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Abstract. Voice messages are an increasingly popular method of com-
munication, accounting for more than 200 million messages a day. Send-
ing audio messages requires a user to invest lesser effort than texting
while enhancing the message’s meaning by adding an emotional context
(e.g., irony). Unfortunately, we suspect that voice messages might pro-
vide much more information than intended to prying ears of a listener.
In fact, speech audio waves are both directly recorded by the microphone
and propagated into the environment, and possibly reflected back to the
microphone. Reflected waves along with ambient noise are also recorded
by the microphone and sent as part of the voice message.

In this paper, we propose a novel attack for inferring detailed infor-
mation about user location (e.g., a specific room) leveraging a simple
WhatsApp voice message. We demonstrated our attack considering 7,200
voice messages from 15 different users and four environments (i.e., three
bedrooms and a terrace). We considered three realistic attack scenar-
ios depending on previous knowledge of the attacker about the victim
and the environment. Our thorough experimental results demonstrate
the feasibility and efficacy of our proposed attack. We can infer the loca-
tion of the user among a pool of four known environments with 85%
accuracy. Moreover, our approach reaches an average accuracy of 93% in
discerning between two rooms of similar size and furniture (i.e., two bed-
rooms) and an accuracy of up to 99% in classifying indoor and outdoor
environments.

1 Introduction

Modern chats have replaced feature-poor SMS by adding text images, video,
audio, and emoticons. This has allowed instant messaging apps to attract more
and more users over the years. In 2020, more than 2.7 billion users used at least
one instant messaging app1. Nowadays, the most used instant messaging app
with over 2 billion users worldwide is WhatsApp2. One of the most used functions
1 https://www.statista.com/statistics/258749/most-popular-global-mobile-

messenger-apps/.
2 https://www.whatsapp.com/.
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by WhatsApp users are voice messages, considering that over 200 million are
sent every day3. Sending a voice message requires even lesser effort for a user
compared to texting. Moreover, voice messages allow enriching the message’s
meaning by adding an emotional context (e.g., irony). Given the appreciation of
users, this feature has become common in other messaging apps as well [21], but
does a voice message send more than we intend to?

As can be seen in Fig. 1 when a person speaks, the voice signals travel in
different paths, some of which undergo reflection. The reflected paths depend on
the shape, dimension, furniture that are present in the room. Reflected audio
waves end up back at the speaker, causing the persistence of noise called rever-
beration. In addition, other ambient noises are also present, such as noises from
secondary audio sources. The combination of reverberation, noises and the audio
message gets picked up by the smartphone during voice messaging. In this work,
we aim to use these physical measures that are readily accessible and inadver-
tently shared during WhatsApp audio messaging to gain intelligence about the
victim’s whereabouts. To the best of our knowledge, this is the first study that,
leveraging short audio messages, identifies the location from which the message
was sent. The main contributions we propose in this paper are:

– We propose a novel attack for inferring a specific user location (e.g., a specific
room) leveraging simple WhatsApp voice messages.

– We collected a dataset of 15 people and four different environments (i.e., three
indoor and one outside) for a total of 7200 recordings (i.e., 480 per partici-
pant). We will make the dataset public, available to the research community
upon acceptance. We believe it will be useful in studying the problem further
and developing countermeasures.

– We performed an extensive analysis of our attack simulating three different
real attack scenarios based on the knowledge available to the attacker. We
demonstrated that our attack can distinguish the location of the message
among a pool of known environments (i.e., three bedrooms and a terrace)
with an accuracy of up to 85%. Moreover, we show that our approach reaches
an average accuracy of 93% in discerning the voice message location of two
rooms of similar size and furniture (i.e., two bedrooms). We further inferred
the specific position of a user within a room (e.g., a corner); for this task, we
achieved an accuracy of up to 64%.

The structure of the rest of our paper is as follows - In Sect. 2, we discuss
previous works related to environment inference using audio signals and location
detection. In Sect. 3, we introduce our system and adversary model. Section 4
presents our ForY ourV oiceOnly attack. The experimental setup and results
are discussed in Sects. 5 and 6 respectively. We discuss the limitations, potential
future research directions, and concluding remarks in Sect. 7.

3 https://www.thesun.co.uk/tech/6815812/texts-voice-messages-whatsapp-imessage-
switching/.

https://www.thesun.co.uk/tech/6815812/texts-voice-messages-whatsapp-imessage-switching/
https://www.thesun.co.uk/tech/6815812/texts-voice-messages-whatsapp-imessage-switching/
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2 Related Work

Sound classification represents a field of increasing interest in several areas and
applications such as, surveillance [26], medicine [33], emotion recognition [34],
music genre classification [27], and forensics [31]. The three main disciplines
involved in sound classification are: Music Information Retrieval (MIR), [32,36],
Automatic Speech Recognition (ASR) [28,37], and Environmental Audio Scene
Recognition (EASR) [29,35]. Music and speech can be well described by features
such as MFCC (Mel-frequency cepstral coefficients), bandwidth, zero-crossing
rate (ZCR), and spectral flux [8,10]. While for the recognition of environments,
the problem is more challenging since the sound, in this case, does not present
any tonal or harmonic structure [15].

