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A B S T R A C T   

Current experimental verification, computational modeling, and machine learning methods for predicting 
corrosion inhibition efficiency (IE) are limited to specific inhibitor categories with high cost and poor general-
ization. In this study, a cross-category corrosion inhibitor dataset is constructed and a three-level direct message 
passing neural network (3 L–DMPNN) model using molecular structure information that integrates atomic-level, 
chemical bond-level, and molecular-level features to predict the IEs of compounds in a specific environment is 
established. This work demonstrates that the 3 L–DMPNN model can predict IEs of cross-category corrosion 
inhibitors from other independent literature and experimental dataset effectively and quickly.   

1. Introduction 

Corrosion is the leading cause of materials damage in industrial 
applications. According to recent surveys, the annual cost of corrosion is 
equivalent to 2–5% of GDP of different countries, totaling $2.5 trillion 
globally [1,2]. Owing to the high protective efficiency, low cost, simple 
operational process, and strong adaptability, the application of corro-
sion inhibitors has become a popular method for combating internal 
corrosion in various industries. The effectiveness of corrosion inhibitors 
is closely related to their molecular structure. In general, heterocyclic 
organic compounds with electronegative atoms such as S, P, N, and O; 
polar groups such as –NH2, –NO2, –OC2H5, –COOH, and –CONH2; or 
certain chemical structures such as conjugate bonds and aromatic rings 
can potentially serve as effective corrosion inhibitors [3]. However, the 
number of organic molecules with the aforementioned molecular 
structures is immense, which necessitates the development of fast and 
efficient screening methods for estimating the corrosion inhibition ef-
ficiency (IE). Traditionally, IE is determined experimentally by 

performing weight loss measurements, potentiodynamic polarization 
studies, electrochemical impedance spectroscopy, optical analysis, and 
analytical spectroscopy analysis [4–6]. Researchers have identified new 
corrosion inhibitors by either incrementally adjusting the structures of 
existing inhibitors or testing hundreds of compounds in a laboratory [7]. 
Nevertheless, these experimental methods are expensive and 
time-consuming, often taking hours or days. 

In addition to experimental approaches, theoretical tools, such as 
density functional theory (DFT) and molecular dynamics (MD) simula-
tion, have been widely used in the studies of corrosion inhibitors [8–10]. 
DFT method provides important information about the charge sharing 
(donor-acceptor) interactions between inhibitor molecules and metallic 
surfaces [11] and thus describes the effect of the structural properties of 
inhibitors on the corrosion process [12]. MD computer simulations are 
performed to model inhibitor/surface systems, visualize the adsorption 
process, and determine the energy of their interaction to elucidate the 
corrosion inhibition mechanism at the mesoscopic level [13,14]. 
Quantitative structure-activity/property relationships (QSAR/QSPR) 
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are applied to establish correlations between the IEs and structural pa-
rameters (electronegativity, polarizability, van der Waals volume, etc.) 
of corrosion inhibitors and predict the corrosion inhibition performance 
of the same series of molecules. Common methods used to construct 
QSAR/QSPR models include multiple linear regression analysis, neural 
networks, and support vector machines [15–18]. However, all these 
techniques are time-consuming, complex, and not suitable for screening 
candidate inhibitors in a large compound space. In addition, these 
methods do not properly utilize molecular structure and are unable to 
obtain either local or global information on the molecular parameters. 

Recently, machine learning (ML) methods have been employed to 
predict the IEs of corrosion inhibitors and design new molecules with 
improved inhibition performance. For example, an artificial neural 
network (ANN) was successfully utilized to predict the corrosion inhi-
bition potentials of pyridazine derivatives [19] and IEs of 28 [20,21] and 
100 [22] small organic compounds for aluminum alloys, and to quan-
titatively study the relationship between the molecular features of 38 
inhibitor compounds and their experimentally measured electro-
chemical properties [23]. Galvão et al. compared different ML methods 
to identify efficient corrosion inhibitors for aluminum alloys commonly 
used in aeronautical applications [24]. Schiessler et al. predicted the IEs 
of magnesium dissolution modulators using sparse ML models [25]. 
Wurger et al. used a multidisciplinary approach combining 
high-throughput experimental screening, unsupervised clustering-based 
ML algorithms, and DFT calculation to estimate the IEs of previously 
untested molecules for magnesium alloys [26]. The models utilized in 
the above-mentioned studies could predict corrosion inhibitor perfor-
mance within minutes rather than hours or days. However, the limita-
tion of these conventional ML models lies in the requirement of selecting 
appropriate molecular features, which is a process depending on 
considerable domain expertise. Most previously reported ML models 
employed small datasets with limited homologous molecules and 
exhibited poor generalization properties that did not allow them to 
make reliable prediction for any molecules outside the training data 
domain (e.g., the molecules with functional groups not present in the 
training set). 

