conditions did not cause detectable differences in mean cornering speed compared 
to Baseline. Thus, MTM seemed to cause increased accelerations but not riskier 
driving.

• The sport mode setting that alters the drivers’ auditory experience (i.e., artificial engine 
sound enhancement) is perceived clearly but does not significantly affect perceived 
sportiness or perceived danger and does not cause drivers to drive faster. 
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These findings suggest that behavioral adaptation is a functional and opportunistic 
phenomenon (i.e., increased acceleration to target speeds because of the given opportunity 
to accelerate more easily) rather than mediated by drivers having the feeling of sportiness or 
dangerousness.

Apart from the theoretical contribution mentioned above, the present findings may have 
practical utility for vehicle manufacturers. This study replicates previous simulator-based 
research (Melman et al., 2021b) in that relatively simple software-based modifications to the 
vehicle, such as modified throttle mapping, can have a substantial impact on driver perception 
(e.g., perceived sportiness), and stimulate drivers to reach their target speed more quickly.
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ONLINE CHANGES  IN 

VEHICLE SETTINGS



Should Steering Settings be 
Changed by the Driver or by the 

Vehicle Itself?



Introduction. Cars are increasingly computerized, and vehicle settings such as 
steering gain (SG) can now be altered during driving. However, it is unknown whether 
transitions in SG should be adaptable (i.e., triggered by driver input) or adaptive (i.e., 
triggered automatically). We examined this question for road segments expected to 
require different SG. Objective. This paper aimed to investigate whether SG mode 
changes should be made by the driver or automatically. Methods. Twenty-four 
participants drove under four conditions in a simulator: fixed low gain (FL), fixed 
high gain (FH), a machine-initiated steering system, which switched between the 
two SG levels at predetermined locations (MI), and a driver-initiated steering system,  
in which the SG could be changed by pressing a button on the steering wheel (DI). 
Results. Participants showed poorer lane keeping and reported higher effort for 
FH compared to FL on straights, while the opposite held true on curved roads. On 
curved roads, the MI condition showed better lane-keeping performance and lower 
subjective effort than the DI condition. However, a substantial portion of the drivers 
gave low preference rankings to the MI concept. Conclusion. Drivers prefer and 
benefit from a steering system with a variable rather than fixed gain. Furthermore, 
although automatic SG transitions reduce effort, some drivers reject this concept. 
Application. As the state of technology advances, MI transitions are becoming 
increasingly feasible, but whether drivers would want to delegate their decision-
making authority to a machine remains a moot point.
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Melman, T., Weijerman, M. P. P., De Winter, J. C. F., & Abbink, D. A. (2022). Should steering settings be changed 
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8.1. Introduction
A vehicle’s steering gain (SG), also known as steering ratio or steering sensitivity, is a key 
parameter that determines how much the front wheels turn for a given steering wheel input 
(Gross, 1977; Reuter & Saal, 2017). Until the late 1990s, steering systems in production 
vehicles were designed with a fixed SG. A drawback of a fixed SG is that it cannot 
accommodate differences in desired sensitivity for different driving situations (Black et al., 
2014; Jamson et al., 2007). If the SG is high, it may be more challenging to control the vehicle 
precisely when driving on a straight road at high speed (e.g., highway driving), as high control 
gains amplify motor noise (e.g., Chapanis & Kinkade, 1972; De Winter & De Groot, 2012). 
On the contrary, a low SG would enable more precise control but requires larger steering 
movements, which would be effortful when parking or driving through sharp curves (Kroes, 
2019; Olson & Thompson, 1970; Reuter & Saal, 2017; Shoemaker et al., 1967).

Cars are becoming increasingly computerized, and vehicle settings that were once fixed 
can now be altered during driving (e.g., Melman et al., 2021a; Shibahata, 2005). Two ways 
of implementing variable steering settings can be distinguished: changes can be initiated 
based on vehicle-state variables such as speed (e.g., Jamson et al., 2007; Millsap & Law, 
1996; Shimizu et al., 1999) or as part of a driving mode, such as the sport mode (e.g., BMW, 
2022; Koehn & Eckrich, 2004; Renault, 2022). However, a yet-unanswered question is 
whether changes in SG mode should ideally be initiated by the driver (e.g., via the press of a 
button) or automatically by the car. This question has important implications since literature 
suggests that large changes in SG may, in some cases, negatively impact driver safety and 
acceptance. In particular, in a study on lane changing, Russell et al. (2016) found that drivers 
needed several trials to get used to a new SG. 

The effects of machine-initiated and human-initiated mode changes (also referred to as 
adaptive vs. adaptable automation) have previously been investigated in various human-
automation interaction studies (e.g., Hancock, 2007; Li et al., 2013; Sauer et al., 2012). In a 
review, Kaber and Prinzel (2006) concluded that “there is a substantial body of research on 
adaptive automation demonstrating performance and workload benefits over manual systems 
control and traditional, technology-centered approaches to automation. Unfortunately, the 
same cannot be said for adaptable systems …”. In the same vein, it can be expected that 
driver-initiated SG changes will increase workload since there is an increase in the driver’s 
responsibility for system supervision. However, others have noted that human-initiated mode 
changes have benefits in terms of improving operators’ confidence and sense of control and 
reducing unpredictability (Kidwell et al., 2012; Miller & Parasuraman, 2007). It is also noted 
that machine-initiated mode changes will be ineffective if the triggers are inappropriate. 
Sauer et al. (2012), for example, found that performance-based mode changes yielded a 
higher workload than event-based mode changes and human-initiated mode changes. A 
possible explanation was that their performance-based trigger was not sensitive enough, 
resulting in infrequent adaptations (Sauer et al., 2012). In the same vein, Li et al. (2013) 
found that machine-initiated mode changes yielded a higher workload and lower preference 
ratings than human-initiated mode changes as participants considered the triggering criteria 
confusing or inappropriate. In comparison, in the human-initiated mode-change condition, 
where operators were in charge of setting the level of automation, operators often selected 
the highest level of automation in which they had little to do.

The current study aimed to examine the effects of machine-initiated and driver-initiated 
changes in SG on lane-keeping performance, perceived effort, and system preference. 
Participants completed four conditions: fixed low SG (FL), fixed high SG (FH), machine-
initiated steering that switched between the two SG at predetermined locations (MI), and 
driver-initiated steering in which the SG setting could be changed by pressing a button on 
the steering wheel (DI). It is noted that, technologically, the DI and MI concepts seem feasible 
on real roads, since these concepts require hardware such as steer-by-wire and a location-
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specific triggering mechanism. The latter is already part of intelligent speed assistance/
adaptation (ISA), for example (Ryan, 2019).

To investigate MI and DI, three comparisons were prerequisites: First,  FL was compared 
to FH to examine whether drivers indeed benefit from different SG in different parts of the 
road. More specifically, participants drove a route containing three driving-task segments—
overtaking, driving on a straight road, and curve-driving— that were hypothesized to require 
different SG. For the overtaking and curve-driving segments, the FH condition was expected 
to produce more favorable outcomes (better lane-keeping, low effort) than FL, whereas, for 
the straight segment, the opposite was expected. Second and third, the DI and MI conditions 
were compared with the ‘inappropriate’ fixed-SG condition to examine whether the variable-
SG conditions offer an overall benefit compared to FL and FH. Finally, we compared the 
MI and DI conditions, the primary topic of this work. Based on the above literature, it was 
expected that the MI condition would be less effortful for drivers than the DI condition, in 
which they had to change SG themselves.

8.2. Method
8.2.1. Participants
This research complied with the American Psychological Association Code of Ethics and was 
approved by the Human Research Ethics Committee of the TU Delft. Informed consent was 
obtained from each participant. Twenty-four participants (4 female) between 22 and 30 years 
old (M = 24.9, SD = 2.0) with a valid driving license and normal or corrected-to-normal vision 
participated in this study. In response to the question of how often they drove in the last 12 
months, 1 participant drove less than once a month, 8 drove less than once a week, 13 drove 
1–3 days a week, and 2 drove 4–6 days a week. Regarding mileage in the last 12 months, 
6 participants drove 1–1000 km, 8 drove 1000–5000 km, 7 drove 5000–10000 km, 2 drove 
10000–15000 km, and 1 drove 15000–20000 km.

Figure 8.1. A participant driving in the driving simulator. The dashboard display shows the 
steering gain (SG) currently active (here colored blue, indicating low SG). The arrow next to 
the depicted speed indicates the advised SG level (available in the DI condition only). In this 
figure, participants are advised to switch ‘up’, from low SG to high SG. The left-bottom inset 
shows the button at the back of the steering wheel that was used to initiate SG transitions. 
Participants wore headphones that displayed regular driving sounds (Melman et al., 2021b).
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8.2.2. Apparatus
The experiment was conducted in a fixed-base driving simulator at the Cognitive Robotics 
laboratory at the Faculty of Mechanical Engineering of the Delft University of Technology. 
The simulation was developed using JOAN (Beckers et al., 2021), an open-source software 
framework developed at the Delft University of Technology, which builds on the CARLA 
open-source simulator (Version 0.9.8; Dosovitskiy et al., 2017). A 65-inch 4K screen was 
used to show the vehicle environment (Figure 8.1) with a refresh rate of 60 Hz. A SensoDrive® 
steering provided self-aligning torques with a fixed steering stiffness of 2.20 Nm/rad and a 
damping ratio of 0.60 Nms/rad. An Audi S4 (wheelbase 281 cm, width 185 cm, mass 1705 
kg) was used to simulate the vehicle dynamics. The data was recorded at 100 Hz, and the 
update rate of the vehicle environment was 80 Hz. A mouse was attached to the back of the 
steering wheel for providing inputs to the driver-initiated steering system (left bottom corner 
Figure 8.1).

8.2.3. Driving Tasks
All participants drove each trial on the same one-way two-lane road in one of the four 
conditions. The road was 14.3 km long, had lanes of 3.5 m wide, and consisted of three 
segments of approximately equal length: an overtaking segment, followed by a straight 
segment and a curved road segment. 

The participant’s car had a fixed speed of 100 km/h throughout each trial to ensure that 
the steering demands were the same for all participants. Driving is normally a self-paced task 
(De Winter et al., 2007; Taylor, 1964), and previous research in the same driving simulator 
showed that if drivers can choose their own speed, large individual differences in speed 
arise (Melman et al., 2021b). These individual differences would complicate the comparisons 
between conditions because driving speed strongly affects lane-keeping performance 
(Godthelp et al., 1984).

In the overtaking segment, participants, who drove at a constant speed of 100 km/h, 
needed to swerve through traffic on a straight road. The other cars were driving 60 km/h 
and were alternately positioned in the left and right lanes (see Figure 8.1). Traffic density 
gradually increased from low (i.e., longitudinal spacing of 80 m, or 12.5 cars/km) to high 
(i.e., longitudinal spacing of 40 m, or 25 cars/km), and then gradually reduced back to low 
(longitudinal spacing of 80 m, or 12.5 cars/km). A higher traffic density can be expected to 
require a higher SG as the driver needs to provide faster steering inputs to fulfill the task. 
When the traffic density was high, the driver would have to make a lane change for every 
100 m traveled, that is, every 3.6 seconds. In total, participants made 34 lane changes in the 
overtaking segment.

The second segment was a straight road without traffic, where the driver was instructed to 
stay in the right lane. The third and final segment consisted of a road with curves of different 
radii (between 100 and 200 m) without traffic.

8.2.4. Independent Variables
All the participants drove in all of the following four conditions according to a counterbalanced 
within-subject design.

• Fixed low SG (FL)
• Fixed high SG (FH)
• Machine-initiated SG transitions (MI)
• Driver-initiated SG transitions (DI)

The FL condition featured a fixed steering ratio between the steering wheel and the front 
wheels of 25:1 throughout the entire track, whereas the FH condition used a fixed steering 
ratio of 12.5:1. These SG levels correspond to the literature. For example, Millsap and Law 
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(1996) performed simulation studies with SGs of 24:1 and 14:1, where the latter was regarded 
as “consistent with a vehicle that is perceived by drivers to be ‘darty’ or difficult to maintain 
directional control during highway driving” (p. 1157).

The MI condition automatically switched between the two SG levels at predefined locations. 
During the overtaking segment, the settings changed from low SG to high SG when the traffic 
density became high (after 6 of 34 lane-change maneuvers) and from high SG to low SG 
when the traffic density became low again (after 28 of 34 lane-change maneuvers). Finally, 
100 m before the curved road segment, the machine switched to high SG. 

The DI condition allowed the driver to switch between low and high SG by clicking the left 
and right buttons of a horizontally-oriented mouse (see Figure 8.1). If the right (i.e., upper) 
mouse button was pressed, the steering system switched to high SG, and if the left (i.e., lower) 
mouse button was pressed, the steering system switched to low SG. All participants started 
the DI trial with the low SG setting. It was reasoned that to enable a meaningful comparison 
between the DI and MI conditions, participants in the DI condition should have access to the 
same knowledge about SG switches as available in the MI condition. Accordingly, participants 
in the DI condition were provided with switching advice, the locations of which were identical 
to the switching locations of the MI condition. The advised SG setting was displayed to the 
driver by an arrow: a downward facing arrow to suggest moving to low SG and an upward 
facing arrow to suggest moving to high SG (see Figure 8.1 for the upward arrow). If the driver 
already used the same steering setting as the machine would, no arrow was shown.

