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INVERSE EIGENVALUE AND RELATED PROBLEMS FOR HOLLOW MATRICES

DESCRIBED BY GRAPHS∗

F. SCOTT DAHLGREN† , ZACHARY GERSHKOFF‡ , LESLIE HOGBEN§ ,

SARA MOTLAGHIAN¶, AND DEREK YOUNG∥

Abstract. A hollow matrix described by a graph G is a real symmetric matrix having all diagonal entries equal to zero and

with the off-diagonal entries governed by the adjacencies in G. For a given graph G, the determination of all possible spectra of

matrices associated with G is the hollow inverse eigenvalue problem for G. Solutions to the hollow inverse eigenvalue problems

for paths and complete bipartite graphs are presented. Results for related subproblems such as possible ordered multiplicity

lists, maximum multiplicity of an eigenvalue, and minimum number of distinct eigenvalues are presented for additional families

of graphs.

Key words. Inverse eigenvalue problem, Hollow matrix, Maximum multiplicity, Minimum number of distinct eigenvalues,

Ordered multiplicity list, Minimum rank, Maximum nullity.
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1. Introduction. Inverse eigenvalue problems, which refer to determining all possible multisets of

eigenvalues (spectra) for matrices fitting some description, appear in various contexts throughout engineering

and the mathematical, physical, biological, and social sciences. Graphs can be used to describe relationships

in an application and the eigenvalues of associated matrices govern the behavior of the system. The inverse

eigenvalue problem of a graph (IEP-G) refers to determining the possible spectra (multisets of eigenvalues)

of real symmetric matrices whose pattern of nonzero off-diagonal entries is described by the edges of a given

graph.

More precisely, a graph G = (V (G), E(G)) consists of a finite nonempty set of vertices V (G) and a set

E(G) of edges, which are two element subsets of vertices. The edge {vi, vj} is often denoted by vivj . The

order of G is the number of vertices in G. The set of symmetric matrices described by G is

S(G) = {A = [aij ] ∈ Sn(R) : aij ̸= 0 if and only if vivj ∈ E(G) for all 1 ≤ i < j ≤ n},

where n denotes the order of G and Sn(R) denotes that set of symmetric n × n real matrices. Thus, the

IEP-G is to determine the possible spectra of the matrices in S(G). Let A(G) denote the adjacency matrix
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of G, i.e., aij = 1 if vivj ∈ E(G) and aij = 0 otherwise; clearly A(G) ∈ S(G), as are several other matrices

associated with a graph (such as the Laplacian).

The IEP-G is a very challenging problem and was originally approached through the study of subprob-

lems, such as the maximum multiplicity of an eigenvalue, the minimum number of distinct eigenvalues,

and ordered multiplicity lists for eigenvalues. The maximum multiplicity of G is M(G) = max{multA(λ) :

A ∈ S(G)}, where multA(λ) denotes the multiplicity of λ as an eigenvalue of A. Since A ∈ S(G) im-

plies A − λI ∈ S(G), M(G) = max{nullA : A ∈ S(G)}. A related parameter is the minimum rank of G,

mr(G) = min{rankA : A ∈ S(G)}.

Our focus is on the inverse eigenvalue problem for hollow symmetric matrices described by a graph.

A hollow matrix is a square matrix all of whose diagonal entries are zero. In some applications for which

spectra need to be determined, the diagonal entrees are known to be zero. For instance, methods for solving

certain systems of nonlinear differential equations require the determination of the possible spectra of zero

diagonal matrices described by a graph [4]. For a graph G of order n, the matrices in

S0(G) = {A ∈ S(G) : aii = 0, 1 ≤ i ≤ n},

can also be viewed as weighted adjacency matrices of G. The hollow symmetric inverse eigenvalue problem

of a graph (HIEP-G) is to determine the possible spectra of S0(G).

The HIEP-G is also a very hard problem, and related problems that shed light on the HIEP-G are

studied, as is the case for the IEP-G. The maximum hollow nullity and minimum hollow rank of G, defined

in [7] as maximum zero-diagonal nullity and minimum zero-diagonal rank, are

M0(G) = max{nullA : A ∈ S0(G)} and mr0(G) = min{rankA : A ∈ S0(G)}.

As usual, mr0(G) + M0(G) = |V (G)|. However, the maximum hollow nullity is not generally the maximum

multiplicity of an eigenvalue of a hollow matrix, because it refers only to the maximum multiplicity of

eigenvalue zero. The maximum hollow multiplicity of G is defined to be

MM0(G) = max{multA(λ) : A ∈ S0(G)}.

For a symmetric matrix A ∈ Rn×n, q(A) is the number of distinct eigenvalues of A. Define

q(G) = min{q(A) : A ∈ S(G)} and q0(G) = min{q(A) : A ∈ S0(G)}.

Let the distinct eigenvalues of a symmetric matrix A ∈ Rn×n be denoted by µ1(A) < · · · < µq(A) with mul-

tiplicities m1(A), . . . ,mq(A), respectively. The ordered multiplicity list of A is m(A) = (m1(A), . . . ,mq(A)).

The set of ordered multiplicity lists of G and the set of hollow ordered multiplicity lists of G are

m(G) = {m(A) : A ∈ S(G)} and m0(G) = {m(A) : A ∈ S0(G)}.

We present full solutions to the HIEP-G for paths, complete bipartite graphs, and graphs of order at

most three in Section 4. In that section we also present results on ordered mutiplicity lists, q0(G), M0(G),

and MM0(G) for various families and determine all possible hollow ordered multiplicity lists for graphs of

order four. In Section 3, we show that for a bipartite graph G, the spectrum of a hollow matrix described by

G is symmetric about the origin, that q(G) = 2 implies q0(G) = 2, and derive additional results for bipartite

graphs. Section 2 contains a variety of bounds and other tools for studying the subproblems.
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The trace constraint for hollow matrices (1.1) is that the sum of the eigenvalues is zero. When the spec-

trum is written as distinct eigenvalues and multiplicities, i.e., {µ(m1)
1 , µ

(m2)
2 , . . . , µ

(mq)
q }, the trace constraint

is

(1.1)

q∑
i=1

miµi = 0.

We will see that the trace constraint is a powerful tool for analyzing spectra of hollow matrices. An ordered

multiplicity list (m1,m2, . . . ,mq) ∈ m0(G) is hollow spectrally arbitrary if for every set of real numbers µ1 <

µ2 < · · · < µq that satisfies (1.1) there is some A ∈ S0(G) such that spec(A) = {µ(m1)
1 , µ

(m2)
2 , . . . , µ

(mq)
q }.

Let A = [aij ] be a hollow symmetric matrix. Given a generalized cycle1 C of G(A), let nc(C) denote the

number of distinct cycles (of order 3 or more) in C, and ne(C) denote the number of even components of C,
i.e., the number of cycles of even order at least four plus the number of edges. With a generalized cycle C,
we can associate a permutation πC of the vertices of C as follows: For each cycle in C, fix an orientation and

then associate a directed graph cycle (vj1 , vj2 , . . . , vjℓ) with the cyclic permutation (vj1vj2 · · · vjℓ). Each edge

component {vi1 , vi2} of C is associated with the transposition (vi1vi2). The permutation πC is defined to be

the product of these associated permutation cycles. There are 2nc(C) different choices for the orientation of

the cycles of C, and each choice yields a permutation that has the same sign as πC , namely (−1)ne(C). Recall

that

pA(x) = det(xI −A) = xn − S1(A)xn−1 + S2(A)xn−2 + · · · ± Sn(A),

where Sk(A) is the sum of all order k principal minors of A (so Sn(A) = detA and S1(A) = trA). Viewing

A ∈ S0(G) as a weighted adjacency matrix of G, it follows from results in [9] that Sk(A) can be computed

using generalized cycles of G:

(1.2) Sk(A) =
∑

C∈cyck(G(A))

(−1)ne(C)2nc(C)ai1πC(i1) . . . aikπC(ik),

where cyck(G) denotes the set of generalized cycles on k vertices and the sum over the empty set is zero.

(If A has nonzero diagonal elements then the formula becomes much less useful and a looped graph must be

used to describe A.) Equation (1.2) assists with the computation of the characteristic polynomial (and thus

the nullity) of a specific matrix. More generally, it is useful for computing mr0(G). Observe that mr0(G) ≤ r

if G has no generalized cycles of order greater than r, and mr0(G) = r if G has no generalized cycles of order

greater than r and G has a unique generalized cycle of order r.