Since the advent of big data, deep learning (DL) models with more 
complex architectures have more powerful feature learning and repre-
sentation capabilities and have been widely used in image recognition, 
object detection, and other fields, such as drug discovery and genomics 
[27]. Traditional deep convolutional neural networks (CNN) and 
recurrent neural networks (RNN) can only process Euclidean data such 
as text, audio, images, and video. Unlike images and texts, graph data 
contain essential structural information. A graph neural network (GNN) 
is a framework for learning directly from graph data that consists of 
nodes and edges, where nodes and edges can be well used to represent 
atoms and bonds in molecular structure [28]. Thus, GNN can be used to 
process non-Euclidean data such as chemical molecular structures and 
proteins and predict the properties of molecules from their structures 
[29,30], including quantum mechanical characteristics such as ener-
getic, electronic, and thermodynamic properties [31–33]; physi-
ochemical properties such as hydrophobicity, hydration free energy in 
water, and octanol/water distribution coefficients [34,35], and toxicity 
[36,37]. Message-passing neural networks (MPNNs) are general frame-
works for supervised graph learning that simply abstract the common-
alities between several of the most promising GNN models [33], which 
are capable of learning atomic-level and chemical bond-level features 
from molecular graphs directly and predicting molecular properties. 
These networks were able to accurately predict geometric, energetic, 
electronic, and thermodynamic properties in the QM9 quantum chem-
istry dataset consisting of organic molecules. 

The structures of organic compounds play a dominating role in the 
effective inhibition of metal corrosion. The purpose of this study was to 
develop an IE prediction model independent of theoretical calculations 
and expert-crafted features to establish the relationship between the 
molecular structure and IE with high accuracy and generalization for the 

rapid screening of corrosion inhibitors. In addition, the efficiency of a 
corrosion inhibitor is closely related not only to its internal structural 
parameters (such as hybridization degree, number of bonds per atom, 
number of valence electrons per atom, and bond type), but also to global 
molecular characteristics (such as molecular weight, number of aro-
matic rings, number of acceptors, and number of donors). Hence, we 
proposed a three-level direct message passing neural network (3 
L–DMPNN) model based on the DMPNN framework [38] for screening 
corrosion inhibitors by combining atomic-level features, chemical 
bond-level features, and molecular-level features. Specifically, the 
simplified molecular-input line-entry system (SMILES) [39] was used as 
the sole input and considered a molecule structure as a graph, and the 
atomic and chemical bond features were extracted from SMILES by 
employing the opensource RDKit package [40]. Subsequently, the new 
molecular graph vector after the message passing module was combined 
with the global molecular features to predict the IE of the molecule via 
feed-forward neural network (FFN). The data used in this study were 
extracted from 110 publications, including 270 organic inhibitor mol-
ecules. The accuracy of the utilized model was compared with those of 
the support vector machine (SVM) [41], random forest (RF) [42], and 
DMPNN models [38], and its generalization ability was verified using 
additional 23 recently published papers and 4 laboratory data. 

2. Methods 

2.1. Corrosion inhibitor datasets 

2.1.1. Dataset for building predictive models 
Although a large amount of corrosion inhibitor data is contained in 

research papers, each individual paper often reports no more than a 
handful of molecules of the same or similar categories. To predict the 
properties of cross-category corrosion inhibitors, structured and intel-
ligent dataset containing corrosion inhibitor with diverse molecular 
structures is needed. For example, Galvão et al. have recently estab-
lished CORDATA as a public data management platform for corrosion 
inhibitors [43], which include nearly 400 corrosion inhibitors from 
more than 120 publications, mainly for aluminum, copper, magnesium, 
iron and their major alloys. 

To investigate the effect of molecular structure on corrosion inhibi-
tion efficiency, we constructed a cross-category dataset of corrosion 
inhibitor molecules based on a large number of publicly available 
literature studies by performing the following two steps: (I) data 
collection and data cleaning, and (II) SMILES generation (Fig. 1). We 
retrieved 116 papers that studied the influences of different corrosion 
inhibitor molecules on carbon steel in a hydrochloric acid solution using 
the keyword “corrosion inhibitor” and extracted their textual charac-
teristics (e.g., names of corrosion inhibitors, categories of corrosion in-
hibitors, materials, and solutions) and molecular structure pictures via 
crowdsourcing. The experimental IE values listed in the tables were 
extracted by Tabula [44] and associated with the text data via string 
matching. After that, we discarded molecules for which IE was not 
measured under the specified environmental conditions (ambient tem-
perature: 25 ℃− 30 ℃, corrosion inhibitor concentration: 1 mmol/L, 
and HCl concentration: 1 mol/L), which are commonly reported in 
literature. Data cleaning and filtering were performed by verifying the 
accuracy of molecular structures and removing duplicate inhibitor 
molecules. Finally, data for 270 corrosion inhibitor molecules were 
obtained, including their names, categories, molecular structures, and 
experimental IE values. The content of the datasets used in this study can 
be accessed through the following URL: https://www.corrdata.org. 
cn/inhibitor/. 