During a steering setting transition in the MI and DI conditions, the SG was linearly 
changed in 3.5 s. The current steering setting was visually communicated to the driver 
through a dashboard display which was either blue for low SG or red for high SG (Figure 8.1). 
The transition was visualized by changing the color of the dashboard display with a gradient 
between blue and red (from low to high SG) or between red and blue (high to low SG).

8.2.5. Procedure
First, participants received a combined information sheet and consent form, which detailed 
the purpose, driving tasks, instructions, and procedures of the study. More specifically, the 
study was introduced as follows: “the purpose of this study is to look into the effect of changing 
steering ratios initiated by the driver (you) or the machine itself. Two steering ratio settings 
(a slow steering and a fast steering mode) are tested in a machine-initiated steering system 
and a human-initiated steering system (where the driver can adapt the steering modes), and 
the designs are compared with two different passive steering systems (passive slow steering 
and passive fast steering). The effect of these systems is measured in terms of performance, 
safety margins, driver workload, and system acceptance.” The document also mentioned 
the expected experiment duration of 1 hour, that the simulated car had a constant speed 
and only the steering wheel had to be controlled, that there were practice trials before each 
main trial, that participants had to complete four trials (FL, FH, MI, DI), and that each trial 
consisted of three segments (overtaking slow-driving vehicles, straight road without vehicles, 
curved road without vehicles). The consent form further explained that in the DI condition, 
participants could press the mouse buttons to change the SG level.

After reading and signing the informed consent form, the participants were requested to 
sit in the simulator. They first drove two 2.5-minute familiarization trials, one trial with low SG 
and one trial with high SG, on a curvy road without other vehicles. The experiment was then 
started. Participants drove four trials, each trial in one of the four conditions (FL, FH, DI, or 
MI). 

Before each experimental trial, a separate 2-minute practice trial was performed to let the 
participants experience the upcoming condition. The practice trial consisted of two straight-
road segments and two curved-road segments. In the case of the DI condition, participants 
were encouraged to switch between high SG and low SG, and it was mentioned that they 
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could switch whenever they wanted and that the advice displayed could also be ignored. In 
the practice trial of the MI condition, the SG switched automatically to low for straights and 
to high for curves.

Through the information sheet, participants were instructed to drive as follows: “During 
the real trials you are asked to drive as you normally would with the emphasis on safe and 
controlled driving. The test track consists of three sections i.e. overtaking traffic vehicles which 
have a constant speed on a straight road, following a straight road without traffic vehicles and 
following a curved road without traffic vehicles. After the experiment you are asked to fill out 
a questionnaire. … Task instructions: During the entire track drive as you normally would. 
You are expected to drive on the right lane unless the traffic situation requires you to drive on 
the left lane.” After each trial, the participants stepped out of the simulator and completed a 
questionnaire about the trial that was just completed. Finally, at the end of the experiment, 
participants completed a questionnaire about their overall experiences and preferences. The 
experiment took approximately 75 minutes per participant.
 
8.2.6. Dependent Measures
The steering wheel angle and steering wheel speed from the SensoDrive were filtered with 
a zero-phase 2nd-order Butterworth filter for the data analysis. Dependent measures were 
calculated per participant for the following three road segments: overtaking (the part where 
the traffic density was maximal, between a traveled distance of 1963 m and 3464 m), straight 
(between a traveled distance of 5500 m and 9618 m), and curves (between a traveled distance 
of 9758 and 14345 m).

• Mean absolute front wheel angle (deg) describes the variability in steering output, 
where a higher value was considered poorer lane-keeping behavior. The front-wheel 
angle is the output of the driver’s steering wheel input after the conversion of the 
steering gain.

• Mean absolute lateral velocity (m/s). This is a measure of lane-keeping behavior, 
where a high lateral velocity can be seen as indicative of having to provide extra input 
to keep the car on the track.

• Range of lateral position (m). This measure, which is defined as the maximum lateral 
position minus the minimum lateral position, is an index of lane-keeping performance. 
A higher range implies that the participant made larger lateral excursions and therefore 
exhibited less safe driving behavior.

• High SG (0 to 1). The proportion of time that was driven with high SG. This measure was 
always 0 (i.e., low SG) for the FL, and always 1 (i.e., high SG) for the FH condition. For 
the MI condition, it was 1, 0, and 1, for the overtaking, straigth, and curve segments, 
respectively. For the DI condition, participants could decide whether to drive with the 
low or high SG setting , and so the value could take any number from 0 to 1. Steering 
gain settings were considered from the moment the button was pressed, that is, the 
3.5-s transition period was not taken into account in computing the High SG gain 
measure.

Additionally, the following measures were obtained from the self-report questionnaire after 
each trial:

• Subjective effort per segment (1 to 7) was used to quantify the perceived effort of the 
driver per segment. After each trial, the participant was asked to answer for each of 
the three segments the question “During the test, it took me little effort to overtake 
the traffic vehicles (follow the lane on the straight road / follow the lane on the curved 
road),” coded on a seven-point scale from 1 (Fully agree), 4 (Neutral), to 7 (Disagree).

• Subjective workload (0 to 100). The NASA-TLX questionnaire was used to determine 
participant workload on six facets: mental demand, physical demand, temporal 
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demand, performance, effort, and frustration (Hart & Staveland, 1988). The items 
were rated on a 21-point scale from Very low / Perfect to Very high / Failure, and the 
overall score was determined as the mean of the six items and converted to a scale 
from 0 to 100.

Finally, the following measures were extracted from the post-experiment questionnaire:
• Overall steering system ranking. The participants were asked “Which steering system 

do you prefer? Rank the four systems from 1 to 4 (1 most, 4 least)”. Each number 
could only be used once.

• “When overtaking the traffic vehicles (driving on a straight road / driving on a curved 
road) I prefer the slow steering response”, coded on a seven-point scale from 1 (Fully 
agree), 4 (Neutral), to 7 (Disagree).

• Driver-initiated versus machine-initiated preference. The participants were asked “Do 
you prefer letting the machine change the steering modes or changing the steering 
modes yourself (MI vs HI)?”, with response options machine-initiated and human-
Initiated.

8.2.7. Statistical Analysis
Mean differences between the experimental conditions were examined using paired-samples 
t-tests. A total of four paired comparisons per dependent measure were made. First, FL 
was compared with FH. For the overtaking and curve-driving segments, the FH condition 
was expected to yield more favorable outcomes (better lane-keeping, low effort) than FL, 
whereas, for the straight segment, the opposite was expected. Second and third,, the DI and 
MI conditions were compared with the ‘inappropriate’ fixed-SG condition for that segment to 
examine whether the variable-SG conditions offer a benefit compared to a static SG. Thus, 
for the overtaking and curve-driving segments, the comparison of DI and MI was made with 
FL, whereas for the straight segment, the comparison was made with FH. Finally, the DI and 
MI conditions were compared with each other. 

Within-subject effect sizes dz were calculated according to Faul et al. (2007). A Bonferroni 
correction was applied, which means that the alpha value of 0.05 was reduced by a factor of 
four (i.e., alpha = 0.0125).

8.3. Results
Figure 8.2 shows the mean steering wheel angle, mean lateral position, and mean absolute 
lateral velocity for the FL and FH conditions. The steering wheel angles in the FL condition 
were higher than those in the FH condition due to the factor-two difference in SG. More 
specifically, the mean absolute steering wheel angle for FL and FH, respectively, was 7.33 
and 3.84 deg in the overtaking segment, 0.41 and 0.30 deg in the straight segment, and 
27.96 and 13.99 deg in the curve segment. For the curved road segment, some participants 
in the FL condition had difficulty driving through sharp curves, as reflected by large lateral 
excursions and high absolute lateral velocity.

Figure 8.3 shows the mean steering wheel angle, mean absolute lateral velocity, and 
number of participants driving with high SG for the MI and DI conditions. The steering angles 
were relatively similar for MI and DI, which can be explained by the fact that participants in 
the DI condition tended to follow the depicted advice and, accordingly, mostly drove with 
similar SG as the MI condition. 

However, as can be seen in the bottom panel of Figure 8.3, not all participants followed 
the advice, as some made intermediate switches. More specifically, in the MI condition, there 
were always three transitions between SG levels, while in the DI condition, the mean number 
of switches per participant was 5.50 (SD = 2.23, min = 3, max = 12). One participant drove 
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Figure 8.2. The mean steering wheel angle (second panel), mean lateral position with respect 
to the center of the right lane (third panel), and mean absolute lateral velocity (fourth panel) for 
the fixed low (FL) and fixed high (FH) conditions. Positive values indicate a left curve, steering, 
and lateral movement. The first (top) panel shows traffic density, road curvature, and three 
horizontal line segments that demarcate the three segments used in the analysis: overtaking, 
straight, and curves. 

Figure 8.3. The mean steering wheel angle (second panel), mean absolute lateral velocity 
(third panel), and the number of participants driving with high steering gain (SG) (fourth panel) 
for the machine-initiated (MI) and driver-initiated (DI) conditions. Positive values indicate a 
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the entire curve segment with low SG. It can also be seen that about five participants took a 
long time to switch back to low SG settings in the overtaking segment; that is, they appeared 
to have initially missed or ignored the presented advice and waited until they had overtaken 
all cars and drove on the straight, before switching to low SG. The switch back to high SG for 
the curve segment was more immediate, with about 10 participants even switching before 
the advice was displayed.

Table 1 shows the means, standard deviations, and effect sizes for the dependent 
measures per segment. 

FH vs. FL. In the curve-driving segment, participants’ subjective effort, mean absolute lateral 
velocity, and lateral position range were higher for FL than for FH. For the overtaking segment, 
differences between FL and FH were nonsignificant, but of the same sign. On the straight 
road, where high SG was expected to be detrimental, FH led to higher subjective effort than 
FL. Furthermore, the mean absolute front wheel angle was lower for FL compared to FH, 
suggesting that it was more difficult to drive accurately on a straight road with FH compared 
to FL. In summary, the comparison of FH and FL indicates that participants benefited from 
high SG in curves and from low SG on straights.

MI & DI vs. FL/FH. As seen in Table 1, participants benefited from variable settings (MI & DI) 
in comparison to the fixed steering sensitivity. More specifically, on the straight segment, MI 
and DI yielded lower subjective effort than FH, and in the curve segment, MI and DI yielded 
lower subjective effort than FL. In the same vein, participants showed improved lane-keeping 
(lower lateral velocities during overtaking and curves, smaller absolute front wheel angles on 
straights) with MI and DI compared to the fixed SG levels.

Overtaking segment FL FH MI DI FL FH MI DI FL-FH FL-MI FL-DI FH-MI FH-DI MI-DI
Subjective effort (1 to 7) 2.54 1.96 2.25 1.83 1.50 1.00 1.48 1.24 0.42 0.16 0.40 0.22
Mean abs. front wheel angle (deg) 0.293 0.307 0.324 0.295 0.051 0.084 0.091 0.063 -0.22 -0.46 -0.03 0.41
Mean abs. lateral velocity (deg/s) 1.015 0.976 0.976 0.962 0.118 0.117 0.113 0.128 0.41 0.53 0.64 0.15
Lateral position range (m) 4.46 4.30 4.45 4.25 0.55 0.62 0.71 0.57 0.22 0.02 0.40 0.30
Mean SG (0 to 1) 0.00 1.00 1.00 0.83 0.00 0.00 0.00 0.31

Straight segment
Subjective effort (1 to 7) 1.42 2.21 1.46 1.63 0.78 1.50 0.658 0.92 -0.56 0.55 0.47 -0.30
Mean abs. front wheel angle (deg) 0.016 0.024 0.016 0.016 0.006 0.014 0.007 0.007 -0.77 0.85 0.63 -0.16
Mean abs. lateral velocity (deg/s) 0.059 0.069 0.062 0.060 0.018 0.029 0.019 0.018 -0.44 0.36 0.42 0.09
Lateral position range (m) 1.14 1.16 1.21 1.08 0.36 0.41 0.37 0.26 -0.06 -0.13 0.27 0.41
Mean SG (0 to 1) 0.00 1.00 0.00 0.07 0.00 0.00 0.00 0.14

Curve segment
Subjective effort (1 to 7) 3.75 2.71 2.29 2.92 1.48 1.23 0.81 1.28 0.73 1.14 0.67 -0.62
Mean abs. front wheel angle (deg) 1.118 1.119 1.122 1.119 0.014 0.014 0.017 0.016 -0.10 -0.30 -0.07 0.20
Mean abs. lateral velocity (deg/s) 0.374 0.319 0.312 0.332 0.114 0.082 0.071 0.085 0.95 1.01 0.66 -0.57
Lateral position range (m) 3.31 2.84 2.81 3.27 1.02 0.76 0.88 1.08 0.66 0.58 0.05 -0.60
Mean SG (0 to 1) 0.00 1.00 1.00 0.93 0.00 0.00 0.00 0.20

Overall subjective ratings
NASA TLX overall (0 to 100) 33.1 31.81 28.75 31.01 15.87 13.52 10.70 12.71 0.15 0.42 0.32 0.30 0.10 -0.30
Preference rank (1 to 4) 3.25 2.79 2.13 1.83 0.90 0.93 1.26 0.82 0.32 0.62 1.05 0.34 0.78 0.16

Mean Standard deviation Effect size (d z )

Table 8.1. Means (M), standard deviations (SD), and effect sizes (dz) per dependent measure 
and experimental condition.

