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Abstract: We study the weak convergence of conditional empirical copula
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1. Introduction

Since their formal introduction by Patton in [43, 44], conditional copulas have
become key tools to describe the dependence function between the components
of a random vector X :“ pX1, . . . , Xpq P R

p, given that another random vector of
covariates Z :“ pZ1, . . . , Zqq P R

q is observed. This concept, generalized in [21],
may be stated as an extension of Sklar’s famous theorem: for every borelian
subset A Ă R

q and every vector x P R
p, the conditional joint law of X given

pZ P Aq is written

F px|Aq :“ P
`

X ď x|Z P A
˘

“ CX|Z
`

PpX1 ď x1|Z P Aq, . . . ,PpXp ď xp|Z P Aq
ˇ

ˇZ P A
˘

, (1)

for some map CX|Zp¨|Z P Aq : r0, 1sp Ñ r0, 1s that is a copula (denoted as Cp¨|Aq

hereafter to be short). Note that we have denoted inequalities componentwise.
This will be our convention hereafter.

Now, Patton’s seminal paper ([43]) has been referenced more than 2 000 times
in the academic literature. The concept of conditional copulas (also sometimes
called “dynamic copulas” or “time-varying copulas”) has been applied in many
fields: economics ([37, 46]), financial econometrics ([11, 31, 45]), risk manage-
ment ([40, 42]), agriculture ([27]), actuarial science ([7, 19] and [12] more re-
cently), hydrology ([28, 33]), etc, among many others. The rise of pair-copula
constructions, particularly vine models ([1, 5, 6]) has fuelled the interest around
conditional copulas. Indeed, generally speaking, any p-dimensional distribution
can be described by ppp ´ 1q{2 bivariate conditional copulas and p margins.
Even if most vine models assume that such conditional copulas do not depend
in fact on their own conditioning variables (the so-called “simplifying assump-
tion”; see [13, 26, 29] and the references therein), no consensus has emerged.
Therefore, some recent papers propose some model specification for vines and
the associated inference procedures by working directly on conditional copulas:
see [36, 52, 59, 60], for instance.

Moreover, the statistical theory of conditional copulas is currently an active
research topic. In the literature, the conditioning subset A in (1) is most often
pointwise, i.e., the authors consider conditioning subsets tω P Ω : Zpωq “ zu for
some particular vector z P Rq. In such cases, we will denote Cp¨|Aq as Cp¨|Z “ zq.
Typically, in a semi-parametric model, it is assumed that CX|Zpx|Z “ zq “

Cθpzqpxq for some map z ÞÑ θpzq P R
m and the main goal is to statistically

estimate the latter link function, as in [2, 3, 4, 64]. Under a nonparametric point-
of-view, the main quantity of interest is rather the empirical copula process given
pZ “ zq. For instance, [25, 47, 65] study the weak convergence of such a process.

To the best of our knowledge, almost all the papers in the literature have fo-
cused on pointwise conditioning events until now. In a few papers, some box-type
conditioning events as A :“

śq
k“1pak, bkq are considered, where pak, bkq P R

2
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for every k P t1, . . . , qu. For example, [55], p.1127, discusses a Spearman’s rho
between two random variables X1 and X2, knowing that X1 and/or X2 is above
(or below) some threshold. Nonetheless, the limiting law of such a quantity is
not derived. In the same spirit, [17] estimates similar quantities for measuring
contagions between two markets, but they do not yield their asymptotic vari-
ances. They wrote that “this variance is usually difficult to get in a closed form
and can be estimated by means of a bootstrap procedure”. See [18] too. Indeed,
the limiting law of such statistics cannot be easily deduced from the asymptotic
behavior of the usual empirical copula process, and necessitates particular anal-
ysis (see below). The aim of our paper is to state general theoretical results that
allow to solve such problems.

Actually, such box-type conditioning events provide a natural framework in
many situations. For instance, it is often of interest to measure and monitor
conditional measures of association between the components of X given Z be-
longs to some particular areas in R

q, through a model-free approach. Therefore,
bank stress tests will focus on the events

�

ω|Zkpωq ą qZk , k P t1, . . . , qu
(

for
some quantiles qZk of Zk. Since the levels of the latter quantiles are often high,
it is no longer possible to rely on marginal or joint estimators given pointwise
conditioning events (kernel smoothing, e.g.). This justifies the bucketing of Z
values. Moreover, when dealing with high-dimensional vectors of covariates, dis-
cretizing the Z-space is often the only feasible way of measuring conditional
dependencies. Indeed, it is no longer possible to invoke usual nonparametric es-
timators, due to the usual curse of dimensionality. Since measures of association
are functions of the underlying copula, the key theoretical object will be here
the conditional copula Cp¨|Aq of X given pZ P Aq for some borelian subsets A,
and some of its nonparametric estimators.

Focusing on set-type conditioning events rather than pointwise conditioning
events to study dependencies induces an important change of perspective. The
interpretation of some empirical results has to be done with care, because the
relationship between the two types of conditional copulas is involved and may
be counter-intuitive. To illustrate, consider the very simple linear model X1 “

β1Z ` ε1, and X2 “ β2Z ` ε2, where ε1, ε2 and Z are mutually independent
random variables. Then, X1 and X2 are conditionally independent given pZ “

zq. Nonetheless, X1 and X2 are in general dependent given pZ P ra, bsq, pa, bq P

R
2. See Remark 1 and Section 3.1. in [13] for a deeper discussion.
The goal of this paper is threefold. First, in Section 2, we state the weak con-

vergence of the conditional empirical copula process indexed by borelian subsets
under minimal assumptions, extending [57] written for usual copulas; we also
state an analogous result when the conditioning subset is random. Second, we
prove the validity of the exchangeable bootstrap scheme for the latter process
in Section 3. We show that the usual nonparametric Efron’s bootstrap ([20])
can still be applied. Third, Section 4 introduces a family of general “condi-
tional” measures of association as mappings of the latter copulas. This family
virtually includes and generalizes all measures that have been introduced until
now. We apply our theoretical results to prove their asymptotic normality. It is
important to note that our results obviously include the particular case of no
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covariate/conditioning event. Therefore, we contribute to the literature on usual
copulas as much as on conditional copulas. In the Supplementary Material [14],
Section A provides an empirical application of conditional copulas with data-
driven conditioning events to study conditional dependencies between returns
on stock prices.

2. Weak convergence of empirical copula processes

2.1. Empirical copula processes indexed by families of subsets

Let us fix the law of pX,Zq P R
p`q and consider a family A of borelian subsets

in R
q satisfying the following regularity condition.

Condition 1. The class of subsets A is Donsker and pA :“ PpZ P Aq is larger
than a constant p ą 0 for every A P A. Moreover, the conditional margins
Fkp¨|Z P Aq are continuous, for any k P t1, . . . , pu and any A P A.

Note that this property implicitly depends on the probability distribution of
the random vector Z. On the other hand, most standard conditioning subsets
(intervals, boxes, e.g.) are universally Donsker and the latter point is always
satisfied in this case.

To fix notations, let
`

pX1,Z1q, . . . , pXn,Znq
˘

be an i.i.d. sample of realiza-
tions of pX,Zq and denote by A a particular element of A. The conditional
copula of X given the event pZ P Aq, that will simply be denoted by Cp¨|Aq, can
be estimated by

Ĉnpu|Aq :“ 1
np̂A

n
ÿ

i“1
1
`

Fn,1pXi,1|Aq ď u1, . . . , Fn,ppXi,p|Aq ď up,Zi P A
˘

, where

Fn,kpt|Aq :“ 1
np̂A

n
ÿ

i“1
1pXi,k ď t,Zi P Aq, for k P t1, . . . , pu,

p̂A :“ n´1
n
ÿ

i“1
1pZi P Aq “: nA

n
» pA.

Note that nA is the size of the sub-sample of the observations Xi such that
Zi P A. It is a random integer in t0, 1, . . . , nu. When nA “ 0, p̂A “ 0 and
Fn,kp¨|Aq can be set to any distribution, formally.

Remark 1. Since A is a Donsker class, supAPA
?
n|p̂A ´pA| “ OP p1q and then

infAPA p̂A ě p`oP p1q. Therefore, with a probability that tends to 1, infAPA nA ą

0 and we will consider in the following that this event holds.