When studying the ranks of matrices in S(G), one studies only minimum rank, because it is well-known

and easy to see that the maximum rank is the order of the graph G, and every rank between the minimum

and maximum ranks is realizable. However, there are many graphs for which the maximum rank of a hollow

matrix described by a graph G must be less than the order of G. The maximum hollow rank of a graph G

is MR0(G) = max{rankA : A ∈ S0(G)}.

Theorem 1.1. [7] For a graph G, MR0(G) is the maximum order of a generalized cycle of G.

Maximum nullity, minimum number of distinct eigenvalues, and ordered multiplicity lists all provide

information that can in some cases be used to solve the inverse eigenvalue problem for a specific graph

or family of graphs. Recently, the Strong Spectral Property and the Strong Multiplicity Property were

1A generalized cycle of G is a disjoint union of cycles and edges of G.
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introduced in [5]. These tools, which extend the Strong Arnold Property for nullity, have been the focus of

much recent research in the IEP-G. While we do not provide the details here, a fundamental principle of a

strong property is subgraph monotonicity. In the case of the Strong Arnold Property, this means that the

existence of a matrix A ∈ S(G) that has the Strong Arnold Property implies the existence of B ∈ S(H) with

nullB ≥ nullA for any graph H having G as a subgraph. For the Strong Spectral Property, if A ∈ S(G)

has this property and G is a subgraph of H, then there is a matrix B ∈ S(H) such that spec(A) ⊆ spec(B).

This naturally raises the question of the existence of strong properties for hollow matrices. Unfortunately,

hollow matrices do not seem well suited to strong properties, as we show in the next example.

Example 1.2. For any graph G of order n, G ◦ K1 is constructed from G by adding a leaf to each

vertex of G. Note that M0(G ◦ K1) = 0, i.e., multA(0) = 0 for A ∈ S0(G ◦ K1), because G ◦ K1 has a

unique generalized cycle of order 2n. For example, multA(0) = n− 2 for A ∈ K1,n−1 and multB(0) = 0 for

B ∈ S0(K1,n−1 ◦K1). This implies that there cannot be a nonzero numerical “strong” property below M0

that is induced subgraph monotone, and there cannot be a strong spectral property for hollow matrices.

The general failure of strong properties for hollow matrices is not surprising, because the proofs of

subgraph monotonicity for strong properties are based on small perturbations, using the fact that for a

sufficiently small perturbation a nonzero entry remains nonzero but a zero entry can be changed to nonzero.

However, some perturbation techniques can still be used, as in the proof of Proposition 2.18, where we show

the ordered multiplicity list with all entries equal to one can always be realized.

2. Preliminary results. In this section, we present examples and general results about the HIEP-G

and related parameters.

Proposition 2.1. Let G be a graph of order n ≥ 2. If (m1,m2) is a hollow ordered multiplicity list of

G, then (m1,m2) is hollow spectrally arbitrary.

Proof. When there are only two distinct eigenvalues, the trace constraint (1.1) implies the spectrum

is determined by one eigenvalue and its multiplicity. That is, for spec(A) = {µ(k)
1 , µ

(n−k)
2 }, µ2 = − k

n−kµ1

(observe that both µ1 and µ2 are nonzero). Given that one specific spectrum spec(A′) = {µ′(k)
1 , µ′(n−k)

2 } is

realized by A′ ∈ S0(G), the matrix A = µ1

µ′
1
A′ has spec(A) = {µ(k)

1 , µ
(n−k)
2 }.

Example 2.2. Note that spec(A(Kn)) = {n−1, (−1)(n−1)}. By considering this matrix and its negative,

we see that q0(Kn) = 2 and (n − 1, 1), (1, n − 1) ∈ m0(Kn) for n ≥ 2. By Proposition 2.1, (n − 1, 1) and

(1, n− 1) are hollow spectrally arbitrary.

Remark 2.3. Let G = G1 ⊔ G2 (where ⊔ denotes disjoint union) with the vertices of G1 numbered

before those of G2, and let A ∈ S0(G). Then A is a block diagonal matrix with diagonal blocks A1 ∈ S0(G1)

and A2 ∈ S0(G2) and spec(A) = spec(A1)∪ spec(A2) (where the union of spectra is a multiset union). Thus,

it is common to focus on connected graphs when studying the full HIEP-G. However, it is not necessarily

easy to determine q0(G1 ⊔ G2) from q0(G1) and q0(G2) (see Section 2.1).

The maximum semidefinite nullity of a graph G is

M+(G) = max{nullA : A ∈ S(G) and A is positive semidefinite}.

Let A be a positive semidefinite matrix of rank d. Then there is an d× n matrix R = [r1, . . . , rn] such that

A = RTR. If in addition A ∈ S(G), then the column vectors ri are called an orthogonal representation of G
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of dimension d. It is well-known that the least d such that G has an orthgonal representation of dimension

d is d = n−M+(G) for a graph G of order n.

Lemma 2.4. Let G be a graph with no isolated vertices. Then there exists a matrix B ∈ S0(G) such that

m1(B) = M+(G).

Proof. Let m = M+(G). Choose a positive semidefinite matrix A ∈ S(G) such that nullA = m.

Then there is an (n − m) × n matrix R = [r1, . . . , rn] such that A = RTR. Define A′ = DTAD where

D = diag
(

1
∥r1∥ , . . . ,

1
∥rn∥

)
. Observe that every diagonal entry of A′ is 1, and nullA′ = m. Define B = A′−I.

Note that B ∈ S0(G), µ1(B) = −1, and m1(B) = m.

Note that the process of constructing B in Lemma 2.4 involves conjugation, which preserves the nullity

but not the spectrum. Typically when the conjugation process is applied to a matrix, the other eigenvalues

are perturbed, and multiple eigenvalues may split into several simple eigenvalues. However, Lemma 2.4 can

be leveraged to determine other multiplicities for certain ordered multiplicity lists of bipartite graphs (see

Corollary 3.4).

2.1. q0(G). In this section, we focus on the minimum number of distinct eigenvalues of hollow matrices

described by a graph.

Observation 2.5. For any graph G, q(G) ≤ q0(G). It is known that q(G) = 1 if and only if G has no

edges [1], so q0(G) = 1 if and only if G has no edges. For any graph G of order n, qo(G) ≥ n
MM0(G) .

The ease of combining spectra does not apply when determining the minimum number of distinct

eigenvalues of a disjoint union, because the spectra may or may not align. Proposition 2.6 shows that

q0(G ⊔ H) > max{q0(G), q0(H)} is possible. Examples where q0(G ⊔ H) = max{q0(G), q0(H)} are easily

constructed when ordered multiplicity lists are arbitrary within shared constraints, such as spectral symmetry

about the origin.

Proposition 2.6. If r is not a multiple of 3, then q0(K3 ⊔ Kr) = 3.

Proof. The matrix A ∈ S0(K3 ⊔ Kr) is of the form A = A3 ⊕Ar, where A3 ∈ S0(K3) and Ar ∈ S0(Kr).

Thus, spec(A) = spec(A3) ∪ spec(Ar). If q(A3) ≥ 3 or q(Ar) ≥ 3, then q(A) ≥ 3. So suppose q(A3) = 2 and

q(Ar) = 2. Observe that spec(A3) = {λ(2),−2λ} for some λ and spec(Ar) = {µ(k),− k
r−kµ

(r−k)} for some µ.

To have q(A) = 2, necessarily (i) λ = µ and 2λ = k
r−kµ, or (ii) −2λ = µ and λ = − k

r−kµ. Then 2r = 3k in

case (i) and r = 3k in case (ii). In either case, q(A) = 2 implies r is a multiple of 3.

The proof of the next result is the same as the proof of [1, Proposition 2.5].

Proposition 2.7. For any graph, q0(G) ≤ mr0(G) + 1.

Proof. Choose A ∈ S0(G) with rankA = mr0(G). Then A has at most mr0(G) nonzero eigenvalues and

mr0(G) + 1 distinct eigenvalues.

Proposition 2.8. Let G be a graph of order n that is not the empty graph such that MR0(G) < n. Then

q0(G) ≥ 3.

Proof. Let A ∈ S0(G). Since G ̸= Kn, A has at least 1 positive and at least 1 negative eigenvalue. Since

MR0(G) < n, 0 ∈ spec(A). Thus q(A) ≥ 3.
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Proposition 2.9. Let G be a graph of order n ≥ 4 such that G has the ordered multiplicity list (r, n−r)

with 2 ≤ r ≤ n − 2. For every vertex v ∈ V (G), there exists B ∈ S0(G − v) such that spec(B) =

{(−n−r
r )(r−1),−n−2r

r , 1(n−r−1)}.