SMILES is a symbol widely used in chemistry to describe the struc-
tures of molecules, in which ASCII symbols are employed to represent 
atoms, bonds, and structural information (such as rings) readable by 
computers [39]. In this study, we utilized the ChemSchematic [45], 
OpenBabel [46], and OSRA [47] software packages to generate SMILES 
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from molecular structure pictures. However, a molecule can have more 
than one possible SMILES string, leading to the definition of canonical 
SMILES [48]. We obtained canonical SMILES by a canonical algorithm 

to ensure that only one expression was used for each molecule. The 
resulting Dataset 1 contained the names of the studied corrosion in-
hibitors, their categories, IE values determined at the concentration of 

Fig. 1. Process of building the dataset of corrosion inhibitors.  

Fig. 2. Statistics of Dataset 1. Distributions of the (a) IE values of corrosion inhibitors, (b) molecular weights of molecules, (c) numbers of atoms per molecule, and 
(d) categories of molecules. 
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1 mmol/L in 1 mol/L HCl solution, and canonical SMILES. 
Fig. 2a displays the distribution of the obtained IE values. It shows 

that the number of weak corrosion inhibitors is much lower than that of 
high-efficiency ones, which makes data learning and correctly predict-
ing the performance of weak inhibitors a challenging process. As shown 
in Figs. 2b and 2c, the molecular weights of the studied inhibitors range 
from 96 to 991 g/mol, while their molecule sizes (the number of atoms 
omitting hydrogen atoms in the molecule) vary from 6 to 63 atoms. 
Fig. 2d presents a statistical plot of 39 molecular categories, which in-
cludes but not limited to triazoles, quinolines, pyrazoles, and Schiff 
bases. Among these categories, quinolines have the largest number of 
molecules (34). The molecular categories in the dataset exhibit both 
diversity and similarity, which is helpful for model learning. In addition, 
the time of immersion after which the IE was determined ranged from 
5 min to 1440 min but mainly concentrated in the range of 30–60 min 
(70% of the data). 

Molecular fingerprint is an abstract representation of a molecule that 
transforms (encodes) it into a series of bit vectors containing 1 and 
0 [49]. Extended connectivity fingerprinting, also known as Morgan 
fingerprinting, is one of the most widely used molecular fingerprinting 
techniques [50]. In this study, we used RDKit to calculate 2,048-bit (i.e., 
2048 dimensions) Morgan fingerprints with a radius of two atoms for 
each molecule in Dataset 1. The bits in the fingerprint indicate the 
presence (1) or absence (0) of certain substructures, such as C––C, C(C) 
C, C––O, and C–N, in the molecule, which makes it easy to measure 
molecular similarity. Tanimoto similarity [51] is a measure of the pro-
portion of shared chemical substructures in a molecule, which repre-
sents a number between 0 and 1, with 0 indicating the lowest degree of 
similarity (no substructures are shared) and 1 indicating the highest 
degree of similarity (all substructures are shared). Furthermore, 
t-distributed stochastic neighbor embedding (t-SNE) is a popular 
method for dimensionality reduction [52]. In this work, we used t-SNE 

with a Tanimoto distance metric to reduce the data points from 2048 
dimensions of the Morgan fingerprints to the two dimensions plotted in  
Fig. 3 to quantify and visualize the similarity between molecules 
(Tanimoto distance = 1 − Tanimoto similarity). The distance between 
two blue points represents the Tanimoto similarity of the corresponding 
molecules (the larger distance represents lower similarity). For example, 
the boxes in Fig. 3 are filled with similar molecules of the same category, 
which are relatively close in space, and the serial numbers in the boxes 
correspond to those in Dataset 1. The boxes that are located farther 
apart also have fewer similar molecules. These results suggest that the 
molecules in Dataset 1 do not exhibit significant aggregation in the 
chemical space, indicating that their molecular structures are highly 
diverse and suitable for constructing a generalizable prediction models. 

2.1.2. Dataset for validating model generalizability 
To further validate the generalization ability of the 3 L–DMPNN 

model, we constructed an additional independent validation set, Data-
set 2, which included the experimental parameters of 4 corrosion in-
hibitors determined in the laboratory and data for 23 corrosion 
inhibitors retrieved from 14 papers published in 2022. We considered 
not only strong inhibitors but also weak inhibitors in the model vali-
dation, with experimental IEs ranging from 55% to 97% for Dataset 2.  
Fig. 4 shows the t-SNE plot of all molecules derived from the training 
Dataset 1 (blue dots) and independent test Dataset 2 (red dots). Note 
that Dataset 2 is uniformly distributed in the molecular space covered 
by Dataset 1 and contains not only similar molecules (that are close to 
each other in Fig. 4 such as Nos. 5 and 6 or Nos. 14 and 19), but also 
molecules of different categories with lower similarity at a high distance 
(such as Nos. 4 and 11), which are representative for the evaluation of 
the generalization performance of the studied model. 