The copula process associated with A is denoted as Ĉnp¨|Aq, i.e., Ĉnpu|Aq :“
?
n
`

Ĉnpu|Aq ´ Cpu|Aq
˘

for any u P r0, 1sp. Equivalently, one can define the
empirical copula as

Cnpu|Aq :“ 1
np̂A

n
ÿ

i“1
1
`

Xi,1 ď F´1
n,1pu1|Aq, . . . , Xi,p ď F´1

n,ppup|Aq,Zi P A
˘

,
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invoking usual generalized inverse functions: F´1puq :“ inftt P R|F ptq ě uu for
every univariate distribution F . Then, the associated copula process becomes
Cnp¨|Aq, where

Cnpu|Aq :“
?
n
`

Cnpu|Aq ´ Cpu|Aq
˘

, u P r0, 1s
p.

Actually, the two latter processes Ĉn and Cn can be seen as random maps from
r0, 1sp ˆ A to R, respectively pu, Aq ÞÑ Ĉnpu|Aq and pu, Aq ÞÑ Cnpu|Aq. In this
section, we state the weak convergence of Ĉnp¨|¨q and Cnp¨|¨q in �8pr0, 1sp ˆAq.

First, note that the asymptotic behaviors of Ĉn and Cn are the same. Indeed,
adapting the same arguments as in [48], Appendix C, it is easy to check that

sup
uPr0,1sp

ˇ

ˇpĈn ´ Cnqpu|Aq
ˇ

ˇ ď
p

np̂A
,

everywhere. Since infAPA p̂A ě p ` oP p1q (Remark 1), we deduce

sup
APA

sup
uPr0,1sp

ˇ

ˇ

?
npĈn ´ Cqpu|Aq ´

?
npCn ´ Cqpu|Aq

ˇ

ˇ ď
1

?
npp ` oP p1qq

, (2)

that tends to zero in probability, i.e. }Ĉn ´ Cn}8 “ oP p1q. Therefore, the weak
limits of Ĉn and Cn (in particular of Ĉnp¨|Aq and Cnp¨|Aq for a fixed subset
A P A) will be the same.

Second, note that the random variable UA
k :“ FkpXk|Z P Aq is uniformly

distributed on r0, 1s, given pZ P Aq, for every k P t1, . . . , pu. We denote by UA

the unobservable random vector pUA
1 , . . . , UA

p q.

Condition 2. For every k P t1, . . . , pu and A P A, the partial derivative
BkCpu|Aq of Cp¨|Aq w.r.t. uk exists and is continuous on the set Vk :“ tu P

r0, 1sp, 0 ă uk ă 1u. Moreover, the map u ÞÑ BkCpu|Aq is uniformly continuous
on tu P r0, 1sp, uk P rδ, 1 ´ δsu and uniformly w.r.t. A P A, for any δ P p0, 1{2q.

When there is no conditioning subset, the latter assumption is the standard
“minimal” regularity condition, as stated in [57], so that the usual empirical
copula process weakly converges in �8pr0, 1spq. Following [57, Equation (2.2)],
we extend the definition of BkCpu|Aq for u P r0, 1spzVk so that the function
BkCp¨|Aq is defined and continuous on the closed hypercube r0, 1sp.

Theorem 2. If Conditions 1 and 2 hold, then Ĉn and Cn weakly tend to a
centered Gaussian process C8 in �8pr0, 1sp ˆ Aq, where

C8pu|Aq :“ Bpu, Aq

pA
´

p
ÿ

k“1

BkCpu|Aq

pA

!

B
`

puk,1´kq, A
˘

´ ukBp1, Aq

)

´
Cpu|Aq

pA
Bp1, Aq, (3)

puk,1´kq :“ p1, . . . , 1, uk, 1, . . . , 1q with uk in k-th position, and B is a Brownian
bridge on r0, 1sp ˆ A, whose covariance function is given by

E
“

Bpu, AqBpu1, A1
q
‰

“ PpUA
ď u,UA1

ď u1,Z P A X A1
q
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´ PpUA
ď u,Z P AqPpUA1

ď u1,Z P A1
q, (4)

for every pu,u1q P r0, 1sp and pA,A1q P A2.

Theorem 2 is proved at the end of this section. By simple calculations, we
can explicitly write the covariance function of the limiting conditional copula
process C8. Moreover, the latter covariance can be empirically estimated: see
the Supplementary Material, Section C.

When there is no conditioning subset, or when A “ tRqu equivalently, then
pA “ 1 and Bp1, Aq “ 0 a.s. because its variance is zero. In this case, C8pu|Aq

is the well-known weak limit of the usual empirical copula process, as stated
in [20, 57]. Nonetheless, we stress that Theorem 2 cannot be straightforwardly
deduced from the weak convergence of usual empirical copula processes, due to
the dependencies between X and Z.

Remark 3. Theorem 2 is not a consequence of Theorem 5 in [48] either, where
the authors state the weak convergence of the usual empirical copula process in
�8pGq for some set of functions G from r0, 1sp to R. Indeed, first, such functions
are assumed to be right-continuous and of bounded variation (in the sense of
Hardy-Krause; see [48]) while we consider general borelian subsets A. Second
and more importantly, it is not possible to recover our processes Ĉnp¨|Aq or
Cnp¨|Aq of interest with some quantities

ş

g dCn for some particular function g
and an usual empirical copula process Cn.

Let us apply the latter results to a finite family A :“ tA1, . . . , Amu of borelian
subsets of Rq such that pAj :“ PpZ P Ajq ą 0 for every j P t1, . . . ,mu and a
given m ą 0. The subsets in A may be disjoint or not. Theorem 2 yields the
weak convergence of the process 	Cnp¨|Aq defined on r0, 1smp as

	Cnp	u|Aq :“
`

Cnpu1|A1q, . . . ,Cnpum|Amq
˘

,

for every uj P r0, 1sp, j P t1, . . . ,mu, where 	u :“ pu1, . . . ,umq.

Corollary 4. If, for every j P t1, . . . ,mu, pAj ą 0 and Condition 2 holds
for A “ tA1, . . . , Amu, then 	Cnp¨|Aq weakly tends to a multivariate centered
Gaussian process 	C8p¨|Aq in �8pr0, 1smp,Rmq, where

	C8p	u|Aq :“
`

C8pu1|A1q, . . . ,C8pum|Amq
˘

, uj P r0, 1s
p, j P t1, . . . ,mu,

with the same notations as in Theorem 2.

The latter result is obviously true replacing Cn with Ĉn. It will be useful
for building and testing the relevance of some partitions A of the space of
covariates, in the spirit of Pearson’s chi-square test. Typically, this means testing
the equality between the copulas Cnp¨|Ajq and Cnp¨|Akq for several couples
pj, kq P t1, . . . ,mu2.

We can specify the covariance function of 	C8p	u|Aq and 	C8p	u1|Aq, for any
vectors 	u and 	u1 in r0, 1smp by recalling the expression of C8, see Equation (3).
Note that we have not imposed that the subsets Aj are disjoint. Nonetheless, in
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the case of a partition (disjoint subsets Aj), our calculations become significantly
simpler because of the nullity of PpUAj ď uj ,UAk ď uk,Z P Aj X Akq when
j ‰ k, see Equation (4).

The rest of this section is devoted to the proof of Theorem 2.
1. Reduction to Dn. For every k P t1, . . . , pu, the empirical distribution of the

unobservable random variable UA
k given the event pZ P Aq is

Gn,kpu|Aq :“ n´1
A

n
ÿ

i“1
1pUA

i,k ď u,Zi P Aq, UA
i,k :“ FkpXi,k|Z P Aq, i P t1, . . . , nu.

Note that Gn,kpu|Aq and Fn,kpt|Aq can be seen as an average of nA indicator
functions, i.e., an average on a sub-sample of observations whose size is random.
Obviously, Gn,kpu|Aq tends to PpUA

k ď u|Z P Aq “ u almost surely and its
associated empirical process will be αn,kpu|Aq :“ ?

nA

`

Gn,kpu|Aq´u
˘

, u P r0, 1s.
Note that the normalizing sample size is random here, contrary to the usual
empirical processes. Nonetheless, this will not be a source of worry to state
some asymptotic behaviors hereafter and nA could be replaced by npA in the
definition of αn,kp¨|Aq. Then, set

Dnpu, Aq :“ n´1
n
ÿ

i“1
1
`

UA
i,1 ď G´1

n,1pu1|Aq, . . . , UA
i,p ď G´1

n,ppup|Aq,Zi P A
˘

,

for any u P r0, 1sp, that tends to

Dpu, Aq :“ PpUA
ď u,Z P Aq “ pAPpUA

ď u|Z P Aq

almost surely. Note that
`

Xi,k ď F´1
n,kpu|Aq

˘

if and only if
`

UA
i,k ď G´1

n,kpu|Aq
˘

for any k P t1, . . . , pu, i P t1, . . . , nu and u P r0, 1s. This implies

Cnpu|Aq “ Dnpu, Aq{p̂A “ Dnpu, Aq{Dnp1, Aq.

