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Efficient Circuits for Permuting
and Mapping Packed Values Across
Leveled Homomorphic Ciphertexts

Jelle Vos(B) , Daniël Vos , and Zekeriya Erkin

Cyber Security Group, Delft University of Technology, Delft, Netherlands
{J.V.Vos,D.A.Vos,Z.Erkin}@tudelft.nl

Abstract. Cloud services are an essential part of our digital infrastruc-
ture as organizations outsource large amounts of data storage and com-
putations. While organizations typically keep sensitive data in encrypted
form at rest, they decrypt it when performing computations, leaving the
cloud provider free to observe the data. Unfortunately, access to raw data
creates privacy risks. To alleviate these risks, researchers have developed
secure outsourced data processing techniques. Such techniques enable
cloud services that keep sensitive data encrypted, even during compu-
tations. For this purpose, fully homomorphic encryption is particularly
promising, but operations on ciphertexts are computationally demand-
ing. Therefore, modern fully homomorphic cryptosystems use packing
techniques to store and process multiple values within a single ciphertext.
However, a problem arises when packed data in one ciphertext does not
align with another. For this reason, we propose a method to construct cir-
cuits that perform arbitrary permutations and mappings of such packed
values. Unlike existing work, our method supports moving values across
multiple ciphertexts, considering that the values in real-world scenarios
cannot all be packed within a single ciphertext. We compare our open-
source implementation against the state-of-the-art method implemented
in HElib, which we adjusted to work with multiple ciphertexts. When
data is spread among five or more ciphertexts, our method outperforms
the existing method by more than an order of magnitude. Even when we
only consider a permutation within a single ciphertext, our method still
outperforms the state-of-the-art works implemented by HElib for circuits
of similar depth.

Keywords: Secure outsourced data processing · Data packing · Fully
homomorphic encryption · Applied cryptography

1 Introduction

Nowadays, organizations use cloud providers to outsource their data processing,
easing deployment and allowing them to scale the architecture up and down
when required [2]. While these organizations typically keep sensitive data in
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encrypted form at rest, they decrypt it when performing computations. Conse-
quently, these organizations must fully trust the cloud providers, who can observe
all sensitive data. To protect sensitive data while processing, researchers propose
secure outsourced data processing solutions, which allow cloud providers to offer
their services on data that they cannot see. In the settings of those proposals,
organizations assume that the cloud provider performs the operations they ask
them to, thus reducing privacy risks.

One possible approach that enables cloud providers to process sensitive data
relies on fully homomorphic encryption (FHE) schemes. FHE allows anyone with
the correct public key to perform computations on encrypted data without seeing
it. In current schemes, one typically encrypts integers or real numbers, which can
be manipulated through addition and multiplication. A subset of FHE schemes
(such as BFV [8], BGV [4], and CKKS [6]) allows one to encrypt entire fixed-
length vectors of integers or real numbers in one ciphertext through ciphertext
packing. A limited number of additions and multiplications can be performed
as element-wise operations between encrypted vectors, following the concept
of single-instruction multiple-data (SIMD). As a result, operating on packed
ciphertexts leads to significant speed-ups when there is a large set of data to be
processed.

A problem arises when the data stored in two encrypted vectors do not align.
For example, consider two ciphertexts that each hold a database relating to the
incomes of a set of employees. One ciphertext holds their salary sorted by their
first name, while another holds their yearly bonus sorted by their last name. An
outsourced HR system might compute each employee’s total income by adding
the two together. However, directly adding the two ciphertexts together leads to
a meaningless result. Instead, the HR system must align the data stored within
one ciphertext with the other by permuting it.

FHE schemes that support ciphertext packing implement ciphertext rota-
tions to allow one to align encrypted vectors. This primitive shifts the encrypted
vector x places towards the end while cycling the last x encrypted numbers to
the beginning. However, rotations alone are not enough to perform arbitrary
permutations on encrypted vectors. Instead, it requires an intricate circuit that
combines additions, multiplications, and rotations. We call these permutation
circuits. Halevi & Shoup [11] conjecture that finding the optimal (i.e., fastest
given a maximum multiplicative depth) is a hard problem.