Fig. 3. t-SNE of all molecules from Dataset 1 (blue dots).  
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2.2. Models 

The 3 L–DMPNN model developed in this study is implemented using 
the open-source package Chemprop [53], which contains 
message-passing neural networks for molecular property prediction.  
Fig. 5 shows the overall framework of the model consisting of a 
three-level directed message passing network (3 L–DMPN) and a 
feed-forward neural network (FFN). The input information is processed 
by the molecular graph representation phase, direct message-passing 
module, readout phase, and model evaluation phase. 

2.2.1. Molecular graphs input representation 
A molecular structure was first expressed by a molecular graph G 

using SMILES as the sole input. 

G = (V,E) (1)  

where v ∈ V is the set of nodes comprising atomic attribute vectors, and 
e ∈ E is the set of edges comprising bond attribute vectors. 

In the topological graph representation of a molecular structure, the 
node features correspond to atomic properties such as atomic identity 
and degree, and the edge features represent bond properties such as 
bond type and aromaticity. The atomic-level features xv and chemical 
bond-level features., which were computed using the open-source 
package RDKit, were encoded as a one-hot vector and are summarized 
in Table 1. 

2.2.2. Direct message passing 
Prior to the first step of message passing, edge hidden h0

vw states were 
initialized using Eq. (2): 

h0
vwτ(Wicat(xv, evw) ) (2)  

where τ is the ReLU, and Wi is the learned matrix. 
The messages are subsequently propagated for hidden states 

ht
vw and messages mt

vw via directed keys based on the graph structure. 
During each direct message passing step t, the featurization of each bond 
is updated by summing the featurization of the neighboring bonds. The 

Fig. 4. t-SNE of all molecules from the training Dataset 1 (blue dots) and independent validation Dataset 2 (red dots).  

Fig. 5. Neural network architecture of the 3 L–DMPNN model.  
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featurization of the current bond is then connected to the sum to 
construct a neural representation of the molecule. The calculation was 
performed according to Eqs. (3) and (4): 

mt+1
vw =

∑

kϵ{N(v)/w }

ht
kv (3)  

ht+1
vw = τ

(
h0

kv +Wmmt+1
vw

)
(4)  

where N(v) is the set of neighbors of v in graph G ,t ∈ {1,…,T}, T is the 
total number of steps of the message passing phase, and Wm ∈ Rh×h is the 
learned matrix. Next, each atom representation of the molecule was 
calculated by aggregating the incoming bond features according to Eq. 
(5). 

mv =
∑

w∈N(v)

hT
vw (5)  

2.2.3. Readout 
After the direct message passing phase, 208 global molecular-level 

features for each molecule including the number of hydrogen bond 
donors, number of rotatable bonds, number of aliphatic rings, number of 
aromatic rings, proportion of sp3-hybridized carbon atoms, lipid–water 
partition coefficient, and topological polar surface area, etc. were 
computed using the open-source package RDKit. 

The molecular-level features of the 270 corrosion inhibitors 
comprising Dataset 3 and the molecular-level features of the 27 corro-
sion inhibitors comprising Dataset 4 were incorporated into the model 
to provide information, where the feature vector h was obtained for the 
entire molecule by summing the hidden states of all atoms and 
molecular-level features hu: 

h =
∑

vϵG
hv + hu (6) 

Finally, the feature vector h was fed through a feed-forward neural 
network for efficiency prediction. 

ŷ = f (h) (7)  

2.2.4. Evaluation metrics for models 
The IE prediction model constructed in this study was a regression 

model, and the root-mean-square error (RMSE), mean absolute error 
(MAE), and coefficient of determination (R2) values were used as sta-
tistical metrics of its performance and were calculated using Eqs. (8–10). 
The best-performing model from a mathematical point of view was the 
one with the lowest RMSE and MAE values and highest R2 magnitude. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
m

∑m

i=1

(
IEpred

i − IEexp
i)2

√

(8)  

MAE =
1
m

∑m

i=1

⃒
⃒IEpred

i − IEexp
i
⃒
⃒ (9)  

R2 = 1 −
∑m

i=0

(
IEpred

i − IEexp
i)2

∑m
i=1

(
IEpred

i − IE
)2 (10)  

IE =
1
m

∑m

i=1
IEpred

i (11)  

where IEpred
i is the predicted IE value for sample i, IEexp

i is the experi-
mental IE value for sample i, m is the total number of samples, and e is 
the average value of the predicted IE values. 

