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Material fingerprinting as a tool to investigate between and within material 
type variability with a focus on material hardness 
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A B S T R A C T   

Geochemical and mineralogical datasets from Tropicana Gold Mine, Australia, have been used to define Au- 
mineralised fingerprints. VNIR-SWIR spectral data were represented by four normalised wavelength regions 
and were clustered to form spectral classes. Sequentially, these spectral class proportions within a block and co- 
located pXRF data were clustered to discriminate material types (fingerprints). The hardness of each type was 
further explored using collocated BWi, Axb, Equotip rebound hardness and penetration rate datasets, but also by 
considering spatial contextual relationships and the within material type variability. The Tropicana orebody 
example gave a good illustration of how a phengitic-epidote K-feldspar rich domain (schistosity and softer, 
~15–18 kWh/t) separated from a harder (>20 kWh/t), shorter wavelength phengitic plagioclase-rich feldspar 
dominated domain. Exploring the within material type differences using the white mica composition (wAlOH) 
and a new w605 spectral feature demonstrated how the effects of shearing were captured within material types. 
Such findings will ultimately improve the understanding of the constitutive material hardness and have signif-
icance for process optimisation and blending strategy design.   

1. Introduction 

Traditionally, the mining industry tends to concentrate on testing, 
understanding and domaining rock hardness within orebodies (e.g., 
crushability and grindability) during focused metallurgical studies. 
However, the hardness is of significant importance for informing stra-
tegic and tactical geometallurgical decisions, such as comminution cir-
cuit design and forecasting throughput during the life of mine (Dominy 
et al., 2018). In this context, hardness refers to the resistance of a ma-
terial to deformation, indentation, penetration or deformation by means 
such as abrasion, drilling, impact, scratching or wear (Lynch, 2015). 
Provided this importance, it is interesting that the material hardness 
itself is commonly only understood by doing additional hardness tests 
(Michaux and O’Connor, 2020) or by modelling its spatial abundance 
(Deutsch et al., 2015). Another issue is the large quantity of material 
required for the most common comminution tests and their high asso-
ciated costs. Unfortunately, this limits the number of tests conducted 
and confines the understanding of the full range of metallurgical prop-
erties from the deposit. As a result, typically only preliminary hardness 
modelling is done based upon the mineralogical, metallurgical and 
comminution test results retrieved during feasibility studies (see, for 

example, King and Macdonald (2016); Montoya et al. (2011)). However, 
only limited efforts are made to determine why and how the geology 
impacts the material hardness. 

The material hardness of an orebody is encountered during drilling, 
testing, loading and comminution processes. The dominant processes 
controlling rock hardness occurred between ca. 2640–1140 Ma in the 
case of this study’s orebody (Blenkinsop and Doyle, 2014), and only 
slightly changed over time in the case of weathering at shallow surfaces 
(Ogunsola et al., 2017). The hardness is defined by, for example, meso- 
and microscale shear zone kinematics (faults, folds, shearing), rock 
massiveness (grain size distribution), unconformities, deformations, 
crystallisation, metamorphism, textural changes or the physical hard-
ness of the constituent minerals. At the Tropicana Gold Mine, biotite 
with pyrite and gold-bearing assemblages (at other parts, biotite-sericite 
and minor chlorite) crystallised in shear zones within K-feldspar-rich 
pegmatitic rocks (during D3 deformation following Blenkinsop and 
Doyle (2014)). This deformation postdates the formation and folding of 
a gneissic fabric but predates overprinting by other phyllosilicates 
through new shear zones from later deformation events comprising 
dextral shearing (D4, D5 shear zones and folds, Blenkinsop and Doyle 
(2014)). This deformation history example contains several phases in 
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which the material hardness has changed, but implies that when a 
fingerprint of material can characterise or domain hydrothermal min-
eral phases (Molnár et al., 2017; Roache, 2019), fluid pathways in shear 
zones (Hood et al., 2019) or deformation events (Blenkinsop and Doyle, 
2014), then the fingerprinting can also describe the hardness variability. 

The concept of material fingerprinting entails that a fingerprint is a 
material classification based on the similarity of the measured and 
constitutive material attributes (van Duijvenbode et al., 2020). Ideally, 
these fingerprints are a better proxy for the constitutive hardness 
properties found within a small spatial area or domain (representing a 
material blend) compared to those of individual samples. Various geo-
metallurgical case study examples follow the same principles but with 
different aims and considered datasets. For example, van Duijvenbode 
et al. (2022) explore the relationship between four acid digestion data 
and the Bond Ball Mill Work Index (BWi) and recovery. Bhuiyan et al. 
(2022) demonstrate that a portable X-ray Fluorescence (pXRF) to BWi 
relationship is favoured. Wambeke et al. (2018) demonstrate the use of 
such a relationship in real-time reconciliation of BWi, whereas, in 
Johnson et al. (2019), the mine favours a Visible Near Infrared – Short 
Wave Infrared (VNIR-SWIR) hyperspectral imaging application to pre-
dict recovery and throughput. Other studies show fingerprinting of 
solely VNIR-SWIR mineralogy along drill holes (Abweny et al., 2016; 
Arne et al., 2016; Kazimoto, 2020) or mineralised outcrops (Booysen 
et al., 2022). 

The main aim of this paper is to use material fingerprints to under-
stand and determine a relationship for between- and within material 
type differences by focussing on the measured hardness. Demonstration 
of such an outcome could assist in optimal sample selection, commi-
nution design or give insights towards reducing energy consumption. 
This will be done by firstly demonstrating the construction of material 
fingerprints for mining blocks using grade control (GC) point-data 
sources (pXRF and VNIR-SWIR measurements), secondly explaining 
the rock attributes for each material type, and thirdly demonstrating 
spatial contextual relationships of the material types with hardness and 
alteration mineral assemblages. This will be tested and validated by 
linking each fingerprint with the typical BWi, Axb, Equotip and pene-
tration proxy parameters characterising the comminution behaviour of 
this material. Finally, it is shown how the learnt fingerprint (material 
type) to work index relationships can be improved by exploring the 
within material type variability. 

2. Geology and mineralisation 

The Tropicana Gold Mine (TGM) is situated in the Plumridge 
Terrane, a zone that separates the in situ eastern margin of the Yilgarn 
craton from the Albany-Fraser orogen, Western Australia (Fig. 1a). This 
gneissic terrane consists of Archean crust (2.7 Ga) and is strongly 
modified by amphibolite to granulite facies grade metamorphism (Doyle 
et al., 2015). Closer to the mine, the granulite facies quartzofeldspathic 
gneisses are highly deformed and truncated by moderately east to 
southeast dipping shear zones. Post mineralisation faulting resulted in 
four distinct structural domains, which are from north to south: Boston 
Shaker, Tropicana, Havana (including Havana Deeps) and Havana South 
(Fig. 1b). Most economic gold mineralisation occurs within high gold 
grade shoots, including the southeast plunging mineralised zones at 
Boston Shaker, Tropicana NE, Havana and Havana South. 

The deposit was formed by fluid flow through a network of biotite- 
pyrite-bearing shear zones and is hosted within a sequence of high- 
grade quartzofeldspathic and garnet-bearing gneisses, with amphibo-
lites, granulites, metasedimentary cherts and pegmatites (Fig. 2). These 
mineralised zones occur as one or two laterally extensive planar lenses 
with a moderate dip. The favourable host to mineralisation is a prefer-
entially deformed feldspathic gneiss facies (Crawford and Doyle, 2016; 
Hardwick, 2021). The framework silicate modal mineralogy within this 
unit consists of perthitic K-feldspar and plagioclase-rich end-members 
(Hardwick, 2021). Perthitic K-feldspar rich end-members have a higher 
K/Al (molar) ratio than the plagioclase-rich end-members. Within the 
mineralised zone, biotite, sericite, and pyrite alteration replaced the 
metamorphic mafic minerals and feldspar (Blenkinsop and Doyle, 2014; 
Crawford and Doyle, 2016). 

Fig. 3 shows an example of a feldspathic gneiss unit having intervals 
of sericite-biotite, biotite-pyrite and sericite-biotite-chlorite alteration. 
The mineralised rock exhibits significant enrichment in S and the ore 
elements (Mo, Te, Tl, Ag, Au, W) and K-group elements (K, Rb, Hf, Zr, 
U). Previous work by the authors (van Duijvenbode et al., 2022) high-
lighted significant relationships between lithology and material hard-
ness based on four acid digestion multi-element data. This suggests that 
the pXRF and VNIR-SWIR data used in this study would also represent 
these material attributes. 