Previous work has focused on generating permutation circuits that permute
a single ciphertext. However, for applications in the real world, not all data may
be stored in the same ciphertext due to size constraints or because the data has
different origins. Therefore, with the current solutions, the problem of permuting
across multiple ciphertexts requires splitting the entire permutation into multiple
within-ciphertext permutations. We highlight this problem in Fig. 1. Solving this
problem may also lead to improvements in the circuits for other applications,
such as circuits that perform AES encryptions homomorphically.

In this work, we propose a new primitive that performs arbitrary mappings
on values in ciphertexts and does so significantly cheaper than previous work
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Fig. 1. If data is not aligned between two ciphertexts, one of the ciphertexts must be
permuted. The existing methods work when data fits within one ciphertext, but when
data spans multiple ciphertexts they must be adapted and lose performance rapidly.

regarding the computational effort required. These mappings are arbitrary in
the sense that they may span multiple ciphertexts. Unlike previous methods
which generate circuits for a chosen maximum multiplicative depth, our method
focuses on a specific class of permutation circuits with a constant multiplicative
depth. Still, we argue that our circuits’ depth is reasonable for the complexity of
the operation required. Our new primitive takes the burden off the implementor
to create manual mapping circuits when data spans multiple ciphertexts. Its high
efficiency brings secure outsourced computation one step closer to practice.

We summarize our contributions as follows:

– We propose a new method for efficiently performing arbitrary mappings on
encrypted values in packed, leveled-homomorphic ciphertexts.

– We compare an open-source implementation of our method to HElib for per-
forming permutations on single ciphertexts and show that it consistently out-
performs HElib for circuits of similar multiplicative depth.

– We compare our implementation to an adjusted version of HElib to perform
arbitrary permutations. We show that it outperforms HElib by more than an
order of magnitude when the data is spread among five or more ciphertexts.

The remainder of this paper is structured as follows: In Sect. 2, we shortly
explain operations in leveled homomorphic encryption, graph coloring, and the
notation we use. In Sect. 3, we discuss related work. Next, in Sect. 4, we put for-
ward our method for constructing mapping circuits, and in Sect. 5 we analyze its
complexity. Finally, in Sect. 6 we compare our method against that implemented
in HElib, after which we conclude in Sect. 7.

2 Preliminaries and Notation

In this section, we give a high-level explanation of the underlying techniques
used in this paper. Table 1 contains a summary of the notation that we use.
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Table 1. Summary of the symbols used in this work.

Symbol Definition

� Number of slots in the ciphertext
n Total number of elements to permute
π(x) Target for index x after permuting
μ(x) Targets for index x after mapping
P Set of indices to permute (preimage)
χ Chromatic number (minimum number of colors)
φ(_) Euler’s totient function
m Order of cyclotomic polynomial
p Prime modulus defining the message space
Q Ciphertext modulus defining the ciphertext space

2.1 Permutations and Mappings

We consider permutations and mappings of elements across vectors of length n.
Here, we denote P as the set of indices to map, which is short for the preimage.
We say that element x ∈ P is permuted to position π(x) when considering
permutations, or mapped to position μ(x) in the case of a mapping. Note that
permutations are a restriction of mappings.

2.2 Graph Coloring

Graph coloring is one of Karp’s original 21 NP-complete problems [12]. In this
problem, we are given a loopless graph G = (V,E) where we must assign a
color to each vertex such that no two adjacent vertices share the same color.
The minimum number of colors needed to be able to properly color G is the
chromatic number χ. In this work, we translate the process of setting up an
efficient homomorphic circuit for ciphertext mappings to the problem of graph
coloring. While the problem is NP-complete in general, we can practically solve
our instances here using algorithms such as DSATUR [5].

2.3 Leveled Homomorphic Encryption Schemes

This work specifically considers leveled homomorphic encryption schemes that
support packing multiple elements into one ciphertext. Here, leveled refers to the
fact that we can only perform operations up to a certain level before decryption
is likely to fail. The level is typically indicated as the multiplicative depth of the
arithmetic circuit. The reason for this is that the ciphertexts incorporate a small
noise term that grows with each homomorphic operation. This is why we speak
of the remaining noise budget of a ciphertext, which we express as the number
of bits of the ciphertext that the growing noise can still consume before the
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ciphertext is no longer decryptable. When there is a need to perform circuits of
arbitrary depth, one can use bootstrapping techniques [9]. In that case, we speak
of fully homomorphic encryption. In our implementation, we only consider the
BGV [4] cryptosystem implemented in HElib, without bootstrapping operations.