Proof. There is a matrix A ∈ S0(G) such that spec(A) = {(−n−r
r )(r), 1(n−r)} by Proposition 2.1. Let

B = A(v), so B ∈ S0(G− v). Define the eigenvalues of B to be µ1 ≤ µ2 ≤ · · · ≤ µn−1. By interlacing,

−n− r

r
≤ µ1 ≤ · · · ≤ µr−1 ≤ −n− r

r
≤ µr ≤ 1 ≤ µr+1 ≤ · · · ≤ µn−1 ≤ 1.

Hence, µ1 = µ2 = · · · = µr−1 = −n−r
r and µr+1 = · · · = µn−1 = 1. Thus, (n− r − 1)− n−r

r (r − 1) + µr = 0

which implies µr = −(n− r − 1) + (r − 1)
(
n−r
r

)
= 2r−n

r .

Corollary 2.10. Let G be a graph of order n ≥ 3 such that q0(G) = 2. Then q0(G − v) ≤ 3. If

MM0(G) = n− 1, then q0(G− v) = 2.

Proof. Let A ∈ S0(G) have m(A) = (r, n − r). If r = 1, then m(A(v)) = (1, n − 2) by interlacing (and

neither eigenvalue is 0 by the trace inequality), so q0(G− v) = 2; the case r = n− 1 is analogous. If n = 3,

then q0(G) = 2 implies G = K3 and q0(K2) = 2. So assume that n ≥ 4 and 2 ≤ r ≤ n−r. Then, q(A(v)) = 3

by Proposition 2.9 (since the three values −n−r
r , −n−2r

r , and 1 are necessarily distinct). Thus, q0(G) ≤ 3.

Next we establish results that allow extending low values of q0(G) to low values of q0(G□K2) when

q0(G) is realized by a matrix whose spectrum is symmetric about the origin, as is the case for bipartite

graphs (see Theorem 3.2).

Lemma 2.11. Suppose G is a graph of order n such that there exists A ∈ S0(G) with spec(A) =

{−µ
(mk)
k , . . . , −µ

(m1)
1 , 0(m0), µ

(m1)
1 , . . . , µ

(mk)
k } where 0 < µ1 < · · · < µk and m0 ≥ 0 (with m0 = 0 sig-

nifying that 0 is not an eigenvalue of A). Define B =

[
A In
In −A

]
. Then B ∈ S0(G□K2) and

spec(B) =

{
−
√

µ2
k + 1

(2mk)

, . . . ,−
√
µ2
1 + 1

(2m1)

,−1(m0), 1(m0),
√
µ2
1 + 1

(2m1)

, . . . ,
√
µ2
k + 1

(2mk)
}
.

Proof. It is immediate that B ∈ S0(G□K2). Furthermore, spec(A2+I) = {1(m0), (µ2
1+1)(2m1), . . . , (µ2

k+

1)(2mk)}. The characteristic polynomial of B is

det(xI2n −B) = det

[
xIn −A −In
−In xIn +A

]
= det((xIn −A)(xIn +A)− In) = det(x2In − (A2 + In)).

Thus, spec(B) = − spec(B) and is as stated.

The next result is immediate from Lemma 2.11.

Corollary 2.12. Let G be a graph of order n such that there exists A ∈ S0(G) with q(A) = q0(G) and

spec(A) = − spec(A). Then there exists B ∈ S0(G□K2) having spec(B) = − spec(B), 0 ̸∈ spec(B), and

q(B) = q0(G) + a where a = 0 if 0 ̸∈ spec(A) and a = 1 if 0 ∈ spec(A).

The process of taking the Cartesian product with K2 can be repeated without raising q0 beyond the

first Cartesian product.

Corollary 2.13. If there exists A ∈ S0(G) with q(A) = q0(G) and spec(A) = − spec(A), then

q0(G□K2 □ · · · □K2) ≤ q0(G) + 1. If there exists such a matrix A with 0 ̸∈ spec(A), then q0(G□K2 □ · · ·
□K2) ≤ q0(G). Thus q0(Qd) = 2 where Qd is the d-dimensional hypercube.
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2.2. M0(G) and MM0(G). In this section, we focus on the maximum hollow nullity M0(G) and max-

imum hollow multiplicity MM0(G) of a graph G. It is well-known that adding a dominating vertex to a

graph with no isolated vertices does not change the minimum rank (or positive semidefinite minimum rank):

if A ∈ S(G) and rankA = mr(G), choose v such that every entry of Av is nonzero and construct the matrix

B as in the next proof. It is not so simple to find such a v when the diagonal must be zero (and it is not

always possible).

Lemma 2.14. Let A be an n×n hollow symmetric matrix that has a nonzero eigenvalue λ with multA(λ)

≥ 2 and an eigenvector w for λ that has every entry nonzero. Then there exists a vector v ∈ Rn such that

both vTAv = 0 and every entry of Av is nonzero. Furthermore, B =

[
A Av

vTA vTAv

]
∈ S0(G(A) ∨K1) and

rankB = rankA.

Proof. Denote the eigenvalues of A by λ1 = λ, λ2 = λ, λ3, . . . , λn (no ordering implied). Let u be

a multiple of w of length one, and choose a basis of orthonormal eigenvectors x1 = u,x2, . . . ,xn with

Axi = λixi. For a real number a with −
√
2 < a <

√
2, define

va = ax1 +
√
2− a2x2 + x3 + · · ·+ xn.

Since x1, . . . ,xn are orthonormal eigenvectors,

Ava = aλu+
√
2− a2λx2 + λ3x3 + · · ·+ λnxn,

and

vT
aAva = a2λ+ (2− a2)λ+ λ3 + · · ·+ λn = tr(A) = 0.

To have all entries of Ava nonzero, choose a to avoid the solutions to the equations

aλ(u)j +
√
2− a2λ(x2)j + λ3(x3)j + · · ·+ λn(xn)j ,

for j = 1, . . . , n (note that each equation is nontrivial because λ(u)j ̸= 0). The last statement is immediate,

given v = va with appropriate choice of a.

Lemma 2.15. Let G be a graph with no isolated vertices such that (m1, . . . ,mr) ∈ m0(G) and let H =

G ∨K1. Then there exists B ∈ S0(H) with m1(B) = m1 + 1, and MM0(H) ≥ m1 + 1.

Proof. Let A ∈ S0(G) such that m(A) = (m1, . . . ,mr), and let µ = −µ1(A). Define A′ = A+ µIn so A′

is positive semidefinite. Then there is an (n−m1)× n matrix R = [r1, . . . , rn] such that A′ = RTR. Then

rTi ri = µ for i = 1, . . . , n since every diagonal entry of A′ is equal to µ, and for j ̸= i, rTi rj ̸= 0 if and only

if ij ∈ E(G). Choose an (n −m1)-vector rn+1 such that rTi rn+1 ̸= 0 for i = 1, . . . , n and rTn+1rn+1 = µ (a

random vector normalized to have length µ will work with high probability). Define R′ = [r1, . . . , rn, rn+1]

and A′′ = R′TR′. Then A′′ ∈ S(H) and every diagonal entry of A′′ is µ, so B = A′′ −µIn+1 ∈ S0(H). Since

rankA′′ = rankA′ = n−m1, nullA
′′ = m1 + 1 and m1(B) = m1 + 1. Thus MM0(H) ≥ m1 + 1.

Corollary 2.16. If there exists A ∈ S0(G) such that MM0(A) = multA(µ1(A)), then MM0(G∨K1) =

MM0(G) + 1.

Proof. Suppose there exists A ∈ S0(G) such that MM0(A) = multA(µ1(A)). Then MM0(G ∨ K1) ≥
MM0(G) + 1 by Lemma 2.15. Interlacing implies MM0(G ∨K1) ≤ MM0(G) + 1.

Note that the process of constructing B in Lemma 2.15 preserves the nullity but not the spectrum.

Interlacing provides some control of other multiple eigenvalues but multiplicities may each be reduced by

one and the number of distinct eigenvalues may increase.
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2.3. Simple eigenvalues and ordered multiplicity lists. It is well-known that every graph allows

a matrix A ∈ S(G) having every eigenvalue simple. This is not the case for a graph G of order n that has

MR0(G) ≤ n − 2, since multA(0) ≥ n − MR0(G) ≥ 2 for A ∈ S0(G). In this section, we show that every

graph G allows a matrix of maximum hollow rank in which every nonzero eigenvalue is simple.

Recall that M(Pn) = 1, from which it is immediate that MM0(Pn) = 1 and q0(Pn) = n. Thus,

(1, 1, . . . , 1) ∈ m0(Pn) for all n.