Fig. 1. (a) Geological map of the Albany-Fraser Orogen with respect to the eastern margin of the Yilgarn Craton, Western Australia, showing the location of the 
Tropicana gold deposit. Modified after Spaggiari et al. (2011); (b) Structural domains and shear zones superimposed on a grade (g/t) × thickness (m) plot. GDA94 / 
MGA zone 51 grid. Modified after Blenkinsop and Doyle (2014). 
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3. Methods 

Data were obtained from several Tropicana Gold Mine (TGM) sour-
ces. Most of the mineralogical (VNIR-SWIR, n = 128,584) and 
geochemical data (pXRF, n = 162,398) were collected from co-located 
GC drilling samples, others originated from exploration drill hole sam-
ples. These samples represent the geochemical and mineralogical vari-
ability within the ≥ 0.3 ppm Au grade resource modelling domains. 
Most of these measurements were taken on drill chips and pulps from GC 
drilling and, therefore, had a dense spatial resolution (typically 6x6 m or 
9x9 m). The resulting 1 m samples were sent to an on-site laboratory for 
analysis. The hardness data will be discussed in Section 3.3. 

The preparation workflow of this study is schematically summarized 
in Fig. 4 and consists of two parts. The first part prepares a block model 
(12 × 12 × 3 m) containing geochemical (Section 3.1) and mineralogical 
data (Section 3.2) attributes. However, two problems had to be over-
come. Firstly, geospatial modelling of VNIR-SWIR features is not as 
common as modelling geochemical data (e.g., using kriging). Therefore, 
an additional preparation step of the mineralogical data is proposed to 
create a categorical variable indicating the type of mineralisation of a 
sample. This consists of agglomerative hierarchical clustering of the 
spectral responses as outlined in Section 3.2 and gives the spectral or 
mineralogical class indicator which can be assigned to the sample. 
Secondly, the modelling itself is a problem as the variety and scale of 
data obtained from different sample measurements (including the to-be- 
considered hardness data) complicates merging datasets. To overcome 
this challenge, all samples were assigned to the nearest block from the 
≥0.3 ppm Au grade resource modelling block model from the mine 
based on their spatial location. These samples within a constrained block 
volume should, given their spatial proximity, relate to each other (ma-
terial blend). Subsequentially, only blocks with sufficient samples were 
considered for further analysis (block feature clustering), and no spatial 
modelling of attributes was required. Finally, a spatially dense block 
model was still obtained due to the vast number of samples and spatially 
dense GC drilling grid. 

The second part involves clustering block features into material types 
and analysis with hardness proxies. As a result of the first part, most 
samples had a set of elemental concentrations and an assigned spectral 
class obtained through the clustering. Note that some samples only had 
VNIR-SWIR measurements, and others only pXRF measurements. The 
block feature clustering approach aims to increase the spatial resolution 
and context of the sample results. This will result in a block model where 
each block with sufficient data (no simulation done) in the mine plan is 
valued not only on Au grade but on a combination of the 15 elements 

and VNIR-SWIR data (the block features). The resulting material attri-
bute classification will then become a proxy for the comminution 
indices. This allows for scale-up from sample to block; all individual 
samples within a block were merged and further prepared for block 
feature clustering by the following steps:  

1. Average the elemental concentrations to get a unique geochemical 
signature per block. Since pXRF data are compositional in nature, 
they require a further transformation to log-ratio coordinates to ac-
count for closure (Aitchison, 1999). Therefore, the concentrations 
are transformed using a centred log-ratio (clr). This transforms the 
data coordinates from the simplex, an n-dimensional composition 
within the positive real number space, to the Euclidean real space 
more suitable for statistical analysis (Aitchison, 1986). Note that the 
clr transformation is done using all block geochemical signatures and 
not per block.  

2. Determine the proportion of each spectral class (Section 3.2) based 
upon all classes found within a block. These class proportions are 
useful as they provide a quantitative description of the mineralogical 
blend characteristics.  

3. Combine the spectral class proportions and pXRF features and 
normalise by a z-score transformation to obtain values in a similar 
range.  

4. Reduce the feature dimension of these block features (spectral class 
proportions and pXRF clr-transformed concentrations) using PCA. 
The number of PCs is automatically set to the amount that can 
describe 95 % of the data variance. 

5. Cluster the block features PC dataset using agglomerative hierar-
chical clustering to partition the blocks into clusters (Wierzchoń and 
Kłopotek, 2018). The algorithm starts with each block as an indi-
vidual cluster. Next, pairs of clusters are successively merged based 
upon similarity until all clusters have been merged into one big 
cluster containing all blocks. These clusters represent so-called 
“material types” with similar mineralogical and geochemical attri-
butes. Note that the mineralogical data (Section 3.2) is clustered 
using the same clustering technique. 

The final block material type (fingerprint) is a combination of pXRF 
elemental concentrations (Section 3.1) and a separate VNIR-SWIR data 
clustering approach (Section 3.2). The initial assumption is that 
geochemistry and mineralogy then largely explain the legacy material 
hardness parameters and constrain distinct hardness domains. 

Fig. 2. Schematic NW-SE cross-section of the Havana South deposit (100 m thick at 649,753 mE, 6,761,137 mN, azimuth 37◦, GDA94 / MGA zone 51 grid), after van 
Duijvenbode et al. (2022). 
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3.1. Geochemical data 

The geochemical dataset (n = 162,398 samples) used in this study 
originates from portable XRF (pXRF) measurements taken on samples 
from within the ≥0.3 ppm Au grade resource modelling domains. The 
bulk concentrations of the following (15) elements were considered: Al, 
Ca, Cr, Fe, K, Mn, Nb, Pb, Rb, S, Si, Sr, Ti, Zn and Zr. Other elements 
including Ag, As, Bi, Cl, Co, Cu, Mo, Mg, Ni, Se, V and W were not 
considered because >50 % of their values reported under the detection 
limit. In addition, the samples were assayed for gold using a 50 g charge 
fire-assay and subsequently analysed by solvent extraction Atomic Ab-
sorption Spectroscopy (AAS). The Au concentration was not used in the 
clustering as this ensures that emphasis is placed on major and other 
trace elements for classification (van Duijvenbode et al., 2022). The gold 
concentration is only used in this study to help interpret the different 
material types and constrain the domains. Fig. 5 shows an example of 
the geochemical data and indicates how the Au, Zr, K and S concen-
trations can be used to characterise the hanging (HW) and footwall (FW) 

ore zones, dominantly hosted in felsic gneiss of the Havana deposit, and 
how the geochemistry changes with depth. It also shows, that the non- 
Au elements will be deterministic in identifying zones of various 
geochemical composition related to Au mineralisation. 

Since inception of the Tropicana Gold Mine operation, samples have 
been analysed in an on-site laboratory using an automated sample 
preparation circuit where both pXRF and VNIR-SWIR data are routinely 
captured. The laboratory adheres to routine data checks, which renders 
further quality control before conducting this research redundant. These 
controls include routine certified reference material (three per hundred 
samples), blank (first sample in each laboratory job and into the 
sequence of samples before each zone of mineralisation), repeat and 
duplicate measurements. QA/QC results are reviewed on a batch-by- 
batch and monthly basis. Any deviations from acceptable precision or 
bias indicators are acted on with repeat and check assays (AngloGold 
Ashanti, 2016). In addition, the number of samples (n = 162,398) used 
in this study likely reduces statistical errors and renders the database 
resilient for errors. 

Fig. 3. Core tray photographs of plagioclase (lower molar K/Al) and perthitic K-feldspar rich (higher molar K/Al) feldspathic gneiss domains with distinct zones of 
alteration. SR: sericite, BI: biotite, PY: pyrite, CHL: chlorite, CC: calcite, EP: epidote. Drill hole TPD234 from 231 to 252 m depth. 
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3.2. Mineralogical data 

The mineralogical dataset consists of 128,584 spectral measurements 
on samples from within the ≥0.3 ppm Au grade resource modelling 
domains. The measurements were taken using an ASD TerraSpec 

mineral spectrometer (hereafter referred to as TS data), and each spec-
tral response covers the reflectance of the electromagnetic spectrum at 
the VNIR and SWIR regions (350–2500 nm). Processing and interpre-
tation of the results were undertaken using two processes. The first 
process uses unprocessed spectral responses, whereas the second process 

Fig. 4. Schematic workflow of the block model preparation and block feature clustering approach.  

