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Abstract

Wind velocity field knowledge is crucial for the future air traffic management paradigm and is

key in many applications, such as aircraft performance studies. This paper addresses the

problem of spatio-temporal windc velocity field estimation. The north and east wind compo-

nents within a given air space are estimated as a function of time. Both wind velocity field

reconstruction in space for a past or present time instant and short-term prediction are per-

formed. Wind data are obtained indirectly from the states of the aircraft broadcast by the

Mode-S and ADS-B aircraft surveillance systems. The Gaussian process regression

method, which is a flexible and universal estimator, is employed to solve both problems.

Under general conditions, the method is statistically consistent, meaning that the method

converges to the ground truth when increasingly more data are available, which is especially

interesting, since aircraft data availability is expected to grow in the future through the

deployment of the European System-Wide Information Management. Besides estimation,

the Gaussian process regression method provides the probability distribution of any particu-

lar estimate, allowing confidence intervals to be computed. Moreover, the spatial modelling

is performed using raw data without relying on grids and estimation can be performed at any

spatio-temporal location. Furthermore, since the training phase of the method described in

this paper is fast, requiring less than 5 minutes on a standard desktop computer, it can be

used online to continuously track the state of the wind velocity field, thus allowing for data

assimilation. In the case study presented in this paper, the Gaussian process regression

method is tested on different days with different wind intensities. The available data set is

split into several training and testing data sets, which are used to check the consistency of

the results of wind velocity field reconstruction and prediction. Finally, the Gaussian process

regression method is validated using the European Centre for Medium-Range Weather

Forecasts ERA5 meteorological reanalysis data. The obtained results show that Gaussian

process regression can be used to reliably estimate the wind velocity field from aircraft

derived data.
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1 Introduction

The Air Traffic Management (ATM) system has a very complex structure consisting of multi-

ple and heterogeneous components, in which uncertainty is ubiquitous and inevitable [1].

More specifically, four main sources of uncertainties can be distinguished: inaccurate data,

decisions made by pilots and air traffic controllers, equipment malfunctioning, and weather

conditions.

Weather is one of the most important sources of uncertainty in the ATM system. According

to a recent article of the Federal Aviation Administration (FAA) [2], adverse weather condi-

tions is the main cause of air traffic delay in the USA, being the cause of about 70% of delays,

whereas in Europe, almost half of the delays are due to adverse weather conditions [3]. The

cost for airlines of an hour delay ranges from about 1,400 to 4,500 dollars. Moreover, extreme

weather events may compromise safety in air traffic operations and cause disruption to air traf-

fic flow. In this sense, the American Meteorological Society recommends using probabilistic

forecasts to consider the intrinsic uncertainty in meteorological predictions [4].

Meteorological information will be even more decisive in the future ATM paradigm, where

Four-Dimensional (4D) aircraft trajectories are to be predicted with high precision [5]. In the

last decades, air traffic has doubled every 15 years worldwide and the tendency is to increase.

There are several ongoing projects, such as the Single European Sky ATM Research (SESAR)

in Europe and the Next Generation Air Transportation System (NextGen) in the USA, the aim

of which is satisfying the future ATM system requirements through the incorporation of new

emerging technologies. Improving capacity, efficiency, safety, and reducing costs and environ-

mental impact are their main objectives, in which the central element is the concept of Trajec-

tory-Based Operations (TBO).

The TBO concept considers 4D aircraft trajectories, which consist in precise descriptions of

aircraft paths in space and time. Time delays are considered as deviations of the trajectory in

the same way as for horizontal or vertical deviations. TBO improve the strategic planning of

aircraft traffic to reduce imbalances between demand and capacity. Additionally, TBO enable

the ATM system to know and, when appropriate, modify the aircraft planned trajectories

before or during the flight, with the aim of optimising them and improving air space capacity

and efficiency of the ATM system.

Trajectory predictability, which is the correspondence between planned and actual trajec-

tory, is a key aspect for TBO, since this concept of operations requires high precision in aircraft

trajectory tracking. Multiple random factors, such as uncertainty on weather conditions,

mainly wind and storms, diminish precision, which results in deviations from the reference

trajectory. Thus, to improve trajectory predictability, precise wind information is necessary

[6, 7].

Nowadays, aircraft trajectory planning mostly relies on winds forecasts from Numerical

Weather Prediction (NWP) models [8]. In general, NWP meteorological forecasts have a

coarse spatial resolution and a low update rate, which is usually every 6 h. The observations

used in NWP models are mainly gathered from ground stations and weather balloons, which

are launched from specific locations no more than four times per day. Although existing tech-

nologies such as the Meteorological Routine Air Report (MRAR) allow aircraft meteorological

data to be incorporated into NWP models, currently, MRAR direct wind observations are only

returned by a small fraction of aircraft. A consequence of their coarse spatial resolution is that

NWP meteorological forecasts suffer from over-smoothness, i.e., local variations are over-

looked, which makes the use of NWP inadequate for TBO, as pointed out in [5, 9].

A possible solution to increase the spatial and temporal resolution of wind forecasts is using

aircraft derived data [10], the availability of which is expected to grow in the future through
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the deployment of the European System-Wide Information Management (SWIM), which con-

sists in services based on a unified infrastructure to exchange flight information among all

stakeholders [11].

In this article, Mode-S and ADS-B aircraft derived data are used for spatio-temporal wind

velocity field estimation. Mode-S is an interrogation protocol and ADS-B is a surveillance

technology that broadcast aircraft flight states, such as position, Mach number, ground speed,

airspeed, and roll and heading angles. A detailed description of these technologies can be

found in [12]. Wind velocity is obtained indirectly from the state of the aircraft, specifically

using the vector relation between airspeed, ground speed, and wind velocity.