In addition, a cumulative distribution function (CDF) was used to 
evaluate the absolute error of the test data, and the higher CDF indicated 
a larger number of molecules with prediction errors less than ΔIE. CDF is 
obtained by calculating the integral of the probability efficiency func-
tion of ΔIE via the Eqs. (12–13). 

P(ΔIE) =
∫ ΔIE

0

Nt

N
× 100dt (12)  

ΔIE = 100 ×
(
IEpred − IEexp

)
(13)  

where P(ΔIE) is the CDF of ΔIE, N is the total number of molecules of the 
entire testing set, and Nt is the number of molecules with a prediction 
error below the specified upper limit error t. 

2.3. Electrochemical measurements 

1 M HCl solution was prepared by analytical reagent-grade 37% 
hydrochloric acid with distilled water. The electrochemical impedance 
spectroscopy (EIS) of four corrosion inhibitors (4-Methylthiazol-2- 
amine, 3-Amino-5-mercapto-1,2,4-triazole, 1 H-benzotriazole and 1-Hy-
droxy-7-azabenzotriazole) were performed by CHI660E workstation 
based on a three-electrode system at room temperature (25℃− 30℃). 
Q235 carbon steel sample, platinum foil, and saturated calomel elec-
trode were used as the working electrode (WE), the counter electrode 
and the reference electrode (RE), respectively. Each electrode was 
immersed for 30 min in the 1 mol/L HCl solutions containing 1 mmol/L 
corrosion inhibitor before EIS measurements. Thereafter, EIS tests were 
recorded in the frequency range from 0.01 Hz to 100 kHz with a po-
tential amplitude of ± 10 mV. The corresponding inhibition efficiency 
(IE) was estimated using Eq. (14). 

IE
(

%
)

=
Rct − R0

ct

Rct
× 100 (14)  

where R0
ct and Rct correspond to the charge transfer resistance in the 

absence and presence of inhibitors, respectively. 

3. Results and discussion 

3.1. Evaluation of the accuracy of the model 

To predict IE values, SMILES was used in Dataset 1 as input and a 
rectified linear rectification function (ReLU) as the activation function 
[54], which increases the nonlinear relationship between the layers of 
the neural network. To fully utilize the dataset and obtain a reliable 
model, we employed all 270 molecules from Dataset 1 but applied a 
10-fold cross-validation mode instead of using the pre-split data for 
training and testing to avoid overfitting and underfitting. During the 
10-fold cross-validation procedure, the 270 molecules were divided into 
ten subsets by random selection. In each run, nine of the ten subsets were 
selected as the training data, and the remaining subset was used as the 
testing data for performance evaluation. This process was repeated 10 
times until each of the ten subsets has been used as the testing data once. 
The average test results from the ten runs were utilized to calculate the 
final score. 

Using the Hyper Python package [55], Bayesian optimization [56] 

Table 1 
Atom and chemical bond features used for molecular graph representation.  

Features Description 

Atom type Atomic number 
Formal charge Integer electronic charge assigned to an atom 
Hybridization type sp, sp2, sp3, sp3d, or sp3d2 

Degree Number of bonds formed by an atom 
Explicit valence Number of valence electrons 
Atomic mass Mass of an atom (divided by 100) 
Aromaticity Whether an atom is part of an aromatic system 
Bond type Single, double, triple, or aromatic 
In ring Whether a bond is part of a ring 
Conjugated Whether a bond is conjugated 
Aromatic Whether a bond is part of an aromatic system 
Stereo None, any, E/Z, cis/trans  
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was performed to optimize the hyperparameters and minimize the 
RMSE metric, including the depth (number of message-passing steps), 
hidden size (size of bond message vectors), number of feed-forward 
network layers, and dropout probability of the model. The results of 
the Bayesian optimization revealed that the recommended hyper-
parameter set for the current dataset and model were depth = 5, hid-
den_size = 700, feed-forward network layers = 3, and dropout = 0.0, 
which were adopted as the hyperparameters in all the subsequent 
training jobs. 

The performance of the 3 L–DMPNN model was compared with those 
of other ML methods, including SVM, RF, and DMPNN. For a fair com-
parison, the datasets (including training, valid, and test datasets) and 
hyperparameter settings were kept the same for each model. Both the 
SVM and RF models used 2,048-bit Morgan fingerprint vectors as the 
sole inputs. The RMSE, MAE, and R2 values determined from the SVM, 
RF, DMPNN, and 3 L–DMPNN models are summarized in Table 2. The 
predicted IE values of the 3 L–DMPNN model and the corresponding 
experimental IE values are shown in Fig. 6. These results revealed that 
the prediction errors of the four models were ranked as follows: SVM 
> RF > DMPNN > 3 L–DMPNN. The prediction accuracies of the GNN 
models (DMPNN and 3 L–DMPNN) were significantly higher than those 
of the ML models (SVM and RF), which confirmed the high effectiveness 
of modeling the structure-efficiency relationship based on the molecular 
structure graph. The 3 L–DMPNN model combining atomic level fea-
tures, chemical bond-level features, and molecular-level features 
demonstrated a significantly better performance than the DMPNN 
model, suggesting that the IE of the corrosion inhibitors was closely 
related to certain molecular-level features in the studied molecular 
structures. 