Note. The effect sizes are color-coded for visual clarity purposes. The color-coding ranges from -1.5 (red) 
to 0 (white) to 1.5 (green). |dz| > 0.553: p < 0.0125 (marked in boldface), |dz| > 0.769: p < 0.001. For 
the overtaking and curve segments, comparisons between DI/MI and FL are shown, and for the straight 
segment, comparisons between DI/MI and FH are shown, (i.e., to test whether variable SG provides benefits 
compared to the fixed SG level for that was inappropriate for that road segment.).
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MI vs. DI. In the curve segment, a lower subjective effort was found for MI compared to DI. 
Also, participants showed poorer lane-keeping (larger range and velocity of lateral position) 
for the DI condition compared to the MI condition.

Table 1 provides numerical information and does not elucidate how the experimental effects 
manifest themselves at the individual level. Therefore, a scatter plot is provided for several key 

0.2 0.3 0.4 0.5 0.6
Mean abs. lateral velocity - FL (m/s)

0.2

0.3

0.4

0.5

0.6

0.7

M
ea

n 
ab

s.
 la

te
ra

l v
el

oc
ity

 -
 F

H
 (m

/s
)

0.2 0.3 0.4 0.5 0.6
Mean abs. lateral velocity - MI (m/s)

0.2

0.3

0.4

0.5

0.6

0.7

M
ea

n 
ab

s.
 la

te
ra

l v
el

oc
ity

 -
 D

I (
m

/s
)

2 3 4 5 6
Lateral position range - FL (m)

2

3

4

5

6

La
te

ra
l p

os
iti

on
 r

an
ge

 -
 F

H
 (m

)

2 3 4 5 6
Lateral position range - MI (m)

2

3

4

5

6

La
te

ra
l p

os
iti

on
 r

an
ge

 -
 D

I (
m

)
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comparisons of interest. More specifically, Figure 8.4 shows lane-keeping measures related 
to the curve-driving segment for FH versus FH (top two figures) and DI versus MI (bottom two 
figures). It can be seen that most points lie below or above the diagonal line, consistent with 
the statistically significant effects shown in Table 1. At the same time, individual differences 
are substantial, as could also be inferred from the large standard deviations in Table 1.

 Overall Ratings of Conditions. The NASA-TLX showed the lowest workload for MI and the 
highest for FL; however, these effects were not statistically significant. The post-experiment 
ranking showed that MI and DI were significantly better-ranked than FL, and DI better than 
FH. Interestingly, although 12 participants ranked MI as the most preferred, 10 participants 
ranked it third or fourth (Figure 8.5). In comparison, for the DI condition, 9 participants ranked 
it first, and only 4 participants ranked it third or fourth. To the question, “Do you prefer letting 
the machine change the steering modes or changing the steering modes yourself?” 11 
participants reported preferring MI, and 13 preferred DI.

Finally, in response to the question: “I prefer the slow steering response”, means (SDs) on 
the 7-point scale from 1 (Fully agree) to 7 (Disagree) were 4.54 (1.93), 1.38 (0.65), and 6.08 
(0.97), for overtaking, straight-line driving, and curve-driving, respectively. These findings are 
consistent with the above results in that different driving environments require different SG 
levels.

8.4. Discussion
This study aimed to examine the effects of adaptive and adaptable transitions in steering 
gain (SG) on perceived effort, lane-keeping behavior, and system preference. In a simulator 
experiment, we compared two fixed SG levels and two systems that could switch between 
the low and high SG, either in an adaptable manner, that is initiated by the driver via a press 
of a button (DI) or in an adaptive manner, that is automatically by the car and triggered 
based on the location of the vehicle (MI). A test road was designed with segments that 
were hypothesized to require different SG settings. Based on the literature, we expected 
that machine-initiated transitions would reduce workload since the machine controls the 
adaptation and the driver is able to focus on the driving task. 

In accordance with the intended experimental design, different SG levels were found 
to be appropriate for different road segments: Compared to a fixed low steering gain (FL), 
driving with a fixed high steering gain (FH) was perceived by participants as more effortful 
and resulted in poorer lane-keeping behavior on straights, while the opposite held in curves 
and to a lesser extent during overtaking maneuvers. A possible explanation for the relatively 
small differences between FL and FH in the overtaking segment is that the required steering 
angles were not as large as in the curve driving segment (see Figures 2 and 3, Table 1). 
That is, although high SG was the recommended setting for the overtaking segment, the 
overtaking segment could also be comfortably driven with low SG. Literature indicates that 
the relationship between control-output gain and task performance follows a U-curve that 
results from the benefits of high gain in terms of movement amplitude and benefits of low 
gain in terms of precise control (Chapanis & Kinkade, 1972; MacKenzie, 2013, p. 81). Our 
steering sensitivity levels were selected based on realistic values (Millsap & Law, 1996) and a 
pilot study (Kroes, 2019). The observed SG × road-type interaction suggests that drivers may 
benefit from a steering gain that is adjusted or adjustable. The experimental results concur 
that the MI and DI conditions yielded favorable outcomes compared to driving with the SG 
level that was inappropriate for that road segment.

The literature indicates that, compared to adaptable automation, adaptive automation 
reduces workload at the possible cost of unpredictability: “Doing tasks directly costs more 
workload, but the payoff is greater awareness of how the task is being done” (Miller & 
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Parasuraman, 2007, p. 60). The current study also found a workload reduction for adaptive 
automation. More specifically, on curved roads, the MI condition produced lower effort ratings 
combined with better lane-keeping performance than the DI condition. The explanation for 
these findings is two-fold: (1) In the DI condition, there are at least some participants who 
drove with the "wrong" setting for some of the time (i.e., low SG instead of high SG), making 
them susceptible to the same performance deficits as observed in the FL condition, and (2) 
in the DI condition, drivers had to spend some effort to determine if and when a switch can 
be made and press a button (usually participants did so when driving in between curves). 

In the overtaking segment, however, there were no significant differences in effort ratings 
between MI and DI. This lack of effort reduction for MI in the overtaking segment may be 
explained by unpredictability: the automatic SG switch occurred while the participants 
were still overtaking cars (in comparison, for the curve segment, the switch occurred 100 
m before the first curve). This explanation is supported by the fact that some participants in 
the DI condition did not readily respond to the low SG advice after the overtaking segment, 
suggesting that this advice was ignored or missed.

The ranking of the four conditions showed that the MI and DI steering systems were more 
preferred than the fixed steering gains. However, despite the improved performance for MI, 
a substantial portion of the participants gave low preference rankings to the MI condition. 
Possible explanations are that drivers in the MI condition disliked its unpredictability and 
the inability to choose the steering gain themselves. More generally, literature in aviation 
automation suggests that automation-mode confusions may arise if mode changes are not 
initiated by the human operator but by an external trigger (Sarter & Woods, 1995). Similarly, it 
can be expected that, despite the colored SG mode display on the dashboard, some drivers 
in the MI condition had difficulty understanding why an SG switch had occurred. Future 
research should examine whether the SG setting should be displayed to drivers, such as 
in the current study, or whether this information should remain hidden. The latter solution 
may have some benefits as it minimizes visual distraction, but it may also exacerbate mode 
confusion.

In comparison to the MI condition, the DI condition gave drivers flexibility. In essence, if 
drivers in the DI condition preferred low (high) SG, they could select the low (high) SG setting 
at the start of their drive. That is, the DI condition can deliver what FL and FH can also deliver, 
which can explain why the DI condition was hardly ranked third or fourth (see Figure 8.5). This 
observation is in line with a study on adaptable automation by Sauer and Chavaillaz (2018), 
which concluded that the primary advantage of adaptive automation is that it supports 
diverse types of operators, who differ in their preferences. A correlation analysis provided 
support for the notion that the DI condition facilitated individual preferences: participants 
who ranked the FL condition higher (i.e., more preferred) were more likely to select a low SG 
in the DI condition (see Supplementary Material). Even though MI delivered better driving 
performance than DI, it can be argued that driver preference is just as important, or as noted 
by De Waard and Brookhuis (1999): “A system may function perfectly in the technical sense, 
if it is not accepted by the public, it will not be used” (p. 50). An additional advantage of the 
DI system compared to the MI system is that the DI system is easier to implement, as it does 
not rely on GPS and maps that define which SG level should be selected.

As shown in Figure 8.3, participants in the DI condition drove with approximately the 
same SG level as in the MI condition. That is, the great majority of participants in the DI 
condition switched to high SG when overtaking cars, to low SG on the straight, and back 
to high SG in curves. The high similarity may be due to the fact that the trigger locations of 
the MI system were chosen appropriately, that is, in such a way that they correspond to the 
participants’ preferred SG setting. However, the high similarity just as well be caused by the 
strong tendency of participants to follow the switching advice displayed in the DI condition. 
Possibly, participants’ reliance on the advice in the current experimental setting was stronger 
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than it would be when driving a real car, where disuse of feedback systems is a known 
concern (Kidd et al., 2017). On the other hand, about half of the participants made the switch 
before the high-SG advice was displayed, suggesting that these participants anticipated the 
upcoming steering demands and were not just relying on the advice.

A limitation of our experiment was that it was conducted with young and predominantly 
male students with a relatively low yearly driving mileage. Future research is needed with 
other population groups, such as expert and older drivers. Based on earlier literature on 
ADAS and older drivers (Classen et al., 2019; Young et al., 2017), it can be expected that 
older drivers may benefit from automation support, such as offered by the MI condition. At 
the same time, older drivers may have more difficulty driving while simultaneously processing 
other visual information, such as mode status and mode-changing advice.

Another limitation is that the machine-initiated transitions occurred at preprogrammed 
locations. Future studies could consider the current steering angle and driver state to 
determine safe moments for machine-initiated transitions. Note that, in the current study, 
abrupt and potentially dangerous SG transitions were prevented by smoothly changing the 
SG smoothly over a period of 3.5 s. Future research should also examine whether our findings 
replicate for different types of HMIs and advice in the DI condition or no displayed advice at 
all, and conditions in which the driver can choose from a range of SG levels. Furthermore, 
future studies could explore the potential benefits of variable SG for specific situations, such 
as understeer or oversteer prevention (e.g., Heathershaw, 2004) and lane changes (e.g., 
Wang et al., 2017).

This study found that different driving tasks (e.g., overtaking and curve driving vs. straight-
line driving) benefit from different SG levels and that a flexible SG (DI & MI) reduces subjective 
effort and yields better lane-keeping than a static SG (FL or FH). In turn, the MI condition 
yielded lower effort and better lane-keeping performance in curves than the DI condition 
but was disliked by some drivers. Whether the same driving behaviors would be elicited 
on real roads, on which drivers can be expected to be ‘satisficers’ (Hancock, 1999), and 
speed is not kept constant, remains unknown. Although simulators have been found to 
exhibit relative validity in short-lasting experiments such as ours (e.g., Klüver et al., 2016), 
how drivers would respond to MI and DI systems in the long term is unknown. An analysis of 
learning trends showed that participants demonstrated slightly smaller steering angles as the 
experiment progressed, indicating more stable control (see Supplementary Material). With 
prolonged driving experience, underutilization and disuse of technology can become factors 
to be considered, as indicated above. Test track studies and field operational tests would be 
required to examine whether DI and MI are viable and safe solutions for future traffic.

Data Availabil ity
Raw data, MATLAB scripts used for the analyses,and a demonstration video can be accessed 
here: https://doi.org/10.4121/20484999  
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Table 8A. Means (M), standard deviations (SD), and effect sizes (dz) per dependent measure 
and order of presentation (1 = first trial, 2 = second trial, 3 = third trial, 4 = fourth trial).