Fig. 5. pXRF concentrations of Au, Zr, K and S in relation with the hanging (HW) and footwall (FW) lodes at Havana (50 m thick cross-section). The block feature 
clustering approach only considers samples within the modelled mineralised zone. 
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uses a standard suite of absorption features typical for gold systems. 
The first process aims to use unsupervised learning (clustering) to 

generate classes of mineralogically similar samples. The clustering uses 
“raw” or unprocessed spectral responses as input and, therefore, omits 
the need for mineralogical identification and absorption feature creation 
(Ausspec, 2008; Rodger et al., 2021). Additionally, using uninterpreted 
spectra may reveal hitherto unknown textural or hardness signatures not 
recognised or identified before. Each spectral response was prepared by 
subdividing the wavelength range into four sub-regions: 500–750 nm, 
1300–1450 nm, 1850–2000 nm and 2150–2400 nm. Fig. 6a shows a 
typical TS spectrum with the four regions of interest highlighted. These 
regions were selected because they contain the most spectral variability. 
The selected regions and corresponding typical spectral response 
(Ausspec, 2008) are described in Table 1. In terms of identifying and 
characterising the white mica composition, the 2150–2400 nm region is 
of particular interest for two reasons. Firstly, the wavelength of a 
diagnostic Al-OH absorption feature between 2180 nm and 2228 nm 
(wAlOH) defines the white mica composition and is thus useful for 
spatial mapping of mineralised domains. For example, a muscovite 
white mica corresponds with the lower wavelengths (<2216 nm) and 
phengitic white mica to higher wavelengths (>2216 nm). Phengite at 
TGM is especially closely spatially associated with gold and shear zones 
controlling lode geometry (Roache, 2019). This can, for example, 
differentiate K-feldspar-dominated domains (higher work index, harder) 
from mica-dominated domains (lower work index, softer). Secondly, the 
abundance (depth at 2205 ± 25 nm, dAlOH) can then be used to 
differentiate the feldspar vs sericite composition. 

The spectral response in each region was smoothed and normalised 
by a convex-hull removal (CHR) to remove dependence upon reflec-
tance. This ensures that the spectra can be compared because the ab-
sorption features are purely a function of depth and width (Ausspec, 
2008). The benefit of this approach can be seen in the 500–750 nm re-
gion, as will be discussed in Section 4.5. Usually, these predominantly 
iron-related features are depressed because the convex hull removal 
over the entire spectrum. However, doing this across a smaller region 
preserves features and may magnify their expression (Fig. 6b). 

The data from each region were combined, and each wavelength 
feature (n = 800) was normalised by removing the mean and scaling to 
unit variance. Then, the feature dimension was reduced by principal 
component analysis (PCA). The number of principal components (PCs) 
was automatically set to the amount which describes 95 % of the data 
variance. Finally, the lower-dimensional dataset functions as input for a 
clustering algorithm. This study used an agglomerative hierarchical 
clustering approach (Wierzchoń and Kłopotek, 2018) but, in addition 
other algorithms were tested (K-means, density based methods). After 
clustering, each sample is assigned a class label related to a specific suite 
of mineralogical signatures occurring within the four wavelength 
regions. 

The second process uses The Spectral Geologist (TSG; Version 
8.0.7.4, CSIRO, Perth, WA, Australia) software to provide quick and 
reliable interpretations of predefined mineralogical features (Laukamp 
et al., 2021). These spectral interpretations were assumed to be valid 

since they are generally used in-house, having been refined over many 
years. The main proxies considered are described in Table 1. This pro-
cess is primarily used to provide mineralogical interpretation to the 
classes from the first clustering process. In addition, these results may 
capture signatures from the regions not considered above. 

3.3. Material hardness proxy data 

After analysing the geochemical and mineralogical results of the 
material types, the focus shifted to the hardness characteristics of each 
identified material type. These characteristics were identified using the 
following four legacy hardness proxy datasets jointly:  

• Equotip rebound hardness measurements (unit is Leeb, Ls) were 
primarily taken on diamond drill core with intervals of one metre. 
Generally, ten measurements were taken per sample, and for this 
study, simply the median value was chosen to give one data point per 
meter. This hardness value is calculated from the impact and 
rebound speed ratio and typically reflects the mineralogical rebound 
hardness based on the observed matrix crystal structure. A higher 
Leeb corresponds with a harder sample.  

• The Bond Ball Mill Work Index (BWi in kWh/t) and the JK rock 
breakage parameters (Lynch, 2015) expressed as comminution index 
Axb, were infrequently collected on diamond drill cores during 
metallurgical testing campaigns. The BWi reflects the combined 
resistance to abrasion and impact, whereas Axb reflects the 
compression resistance. Higher values of BWi indicate harder ore, 
whereas higher values of Axb indicate a decreased hardness.  

• The penetration rate (m/hr) was directly derived from the time 
required to drill through a one-meter rock mass. When machine 
operating conditions are kept constant, this represents a material 
hardness indicator since the parameter is collected continuously 
along every hole drilled. This study considered only penetration rates 
from GC drilling of ~10–12 m long blast holes. Lower values indicate 
harder rock mass since the material takes longer to penetrate, and 
therefore delivers less drilled meters per hour. 

4. Results 

4.1. VNIR-SWIR clustering 

PCA reduced for 128,584 samples the 800 wavelength features 
derived from the four regions to nineteen features (accounting for 95 % 
data variance). In this context, each PC represents a combination of 
features visible in the hull normalised spectra of the four wavelength 
regions. Fig. 7 displays PC1 is accountable for 25 % of the data variance, 
and that a positive PC1 is mostly related to the 1405–1448 nm and the 
1881–1962 nm features, both corresponding with water features. A 
positive PC2 indicates the 2323–2490 nm and 2215–2256 nm region 
affinity, probably picking up small mineralogical variations due to the 
Al-OH, Fe-OH and Mg-OH bonds in silicate minerals. Whereas in the 
negative PC4 component, this 2150–2297 nm region (slightly larger) is 

Fig. 6. Convex-hull removal of TerraSpec spectrum; (a) an example TerraSpec spectrum with the four selected regions used for clustering; (b) normalised hull- 
quotient spectrum for each region. 
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more related to the 1851–1872 nm and 1303–1354 nm region. This may 
show that vibrations picked up in these regions may be related to each 
other, and these relationships may not have been observed if only 
certain, closely constrained, wavelength and depth features were 
extracted. In addition, these (rather obvious) examples demonstrate that 
the proposed TerraSpec clustering approach produces viable results. 
Furthermore, almost every region has dominance in a PC at either the 
positive or negative eigenvalue extremes. This suggests that all wave-
length regions influence separation of the TS samples. Supplementary 
Material Table A.1 contains an overview of the eigenvalues and loadings 
of all PCs. 

The nineteen PCs were determined to represent the mineralogical 
signatures adequately and, thus, were subsequentially clustered using 
agglomerative hierarchical clustering (Wierzchoń and Kłopotek, 2018). 
It was found that the VNIR-SWIR features can best be partitioned in six, 
seven or eight clusters (or classes) indicated by the peak and trough in 
the mean silhouette score, Calinski-Harabasz index and Davies-Bouldin 
index (Aggarwal and Reddy, 2014) and clustering dendrogram (shown 
in Supplementary Material Fig. A.1 and A.2). It was chosen to select 
seven classes because a spatial contextual inspection showed that the 
additional separation (into TS classes 1 and 2) related to the weathered 
rock types that had been represented by only one class thus far. Eight 
classes would split TS class 3 which already had a fairly similar 

mineralogical composition to other classes. Further analysis of the 
classes is done using (1) histograms of the deepest absorption feature 
(Hecker et al., 2019) in each region, (2) results of analysing a subset of 
31,489 samples using the TSG software and (3) spatial observations. 
Fig. 8 shows histograms of the wavelength at the maximum depth for 
several features per TS class and region and helps identify the main 
features separating and characterising the classes. Note that these clas-
ses resemble distinct mineralogical mixture patterns related to the gold- 
bearing material and accompanying dilution. Supplementary Material 
Fig. A.3 contains numerical overviews of other extracted VNIR-SWIR 
spectral features from the TSG sample subset. 

Classes 1 and 2 comprise mostly of weathered material with clay-rich 
mineral phases and minor siderite (Table 2). Three main characteristics 
define these classes. Firstly, the histogram peak (Fig. 8) between 510 and 
530 nm indicates that the ferric iron absorption bands (Fe-oxide in-
tensity) typically observed in weathered material are more dominant 
than the other deepest absorption features around 600 or 700 nm (Zhou 
and Wang, 2017). Secondly, the weathered- and fresh-material indicator 
is low, indicating weathered material (Table 1). TS classes 1 and 2 have 
an average ratio between 1.3 and 1.4, whereas the other classes have a 
ratio between 2.5 and 5.0 (Supplementary Material Fig. A.3). Finally, 
these samples are found at shallow depths (<50 m) near the surface. 
Differences between the classes can be found in the mineral 

Table 1 
Spectral sub-regions and characteristic absorption features used in this study.  

Spectral feature Defining characteristics of the feature extraction origin (Ausspec, 2008),  
description and classification if applicable (Roache pers. comm). 

500–750 
nm 

1300–1450 
nm 

1850–2000 
nm 

2150–2400 
nm 

Fe-features Fe-features, visible part of the spectra. X    
w1400 Stretching vibrations of hydroxyl groups (OH). Within sheet silicates (kaolin group, white 

mica, smectite, chlorite), this is mostly located between 1390 and 1445 nm (Laukamp et al., 
2021).  