Further analyses are illustrated by the histograms of prediction er-
rors plotted in Fig. 7 and CDF curves presented in Fig. 8. Fig. 7 shows 
that the error distribution of the SVM model is between − 16% and 15%, 
while that of the RF model is between − 11% and 25%, which are both 
relatively discrete. In comparison, the prediction errors of DMPNN are 
mainly distributed between − 13% and 16%, and those of 3 L–DMPNN 
vary between − 8% and 9%, which are concentrated near zero and 
consistent with the normal distribution. The prediction errors of 
3 L–DMPNN are the smallest, which is in good agreement with the re-
sults presented in Table 2. 

CDF is an integral of the probability density function. When the 
upper limit error ΔIE is set to 5%, the red dotted line in Fig. 8 marks the 
proportion of molecules with prediction errors less than 5%, i.e., P(5%). 
The P(5%) values were 27.0% for SVM, 73.3% for DMPNN, 83.3% for 
RF, and 94.8% for 3 L–DMPNN. The areas under the curves for different 
models correspond to the boxes in Figs. 7a–7d, following the order 
3 L–DMPNN > RF > DMPNN > SVM. The larger the area, the larger P 
(5%) and the greater the number of molecules with prediction errors less 
than 5%. As the upper limit error increased, the values of P(10%) 
determined for the four models were 65.9% for SVM, 94.8% for RF, 
93.7% for DMPNN, and 100% for 3 L–DMPNN (see the blue dotted lines 
in Fig. 8), while the values of P(15%) determined for the four models 
were 98.5% for SVM, 97.7% for RF, 99.6% for DMPNN, and 100% for 
3 L–DMPNN (see the green dotted lines in Fig. 8). Figs. 6–8 all indicates 
that the accuracy and effectiveness of the 3 L–DMPNN model are better 

than those of the other models. Therefore, this model is most suitable for 
predicting IE values. 

3.2. Validation of the generalizability of the model 

The 3 L–DMPNN model trained in Section 3.1 for efficiency pre-
diction was tested using the independent Dataset 2. The immersion time 
of 23 corrosion inhibitors from the literature in Dataset 2 ranged from 
500 s to 60 min, and more than 70% of IEs were measured after 30 min 
of immersion. Therefore, we performed EIS measurements for 4 mole-
cules (4-Methylthiazol-2-amine, 3-Amino-5-mercapto-1,2,4-triazole, 
1 H-benzotriazole, and 1-Hydroxy-7-azabenzotriazole) after 30 min of 
immersion at the inhibitor concentration of 1 mM. Fig. S1 in Supporting 
Information shows the Nyquist plots of the EIS results and the equivalent 
electrical circuit to fit the EIS data. In the circuit, Rs is the solution 
resistance, Rct and CPEdl correspond to charge transfer resistance and 
double layer capacitance, respectively. RL and L(H) represent inductive 
resistance and inductance, respectively. Constant phase elements (CPEs) 
are used instead of ideal capacitors because of the inhomogeneity of the 
surface. The corresponding EIS parameters obtained by fitting the 
experimental data, such as Rs, Rct ,CPEdl, L(H) and RL, and the IE 
calculated using Eq. (14), are listed in Table S1 in Supporting 
Information. 

Fig. 9 summarizes the IE values of the corrosion inhibitors measured 
in the laboratory (green), the IE values obtained from the latest litera-
ture studies (red), and the values predicted using the 3 L–DMPNN model 
(blue). The molecular structures and IE values of the 27 corrosion in-
hibitors are summarized in Table 3, where the experimental IEs of 
corrosion inhibitors Nos. 1–4 in Fig. 9 and Table 3 were measured after 
30 min of immersion. Unlike the existing efficiency prediction models 
for corrosion inhibitors, which were trained based on the datasets of 
molecules under specific categories [19,57,58], the 3 L–DMPNN model 
was able to learn both the intra-class features of similar molecules and 
inter-class features of all molecules. Among the 27 molecules, Nos. 5 and 
6 (aldehydes), No. 9 (ethyl acetate), No. 12 (isoxazole) and No. 20 
(piperazine) are not included in the training Dataset 1. Table 3 shows 
that the IEs of these five molecules were predicted accurately with ab-
solute errors not exceeding 6%, indicating that the model exhibits good 
generalization ability and can make a reliable prediction for molecular 
categories outside the training data domain. 