Overtaking segment 1 2 3 4 1 2 3 4 1-2 1-3 1-4 2-3 2-4 3-5
Subjective effort (1 to 7) 2.38 2.13 2.04 2.04 1.44 1.30 1.20 1.43 0.18 0.22 0.16 0.06 0.05 0.00
Mean abs. front wheel angle (deg) 0.322 0.305 0.302 0.291 0.053 0.081 0.069 0.090 0.30 0.44 0.39 0.08 0.18 0.13
Mean abs. lateral velocity (deg/s) 1.017 0.982 0.968 0.963 0.109 0.137 0.112 0.117 0.37 0.70 0.55 0.17 0.22 0.05
Lateral position range (m) 4.53 4.28 4.34 4.31 0.55 0.66 0.61 0.63 0.38 0.39 0.31 -0.12 -0.04 0.05
High SG (0 to 1) 0.46 0.45 0.48 0.45 0.49 0.50 0.50 0.50 0.01 -0.03 0.01 -0.04 0.00 0.04

Straight segment
Subjective effort (1 to 7) 1.625 1.667 1.833 1.583 1.13 1.20 1.167 0.65 -0.04 -0.14 0.03 -0.17 0.08 0.24
Mean abs. front wheel angle (deg) 0.018 0.018 0.018 0.018 0.007 0.010 0.006 0.015 -0.01 0.18 -0.01 0.13 0.00 -0.07
Mean abs. lateral velocity (deg/s) 0.059 0.063 0.065 0.062 0.017 0.022 0.021 0.027 -0.23 -0.40 -0.16 -0.15 0.02 0.12
Lateral position range (m) 1.114 1.142 1.22 1.113 0.30 0.38 0.31 0.41 -0.09 -0.37 0.00 -0.26 0.09 0.29
High SG (0 to 1) 0.021 0.026 0.024 0.003 0.07 0.11 0.08 0.01 -0.04 -0.03 0.27 0.01 0.20 0.26

Curve segment
Subjective effort (1 to 7) 3.33 2.96 2.79 2.58 1.31 1.12 1.41 1.38 0.26 0.31 0.43 0.12 0.30 0.22
Mean abs. front wheel angle (deg) 1.125 1.120 1.119 1.115 0.018 0.015 0.011 0.015 0.45 0.41 0.71 0.07 0.50 0.30
Mean abs. lateral velocity (deg/s) 0.333 0.327 0.337 0.341 0.091 0.083 0.096 0.099 0.12 -0.05 -0.13 -0.11 -0.27 -0.05
Lateral position range (m) 3.17 3.03 2.98 3.07 1.27 0.75 0.74 1.01 0.15 0.18 0.11 0.07 -0.07 -0.10
High SG (0 to 1) 0.49 0.45 0.50 0.50 0.50 0.50 0.51 0.51 0.04 -0.01 -0.01 -0.05 -0.05 0.00

Overall subjective ratings
NASA TLX overall (0 to 100) 33.06 30.80 30.63 30.21 11.47 13.60 15.23 12.94 0.34 0.22 0.31 0.02 0.09 0.05
Preference rank (1 to 4) 2.5 2.46 2.25 2.79 1.14 0.93 1.33 1.06 0.03 0.11 -0.16 0.11 -0.20 -0.29

Mean Standard deviation Effect size (d z )

Note. The effect sizes are color-coded for visual clarity purposes. The color-coding ranges from -1 (red) to 0 
(white) to 1 (green). |dz| > 0.553: p < 0.0125 (marked in boldface), |dz| > 0.769: p < 0.001.

Sauer, J., Kao, C. S., & Wastell, D. (2012). A comparison of adaptive and adaptable automation under different levels of environmental 
stress. Ergonomics, 55, 840–853.

Shoemaker, N. E., Dell’Amico, F., & Chwalek, R. J. (1967). A pilot experiment on driver task performance with fixed and variable steering 
ratio. SAE Technical Paper Series, 670508.

Shibahata, Y. (2005). Progress and future direction of chassis control technology. Annual Reviews in Control, 29, 151–158.
Shimizu, Y., Kawai, T., & Yuzuriha, J. (1999). Improvement in driver-vehicle system performance by varying steering gain with vehicle 

speed and steering angle: VGS (Variable Gear-ratio Steering system). SAE Technical Paper Series, 1999-01-0395.
Taylor, D. H. (1964). Drivers’ galvanic skin response and the risk of accident. Ergonomics, 7, 439–451.
Wang, W., Xi, J., Liu, C., & Li, X. (2017). Human-centered feed-forward control of a vehicle steering system based on a driver’s path-

following characteristics. IEEE Transactions on Intelligent Transportation Systems, 18, 1440–1453.
Young, K. L., Koppel, S., & Charlton, J. L. (2017). Toward best practice in Human Machine Interface design for older drivers: A review of 

current design guidelines. Accident Analysis & Prevention, 106, 460–467.

Appendix 8A



A Proactive Method to Assist 
Eco-driving



Eco-driving has the potential to substantially reduce energy consumption, but 
empirical evidence suggests the potential benefits are transient. A more direct 
approach to stimulate eco-driving is through an eco mode, which adapts powertrain 
settings. In practice, however, this feature tends to be underutilized, mostly due to a 
lack of acceleration performance. This paper describes the design and preliminary 
testing of a proactive eco mode that assists drivers in driving eco-friendly without 
being limited by the vehicle’s acceleration performance. The system uses a pre-
recorded database of location-specific driving behavior and road topology, in order to 
proactively increase powertrain settings at locations where acceleration is needed. 
Additionally, the system mitigates conflicts in case of misalignment with actual driver 
needs by overruling the proactive eco mode settings. The proactive eco mode was 
implemented in a Renault Talisman and tested with nine drivers driving on French 
roads. When driving with the proactive eco mode, the participants reached their 
target speed significantly faster while having similar energy consumption over the 
same distance compared to the non-adaptive eco mode. Moreover, all nine drivers 
rated the proactive eco mode as ‘adding value’ and rated the system as ‘easier to 
reach a target speed’ compared to the conventional non-adaptive eco mode. This 
study suggests that eco-driving (and its beneficial effects on energy consumption) 
can be stimulated by location-specific triggering of powertrain settings that facilitate 
acceleration.
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9.1. Introduction
Stimulating a driver to drive economically has the potential to substantially reduce energy 
consumption and emissions compared to normal driving (Barkenbus, 2010). Successful 
eco-driving behavior includes maintaining a uniform throttle position, minimizing speed 
oscillations while cruising, and avoiding excessive speed; in other words, it requires the driver 
to anticipate oncoming road situations (Alam & McNabola, 2014; Ericsson, 2001; Huang et 
al., 2018; Melman et al., 2021a; Sanguinetti et al., 2017). 

An approach to stimulate eco-driving behavior is to provide drivers with the option to 
select an eco mode. An eco mode sets powertrain characteristics related to reducing energy 
consumption, including adopting an earlier gear-switching strategy and modifying the 
throttle mapping (i.e., the relation between throttle driver and normalized requested engine 
torque; Melman et al., 2021c). As a result, an eco mode helps to keep the engine speed and 
corresponding engine power low and thereby reduce energy consumption (Melman et al., 
2021b). 

In practice, eco modes do not necessarily lead to the promised reduction in energy 
consumption because drivers can adapt their behavior to the eco mode, in particular during 
acceleration phases. Based on real-world driving behavior, Kutzner et al. (2021) found that 
drivers that drove with an eco mode resulted in similar fuel consumption compared to drivers 
without the eco mode engaged. Drivers with eco mode engaged accelerated just as quickly 
as drivers without an eco mode, adapting their behavior to compensate for the limited 
acceleration performance imposed by the eco mode by pressing the throttle pedal more 
deeply than needed to smoothly accelerate, negating the likely intention of the eco mode 
(Melman et al., 2022). An eco mode can also result in driver frustration due to the lower 
acceleration performance, possibly hampering eco mode acceptance (e.g., Allison et al., 
2022).

The limited benefits of an eco mode might be because it reduces the vehicle’s acceleration 
performance all the time for every driving situation, whereas energy-efficient driving in 
different driving situations requires different acceleration performance. Literature suggests 
that ‘slow’ accelerations are energy-efficient for small speed differences, whereas ‘stronger’ 
accelerations to quickly reach a target speed is optimal for large speed differences (Dib et al., 
2014; Mensing et al., 2013; Saerens & Van den Bulck, 2013). As a result, a conventional eco 
mode lacks the power when stronger accelerations are needed for large speed differences, 
for example, when accelerating onto a highway. Ideally, to improve driver acceptance and 
eco mode usage, an eco mode should adapt the powertrain settings based on the driving 
situation. 

Such an adaptive eco mode system could anticipate when more acceleration performance 
is needed and adapt the powertrain settings just before the start of an acceleration phase. 
Likewise, an eco mode could predict cruising phases and select the powertrain setting that 
facilitates low engine speed and power as soon as the target speed is reached. In other 
words, an adaptive eco mode that proactively adapts the powertrain settings based on the 
demands of the oncoming driving situation.

The situational demands can be described by the predicted power that the driver requires 
for the oncoming driving situation, for example high power to strongly accelerate or low 
power to maintain speed or to make small speed adjustments. We, therefore, base the 
proactive powertrain adaptations on the predicted power. In a recent study, we observed 
that variability in driving behavior is predominantly dictated by the location where you drive 
rather than who is driving (Melman et al., 2021a). This allows us to predict power based on a 
location-specific driving behavior database in which relevant behavior (velocity, acceleration) 
are linked to geographical location through GPS tracking - a common approach in driving 
behavior studies and various commercial services for navigation (Grengs et al., 2008; 
Hofmann-Wellenhof et al., 2003)
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However, the power predictions can be inaccurate, for example due to dynamic road 
situations such as other traffic and can lead to incorrect adaptations. If conflicts due to 
incorrect predictions persist, it is likely to lead to system frustration, increased workload 
(Kaber & Endsley, 2004) and could ultimately lead to disuse (Parasuraman & Riley, 1997). We, 
therefore, follow a human-centered automation design approach, in which conflicts between 
driver and automation are minimized by keeping the driver primarily in charge of the driving 
task and through monitoring the current driver behavior and ensuring the driver can influence 
or override the automation at any time (Abbink et al., 2018; Johnson et al., 2014). 

In this study, we aim to design, implement, and test a proactive eco mode that – while 
conserving low energy consumption – assists the driver to reach a target speed by temporarily 
improving the vehicle’s acceleration performance compared to a non-adaptive eco mode. 
First, we present the proactive eco mode method (Sec. 9.2). Second, the functionality of the 
proactive eco mode was demonstrated in a real-world test vehicle in an urban traffic setting 
in France using 12 Renault experts with different fields of expertise (Sec. 9.3). We show 
that the proactive eco mode can locally improve acceleration performance while maintaining 
energy consumption compared to the conventional non-adaptive eco mode. In addition, 
we illustrate how conflicts can be mitigated inherently in the design for two examples: an 
unexpected strong acceleration (an overtake maneuver), and an unexpected stop-and-go.

9.2. Design of the Proactive Eco Mode System
Figure 9.1 shows a schematic representation of the proactive eco mode system: a method 
that automatically switches powertrain settings based on predicted location-specific data and 
current driver behavior. The powertrain settings (PWT) determine the acceleration response 
of the vehicle given the throttle pedal input. Specifically, the proactive eco mode switches 
between the two predefined powertrain settings: a ‘low’ setting corresponding to powertrain 
settings used in Renault’s MultiSense® eco-driving mode (PWTlow; Renault, 2022), and a 
‘normal’ setting corresponding to the powertrain settings used in the normal driving mode 
(PWTnormal; see section 9.3.2 for more detail about the underlying settings). In general, the 
proactive eco mode method consists of two main paths: (1) a proactive path (Figure 9.1  – 
highlighted in green) that predicts the powertrain settings using a location-specific database 
and current driving behavior and (2) a conflict mitigation path that infers driver’s intention and 
proposes a powertrain setting for two specific examples: a speed-based PWT proposal and 
a throttle-based powertrain setting proposal (Figure 9.1 – block 2, highlighted in blue). An 
arbitrator decides which proposed powertrain setting from the proactive, speed-based, or 
throttle-based paths are ultimately applied to the vehicle (section 9.2.3, Figure 9.1 – block 3). 
The settings are finally communicated to the driver (Figure 9.1 – block 4). The two paths and 
the arbitrator will be explained in more detail in sections 9.2.1, 9.2.2 and 9.2.3, respectively. 

9.2.1. The Proactive Path (1)
Proposed predicted powertrain setting (1c)
The powertrain settings are switched using a threshold-based decision logic (Equation 9.1, 
Figure 9.2):

   (9.1)

where P is the average predicted power in kW estimated using a location-specific database 
averaged over a prediction window ahead of the vehicle (see next section), Pc is the current 
measured vehicle power in kW, τnormal(P) is 20 kW, and τlow(P) is 10 kW. The lower threshold 
is chosen such that PWTlow is selected at a cruising speed of 100 km/h without accelerations 
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(our test vehicle requires 9.6 kW at 100 km/h without considering external influences). The 
high threshold is heuristically tuned, such that the normal settings are selected during 
acceleration above 2 m/s2 for speeds below 25 km/h and 0.8 m/s2 for speeds above 80 km/h. 
In other words, during strong predicted accelerations – as signaled when the mean predicted 
power exceeds an upper power threshold – the system switches to PWTnormal. Conversely, 
the PWTlow is selected during cruising phases (i.e., when the mean predicted power and 

Figure 9.1. A schematic representation of the proactive eco mode that switches between 
two sets of powertrain settings. It contains two main paths: a proactive path (in green) and a 
conflict mitigation path (in blue) that are evaluated at 1000 Hz. (1) The proactive path predicts 
power by extracting pre-recorded location-specific data using the current location, current 
speed, and predicted route. (2) The conflict mitigation path continuously monitors for potential 
conflicts between the proactive predictions and the current driving behavior (block 2). An 
arbitrator (block 3) decides if and what settings are ultimately applied. The applied settings are 
communicated to the driver (block 4).
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Figure 9.2. Overview of the proactive path steps for time instances t1 and t2 (1a to 1c 
corresponding to Figure 9.1). The proactive path predicts the power demand over a prediction 
horizon and adapts the powertrain settings accordingly. 1a. The traces show part of the 
a-priori recorded location-specific database. 1b. The predicted power ahead of the current 
position along the predicted route is calculated at each time step based on location-specific 
data extracted for a 10-second prediction window. 1c. The powertrain setting results for the 
two time instances. 



173

9

current power are below a lower power threshold).