X   

w1900 Water features. The shape and intensity vary based on the mineral.   X  
wAlOH Wavelength position of the Al-OH absorption feature (2205 ± 25 nm). Proxy for white mica 

composition. With longer wavelengths, substitution of Mg and Fe for Al into a more 
phengitic white mica.    

X 

wFeOH Wavelength position of the FeOH absorption feature (2253 ± 15 nm). Proxy for chlorite 
composition. Mg-rich chlorite < 2252 nm, Fe-rich chlorite > 2252 nm.    

X 

wMgOH Wavelength position of the Mg-OH absorption feature (2335 ± 25 nm). CO3 and Mg-OH 
bearing minerals or secondary features of Al-OH.    

X 

Weathered/fresh Ratio of the depth of Mg-OH and 1400 nm OH features. Used as a filter for weathered- and 
fresh material classification.  

X  X 

Sericite SWIR 
crystallinity 

Ratio of the depth of Al-OH and 1900 nm H2O feature. Increasing values represent 
increasing SWIR crystallinity of sericite, illite or kaolinite. The sericite crystallinity is useful 
to detect shear zones. The feldspars in high crystalline sericite are (almost) completely 
converted to white mica/sericite, whereas with lower crystalline values, significant 
remnants of the feldspars are still present (Ausspec, 2008; Dalm et al., 2014).   

X X 

dAlOH/dMgOH Ratio of depth Al-OH and Mg-OH features. It can be used for different purposes depending 
on conditions. 1) Rock type discrimination: higher values indicate relatively felsic rocks 
(>1.2), intermediate (0.8–1.2), lower values mafic (<0.8). 2) White mica vs chlorite/ 
carbonate (or biotite): lower values indicate white mica + chlorite (biotite); at higher 
values, chlorite is negligible.    

X 

dMgOH/dFeOH Ratio of depth Mg-OH and Fe-OH features. Measure of relative abundance of amphibole to 
chlorite (biotite). Amphibole > 3, biotite 2–3, chlorite < 2 (flexible).    

X  

Fig. 7. Scaled and ordered eigenvalues of PC1–PC4 for the TS clustering input wavelengths (n = 800).  

J.R. van Duijvenbode et al.                                                                                                                                                                                                                   



Minerals Engineering 189 (2022) 107885

8

composition, where TS class 1 has a phengite-illite-siderite composition 
and TS class 2 a phengitic-illite-montmorillonite composition. These 
classes may meaningfully influence processing behaviour as it will 
generally define softer but more clay-rich material. 

Classes 3, 4 and 5 have white mica (phengite) as the dominant SWIR 

active mineral (Table 2), reflecting the mineralogy found in the K-feld-
spar and mica-dominated domains. Hence, the sericite crystallinity 
(definition in Table 1) can be used to differentiate their composition. 
The class compositions transition from a low SWIR crystalline white 
mica in TS class 3 (ratio = 2.15), followed by TS class 4 (ratio = 3.87) to 

Fig. 8. Histograms of the wavelength at the maximum depth of the region 1, 1400 nm OH, 1955  nm H2O, Al-OH, Fe-OH and Mg-OH absorption features for the TSG 
sample subset. 

Table 2 
Contingency table of the joint probability distribution (%) from the proportion of primary and secondary minerals in each TS class. Notation: <mineral1%>/ 
<mineral2%>.  

Mineral TS class 1 
n = 2,470 

TS class 2 
n = 2,293 

TS class 3 
n = 5,372 

TS class 4 
n = 5,558 

TS class 5 
n = 8,010 

TS class 6 
n = 1,586 

TS class 7 
n = 6,200 

Phengite 36.4/8.4 12.5/5.4 47.5/28.4 96.8/2.8 87.8/9.4 48.8/22.4 24.7/32.4 
Phengitic illite 42.8/9.2 28.6/8.5 0.3/0.1 0.8/- 0.4/- -/- 0.1/0.1 
Siderite 6.3/33.9 25.1/21.8 29.0/33.3 1.9/50.6 6.0/40.0 19.4/28.8 11.1/10.9 
Montmorillonite 0.7/4.8 14.4/29.1 0.6/12.6 -/0.1 0.1/0.4 0.2/9.9 0.2/7.0 
Chlorite-Mg 0.2/18.4 6.5/13.0 5.3/22.0 0.2/42.7 3.0/44.5 7.8/32.4 40.8/18.5 
Chlorite-FeMg 0.1/- 0.9/0.4 0.6/0.5 -/0.4 0.9/1.9 0.2/0.7 17.5/6.1 
Kaolinite-PX 9.5/20.5 7.4/15.5 -/- -/0.1 -/- -/0.1 -/0.2 
Muscovite 0.6/0.5 0.5/0.1 0.7/2.1 0.3/0.1 1.6/1.2 0.9/4.3 1.2/13.9 
Ankerite -/0.7 -/0.7 -/0.1 -/2.9 -/1.9 -/0.2 -/1.6 
Aspectral1 -/- 0.5/- 15.8/- -/- 0.1/- 22.7/- 3.4/- 
Other 3.4/3.6 3.6/5.5 0.2/0.9 -/0.3 0.1/0.7 -/1.2 1.0/9.3  

1 An aspectral response is a spectrum that does not match any of the library spectra. This could be due to a dark/noisy spectrum, mineral not in the library, a silicate 
mineral without any absorption in the SWIR (such as pyroxenes or feldspars). 

Fig. 9. Oblique view of the Tropicana pit displaying the pit outline in light grey with samples (n = 46,485) coloured by TS class. Alternating zones occur in SW to NE 
direction and by depth. HW: hanging wall. 
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a high SWIR crystalline white mica in TS class 5 (ratio = 4.81). This 
higher crystallinity would indicate that all feldspars are (almost) 
completely converted to white mica/sericite. This would imply less 
brittle material and being softer with regards to crushing. Yet resistive to 
milling given their capacity to absorb milling or grinding energy. With 
lower crystallinity, significant remnants of the feldspars are still present 
(Dalm et al., 2014). Spatially, these classes occur as larger domains 
alternating with each other (Fig. 9). 

TS class 6 has a distinct shorter wavelength (600 nm) histogram and 
occurs as small lodes with a similar mineralogical composition to TS 
class 3 (phengitic-siderite-chloriteMg). These lodes are characterised by 
elevated sulphur concentrations (double compared to TS classes 4 and 
5). Finally, TS class 7 discriminates waste rock (intrusion-related dilu-
tion within and surrounding the mineralised zone) as it is characterised 
by a low ratio of the dAlOH/dMgOH indices, where values < 0.8 indi-
cate mafic rocks (Supplementary Material Fig. A.3). In addition, this 
class has a distinct Fe-OH absorption shoulder of chlorite around 2250 
nm (Fig. 8), indicating the more mafic nature or rocks affected by 
chlorite alteration compared to the felsic rock-related mineralisation. 
Table 2 defines the primary mineralogy as chlorite-Mg (40.8 %) and 
chlorite-FeMg (17.5 %) with associated phengite (24.7 %). 

4.1.1. Mineralogical features clustering summary 
Most of the TS classes have at least one distinctive and characteristic 

feature which can be attributed to the mineralogy found within the 
mineralised zone. The composition and co-occurrence of the TS classes 
will be further explained where necessary in the subsequent sections. 
The benefit of this TS clustering using regions rather than a more 
common feature extraction will be demonstrated in Section 4.5. Addi-
tionally, feature extraction is not always possible because some spectra 
do not have any of the extracted features. This results in an incomplete 
data matrix, and missing value imputation must be done prior to clus-
tering. The demonstrated approach is not affected since it only needs a 
normalised hull-quotient spectrum, which can always be generated from 
a spectrum. The TS classes were combined with the pXRF dataset into 
block features and clustered into material types as described in the next 
section. 

4.2. Block feature PCA and clustering 

After preparation of the block model and its features (Fig. 4), only 
blocks with more than three TS and pXRF samples were selected. This 
selection means that at least three 1 m composites describe the 12 × 12 
× 3 m block composition. On average, there were between 3 and 4 TS 

samples and between 4 and 5 pXRF samples per block, and there were 
19,201 blocks in total. Prior to clustering, the seven TS class block 
proportions and fifteen pXRF elemental concentrations (clr trans-
formed) were transformed into fifteen PCs explaining 95 % of the data 
variance. 

