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Abstract—In this manuscript we propose a methodology to
generate electricity price scenarios from probabilistic forecasts.
Using a Combined Quantile Regression Deep Neural Network,
we forecast hourly marginal price distribution quantiles for
the DAM on which we fit parametric distributions. A Non-
parametric Bayesian Network (BN) is applied to sample from
these distributions while using the observed rank-correlation in
the data to condition the samples. This results in a methodology
that can create an unbounded amount of price-scenarios that
obey both the forecast hourly marginal price distributions and the
observed dependencies between the hourly prices in the data. The
BN makes no assumptions on the marginal distribution, allowing
us to flexibly change the marginal distributions of hourly forecasts
while maintaining the dependency structure.

Index Terms—Probabilistic electricity price forecasting, sce-
nario generation, deep neural network, non-parametric bayesian
networks, quantile regression, probabilistic forecasting, day
ahead market, demand response

I. INTRODUCTION

As the transition to renewable energy is progressing, uncer-
tainty plays an increasingly larger role in decision-making.
The increasing market penetration of renewables leads to
volatile electricity generation, in turn resulting in more volatile
electricity prices [1] that are harder to forecast [2]–[5]. Price
forecasts benefit Demand Response (DR), allowing consumers
to change the timing of energy consumption based on expected
prices. In Europe, the main market for short-term trading is the
Day Ahead Market (DAM), where energy is traded in hourly
blocks and with hourly prices. To purchase electricity on a
certain day and hour, market participants make a bid before
12:00 AM the previous day, after which the market closes
and the Market Clearing Price (MCP) is decided. The actual
price is unknown when making a bid, motivating research in
Electricity Price Forecasting (EPF) in the context of the DAM.

Large forecasting errors can lead to sub-optimal dispatching
and a loss in both system efficiency and profits for the
users and producers. Since electricity prices are becoming
increasingly uncertain due to renewable energy penetration,

This work was supported by: TKI Watertechnologie.

probabilistic forecasting can be of added value since it gives
a prediction interval, which is an indication of the forecast
uncertainty. It allows for risk management and stochastic bid-
ding/optimisation of assets [6]. Probabilistic forecasting gained
track in the energy sector after GEFCOM2014, where the
probabilistic forecasts outperformed point forecasting meth-
ods [7].

One way of generating probabilistic forecasts is by applying
the Combined Quantile Regression Deep Neural Network
(CQR-DNN) [8]. The model forecasts multiple quantiles of
a response distribution, instead of a single value. The set
of forecast quantiles can be used to construct Cumulative
Distribution Functions (CDFs), allowing for the estimation of a
marginal distribution of the forecast variable (e.g. the hourly
electricity price). Since the time of forecast is the same for
all hours considered in the forecast, these distributions are
considered independent marginal distributions. When applying
DR, generally a model predictive control (MPC) approach is
applied. When including uncertainty in the MPC problem,
price scenarios can be used for optimal expected and risk-
based decision making. The CQR-DNN forecasts 24-hourly
DAM prices simultaneously, giving 24 marginal CDFs that
are conditional to the input of the network. However, when
generating scenarios the dependency between hourly DAM
prices should be considered in order to create realistic price
samples.

A Non-parametric Bayesian Networks (BNs) are proba-
bilistic graphical models that represent complex and high-
dimensional dependency structures between variables [9]. BNs
describe dependencies between variables according to a user-
defined structure, using marginal distributions and bivariate
copulae. No assumptions are made about the marginal distri-
butions, making the model flexible with respect to the desired
distribution. Using historic data, Spearman’s rank-correlation
between the hourly DAM prices can be calculated and used
to parameterise the bivariate copulae.

In this manuscript, we propose the use of a CQR-DNN
to forecast distribution quantiles of hourly electricity prices.
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Forecasts of the model described in [8] are used. A rank-
correlation matrix is calculated from the historic DAM data,
and applied to fit a BN. The BN is then applied to transform
the marginal forecast distributions and generate scenarios that
obey both the hourly marginal distribution forecasts and the
observed rank-correlation between hourly prices.