One can add, multiply and rotate the values encrypted in a ciphertext.
Element-wise additions are cheap operations between two ciphertexts with only
small noise growth. In this work, we do not multiply ciphertexts together but
only multiplications with constants, which is more efficient and incurs less noise
growth. We use these plaintext multiplications to isolate values from the cipher-
text by creating a mask that is zero everywhere except for the places with the
elements we need to isolate where it is 1. Rotations can be performed using
automorphisms on the underlying ring. In this work, we only consider the case
where those automorphisms cause one-dimensional rotations.

3 Related Work

To the best of our knowledge, the first work that studied permutations in leveled
homomorphic ciphertexts was the work by Gentry et al. [10]. In separate work,
the same authors use it to implement an AES circuit homomorphically, which
requires shuffling the elements within a ciphertext. Before that, Damgård et
al. [7] already used the underlying techniques within the context of secure multi-
party computation to permute packed secret shares rather than ciphertexts.
The underlying technique called Beneš networks [3] originates in the study of
efficient routing networks, which send packets from a range of senders to a range
of receivers under constraints, effectively executing permutations.

In 2014, Halevi & Shoup [11] reduced the problem of constructing efficient
permutation circuits for leveled homomorphic ciphertexts as a new problem
named the cheapest-shift-network problem. Here, a shift-network is a series of
shifts (permutations), which can be executed using additions, plaintext multipli-
cations, and rotations. Each next shift considers only the shift before it. Halevi
& Shoup put forward a method to efficiently optimize the computational cost of
such a circuit given a maximum multiplicative depth, and implement it in the
HElib library.1 At the time of writing, we are not aware of other libraries that
implement ciphertext permutations.

In this work, we consider a type of circuit that not only considers the layer
before it but also any other layer before that. We also extend it beyond the
range of a single ciphertext. In this sense, it is less restricted than the method
proposed by Halevi & Shoup. However, it is an open question of how to optimize
such a circuit efficiently, so we introduce other restrictions to turn the problem
into one of graph coloring. For example, the multiplicative depth of our circuits
scales logarithmically with the number of slots in a ciphertext. In the remainder
of this section, we go into detail about the solutions of Gentry et al. [10] and
Halevi & Shoup [11] (summarized in Table 2) and explain how one can trivially
but inefficiently extend them to perform arbitrary permutations and mappings.
1 The HElib repository can be found at https://github.com/homenc/HElib.

https://github.com/homenc/HElib
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Table 2. Comparison of permutation circuits generated by related work

Operation Compute Noise Ciphertext permutation Arbitrary

Naive HElib Ours HElib* Ours

Rotation Expensive Cheap � 4 log(�) − 2 log2(�) O(n2) O(n)

Plaintext mult Cheap Moderate � 4 log(�) − 2 O(log3(�)) O(n2) O(n2)

Addition Cheap Cheap � 2 log(�) − 1 O(log3(�)) O(n2) O(n2)

Rotation keys Severe – � 2 log(�) log(�) 2 log(�) log(�)

3.1 Naive Method for Permutations

A naive method for performing permutations within and across ciphertexts
rotates each individual element to its target index and sums up the result. As
mentioned before, elements can be isolated by multiplying them with a vector
of zeroes and a 1 in the right index. This approach requires a plaintext mul-
tiplication, rotation, and addition for each of the � slots in a ciphertext when
performing a permutation within one ciphertext. Moreover, key generation will
also be computationally expensive as one has to be able to perform each pos-
sible automorphism. Alternatively, one incurs an additional run time penalty
for certain rotations by composing it from other rotations. Note that we can
omit rotations of 0 and that there are scenarios where identical rotations can be
rotated at the same time. Still, after these optimizations, the algorithm scales
with O(n) in the worst case.

3.2 ‘Collapsed’ Beneš Networks for Permutations

Both the works by Gentry et al. [10] and Halevi & Shoup [11] rely on Beneš
networks. Such a network has a butterfly structure, which contains 2 log(�) − 1
layers in the case of a ciphertext permutation. This structure makes it a shift-
network that can be constructed efficiently in a recursive manner for all possible
permutations. Elements are either rotated leftwards or rightwards in each layer
by a given amount.