Lemma 2.17. For any cycle Cn, there is a matrix A ∈ S0(Cn) such that m(A) = (1, 1, . . . , 1) and every

eigenvalue of A is nonzero.

Proof. Let Pn be obtained from Cn by deleting the edge {1, n}. Choose A ∈ S0(Pn). Note that

the eigenvalues of A are distinct. Let H be the graph with V (H) = V (G) and E(H) = {1, n}. Define

Aε = A+εA(H). Then for ε > 0, Aε ∈ S0(Cn), and the eigenvalues of Aε are distinct for ε sufficiently small

by continuity. If n is even, then the eigenvalues of A are all nonzero, so the eigenvalues of Aε are nonzero

for ε sufficiently small. If n is odd, then mr0(Cn) = n, so the eigenvalues of Aε are all nonzero.

Proposition 2.18. Let G be a graph of order n. There is a matrix A ∈ S0(G) that has MR0(G) simple

nonzero eigenvalues. If MR0(G) ≥ n− 1, then there is a matrix A ∈ S0(G) such that m(A) = (1, 1, . . . , 1).

Proof. Choose a generalized cycle C of order MR0(G). Note that C is the disjoint union of k ≥ 1 cycles

Cni (where an edge is denoted by C2). For each component Cni , there is a matrix Ai ∈ S0(Cni) that has ni

distinct nonzero eigenvalues. Choose nonzero αi ∈ R such that the set of eigenvalues of the matrices αiAi

has n distinct nonzero elements. Then the eigenvalues of A = α1A1 ⊕ · · · ⊕ αkAk are distinct and nonzero.

Let H be the graph with V (H) = V (G) and E(H) = {e ∈ E(G) : e ̸∈ E(C)}. Define Aε = A + εA(H).

Then for ε > 0, Aε ∈ S0(G), and the eigenvalues of Aε are distinct and nonzero for ε sufficiently small by

continuity. The last statement is immediate.

The minimum number of distinct eigenvalues of a graph is an active area of research, whereas the

maximum number of distinct eigenvalues of a matrix in S(G) is the order of the graph G. For hollow

matrices, the maximum number of distinct eigenvalues is provided by Proposition 2.18.

Corollary 2.19. Let G be a graph of order n. The maximum number of distinct eigenvalues of a

matrix in S0(G) is min{MR0(G) + 1, n}.

3. Bipartite graphs. For a hollow matrix described by a bipartite graph, the spectrum is symmetric

about the origin, i.e., spec(A) = − spec(A) for any A ∈ S0(G). That result (Theorem 3.2) is established

in this section, together with numerous consequences and other results specific to bipartite graphs. Results

in this section are used to solve the hollow IEP-G for all complete bipartite graphs Km,n in Section 4. An

order k principal minor of A is the determinant of a k × k principal submatrix of A.

Remark 3.1. Suppose G is a bipartite graph, and let A ∈ S0(G). Then A has even rank, because

A =

[
0 B

BT 0

]
,

for some matrix B, so the rank of A is twice the rank of B. Let S ⊂ V (G) such that |S| = k, with k odd.

Then, the induced subgraph G[S] is again bipartite. Since rankA[S] must be even, A[S] ∈ S0(G[S]) cannot

be of full rank. Therefore, the corresponding principal minor is zero. Hence, every odd order principal minor

of A is zero.
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Theorem 3.2. Suppose G is a bipartite graph on n vertices, and A ∈ S0(G). Then spec(A) = − spec(A).

Proof. Let pA(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0 be the characteristic polynomial of A. Recall that

an−k = (−1)kSk(A) where Sk(A) is the sum of all order k principal minors of A. From Remark 3.1, the

characteristic polynomial of A is pA(x) = xn + S2(A)xn−2 + S4(A)xn−4 + . . . because Sk(A) = 0 for odd k.

First, we suppose n is even. We reparameterize pA with y = x2:

pA(x) = fA(y) := yn/2 + S2(A)yn/2−1 + S4(A)yn/2−2 + · · ·+ Sn/2(A).

Next, we factor

fA(y) = (y − α1)(y − α2) · · · (y − αn/2),

where α1, α2, . . . , αn/2 are non-negative real numbers because A is a real symmetric matrix. Since pA(x
2) =

fA(y),

pA(x) = (x2 − α1)(x
2 − α2) · · · (x2 − αn/2)

= (x−
√
α1)(x+

√
α1)(x−

√
α2)(x+

√
α2) · · · (x−√

αn/2)(x+
√
αn/2).

Therefore, spec(A) = − spec(A) for even n.

Next, we suppose n is odd. Then, from Remark 3.1, the characteristic polynomial of A is

pA(x) = xn + S2(A)xn−2 + S4(A)xn−4 + · · ·+ Sn−1(A)x

= x(xn−1 + S2(A)xn−3 + · · ·+ Sn−1(A)).

We can therefore define fA(y) where pA(x) = xfA(y) with y = x2 and fA(y) factors as in the case where n

is even. As the remaining eigenvalue is zero, spec(A) = − spec(A) for odd n.

Corollary 3.3. If G is bipartite, G ̸= Kn, and the order of G is odd, then q0(G) ≥ 3.

Corollary 3.4. Suppose G is a bipartite graph of order 2k+1 such that G has no isolated vertices and

M+(G) = k. Then (k, 1, k) ∈ m0(G).

Proof. By Lemma 2.4, there exists B ∈ S0(G) such that m1(B) = k. Since spec(B) = − spec(B),

spec(B) = {(−λ)(k), 0, λ(k)}.

Note that Lemma 2.4 can also be used to show there is an ordered multiplicity list of the form

(m1,m2, . . . ,m2,m1) ∈ m0(G) where m1 = M+(G) whenever G is bipartite with no isolated vertices.

Proposition 3.5. Let G be a graph of even order n such that mr0(G) ≥ n−1 and there exists v ∈ V (G)

such that G−v is bipartite. If m1+· · ·+mr−1 = n−2
2 = mr+1+· · ·+ms, then (m1, . . . ,mr−1, 2,mr+1, . . . ,ms)

̸∈ m0(G).

Proof. Let k = n−2
2 . Suppose m1 + · · · + mr−1 = n−2

2 = mr+1 + · · · + ms and A ∈ S0(G) has

(m1, . . . ,mr−1, 2, mr+1, . . . ,ms) ∈ m(A). Denote the eigenvalues of A by α1 ≤ · · · ≤ αk−1 < αk = αk+1 <

αk+2 ≤ · · · ≤ αn. Let B = A(v), and denote its eigenvalues in order by β1 ≤ · · · ≤ βn−1. Since G − v is

bipartite, βi = −βn−i for i = 1, . . . , n−1. Since n−1 is odd, βk = 0. By interlacing, αk ≤ βk ≤ αk+1. Since

αk = αk+1, αk = αk+1 = βk = 0. Thus rankA ≤ n− 2, contradicting mr0(G) ≥ n− 1.

If G is a bipartite graph and A ∈ S0(G), then spec(A) has the form

{µ(m1)
1 , . . . , µ

(mk)
k , (−µk)

(mk), . . . , (−µ1)
(m1)} or {µ(m1)

1 , . . . , µ
(mk)
k , 0(mk+1), (−µk)

(mk), . . . , (−µ1)
(m1)}.
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If for every µ1 < · · · < µk there is an A ∈ S0(G) with this spectrum, then the ordered multiplicity list

(m1, . . . ,mk,mk, . . . ,m1) or (m1, . . . ,mk,mk+1,mk, . . . ,m1),

is called bipartite spectrally arbitrary for G.

Remark 3.6. Suppose G is a bipartite graph and A ∈ S0(G) has m(A) = (m1,m1) or m(A) =

(m1,m2,m1). Then m(A) = (m1,m1) or (m1,m2,m1) is bipartite spectrally arbitrary for G because

spec(A) = {(−λ)(m1), λ(m1)} or spec(A) = {(−λ)(m1), 0(m2), λ(m1)} and any choice of the nonzero eigenvalue

can be realized by multiplying A by a scalar.

The next result follows from Theorem 3.2 and Corollary 2.13.

Corollary 3.7. Let G be a bipartite graph. Then q0(G□K2 □ · · · □K2) ≤ q0(G) + 1. If there exits

B ∈ S0(G) with q(B) = q0(G) and 0 ̸∈ spec(B), then q0(G□K2 □ · · · □K2) ≤ q0(G). If q0(G) = 2, then

q0(G□K2 □ · · · □K2) = 2.