Therefore, the asymptotic behavior of Cn will be deduced from the weak conver-
gence of the process Dn, where Dnpu, Aq :“

?
npDn ´Dqpu, Aq, since Cpu|Aq “

PpUA ď u|Z P Aq “ Dpu, Aq{Dp1, Aq. Simple algebra yields

Cnpu|Aq :“
?
n
�

Cnpu|Aq ´ Cpu|Aq
(

“
?
n

#

Dnpu, Aq

Dnp1, Aq
´

Dpu, Aq

Dp1, Aq

+

“
?
nDnpu, Aq

#

1
Dnp1, Aq

´
1

Dp1, Aq

+

`

?
npDn ´ Dqpu, Aq

Dp1, Aq

“ Dnpu, Aq

?
npDp1, Aq ´ Dnp1, Aqq

Dnp1, AqDp1, Aq
`

?
npDn ´ Dqpu, Aq

Dp1, Aq

“
Dnpu, Aq

pA
´ Dpu, Aq

Dnp1, Aq

p2
A

` oP p1q. (5)

Then, the result will follow if we find the weak limit of Dn. To this aim, we now
introduce two auxiliary related processes Dn and rDn.
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2. Weak convergence of Dn. The unfeasible empirical counterpart of Dpu, Aq

is
Dnpu, Aq :“ n´1

n
ÿ

i“1
1
`

UA
i ďu,Zi PA

˘

.

A key process is Dn :“
?
n
`

Dn´Dq that is seen as a random map from r0, 1spˆA
to R. As A is Donsker, this is still the case for the family of maps D :“ tfu,A;u P

r0, 1sp, A P Au, where

fu,A : px, zq ÞÑ 1px1 ď F´
1 pu1|Aq, . . . , xp ď F´

p pup|Aq, z P Aq, (6)

due to the permanence of the Donsker property (Example 2.10.8 in [63]). Note
that Dnpu, Aq “

?
n
ş

fu,Apx, zq dpPn ´ P qpx, zq a.s., i.e., it is a usual empirical
process indexed by a family of maps. Thus, Dn weakly tends in �8pr0, 1sp ˆ Aq

to a Gaussian process.
3. Reduction to rDn. We now define the instrumental empirical process

rDnpu, Aq :“ Dnpu, Aq ´ p´1
A

p
ÿ

k“1
BkD

`

u, A
˘

!

Dn

`

puk,1´kq, A
˘

´ ukDnp1, Aq

)

,

(7)
denoting by BkDpu, Aq the partial derivative of the map u ÞÑ Dpu, Aq w.r.t. uk.
This new process rDn will yield a nice approximation of the process of interest
Dn, as stated in the theorem below.

Theorem 5. If Conditions 1-2 hold, then

sup
APA,uPr0,1sp

|pDn ´ rDnqpu, Aq| “ oP p1q.

See the proof in the Supplementary Material, Section B.1. Note that rDn

differs from the asymptotic approximation of the usual empirical copula process:
compare rDn with Equation (3.2) and Proposition 3.1 in [57], for instance. This is
due to the additional influence of the random sample size nA, or, equivalently,
the randomness of p̂A. This stresses that our results are not straightforward
applications of the existing results in the literature.

Since the process Dn is weakly convergent in �8pr0, 1sp ˆ Aq, we obtain the
weak convergence of rDn and then of Dn in the same space.

Corollary 6. If Conditions 1 and 2 hold, then the process Dn weakly converges
in �8pr0, 1sp ˆ Aq towards the centered Gaussian process D8, where

D8pu, Aq :“ Bpu, Aq ´ p´1
A

p
ÿ

k“1
BkD

`

u, A
˘

!

B
`

puk,1´kq, A
˘

´ ukBp1, Aq

)

,

for every u P r0, 1sp and A P A.

4. End of the proof of Theorem 2. We deduce from (5) and Corollary 6 that
Cn is weakly convergent in �8pr0, 1sp ˆ Aq, with limit

C8pu|Aq “
D8pu, Aq

pA
´ Dpu, Aq

D8p1, Aq

p2
A

,
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finishing the proof of Theorem 2. l

Remark 7. From (5), Theorem 5 and (7), note that

Cnpu|Aq “
rDnpu, Aq

pA
´ Dpu, Aq

rDnp1, Aq

p2
A

` oP p1q.

Since Dpu, Aq “ Cpu|AqpA and D
`

puk,1´kq, A
˘

“ ukpA, we deduce another
insightful asymptotic representation of Cn:

Cnpu|Aq “
1

pA
?
n

n
ÿ

i“1

�

1pUi ď uq ´ Cpu|Aq
(

1pZi P Aq

´
1

pA
?
n

p
ÿ

k“1
BkCpu|Aq

n
ÿ

i“1

�

1pUik ď ukq ´ uk

(

1pZi P Aq ` oP p1q. (8)

The previous expansion (8), suggested by a reviewer, clearly shows the close
link between the usual empirical copula process and its conditional version we
consider here.

2.2. Empirical copula processes conditionally on random subsets

For each n ě 1, let An be a random borelian subset that depends on a sample
of observations Sn :“ tX1,Z1, . . . ,Xn,Znu. Assume that An P A almost surely.
Let A8 P A be a fixed subset that will be considered as “the limit of An”.
Consider a couple pX,Zq that is independent of the sample Sn. We focus on the
law of X given the event pZ P Anq, especially its underlying copula. Therefore,
define

F px|Anq :“ P
`

X ď x
ˇ

ˇAn ,Z P An

˘

“
P
`

X ď x,Z P An

ˇ

ˇAn

˘

P
`

Z P An

ˇ

ˇAn

˘ ,

for any x P R
p. Due to the fact that An is a set-valued random variable, note

that the random variable defined above is different from the real number

F px|Z P Anq :“ P
`

X ď x
ˇ

ˇZ P An

˘

“
P
`

X ď x,Z P An

˘

P
`

Z P An

˘ ,

where the latter probabilities are relative to the joint law of pX,Z,Snq. Similarly,
we define the (random) conditional copula Cp¨|Anq as the copula of the random
distribution F p¨|Anq. The process of interest will be

?
n
�

Cnp¨|Anq ´ Cp¨|A8q
(

and we want to state some sufficient conditions to obtain its weak convergence
in �8

`

r0, 1sp
˘

.
First note that

?
n
�

Cnp¨|Anq ´ Cp¨|A8q
(

“ Cnp¨|A8q `
?
n
�

Cp¨|Anq ´ Cp¨|A8q
(

`
�

Cnp¨|Anq ´ Cnp¨|A8q
(

“: R1,n ` R2,n ` R3,n. (9)
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The results of Section 2.1 typically insure the weak convergence of R1,n in
�8

`

r0, 1sp
˘

. The behavior of the second term R2,n depends on the definition
of An and the regularity of Cp¨|A8q. Globally, in many cases, R1,n ` R2,n will
be weakly convergent to a Gaussian process. To deal with R3,n, recall (6) and
assume that “A8 is the limit of An” in the following sense.

Condition 3.
sup

uPr0,1sp
P
`

fu,An ´ fu,A8

˘2 P
ÝÑ
nÑ8

0.

Let us state some sufficient conditions so that Condition 3 applies.

Proposition 8. Condition 3 is satisfied when

(i) every map t ÞÑ Fkpt|Aq is strictly increasing for every A P A, and
(ii) P pZ P An�A8|Anq tends to zero with n almost surely.

Denote by Fn,Z the empirical c.d.f. of pZ1, . . . ,Znq and by DpRqq the set of
all cumulative distribution functions on R

q.

Condition 4. There exists a map H : DpRqq Ñ �8pr0, 1spq s.t. Cp¨|Anq “

H
`

Fn,Z
˘

, and Cp¨|A8q “ H
`

FZ
˘

. Moreover, H is Hadamard differentiable
at FZ.