Fig. 10a shows the covariance biplot of the first two PCs, accounting 
for 34.5 % of the data variance. This shows the relation between the PCs 
and block features (represented as vectors) and links the features with 
the clustering classes (from now onwards, also called material types or 
MT). Each 12 × 12 × 3 m block is represented by a scatter point and is 
coloured by the material type (class). A few generalised features are 
evident from the biplot defined by similar vector orientation and mag-
nitudes of the block features: (1) the positive PC1 loadings group of TS 
classes 1 and 2, Al and Si indicate weathered material; (2) a positive PC1 
and PC2 contains the grouping of major elements, e.g., Fe, Cr, Mn, Zn, 
Ca, and TS class 7 which generally indicates more intermediate to mafic 
material. Within the mineralised zone, this would generally characterise 
(mafic) intrusion-related dilution; (3) the negative loading of PC2 with 
related K and Rb, and Zr and Nb indicate potassic alteration and a 
grouping of two relatively immobile elements, respectively. Together 
with (4) a negative PC1 and S, Pb, and TS class 3 loadings, this would 
indicate the most potassic rock types associated with higher-grade 
mineralisation. 

The 19,201 block samples represented by fifteen PCs were clustered 
using agglomerative hierarchical clustering, resulting in nine material 
types (the classes). This number was determined to be optimal based on 
the mean silhouette score, Caliński-Harabasz index and Davies-Bouldin 
index, which are shown in Supplementary Material Fig. A.1. These 
metrics are commonly used in determining the optimal number of 
classes as they will measure the similarity of samples and resulting 
classes (Aggarwal and Reddy, 2014). In addition, a pre-screening of the 
resulting classes, including analysis of the clustering dendrogram 
(Supplementary Material Fig. A.4), was done to confirm they would 
make geological sense. Fig. 10b shows the block samples coloured by the 
resulting clustering classes and will be further analysed in the next 
section. The PCs, elemental concentrations, TS classes and extracted 
features, logged lithology, logged alteration, and spatial context (Sec-
tion 4.3) were considered jointly to study the material properties of the 
identified material types. 

4.2.1. Material types 
A first impression of the material types (MT) is obtained by finding 

their relationship with the degree of mineralisation. Note that the Au 
concentration was not one of the clustering variables but that the Au 

Fig. 10. Principal component covariance biplot of PC1–PC2 with the 22 block feature loadings. Blocks samples (n = 19,201) are coloured by the clustering classes 
(split for better visualisation). 
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content is used to define lower and higher-grade material types. The Au 
(ppm) boxplot in Fig. 11a shows that MT2 and MT5 have the lowest gold 
grade, followed by MT1 and MT6. Material types 0, 3, 7 and 8 resemble 
higher grade material. 

Further insights into the mineralogical and geochemical composition 
of the material types are given using Fig. 11. The molar K/Al ratio 
(Fig. 11a) will be used to indicate the framework silicate modal 
mineralogy. Within the feldspathic gneiss units, lower values (<0.4) 
typically resemble a more plagioclase-rich feldspathic gneiss, whereas 
higher values (>0.4) indicate a higher perthite K-feldspar content 

(Hardwick, 2021). K-feldspar rich feldspathic gneiss samples (high K/ 
Al) are more closely related to higher Au grade shoots (Blenkinsop and 
Doyle, 2014). The boxplots suggest that the material types can be 
divided into three categories: weathered types 2 and 5 (lowest Au 
grade), slightly higher Au grade, plagioclase-rich and non-feldspathic 
gneiss material types 1, 4 and 6 and high Au grade perthitic K-feldspar 
rich types 0, 3, 7 and 8. The following section will briefly discuss the 
main characteristics of each material type. More details are given while 
discussing the spatial contextual relationships (Section 4.2) and material 
hardness (Section 4.3). 

Fig. 11. Box and whisker plots of attributes of the block feature clustering blocks (n = 19,201); (a) Interpreted material features; (b) pXRF elemental concentrations; 
(c) TerraSpec (TS) classes. *The n blocks for part (a) are less as not all parameters are acquired for all blocks. 
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Material type 2 and 5 are two material types having significant 
weathering characteristics:  

• Material type 2 (MT2, n = 891 blocks) and 5 are the only types with 
elevated TS classes 1 and 2 proportion, see Fig. 11c. This type is 
characterised by 87 % TS class 2 and 10 % TS class 1 and charac-
terises a siderite-montmorillonite clay-rich upper saprolite unit. This 
material is slightly more weathered than material type 5, indicated 
by the weathered/fresh indicator (Table 1).  

• Material type 5 (MT5, n = 978) has TS class proportions reversed to 
that of type 2: 12 % TS class 2 and 84 % TS class 5. This indicates a 
phengitic-illite-siderite with more kaolinite. Both material types 
have a low Ca and S concentration compared to the more elevated 
concentrations found in fresh rock, see Fig. 11b. 

Material types 1, 4 and 6 were classified as being more related to 
plagioclase rich end-members of the feldspathic gneiss using the molar 
ratio of K/Al. A lower K/Al molar ratio may also imply lithologies 
different from feldspathic gneiss.  

• Material type 1 (MT1, n = 844) is diagnostic with a high Ca, Fe, Mn 
and Ti, and has a distinct low K concentration, see Fig. 11b. This type 
is mainly characterised by TS classes 7 and 5 and display shifts to 
longer > 2248 nm Fe-OH absorption wavelengths. These elemental 
concentrations and TS class signatures signify a more intermediate or 
mafic ± amphibolitic ± garnet gneiss with Mg-rich chlorite ± ser-
icite-biotite alteration.  

• Material type 4 (MT4, n = 757) is the only material type that is 
characterised using TS class 6, which characterises phengitic- 
siderite-chloriteMg mineralogy. This material has a high S and Si 
concentration but also has a distinct shorter 600 nm absorption peak 
(TS class 6). This diagnostic signature is not frequently found as it has 
the fewest blocks. The shift to longer wAlOH wavelengths and low K/ 
Al (molar) suggest a more plagioclase rich feldspathic gneiss, but 
with a significant conversion of feldspars to phengite.  

• Material type 6 (MT6, n = 3,724) is mainly composed of 49 % TS 
class 5 and 34 % TS class 4, indicating a phengite dominated material 
type. The lower K/Al ratio suggests that limited alteration took place, 
that this type slightly mafic is similar to material type 1, and litho-
logical logging indicates that the feldspathic gneiss is amphibolite 
bearing and quartz-rich with a sericite-biotite ± chlorite alteration. 

Material types 0, 3, 7 and 8 are closely related to higher-grade 
mineralisation (Fig. 11a) and indicates that Au grade-based domaining 
will not account for material variability. These types also have elevated 
K/Al molar ratios above 0.4 (Fig. 11a). These are more perthite-rich 
feldspathic gneiss material types having minor variations in mineral-
ogical composition; however, the white mica is mostly phengitic in 
composition. Overall, these material types contain elevated concentra-
tion in K, Nb, Rb, S, Sr and Zr:  

• Material type 0 (MT0, n = 4,964) is the largest material type and is 
characterised primarily by TS class 4 (76 %) and TS class 5 (16 %). It 
has longer 1400 nm OH features and a Mg-OH absorption shoulder 
around 2343 nm. It is assumed that this stronger Mg-OH feature is 
due to a higher proportion of biotite and minor chlorite. 

• Material type 3 (MT3, n = 3,039) has a phengitic mineralogy iden-
tified by TS class 5 (63 %), but due to an elevated TS class 7 pro-
portion, it also shows that some blocks relate with internal more 
mafic dilution within the mineralised zone. It has a more distinct 
H2O feature around 1950 nm, whereas the other three types show 
variable wavelength positions. This type has the highest relative 
biotite content (<1.3 ratio of the Al-OH and Mg-OH absorption 
feature depths), relating to an Au-rich biotite-sericite altered rock 
type.  

• Material type 7 (MT7, n = 2,556) is identified by a high proportion of 
TS class 3 (68 %), not seen in other material types. Some of the blocks 
have elevated smectite proportions indicating that this material type 
may be spatially closer to a lower saprolite unit. Overall, there is a 
relatively low SWIR crystalline white mica (Dalm et al., 2014), 
indicating that more remnants of the feldspar are still present.  

• Material type 8 (MT8, n = 1,448) has a mineralogical composition 
characterised by a mixture of TS classes 3, 4 and 5, which means that 
it also has a mixed composition from material types 0, 3 and 7. This 
type is elevated in Pb and Zn, and has relatively shorter wAlOH 
(2218 nm) compared to the other three perthitic K-feldspar material 
types (2220 nm). 

Previous work by the authors (van Duijvenbode et al., 2022) 
demonstrated how the proportionality of the material classes within the 
different orebody domains might explain the material hardness 
observed across the entire mine. The current work and material types 
aims to further explain the between and within material type differ-
ences. The smaller spatial context of each block particularly better 
represents the local material type conditions, which may allow for a 
more selective loading and hauling strategy. 