II. METHODOLOGY

In this section we describe the applied methods for prob-
abilistic forecasting, conditional sampling, and evaluation of
the results.

A. Combined Quantile Regression Deep Neural Network

The Combined Quantile Regression Deep Neural Network
(CQR-DNN) [8] was developed to lessen the occurrence of
the ‘crossing quantile problem’ [10], compared to ensemble
models where every quantile is represented by a separate
model. The combined quantile loss function allows for si-
multaneous training of multiple quantiles in a single DNN by
applying a different loss to each output node while minimizing
the mean loss over all output nodes. This prevents separate
quantile-models from diverging to different local optima be-
cause of stochastic sampling during training, leading to non-
monotonically increasing quantiles.

The model is trained using a combination of pinball loss
functions [11]

Lτ = max(τ · e, (τ − 1) · e), with (1)
e = z − y (2)

where L is the loss, τ denotes the quantiles and e the quantile
forecast error, with y being the observed value and z the
quantile forecast. Due to the asymmetrical penalisation of
over- and under-predictions the model will learn how to regress
a variable that is expected to exceed the actual target for a
τ fraction of the samples; a quantile. Figure 1 shows the
CQR-DNN with the separate quantile output nodes. The model
trained by minimising the mean of the combined pinball loss
of all quantiles

LCQ =
1

N

N∑
n=1

Lτn , (3)

where N is the amount of quantiles to be taken into consider-
ation, and τn the nth quantile.

B. Non-parametric Bayesian Networks

The Non-parametric Bayesian Network (BN) is applied
to condition samples based on a user-defined dependency
structure. The BN consists of a Directed Acyclical Graph,
where nodes and arcs represent uncertain or random variables
and their dependency, respectively. Each node without a parent
is described by a marginal distribution. Each child node is
described by a conditional distribution, capturing the depen-
dency between variables in the BN. BNs have had successful
applications in Earth Dam safety assessment, emission source
linking, air transport safety the reliability of structures, like

Fig. 1: A Combined Quantile Regression Deep Neural Net-
work with nf features, n1 nodes in hidden layer 1, n2 nodes
in hidden layer 2 and 5 quantile output nodes of the same
random variable. [8]

flood defence infrastructures or bridge safety assessment [12],
[13].

BNs make use of Sklar’s theorem, which states that mul-
tivariate joint distributions can be described by univariate
marginal distributions and a copula that represents the depen-
dency. Bivariate copulae, from now on simply called copulae
in this paper, are joint distributions with uniform marginal
distributions on [0, 1]

H(x, y) = C(Fx(x), Gy(y)), (4)

where H(x, y) is a joint distribution with marginal distribu-
tions Fx and Gy . The function C(·) is a, in our case Gaussian,
copula taking values from I2 = ([0, 1]× [0, 1]).

The joint density of BNs with n variables is factorized as

f1,...,n(x1, . . . , xn) = f1(x1)
n∏

i=2

fi|Pa(i)(xi|xPa(i)), (5)

where f1,··· ,n denotes the joint density of the n variables,
fi denotes their marginal distributions, and fi|j denotes con-
ditional distributions. Each random variable xi belongs to
node i, where the parent nodes if node i form the set
Pa(i) = {i1, . . . , ip(i)}. The arcs are assigned one-parameter
conditional copulae [14], parameterised by Spearman’s rank
correlations [12]. The arc from parent-node im to node i
is assigned a conditional rank correlation, where k denotes
the order of the condition (e.g. the amount of variables it is
conditional to). The order increases with the amount of parents
that have previously been assigned a rank-correlation.{

ri,ip(i) , if k = 0

ri,ip(i)−k|ip(i),...,ip(i)−k+1
, if 1 ≤ k ≤ p(i)− 1

(6)

Generally, k = 0 is applied to the parent-node ip(i). As more
parents are assigned a (conditional) rank correlation (ri,im ), k
increases and the assigned rank correlation is conditional to
the previously assigned parent nodes.
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The open-source python package Banshee [15] was used,
which applies a Gaussian copula to represent the dependencies.
A Gaussian copula does not present tail dependence or other
asymmetries between variables [9]. We apply the BN to define
the dependency structure between hourly DAM prices based
on historic data, while being able to flexibly change the
marginal distributions. Therefore, it allows the application of
the probabilistic forecast provided by the previously described
CQR-DNN. In this paper, we assume a dependency structure
where all hours are only conditional to the previous hour
except for the first hour of the day as depicted in Figure 2.