Theorem 9. Assume Conditions 1-4 hold. Then,
?
n
�

Cnp¨|Anq ´ Cp¨|A8q
(

weakly tends to a centered Gaussian process in �8
`

r0, 1sp
˘

.

The proofs of Theorem 9 and Proposition 8 can be found in the Supplemen-
tary Material, Section B.2.

We now give sufficient conditions so that the map H in Condition 4 is
Hadamard-differentiable.

Proposition 10. Assume Conditions 1-2 hold. Moreover, assume that there
exists a map rH : DpRqq Ñ �8pr0, 1spq such that F p¨|A8q “ rHpFZq, F p¨|Anq “

rHpFn,Zq, and such that rH is Hadamard-differentiable at FZ. Then Condition 4
applies.

Proof. Let φ : DpRpq Ñ �pr0, 1spq be the function that maps a cdf to its copula.
Then φ is Hadamard-differentiable by Theorem 2.4 in [9]. Conclude by the chain
rule since H “ φ ˝ rH.

Example 11. It is natural to define An :“
Śp

k“1
“

akpFn,Zq, bkpFn,Zq
‰

, for
some regular maps ak and bk, ak ă bk, k P t1, . . . , pu. Obviously, set A8 :“
Śp

k“1
“

akpFZq, bkpFZq
‰

. Assume the latter maps ak and bk are Hadamard dif-
ferentiable at FZ. Typically, this is the case when akpFn,Zq “ F´

n,Zpqkq for some
constants qk P p0, 1q and every k, and similarly for the maps bk. In other words,
the boxes An can be defined through the empirical quantiles of the Z’s compo-
nents. By the chain rule, we deduce there exists an Hadamard-differentiable rH
such that

F p¨|Anq “ PpX ď ¨,Z P An|Anq{PpZ P An|Anq “ rHpFn,Zq,
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and similarly F p¨|A8q “ rHpFZq. Thus, we can apply Proposition 10. If, in
addition, Conditions 1-3 are fulfilled, then Theorem 9 applies too.

3. Bootstrap approximations

The limiting laws of the previous empirical processes Ĉn, Cn are complex. There-
fore, it is difficult to evaluate the weak limits of some functionals of the latter
processes. This point is particularly crucial for the estimation of the asymptotic
variances or the p-values of some test statistics that may be built from Ĉn or
Cn. The usual answer to this problem is to rely on bootstrap. In this section, we
study the validity of some bootstrap schemes for our particular empirical copula
processes. We will prove the validity of the general exchangeable bootstrap for
such processes, a result that has never been formally stated in the literature
even in the case of usual copulas, to the best of our knowledge. Moreover, we
extend the nonparametric bootstrap and the multiplier bootstrap techniques to
the case of conditioning events that have a non-zero probability (the case of
pointwise events is dealt in [41]).

3.1. The exchangeable bootstrap

For the sake of generality, we rely on the exchangeable bootstrap (also called
“wild bootstrap” by some authors), as introduced in [63]. For every n, let Wn :“
pWn,1, . . . ,Wn,nq be an exchangeable nonnegative random vector and Wn :“
pWn,1, . . . ,Wn,nq{n its average. For any borelian subset A, pA ą 0, the weighted
empirical bootstrap process of Dnp¨, Aq that is related to our initial i.i.d. sample
pXi,Ziqi“1,...,n is defined as

D
˚
npu, Aq :“ 1

?
n

n
ÿ

i“1
Wn,i1

!

Xi,1 ď F´1
n,1pu1|Aq, . . . , Xi,p ď F´1

n,ppup|Aq,Zi P A
)

´
?
nWnDnpu, Aq .

We require some standard conditions on the weights (Theorem (3.6.13) in [63]).

Condition 5.
sup
n

ż 8

0

b

P
`

|Wn,1 ´ Wn| ą t
˘

dt ă 8,

n´1{2
E
“

max
1ďiďn

|Wn,i ´ Wn|
‰

Ñ 0, and n´1
n
ÿ

i“1
pWn,i ´ Wnq

2 P
ÝÑ 1.

Note that D˚
npu, Aq can be calculated, contrary to Dnp¨, Aq. Since its asymp-

totic law will be “close to” the limiting law of Dnp¨, Aq when n tends to the
infinity, resampling the vector Wn many times allows the calculation of many
realizations of D˚

npu, Aq, given the initial sample. This will yield a numerical way
of approximating the limiting law of Dnpu, Aq or some functionals of the latter
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process. We recover the usual and fruitful idea of most resampling techniques.
Here, our goal is to formally state the validity of this approach.

Consider the same set A of borelian subsets as in Section 2. The same reason-
ing will apply to the copula processes Ĉn and Cn (seen as processes indexed by
pu, Aq P r0, 1sp ˆ A), due to the relationships (7) and (5): to prove the validity
of an exchangeable bootstrap scheme for the latter copula processes, we first
approximate the unfeasible process Dn by the weighted empirical bootstrapped
process D

˚
n; second, we invoke Theorem 5 to obtain a similar results for Dn;

third, we use the relationship between Dn and Cn and deduce a bootstrap ap-
proximation for our “conditioned” copula processes.

To be specific, for any integer M , consider M independent realizations of
the vector of weights Wn (that are independent of the initial sample), and the
associated processes D

˚
n,k, k P t1, . . . ,Mu. We first prove the validity of our

bootstrap scheme for Dn. Denote by D˚
n,M the process defined on

`

r0, 1sp ˆ

A
˘M`1 as

D˚
n,M pu0, A0,u1, A1, . . . ,uM , AM q

:“
`

Dnpu0, A0q,D˚
n,1pu1, A1q, . . . ,D˚

n,M puM , AM q
˘

,

for every vectors u0, . . . ,uM in r0, 1sp and every subsets Ak P A, kPt0, 1, . . . ,Mu.
Moreover, denote by 	B8 a process on

`

r0, 1sp ˆA
˘M`1 that concatenates M `1

independent versions of the Brownian bridge B introduced in Corollary 6.

Theorem 12. Under Conditions 1, 2, and 5, for any M ě 2 and when n Ñ 8,
the process D˚

n,M weakly tends to 	B8 in �8

´

`

r0, 1sp ˆ A
˘M`1

,RM`1
¯

.

See the proof in the Supplementary Material, Section B.3. The latter result
validates the use of the considered bootstrap scheme. In particular, it implies
the weak convergence of D˚

n,M p¨, A0, ¨, A1, . . . , ¨, AM q, seen as a random map
from r0, 1sppM`1q to R

M`1.
Therefore, we can easily build a bootstrap counterpart of rDn, and then of Dn.

Recalling Equation (7), we evaluate the partial derivatives of Dp¨, Aq as in [34]:
for any A P A and every u P r0, 1sp, we approximate BkDpu, Aq by

yBkDpu, Aq :“ 1
u`
k,n ´ u´

k,n

!

Dnpu´k, u
`
k,n, Aq ´ Dnpu´k, u

´
k,n, Aq

)

, (10)

where u`
k,n :“ minpuk ` n´1{2, 1q, u´

k,n :“ maxpuk ´ n´1{2, 0q and with obvious
notations. Now, the bootstrapped version of rDnpu, Aq is defined as

rD
˚
npu, Aq :“ D

˚
npu, Aq ´ p̂´1

A

p
ÿ

k“1

yBkD
`

u, A
˘

!

D
˚
n

`

puk,1´kq, A
˘

´ ukD
˚
np1, Aq

)

.

(11)
Importantly, note that the latter process is a valid bootstrapped approximation
of Dnpu, Aq too, because rDn and Dn have the same limiting law (Theorem 5).
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Denote by D˚

n,M the process defined on
`

r0, 1sp ˆ A
˘M`1 by

D˚

n,M pu0, A0,u1, A1, . . . ,uM , AM q

:“
`

Dnpu0, A0q, rD˚
n,1pu1, A1q, . . . , rD˚

n,M puM , AM q
˘

.

Moreover, denote by D8 a process on
`

r0, 1sp ˆA
˘M`1 that concatenates M `1

independent versions of D8, as defined in Corollary 6. Then, we are able to state
the validity of the exchangeable bootstrap for Dn.

Theorem 13. If Conditions 1, 2, and 5 hold, then the process D˚

n,M weakly
tends to D8 in �8

´

`

r0, 1sp ˆ A
˘M`1

,RM`1
¯

.