Gentry et al. use Beneš networks without any modifications, leading to a
permutation circuit with a multiplicative depth that scales as 2 log(�)− 1. Each
layer only does a power-of-two rotation, meaning that one must generate 2 log(�)
rotation keys.

Halevi & Shoup modify Beneš networks into other valid shift networks by
collapsing layers to reduce the multiplicative depth of the resulting circuit. As
mentioned before, they implement this in the HElib library. In Table 2 we con-
sider the case where there is no bound to the multiplicative depth of the circuit.
Since each layer of the network requires 2 plaintext multiplications and rotations,
the total number is 4 log(�) − 2 in the worst case.

3.3 Extending Permutation Circuits to Arbitrary Permutations

We remark that while previous works do not explicitly describe how to construct
arbitrary permutations or mappings, they can be easily extended to do so. We
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shortly explain how the work Halevi & Shoup [11] can be extended as such by
expressing the arbitrary permutation across multiple ciphertexts as a series of
within-ciphertext permutations.

The key idea is that one can break a permutation across multiple ciphertexts
into a set of permutations from each ciphertext to every other ciphertext. A
similar trick can be used to perform mappings by first breaking it down into a
set of arbitrary permutations. In the worst case, performing permutations in this
way scales quadratically with the number of ciphertexts. When the elements are
densely packed, we need a total of

⌈
n
�

⌉
= O(n) ciphertexts. Here we consider �

to be constant. Consequently, the worst-case complexity for rotations, plaintext
multiplications, and additions alike is O(n2).

4 Constructing Arbitrary Mapping Circuits

In this section, we propose our method for constructing circuits to perform arbi-
trary permutations and mappings. Since the construction only has to happen
once for each permutation, it can be considered a one-time setup.

4.1 High-Level Insight

The most time-consuming operation in a permutation circuit is a ciphertext
rotation. Therefore, it stands to reason to minimize the number of rotations.
Conversely, we want to maximize the number of elements we rotate at once. At
the same time, since we have to generate special rotation keys for every possible
rotation magnitude, we want to keep the number of different rotations as low
as possible. In our method, we restrict all rotations to be powers of two. As we
discuss later, this simplification allows us to optimize our permutation circuit
efficiently. It is also possible to restrict rotations to powers of three (or any other
base), but this requires certain rotations to be decomposed into a larger number
of consecutive power of three rotations.

Given a permutation, we construct a circuit that realizes it by decomposing
the number of places that each element must move into its binary representation.
If there is a 1 in place x of the binary representation, we add the element to the
set of elements that must be rotated by 2x. For simplicity, let us fix the order
of rotations in the final circuit as 20 = 1, 21 = 2, 22 = 4, . . . . One can imagine
this idea as vertically-stacked conveyor belts that sequentially turn at increasing
rates, as seen in Fig. 2. In this figure, an element (pictured as a box) starts at
index 1 and must end up at index 6. To do so, it must travel 5 = 1012 places
rightwards, and therefore it enters the first and third conveyor belt, but not the
second.
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Fig. 2. Elements can be mapped to other locations by applying a sequence of rotations
on them, as if on a conveyor belt. Multiple elements can exist on the same set of
conveyor belts so long as they do not enter the same conveyor belt at the same location.

At first thought, the method described above seems to construct valid per-
mutation circuits, but a problem arises when two elements must take the same
place on the same conveyor belt. In an actual arithmetic circuit, this would add
up the corresponding values of these elements, invalidating the permutation. In
the right half of Fig. 2, we visualize this. There are two simple solutions to this
problem. Firstly, one might change the order of the conveyor belts. For example,
one might bring the third conveyor belt to the start. Another approach is to
add a second independent set of conveyor belts. In our method, we use both
approaches: We try several different random orderings of conveyor belts and use
a graph coloring algorithm to distribute elements over multiple sets of conveyor
belts in a way that elements do not collide. We use the minimum number of
conveyor belts given a certain order of conveyor belts.

4.2 Assigning Elements to Sets of Conveyor Belts

To assign the elements to multiple sets of conveyor belts, we construct a graph
where the vertices represent elements of the encrypted vector. The edges between
them represent that the elements cannot coexist in the same conveyor belts. After
performing a graph coloring, the color of a vertex represents the set of conveyor
belts to which it is assigned. In the remainder of this subsection, we refer to a
single conveyor belt as a rotation.