A real (respectively, complex) n×n matrix U is orthogonal (respectively, unitary) if UTU = In (respec-

tively, U∗U = In). Orthogonal matrices play an important role in the study of bipartite graphs G having

q0(G) = 2, as they do in the study of q(G) for arbitrary graphs [1]. A graph G is potentially hollow orthogonal

if there is an orthogonal matrix U ∈ S0(G).

Remark 3.8. Let G be a graph. Since the only possible eigenvalues of an orthogonal matrix are 1 and

−1, it is immediate that if U ∈ S0(G) is orthogonal, then q0(G) = 2 (since G must have an edge to allow

an orthogonal matrix). Now suppose that G is a bipartite graph, the order of G is n = 2k, and q0(G) = 2.

For A ∈ S0(G) with q(A) = 2, spec(A) = {(−µ)(k), µ(k)} and 1
µA is orthogonal (because any real symmetric

matrix with all eigenvalues equal to −1 or 1 is orthogonal). Therefore, G is potentially hollow orthogonal.

Thus, a bipartite graph G is potentially hollow orthogonal if and only if q0(G) = 2.

When studying the IEP-G (without the restriction that matrices are hollow), we have the opportunity

to shift (add cIn) as well as to scale (multiply by a scalar), so any matrix A ∈ S(G) with q(A) = 2 can

be modified to obtain an orthogonal matrix in S(G). Thus, q(G) = 2 implies G is potentially orthogonal.

However, this need not be true for hollow matrices of graphs that are not bipartite. Recall that q0(Kn) = 2,

and choosing n odd implies Kn is not potentially orthogonal.

Although the emphasis in this section is on bipartite graphs, orthogonal matrices play a broader role,

as illustrated in the next result.

Proposition 3.9. Let G be a graph of order 2r. Then (r, r) ∈ m0(G) if and only G is hollow potentially

orthogonal.

Proof. Suppose there exists A ∈ S0(G) with m(A) = (r, r). Then the trace condition (1.1) implies

spec(A) = {(−λ)(r), λ(r)}. Then 1
λA is orthogonal.

If A ∈ S0(G) is orthogonal, then every eigenvalue is equal to 1 or −1, and the trace condition implies

m(A) = (r, r).

Corollary 3.10. Let G be a graph such that vertices v and w have a unique common neighbor. Then

(r, r) ̸∈ m0(G). In particular, if G is a connected graph of order at least 3 that has a leaf, then (r, r) ̸∈ m0(G).
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Proof. Let u be the unique common neighbor of v and w. Let A ∈ S0(G). Then (A2)vw = avuauw ̸= 0,

so A is not orthogonal. So (r, r) ̸∈ m0(G) by Proposition 3.9. If G is connected with |V (G)| ≥ 3 and has a

leaf v, then the neighbor of v is the unique common neighbor of at least two vertices of G.

The pattern of a matrix B = [bij ] is defined by P(B) = [βij ] where βij = ∗ if bij ̸= 0 and βij = 0 if

bij = 0 (note B need not be square). The qualitative class of an r × r′ nonzero pattern matrix B = [βij ]

is Q(B) = {B ∈ Rr×r′ : P(B) = B}. Let G be a bipartite graph with partite sets X = {x1, . . . , xr} and

X ′ = {x′
1, . . . , x

′
r′}. The bigraph pattern of G is the r× r′ nonzero pattern matrix BG = [βij ] having βij = ∗

if xix
′
j ∈ E(G) and βij = 0 if xix

′
j ̸∈ E(G). A pattern matrix B is potentially orthogonal if there is an

orthogonal matrix U ∈ Q(B), and potentially unitary is defined analogously using unitary matrices. The

next result does not restrict matrices to being hollow.

Theorem 3.11. Let G be a bipartite graph with no isolated vertices having partite sets of orders r and

r′. Then q(G) = 2 if and only if r = r′ and BG is potentially orthogonal.

Proof. It is immediate that BG is potentially orthogonal implies q(G) = 2. For the converse, we begin

with the case in which G is connected and q(G) = 2. Then, G has at least two vertices and is potentially

orthogonal by Remark 3.8. Let the two partite sets of vertices beX = {1, . . . , r} and Y = {r+1, . . . , n}. Then

|X| = r and |Y | = r′ := n − r. Let U ∈ S(G) be unitary. Then U =

[
D B

BT D′

]
with D = diag(d1, . . . , dr)

and D′ = diag(d′1, . . . , d
′
r′), and[

Ir Or,r′

Or,r′ Ir′

]
= I = UTU = U2 =

[
D2 +BBT DB +BD′

BTD +D′BT (D′)2 +BTB

]
.

Suppose that bi,r+j ̸= 0, i.e. xiyj ∈ E(G). Then

0 = (U2)i,r+j = dibi,r+j + bi,r+jd
′
j , so d′j = −di.

Since G is connected, there is a path from any vertex to any other vertex. Iterating d′j = −di for xiyj ∈ E(G)

shows that D = dIr and D′ = −dIr′ for some d ∈ R. Then Ir = D2 + BBT implies BBT = (1 − d2)Ir.

Since BBT is positive semidefinite, −1 < d < 1. Also, Ir′ = (D′)2 +BTB implies BTB = (1− d2)Ir′ . Thus

B′ = 1√
1−d2

B ∈ Q(BG) is unitary, so BG is potentially unitary. Since both BBT and BTB are full rank,

r = r′.

Finally, suppose G = G1 ⊔ · · · ⊔ Gh where Gi are disjoint connected graphs each having order at least

two for i = 1, . . . , h. Choose unitary Bi ∈ Q(BGi) and define U = B1 ⊕ · · · ⊕ Bh. Then U is orthogonal, so

BG is potentially orthogonal.

Theorem 3.11 would be false if isolated vertices are allowed, as the next example shows. Thus, the proof

presented here corrects a minor error in Proposition 6.4 in [1] (where the exclusion of isolated vertices was

omitted).

Example 3.12. Consider the graph G = K2 ⊔ K1. The matrix A =

0 1 0

1 0 0

0 0 1

 ∈ S(G), so q(G) = 2.

However, BG cannot be potentially orthogonal because the two partite sets cannot have equal size.

Corollary 3.13. Let G be a bipartite graph with no isolated vertices. Then q0(G) = 2 if and only if

q(G) = 2.
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The next result provides an example of connected a bipartite graph G having q0(G) > q(G). A spider

is a tree with exactly one vertex v of degree 3 or more. The spider S(ℓ1, . . . , ℓr) is the tree such that

S(ℓ1, . . . , ℓr)− v = Pℓ1 ⊔ · · · ⊔ Pℓr .

Example 3.14. Consider the graph S(2, 1, 1). It was shown in [6] that m(S(2, 1, 1)) = {(1, 2, 1, 1),
(1, 1, 2, 1), (1, 1, 1, 1, 1)}. Neither (1, 2, 1, 1) nor (1, 1, 2, 1) can be the ordered multiplicity list of a matrix in

S0(S(2, 1, 1)) because neither allows a spectrum that is symmetric about the origin. Thus, q0(S(2, 1, 1)) =

5 > 4 = q(S(2, 1, 1)).

Knowledge about potentially orthogonal patterns can sometimes be used with the bigraph pattern BG of

G to construct a matrix A ∈ S0(G) with q(A) = 2. Sources of information about pattern matrices that allow

orthogonality include [12, 13, 14] and the references therein. Much of the literature concerns potentially

unitary patterns rather than potentially orthogonal patterns, and it is known that there are patterns that

are potentially unitary but not potentially orthogonal [8]. However, few such examples are known, and many

of the proofs of results that are stated for potentially unitary work for potentially orthogonal, as is the case

with the next result. A pattern B′ = [β′
ij ] is a subpattern of a pattern B = [βij ] if β

′
ij = ∗ implies βij = ∗,

and in this case, B is a superpattern of B′. The n× n upper Hessenberg pattern is

Hn =



∗ ∗ . . . ∗ ∗ ∗
∗ ∗ . . . ∗ ∗ ∗
0 ∗ . . . ∗ ∗ ∗
...

...
. . .

...
...

0 0 . . . ∗ ∗ ∗
0 0 . . . 0 ∗ ∗


.

Theorem 3.15. [12] Any superpattern of the upper Hessenberg pattern Hn is potentially orthogonal.

It should be noted that in most of the work on potentially unitary patterns (including the papers cited),

there is no assumption that matrices be symmetric (even if pattern is symmetric). Such results apply to

demonstrating the existence of unitary matrices for bipartite graphs (using the bigraph pattern), but not to

symmetric patterns that are not bipartite.