4.3. Spatial context 

To further understand potential hardness relationships within and 
between the different material types, it is important to consider spatial 
contextual relationships. Prior to this study, (van Duijvenbode et al., 
2022) identified various orebody domains constrained by shear zones 
and the ≥ 0.3 ppm Au grade resource domains from the mine. In that 
paper, each domain was geochemically characterised using four acid 
digestion data, whereas this study uses pXRF and VNIR-SWIR data. The 
current study primarily focusses on the four domains defined within the 
Tropicana orebody region (their names are TP_1, TP_2, TP_3, and TP_4) 
also shown in Fig. 12. However, for reference, a spatial overview of all 
domains is given in Supplementary Material Fig. A.5. 

Fig. 12a shows a three-dimensional representation of the Tropicana 
pit and the spatial configuration of the material types represented as 
blocks; Fig. 12b shows a 50 m thick section view and indicates the four 
different estimation domains defined based upon shears crosscutting the 
mineralised zone. These domains are similar to those used in van Duij-
venbode et al. (2022) and refer to Supplementary Material Table A.2 for 
an overview of all average elemental concentrations and proportional TS 
class values per domain, including those not shown. The summary sta-
tistics of the domains show that blocks within the mineralised zone 
outline of TP_1 have proportions of 25 % MT0, 29.3 % MT3, 19.2 % MT7 
and 12.9 % MT8. Transitioning to TP_2, the proportion of MT3 decreases 
by 10.6 % and MT6 and MT7 increase by 3.5 %, where the change in 
composition relates with a lower abundance of biotite (picked up by TS 
classes 3, 4 and 5) due to the shear zone. The material types indicate a 
more sericite-chlorite dominated zone rather than a biotite-pyrite 
dominated zone. 

The mineralised zones at TP_3 and TP_4 are slightly deeper than TP_1 
and TP_2 (Fig. 12b). The TP_3 domain has relatively similar character-
istics to TP_1 and TP_2, but it has elevated Ca and K concentrations and 
decreased Fe, Ti indicating the transition to a more felsic (perthitic) K- 
feldspar and lower plagioclase proportions. TP_4 is located NE of the 
Jigger shear zone Fig. 1b. This domain has an elevated MT0 (44.2 %) 
proportion and a reduced MT8 (4.6 %) proportion. This difference is 
picked up by TS class 4 (49 %) and a lower TS class 5 proportion (28 %) 
together with an elevated S concentration. TS class 4 picks up longer Al- 
OH absorption wavelengths indicating a more perthitic K-feldspar rich 
and phengitic rock type. 

The proportional co-occurrence of material type blocks across the 
other domains show similar differences between domains. For example, 
at Havana (Fig. 13a), MT0 and MT3 predominantly occur in the FW 
domain (named as HA_3), whereas at Boston Shaker, MT0 occurs in the 
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HW domain (BS_2) and MT3 more in the FW (BS_1), although limited. 
Various material types are also found at different depths. For example, 
MT7 is found at Havana (Fig. 13a) near the bottom of the pit and 
characterises a phengitic K-feldspar rich domain (also with elevated 
sulphur, Fig. 5). Conversely, at Havana South (Fig. 13b) this domain is 
found closer to the surface, resembling a more smectite rich material 
type. MT2 and MT5 are also found closer to the surface, and MT1 and 
MT6 are more associated with the boundaries of the HW and FW. MT4 
occurs as small lodes indicating a domain with elevated S, Pb and Zn. 

4.4. Hardness proxy relationships 

The spatial representation of material types is associated with 
different alteration assemblages, mineralogical compositions, elemental 
enrichments or depletions and textures. These properties define each 
material type, determine the physical properties and can therefore be 
used to identify hardness characteristics. The available legacy hardness 
proxies (penetration rate, Equotip, BWi and Axb) allow (Fig. 14) some 

preliminary hardness estimates to be made for each material type. For 
example, most of the weathered material (MT2 and MT5) has been 
mined out already, which means that the penetration rate (m/hr) pro-
vides a spatially wide-spread indication of the hardness. The weathered 
material is significantly easier (>100 m/hr) to penetrate (softer) than 
fresh rock (harder, <60 m/hr). Only subtle variations in the penetration 
rate occurs across the remaining material types. The softer rock char-
acter is also observed in the Equotip measurements, where MT2 has a 
Leeb hardness value of 642 ± 119 (mean ± 1 SD, only known in three 
blocks), while MT5 is not tested at all mainly due to friability of the drill 
core (weathered/oxidised core falls apart if tested). MT0, MT1, MT3 and 
MT6 have an Equotip hardness of 768 ± 64 Leeb, whereas MT4 and MT7 
are slightly harder (799 ± 53 Leeb). 

The BWi is a direct measure of the work index used to model the ball 
mill performance. This can be used to indicate the material hardness in 
terms of energy consumption required to grind the material from a given 
feed size to a specified product size (Lynch, 2015). Harder rocks require 
more energy to grind to the same target grind size than softer rocks. In 

Fig. 12. Block model (12 × 12 × 3 m blocks) blocks coloured by material type class label; (a) oblique view of the Tropicana pit displaying the pit outline in light 
grey; (b) SW–NE 50 m thick cross-section along line A-A′. 

Fig. 13. Cross-section view 50 m thick; (a) Havana, section similar to Fig. 5; (b) Havana South section similar to displayed in Fig. 2, but moved 100 m parallel in 
SW direction. 
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contrast, the Axb is a rock breakage parameter, where a higher value 
indicates that it is easier to break the rocks. Fig. 14 shows that especially 
MT3, MT4, MT6, MT7 and MT8 are harder than MT1 and MT0. At TGM, 
higher BWi, lower Axb are found in K-feldspar rich ore, whereas lower 
BWi and higher Axb are found in biotite-sericite ore, such as in MT0 
(Roache, 2018). Section 5.1 will go into more detail about these hard-
ness differences. 

A lack of relevant hardness data resulted in there being insufficient 
co-located higher order hardness test data to effectively establish a 
robust, direct correlation of hardness with material types. However, the 
material types certainly constrain the expected hardness envelope as 
shown by the extend of the box and whiskers in Fig. 14 and insights of 
the characteristics of the material types. In theory, a preferred approach 
would obtain an additional material hardness estimate by determining a 
relationship between the Leeb hardness (Equotip) and BWi per material 
type. The more frequently (rapid and low cost) collected Equotip 
rebound hardness measurements, constrained to specific material types, 
can then be used to estimate the BWi and construct a hardness model. 
This hypothesis was tested earlier by (van Duijvenbode et al., 2021) but 
showed no correlation between the BWi and Equotip at TGM, possibly 
due to sub-optimal data collection/processing procedures, ineffective 
compositing and low sample representivity. However, extrapolating the 
material hardness has been demonstrated to be effective in other case 
studies. For example, a correlation between BWi and Equotip was 
determined in deposit types where a significant difference in material 
hardness is present, such as a BWi range from 5 to 18 kWh/t and asso-
ciated Leeb values from 300 to 900 (van Duijvenbode et al., 2021). 
Typically such a correlation can only be found if due care has been taken 
to effectively constrain material composites used for higher-order 
hardness tests by distinct material types. The mineralised zones at 
TGM exhibit a relatively narrow hardness range between 15 and 20 
kWh/t and 700–850 Leeb as this zone is only composed of a feldspathic 
gneiss rock composition which complicates the finding of Equotip – BWi 
correlations. 

Furthermore, the summary statistics (Fig. 14) suggest within mate-
rial type hardness variability. Ideally, classes could be further sub-
divided (e.g., for MT0, a Leeb value between 728 and 808 may relate 
with a BWi between 15.6 and 18.4 kWh/t) to potentially split into a 

softer and harder subclass (as shown in Section 5.1). This observation 
may seem strange because every material type already captures similar 
and distinct geochemical and mineralogical properties. However, clear 
explanations may be found in, for example, the texture, fabric and 
proportionalities of the material types. For example, various studies 
have shown the significant influence of the mineralised textures on the 
breakage behaviour of ores (e.g., Bonnici, 2012; Díaz et al., 2019). These 
affecting properties may lead to potential variations in hardness results 
depending on whether a destructive (BWi) vs non-destructive (Equotip) 
test is carried out. Exploring these within material type variabilities may 
be done using the VNIR-SWIR data and can further refine the hardness 
domains, as will be shown in the next section for an example at the 
Tropicana orebody region. Applying these domains to effectively 
constrain and target different material types may yield more conclusive 
comminution results. 

4.5. Within material type variability 

Specific VNIR-SWIR absorption features or regions can provide more 
information about the relative abundance and nature of mineral in-
tergrowths related to mineral proportions, crystallinity and texture 
related hardness indications. For example, the relative proportion of 
white mica (wAlOH) could indicate sericitic vs feldspar dominated zones 
and thus provide macroscale-related mineralogical parameters (crys-
tallinity, mineral composition) about the samples and the relation be-
tween Leeb hardness and BWi (hardness and brittleness). 