Real-time power prediction (1b)
The predicted power P is estimated using the following equations:

, with                                                   (9.2)
      

                                 (9.3)

where N = 50 is the number of data points in the 10-second prediction window (i.e., time 
steps of 0.2 s), Pi is the power at prediction time step i,  vi the speed,  ai the acceleration or 
deceleration, and φi road inclination, ρ the mass density of air (1.225 kg/m3), m the vehicle 
mass (1430 kg), A the vehicle frontal area (2.73 m2), and Cd the vehicle’s drag coefficient 
(0.27). 

The 10-second prediction window was heuristically chosen because most acceleration 
phases with a speed difference of 50 km/h lasted approximately 10 seconds based on pilot 
tests. Moreover, averaging the power demand over the 10-second window filtered our small 
accelerations or short pulses in power demand, resulting in powertrain setting adaptations 
for relatively strong anticipated power demands. 

To prevent switching powertrain settings too often, the algorithm checks whether 
consecutive powertrain setting switches would occur in a short time span over the near 
future. Therefore, the moment the system decides to switch to PWTlow, the algorithm 
temporarily shifts the prediction window another 10 seconds in the future. If the shifted 
prediction window would result in PWTnormal following Equation 9.1, the powertrain settings 
are not switched to PWTlow, but would remain PWTnormal. 

Location-specific database (1a)
The database consists of the speed, acceleration, and road inclination per GPS location over 
a predicted route (see section 9.3.1. for a detailed description of the test route) sampled every 
5 m. The algorithm extracts the location-specific behavior over the 10-second prediction 
window along the anticipated route ahead of the current location. 

Real-time localization is performed by searching for the minimal Euclidean distance between 
the current GPS location to the nearest database GPS location using the last-known location 
as a starting point for the search. The velocity, acceleration, and inclination over the prediction 
horizon were then extracted from the location-specific database by iteratively predicting the 
future locations over the prediction window per 0.2 s time step. The first location is calculated 
using the current location and current speed vc. The following locations are calculated from 
their previous location and the speed extracted from the database at the previous location. 
This resulted in predicted location-specific data for velocity , acceleration 

, and inclination  linked to GPS positions 
The location-specific database for our demonstration was recorded a-priori based on 

three laps of the route with one driver and was stored locally on the real-time system running 
the proactive eco mode algorithms. Supplementary Figure 9.A shows the location-specific 
database for the complete test route.
  
Conflict mitigation path (2)
The algorithm continuously monitors the driver’s throttle input and vehicle speed for potential 
conflicts between the proactive adaptation path predictions and the current driving behavior. 
The powertrain settings are adapted if a conflict is observed, which we illustrate using two 
representative examples.
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Example 1: speed-based conflict mitigation for an unexpected stop-and-go
An example of a conflict between predicted speed and measured speed is a stop-and-go 
at a location where the reference driver in the location-specific database maintains speed, 
hereafter referred to as 'unexpected stop-and-go'. This situation represents a situation where 
a driver may stop for a pedestrian crossing and needs to accelerate back to cruising speed 
afterward and which cannot be predicted by the location-specific database. To demonstrate 
the predictive power that lies in the difference between predicted vehicle state and measured 
vehicle state, we implemented a rule-based algorithm that proposes the normal powertrain 
settings if the difference in current speed and expected speed exceeds a threshold:

         (9.4)

where vp is the predicted speed based on the nearest location-specific database location, vc 

is the current speed, and τ(v) is the speed difference threshold of 36 km/h.
 
Example 2: throttle-based conflict mitigation for an unexpected strong acceleration 
A driver’s intention to accelerate can depend on dynamic obstacles, such as other vehicles. 
Because a location-specific driving behavior database does not account for dynamic road 
situations, this could lead to situations in which the proactive path does not propose to 
select the normal powertrain settings while the driver would want to use it to reach a target 
speed. An example of this is an overtaking scenario. In this example, immediate acceleration 
intention is inferred from the driver’s throttle rate (i.e., the speed of the throttle depression), 
implemented as follows:

                    (9.5)

Where  is the throttle pedal rate and  is the rate threshold of 90 %/s. The throttle-based 
PWTnormal is applied until the current power Pc is below 10 kW. High throttle rates indicate that 
the driver requires higher power immediately, such as when preparing to overtake another 
vehicle. The throttle rate is estimated by fitting a first-order regression to the last 0.5 s of the 
measured throttle input. 

9.2.3. Arbitrator (3)
An arbitrator decides which proposed powertrain setting from the proactive, speed-based, 
or throttle-based paths to apply to the vehicle. The arbitrator applies PWTnormal to the 
powertrain if any of the three paths proposes the PWTnormal. Otherwise, the PWTlow settings 
of the proactive path are selected by default. Moreover, the proactive powertrain settings are 
only applied the moment the current throttle input angle is smaller than 30 deg. This way, no 
settings are changed when the driver has a large throttle input to assure smooth transitions 
between PWT settings. The speed-based PWT settings and throttle-based PWT settings are 
applied immediately. 

9.3. Real-world Evaluation 
9.3.1. Method
Instrumented vehicle and equipment
The proactive eco mode system was implemented in a Renault Talisman Phase 2 (see Figure 
9.3). The vehicle had a 1.6 L diesel engine (type R9M), an automatic transmission, with a 
maximum engine power of 160 kW, a maximum speed of 207 km/h, and a 0 to 100 km/h 
acceleration time of 9.6 s. The vehicle was instrumented with a Dassault Systems dSpace 
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DS1401 prototyping PC connected to the vehicle’s CAN bus. The proactive eco mode was 
implemented in Simulink and compiled to run on the prototyping PC at a frequency of 1000Hz. 
The vehicle’s CAN signals, including the current vehicle state (speed, acceleration, power), 
vehicle settings, and current driver behavior were transmitted to the prototyping PC in real-
time and recorded with RTmaps. A VBOX Automotive 3i GPS sensor provided the vehicle’s 
GPS location to the prototyping PC at a 100 Hz update rate with a 50 cm position accuracy. 

Participants 
Nine Renault experts in vehicle dynamics, driving experience, or human factors participated 
in the demonstration. All participants were licensed to drive. No further personal information 
(such as age, gender, or average mileage a year) was gathered during this demonstration.

Powertrain settings
The proactive eco mode switches between two predefined powertrain settings: a ‘low’ 
setting identical to the powertrain settings used in Renault’s MultiSense® eco mode 
(Renault, 2022; PWTlow), and a ‘normal’ setting identical to the powertrain settings used in 
Renault’s normal mode (PWTnormal). Compared to PWTlow, PWTnormal involved an alteration in 
the throttle mapping, where a given driver’s throttle depression (‘throttle driver’) resulted in 
a higher normalized requested engine torque (‘throttle driver’) (see Figure 9.4a). Additionally, 
PWTnormal increased the gear shift point in the rpm range (i.e., allowing a higher rpm before 
changing gears). For example, for a ‘throttle driver’ of 70%, the gear changed from 3rd to 4th 
at 55 km/h for PWTlow, whereas for PWTnormal this was 57 km/h. The powertrain settings were 
communicated to the driver through the visual cockpit interface (see Figure 9.4b). Selecting 
PWTnormal will likely lead to stronger accelerations according to Melman et al. (2021b), who 
showed that increased throttle mapping and powertrain settings can increase acceleration 
performance.

Route and scenario selection 
During the demo, participants drove on a predefined 8.0 km long route that took approximately 
10 minutes to complete (Figure 9.5). The speed limit was 50 km/h unless stated otherwise in 
Figure 9.5. The route contained three scenarios along the route: an expected stop-and-go, 
an unexpected stop-and-go, and an overtake maneuver. The first scenario (expected stop-
and-go) was used to quantitatively evaluate the effect of the proactive eco mode on driving 
behavior and energy consumption for a controlled scenario. Scenarios 2 and 3 are used to 
demonstrate how conflicts can be mitigated. 

Figure 9.3. The test vehicle (left) with the prototyping PC, the CAN bus interface, and data 
acquisition interface in the trunk (right).
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Scenario 1, the expected stop-and-go (310 m), took place on Renault’s premises and 
experienced low traffic volumes, allowing participants to stop and accelerate unhindered by 
traffic. Specifically, drivers were asked to stop at a designated location and accelerate from 0 
km/h to a target speed (speed limit of 50 km/h), which was predicted by the location-specific 
data (i.e., speed was 0 km/h for the stop and strong acceleration was predicted).

Scenario 2, the unexpected stop-and-go, demonstrates how conflicts can be mitigated by 
continuously comparing the driver’s actual behavior and the predicted behavior (see section 
9.2.2.1. for more detail). During the unexpected stop and acceleration, drivers were requested 
to safely stop anywhere at a 500 m long straight road (see Figure 9.5), and accelerate back to 
the road (speed limit of 50 km/h). This scenario represents acceleration phases that are not 
predicted by the location-specific database, such as a stop for a crosswalk and subsequent 
acceleration.

Scenario 3, the overtaking maneuver, demonstrates how the system could deal with 
scenarios that were not predicted by the location-specific database, for example, when 
additional power is desired to overtake, but PWTlow settings are selected. Participants were 
asked in scenario 3 to safely perform overtaking maneuvers on two segments of a dual lane 
national road, see Figure 9.5. These segments were chosen because the proactive path would 
recommend PWTlow while PWTnormal would make overtaking easier. The resulting segments 
for scenario 3 were 1.1 km long and are visualized in Figure 9.5. This scenario demonstrates 
that the system can infer the additional power request through the driver’s throttle behavior 
and adapts the powertrain settings accordingly (see section 9.2.2. for more detail). 

Procedure
At the start of the demonstration participants were asked to drive as they usually would and 
adhere to the traffic rules indicated by road signs next to the road. The participants drove 
three trials with different eco mode configurations in the same order: (C1) non-adaptive eco 
mode, (C2) proactive eco mode without throttle-based adaptation (i.e., see section 9.2.2.), 
and (C3) proactive eco mode with throttle-based adaptation. The first trial was driven in the 
non-adaptive eco mode and the participants were not explicitly instructed about the used 
vehicle settings. Next, the participants were informed they drove the non-adaptive eco mode 
and the proactive eco mode functionality driver before driving condition C2 and C3. After trial 
C2 and C3, participants completed a short questionnaire. All nine drivers completed scenario 
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created using test data. b. The visual interface on the test vehicle cockpit for PWTlow (top) and 
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1 for both the non-adaptive eco mode and proactive eco-mode; 7 performed scenarios 2 
and 3.

Dependent measures and data analysis
We describe and analyze overall system performance, driving behavior data, and self-
reported ratings for the non-adaptive eco mode and proactive eco mode, for the complete 
route and more detailed analysis of the expected stop-and-go (scenario 1). The conflict 
mitigation scenarios 2 and 3 are not evaluated but merely illustrate the functioning of the 
proactive eco mode using the data from one driver.

Proactive eco mode performance. To assess the accuracy of the proactive powertrain 
setting adaptations, we compare if the proactive eco predictions indeed were followed by 
strong accelerations (P < τnormal(P)). Specifically, we simulate the mean predicted power 
(P ; section 9.2) over the complete route using each driver’s measured driving behavior as 
the location-specific data. This results in mean predicted power specific to each driver’s 
own data, which allows us to assess whether the actual setting adaptations during the 
demonstration were correctly applied.

Driving behavior. Data including the vehicle state (vehicle speed, acceleration, motor 
torque delivered to the wheels), vehicle settings (e.g., throttle map, driving mode), and driver 
input (throttle pedal angle) were recorded from the vehicle’s CAN bus at 10 or 100 Hz and 
subsequently resampled to 100 Hz in post-processing. Specific to the expected stop-and-go 
(scenario 1), five dependent measures are calculated for each participant. 

• Mean energy consumption (kJ/km). The energy consumption per kilometer is 
calculated by integrating the actual power over time divided by the total distance of 
the stop-and-go segment (310 m). Power is calculated by calculating the resultant 
force of the measured delivered motor torque to the wheels on the road using the tyre 
radius, and multiplying this force with the measured vehicle speed.

• Fuel consumption (cm3/km). The measured fuel consumption during the stop-and-go 
segment divided by the total distance of the stop-and-go segment (310 m).

• Time to 95% target speed (s). The time it takes to reach 95% of the driver’s own target 

EndStart
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(310 m)
(500 m)

(1100 m)

50
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90

Scenario 3 
Overtake maneuver

Scenario 1 
Expected stop-and-go

Scenario 2 
Unexpected stop-and-go

Figure 9.5. The experiment route, the to –and from– legs separated spatially for clarity. The 
driving direction is indicated by arrows. The route consisted of primarily dual lane roads with 
roundabouts and one traffic light. Scenarios 1, and 2 were on roads with low traffic volumes 
on the premises of Technocentre Renault at Aubevoye. Scenario 3 was on public roads with 
varying degrees of traffic. 
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speed relative to the start of the acceleration. Each driver’s target speed is based on 
their mean speed over the last 10 seconds in scenario 1. The start of the acceleration 
is determined when the speed exceeds 0.5 m/s after the full stop.

• Mean acceleration to 95% target speed (m/s2). The mean acceleration to reach the 
95% target speed (see above). Compared to non-adaptive eco, the proactive eco is 
expected to increase the mean acceleration while adopting the same mean throttle. 

• Mean throttle to 95% target speed (%). Mean throttle to reach the 95% of the target 
speed.