4. Hollow inverse eigenvalue problem for specific families and small graphs. We present the

solution of the HIEP-G for paths and complete bipartite graphs and results on ancillary parameters such as

q0 for additional families of graphs in Section 4.1. In Section 4.2, we present results for graphs of order at

most 4.

4.1. Families of graphs.

Paths. A stronger version of the HIEP-G is solved for paths in [4], where a method is given to construct

an n × n hollow matrix with any set of n distinct real numbers λi that is symmetric about the origin as

eigenvalues and additional numbers βi satisfying other conditions as the normalizing numbers (see [4] for

a definition of normalizing numbers); the solution for paths to the stronger version of the IEP-G with

normalizing numbers is also known [4].

Theorem 4.1. [4] The multisets S = {λi : i = 1, . . . , n} and T = {βi : i = 1, . . . , n} are the eigenvalues

and normalizing numbers a of a symmetric tridiagonal matrix with positive sub- and superdiagonal entries

if and only if the following two conditions are satisfied:
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(i) The numbers λ1, . . . , λn are real, distinct, and can be ordered so that λ1 < · · · < λn, λk = −λn+1−k

for k = 1, 2, . . . ,
⌊
n
2

⌋
, and λ⌊n

2 ⌋+1 = 0 if n is odd.

(ii) The numbers β1, . . . , βn are positive, β1 + · · · + βn = 1 and can be ordered so that βk = βn+1−k for

k = 1, 2, . . . ,
⌊
n
2

⌋
.

Corollary 4.2. A multiset S of n real numbers is the spectrum of some matrix B ∈ S0(Pn) if and

only if the entries of S are distinct and S = −S. The one and only ordered multiplicity list of the path is

(1, 1, . . . , 1), and it is bipartite spectrally arbitrary.

Complete bipartite graphs. We apply results in Section 3 to solve the hollow IEPG for complete

bipartite graphs.

Theorem 4.3. Suppose 1 ≤ m ≤ n. A multiset S of m+n real numbers is the spectrum of some matrix

B ∈ S0(Km,n) if and only if S = −S and the number of nonzero entries k in S satisfies 2 ≤ k ≤ 2m.

Proof. If B ∈ S0(Km,n), then spec(B) = − spec(B) by Theorem 3.2. With the vertices appropriately

ordered, B =

[
O A

AT O

]
where A is an m× n matrix with every entry nonzero, so 2 ≤ rankB ≤ 2m.

Now assume S is a multiset of m+n real numbers satisfying S = −S and the number of nonzero entries

k in S satisfies 2 ≤ k ≤ 2m. Observe that S = −S implies k is even; let ℓ = k
2 . Then we can denote the

entries of S by −λℓ ≤ · · · ≤ −λ1 < 0(n+m−2ℓ) < λ1 ≤ · · · ≤ λℓ, with no assumption that the λi are distinct.

Let D = diag(λ1, . . . , λℓ) and D̂ =

[
D Oℓ,n−ℓ

Om−ℓ,ℓ Om−ℓ,n−ℓ

]
∈ Rm×n. Choose an n× n real orthogonal matrix

U and an m ×m real orthogonal matrix W such that all entries of A = WD̂U are nonzero (starting with

random vectors and applying the Gram–Schmidt process to create orthonormal bases for Rn and Rm will

accomplish this with high probability). Then

spec(AAT ) = spec(WD̂UUT D̂TWT ) = spec(D̂D̂T ) = spec(D2) ∪ {0(m−ℓ)} = {λ2
1, . . . , λ

2
ℓ} ∪ {0(m−ℓ)},

and

spec(ATA) = spec(AAT ) ∪ {0(n−m)} = {λ2
1, . . . , λ

2
ℓ} ∪ {0(n−ℓ)}.

Define B =

[
Om,m A

AT On,n

]
∈ S0(Km,n). Then B2 =

[
AAT Om,n

On,m ATA

]
, so spec(B2) = {(λ2

1)
(2), . . . , (λ2

ℓ)
(2),

0(n+m−k)}. Since spec(B) = − spec(B), spec(B) = S.

Corollary 4.4. For n ≥ 1, q0(Kn,n) = 2, and q0(Km,n) = 3 for 1 ≤ m < n.

The values q(Kn,n) = 2, and q(Km,n) = 3 for 1 ≤ m < n are established in [1], so q0(Km,n) = q(Km,n)

for 1 ≤ m ≤ n. Note that the IEPG for complete bipartite graphs has not yet been solved, and what is

known is very different. It is immediate from Theorem 4.3 that every hollow ordered multiplicity list that

can be realized by Km,n is bipartite spectrally arbitrary. However, for a matrix A ∈ S(Km,n) with ordered

multiplicity list (1, n + m − 2, 1) and n ≥ m ≥ 3, spec(A) = {−λ + µ, µ(n+m−2), λ + µ} for some λ ∈ R
[2]. That is, the spectrum of A is a translate of a spectrum symmetric about the origin, so this ordered

multiplicity list is not spectrally arbitrary for Km,n.
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Complete graphs and complete split graphs.

Remark 4.5. It was shown in Example 2.2 that q0(Kn) = 2 for n ≥ 2, MM0(Kn) = n − 1, and

(n− 1, 1), (1, n− 1) ∈ m0(Kn).

In contrast to the standard case, it is not the case that every ordered multiplicity list with at least two

entries can be realized by a matrix described by the complete graph.

Proposition 4.6. The ordered multiplicity list (2, 2) cannot be realized by any matrix in S0(K4).

Proof. Suppose (2, 2) ∈ m0(K4). Then by Proposition 3.9, there is an orthogonal matrix U = [uij ] ∈
S0(K4), so every off-diagonal entry of U2 must be zero. Solving 0 = (U2)1,2 = u1,3u2,3+u1,4u2,4 gives u2,4 =

−u1,3u2,3

u1,4
. Solving 0 = (U2)1,3 = u1,2u2,3 + u1,4u3,4 gives u3,4 = −u1,2u2,3

u1,4
. Then (U2)1,4 = − 2u1,2u1,3u2,3

u1,4
̸=

0.

A complete split graph is a graph of the form Kr ∨Ks.

Theorem 4.7. [11] Let n ≥ ℓ ≥ 2 and let λ1 ≤ · · · ≤ λn−ℓ+1 < λn−ℓ+2 = · · · = λn−1 = 0 < λn be

real numbers such that
∑n

i=1 λi = 0. Then there is a nonnegative matrix A ∈ S0(Kℓ−1 ∨ Kn−ℓ+1) such

that spec(A) = {λ1, . . . , λn−ℓ+1, 0
(ℓ−2), λn}. If λ1 ≤ · · · ≤ λn−1 < 0 < λn are real numbers such that∑n

i=1 λi = 0, then there is a nonnegative matrix A ∈ S0(Kn) such that spec(A) = {λ1, . . . , λn}.

Observe that K1∨Kn−1 = Kn. As a result of Theorem 4.7, any spectrum with n−1 negative eigenvalues

can be realized by some matrix in S0(Kn). The next result converts a spectrum guaranteed by Theorem 4.7

to an ordered multiplicity list (using r = ℓ− 1).

Corollary 4.8. For any s positive integers m1, . . . ,ms such that m1 + · · ·+ms = n− 1,

(m1, . . . ,ms, 1), (1,ms, . . . ,m1) ∈ m0(Kn).

For any s positive integers m1, . . . ,ms such that m1 + · · ·+ms = n− r,

(m1, . . . ,ms, r − 1, 1), (1, r − 1,ms, . . . ,m1) ∈ m0(Kr ∨Kn−r).

Corollary 4.9. For 2 ≤ r < n, q0(Kr ∨Kn−r) ≤ 3.

Proposition 4.10. For n ≥ 5, q0(Kn−2 ∨K2) = 3.

Proof. Observe that the maximum order of a generalized cycle of Kn−2∨K2 is 4, so MR0(Kn−2∨K2) = 4

by Theorem 1.1. Since 4 < n, q0(Kn−2 ∨K2) ≥ 3 by Proposition 2.8. Corollary 4.9 completes the proof.

It was shown in [7] that mr0(Kn) = 3 for n ≥ 3. In particular, if n ≥ 3 and Tn is the matrix whose

(i, j)-entry is (i − j)2, then rankTn = 3. Since Tn is a primitive nonnegative matrix, ρ(Tn) > |λ| for every

eigenvalue λ ̸= ρ(Tn). Thus spec(Tn) = {µ1, µ2, 0
(n−3),−µ1 − µ2}.

Balanced tripartite graphs.

Proposition 4.11. For k ≥ 1, (r, 2r), (2r, r) ∈ m0(Kr,r,r) and q0(Kr,r,r) = 2.