To deal with non-conventional meteorological observations, such as aircraft derived data,

atmospheric data assimilation techniques can be employed. Atmospheric data assimilation is

concerned with devising techniques for combining different information sources to estimate

the state of the atmosphere, and is a well-established area of research [13]. However, most of

the atmospheric data assimilation techniques are focused on assimilating non-conventional

meteorological data into NWP models [14, 15]. On the contrary, the data assimilation tech-

nique used in this article do not involve NWP. It is based on statistical principles, allowing

the large amount of recorded aircraft data to be exploited for wind velocity field estimation.

According to the statistics from Flightradar24, in 2019, more than 10,000 aircraft were flying

across the globe at any time, resulting in an average of approximately 190,000 flights per day.

This article concerns about spatio-temporal wind velocity field estimation using aircraft

derived wind observations. The north and east wind components are estimated as a function

of time within a given air space, such as a Terminal Manoeuvring Area (TMA), which is the

air space around a major airport. Specifically, a cuboidal region of base size 500 × 500 km cen-

tred at the Adolfo Suárez Madrid-Barajas (LEMD) airport with altitude ranging from 0.6 km

to 14 km, has been considered.

The wind is modelled as a random field with space and time as inputs and wind velocity

components as outputs. The data are considered to be partial observations of the full random

field. For this random field, two estimations can be carried out: estimation in space, which can

be performed over a past or present time instant (reconstruction), and estimation in time (pre-

diction or forecast). In this paper, the wind velocity field is continuously reconstructed over an

hour time period, and the provided forecast is a short time horizon forecast, usually referred to

as nowcast in meteorology.

In [14], it has been shown that assimilation of Mode-S wind and temperature observations

has a positive impact on a regional NWP model. Similarly, Aircraft Meteorological DAta Relay

(AMDAR) and Aircraft Communication Addressing and Reporting System (ACARS) data

have been used in [15] with clear benefits on the performance of short and medium range

NWP forecasts.

In [7], using B-splines, aircraft wind derived data have been used to reconstruct the wind

profile, which has been employed to update optimal aircraft descent trajectories in real-time.

In [16], wind uncertainty has been represented by means of a statistical model, in which the

correlation of four distinct sources of uncertainty has been included and a filter has been used

to describe the evolution of wind uncertainty with time, with the aim of measuring the impact

of wind prediction uncertainty on aircraft trajectory prediction. The capability of Kriging, a

geostatistical technique, to generate short-term weather predictions along aircraft trajectories

has been tested in [17]. An innovative model, combining particle filtering and Lagrangian

transportation modelling, has been used in [12] for partial weather field reconstruction.

The contribution of this paper is to provide a method capable of efficiently assimilating air-

craft derived wind observations with the aim of accurately reconstructing the wind velocity

field and performing short-term wind velocity field predictions. Unlike previous approaches
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such as [7, 18, 19], in which only wind speed is estimated, and only in a one-dimensional pro-

file, in this paper both north and east wind velocity components are estimated in an entire

region using an adaptation of the Gaussian Process Regression (GPR) method. The version of

the GPR method implemented in this paper is iterative and fast, enabling data assimilation.

Moreover, the classical GPR method only estimates scalar outputs, whereas in this paper, the

method is adapted to estimate two related quantities: the components of the wind velocity. To

the best of the authors’ knowledge, who employed the GPR method for wind speed estimation

in [19], the GPR method has not been used for this purpose yet.

To check the robustness of GPR method, it is tested in several scenarios. Wind velocity

observations corresponding to two different days with different wind behaviour are selected

for testing. The first day has weaker wind with larger directional dispersion whereas the second

day has stronger wind with lower direction dispersion.

For each day, the data set is split in training and test sets in two different manners, namely

randomly selecting a set of individual observations and randomly selecting a set of flights and

using all the observations collected during these flights.

In addition, the wind velocity field reconstruction obtained through the GPR method is

compared with the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5

meteorological reanalysis data. The results obtained are consistent with reanalysis data, prov-

ing the capability of the GPR method to estimate wind velocity in regions of the air space with

no or a reduced number of observations.

The method presented in this paper for wind velocity field estimation based on aircraft

derived data contains significant improvement and generalisation of previous approaches. The

training phase of the method proposed in this paper is faster than the training phase of the

method employed in [17], which is not very suitable for nowcasting. Moreover, the method

proposed in this paper provides estimates over an entire air space together with a measure of

the uncertainty of the estimates, whereas in the method described in [12] the estimates are

only available on grid points with data or in the vicinity of these points.

The paper is organized as follows. In Section 2, an exploratory analysis of the data set is per-

formed. In Section 3, the wind velocity field estimation method is explained. In Section 4, the

model set up is described and the reconstruction and prediction of the wind velocity field are

discussed. In Section 5, the GPR method is validated comparing the obtained results with a

reanalysis data set. Finally, the significance of the obtained results are discussed in Section 6.

2 Data set preparation and exploratory analysis

2.1 Data set preparation

In this paper, data from the All-Purpose Structured EUROCONTROL Surveillance Informa-

tion Exchange (ASTERIX) library [20], has been used, which have been provided by ENAIRE,

the Spanish air navigation service provider. The ASTERIX data set contains a great amount of

information, as described in the technical documents of EUROCONTROL, the European

Organisation for the Safety of Air Navigation.