Proof. With the same arguments as in the proof of Proposition 2 in [34], it can
be proved that supuPr0,1sp | yBkDpu, Aq| ď 5 for every k P t1, . . . , pu and every
A P A. Moreover, by Lemma 2 in [34] and recalling the uniform continuity of
u ÞÑ BkDpu, Aq (Condition 2), we have, for every a, b s.t. 0 ă a ă b ă 1,

sup
APA

sup
u´kPr0,1sp´1

sup
ukPra,bs

|BkDpu, Aq ´ yBkDpu, Aq|
P

ÝÑ 0.

By applying the same arguments as in Proposition 3.2 in [57], we obtain the
result.

Recalling Equation (5), we deduce an exchangeable bootstrapped version of
Cn, defined as

rC
˚
npu|Aq :“

rD
˚
npu, Aq

p̂A
´ Dnpu, Aq

rD
˚
np1, Aq

p̂2
A

¨ (12)

Still considering M independent random realizations of Wn, we finally introduce
the joint process C˚

n,M whose trajectories are

pu0, A0,u1, A1, . . . ,uM , AM q ÞÑ C˚
n,M pu0, A0, . . . ,uM , AM q

:“
`

Cnpu0|A0q, rC˚
n,1pu1|A1q, . . . , rC˚

n,M puM |AM q
˘

,

for every u0, . . . ,uM in r0, 1sp and Ak P A, k P t0, . . . ,Mu.

Corollary 14. If Conditions 1, 2, and 5 hold, then, for every M ě 2 and
when n Ñ 8, the process C˚

n,M, weakly tends in �8

´

`

r0, 1sp ˆ A
˘M`1

,RM`1
¯

to a process that concatenates M ` 1 independent versions of C8, as defined in
Theorem 2.

Therefore, we can approximate the limiting law of Cnpu|Aq by the law of
rC

˚
npu|Aq, that is obtained by simulating many times independent realizations

of the vector of weights Wn, given the initial sample pXi,Ziqi“1,...,n. The same
result applies with a finite family A1, . . . , Am of subsets in A
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Remark 15. Let pξiqiě1 be a sequence of i.i.d. random variables, with mean
zero and variance one. Formally, we can set Wn,k “ ξk for every n and every
k P t1, . . . , nu, even if the ξi are not always nonnegative. The same formulas
as before yield some feasible bootstrapped processes that are similar to those ob-
tained with the multiplier bootstrap of [49], or in [57], Prop. 3.2. With the same
techniques of proofs as above, it can be proved that this bootstrap scheme is valid,
invoking Theorem 10.1 and Corollary 10.3 in [35] instead of Theorem 3.6.13
in [63]. Therefore, we can state that Corollary 14 applies, replacing Wn with
i.i.d. normalized weights. In other words, the multiplier bootstrap methodology
applies with empirical copula processes “indexed by” borelian subsets.

3.2. The nonparametric bootstrap

When Wn is drawn along a multinomial law with parameter n and probabilities
p1{n, . . . , 1{nq, we recover the original idea of Efron’s nonparametric bootstrap,
here applied to the estimation of the limiting law of Dn. Nonetheless, our final
bootstrap counterparts rC

˚
n for Ĉn or Cn are not the same as the commonly

met nonparametric bootstrap processes. In particular, our techniques require
the estimation of some partial derivatives (see (10) and (11)), as in the popular
multiplier bootstrap proposed in [49]. As pointed out in [8], this can be seen as
a drawback, even if the numerical performances of such bootstrap schemes seem
to be good.

Alternatively and more directly, one can still rely on the standard nonpara-
metric bootstrap scheme: simply resample with replacement the initial set of
observations and recalculate the statistics of interest with the bootstrapped sam-
ple exactly in the same manner as with the initial sample. In practical terms,
all analytics and IT codes can be reused as many times as necessary without
any additional work. No derivatives have to be numerically evaluated. Indeed,
note that the empirical copula may be seen as a regular functional of Fn, the
usual empirical distribution of pXi,Ziqi“1,...,n, i.e., Cnpu, Aq “ ψ0pFnqpu, Aq

for every pu, Aq P r0, 1sp ˆ A. Now, apply Efron’s initial idea by resampling
with replacement n realizations of pX,Zq among the initial sample, and set
C

˚

n “ ψ0pF˚
n q, F˚

n being the empirical cdf associated with the bootstrapped
sample pX˚

i ,Z˚
i qi“1,...,n. Actually, this standard bootstrap scheme is still valid

in our framework and we now prove it.
To be specific, let A be a borelian subset, pA ą 0 and x P Rp. We impose

A P A, for some class A that follows Assumption 1. As in [9] and many other
copula-related papers ([20, 57], etc.), it is more convenient to work with the
(unobservable) random vectors U P r0, 1sp rather than X P R

p. For any pu, Aq P

r0, 1sp ˆ A, set

Hnpu, Aq :“ 1
np̂A

n
ÿ

i“1
1pUi ď u,Zi P Aq,

that is the empirical counterpart of Hpu, Aq :“ PpU ď u|Z P Aq. Let F0,n be
the empirical cdf of pUi,Ziqi“1,...,n and F0 denotes the cdf of pU,Zq. Obviously,
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?
npF0,n´F0q weakly tends to a tight Gaussian F0 in �8

`

r0, 1spˆR
q
˘

. Note that
Hnpu, Aq “ χpF0,nqpu, Aq for some functional χ from the space of distribution
functions on r0, 1sp ˆ Rq, with values in the space of distribution functions on
r0, 1sp indexed by A. The latter functional is defined by

χpF qpu0, Aq “

ż

1pu ď u0, z P AqF pdu, dzq {

ż

1pz P AqF pdu, dzq,

when u0 P r0, 1sp and A P A. It is easy to check that the latter function χ is
Hadamard differentiable at every cdf F on r0, 1spˆR

q s.t.
ş

1pz P AqF pdu, dzq ą

0, tangentially to C0pr0, 1sp ˆR
qq, the space of continuous maps on r0, 1sp ˆR

q.
Its derivative at F is given by

χ1
pF qphqpu0, Aq “

ş

1pu ď u0, z P Aqhpdu, dzq
ş

1pz P AqF pdu, dzq

´

ż

1pu ď u0, z P AqF pdu, dzq ¨

ş

1pz P Aqhpdu, dzq
!

ş

1pz P AqF pdu, dzq

)2 ¨

When h is not of bounded variation, the latter integrals are defined by an in-
tegration by parts formula (see Theorem 15 in [48]). Moreover, Cnpu|Aq “

φ
`

Hnp¨, Aq
˘

puq “: φ̃pHnqpu, Aq, introducing a map φ from the space of distri-
bution functions on r0, 1sp to �8pr0, 1spq by

φpF qpuq “ F
`

F´
1 pu1q, . . . , F´

p pupq
˘

.

Let C0pr0, 1spq be the space of continuous maps on r0, 1sp. Moreover D0pr0, 1spq

denotes the set of maps f P C0pr0, 1spq s.t. fp1, . . . , 1q “ 0, and fpxq “ 0 if
some component of x is zero. Theorem 2.4 in [9] proved that φ is Hadamard-
differentiable tangentially to D0pr0, 1spq. By a careful reading of their proof, it
can be checked that the latter property is uniform w.r.t. A P A, due to the
assumed uniform continuity of the maps pu, Aq ÞÑ BkCpu|Aq, k P t1, . . . , pu

(see Condition 2). This means φ̃ is Hadamard-differentiable tangentially to
DApr0, 1spq, the space of functions h on r0, 1spˆA s.t. hp¨, Aq P D0pr0, 1spq for ev-
ery A P A. Since χ1pF0qphq belongs to DApr0, 1spq for any h P C0pr0, 1sp ˆ R

qq,
we can invoke the chain rule (Lemma 3.9.3 in [63]). This means that ψ :“
φ̃ ˝ χ is Hadamard differentiable at F0 tangentially to C0pr0, 1sp ˆ R

qq and
its derivative is ψ1pF0q “ φ̃1

`

χpF0q
˘

˝ χ1pF0q. This is the main condition to
apply the Delta-Method for bootstrap (Theorem 3.9.11 in [63], e.g.), because
?
n
�

Cnpu|Aq ´ Cpu|Aq
(

“
?
n
�

ψpF0,nq ´ ψpF0q
(

pu, Aq.
The nonparametric bootstrapped empirical copula associated with Cnp¨|¨q is

then defined as

C
˚

npu|Aq

:“ 1
np̂˚

A

n
ÿ

i“1
1
�

X˚
i,1 ď pF˚

n,1q
´1

pu1|Aq, . . . , X˚
i,p ď pF˚

n,pq
´1

pup|Aq,Z˚
i P A

(

,
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and the associated bootstrapped copula process is given by

C
˚

npu|Aq :“
?
n
`

C
˚

npu|Aq ´ Cnpu|Aq
˘

, u P r0, 1s
p, A P A.