For a permutation π with preimage P , we first create an undirected graph
Gπ = (V,E), where E = ∅ and V = P . Then, for each element, we compute its
position in the encrypted vector when it enters each rotation operation. If two
elements u, v ∈ P where u �= v enter the same rotation at the same position, we
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extend E ← E ∪{u, v}. This graph satisfies the property that any valid coloring
represents a valid assignment. Figure 3 shows an example of such a graph and a
possible coloring.

When we move beyond a permutation to a mapping μ, we must consider that
elements in the preimage may map to multiple positions in the final encrypted
vector (replication), or multiple elements in the preimage may map to the same
position (overlapping). Notice that overlapping elements do not necessarily have
to be assigned to different sets of rotations and that the graph Gμ constructed as
described above already adequately handles such situations. The reason is that
overlapping elements in the final encrypted vector do not necessarily overlap
in the encrypted vectors to which rotations are applied. This graph also ade-
quately handles replications, as all outputs relating to the same input element
are assigned to the same set of rotations. This means that even in the extreme
case where one element of the input ciphertext is mapped to all positions of the
output ciphertext, we only require one set of rotations.

After generating the graph, we use a dedicated graph coloring algorithm to
color the vertices with the minimum number of colors required. In our imple-
mentation, we use the DSATUR algorithm [5], but any algorithm suffices.

Fig. 3. Example of the graph generated for a within-ciphertext permutation of 16 slots.
The graph contains edges between the elements that would collide with each other at
any of the rotations. This graph can be colored with two colors, but larger ciphertexts,
across-ciphertext permutations, and mappings typically require more colors. (Color
figure online)

4.3 Determining the Order of Conveyor Belts

In the previous subsection, we did not explain how one should choose the order
of the rotations. However, it follows that for the graph coloring to work, we
require all sets of rotations to have the same order.
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One approach is to fix the rotation order for every mapping. For example,
1, 2, 4, . . . . While this ordering performs well for random permutations and map-
pings, as we show in Sect. 6, one might try different orderings to avoid running
into the worst-case behavior. In our implementation, we test multiple random
orderings to find the one resulting in the graph that can be colored with the
least colors. In our experiments, we compare the performance of trying only one
random ordering against trying ten random orderings, which we refer to as a
long setup.

It remains an open problem to integrate this step with the previous step
to efficiently find an ordering that results in the minimum number of sets of
rotations.

4.4 Generating Circuits for Conveyor Belts

Given an assignment that maps each element to a set of rotations, we construct
a separate circuit for each set. Consequently, in a multi-threaded setup, one can
execute these circuits in parallel. This subsection describes how to construct a
circuit for one set of rotations, given a specific ordering of rotations and a set of
elements that will not collide.

First, we create a set of masks for all the elements that must be included
in a single rotation. In other words, we create one mask for each of the input
ciphertexts and one mask for each of the ciphertexts resulting from all previ-
ous rotations. Such a mask contains ones in the positions of elements that must
remain and zeroes in the positions of elements that must be dropped. We then
perform a plaintext multiplication between each ciphertext and the correspond-
ing mask and sum up the results. The result is a ciphertext containing all the
relevant encrypted values, which we subsequently rotate.

Note that there are several places where we can prune this circuit to prevent
performing meaningless computations. For example, if we do not need to consider
any values from a ciphertext, the corresponding mask would be empty (i.e., filled
with zeroes). Moreover, we do not need to perform any summations if there is
only one relevant ciphertext. We implement both of these optimizations, but we
stress that more pruning is still possible. For example, by keeping track of which
positions in each ciphertext actually contain values rather than zeroes, one can
discard multiplications that mask all values in a ciphertext.

In the worst case, an element must be shifted 11 . . . 112 = � − 1 places in
the encrypted vector. The resulting circuit then has a multiplicative depth of
1+log2 � consecutive plaintext multiplications. When it comes to the asymptotic
run time, each circuit only requires log2 � rotations and, therefore, a total of
O(log2 �) plaintext multiplications and additions.

5 Performance Estimates and Bounds for Special
Mappings

In this section, we analyze the complexity of the circuits constructed by our
method.
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5.1 Permutations

In the case of permutations within a single ciphertext, the chromatic number χ
of the graph that our method constructs to assign elements to sets of rotations
is bound by log �. We prove this in the following theorem:

Theorem 1. It takes at most χ = K − 1 colors to color graph Gπ representing
the collisions of permutation π with preimage P .