Parameters are reported using the mean and 95% confidence interval of the mean, which is 
determined using bootstrapping (n = 10,000 samples; the 2.5% and 97.5% percentiles are 
selected). Within-subject differences between the non-adaptive and proactive eco mode are 
calculated and bootstrapped to determine significance per dependent variable. A difference 
is significant if the 95% confidence interval of the within-subject difference does not include 
zero (Tibshirani, & Efron, 1993).

Self-reported ratings. Participants rated on a seven-point Likert scale to what degree the 
proactive eco mode helps to reach a target speed easily and whether the proactive eco mode 
adds value compared to the non-adaptive eco mode after trials C2 and C3.

9.3.2. Results
Overall driving behavior and system performance
Figure 9.6 shows the average speed, throttle, delivered power, and most used powertrain 
setting versus the traveled distance of the full route. The route consisted of multiple 
acceleration phases with varying differences in start and target speed (see the speed profile 
in Figure 9.6). Overall, note that the averaged speed and power over the participants are 
substantially lower compared to the database speed and power. The proactive powertrain 
setting adaptation switches the powertrain from PWTlow to  PWTnormal just before large peaks 
in power demand (see the vertical lines in Figure 9.6). Moreover, please note that there is 
large inter-driver variability when the proactive system switches back to PWTlow (Figure 9.6 
bottom). This can be explained by the fact that some drivers accelerated stronger and longer 
and thus it took longer before the current power was below τlow(P). Moreover, Figure 9.6 
shows that the unexpected stop-and-go was executed over a 500 m long segment resulting 
in a large variability of PWT switch locations.

The proactive eco mode, excluding the throttle-based adaptation in scenario 3, switched 
79 times to the normal powertrain settings across the nine participants during run 2 (average 
of nine times per lap per participant). Of these switches, 47 (59%) were indeed followed by an 
acceleration phase with a measured mean power demand larger than 20 kW (P >τnormal(P)), 26 
switches were followed by an acceleration phase with mean power demand smaller than 20 
kW and larger than 10 kW (τlow(P) < P < τnormal(P)), and 4 switches followed by an acceleration 
phase of below 10 kW (P < τlow(P)). The proactive adaptations were indeed also proactive: 
only 1 out of a total of 79 adaptations was too late due to a single GPS sensor misread. 

The PWTlow settings are selected when the expected and current power demand is below 
our power decision threshold (< 10 kW), which corresponds to phases when the speed is 
expected to be relatively constant over the 10 s prediction window. 68.5% of the time drivers 
drove with PWTlow applied (CI: (66.8%, 70.0%)), compared to 31.5% of the time in PWTnormal 

(CI: (30.0%, 33.2%)).

Scenario 1 - Expected stop-and-go
The mean speed, throttle, power, energy consumption and powertrain setting as a function 
of time for the expected stop-and-go (scenario 1) are shown in Figure 9.7. Note that the 
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powertrain settings PWTnormal are already proactively applied before the acceleration starts at 
t = 0 s. Once each driver’s acceleration phase is over, the powertrain settings are automatically 
switched to the low settings. The variation in moments in time when the system switches to 
PWTlow is because the system switches back once the predicted power demand and the 
current power demand are below a threshold (see section 9.2.1.). In other words, drivers who 
accelerate longer remain longer in PWTnormal and can be seen in Figure 9.7.

Proactively adapting the powertrain settings helps drivers to reach their target speed 
significantly quicker while keeping energy consumption and fuel consumption similar to 
the non-adaptive eco mode (see Table 9.1 and Figure 9.7). Mean acceleration during the 
acceleration phase is significantly higher, and subsequently time to target speed is significantly 
shorter for the proactive eco mode. Participants provide similar mean throttle input with the 
proactive eco mode engaged, resulting in initially more power demand compared to the non-
adaptive eco. The power demand subsequently drops below the non-adaptive eco mode 
once the target speed is reached, compensating for the initial higher power demand. As a 
result, energy consumption over the 310 m long scenario is similar between both modes. A 
strong correlation was found between energy consumption and fuel consumption (ρ = 0.96).

Example 1: speed-based conflict mitigation for an unexpected stop-and-go
Figure 9.8 demonstrates how powertrain settings can be adapted proactively when a 
mismatch occurs between the driver’s current speed and the expected speed in the location-
specific database. While the driver decelerates, the system selects PWTnormal in anticipation 
of the acceleration to the expected cruising speed. The normal settings are applied until 
the acceleration phase is done, which is determined based on the measured current power 
demand Pc. Please note that this did mean that the system automatically switched to 
PWTnormal when speed = 0 km/h. During the demo, drivers stopped in total 15 times outside 
the two stop-and-go scenarios (e.g., a stop for a traffic light), 14 of these stops did not trigger 
a speed-based PWT setting switch using the current thresholds because the predicted speed 
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Figure 9.8. An example of a speed-based powertrain setting switch. The speed and the 
powertrain setting for one participant performing an unexpected stop-and-go (orange) versus 
the predicted speed in the location-specific database (black).

0

20

40

60

80

S
pe

ed
 (k

m
/h

)

0 5 10 15 20
Time (s)

Low

Normal

P
ow

er
tr

ai
n 

se
tt

in
g 

(-
)

Predicted speed

Current speed

Switch to PWTlow 
once acceleration
is over

Switch to PWTnormal 
when acceleration 
is expected

25 30

Proposed proactive 
PWT setting

Arbitrated speed-based
PWT setting



181

9

in the database at those locations was lower than τ(v). The one that did trigger a speed-
based PWT setting switch was a stop located at the 90 km/h road segment (Figure 9.5).

Conflict mitigation example 2: An unexpected strong acceleration
Figure 9.9 shows a driver overtaking a slower vehicle. Because the location-specific driving 
behavior database does not capture dynamic traffic situations, the powertrain settings are 
not adapted proactively. Instead, we adapt the powertrain settings to PWTnormal based on 
a rapid throttle pedal depression, and switch back to PWTlow once the measured power is 
below τlow(P). Hence, to account for unforeseen or difficult to predict situations, the adaptive 
system should also reactively adapt the settings based on the current driver input. 

Subjective ratings
In response to the question ‘Compared to the non-adaptive eco (C1), the proactive eco mode 
(C2) helps to easily reach a target speed’ 3 participants very strongly agreed, 4 participants 
strongly agreed, and 2 participants agreed. In response to the question ‘Compared to the 

Non-adaptive eco Proactive eco Within-subject 
M (CI ) M  (CI ) M  (CI )

Energy consumption (kJ/km) 823.0 (755.0, 916.5) 801.7 (748.0, 863.6) -21.4 (-63.2, 18.1)

Fuel consumption (cm3/km) 151.6 (141.7, 165.5) 150.6 (142.1, 160.0) -1.0 (-7.9, 5.4)
Time to 95% target speed (s) 12.4 (10.4, 14.6) 9.1 (7.2, 11.2) -3.3 (-5.9, -1.4)
Mean acceleration to 95% target speed (m/s2) 1.42 (1.27, 1.55) 1.85 (1.57, 2.16) 0.43 (0.17, 0.81)
Mean throttle to 95% target speed (%) 42.3 (40.2, 44.4) 39.4 (36.0, 44.4) -2.9 (-6.6, 2.9)

Table 9.1. The mean (M) and the upper and lower bounds of the 95% confidence interval (CI) 
of the mean for Scenario 1 (Expected stop-and-go, n = 9). Parameters are either calculated 
for the full scenario segment or the acceleration phase. Significant differences based on 
within-subject differences are shown in bold.

Figure 9.9. An example of a throttle-based powertrain setting switch. One participant during 
an overtake maneuver which was not predicted in the database. The system switches to 
normal powertrain (PWT) setting due to the high throttle speed (estimated over the last 0.5 s 
throttle; indicated with a gray box) and returns to low PWT setting once the current power is 
below 10 kW. 
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non-adaptive eco (C1), the proactive eco mode (C2) adds value’ 2 participants very strongly 
agreed, 4 participants strongly agreed, 2 participants agreed, and 1 participant was neutral. 
Lastly, adding functionality such as throttle-based adaptations (C3) resulted in similar results 
compared to C2. Compared to non-adaptive eco (C1), C3 makes it easier to reach a target 
speed (M = 2, range = [1 3]), and adds value (M = 1.75, range = [1 3]).

9.4. Discussion / Conclusion
We designed and demonstrated a proactive eco mode that aimed to stimulate eco-driving 
by helping the driver to quickly and efficiently reach a target speed, with the aim of improving 
eco mode acceptance and usage compared to a non-adaptive eco mode. We discuss the 
most important observations below.

Energy-efficient driving can include stronger accelerations for large speed differences
As expected, the proactive eco mode that temporarily switched to PWTnormal for strong 
acceleration phases resulted in drivers significantly reaching their target speed faster with 
similar energy consumption compared to the non-adaptive eco mode. These real-world 
results complement simulation studies that argue ‘strong’ accelerations followed by constant 
cruising speed for optimal energy efficiency (Mensing et al., 2013; Saerens & Van den Bulck, 
2013). Although this study provides evidence that temporarily switching from PWTlow to 
PWTnormal during acceleration phases does not hamper energy efficiency, we did not test 
whether driving only with PWTnormal would harm energy consumption on a trip level. Still, 
evidence shows that powertrain settings with a higher throttle map and later gear changes, 
such as in PWTnormal, lead to higher fuel consumption, mainly due to an average higher 
engine speed (Melman et al., 2021b, 2022; Sanguinetti et al., 2017). Hence, selecting PWTlow 
for cruising and low acceleration phases can be argued to be beneficial to improve energy 
efficiency. 

The proactive eco mode switched too often but was still well-received by the drivers
For scenario 2, all the PWTnormal setting adaptations were predicted using an a-priori 
measured location-specific database. Using this database, the system predicted 79 times 
strong accelerations in total for all drivers. Of these predictions, 47 were indeed followed 
by a strong acceleration with a power demand higher than 20 kW. Nevertheless, the system 
also switched for acceleration phases that were followed by lower power demands (i.e., 
26 switches were followed by a power demand between 10 kW and 20 kW and 4 switches 
followed by a power demand below 10 kW). The primary parameter that could be the cause 
for this ‘over-adaptation’ is the location-specific database, which showed to be a-typical 
compared to the average driving behavior of the participants (see Figure 9.6). This suggests 
that the database should be based on average driving behavior of a larger population, or 
could be tailored to specific driving styles. 

Despite this ‘over-adaptation’, participants rated the system positively: all nine drivers 
rated the proactive eco mode to add value and rated the proactive eco mode to facilitate 
reaching higher target speeds, compared to the non-adaptive eco mode. This suggests that 
the current method of combining proactive predictions while taking current driving behavior 
into account is promising in reducing conflicts. Moreover, it could be argued that our system 
that switched often to more responsive powertrain settings (i.e., having more power available 
than needed) inherently causes less conflict than a system that switches too little (i.e., wanting 
more power but not getting it). Future studies could systematically induce conflicts in vehicle 
settings to investigate conflict mitigation.
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Location-specific data can provide sufficiently accurate driving behavior predictions
Although our database captured more acceleration-prone behavior compared to the 
participant pool, a location-specific database proved useful in predicting acceleration phases, 
supporting our previous observations that variability in driving behavior is more impacted by 
changes in the environment than by inter-driver variability (Melman et al., 2021a). Relying 
on a-priori measured behavior has the potential to simplify behavior predictions, alleviating 
the reliance on often complex computational models that need to sense and interpret 
the environment in order to predict behavior, and require rich datasets to train and may 
lack generalizability to untrained environments. However, we realize that our approach is 
not a one-stop solution. For example, the dependence on predicted route navigation, the 
influence of traffic, and other external factors such as weather, are challenges that need to 
be addressed in future work to make predictions more robust.

The proactive eco mode can mitigate conflicts when they occur
Making adaptive systems that are accepted is not self-evident, especially because system 
acceptance is hampered by incorrect predictions that will occur eventually (Johnson et al., 
2014; Melman et al., 2020). Our aim was to demonstrate that continuously tracking driver 
behavior and inferring driver intention is important to create an adaptive system that is 
accepted by drivers. 

We described a methodology (Figure 9.1) where the driver’s current behavior is closely 
monitored to improve proactive predictions (block 1a), decide when to switch modes based 
on current throttle behavior (block 3), and mitigation when conflicts occur (block 2). The first 
two prevented inappropriate powertrain switches, such as not switching to PWTnormal when 
releasing the throttle, and not switching back to PWTlow when still accelerating. The latter 
(block 2) showed how conflicts between the proactive adaptation path predictions and the 
current driving behavior could be mitigated for two examples. Although the first subjective 
results are promising, the two scenarios and our implementations of our algorithms are 
simplified and have limitations. For example, the speed-based PWT setting algorithm in its 
current implementation will trigger an (undesired) switch to PWTnormal during a traffic jam.

9.4.1. Future Considerations and Limitations
We focus our energy analysis on short strong acceleration phases in which likely the largest 
differences in energy efficiency would be visible if any difference would exist (Melman et al., 
2021a). Although no significant differences between the proactive eco mode and the non-
adaptive eco mode were found, future work should systematically investigate if this holds for 
longer trips that include extensive cruising phases.