3.3. Significance and limitations of the model 

The IE of a corrosion inhibitor is related to its molecular-level fea-
tures according to expertise, and the dataset utilized in this study was 
small and contained only hundreds of molecules. Using the DMPNN 
model with only atomic-level features and chemical bond-level features 

Table 2 
10-fold cross-validation results obtained for Dataset 1.  

Model RMSE MAE R2 

SVM 0.112133 
± 0.016459 

0.092632 
± 0.005552 

0.225193 
± 0.328819 

RF 0.107009 
± 0.029765 

0.068037 
± 0.013303 

0.339981 
± 0.260449 

DMPNN 0.086089 
± 0.019266 

0.060416 
± 0.010578 

0.458843 
± 0.255685 

3 L–DMPNN 0.078170 
± 0.021574 

0.053039 
± 0.010515 

0.460557 
± 0.584432  

Fig. 6. Model performance evaluation. Predicted and experimental IE values 
plotted for Dataset 1 using the 3 L–DMPNN model. Each molecule is presented 
as a blue circle. 
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is poor to identify and extract all features of molecules that may be 
relevant to IE prediction and are susceptible to overfitting artifacts in the 
dataset because most original DMPNNs models use fewer message- 
passing steps than the diameter of the molecular graph [36]. As a 
result, the atoms with distances larger than the chemical bonds never 
receive messages from each other. 

The novelty of the present work lies in the application of the GNN 
modelling tool to predict IE values from molecular structure. The 
3 L–DMPNN model using SMILES as the input not only extracts atomic- 
level features and chemical bond-level features in the molecular 

structure to disrupt the molecular structure but also calculates 
molecular-level features to take into account the correlation between 
molecules to achieve effective prediction of IE for molecules of different 
molecular weights and categories. The 3 L–DMPNN model exhibited 
superior performance in predicting IE magnitudes as compared with 
those of the other models. Unlike the existing models that are limited to 
the prediction of homologous molecules, the 3 L–DMPNN model enables 
the cross-category prediction of IE. This model can be applied to virtu-
ally any corrosion inhibition dataset in the same corrosive environment, 
which saves time and facilitates batch processing. The 3 L–DMPNN 
model can also be utilized as a powerful screening tool before electro-
chemical measurement to reduce the high cost of experiments and 
accelerate the corrosion inhibitor development processes. 

The current model is limited to making accurate prediction for 
corrosion inhibitor molecules used for the same type of metal (i.e. car-
bon steels) in the same corrosive environment (1 mol/L HCl). In future 

Fig. 7. Histograms of prediction errors obtained for (a) SVM, (b) RF, (c) DMPNN, and (d) 3 L–DMPNN.  

Fig. 8. Plots of CDF versus prediction error constructed for SVM, RF, DMPNN, 
and 3 L–DMPNN models. The horizontal axis represents the absolute error ΔIE, 
and the vertical axis denotes the fraction of molecules P(ΔIE) with errors less 
than ΔIE. 

Fig. 9. Experimental efficiencies of the molecules from Dataset 2 and their 
predicted values obtained by the 3 L–DMPNN model. 
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Table 3 
Chemical structures of 27 corrosion inhibitors and their IE values.  

No. IUPAC nomenclature Molecular structure Category Experimental 
IE 

Predicted 
IE 

Ref 

1 4-Methylthiazol-2-amine Thiazoles 55.3% 61.3% laboratory 

2 3-Amino-5-mercapto-1,2,4-triazole Triazoles 67.6% 63.0% laboratory 

3 1 H-Benzotriazole Triazoles 69.9% 73.7% laboratory 

4 1-Hydroxy-7-azabenzotriazole Triazoles 74.8% 77.3% laboratory 

5 (2E)− 3-(4-methylphenyl)prop-2-enal Aldehydes 73.0% 74.9% [59] 

6 (2E)− 3-(4-methoxyphenyl)prop-2-enal Aldehydes 86.0% 81.5% [59] 

7 (E)− 4-(1-(pyridin-2 ylimino)ethyl)benzene-1,3-diol Schiff bases 90.0% 88.8% [60] 

8 (E)− 4-(1-((3-hydroxyphenyl)imino)ethyl) benzene-1,3-diol Schiff bases 89.7% 88.7% [60] 

9 ethyl 2-(3-methyl-2-oxo-1,2-dihydroquinixalin-1-yl)acetate Ethyl 
acetate 

86.7% 87.0% [61] 

10 5-(((1-azido-3-chloropropan-2-yl)oxy)methyl)quinolin-8-ol Quinolines 93.8% 92.1% [62] 

11 2-Amino-4-phenyl-2 H-pyrano[3,2-h]quinolin-3-carbonitrile(QP-H) Quinolines 91.1% 88.8% [63] 