The Tropicana orebody is a good location to investigate differences 
in mineralogical parameters, texture and their relationship with 
mineralogical composition. Fig. 15a shows an oblique three- 
dimensional representation of the Tropicana pit with some of the 
major shear zones crosscutting the deposit in E to SE direction (Blen-
kinsop and Doyle, 2014). The blocks are 12x12x3 m and are coloured by 
the BWi (kWh/t) corresponding to metallurgical composites found 
within the blocks. The northern end of the pit (TP_4) is bisected by the 
large Jigger shear zone (Fig. 1b) obliquely intersecting the line of min-
eralisation. There is softer material (~15–18 kWh/t) in the NE end 
compared to harder material (>20 kWh/t) in the SW. Another set of 
relatively softer blocks is found near the faults in the middle of Fig. 15a. 

Fig. 14. Hardness characteristics per material type.  
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It is possible to use the phengite distribution to model these shear 
structures and demonstrate a relationship between geology and the 
material domains. 

Fig. 15b shows GC samples (within the ≥ 0.3 ppm Au zone) located 
within the blocks from Fig. 12. This shows that the shear feature and NE 
zone can be mapped by a larger relative proportion of phengite (wAlOH 
features > 2216 nm) in the SWIR data. The longer wavelength Al-OH 
suggests that there is not a discrete fault but rather a ductile zone 
(damage zone) comprised of multiple shears, as will be further discussed 
in the Discussion section. Texturally this rock has more schistosity and 
indicates a mica schist-dominated ore type (Roache, 2018). Thus, the 
phengite-rich rocks to the north of the shear zone, at TP_4 correspond to 
finer-grained, schistose material (less competent) whereas the 
relatively-low phengite concentrations in the SW imply harder K-feld-
spar-bearing material. In this context, the schist would be softer (mill-
ing) since there are more platy micas and structurally strained/sheared 
textures. The only problem is that the overall ore signature is also 
relatively phengitic (across all material types and deposits). Therefore, a 
mica-schist character would plot close to the mineralised zone spectra 
for white mica. Additionally, there are no major geochemical differences 
in a competent sample vs a sample having progressive foliation. 

The white mica abundance shows a product of the alteration taking 
place in this domain and, in addition, at some locations, the white mica 
also indicates schistosity and thus a potential change in material hard-
ness at TGM. The definitive relationship between white mica and texture 
is quite restricted in this context and is not yet extractable as a feature of 
the material types. Therefore, there is the necessity to understand 
geological structures to implement, for example, a white mica-schist 
texture proxy. For example, no elevated phengite proportion is found 
near the other faults displayed in Fig. 15. Reassessing the geochemical 
and mineralogical differences between the main material types in TP_3 
and TP_4 (Supplementary Material Table A.2) showed a remarkable 
match between the normalised hull-quotient spectra in the 600–700 nm 

region and hardness domains primarily caused by the change in MT0 
and MT8 proportion. There is a change in the wavelength of the deepest 
absorption feature in the 600–700 nm region in especially TS classes 3, 
4, 5 and 6 (refer to Fig. 8 for the maximum depth locations). Therefore, 
this match may be useful to domain orebody hardness and predict the 
work index. There are also small variations in the average Nb, Zn, S and 
Mn concentration, however, these are not the explanation for the 
hardness variations. 

Fig. 16 shows the average hull-quotient corrected spectra from the 
Tropicana domains. The average reflectance spectrum of TP_4 has its 
minimum absorption close to 605 nm, whereas the reflectance of the 
other domains has a more distinct minimum absorption around 690 nm. 
Commonly, this VNIR region is indicative of iron-bearing minerals 
(ferric iron (Fe3+) absorption of hematite and goethite) or hydroxylated 
silicates with Fe, such as chlorite, biotite or epidote (Ausspec, 2008). 
Fig. 16 shows that this feature matches quite well with the hull nor-
malised spectra of epidote in this region (Kokaly et al., 2017). The 
minimum absorption wavelength of epidote is around 618–620 nm, but 
within TP_4, this feature may have shifted slightly due to spectral mix-
ing. This new w605 nm feature in combination with wAlOH indicates an 
epidote-phengite dominant ore type, which significantly correlates with 
softer material (low BWi) due to the shearing foliation. 

The w605 feature of GC samples within the ≥ 0.3 ppm Au zone at 
Tropicana is visualised in Fig. 17 and coloured by the minimum ab-
sorption wavelength between 580 and 630 nm. This range is chosen 
because it captures the minimum absorption wavelength for the TP_4 
ore around 605 nm ± 25 nm (w605 feature). A low w605 value indicates 
that there is a minimum within this zone and thus that the remaining 
hull-quotient spectrum increases, whereas a higher value (>625 nm) 
indicates that the minimum absorption will be at a higher wavelength 
(typically around 690 nm). Within the Tropicana orebody, a high w605 
value and phengitic white mica composition correspond with signifi-
cantly harder ore and vice versa. 

Fig. 15. Oblique view of the Tropicana pit displaying the pit outline in light grey; (a) major shear zones striking E to SE (dark grey) and blocks (12 × 12 × 3 m) 
coloured by BWi (kWh/t) corresponding with a metallurgical composite found within; (b) GC samples coloured by wAlOH. 

Fig. 16. Average hull normalised spectra from Tropicana domains. The spectrum of epidote (Kokaly et al., 2017) is provided as a reference for the identified 605 ±
25 nm feature within TP_4. 
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5. Discussion 

A relationship between the material types and hardness has been 
explored using a substantial data analysis. For instance, there were 
distinct mineralogical and geochemical differences in the predominantly 
weathered and fresh material types. However, as shown in Fig. 14, there 
was still variability in hardness within the specific material types. This 
variability may have been easier to separate in simpler deposit styles 
with more distinct rock types. At TGM, this was more complicated 
because the fresh mineralised rock is a felsic gneiss with various degrees 
of alteration and a significant mesoscale deformation history (Blenkin-
sop and Doyle, 2014). Therefore, the relationship between material type 
and hardness is more evident after including a spatial context which 
captures the rock deformations. This reveals the shared material type 
attributes (e.g., high wAlOH, low w605) within the larger domain. The 
revealed differences or commonalities within material types gave rise to 
the measured variations in hardness. These could then be used to sub-
divide the material types further. However, before that can be achieved, 
a deeper understanding of the material type composition is required, as 
was obtained by the block feature clustering approach. 

It may be possible to better understand the hardness variability 
through geostatistical clustering (Fouedjio et al., 2017) or by including 
additional datasets such as penetration rate, Equotip or a proxy for 
texture. For instance, hyperspectral imaging of drill chips (from GC 
drilling) may add textural-structural, physical or other mechanical rock 
properties to the material types, as demonstrated by various other 
studies (e.g., Harraden et al., 2019; Koch et al., 2019; Schaefer et al., 
2021). These additions may also give insight into geotechnical issues 
(mine design, slope stability) or drill and blast considerations (fly rock 
prediction, blast designs). The main limitation is that adding new vari-
ables may also reduce the number of block samples if enough mea-
surements are not available. This may only be solved by improved 
correlations, more samples, or modelling of the geochemical, mineral-
ogical and other proxies while considering the modelling limitations. In 
contrast, it would be preferable for daily operations to only use the 
geochemical and mineralogical data as this is already rapidly and 
routinely acquired (as done for TGM, see Section 3.1). These data may 
then be directly incorporated into a classification model that will 
determine the material type. 

5.1. Material hardness and the w605 feature 

A significant benefit of the material types with the w605 feature is 
that the types can be split into hard and soft components. For example, 
the 31 blocks of MT0 with BWi measurements of 17.1 ± 1.8 kWh/t 
(Fig. 14) can be split based upon an arbitrarily chosen w605 cut-off at 
615 nm into a softer and harder part. The shorter w605 blocks (n = 19) 
have an average BWi of 16.6 ± 1.6 kWh/t, whereas the longer w605 
blocks (n = 12) have a hardness of 17.9 ± 2 kWh/t. This separation is 

also true for the other material types, and the softer blocks normally 
have a higher wAlOH. Within the Tropicana pit, this feature splits the 
material into a softer (~15–18 kWh/t) and harder (>20 kWh/t) domain. 