Obviously, F˚
n and the F˚

n,k respectively denote the associated empirical cdf
and the empirical marginal cdfs’ associated with the nonparametric bootstrap
sample pX˚

i ,Z˚
i qi“1,...,n. By mimicking the arguments of [20], Theorem 5, it is

easy to state the validity of the nonparametric bootstrap scheme for Cnp¨|¨q.
Details are left to the reader.

To simply announce the result, introduce the random map

Cn,M pu0, A0,u1, A1, . . . ,uM , AM q

:“
`

Cnpu0|A0q,C
˚

n,1pu1|A1q, . . . ,C
˚

n,M puM |AM q
˘

,

for every vectors u0, . . . ,uM in r0, 1sp and every subsets A0, A1, . . . , AM in A.

Theorem 16. If Condition 1 and 2 are satisfied, then the process Cn,M weakly
converges in �8

´

`

r0, 1sp ˆA
˘M`1

,RM`1
¯

to a process that concatenates M ` 1
independent versions of C8.

Let us detail the latter result when dealing with a finite family of subsets
A :“ tA1, . . . , Amu. Then, for every 	uj :“ puj,1, . . . ,uj,mq, uj,k P r0, 1sp for
every j P t0, 1, . . . ,Mu, k P t1, . . . ,mu, set

	E˚
n,jp	uj ,Aq :“

`

C
˚

npuj,1, A1q, . . . ,C
˚

npuj,m, Amq
˘

, and

	En,M,Ap	u0, . . . , 	uM q :“
`

	Cnp	u0|Aq, 	E˚
n,1p	u1|Aq, . . . , 	E˚

n,M p	uM |Aq
˘

.

Theorem 17. If Condition 1 and Condition 2 is satisfied, then, for every M ě

2 and when n tends to the infinity, the process 	En,M,A weakly converges in
�8pr0, 1sppM`1qm,RmpM`1qq to a process that concatenates M ` 1 independent
versions of 	C8p¨|Aq (as defined in Corollary 4).

As in Section 2.2, consider the case of a sequence of subsets pAnqně1 in A
such that An “ HpFn,Zq for some Hadamard differentiable map H. The limit
of this sequence is A8 :“ HpFZq. This is particularly the case when the An

are defined by some empirical quantiles of Z’s components (random “boxes”).
Then, the process

?
n
�

Cnp¨|Anq´Cp¨|A8q
(

can most often be nonparametrically
bootstrapped exactly as above when we can apply Theorem 9, i.e., when we can
write

?
n
�

Cnp¨|Anq ´ Cp¨|A8q
(

“ Cnp¨|A8q `
?
n
�

Cp¨|Anq ´ Cp¨|A8q
(

` oP p1q,

as in Equation (9). Therefore, for every bootstrap sample and its associated
empirical cdf F˚

n , set A˚
n :“ HpF˚

n,Zq and the associated bootstrapped process
is then

?
n
�

C
˚

np¨|A˚
nq ´ Cnp¨|Anq

(

.
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4. Generalized multivariate measures of association processes

Measures of association (in particular “measures of concordance” and “measures
of dependence”; see [38], Def. 5.1.7. and 5.3.1.) are real numbers that summarize
the amount of dependencies across the components of a random vector. Most of
the time, they are defined for bivariate vectors, as originally formalized in [51].
The most usual ones are Kendall’s tau, Spearman’s rho, Gini’s measures of as-
sociation and Blomqvist’s beta. Denoting by C the copula of a bivariate random
vector pX1, X2q, most of the measures of association that have been proposed
in the literature can be rewritten as weighted sums of quantities as ρ1pψ, αq :“
ş

ψpu, vqCαpu, vqCpdu, dvq for some measurable map ψ : r0, 1s2 Ñ R, α ě 0, or
as ρ2pψ, α, μq :“

ş

ψpu, vqCαpu, vqμpdu, dvq for some measure μ on r0, 1s2. For
example, in the case of Kendall’s tau (resp. Spearman’s rho), the first case (resp.
second case) applies by setting ψ “ 1 and α “ 1 (resp. α “ 1, μpdu, dvq “ du dv).
Gini’s index is ρ1pψG, 0q, with ψGpu, vq :“ 2

`

|u ` v ´ 1| ´ |u ´ v|
˘

. Blomqvist’s
beta is obtained with ρ2p1, 1, δp1{2,1{2qq, where δp1{2,1{2q denotes the Dirac mea-
sure at p1{2, 1{2q. See [38], Chapter 5, or [39] for some justifications of the latter
results and additional results.

A few multivariate extensions of the latter measures of association have been
introduced in the literature for many years. The axiomatic justification of such
measures for p-dimensional random vectors has been developed in [61], and
many proposals followed, sometimes in passing. The most extensive analysis has
been led in a series of papers by F. Schmid, R. Schmidt and some co-authors:
see [53, 54, 55, 56].

Actually, we can significantly extend the previous ideas by considering general
formulas for multivariate measures of association, possibly indexed by subsets (of
covariates), as in the previous sections. To be specific, we still consider a random
vector pX,Zq P R

p ˆ R
q and we will be interested in measures of association

between the components of X, when Z belongs to some borelian subset A in
R

q. We will focus on the wide range of measures of association that are defined
as functionals of the underlying conditional copulas only (not margins). For any
(possibly empty) subsets K and K 1 that are included in I :“ t1, . . . , pu, let us
define

ρK,K1 pAq :“
ż

ψpuqCKpuK |Z P AqCK1 pduK1 |Z P Aq duIzK1 , (13)

for some measurable function ψ. Obviously, CKp¨|Z P Aq denotes the conditional
copula of XK :“ pXj , j P Kq given pZ P Aq. In particular, CIpu|Z P Aq “

Ct1,...,pupu|Z P Aq “ CX|Zpu|Z P Aq, for every u P r0, 1sp. When K 1 “ H (resp.
K 1 “ I) there is no integration w.r.t. CK1 pduK1 |Z P Aq (resp. duIzK1).

The latter definition virtually includes and/or extends all unconditional and
conditional measures of association that have been introduced until now. Indeed,
such measures are linear combinations (or even ratios, possibly) of our quantities
ρK,K1 pAq, for conveniently chosen pK,K 1q and ψ. Note that, by setting A “ R

q,
we recover unconditional measures of association. Moreover, setting A “ pZ “ zq

allows to recover pointwise conditional measures of association.
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A few examples of such ρK,K1 pAq that have already been met in the literature:

• ψpuq “ 1, K “ K 1 “ I and A “ R
q provides a multivariate version

of the Kendall’s taus’ of X, that are affine functions of
ş

CXpuqCXpduq.
See [22, 23, 30], among others;

• ψpuq “ 1, K “ I, K 1 “ H and A “ R
q yields ρ1, the multivariate

Spearmans’s rho of X, as in [53]; see [67] too.
• ψpuq “ 1, K “ H, K 1 “ I and A “ Rq yields the multivariate Spearmans’s

rho of X introduced in [50], also called ρ2 in [53];
• ψpuq “ 1, K “ K 1 “ I and choosing A as a (small) neighborhood of z is

similar to a p-dimensional extension of the pointwise conditional Kendall’s
tau studied in [65] or [15, 16];

• ψpuq “
ś

jPI 1puj ď 1{2q, K “ H and K 1 “ I corresponds to a conditional
version of Blomqvist coefficient ([38]);

• ψpuq “ 1pu ď u0q ` 1pu ě v0q, K “ H and K 1 “ I yields a conditional
version of the tail-dependence coefficient considered in [54];

• if ψ is a density on r0, 1sp, K “ I and K 1 “ H, we get some conditional
product measures of concordance, as defined in [61];

• when ψpuq is a weighted sum of reflection indicators of the type

u P r0, 1s
p

ÞÑ pε1u1 ` p1 ´ ε1qp1 ´ u1q, . . . , pεpup ` p1 ´ εpqp1 ´ upq
˘

,

where εk P t0, 1u for every k P t1, . . . , pu, we obtain some generalizations
of measures of association (Kendall’s tau, Blomqvist coefficient, etc), as
introduced in [30]. For conveniently chosen weights, such linear combi-
nations of ρK,K1 pRqq for different subsets K and K 1 yield measures of
association that are increasing w.r.t. a so-called “concordance ordering”
property. See [61], Examples 7 and 8, too. Etc.