In particular, the ADS-B [21] and Mode-S [22] information has been extracted from the

ASTERIX data base, and, when necessary, the python library pyModeS [23] has been

employed to decode the messages. ADS-B messages carry information about aircraft position

and ground speed, whereas Mode-S messages carry information related to aircraft state as is

detailed in [24]. Both messages are broadcast with a high refresh rate [25] and can be openly

received by researchers around the world with inexpensive receivers.

Once the decoded messages were obtained, the ADS-B and Mode-S data were merged into

a single data set. For each ADS-B message, the closest Mode-S message within a 5-second
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range has been sought. If no Mode-S observation was found, the ADS-B row was disregarded.

To avoid redundant data, consecutive ADS-B messages having the same Mode-S observation

have been eliminated. Corrupted messages have also been removed from the data set, along

with noisy data coming from aircraft during non-steady flight phases, outliers, and ground

or close to ground observations. More specifically, the following observations have been

removed:

• Noisy data: Wind observations collected during turning manoeuvres, in which the roll angle

of the aircraft is nonzero, are less reliable [10]. In Fig 1, aircraft’s roll angle and wind speed

are represented versus time. It can be seen that the noise in wind speed increases when the

aircraft reach high roll angles. Therefore, data collected with roll angles greater than 5˚ have

been removed.

• Outliers: Data have been grouped based on the altitude at which they have been collected.

Specifically, a vertical extent of 1 km has been considered for this grouping. Within each

group, the usual interquartile range method for outlier detection and removal has been

applied. They correspond to outliers commonly seen in a boxplot.

• Ground or close to ground observations: Ground or low altitude data may produce inaccu-

rate wind measurements. Therefore, data collected at altitudes below 640 m above sea level

have been removed from the data set, since the data considered in this article have been

derived from aircraft flying in the TMA of the LEMD airport, which is located at the altitude

of 610 m above the sea level.

2.2 Exploratory data analysis

In this section, the main characteristics of the aircraft derived wind observations are described,

including measures of centrality and dispersion. Two sets of data collected from 08:00 to 14:00

UTC on two different days are considered:

Fig 1. Roll angle and wind speed versus time of an aircraft.

https://doi.org/10.1371/journal.pone.0276185.g001
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• A data set with lower wind speed and higher variance in wind direction, collected on Febru-

ary 23, 2020. This data set is referred to as Day 1.

• A data set with higher wind speed and lower variance in wind direction, collected on Decem-

ber 21, 2019. This data set is referred to as Day 2.

The motivation behind the choice of these two days for the numerical experiments is to test

the proposed wind velocity field estimation method in two different wind scenarios regarding

wind intensity and direction. More specifically, the Spanish State Meteorological Agency [26]

historical weather data base has been explored, searching for the days of 2019 and 2020 with

highest average wind speed and greatest variance in wind direction around the LEMD airport.

Once the two days satisfying these requirements have been identified, the corresponding

Mode-S and ADS-B aircraft derived data have been selected from the ASTERIX data base.

Notice that the observations of the two data sets have been collected from 08:00 to 14:00

UTC, which is the time period with the highest air traffic density around the LEMD airport. In

particular, the number of observations in the the Day 1 data set is 223.456, whereas this num-

ber rises to 232.357 in the Day 2 data set. This amount of observations is large enough for the

proposed wind velocity field estimation method based on GPR. Training and building a proper

GPR model from few data would be a more challenging problem requiring devising a particu-

lar technique, which is out of the scope of this paper.

The spatial distribution of the data is represented in Fig 2. More specifically, Fig 2a shows

the coverage region over the Iberian peninsula, along with the flight routes, of the Day 1 data

set and Fig 2b shows the distribution of the altitudes of both the Day 1 and Day 2 data sets. It

can be seen that most of the aircraft are flying at cruise level. In general, the data are highly

non-uniformly distributed in the air space, making the estimation more challenging.

The boxplots of the wind speed and direction, grouped by altitudes, for the Day 1 and Day

2 data sets are shown in Fig 3. Notice that the outliers shown this figure are new outliers which

appeared after the removal of original outliers as explained in Section 2.1.

Fig 2. Spatial distribution of the data. (a) Day 1: Aircraft flight routes. (b) Day 1 and Day 2: Aircraft altitude

distribution.

https://doi.org/10.1371/journal.pone.0276185.g002
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There are significant differences in the wind features of these two data sets. In particular, in

the Day 1 data set, low wind speeds are present at each altitude, with a median value of 16 m/s

(56 km/h) and a maximum value of 56 m/s (202 km/h). The dispersion of the wind direction is

high, ranging from 0 to 360 deg and only above 6 km of altitude the dispersion of the wind

direction decreases. Conversely, in the Day 2 data set, the median wind speed is 63 m/s (226

km/h) with a maximum of 102 m/s (365 km/h) and there is no wind intensity close to zero,

except for the first kilometre of altitude. The dispersion of the wind directions is lower in com-

parison with the Day 1 data set, and the ranges of the boxplots are about 50 degrees. In both

data sets, wind intensity grows until 10-11 km of altitude and decreases afterwards.

The positions of an aircraft landing at the LEMD airport are shown in Fig 4 together with

the aircraft heading vectors and wind velocity vectors. The aircraft comes from south-east,

turns counterclockwise and arrives at the airport. After 2 h and 15 min the aircraft departs in

the south-easterly direction. It can be observed that the aircraft heading vector is not always

aligned with the aircraft’s direction of motion (track vector) due to the drift caused by the

wind. For this aircraft, the median difference between the directions the heading and track

vectors is 3.33 deg. However, in the worst case, the difference between the directions of the

heading and track vectors reaches 20.039 deg. In general, for all the observations, the median

difference between the directions of the heading and track vectors is 3.165 deg for the Day 1

data set, whereas this value rises to 13.184 deg for the Day 2 data set.