Proof. It suffices to show that any element x ∈ P can only collide with at most
log2(�)−1 other elements at one position. In that case, x and the other elements
are all connected via an edge and must all be assigned a different color. For
brevity, we denote K = log2(�).

Let us express an upper bound for the maximum number of elements at a
single position after r rotations as a function M(r). At the first rotation, the
maximum number of overlaps is M(1) = 1, because the encrypted vector has no
overlaps. At every rotation after that, the maximum number of overlaps is that
of the previous rotation, plus one element that was already in this position, so
M(i) = M(i − 1) + 1. This only holds for i = 2, . . . ,K − 1, however, because
at the Kth rotation, the result must not have any overlaps given that π is a
permutation. So, M(K) = 0. Our function M is undefined for any other values.

We reach the maximum number of overlapping elements at any rotation at
M(K − 1) = K − 1. In fact, this upper bound overestimates the number of
overlapping elements, because, after r rotations, the overlapping elements can
only move to 2K−r remaining positions, so K−1 overlapping at M(K−1) cannot
satisfy a valid permutation.

As a result, we require at most log(�) sets of log(�) rotations. Also notice that
in the case of arbitrary rotations, the number of rotations required is O(n), when
� is kept constant. This is because even in the worst case where each of the n
elements to be permuted is assigned to a separate set of rotations, the relation is
linear. However, this situation should be seen as an upper bound because when
the number of elements grows, the sets of rotations become more densely packed
in the average case. The number of plaintext multiplications and additions scale
quadratically with the number of rotations because before the xth rotation there
can be additions and multiplications with the prior x − 1 resulting ciphertexts.

5.2 Bounded Rotation Magnitude

The number of rotations that one element occupies is exactly the number of
ones in the binary representation of the distance it must move. This number,
which is called the Hamming weight, is 1

2� on average for random permutations.
However, if the distance that elements move is bound or the Hamming weight of
the distances is low, we expect to pack more elements within one set of rotations.
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6 Results

In this section, we analyze the performance of our open-source implementation2

and compare it against HElib. To facilitate a fair comparison, we execute our
circuits with HElib’s implementation of BGV. Note, however, that any FHE
library can execute the resulting circuits with minimal engineering effort.

We perform three sets of experiments, which are increasingly generic. We
start by comparing the performance of permutations within a single ciphertext
to HElib. Then, we extend HElib to perform arbitrary permutations across mul-
tiple ciphertexts and compare the implementation against our work. Finally,
we analyze the run time performance of our implementation when performing
arbitrary mappings for increasing degrees of overlapping and replication.

Table 3 contains the parameters we used for our experiments. We choose the
order of the cyclotomic polynomial m = 2x for some x, following the homomor-
phic encryption standard [1]. Since the number of slots � = φ(m)

ord(p) , we want the
plaintext modulus p to have a low order modulo m. On the other hand, when
� is large, the depth of our circuits might cause the noise in the ciphertexts to
grow too large. So, we choose the highest � for which the ciphertexts are still
decryptable while selecting the lowest p that satisfies it. We provide the number
of bits in the modulus chain log2 Q, which we maximized while satisfying 128
bits of security as specified by the homomorphic encryption standard [1].

Table 3. BGV parameters used in the experiments

Order m Modulus p log2 Q Slots � HElib’s depth

Small 213 = 8192 31 111 24 = 16 4
Medium 214 = 16384 127 213 26 = 64 7
Large 215 = 32768 5119 <440 26 = 64 9

We executed all our experiments on a Unix machine with 16 virtual
Intel R© Xeon R© Cascade Lake CPUs at 3100MHz and 64 GB of memory. How-
ever, we only executed our experiments on a single thread. While our technique
would work on any leveled homomorphic RLWE-based ciphertexts, we used the
BGV cryptosystem in our experiments. Since the actual contents of the cipher-
texts do not influence the performance in our experiments, we choose repeated
encryptions of 0, . . . , p − 1.