Note that our methodology includes as particular cases some multivariate mea-
sures of association that are calculated as averages of “usual” measures of as-
sociation when they are calculated for many pairs pXk, Xlq, k, l P t1, . . . , pu2.
This old and simple idea (see [32]) has been promoted by some authors. See
such types of multivariate measures in [56] and the references therein.

Generally speaking, it is possible to estimate the latter quantities ρK,K1 pAq

by replacing the conditional copulas with their estimates in Equation (13). This
yields the estimator

ρ̂K,K1 pAq :“
ż

ψpuq Ĉn,KpuK |Z P AqĈn,K1 pduK1 |Z P Aq duIzK1 , (14)

where we define

Ĉn,KpuK |Aq :“ 1
np̂A

n
ÿ

i“1
1
`

Fn,jpXi,j |Aq ď uj ,@j P K;Zi P A
˘

,

and similarly for the induced measure Ĉn,K1 pduK1 |Z P Aq.
Now, we want to derive the limiting law of GnpA,K,K 1, ψq :“

?
n
`

ρ̂K,K1 pAq´

ρK,K1 pAq
˘

. Here, Gn will be seen as a process indexed by pA,K,K 1, ψq P A ˆ
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P2
p ˆ Ψ, where Pp denotes the set of subsets of I “ t1, . . . , pu and Ψ denotes a

set of “sufficiently regular maps” ψ from r0, 1sp to R.

Condition 6. Any ψ P Ψ is right-continuous, i.e. coordinatewise right-continuous
in each coordinate and at every point, and of bounded variation in the sense of
Hardy-Krause (see [48]). Moreover, supψPΨ }ψ}8 ă `8. For every ε ą 0 and
ψ P Ψ, there exists a partition of r0, 1sp with q “ qpε, ψq disjoint hyper-rectangles
Rj,ψ “ paj,ψ,bj,ψs and some coefficients cj,ψ P R such that the stepwise func-
tions sεpu, ψq :“

řq
j“1 cj,ψ1pu P Rj,ψq satisfy

sup
ψPΨ

sup
uPr0,1sp

ˇ

ˇsεpu, ψq ´ ψpuq
ˇ

ˇ ă ε, with sup
ψPΨ

q
ÿ

j“1
|cj,ψ| ă 8.

The latter condition is satisfied for any finite family of right-continuous
bounded ψ functions of bounded variation, in particular.

We will deduce the weak convergence of Gn in �8pAˆP2
p ˆΨq from the weak

convergence of the process Ĉn. Indeed, note that Gn “
?
n
�

ΨpĈnq ´ ΨpCq
(

,
where Ψ is a map from Cp,A, the space of the cdfs’ on r0, 1sp indexed by a
parameter A P A, to �8pA ˆ P2

p ˆ Ψq. It is defined as

ΨpCq : pA,K,K 1, ψq ÞÑ

ż

ψpuqCKpuK |AqCK1 pduK1 |Aq duIzK1 (15)

for every C P Cp,A.
To apply the Delta-Method, we need to prove that Ψ is Hadamard-differen-

tiable. To this aim, the trajectories of our limiting process have to be sufficiently
regular uniformly w.r.t. A P A.

Definition 18. A map h P �8pr0, 1sp ˆ Aq is said to be A-regular if it satisfies
the following conditions:

(i) for every A P A, the map u ÞÑ hpu, Aq is continuous on r0, 1sp;
(ii) for every ε ą 0 and A P A, there exists a partition of r0, 1sp with m “

mpε,Aq disjoint hyper-rectangles Rk,A “ pak,A,bk,As and some coeffi-
cients dk,A P R such that the stepwise functions wεpu, Aq :“

řm
k“1 dk,A1

pu P Rk,Aq satisfy

sup
APA

sup
uPr0,1sp

ˇ

ˇwεpu, Aq ´ hpu, Aq
ˇ

ˇ ă ε, and sup
APA

m
ÿ

k“1
|dk,A| ă 8.

For every K,K 1 P Pp and every uK1 P r0, 1s|K1
|, denote

χK,K1 puK1 ;ψ,Aq :“
ż

ψpuqCKpuK |Aq duIzK1 .

Lemma 19. Let Cp¨|¨q P Cp,A be a set of p-dimensional conditional copulas
and let Ψ be a family that satisfies Condition 6. Assume that, for every K,K 1 P

Pp, the map χK,K1 p¨;ψ,Aq is of bounded variation on r0, 1s|K1
|, uniformly over
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ψ P Ψ and A P A. Then, the map Ψ : Cp,A ÝÑ �8pA ˆ P2
p ˆ Ψq is Hadamard-

differentiable at C, tangentially to the set H of A-regular maps. Its derivative
is given by

`

Ψ1
pCqphq

˘

pA,K,K 1, ψq “

ż

ψpuqhKpuK , AqCK1 pduK1 |Aq duIzK1

`

ż

ψpuqCKpuK |AqhK1 pduK1 , Aq duIzK1 ,

for any map h P H.

When h is not of bounded variation, we define the second integral of
Ψ1

K,K1 pCqphq by an integration by parts, as detailed in [48]. See the proof of
Lemma 19 in the Supplementary Material, Section B.5. The natural sets H will
be given by the trajectories of the limiting law of Ĉn, i.e. the trajectories of C8

indexed by A P A (see Theorem 2). For any fixed borelian subset A, there exists
a version of C8 with continuous trajectories. Thus, when A is a finite set and
for the latter version of C8, the map pu, Aq ÞÑ C8pu|Aqpωq from r0, 1sp ˆ A to
R is A-regular for every realization ω P Ω.

As a consequence, by applying the Delta Method (Theorem 3.9.4 in [63]) to
the copula process

?
n
`

Ĉnp¨|¨q ´Cp¨|¨q
˘

, we obtain the weak convergence of Gn.

Theorem 20. Assume that, for almost every realization ω P Ω, Lemma 19 can
be applied with

H “ Hω :“ tpu, Aq ÞÑ C8pu|Aqpωq, u P r0, 1s
p, A P Au,

for some version of C8. Then, under the assumptions of Theorem 2, the pro-
cess GnpA,K,K 1, ψq :“

?
n
`

ρ̂K,K1 pAq ´ ρK,K1 pAq
˘

weakly tends to a centered
Gaussian process G8 in �8pAˆP2

p ˆ Ψq, whose covariance function is given by

E
“

G8pA1,K1,K
1
1, ψ1qG8pA2,K2,K

1
2, ψ2q

‰

:“
ż

ψ1puqψ2pvq

ˆ E

”

�

C8,K1puK1 |A1qCK1
1
pduK1

1
|A1q ` CK1puK1 |A1qC8,K1

1
pduK1

1
|A1q

(

ˆ
�

C8,K2pvK2 |A2qCK1
2
pdvK1

2
|A2q

` CK2pvK2 |A2qC8,K1
2
pdvK1

2
|A2q

(

ı

duIzK1
1
dvIzK1

2
.

Let us specify the previous general result in a usual situation.

Corollary 21. Consider a fixed A such that pA ą 0, some fixed subsets K,K 1

and a bounded function ψ that is right-continuous and of bounded variation.
Assume that the conditional margins Fkp¨|Z P Aq are continuous, for any k P

t1, . . . , pu and that the map χK,K1 p¨;ψ,Aq is of bounded variation on r0, 1s|K1
|.

Then, under Assumption 2, we have
?
n
`

ρ̂K,K1 pAq ´ ρK,K1 pAq
˘ w

ÝÑ N
`

0, σ2
K,K1 pAq

˘

, where
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σ2
K,K1 pAq :“ Var

´

ż

ψpuqC8,KpuK |AqCK1 pduK1 |Aq duIzK1

`

ż

ψpuqCKpuK |AqC8,K1 pduK1 |Aq duIzK1

¯

.

As an example, let us consider the multivariate Spearman’s rho obtained by
setting ψpuq “ 1, K “ I, K 1 “ H, p “ q, X “ Z and A “

śp
j“1s ´ 8, ajs, for

some threshold pa1, . . . , apq in R
p. In other words, we focus on

ρSpaq :“
ż

CXpu|Xj ď aj ,@j P t1, . . . , puq

p
ź

j“1
duj .