The wind statistics for each day are summarised in Table 1. The mean and variance for

angles are computed using circular statistics [27]. It can be observed that the mean wind speed

in the Day 2 data set is more than three times higher than the mean wind speed in the Day 1

data set, but the dispersion in wind direction is much lower, around 10 times less.

Lastly, the statistical relation between the components of the wind velocity is studied. Let u
and v denote the north and east components of the wind velocity. Fig 5 shows the contour

plots of the joint empirical PDF of the u and v components of the wind velocity for both data

sets. The empirical correlations for Day 1 and Day 2 data sets are r̂ ¼ � 0:7� 0:0021 and

r̂ ¼ � 0:47� 0:0032, respectively, indicating that there is statistical dependence between the

u and v components of the wind velocity. The statistical dependence is more predictable line-

arly for the Day 1 data set than for the Day 2 data set. In general, for a given wind data set,

Fig 3. Wind speed and direction distribution grouped by altitudes. Angles in the Day 1 data set are turned 180 deg

for an easier interpretation of the boxplots. (a) Day 1: Wind speed and wind direction boxplots. (b) Day 2: Wind speed

and wind direction boxplots.

https://doi.org/10.1371/journal.pone.0276185.g003
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there is statistical dependence, although this statistical dependence usually varies with the spa-

tial location, altitude, and time instant.

The covariance of a single component of the wind velocity at two different spatio-temporal

locations is referred to as auto-covariance. In this article, the auto-covariance structure is mod-

elled through the so-called kernel function, which allows a variety of spatio-temporal covari-

ance structures to be modelled. The modelling of the cross-covariance between the u and v
components of the wind velocity is a more delicate task, which will be discussed in sections 3.1

and 3.2.

3 Gaussian process regression

GPR is an effective tool that can be seen as a general regression model, which is used in a wide

variety of disciplines, including machine learning [28]. Gaussian stochastic processes are

Fig 4. Day 2: Aircraft heading vectors and wind velocity vectors at different positions along an arrival and a

departure routes of an aircraft.

https://doi.org/10.1371/journal.pone.0276185.g004

Table 1. Summary of wind statistics.

Wind speed (m/s) Wind direction (deg)

Day 1 Day 2 Day 1 Day 2

Min. 0 0.013 0.01 163.79

Max. 56.04 100.75 359.99 351.55

Mean 17.80 60.56 307.16 166.66

Dispersion 11.30 16.67 19.40 (%) 2.11 (%)

https://doi.org/10.1371/journal.pone.0276185.t001
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capable of modelling a wide range of patterns such as linearity, periodicity, symmetry, conti-

nuity, differentiability, non-differentiability, or smoothness. They can be fully determined by

the mean function and the covariance function, which is also known as the kernel of the pro-

cess. The mean function models the deterministic trend of the process, whereas the covariance

function models its stochastic properties.

A random field is a generalization of a stochastic process, in which the underlying parame-

ter is a multidimensional vector. Fig 6 shows a realisation of a Gaussian random field gener-

ated by the squared exponential kernel, which can be seen as a representation of the evolution

of a component the wind velocity in space and time.

A GPR model addresses the question of predicting the value of a scalar variable y given the

predictor variable x. Given a linear regression model of the form

y ¼ xtβþ ε; ε � Nð0; s2Þ; ð1Þ

where the parameters β and the error variance σ2 are estimated from the data, the GPR model

predicts the variable y by introducing two new features:

Fig 5. Contour plots of the joint empirical PDF of the u and v components of the wind velocity for Day 1 (left)

and Day 2 (right) data sets. The empirical correlations for Day 1 and Day 2 data sets are r̂ ¼ � 0:7� 0:0021 and

r̂ ¼ � 0:47� 0:0032, respectively.

https://doi.org/10.1371/journal.pone.0276185.g005

Fig 6. Realisation of a Gaussian random field generated by the squared exponential kernel.

https://doi.org/10.1371/journal.pone.0276185.g006
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• A latent random variable f(x) from a Gaussian process. For any collection of points x1, x2,

. . ., xn, it is assumed that f(x1), f(x2), f(x3), . . ., f(xn) are jointly Gaussian distributed random

variables with zero-mean and covariance function k(x, x0).

• A basis function h, which projects the inputs x into a p–dimensional feature space.

Combining these features, the GPR model can be formulated as:

y ¼ hðxÞt
1�pβp�1 þ f ðxÞ þ ε: ð2Þ

Under these assumptions, it can be shown that the predicted variable y at a point x, given a

training data set that relates y and x, is also Gaussian distributed [28]. This characteristic makes

GPR a powerful tool, since it is able to give not only an estimation but also its probability distri-

bution. This enables, for example, the provision of a confidence interval for the estimates.

3.1 Multiple output Gaussian process regression

The generalisation of the GPR to Multi-Output Gaussian Process Regression (MOGPR) is not

straightforward and still a field of active research [29]. The idea behind the MOGPR is to use

the knowledge of the relation among the outputs, if any. Typically, this is carried out by adding

to the model a formulation of the covariance function that describes not only the auto-correla-

tion of a response variable, but also the correlation among the response variables [30, 31].

However, most GPR implementations usually model only a single response variable due to the

difficulty of formulating a covariance function for multiple correlated response variables [32].