The results show that the switches were mostly location-specific and the same for all 
drivers. The driver mostly determined when the switch would be initiated rather than if a 
switch would occur. This suggests that the proactive method could be simplified. Specifically, 
the online extraction of the database (block 1a and 1b; Figure 9.1), and online calculation of 
mode switch (block 1c) could be replaced by a connected service that provides location-
specific information of when to switch powertrain settings up and down. In other words, the 
proposed proactive powertrain settings (output of block 1c) are then directly provided from 
the cloud, where the arbitrator still decides when to execute based on the current driving 
behavior. Although this will likely improve simplicity, the downside of this approach is that it 
will not allow for a comparison between predicted behavior and expected driving behavior in 
the proactive calculation (block 1c). Future studies should investigate the practical benefits 
and limitations of this online and offline strategy.

Several technologies exist that stimulate eco-driving, including providing feedback based 
on the eco-friendliness of past driving behavior, yet their benefits on energy consumption 
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are transient (Af Wåhlberg, 2007; Beusen et al., 2009; Kutzner et al., 2021; Lauper et al., 
2015; Rolim et al., 2014). This can partially be explained by the observation that drivers can 
show unforeseen behavioral adaptation. For example, Kutzner et al. (2021) found that drivers 
adapted their behavior to the reduced acceleration performance of the eco mode, negating 
the potential energy benefits. While we did not aim to investigate such behavioral adaptation 
in the long term in the current study, we found no behavioral adaptation in the short term; 
drivers seem to use similar throttle behavior during the proactive eco mode compared to 
the non-adaptive eco mode. Still, the question remains whether a proactive eco mode can 
encourage sustained energy efficient driving combined with high driver acceptance in the 
long term.

Finally, we are aware of the limitations in terms of generalizability and scientific robustness. 
First, while our participants were all Renault employees that specialize in assessing novel 
vehicle technology, their views can be biased. A proactive eco mode should also be tested with 
naive drivers from the general public. Moreover, our conditions were neither counterbalanced 
nor were the participants naive to the system’s functionality. Lastly, human-factors-related 
challenges such as mode confusion, system acceptance and driver behavioral adaptation 
due to the proactive eco mode need to be systematically assessed in future studies.

Despite these limitations, this study provides valuable insights for the design of future 
adaptive eco driving technology. Until now, eco-driving techniques are considered to have 
negative psychological effects on drivers (Allison et al., 2022); our work demonstrates the 
potential for adaptive technology that uses preview to induce eco-friendly driving that is 
accepted by drivers.
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Appendix 9A

Figure 9A. The database for the experimental route at Renault’s test track in Aubevoye, 
France. The driving direction is indicated by arrows.
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This thesis contains multiple chapters, each of which describes its own individual 
scientific challenges, results, limitations and conclusions. In this conclusion chapter, 
the individual contributions are integrated towards overarching conclusions, 
limitations, and future work.
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10.1. Recapitulation of Research Goal and Approach
This dissertation aims to provide new quantitative and qualitative insights into the underlying 
principles to design a system with proactive adaptive vehicle settings: A system that 
automatically changes the vehicle settings to fit the individual and context-dependent needs 
of the driver.

Figure 10.1 depicts the three main parts in which this thesis is organized. Since our aim 
was to develop a system that adapted according to what the human driver would want, 
the first step was to understand how and why humans adapt their driving behavior. For 
this reason, the first part of this thesis investigates the fundamental mechanisms behind 
driver adaptations to environmental changes and to vehicle characteristics. The second part 
investigates the effect of offline vehicle setting changes on the vehicle’s dynamic behavior, 
driver’s perception and driving behavior. In this part, mode changes were performed offline, 
meaning that changes only occurred between driving trials and not while driving. In this way, 
the impact of transient effects in the data was minimized. Finally, the more complex question 
of a online adaptive system, in which vehicle settings proactively change while driving, is 
considered. The third part ends with a proposed proactive eco mode method, which was 
implemented in a real vehicle and tested on real roads.

Each part contains multiple chapters, each of which describes its individual results, 
limitations, and conclusions. In this conclusion chapter, the aim is to integrate the individual 
contributions towards overarching conclusions, limitations, and future work. 

Aim:
To provide quantitative and qualitative insight into the underlying principles to design a system with proactive adaptive vehicle settings

Conclusions and Discussion  Ch. 10

Part 1.
Improve the fundamental knowledge of driver adaptations 

Part 2. 
Offline changes in vehicle settings

Ch. 2

Ch. 3

Ch. 4

What determines drivers’ speed? 
A replication of three behavioural 
adaptation experiments in a single 
driving simulator study.

How road narrowing impacts the 
trade-off between two adaptation 
strategies: reducing speed and 
increasing neuromuscular stiffness.

Multivariate and location-specific 
correlates of fuel consumption: 
A test track study.

Ch. 5

Ch. 6

Ch. 7

How do driving modes affect the 
vehicle’s dynamic behaviour? 

Creating the illusion of sportiness: 
Evaluating modified throttle mapping
and artificial engine sound for 
electric vehicles

Do sporty driving modes cause
behavioral adaptation?

Vehicle

Environment Driver

Vehicle setting Vehicle

Environment Driver

Vehicle setting

Ch. 8

Part 3. 
Online changes in vehicle settings

Vehicle setting Vehicle

Environment Driver
Should vehicle settings be changed 
by the driver or by the car?

A proactive method to assist 
eco-drivingCh. 9

Figure 10.1. Schematic overview of the three main research parts of this thesis, and their 
respective chapters. Note that the theoretical and empirical knowledge obtained in Parts 1 
and 2 was used to develop the prototypes in Part 3.
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10.2. Key Conclusions
Conclusion 1. Motivational driving models that use emotions or experiences as a 
construct are theoretically insightful but impractical; driving behavior could better be 
predicted by car state or location-specific variables.
A substantial part of this thesis investigates how people adapt to different road environments 
(road width and curvatures; Chap 2 and  3), task instructions (Chap 4), and car characteristics 
(Chap 4, 6, and 7). This kind of knowledge would help improve the understanding of why 
drivers drive as they do in case the location (where they drive), the target (i.e., eco vs. normal 
vs. sport) and the driving mode (sound, powertrain settings, steering settings) changes. The 
results showed that the above mentioned conditions had a strong impact on driving behavior. 
However, there is a lack of strong evidence for the predictive capabilities of moderating 
psychological constructs such as perceived risk, sportiness, or effort. Driver adaptations 
have turned out to be mainly opportunistic rather than driven by emotions or experience 
(as motivational models suggest; cf. Trimpop, 1996). For example, a wider road results 
in an increased driving speed (Chap 2 and 3), an increased powertrain setting is used to 
reach a target speed sooner (Chap 6 and 7) and amplifying the engine sound is used to 
improve speed control (Chap 6). Chapter 2 found strong speed adaptations for varying road 
widths; however, none of the three well-cited homeostatic measures (i.e., experienced risk, 
experience effort, and safety margins) offered persuasive evidence for speed adaptation 
because they failed either the sensitivity criterion (i.e., the measure should increase/
decrease if speed was held constant) or the constancy criterion (i.e., the measure should 
homeostatically be held constant if speed adaptations occurred). An additional measure for 
control activity, the steering reversal rate, outperformed the other three measures regarding 
sensitivity and constancy, prompting a further evaluation of the role of a physical measure 
(such as steering reversal rate) in speed adaptation. It is likely that subjective measures (i.e., 
perceived risk) and physiological measures are too distant from the real driving task and 
generally suffer from a low signal-to-noise ratio to be practically useful. From a practical point 
of view, the need for models that can predict driver adaptations has been reduced as cars 
become more intelligent and equipped with sensors that can measure the surroundings and 
the driver directly. Such a data-driven approach has led to the final proof-of-concept (Chap 9) 
that makes power predictions based on measured (location-specific) driving behavior data. 

Conclusion 2. A large part of the variability in driving behavior can be explained by 
location; location should be included in the design of an adaptive vehicle setting system.
Multiple chapters (Chap 2-4 and 6-9) demonstrated the importance of considering location-
specific information (e.g., curvature, road width, speed advice, and inclination) on variability 
in driving behavior. Chapter 4 provided evidence that to predict fuel consumption, it is 
more important to know where someone is driving than who is driving. Ninety-one drivers 
drove a total of 4617 laps, in two vehicles, on two test-track routes, and with two driving 
instructions. Although a strong predictive value for fuel consumption was found for metrics 
related to speed, RPM, and throttle position, the largest variance was attributable to the 
route type (highway vs. country road). A subsequent location-specific analysis showed that 
the inter-driver variability in fuel consumption for the entire trip could already be predicted by 
measuring the instantaneous speed just after a single curve (i.e., the speed measured at a 
single curve had a good correlation with the fuel consumption of the total trip). Following this 
conclusion, throughout this thesis location-specific information has been accounted for in 
the analysis before investigating the intended effect of the conditions on driving behavior. For 
example, when investigating the effect of vehicle settings on driving behavior, the total driven 
routes are always analyzed per different road segments, such as straights and curves (Chap 
6 and 8), highway or mountain roads (Chap 4 and 5), specific acceleration segments (Chap 
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6), segments with varying road widths (Chap 2 and 3). Additionally, to make the influence 
of the environment apparent, driving behavior is consistently visualized as a function of 
traveled distance and road topology (Chap 2-8), rather than time. Finally, the importance of 
location-specific information on driving behavior has led to a proactive eco mode that makes 
predictions by checking if the location-specific power requirement is high (Chap 9).

Conclusion 3. The tested sport mode led to objectively more ‘sporty’ vehicle dynamics.
The current sport mode in the commercially available Renault Multi-Sense consists of several 
active components that jointly affect vehicle dynamic behavior (see Introduction). This 
thesis provides empirical methodologies, metrics, and models to quantify this joint impact 
on longitudinal, lateral, and vertical vehicle dynamics.  Before this thesis, their combined 
effect on the total vehicle’s dynamic behavior for naturalistic driving on actual roads was 
unavailable (Hilgers et al., 2009; Jeon et al., 2016). Chapter 5 and 7 showed strong vehicle 
dynamic behavioral differences in rear-wheel angle, engine torque, longitudinal acceleration, 
and vertical motion when driving with different vehicle settings. This goes beyond knowledge 
from literature, where the working principle of individual vehicle dynamical components 
is generally tested in a simulated environment or on test tracks. However, no empirical 
studies investigate how these individual active components are affected by driving modes. 
Furthermore, for actual roads, the impact of driving modes on the vehicle’s dynamic behavior 
was unknown.

Conclusion 4. Sport mode settings are clearly perceived but do not cause speeding 
behavior.
Different offline variations of sport mode settings are clearly perceived by drivers, but do not 
lead to an increased speed. Experiments in this thesis did not provide any evidence for the 
hypothesis from literature (and concerns from company experts) that riskier driving might 
occur when presenting drivers with sport mode. Chapter 6 and Chapter 7 tested various 
combinations of individual vehicle settings in an instrumented vehicle (Chap 7) and in a 
driving simulator study (Chap 6). Both chapters found increased sportiness perception when 
combining artificial engine sound and modified throttle mapping (a system that increases the 
acceleration performance given the driver’s throttle input), and when presenting drivers with  
more agile four-wheel steering settings (a system that changes the steering responsiveness 
of the vehicle). Yet, both in simulation and in real-world the increased sportiness perception 
did not result in any changes in speed. However, other adaptations in driving behavior were 
observed, for example, drivers opportunistically used the increased available acceleration 
performance to accelerate more strongly to reach their target speed sooner  (but the average 
speed remained the same). This insight was used to improve the design of the prototype 
in Chapter 9 (i.e., by dynamically changing the powertrain settings all drivers intuitively 
accelerate faster and smoother without fuel efficiency degradation).

Conclusion 5. Proactive adaptations of vehicle settings can objectively improve 
acceleration performance, lane-keeping, and steering performance, but are not always 
accepted by drivers.   
Online adapting vehicle settings can improve steering performance (Chap 8) and acceleration 
performance (Chap 9) compared to fixed vehicle settings, but the acceptance of these 
adaptations depends on the way the proactive system interacts with the driver. Chapter 
8 tested two interaction designs to adapt vehicle steering dynamics (driver-initiated and 
machine-initiated). This study showed that different driving situations (e.g., overtaking and 
curve driving vs. straight-line driving) require different steering dynamics. Both interaction 
designs objectively led to benefits for the driver over the entire route, compared to a non-
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adaptive, fixed steering sensitivity. Interestingly, some drivers preferred the driver-initiated 
system, even when these led to more effort and objectively less performance increase than 
a machine-initiated system. A likely explanation is that the driver-initiated condition gives 
drivers the freedom to choose, whereas they give away their freedom in the machine-initiated 
condition. In essence, if drivers want low (high) steering gain, they can select the low (high) 
steering gain setting at the start of their drive. That is, the driver-initiated condition can deliver 
what a fixed low and fixed high steering gain can deliver as well, and so theoretically should 
not be rated worse than a fixed steering gain.