(a) Consecutive dependency structure.

(b) Consecutive dependency structure with a shared dependency on
the first sample.

Fig. 2: The two considered dependency structures for the Non-
parametric Bayesian Network.

III. ELECTRICITY MARKET DATA

In this section we briefly describe the data we used for
this paper. We apply the CQR-DNN and the BN to generate
scenarios for the Dutch DAM. The data used in the model
is open-source data from the ENTSO-E transparency plat-
form [16] exclusively. Features were made using the historic
DAM prices, historic load, the day-ahead load forecast and
the day-ahead renewable generation forecasts. Due to the
lacking quality of actual generation data in the Netherlands,
the day-ahead generation forecasts are used. The day-ahead
forecasts might even contain more information on DAM
prices than actual generation, due to the day-ahead market
closure of the DAM. We use the model derived in [8], where
an elaborate hyperparameter and feature search space was
set up to optimise model performance. Market integration
features are considered by adding features of the market with
highest importance [17] to the search space. For the analysis
performed in this paper, data from 2015-2019 was used. Data
from 2019 was used to test the models. For the BN, 2018
data was used to parameterise the copulae at each node of the
dependency structure.

Using Dutch 2018 DAM data, the correlation matrix as
depicted in Figure 3 can be constructed. The matrix shows
that hourly prices do indeed mostly correlate with the prices of
the surrounding hours, justifying our choice for a consecutive
dependency structure. Although there is also some correlation
between the first and last hour of the day due to diurnal

demand patterns, which we now do not represent in the
dependency structure.

Fig. 3: Correlation matrix for the observed hourly Dutch DAM
prices in 2018.

IV. RESULTS AND DISCUSSION

In this section we show the results of applying the BN
to the forecast distributions by the CQR-DNN. First, we fit
parametric distributions on the forecast distributions.

The parametric distributions were fit using a least squares
minimisation considering gumbel and normal distributions,
where the distribution with the lowest minimisation error was
selected. Figure 4 shows the fitted parametric distribution for
four hourly marginal forecast distributions.

Fig. 4: Fitted parametric distributions on the hourly marginal
price forecast distribution.

We can apply the fitted parametric distributions to the
BNs with copulae parameterised with the observed market
data from 2018. The BN now generates samples that follow
both the hourly marginal forecast distributions (Figure 5) and
the observed correlation in the data (Figure 6). The largest
difference between the samples from the simpler consecutive
BN and the data seems to be the correlation between the
prices of the begin and end of the day. The second dependency
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structure which has a shared dependency of all hourly prices
with the first does not seem to share this issue.

Fig. 5: Generated samples by the BN and the fitted hourly
marginal price forecast distribution,

To demonstrate, Figure 7 shows the QR forecast provided
by the CQR-DNN, with scenarios sampled by the BN. These
scenarios can then be used in a dynamic program, optimising
over electricity price scenarios.

V. CONCLUSIONS

In this paper we proposed the use of a QR forecast pro-
vided by a CQR-DNN in combination with a Non-parametric
Bayesian Network in order to generate DAM price scenarios
to be used in a dynamic program. The CQR-DNN is applied to
generate hourly marginal price forecast distributions of future
DAM prices, while a BN is applied to sample from these
distributions with the observed correlation in the data.

We show that the scenarios generated obey both, while
the methodology is flexible and low-cost. The marginal dis-
tributions can easily be changed, while the computationally
intensive part is the calculation of the rank-correlation matrix.

The structure of the BN was optimised in order to increase
similarity between the correlation of the sampled and observed
hourly DAM prices. In the Dutch case, connecting all nodes
with the first node increased the similarity. The structure of
the BN can be changed to include other markets, for example
to allow for multi-market scenario sampling.
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