An incorrect structure of the covariance matrix can significantly reduce the efficiency of both

uncertainty quantification and forecast [33]. In addition, it is difficult to describe the MOGPR

process in order to correctly structure the outputs and, at the same time, ensure positive defi-

niteness of the resulting covariance matrices [28]. Therefore, in practice, a single response vari-

able has been considered in many applications (see e.g. [34, 35]). Moreover, popular numerical

computation software, such as MATLAB, only provide the single response GPR implementa-

tion, whereas the MOGPR is modelled considering the response variables as independent vari-

ables, i.e., without taking into account their correlation. The same happens in the case of the

Python library scikit-learn. In brief, there is not a single and straightforward generalisation of

the GPR to multi-output processes. The approach followed in this paper to solve this problem

is described in the next section.

3.2 Adaptation of Gaussian process regression to the wind velocity multi-

output

As mentioned earlier, the problem studied in this paper is to predict the u and v components

of the wind velocity using the GPR method, which makes the problem a multi-output problem.

To extend the single output GPR method to the case with multiple outputs, the following four

approaches have been tested:

1. The u and v components are straightforwardly considered as the outputs: (y1, y2) = (u, v).

2. The u and v components are calculated in two steps. First, the component u is predicted.

Then, the component v is predicted using the component u as a predictor variable:

(xt, u)! v.

3. The outputs are defined as (y1, y2) = (r, cos (α/2)), where r is the wind speed and α the direc-

tion of the wind vector. Then, the u and v components are restored by computing α = 2 arc-

cos(y2) and (u, v) = (r cos α, r sin α).

PLOS ONE Wind field estimation from aircraft derived data using Gaussian process regression

PLOS ONE | https://doi.org/10.1371/journal.pone.0276185 October 31, 2022 10 / 23

https://doi.org/10.1371/journal.pone.0276185


4. Three outputs are considered, namely (y1, y2, y3) = (r, cos α, sin α). Then, the u and v com-

ponents are restored by computing: (u, v) = (r cos α, r sin α).

The first two approaches directly deal with the estimation of the wind components, whereas

the last two approaches split the estimation of the wind speed and direction in two different

GPR models. The motivation behind the approaches 3 and 4 is twofold: the wind speed estima-

tion using the GPR method has been proven to be effective in a previous article [19] and the

separation of the predictions of wind speed and wind direction may benefit the training of the

GPR model, since they are two different physical magnitudes. In the numerical experiments,

on average, approach 4 gave the best results in terms of the RMSE, followed by approaches 1

and 3. Approach 2 gave significantly worse outcomes. Notice that, although in the approach 4

one more GPR model must be trained, this does not affect the training time, since this addi-

tional training can be done in parallel. Thus, in this paper, the approach 4 has been employed

in the numerical experiments reported in Section 4.

4 Wind velocity field estimation

In this section, the GPR method proposed in this article for the estimation of the wind velocity

field in a given air space will be described. Two different types of estimation are conducted:

wind velocity field reconstruction and wind velocity field short-term prediction. The consid-

ered air space is the TMA of the LEMD airport. The main features of the proposed method are

the following:

• It does not rely on the physics of the atmosphere.

• It does not rely on a discretization of the space, i.e., the wind velocity can be estimated at any

point.

• It allows the spatio-temporal relations among observations to be included in the model.

• It allows confidence intervals for the estimates to be computed.

• It requires less than 5 min of computational time on a standard desktop computer.

4.1 Implementation and model set up

In this section, the selection of the parameters of the GPR model described in Section 3 will be

discussed, which include the error variance σ2, the basis function and the coefficients h(x)tβ,

and the kernel function k(x, x0). The error variance corresponds to the instrumental error,

which is assumed to be 9m2/s2, according to the typical wind measurement error reported in

[18]. The selected basis function

hðxiÞ ¼ ð1 xtiÞ
t
5�1

ð3Þ

is linear. Thus, the mean of the process changes linearly with respect to the input variables. If a

parametric kernel function k(x, x0) is chosen to model the covariance structure, the corre-

sponding hyperparameters must also be estimated. In this paper, the squared exponential ker-

nel [28] is chosen, namely

kðxi; xjjθÞ ¼ s2
f e
� r2 ; ð4Þ
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where

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xd¼4

m¼1

ðxim � xjmÞ
2

s2
m

s

; ð5Þ

with θ = (σf, σ1, σ2, σ3, σ4) being the hyperparameter vector.

The kernel function (4) is characterised by producing continuous and smooth results.

Thus, the GPR model provides a smooth regression. Furthermore, the kernel (4) is universal,

i.e., the corresponding GPR method is able to approximate an arbitrary continuous target

function uniformly on any compact subset of the input space [36, 37].

With this kernel selection, the correlation between two input variables decreases quickly

with the Euclidean distance in space and time. Before computing the distance, each input vari-

able xim is scaled by a factor s2
m, to take into account the different scales of the input variables.

These scaling factors define how far apart the input data must be so that the response values

can be considered uncorrelated. This is an important aspect, since anisotropic variables are

present in wind velocity field estimation, i.e., variables that have different length scales [17].

The signal standard deviation σf is a factor introduced to adapt the auto-covariance to the out-

put scale. Finally, the coefficients β and the hyperparameters θ are estimated in the training

phase by the Subset of Data (SD) method [28, Chapter 8]. For a fast and accurate prediction,

the Block Coordinate Descent (BCD) approximation is used [38].