Epidote was indicated as one of the minerals associated with the 
softer sheared rock type found at TP_4. Typically, epidotes result from 
hydrothermal and metamorphic processes (Abweny et al., 2016) and 
form after various minerals, including feldspar, amphiboles, pyroxenes 
and micas, all present within the feldspathic gneiss at TGM. More evi-
dence of this epidote feature was collected by analysing the diagnostic 
absorptions at 1550, 1830 and 2250 nm. There were relationships found 
between phengite + epidote at shorter 605 nm wavelengths and horn-
blende + epidote at longer 605 nm wavelengths. This would indicate 
that the newly found 605 nm feature is indeed one of the diagnostic 
features of epidote, but not exclusively limited to epidote. The wave-
length position would change accordingly with the assemblage epidote 
sits in, which relates to the texture and resulting material hardness. This 
also explains why the deepest absorption features in Fig. 16 are not 
exactly at the same wavelength as that from epidote. Further research 
could focus on choosing an additional intermediate spectral range 
(1500–1850 nm) during the spectral clustering (Section 3.2) as this may 
help with mapping epidote and possibly discriminating it from other Fe 
hydrated silicates (biotite/chlorite). 

The difference in BWi found at TP_3 and TP_4 has also been 
confirmed to be controlled by the mica content. The mineralised zone at 
TP_3 has a shorter wAlOH at 2217 nm, whereas TP_4 is at 2221 nm. 
Therefore, elevated epidote and phengite abundance correlate with 
short w605 and schistosity in paragenetic terms. On the other hand, 
relatively low abundance epidote + chlorite/biotite/amphibole are 
broadly associated with long w605 and static alteration of gneiss 
(Roache, pers. comm). This also applies to other domains. For example, 
the HW domain at Havana South (Fig. 13) has a phengitic white mica 
composition (wAlOH at 2219 nm) and short w605. However, this 
domain is more plagioclase-rich with epidote feldspar, thus having 
slightly harder material characteristics than the more perthitic K-feld-
spar at TP_4. The BWi (one composite only) is 18.4 kWh/t, and the 
average Equotip reads 795 Leeb. 

5.2. Shear zone behaviour and structural geological control 

Fig. 15a shows how the Jigger shear zone is modelled as a discrete 
fault plane intersecting the Tropicana orebody. However, the phengite- 
rich northern part of the pit suggests a wide, ductile sheared structure 
characterising an entire shear zone and not a discrete fault. In fact, the 
discrete planes do exist as a late brittle overprint but are filled with 
chlorite and smectite rather than phengite-biotite. The change in ma-
terial composition and contribution to the change in hardness may be 
the result of feldspar-to-mica reactions occurring in these fault zones. 
During these processes, the released silica may have precipitated in the 
dilatant sites, increased the rock strength by cement hardening, and 

Fig. 17. Oblique view of the Tropicana pit displaying the pit outline in light grey and GC samples coloured by w605. Blocks are coloured by BWi (kWh/t), as 
in Fig. 15a. 
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reduced permeability (the SW side). Whereas on the NE side, the tran-
sition of feldspars into phengitic (schist-like) micas may have been the 
dominant strength-controlling (softening) mechanism (Wibberley, 
1999). 

The resulting material hardness is a product of the feldspar-to-mica 
reactions described above, but also due to brittle-ductile transition pe-
riods after the peak high-grade metamorphic conditions (D3 and D4, 
Blenkinsop and Doyle (2014)). At the SW part of Tropicana, plagioclase 
broke down to micas which localises strain within anastomosing and 
only simple ductile shears. Whereas in the NE part, the K-feldspar has a 
more brittle response from the breakdown within an apparent low-strain 
and pure shear-dominated domain resulting in brittle deformation tex-
tures (Olierook et al., 2020). The current study demonstrates for the first 
time how the effects of shear zone processes are captured within the 
physical behaviour of material types. The kinematic effects on each 
type’s material texture and hardness can be further split accordingly 
using the w605 (and wAlOH) features. 

The formation and folding of the gneissic fabric at TGM was subor-
dinate to the deformation history (Blenkinsop and Doyle, 2014) and 
resulted in the final material hardness of the rock before being mined. 
Blast hole drilling is the first activity affected by the material hardness 
and may therefore provide routine early proxies for hardness on a 
spatially dense scale. The between material type penetration rate 
average, excluding MT2 and MT5, was 44.8 ± 20.9 m/hr indicating that 
the mineralised zone has a fairly consistent hardness. Fig. 18 displays the 
penetration rate variability for the Tropicana cross-section shown 
earlier. The very hard region (<25 m/hr) above the TP_4 mineralised 
zone is a garnet-bearing quartzofeldspathic gneiss unit. The softer re-
gions closer to the surface are affected by weathering. Note that pene-
tration data for the first ~ 50 m was not available. The average 
penetration rate within the mineralised zone for TP_1, TP_2, TP_3 and 
TP_4 are 43.2, 45.1, 42.4 and 45.5 m/hr, respectively. The small but 
existing penetration rate difference suggests that the penetration rate 
can be used as an early hardness indication of the material to be pro-
cessed. Especially, the spatial abundance and ease of obtaining this 
dataset benefit the fingerprinting of material types. 

5.3. Implications of fingerprints 

The fingerprinting methodology makes an important contribution to 
the synthesis and description of geological attributes by providing a new 
data layer that groups samples which underwent similar geological 
processes in an objective manner. The main rationale behind this 
approach is that each geological feature of the ore may have significance 
to some aspect of the operation. For instance, studying the individual 
hardness characteristics from classes (available for some of the samples) 
has proven to be indicative of the hardness of the entire class. The 
research showed that combining the material classes with spatial 
contextual relationships could largely explain any further physical 
transformations the material underwent, resulting in hardness changes. 
For example, the material located in a heavily sheared domain (Tropi-
cana NE) tends to be softer due to more brittle behaviour exhibited 

during deformation. This brittle behaviour resulted in more fractures 
acting as fluid pathways giving locally more veining or gneissic banding. 
Other classes related to the oxides tend to be closer to the surface, being 
weathered and thus also showing softer characteristics. Finding the 
classes or class combinations that are more present in such regions, 
suggests an initial relationship which can be transferred and tested on 
regions with little knowledge about the deformation history. 

Furthermore, material fingerprinting has a significant implication for 
preparing material blends for processing, as well as optimised metal-
lurgical sampling and compositing for each material type. It has the 
ability to constrain alike material and specifically identify and target 
end-members in future test campaigns. The derived rough hardness 
envelopes would also be sufficient for informing longer term strategical 
decision-making. Finally, it is expected that one would readily detect 
these material types downstream and infer material characteristics (i.e., 
for ore/waste separation and material tracking). 

6. Conclusion 

Material fingerprinting at Tropicana Gold Mine has been used to 
demonstrate a link between rapidly acquired geochemical, mineralog-
ical and hardness data (BWi, Axb, Equotip and penetration rate) of 
various material types. These linkages define fingerprints, which are 
proxies for the constitutive material hardness properties and provide a 
more comprehensive understanding of comminution behaviour. Each 
fingerprint was constructed by clustering pXRF data and spectral class 
proportion of samples found within a small block. Clustering of these 
block features resulted in nine classes representing different material 
types. These types showed between and within material type variability 
attributed to the elevation/depletion of geochemical concentrations, 
absence/presence of minerals, spectral features, hardness proxies and 
spatial contextual relationships. 

The material fingerprinting revealed, amongst others, the following 
four attributes: (1) representative variations of plagioclase-rich or per-
thitic K-feldspar rich domains using the proportionalities of material 
types; (2) modifications of material types by overprinting alteration and 
deformations. This was discerned by the abundance/presence of chlo-
rite, sericite or epidote within each material type; (3) spatial contextual 
relationships, which showed how the material types relate with the 
progressive breakdown of feldspar into phengitic white micas in zones of 
intense foliation; (4) how shear zone processes are captured within 
material types. Using the above, elevated epidote and phengite abun-
dance were found to correlate with short w605 nm and schistosity. 
Conversely, relatively low abundance of epidote + chlorite/biotite are 
broadly associated with long w605 nm and static alteration of gneiss. 

Considering the within material type variability, it was evident that 
the material hardness (BWi) matched with the newly recognised w605 
nm region. The wavelength position changes accordingly with the 
assemblage epidote sits in, which relates to the texture and resulting 
material hardness. Additionally, this indicates the usefulness of the 
visible wavelength region. This feature could be utilised to separate 
material types into a softer (~15–18 kWh/t) and harder (>20 kWh/t) 

Fig. 18. Cross-section view through Tropicana (50 m thick, similar to Fig. 12) showing the penetration rate (m/hr) composited at 1 m intervals.  
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material component. These results may be used for further domaining 
orebody hardness and processing response. The simple representation of 
material types with unique within material type variability gives a 
qualitative indication of the hardness abundance. The numerical data 
features (e.g., material type proportion, w605, wAlOH) would further 
enable interpolation of the data and allow easy visualisation and a 
quantitative hardness indication. Consideration of the interpretations 
and implications of the fingerprints enhanced the ability to use them to 
constrain end-member samples for metallurgical testing, material blend 
preparation and downstream optimisation opportunities. 
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