Proof. Choose two r × r orthogonal matrices V and W such that there is no zero entry in any of V ,

W , and VWT (creating V and W by choosing random vectors and applying the Gram–Schmidt process will

produce such matrices with high probability). Define a 3r × 3r orthogonal matrix
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U =

[
U11 U12

U21 U22

]
where U12 =

[
1√
3
V

1√
3
Ir

]
and U22 =

1√
3
W.

Define M = U(I2r ⊕−2Ir)U
T . Then

M =

[
U11 U12

U21 U22

] [
I2r O2r,r

Or,2r −2Ir

] [
UT
11 UT

21

UT
12 UT

22

]
=

[
U11U

T
11 − 2U12U

T
12 U11U

T
21 − 2U12U

T
22

U21U
T
11 − 2U22U

T
12 U21U

T
21 − 2U22U

T
22

]
.

Since U is orthogonal:

• U11U
T
11 − 2U12U

T
12 = I2r − 3U12U

T
12 =

[
Or −V

−V T Or

]
.

• U11U
T
21 − 2U12U

T
22 = −3U12U

T
22 =

[
−VWT

−WT

]
.

• U21U
T
21 − 2U22U

T
22 = Ir − 3U22U

T
22 = Or.

Thus

M =

 Or −V −VWT

−V T Or −WT

−WV T −W Or

 ∈ S0(Kr,r,r).

Observe that spec(M) = {(−2)(r), 1(2r)}, so (r, 2r) ∈ m0(Kr,r,r) and 2 = q(A) = q0(G).

Hypercubes. For the hypercube, q0(Qd) = q(Qd) = 2 by [1] and Corollary 2.13. Furthermore, every

ordered multiplicity list of length 2d−k and of the form (2k, . . . , 2k) can be realized by a matrix in S0(Qd)

as follows: Apply Proposition 2.18 to choose a matrix in S0(Qd−k) having all distinct nonzero eigenvalues.

Apply Lemma 2.11 to construct a matrix with ordered multiplicity list (2k, . . . , 2k).

Cycles. The following information about minimum hollow rank is known for cycles [7]: If n is even, then

mr0(Cn) = mr(Cn) = n − 2, i.e., M0(Cn) = M(Cn) = 2. If n is odd, then mr0(Cn) = n, i.e., M0(Cn) = 0.

This implies 0 cannot be an eigenvalue of A ∈ S0(Cn) for n odd. By Proposition 2.18, (1, 1, . . . , 1) ∈ m0(Cn)

for n ≥ 3. The flipped adjacency matrix of Cn is obtained from A(Cn) by replacing one symmetric pair of

1s by −1s; denote the flipped adjacency matrix by Fn. It is known m(Fn) = (2, 2, . . . , 2) if n is even and

m(Fn) = (1, 2, 2, . . . , 2) if n is odd [3]. Thus q0(Cn) = q(Cn) =
⌈
n
2

⌉
and MM0(Cn) = M(Cn) = 2 for all

n ≥ 3. Since q0(Cn) ≥ 3 for n ≥ 5 and 0 ̸∈ spec(A) for A ∈ S0(Cn) and n odd, no ordered multiplicity list

is hollow spectrally arbitrary for odd n ≥ 5.

Wheels.

Proposition 4.12. For even n ≥ 4, M0(Wn) = 1. For odd n ≥ 7, M0(Wn) = 3.

Proof. We apply Lemma 2.14 to establish M0(Wn) = 1 for even n ≥ 4 and M0(Wn) = 3 for odd n ≥ 7

even. Assume first that n ≥ 4 is even and let A be the adjacency matrix of C2k+1 where 2k + 1 = n − 1.

Then

spec(A) = {2} ∪

{(
2 cos

(
2jπ

2k + 1

))(2)

: j = 1, . . . , k

}
,

and w =
[
1, cos( 2π

2k+1 ), . . . , cos(
2(2k)π
2k+1 )

]T
is an eigenvector for λ = 2 cos( 2π

2k+1 ) that has every entry nonzero.

Define B as in Lemma 2.14. Then n− 1 = rankB ≥ mr0(Wn) ≥ mr0(Cn−1) = n− 1 (since Cn−1 is an odd

cycle).
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Now assume that n ≥ 7 is odd and let A be the adjacency matrix of C2k where 2k = n − 1. Then

spec(A) = {2,−2}∪
{(

2 cos( 2jπ2k )
)(2)

: j = 1, . . . , k − 1
}
andw =

[
1, cos( 2π2k ), . . . , cos(

2(2k−1)π
2k )

]T
is an eigen-

vector for λ = 2 cos( 2π2k ). Since n ≥ 7, λ ̸= 0. If k is odd, then every entry of w is nonzero. If k is even, then

w′ =
[
0, sin( 2π2k ), . . . , sin(

2(2k−1)π
2k )

]T
is also an eigenvector for λ = 2 cos( 2π2k ), and for an appropriate choice

of b, the linear combination bw +
√
1− b2w′ has every entry nonzero. Define B as in Lemma 2.14. Then

n− 3 = rankB ≥ mr0(Wn) ≥ mr0(Cn−1) ≥ mr(Cn−1) = n− 3.

Proposition 4.13. M0(W5) = 2, MM0(W5) = 3, and q0(W5) = 3.

Proof. Assume 5 is the dominating vertex and number the remaining vertices in cycle order.

We show first that mr0(W5) = 3, so M0(W5) = 2. Let B ∈ S0(W5). For any nonsingular matrix C,

rank(CTBC) = rankB. By choosing a suitable diagonal matrix C,

CTBC =


0 1 0 a b

1 0 1 0 c

0 1 0 1 d

a 0 1 0 e

b c d e 0

 ,

and it is straightforward to verify that rank(CTBC) ≥ 3. Observe that the rank of the adjacency matrix of

W5 is 3.

Since it is known that M+(W5) = 3 [6], Lemma 2.15 implies that MM0(W5) ≥ 3. Furthermore,

MM0(W5) ≤ M(W5) = 3.

To see that q0(W5) = 3, suppose to the contrary that we may find A ∈ S0(W5) with m(A) = (3, 2). By

Proposition 2.1, we may assume spec(A) = {−2(3), 3(2)}. Let B = A(5), so B ∈ S0(C4). By interlacing,

spec(B) = {−2(2), λ, 3}, and by the trace constraint (1.1), λ = 1. However, spec(B) is not symmetric about

the origin, which is required by Theorem 3.1 because C4 is bipartite. Hence, A cannot have m(A) = (3, 2)

which implies q0(W5) ≥ 3. Since MM0(W5) = 3, q0(W5) ≤ 3; therefore, q0(W5) = 3.

It is known that q(W5) = 2 since the IEP-G is solved for all graphs of order at most 5 (see [6]) so the

previous result shows that W5 is another example of a connected graph with q0(G) > q(G).

Proposition 4.14. The set of hollow ordered multiplicity lists of W5 is m0(W5) = {(3, 1, 1), (1, 1, 3),
(2, 1, 2), (2, 2, 1), (1, 2, 2), (2, 1, 1, 1), (1, 1, 1, 2), (1, 2, 1, 1), (1, 1, 2, 1), (1, 1, 1, 1, 1)}.

Proof. Assume 5 is the dominating vertex and number the remaining vertices in cycle order.

Suppose to the contrary that (1, 3, 1) ∈ m(W5). Then there exists a matrix A ∈ S0(W5) with spec(A) =

{α, β(3), γ} where α < β < γ. Let B = A(5). Then B ∈ S0(C4) and spec(B) = {λ, β(2), µ} where λ < β < µ

by interlacing and since MM0(C4) = 2. Since − spec(B) = spec(B), β = 0 and λ = −µ. But β = 0 implies

rankA = 2, a contradiction to M0(W5) = 2.

In all cases an ordered multiplicity list that can be realized can be reversed by considering the negative

of a realizing matrix. Lemma 2.15 implies that there exists a matrix B ∈ S0(W5) such that m1(B) =

M+(W5) = 3. Since q0(W5) = 3, this implies that (3, 1, 1) ∈ m0(W5). Since W5 has a C5 as a subgraph,

Proposition 2.18 implies (1, 1, 1, 1, 1) ∈ m0(W5). We exhibit matrices for the remaining lists:



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 38, pp. 661-679, September 2022.