4.2 Wind velocity field reconstruction

In this section, the ability of the GPR method to reconstruct the wind velocity field within a

given air space using historical data is studied. More specifically, the wind velocity field around

the LEMD airport is reconstructed for the two wind scenarios described in Section 2.2. A

cuboidal region of base size 500 × 500 km centred at the LEMD airport is considered for the

reconstruction of the wind velocity field. The altitude ranges from 0.6 km to 14 km.

As said earlier, the data set is split in training and test sets in two different manners, namely

randomly selecting a set of individual observations and randomly selecting a set of flights and

using all the observations collected during these flights. They will be referred to as randomly

splitting the data set by observation and by flight, respectively. To assess the accuracy of the

reconstruction, 20% of the available data is reserved for testing as follows:

1. By randomly selecting 20% of the observations. In this case, the wind velocity field recon-

struction is conducted over the whole air space.

2. By randomly selecting 20% of the flights. In this case, the wind velocity field reconstruction

is carried out along specific aircraft routes.

The resulting training and test data sets are shown in Fig 7. A model is trained for both the

Day 1 and Day 2 data sets using data collected in the period of 1 hour. Both ways for creating

the training and test data sets have been considered. The computational time was 5 min on a

standard desktop computer.

The estimation errors of the u and v components of the wind velocity for the Day 1 and the

Day 2 data sets are reported in Table 2.

The boxplots of the estimation errors for the wind speed and direction are reported in Fig

8. It can be seen that, in general, the estimation errors are unbiased and symmetric. Moreover,

there is no remarkable difference between the estimation errors of the u and v components of

the wind velocity obtained for the Day 1 and Day 2 data sets. A similar behaviour is observed

for the wind speed. Nevertheless, as expected, the estimation errors of the wind direction are
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Fig 7. Day 1: Training and test data sets created using observation collected in the period of 1 hour. (a) Training

and test data sets created by randomly splitting the data set by observation. (b) Training and test data sets created by

randomly splitting the data set by flight.

https://doi.org/10.1371/journal.pone.0276185.g007

Table 2. Wind velocity field reconstruction: Estimation errors for the u and v components of the wind velocity.

Data set split by observation Data set split by flight

Measure of error Component Day 1 Day 2 Day 1 Day 2

RMSE (m/s) u 2.75 1.91 5.88 5.85

v 2.59 1.88 5.58 4.89

MAE (m/s) u 1.49 1.27 4.42 4.27

v 1.46 1.31 3.97 3.71

https://doi.org/10.1371/journal.pone.0276185.t002
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higher for the Day 1 data set, which is characterised by low wind speeds. This is due to the fact

that the significance of the wind direction is little when the wind speed is low and negligible

when the wind speed is close to zero. Taking into account that, on Day 1, the wind speed is less

than 10 m/s for 30% of the data, higher estimation errors in the wind direction can be consid-

ered acceptable.

Regarding the method employed for creating the training and test data sets, it has notice-

able influence on the results. When the data set is randomly split by observation, the observa-

tions are closer in time and space, whereas, when the data set is randomly split by flight, the

samples are more separated. Therefore, higher estimation errors are obtained when the train-

ing and test data sets are created by randomly splitting the data set by flight.

A similar analysis has been carried out in [12], in which only the wind speed errors have

been reported, which have been obtained using training and testing data sets created by ran-

domly spitting by observation. More specifically, the analysis has been conducted employing

the so-called meteo-particle model over a set of data collected in a period of 30 min. It can be

seen in [12, Table 3] that the obtained Mean Absolute Error (MAE) of the wind speed is simi-

lar to the one obtained using the GPR method.

The reconstructed wind velocity field obtained at a specific time instant using the GPR

method is shown in Fig 9 for different altitudes together with a selection of members of the

Fig 8. Wind velocity field reconstruction: Boxplots of the estimation errors for the wind speed and wind

direction. (a) Day 1: Data set split by observation. (b) Day 1: Data set split by flight. (c) Day 2: Data set split by

observation. (d) Day 2: Data set split by flight.

https://doi.org/10.1371/journal.pone.0276185.g008
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Fig 9. Wind velocity field reconstruction: Reconstructed wind velocity field obtained using the GPR method for

different altitudes (A) together with a selection of members of the training and test data sets and the mean wind

speed �sw. (a) Day 1 (low wind). (b) Day 2 (high wind).

https://doi.org/10.1371/journal.pone.0276185.g009

PLOS ONE Wind field estimation from aircraft derived data using Gaussian process regression

PLOS ONE | https://doi.org/10.1371/journal.pone.0276185 October 31, 2022 15 / 23

https://doi.org/10.1371/journal.pone.0276185.g009
https://doi.org/10.1371/journal.pone.0276185


training and test data sets and the mean wind speed �sw. It can be seen that the reconstructed

vector velocity field is smooth and fits well the data.

4.3 Wind velocity field short-term prediction

In this section, the ability of GPR method to perform wind velocity field short-term prediction

is studied. More specifically, the wind velocity field around the LEMD airport is predicted in

the two wind scenarios described in Section 2.2. In order to perform these short-term predic-

tions, the GPR model is trained every 15 min using data of the previous hour. This process is

repeated several times and several measures of error are calculated, which are summarised in

Table 3. It can be seen in Table 3 that, as expected, the estimation error is slightly higher than

the estimation error obtained in wind velocity field reconstruction using the data set randomly

split by flight reported in Table 2. This is due to the fact that the GPR model only has informa-

tion on past states of the wind, which increases the estimation uncertainty.

In Table 3, the Median Absolute Deviation (MAD) of the prediction error is also reported.

It can be seen that it is lower than both the RMSE and the MAE, because this measure of error

is more robust to extreme values in the data set.