This illustrates that developing machine-initiated adaptations in vehicle dynamics is very 
difficult, especially when considering that system acceptance is hampered by incorrect 
predictions that will inevitably occur (Johnson et al., 2014; Melman et al., 2020), and even 
if predictions are correct the moment of transition can be perceived as incorrect (i.e., see 
Chapter 8). Chapter 9 demonstrated the proactive method can help cope with conflicts 
induced by incorrect predictions. Specifically, conflicts between driver and automation 
are minimized by keeping the driver primarily in charge of the driving task and by closely 
monitoring the current driver behavior and ensuring the driver can influence or override the 
automation at any time. Despite by two induced conflicts (i.e., the unexpected stop-and-go 
and overtake example), and proactive predictions based on a single a-typical driving profile 
(which undoubtedly reduced the accuracy of the power predictions), the results showed that 
the 9 drivers unanimously indicated that the proactive eco system added value and made it 
easier to reach a target speed compared to non-adaptive eco mode.

Figure 10.2. Future work towards an offline learning proactive vehicle setting method. 
Note that this is based on Figure 9.1, but with three adjustments: (1) an added learning 
loop (box 5: personalisation through learning) to mitigate misalignments, (2) offline calculation 
of the proposed vehicle setting and (3) generalization to vehicle settings. The learning loop 
illustrates two ways that could mitigate conflicts: learning the driver’s own location-specific 
driving behavior, and learning the desired proactive algorithm parameter.
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10.3. Overarching Limitations and Considerations
In the previous section, results of multiple chapters were combined to consolidate the 
overarching conclusions. However, some results of chapters were contradictory rather 
than complementary and will be addressed in this section. Two main potential causes 
are highlighted: driving simulator studies versus real-world studies, and the (limited) 
generalizability of the participants' pool.

Opposite results in terms of sportiness perception and speed control of modified throttle 
mapping (MTM) and artificial engine sound enhancement (AESe) were found in Chapter 6 
and Chapter 7. Compared to baseline, in Chapter 6, a driving simulator study mainly using 
students as participants, a strong effect on perceived sportiness was found for AESe, but not 
for MTM. Conversely, in Chapter 7, a test track study with 31 drivers, reported a strong effect 
on perceived sportiness for MTM, but not for AESe, compared to baseline. 

The AESe in the driving simulator study (Chap 6) was designed as a function of driving 
speed and thus added relevant speed information to the driver. A plausible explanation for 
the improved speed control and increased sportiness perception would be that, due to the 
more rapid change in virtual RPM for AESe compared to Baseline, changes in engine torque 
were more readily noticed, which in turn improved speed control (see also Hellier et al., 2011 
for the influence of engine sound on driving behavior). For the test track study, the reduced 
impact of additional sound on sportiness perception and speed control could be explained 
by the fact that AESe did not add relevant speed-related information to the already present 
(real) engine sound. To improve acceptance and speed control, it is therefore recommended 
to focus on functional benefits when designing sound characteristics in electric vehicles or 
sport modes, in addition to sound characteristics, such as loudness, roughness, sharpness, 
and tonality (Krüger et al., 2004; Kwon et al., 2018).

For MTM, a likely explanation for the reduced acceleration performance perception could 
be the lack of vestibular feedback when driving in the fixed driving simulator. The changes in 
acceleration performance could only visually be perceived (i.e., which also results in drivers 
braking less hard for curves in driving simulators; De Groot et al., 2011; Reymond et al., 2001). 
On the same note, one could argue that the driving simulator studies in Chapter 2 and 3 lacked 
physical risk, and thus unrealistic driver adaptations may have occurred. This raises the 
question whether fixed-based (or even moving-based) driving simulators are sufficient to test 
driving behavioral adaptations and perception for conditions that affect the vehicle’s dynamic 
behavior and/or road topology.  However, in general, the relative validity (i.e., the effect sizes 
between the pairwise comparisons) is high for simulators and real-world experiments (Klüver 
et al., 2016), and even studies argue that risk is well perceived in simulation (Walker et al., 
2019). In other words, driving simulators can be argued to be useful to test driving behavior 
and motivation models (cf. Hoyes & Glendon, 1993), however, they are not always sufficient 
as the results of Chapter 6 and Chapter 7 suggest. Still, many simulator results correlated 
with real-world results: strong speed adaptations were found between the wide and narrow 
road sections in both Chapter 2 and 3, similar to adaptations found in on-road experiments 
(De Waard et al., 1995; Fitzpatrick et al., 2000), and the same throttle driver adaptation was 
found for Chapter 6 (driving simulator) and Chapter 7 (test-track). For now, it is recommended 
that future studies on the perception of longitudinal vehicle dynamics will be conducted in 
settings that allow for vestibular feedback such as real vehicles or high-end moving-based 
simulators (i.e., Reymond & Kemeny, 2000). 

Another important limitation of the human factors studies performed in this thesis is that all 
test track studies (Chap 4, 7, 9) were performed primarily with expert drivers, and all driving 
simulator studies primarily with students (Chap 2, 3, 6, 8). The student drivers might show 
little variability compared to a group consisting of students, elderly, or expert drivers together 
(Carsten & Nilsson, 2001; Wood & Mallon, 2001). Similarly, for Renault expert drivers, there 
is a risk that this is a sample who was being asked to evaluate a product produced by their 
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own company, and hence might be biased (even if just subconsciously) in their assessments. 
Moreover, all experts and students had an engineering background, which might be a 
population that is more likely to be favorable to technological innovations compared with the 
average member of the population. Future studies need to test the adaptive driving modes 
with a larger distribution in participants.

10.4. Extending the Scientific Contributions Towards 
Design Guidelines for Product Development
The current thesis focussed on location-specific advice and vehicle setting changes in 
steering gain and powertrain settings. The proactive eco mode (Chap 9) has been patented 
and is currently being developed further by Renault. Challenges that are being addressed 
include making the location-specific predictions more robust by investigating the dependence 
on predicted route navigation (and thus accurate GPS) and the inference of the most likely 
route. Also, the real fuel benefits of the proactive eco mode compared to normal driving are 
mapped out for various routes and driving styles.

However, the journey does not end here; there is a big potential for location-specific 
information, calibrated using the populations driving behavioral data, in future product 
development. The use of location-specific data allows for adjustments in vehicle settings 
before the setting is required (i.e., by increasing the powertrain settings before the start 
of the acceleration phase; Chap 9). The use of intelligent location detection systems, and 
relying on a-priori measured location-specific data has the potential to simplify behavior 
predictions. Such data alleviate the reliance on often complex computational models which 
need to sense and interpret the environment in order to predict behavior, and which require 
rich datasets to train (with the potential lack of generalizability to untrained environments). 
The proactive method could be extended for other vehicles settings such as: adaptations in 
steering responsiveness (e.g, Chap 8), vertical dynamics (e.g., to proactively adjust damping 
parameters for speed bumps), cockpit ambiance settings (e.g., changing the dashboard 
information when driving offroad), or to provide adaptive route navigation assistance in the 
vehicle.

Specifically, some follow-up suggestions could be considered for future product 
development based on the results of this thesis. First, an important challenge with adaptive 
systems is to keep driver acceptance high even when conflicts occur between the predicted 
setting and the driver’s desired setting, a challenge often highlighted in literature (e.g., 
Johnson et al., 2014; Kaber & Endsley, 2004; Parasuraman, 2000). Chapter 9 demonstrates 
how conflicts can be coped with through continuously tracking driver behavior and inferring 
driver’s intention (e.g., in case of a sudden -unpredicted- acceleration request). In future work 
repeated conflicts could be avoided by learning the driver’s own location-specific driving 
behavior (Melman et al., 2020), and learning the desired proactive algorithm parameters. Both 
tuning the algorithm parameters and personalized location-specific data greatly influence the 
setting predictions. Figure 10.2, visualizes the future proactive method including learning (box 
5). Previous ADAS literature has shown that systems that learn from conflicts can increase 
driver acceptance (Biondi et al., 2019; Sun et al., 2019). 

Second, the results of the proactive eco mode (Chap 9) showed that all drivers received 
the same PWT settings changes given the location with small variation in start and end 
position. This is because the arbitrator (box 3; Figure 10.2) decides the appropriate moment 
to switch to PWTnormal (i.e., if the driver’s throttle input was low) and to switch back to PWTlow 

(i.e., when current power is low). This suggests that the proactive method could be simplified. 
The extraction of the database (box 1a and 1b; Figure 10.2), and the calculation of the mode 
switch (box 1c) could be calculated offline and stored in the cloud. In other words, the 
proposed proactive powertrain settings (output of box 1c) are then directly provided from 
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the cloud, where the arbitrator (box 3; Figure 10.2) still decides when and if to execute the 
proposed proactive vehicle setting. This would reduce computational power, and make the 
system implementable in almost all vehicles that already have navigation systems. Future 
studies should investigate the practical benefits and limitations of this online and offline 
strategy.

Third, this thesis did not look into the influence of the design of the switch between one 
setting to the other on acceptance of an adaptive driving mode. There is a large design space 
for how to proactively switch (vehicle) settings, such as the timing (i.e., when to proactively 
switch the mode), the speed of change, the size of change, the smoothness of change (see 
also Hou et al., 2015 for an overview of adaptive design considerations). For example, in a 
study on lane changing, Russell et al. (2016) found that drivers needed several trials to get 
used to a new steering gain.  Future studies should investigate the underlying mechanisms 
of the transition between vehicle settings while driving.

Fourth, the observed dominant impact of route and vehicle type on fuel consumption (see 
Conclusion 2) suggests that eco-driving predictors / scores should be normalized to the 
road environment. Ideally, an eco-score or eco-driving predictor should correlate strongly 
with fuel consumption and should be interpretable in different road environments and for 
different vehicles. In other words, when driving in an energy-demanding environment (e.g., 
mountain), drivers should not receive a notification that they drive eco-unfriendly. Of course, 
such information might still be valid if drivers need to be informed that they selected an 
eco-unfriendly route, but in practice, drivers may not be able to adjust their route. Similar 
statements were made by Andrieu and Saint Pierre (2012), Shi et al. (2015), and Dib et al. 
(2014), who proposed normalizing fuel consumption to the road environment. 

10.5. Outlook and Future Research
Apart from future product development, some future research directions might be considered 
based on the results of this thesis. 

The literature on behavioral adaptations typically focuses on the negative adaptations  
rather than positive behavioral adaptations (cf. Rudin-Brown & Jamson, 2013). For example, 
the term ‘risk compensation’ (introduced by Elvik et al., 2009 and 17.900 hits on google 
scholar) is a common way to describe decreased safety, such as faster driving or driving with 
shorter headways. Rather than focusing on negative behavioral changes a posteriori (e.g., 
speeding), future research should investigate how adaptive vehicle settings can be used to 
induce positive behavioral adaptations a-priori. This thesis shows the potential to induce 
positive behavioral adaptation using adaptive vehicle settings. For example, in Chapter 6 and 
Chapter 7 drivers used the improved acceleration performance of a vehicle opportunistically: 
when provided with a better acceleration performance drivers accelerate stronger. In 
Chapter 9 we used this result in the proactive eco method to accelerate faster and smoother 
without fuel efficiency degradation over the entire segment. To induce positive behavioral 
adaptations, requires a good understanding of driver adaptation, and a shift in system design 
thinking: from optimal vehicle behavior to optimal joint human-vehicle behavior. For example, 
Melman et al. (2018) showed that the safest lane-keeping system does not necessarily be 
the safest when the driver is in the loop (i.e, drivers tend to increase speed, and diminish 
the safety benefits). In other words, the safest stand-alone system is not the safest when 
considering the joint human-vehicle behavior. In theory, an intuitive approach that induces 
positive behavioral adaptations has the potential to improve long-term behavioral benefits 
and is considered an important future research direction.

In Chapter 2 and 3, we tested qualitative models and concluded they could not readily 
be used to predict speed adaptations (see section 10.2.). Alternatively, we could have tested 
computational models that use large datasets to estimate the model parameters, but have 
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the potential to quantitatively predict driving behavior. An important reason to not investigate 
computational models was they often poorly generalize to previously unseen scenarios, and 
collecting the required training data to parametrize these models can be costly. Despite 
these limitations, better models are needed that can quantitatively explain the underlying 
mechanisms of driver adaptations. 

Finally, an important issue that can hamper system acceptance of adaptive systems, 
mentioned in literature, is predictability (Johnson et al., 2014; Chap 8). Please note that in 
theory, a proactive adaptive system can still allow the driver to make an internal model, as 
long as the vehicle behaves the same given the situation. This is illustrated by Formula 1 
designer Adrian Newey (Formula 1 car designer) when he introduced the active suspension, 
a system that optimizes the ride heights before every corner and straight for the optimal 
downforce, to his two F1 drivers (Nigel Mansell and Riccardo Patrese). “Both reported that 
it felt uncommunicative and … they had to trust it had grip rather than knowing” (Newey, 
2017, p. 153). At a point that Nigel Mansell said “I don’t want to race this car, I want to race 
the passive car” (Newey, 2017, p. 153). In the end, the engineers made sure it was reliable at 
every corner, and they dominated F1 for two consecutive years (1992 and 1993) until active 
suspension was banned in 1994.

To conclude, I hope this thesis has contributed to a better insight into the underlying 
principles of human adaptations, the impact of vehicle dynamic adaptation, and made the 
first step towards proactive adaptive vehicle settings that makes driving safer, more eco-
friendly and more accepted. Regardless of how the future looks, driver acceptance should 
be central in the development of any driver assistance system. Without acceptance, any 
technology development will have a smaller impact than desirable or needed.
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