6.1 Within-ciphertext Permutations

Since HElib’s permutation circuits aim to perform permutations on single cipher-
texts, we compare its performance with that of our method. We test performance
on the same 50 randomly-generated permutations. In Fig. 4 we show the mean
2 The repository can be found at https://github.com/jellevos/perm_map_circuits.

https://github.com/jellevos/perm_map_circuits
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run time to perform such a permutation, not considering the setup time, which
is considerably smaller. Notice that our method outperforms HElib in each sce-
nario. Moreover, while we execute the separate sets of rotations consecutively in
these experiments, one can execute them on separate threads for an even larger
speed-up. On the other hand, unlike HElib, our method does not allow the user
to specify a maximum circuit depth, so this is only a suitable alternative when
the ciphertext’s noise budget is large enough.

Fig. 4. While our circuits are not specifically made for permutations within ciphertexts,
they outperform HElib in execution time for a similar noise budget by a factor 1.4× for
large parameters up to 2.7× for small parameters. The error bars denote the standard
deviation.

In our experiments, we aimed for the remaining noise budgets between our
method and HElib’s method to be similar, as displayed in Table 4. To do so, we
set the depth bound for HElib’s permutation circuit as displayed in the rightmost
column of Table 3.

Table 4. Average remain noise budget of the resulting ciphertext expressed in bits.
Here, higher is better, but we selected the parameters for both works to perform simi-
larly.

Small Medium Large

HElib 11.72 10.14 26.86

Ours 5.38 22.24 29.68

Ours (long setup) 5.46 22.34 29.76
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6.2 Arbitrary Permutations

Next, we evaluate the performance when the number of ciphertexts we permute
across grows. We measure the execution time for each number of ciphertexts
over 20 random permutations, disregarding our long-setup method. We present
the results in Fig. 5. The experiment supports the worst-case complexities that
predict HElib’s method to scale quadratically and our method linearly regarding
the number of ciphertext rotations, which make up the most expensive operation.
The improvement in run time is significant, exceeding an order of magnitude
starting from as little as five ciphertexts.

Fig. 5. Execution time for random permutations among a growing number of cipher-
texts. The experiment confirms that the execution time of HElib scales quadratically,
while our approach scales linearly. The shaded area represents the 99% confidence
interval.

6.3 Arbitrary Mappings

Finally, we evaluate the setup and execution time required for performing arbi-
trary mappings using our method. We do not consider HElib’s method for
these experiments, which is prohibitively expensive when the overlap or replica-
tion degree exceeds 1. Our experiment considers random mappings across eight
ciphertexts, which we generate by creating a set of possible targets and distribut-
ing them among the indices of each ciphertext, taking into account the overlap
and replication constraints. We present the results in Fig. 6. In this figure, the
upper left corner is an arbitrary permutation, and the leftmost column represents
injective mappings (replications). Notice that the small and medium parameters
finish in the order of seconds, even when elements in the output are allowed to
overlap with three other elements. Also, notice that both the setup time and
execution time only significantly increase when both the overlap and replication
degree.
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Fig. 6. Total time in seconds of arbitrary mappings for increasing overlap and replica-
tion degrees. The bold number is the execution time, while the time above is the setup
time. Notice that the times hardly increase when only one of the parameters grows and
that the setup time becomes non-negligible for higher replication and overlap degrees.

7 Conclusion

To the best of our knowledge, this work proposes the first efficient method for
constructing mapping circuits across multiple ciphertexts. We experimentally
show that our method consistently outperforms the algorithm in HElib, given a
ciphertext that supports a large enough multiplicative depth.

Still, open questions remain:

1. Future work can optimize the generated circuits by pruning parts of the cir-
cuit. For example, there is no need to isolate elements using a plaintext mul-
tiplication when the ciphertext already only contains those elements.

2. Future work might look for an optimization algorithm that separately opti-
mizes the order of rotations.

3. In our current method, all sets of rotations contain all power-of-two rotations,
but one might construct shallower circuits by considering using only a sub-
set of those rotations. Such a method would require a different optimization
algorithm, however.

With our new primitive, one can construct efficient permutation circuits for
permuting elements within a single ciphertext and across multiple ciphertexts.
Where previous methods scale quadratically with the number of elements to
permute, our method scales linearly regarding the total number of rotations
to perform. Our method is concretely efficient when previous work becomes
prohibitively expensive.

Acknowledgement. We would like to thank Neil Yorke-Smith for his great help with
our optimization algorithm.
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