12 3-(2-methoxyphenyl)-isoxazole-carvone Isoxazoles 93.3% 90.8% [64] 

13 2-amino-5-oxo-4-phenyl-4 H,5 H-pyrano [3,2-c]chromene-3-carbonitrile Pyranes 89.0% 85.1% [65] 

14 7-((4-benzylpiperazin-1-yl)methyl)quinolin-8-ol Quinolines 93.6% 94.3% [66] 

15 N,N,1-tri(oxiran-2-ylmethoxy)− 5-((oxiran-2-ylmethoxy)thio)− 1 H-1,2,4- 
triazol-3-amine (TTA) 

Epoxy 90.8% 92.7% [67] 

16 methyl 2-amino-4-(4-methoxyphenyl)− 4 H-pyrano[3,2–h]quinoline-3- 
carboxylate (P-2) 

Quinolines 93.8% 91.7% [68] 

17 methyl 2-amino-4-(4-chlorophenyl)− 4 H-pyrano[3,2–h]quinoline-3- 
carboxylate (P-1) 

Quinolines 89.5% 92.1% [68] 

18 Pyridines 86.0% 85.2% [69] 

(continued on next page) 
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work, the environmental parameters can be added to the model input to 
extend the molecular data. In addition, the evolution of IE with time of 
immersion and the influence of surface finish of the metal can be 
considered on the basis of an extended dataset to further generalize the 
model. Quantum chemical parameters of corrosion inhibitor molecules, 
such as dipole moment, orbital energy, and the number of transferred 
electrons, are also commonly used to establish molecular structur-
e–efficiency relationships. Adding these parameters as supplementary 
information to the learning model can provide a more comprehensive 
description of the molecular properties from a quantum chemical 
perspective and increase the prediction accuracy. 

4. Conclusion 

In this study, a cross-category corrosion inhibitor efficiency dataset 
was constructed from published research works. As a result, a molecular 
structure–efficiency prediction model, 3 L–DMPNN, for corrosion in-
hibitors based on the topological structures of molecular graphs was 
established. The 3 L–DMPNN model uses the identified molecular de-
scriptors (SMILES) as the sole input while combining atomic-level fea-
tures, chemical bond-level features, and molecular-level features. The 
results demonstrated that the 3 L–DMPNN exhibited high prediction 
accuracy as compared with those of the SVM, RF, and DMPNN models. 

In addition, a 10-fold cross-validation approach was utilized to deter-
mine the proportions of compounds with prediction errors less than 5% 
in the overall dataset; the values obtained for the SVM, RF, DMPNN, and 
3 L–DMPNN models were 27.0%, 83.3%, 73.3%, and 94.8%, respec-
tively. The generalization ability of the developed model was also 
validated using 23 molecules from the latest literature studies and 4 
molecules tested in laboratory, making prediction for the categories of 
molecules outside the training data domain. The obtained results indi-
cated that the 3 L–DMPNN model could accurately predict IE values for 
both strong and weak corrosion inhibitors, allowing rapid screening of 
corrosion inhibitor molecules at low costs. 
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Table 3 (continued ) 

No. IUPAC nomenclature Molecular structure Category Experimental 
IE 

Predicted 
IE 

Ref 

N1-(2-morpholinoethyl)-N1,N3-bis(pyridine-2-ylmethyl)propane-1,3- 
diamine 

19 7-((4-(benzo[d] [1,3]dioxol-5-ylmethyl)piperazin-1-yl)methyl)quinolin-8- 
ol 

Quinolines 96.8% 94.2% [66] 

20 1,4-bis(2-(2-hydroxyethyliminomethyl)phenyl)piperazine Piperazine 81.0% 85.5% [70] 

21 2-(n-Hexylamino)− 4,6-bis (3-N, N-dimethylaminopropyl) amino-1,3,5- 
triazine 

Triazines 93.5% 94.1% [71] 

22 2-(nOctylamino)− 4,6-bis (3-N, N-dimethylaminopropyl) amino-1,3,5- 
triazine 

Triazines 94.4% 94.6% [71] 

23 2, 4- Bis (2-hydroxy naphthaldehyde) diiminotholuene (L) Schiff bases 92.5% 92.0% [72] 

24 2-(n-n-Dodecylamino)− 4,6-bis (3-N, N-dimethylaminopropyl) amino- 
1,3,5-triazine 

Triazines 96.7% 95.0% [71] 

25 44,4’-Methylenebis{N-[(E)-quinoléine- 2-ylmethylidene] aniline} Schiff bases 81.1% 86.3% [73] 

26 4,4’-Oxybis{N-[(E)-quinoléine-2-ylmethylidene]aniline} Schiff bases 82.8% 87.7% [73] 

27 4,4’-Ethane bis{N- [(E)-quinoléine-2-ylmethylidene]aniline} Schiff bases 85.3% 85.4% [73]  
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