This measure is related to the average dependencies among the components of
X, knowing that all these components are observed in their own tails. Indeed, we
are interested in the joint tail event Xj ď aj for every j P t1, . . . , pu. A similar
measure has been introduced in [53] but its properties have not been studied,
since the techniques developed in this article were not available. Therefore, they
preferred to concentrate on other Spearman’s rho-type measures of association.
Now, we fill this gap by applying Theorem 20. With our notations, a natural
estimator of ρSpaq is

ρ̂Spaq :“
ż

Ĉnpu|Xj ď aj ,@j P t1, . . . , puq

p
ź

j“1
duj .

Corollary 22. If pA ą 0 and Condition 2 holds, then
?
n
`

ρ̂Spaq´ρSpaq
˘

weakly
tends to a r.v N

`

0, σ2
Spaq

˘

, where σ2
Spaq :“

ş

E
“

C8pu1|AqC8pu2|Aq
‰

du1 du2.

The analytic formula of E
“

C8pu1|AqC8pu2|Aq
‰

is provided in the Supple-
mentary Material, Section C. The asymptotic variance σ2

Spaq can be consis-
tently estimated after replacing the unknown quantities Cp¨|Aq, pA, Dp¨, Aq and
its partial derivatives by some empirical counterparts, as in Section 3.1. Al-
ternatively, the limiting law of

?
n
`

ρ̂Spaq ´ ρSpaq
˘

can be obtained by several
bootstrap schemes, as explained in Section 3. Indeed, since

?
n
`

ρ̂Spaq´ρSpaq
˘

“
ş

Ĉnpu|Aq du, a bootstrap equivalent of the latter statistics is
ş

rC˚
npu, Aq du or

ş

C
˚

npu, Aq du, with the same notations as above and conveniently chosen boot-
strap weights.

Remark 23. Theorem 20 is very general as it potentially allows to manage
infinite families of ψ functions, i.e. infinite families of (conditional) dependence
measures. Even if this situation is non-standard, the latter result could be use-
ful in some circumstances. For instance, consider the family of bivariate maps
ψα,βpu, vq :“ pα ` 1qpβ ` 1quαvβ, pu, vq P r0, 1s2 and positive parameters α and
β. For every pα, βq, the quantity ρpα, βq :“ E

“

ψα,βpU1, U2q
‰

is of the type (13),
with K “ H, K 1 “ I and A “ R

q. It may be nonparametrically estimated as
above, by ρ̂pα, βq. Even more, it is possible to average the latter measures of
association and to focus on the aggregated quantity ρ :“

ş

ρpα, βq νpdα, dβq, for
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some finite measure ν on R
2
`. The natural estimator of this “global measure” ρ

would be ρ̂ :“
ş

ρ̂pα, βq νpdα, dβq. Theorem 20 and the Delta-method would yield
the asymptotic behavior of the latter estimator.

Important practical questions can arise by considering several borelian sub-
sets simultaneously. For instance, is the amount of dependencies among the X’s
components the same when Z belongs to different subsets? This questioning can
lead to a way of building relevant subsets Aj , j P t1, . . . , pu. Typically, a nice
partition of the Z-space is obtained when the copulas Cp¨|Z P Ajq are heteroge-
neous. In the very general framework of Theorem 20, we will be able to answer
such questions.

To this end, let A :“ tA1, . . . , Amu be a family of borelian subsets, pAj ą 0 for
every j P t1, . . . ,mu. Moreover, denote by Kj ,K

1
j , j P t1, . . . ,mu some subsets

of indices in I “ t1, . . . , pu. As above, we can deduce the asymptotic law of
?
n
`

ρ̂K1,K1
1

´ ρK1,K1
1
, . . . , ρ̂Km,K1

m
´ ρKm,K1

m

˘

from Theorem 20. As an application, let us consider tests of the null assumption

H0 : Cp¨|Aq does not depend on A P A, or equivalently

H0 : Cpu|A1q “ ¨ ¨ ¨ “ Cpu|Amq for every u P r0, 1s
p,

against its opposite. This can be tackled through any generalized measure of
association ρ̂K,K1 pAq, for some fixed subsets K and K 1, and one or several
functions ψ. To simplify the discussion, we consider hereafter a single map ψ.
Thus, we can build a test statistic in the form of

T n :“ }pi, jq ÞÑ
?
n
`

ρ̂K,K1 pAiq ´ ρ̂K,K1 pAjq
˘

},

where } ¨ } is any semi-norm on R
m2 . For example, define the Cramer-von Mises

type statistic

T n,CvM :“ n
m
ÿ

i,j“1

`

ρ̂K,K1 pAiq ´ ρ̂K,K1 pAjq
˘2
,

or the Kolmogorov-Smirnov type test statistic

T n,KS :“
?
n max
i,j“1,...,m

ˇ

ˇρ̂K,K1 pAiq ´ ρ̂K,K1 pAjq
ˇ

ˇ.

Note that under the null hypothesis, these test statistics can be rewritten as

T n “ }pi, jq ÞÑ
?
n
�

ρ̂K,K1 pAiq ´ ρK,K1 pAiq ` ρK,K1 pAjq ´ ρ̂K,K1 pAjq
(

}

“ }pi, jq ÞÑ
?
n
`

ρ̂K,K1 pAiq ´ ρK,K1 pAiq
˘

´
?
n
`

ρ̂K,K1 pAjq ´ ρK,K1 pAjq
˘

}.

Therefore, under H0, Theorem 20 tells us that T n (once properly rescaled) is
weakly convergent. Since its limiting law is complex, we advise to use boot-
strap approximations to evaluate the asymptotic p-values associated with T n

in practice. A bootstrapped version of such tests statistics is

T ˚
n :“ }pi, jq ÞÑ

?
n
�

ρ̂˚
K,K1 pAiq ´ ρ̂K,K1 pAiq ` ρ̂K,K1 pAjq ´ ρ̂˚

K,K1 pAjq
(

},
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where, in the case of the multiplier bootstrap, we set

ρ̂˚
K,K1 pAq :“

ż

ψpuq rC˚
n,KpuK |Z P Aq rC˚

n,K1 pduK1 |Z P Aq duIzK1 ,

and, in the case of the nonparametric bootstrap,

ρ̂˚
K,K1 pAq :“

ż

ψpuqC
˚

n,KpuK |Z P AqC
˚

n,K1 pduK1 |Z P Aq duIzK1 .

Under the assumptions of Corollary 14 (resp. Theorem 17) and those of Theo-
rem 20, the couple

`

T n,CvM , T ˚
n,CvM

˘

weakly converges to a couple of identically
distributed vectors when n tends to the infinity, using the exchangeable (resp.
nonparametric) bootstrap. And the same result applies to T n,KS .

5. Conclusion

We have made several contributions to the theory of the weak convergence of
empirical copula processes, their associated bootstrap schemes and multivari-
ate measures of association. Now, all these concepts and results are stated not
only for usual copulas but for conditional copulas too, i.e., for the copula of X
knowing that some vector of covariates Z (that may be equal to X) belongs to
one or several borelian subsets. We only require that the probabilities of the
latter events are nonzero. Working with Z-subsets instead of singletons allows
to avoid the curse of dimension that rapidly appears when the dimension of Z
is larger than three.

We have proved the weak convergence of the conditional empirical copula
process Ĉnp¨|Aq, indexed by a family of borelian subsets A P A, and we have
explicitly tackled the case of random subsets. Therefore, inference and testing of
copula models becomes relatively easy. An interesting avenue for further research
will be to use our results to build convenient discretizations of the covariate
space (the space of our so-called random vectors Z). There is a need to find
efficient algorithms and statistical procedures to build a partition of R

q with
borelian subsets Aj , so that the dependencies across the components of X are
“similar” when Z belongs to one of theses subsets, but as different as possible
from box to box: “maximum homogeneity intra, maximum heterogeneity inter”.
A constructive tree-based approach should be feasible, as proposed in [36] in
the case of vine modeling, and is left for a further study.
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Supplementary Material

Real data application and proofs
(doi: 10.1214/22-EJS2075SUPP; .pdf). In Section A, we show an application to
the dependence between financial returns. The proofs for all results are detailed
in Section B. Finally, we give the covariance function of C8 in Section C.
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