677 Inverse eigenvalue and related problems for hollow matrices described by graphs

A212 =


0 1 0 −1 1

1 0 −1 0 1

0 −1 0 1 1

−1 0 1 0 1

1 1 1 1 0

 , A221 =


0 1 0 1

√
2

1 0 1 0
√
2

0 1 0 1
√
2

1 0 1 0
√
2√

2
√
2

√
2

√
2 0

 A2111 =



0 1√
6

0 1√
3

√
2
3

1√
6

0 1√
6

0 1
6

0 1√
6

0 1√
3

1√
6

1√
3

0 1√
3

0 2
√

2
3√

2
3

1
6

1√
6

2
√

2
3 0


,

A1121 = A(W5).

• spec(A212) = {(−2)(2), 0, 2(2)} and m(A212) = (2, 1, 2).

• spec(A221) = {(−2)(2), 0(2), 4} and m(A221 = (2, 2, 1).

• spec(A2111) = {−1(2), 0, 1
2

(
2−

√
3
)
, 1
2

(
2 +

√
3
)
} and m(A2111) = (2, 1, 1, 1).

• spec(A1121) = {−2, 1−
√
5, 0(2), 1 +

√
5} and m(A1121) = (1, 1, 2, 1).

4.2. Small graphs. In this section, we solve the HIEP-G for connected graphs of order at most 3 and

determine the possible ordered multiplicity lists for all graphs of order 4.

Order ≤ 3.

Observation 4.15.

K1: For A ∈ S0(K1), spec(A) = {0}.
K2: For A ∈ S0(K2), spec(A) = {−λ, λ} and for any λ ̸= 0 there is such an A.

P3: Since P3 = K1,2, spec(A) = {−λ, 0, λ} for A ∈ S0(P3) and for any λ ̸= 0 there is such an A.

Proposition 4.16. Let λ1 < λ2 < 0 be real numbers. Then for each of the multisets {λ(2)
1 ,−2λ1},

{2λ1, (−λ1)
(2)}, {λ1, λ2,−λ1 − λ2}, and {λ1 + λ2,−λ2,−λ1}, there is an A ∈ S0(K3) such that A has the

given spectrum. Furthermore, spec(A) has one of these forms for every A ∈ S0(K3).

Proof. Since mr0(K3) = 3 [7], zero cannot be an eigenvalue of any A ∈ S0(K3). Theorem 4.7 shows that

the spectra {λ(2)
1 ,−2λ1} and {λ1, λ2,−λ1 − λ2} can be realized by nonnegative matrices A ∈ S0(K3), and

the spectra {2λ1, (−λ)(2)} and {λ1 +λ2,−λ2,−λ1} can be realized by the negatives of such matrices. These

are the only possible forms that include at least two eigenvalues, do not have a zero eigenvalue, and satisfy

the trace condition.

Order 4. There are 6 connected graphs of order 4: P4, K1,3, C4 = K2,2, the paw graph (obtained by

adding an edge to K1,3), K4 − e (also called the diamond graph), and K4. The HIEP-G has been solved

for P4, K1,3, C4 = K2,2 (and is summarized in the next observation). In this section, we solve the HIEP-G

for disconnected graphs of order 4 and then determine the possible hollow ordered multiplicity lists for the

remaining three connected graphs.

Observation 4.17.

K1,3: spec(A) = {−λ1, 0
(2), λ1} for A ∈ S0(K1,3), and for any λ1 ̸= 0 there is such an A by Theorem 4.3.

C4: spec(A) = {−λ1, 0
(2), λ1} or spec(A) = {−λ2,−λ1, λ1, λ2} for A ∈ S0(C4), and for any λ1, λ2 ̸= 0

there is such an A by Theorem 4.3 since C4 = K2,2.

P4: spec(A) = {−λ2,−λ1, λ1, λ2} with 0 < λ1 < λ2 for A ∈ S0(P4), and any such spectrum can be

realized by some A ∈ S0(P4) by Corollary 4.2.

As noted in Observation 2.3, spectra of disconnected graphs can be obtained from spectra of their

connected components.
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Remark 4.18. Observe that a component isomorphic to K1 will always contribute 0 to the spectrum.

• If A ∈ S0(4K1), then spec(A) = {0(4)}.
• If A ∈ S0(K2 ⊔ 2K1), then spec(A) = {−λ1, 0

(2), λ1} where λ1 > 0, and for any λ1 > 0 there is

such an A ∈ S0(K2 ⊔ 2K1).

• For A ∈ spec(P3 ⊔ K1), spec(A) = {−λ1, 0
(2), λ1} where λ1 > 0 and for any λ1 > 0 there is such an

A ∈ S0(P3 ⊔ K1).

• For λ1 < λ2 < 0 and for each of the multisets {λ(2)
1 , 0,−2λ1}, {2λ1, 0, (−λ1)

(2)}, {λ1, λ2, 0,−λ1−λ2},
and {λ1 + λ2, 0,−λ2,−λ1}, there is an A ∈ S0(K3 ⊔ K1) such that A has the given spectrum. For

A ∈ spec(K3 ⊔ K1), spec(A) has one of these forms.

Proposition 4.19. The set of hollow ordered multiplicity lists of K4 is m0(K4) = {(3, 1), (1, 3), (2, 1, 1),
(1, 1, 2), (1, 2, 1), (1, 1, 1, 1)}, and mr0(K4) = 3.

Proof. By Proposition 4.6, (2, 2) ̸∈ m(K4). The ordered multiplicity lists (3, 1) and (1, 3) are realized

by the adjacency matrix and its negative (see Example 2.2). The ordered multiplicity lists (2, 1, 1), (1, 1, 2),

and (1, 2, 1) can be realized by Corollary 4.8. Since MR0(K4) = 4, (1, 1, 1, 1) ∈ m0(K4) by Proposition 2.18.

It is well known that mr0(K4) = 3 (see [7]).

Proposition 4.20. The set of hollow ordered multiplicity lists of K4 − e is m0(K4 − e) = {(2, 1, 1),
(1, 1, 2), (1, 1, 1, 1)}, and mr0(K4 − e) = 3.

Proof. Since (3, 1), (1, 3) ̸∈ m(K4 − e), (3, 1), (1, 3) ̸∈ m0(K4 − e). Since mr0(K4 − e) = 3 and removing

a degree 3 vertex from K4 − e produces P3, (1, 2, 1) ̸∈ m0(K4 − e) by Proposition 3.5.

Suppose A ∈ S(K4 − e) and (2, 2) ∈ m(A). Then by Proposition 3.9, there is an orthogonal matrix

U = [uij ] ∈ S0(K4), so every off-diagonal entry of U2 must be zero. If edge {1, 4} is the edge that was

deleted from K4, then (U2)1,2 = u1,3u3,2 ̸= 0. Thus (2, 2) ̸∈ m(A).

Since K4 − e = K2 ∨K2, the ordered multiplicity lists (2, 1, 1) and (1, 1, 2) can be realized by Corollary

4.8. Since MR0(K4 − e) = 4, (1, 1, 1, 1) ∈ m0(K4 − e) by Proposition 2.18.

Since K4 − e has an induced C3, mr0(K4) ≥ 3. Since K4 − e does not have a unique generalized cycle

of order 4, mr0(K4 − e) ≤ 3.

Proposition 4.21. Let G be the paw graph. Then the set of hollow ordered multiplicity lists of G is

m0(G) = {(2, 1, 1), (1, 1, 2), (1, 1, 1, 1)}, and mr0(G) = 4.

Proof. Since (3, 1), (1, 3), (2, 2) ̸∈ m(G) [6], (3, 1), (1, 3), (2, 2) ̸∈ m0(G). Since removing a degree 2

vertex from the paw produces P3, (1, 2, 1) ̸∈ m0(G) by Proposition 3.5.

The ordered multiplicity lists (2, 1, 1) and (1, 1, 2) can be realized by Lemma 2.4. Since MR0(G) = 4,

(1, 1, 1, 1) ∈ m0(G) by Proposition 2.18.

Note that mr0(G) = 4 since the paw has a unique generalized cycle of order 4 consisting of two disjoint

edges.

Conclusion. The hollow symmetric inverse eigenvalue problem of a graph is a natural part of the family

of inverse eigenvalue problems associated with a graph, which is a large and active research area. We have

laid the groundwork by developing tools for the study of the HIEP-G and applying them to solve the HIEP-G
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for complete bipartite graphs and graphs of small order. While the HIEP-G for paths has also been solved,

some common families such as cycles and complete graphs are left as open problems. We also establish

results for parameters directly related to the HIEP-G, including ordered multiplicity lists, maximum hollow

nullity, maximum hollow multiplicity, and minimum number of distinct eigenvalues of a hollow symmetric

matrix. These results could give intuition about families of graphs that might be interesting to investigate.
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