Taking into account the presence of a noise of around 3 m/s in the data due to the instru-

mental error, it can be concluded that the GPR method gives short-term predictions with rea-

sonable estimation errors.

A 15 minute ahead wind velocity field prediction using the Day 2 data set is shown in Fig

10 for different altitudes, together with a selection of members of the test data set, whereas the

evolution of a series of wind velocity field predictions with different time horizons using the

Day 1 data set is shown in Fig 11. The prediction evolves over time and stabilises, since the cor-

relation in time, which is governed by the kernel in Eq (4), decreases rapidly.

Another way to evaluate the precision of the prediction is to compare the predicted wind

velocity field with the reconstructed wind velocity field for the same time instant. A compari-

son of a 20 minute ahead wind velocity field prediction with the corresponding wind velocity

field reconstruction is represented in Fig 12 for different altitudes. It can be observed that the

wind velocities largely agree between them.

As mentioned in Section 3, the GPR method allows the confidence intervals for the wind

velocity field estimates to be computed. The 10 minute ahead prediction of the wind speed

and wind direction along the vertical at a specific point close to the LEMD airport, known as

RILKO IAF, together with the corresponding 2 standard deviation confidence intervals are

shown in Fig 13. This prediction has been calculated using the Day 1 data set. The percentage

of estimates that lie within the GPR confidence intervals has also been computed for both data

sets. For the Day 1 data set, the percentage of estimates that lie within the GPR confidence

intervals is 88.69%, whereas this percentage is 86.90% for the Day 2 data set. Notice that, if the

estimates were normally distributed, approximately 95% of the observations would lie within

Table 3. Wind velocity field prediction: Estimation errors for the u and v components of the wind velocity field.

Measure of error Component Day 1 Day 2

RMSE (m/s) u 5.64 7.33

v 5.48 6.31

MAE (m/s) u 4.52 5.93

v 4.46 5.15

MAD (m/s) u 3.11 3.69

v 3.18 3.68

https://doi.org/10.1371/journal.pone.0276185.t003
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the 2 standard deviation confidence intervals. However, since in this case the aircraft derived

wind velocity field does not behave as a Gaussian field, the GPR model is overconfident. Thus,

the width of the confidence interval should be increased if 95% is to be achieved.

In conclusion, the GPR method is able to reconstruct the wind velocity field and to provide

accurate short-time predictions of the wind velocity field. Furthermore, the GPR method has

Fig 11. Wind velocity field prediction: Wind velocity field predictions with different time horizons using the Day

1 data set (low wind) together with the mean wind speed �sw.

https://doi.org/10.1371/journal.pone.0276185.g011

Fig 10. Wind velocity field prediction: A 10 minute ahead wind velocity field prediction for different altitudes (A)

using the Day 2 data set (high wind), together with a selection of members of the test data set and the mean wind

speed �sw.

https://doi.org/10.1371/journal.pone.0276185.g010
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Fig 12. Comparison between the predicted and reconstructed wind velocity fields at different altitudes (A).

https://doi.org/10.1371/journal.pone.0276185.g012

Fig 13. Wind velocity field prediction: 10 minute ahead prediction of the wind speed and wind direction along the

vertical at the RILKO IAF point, together with the corresponding 2 standard deviation confidence intervals. This

prediction has been calculated using the Day 1 data set.

https://doi.org/10.1371/journal.pone.0276185.g013
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been generalised to estimate not only the wind speed but also the wind direction without

affecting the accuracy of the wind speed estimation. Actually, the magnitude of the wind speed

errors is similar to the one reported in [19]. It will be shown in the next section that the results

of the wind velocity field estimation also agree with the ECMWF ERA5 reanalysis data.

5 Validation of the Gaussian process regression model

In this section, the GPR model is validated by comparing the estimates obtained using this

method with the ECMWF ERA5 reanalysis data, which have been considered as the reference

for validation. The ECMWF ERA5 reanalysis data base yields global atmospheric reanalysis

data for all altitude levels with a 0.25 degrees resolution in both latitude and longitude.

A comparison between the Day 1 and Day 2 aircraft derived data sets with the ECMWF

ERA5 reanalysis data is shown in Table 4. For this comparison, the differences have been com-

puted for every hour ranging from 09:00 to 15:00 UTC, with a tolerance of 15 min in time and

1000 ft in altitude. The ECMWF ERA5 data, which are given at grid points, have been interpo-

lated linearly to compute the corresponding values at the locations at which aircraft derived

wind observations are available. The differences are small but significant. Despite these differ-

ences, it is expected that the estimates obtained with the GPR method and the reanalysis data

agree on average. Special attention has been paid to the spatio-temporal locations where no

aircraft derived data are available, namely low altitudes and outside the air traffic routes. For

this purpose, the comparison has been conducted as follows:

1. The ECMWF ERA5 reanalysis data corresponding to February 23, 2020 (Day 1) and

December 21, 2019 (Day 2) for the relevant air space have been read-off from the data base.

2. For each day, different time instants and altitudes have been considered. More specifically,

the ECMWF ERA5 reanalysis data corresponding to 09:00, 12:00, and 15:00 UTC for alti-

tudes 5.6, 9.3, 10.5, 11.2, 12, and 12.9 km have been considered.

3. The relevant airspace is modelled as a cuboidal region of base size 500 × 500 km centred at

the LEMD airport. The GPR model has been trained for every hour using aircraft derived

data observed in this airspace.

4. After the training phase, the GPR method was used to perform an estimation at each grid

point of the ECMWF ERA5 reanalysis data set. Then, the estimates have been compared

with the ECMWF ERA5 reanalysis data and error measures have been computed.

Fig 14 shows the boxplots of the differences between the estimates of the wind speed and

direction obtained with the GPR method and ECMWF ERA5 reanalysis data for Day 1 and

Day 2. It can be seen that, for both days, the errors are small. Furthermore, as shown in

Table 5, these errors are smaller than those between the aircraft derived data and the ECMWF

Table 4. Validation of the GPR model: Comparison between the aircraft derived data and the ECMWF ERA5

reanalysis data.

Measure Variable Day 1 Day 2

Bias (m/s) Wind speed 2.4 -0.51

MAE (m/s) Wind speed 5.91 5.72

Bias (deg) Wind direction 3.87 2.24

Variance (%) Wind direction 15.16 0.65

https://doi.org/10.1371/journal.pone.0276185.t004
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ERA5 reanalysis data reported in Table 4. This is due to the fact that the GPR method yields

wind velocity field estimates that are smoother than the aircraft derived data. Moreover, the

GPR model acts as a noise filter, since measurement noise is included in the model represented

by Eq (2).

As mentioned in Section 2.2, most of the aircraft derived data are located at cruise altitude.

Moreover, low altitude data are in general located close to the LEMD airport, as shown in Figs

2 and 7. The interquartile ranges of the estimation errors, on Day 1, at different altitudes and

horizontal distances to the LEMD airport, are shown in Table 6. The interquartile ranges of

the estimation errors at different horizontal distances to the LEMD airport have been com-

puted for the altitude of 9.4 km. It can be seen that, at cruise altitude (ranging from 10.6 km to

11.2 km), the discrepancy between the GPR estimates and the ECMWF ERA5 reanalysis data

is lower than at other altitudes, except for the wind speed estimates at altitude 5.4 km, which is

due to the significant low speed observed at this altitude on Day 1. Moreover, excluding the

area surrounding the LEMD airport, in which the number of observations is significantly

Fig 14. Validation of the GPR model: Boxplots of the estimation errors for the wind speed and direction obtained

with the GPR method with respect to the ECMWF ERA5 reanalysis data. (a) Estimation errors for Day 1. (b)

Estimation errors for Day 2.

https://doi.org/10.1371/journal.pone.0276185.g014

Table 5. Validation of the GPR model: Comparison between the estimates obtained with the GPR method and the

ECMWF ERA5 reanalysis data.

Measure Variable Day 1 Day 2

Bias (m/s) Wind speed -3.84 -1.01

MAE (m/s) Wind speed 5.10 6.06

Bias (deg) Wind direction 4.33 -1.56

Variance (%) Wind direction 4.96 0.28

https://doi.org/10.1371/journal.pone.0276185.t005

Table 6. Validation of the GPR model: Interquartile ranges of the estimation errors at different altitudes and horizontal distances to the LEMD airport for Day 1.

Altitude (km) Horizontal distance to the LEMD airport (km)

Variable 5.8 9.4 10.6 11.2 12 12.9 60 120 180 240 300 360

Wind speed (m/s) 4.7 6.1 6.2 5.3 7 6.4 4.5 5.4 5.8 6.15 7.5 7.1

Wind direction (deg) 34 12.4 7.7 7.3 12.2 15.1 7.6 10 11.3 12.4 10.5 8.7

https://doi.org/10.1371/journal.pone.0276185.t006
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higher, similar discrepancies between the GPR estimates and the ECMWF ERA5 reanalysis

data are observed at different horizontal distances.

Thus, it is possible to conclude that the estimates obtained using the GPR method agree

with the ECMWF ERA5 reanalysis data even when there is no aircraft derived wind observa-

tion near the ECMWF ERA5 reanalysis grid point, which shows the capability of the GPR

method to perform wind velocity field estimation at locations in the surroundings of which no

aircraft derived wind observation is available.

In order to test the effect of outliers removal from the raw data set, the GPR models have

been trained using both the raw data and the processed data, and their wind velocity field esti-

mates have been compared to the ECMWF ERA5 reanalysis data. The results of the compari-

son are shown in Table 7. It can be seen that, for the Day 1 data set, similar statistics for the

wind speed and direction are obtained using both the raw data and the processed data. On

the contrary, for the Day 2 data set, similar statistics are obtained only for the wind direction

whereas, significant differences are present in the statistics for the wind speed. More specifi-

cally, the Bias and the MAE increase considerably when the outliers are not removed from the

raw data set.

6 Discussion

In this paper, a method based on GPR for wind velocity field reconstruction and short-term

prediction has been presented. The results of the numerical experiments show that the pro-

posed GPR method is effective in modelling the spatio-temporal wind correlation. The GPR

method proposed in this paper is fast, allowing for data assimilation. Unlike the grid-based

methods, in which the dimensions of the grid require large matrix operations, the GPR

method straightforwardly yields estimates at any location. The proposed method is accurate. It

has been tested in different scenarios, achieving similar performances and showing its capabil-

ity to precisely estimate the wind velocity field at different spatial locations and at different

time instants. The GPR model has been validated by comparing the estimates obtained using

this method with the ECMWF ERA5 reanalysis data. The results of the validation show that

they are consistent with the ECMWF ERA5 data even in those regions in which the data cover-

age is low or inexistent, i.e., the obtained wind velocity field estimates largely agree with unob-

served data. The proposed method for wind velocity field estimation, which can rapidly

assimilate new observations to provide precise wind estimates at any location and time,

improves aircraft trajectory predictability, which is a key aspect for TBO, the central element

of the future ATM paradigm.
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