Fig. 1. Voice propagation when sending a voice message

A first comprehensive study on EASR was carried out by Cowling et al. [6].
In this work, the authors explore different feature extraction and classification
techniques on EASR, achieving a 70% accuracy leveraging dynamic time warping
classification techniques. One of the primary tasks in the EASR domain is the
distinction between indoor and outdoor environments. Khonglah et al. [25] pro-
posed the use of foreground speech segmentation to obtain foreground and back-
ground segments of an audio recording. Then from the obtained segments, the
MFCCs were extracted and used to train an SVM classifier to perform indoor-
outdoor classification. In this study, the authors highlighted that the primary
cause of misclassification was the presence of speech in the background. Not only
speech but also other background noises can induce classification errors. In real-
world scenarios, it is quite common to have complex environment sound (i.e.,
environments with multiple sound sources). To mitigate the impact of complex
sounds on environmental prediction performance, Delgado et al. [16] introduced
a feature reduction strategy using a Chi-Squared Filter [2]. Unfortunately, a sim-
ilar approach cannot be applied to the classification of similar locations. Both
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speech reverberation and background noise are important sources of information
that can describe the environment in which the voice message is recorded.

Recently, many works on EASR have leveraged deep learning algorithms
to perform feature extraction and classification [20,23,24] Based on the work
conducted by Chandrakala et al. [29] deep learning approaches show better per-
formance compared to traditional machine learning techniques. However, these
approaches cannot be applied in our case since they require large amounts of
data to train the models.

Additional factors that affect EASR are the recording device’s quality and
the format in which the sound signal is saved (i.e., lossy audio formats). In this
regard, several works have focused on recognizing environments from sounds
recorded with resource-constrained devices (e.g., smartphones). Gomes et al.
[22] present an application for the smartphone device to classify audio recorded
on the device using a combination of SAX-based multiresolution motif discovery
in combination with MFCC. The work by Peltonen et al. [5] aims to perform
context-based audio scene recognition. However, the data used in this work were
obtained using a stereo setup and stored in a digital audio tape recorder. To
the best of our knowledge, there are no works in the literature that attempt to
identify a specific location (e.g., a specific room) from a voice message recorded
by a smartphone.

3 System and Adversary Model

In this section, we describe the system and the adversarial model of our attack.
We further discuss the different types of realistic attack scenarios that we iden-
tified based on varying levels of information available to the attacker.

System Model. We assume that the victim has a smartphone device with
WhatsApp installed and an internet connection. We further assume that the
software on the victim device and the device itself is not compromised in any
manner. While recording the audio messages, we assume that the phone is held
at a distance of approximately 15 cm [4,14] from the face of the speaker at an
upright position (see Fig. 2). This is one of the most common positions where a
phone is held either during video calls or while sending audio messages. Moreover,
we conducted an additional preliminary study by placing the phone close to the
ear. Results showed that the location inference accuracy was nearly the same
across both considered positions.

Adversarial Model. We assume that the attacker has access to the WhatsApp
audio message of the victim. The attacker is a user who seeks to learn the loca-
tion information of the victim. Depending on the attack scenario, the attacker
may also have the target’s recordings from the same or different positions at
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15 cm

Fig. 2. Recording position

specific locations. Also, the victim is assumed to be in one of these selected loca-
tions when recording the audio message. For our experiment, we consider three
different scenarios for the attacker:

– Complete Profiling : This scenario occurs when the attacker asks the victim
to send voice messages from specific locations. For example, an investigator
(i.e., the attacker) might ask a suspect (i.e., the victim) to stand in a specific
part of a room to verify that the suspect was there or elsewhere at the time
a voice message was sent. In this scenario, the attacker has recordings of the
victim in all the selected locations. Moreover, the attacker also knows the
victim’s specific position in the selected locations (e.g., a room corner). In
this scenario, the attacker has the highest knowledge to execute his attack.

– Location Profiling : In this scenario, the attacker cannot access any of the vic-
tim’s voice messages other than the one he wants to infer the location. The
attacker knows that the victim has sent the voice message from a selected loca-
tion (e.g., the attacker knows that the victim is in a specific building). There-
fore, the attacker can have WhatsApp audio recordings of different speakers
but the victim. The speakers are assumed to have recorded their messages at
the same locations where the victim is sending the voice message. Hence, the
victim is “unknown” while the location position is “known” to the attacker.

– User Profiling : This scenario occurs when the attacker owns the victim’s voice
messages and knows the recording location but does not know the specific
position in the location (e.g., a corner of a room) from which they were
recorded. The attacker wants to infer the location of a new voice message sent
by the victim. Different from the Complete Profiling scenario, the attacker
cannot ask the victim to send more voice messages from specific positions of
the selected locations (e.g., the victim is no longer reachable). The victim is
“known” while the position is “unknown” to the attacker in this situation.

Based on the described scenarios, we can identify two main application fields:
i) forensics and ii) malicious inference of user information. The forensic field is
probably the one that would find the most significant benefits both for the wide
range of applications (e.g., investigations, evidence in court) and for the high
chance of being in the scenario with the highest knowledge (i.e., Complete Pro-
filing). Commonly in forensics, there are no limitations in obtaining additional
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voice messages from specific locations. Further, inferring the specific position
in a location (e.g., a corner) from which a voice message was sent is of par-
ticular interest in forensics. This information can be crucial in understanding
whether the suspect or witness could have taken action (e.g., interacted with
something nearby) or could see something (e.g., through a window). Malicious
inference of user information is another field in which inference of a victim’s loca-
tion from their voice messages finds application. In this case, an attacker can
exploit this knowledge to understand whether the victim is in a location (e.g.,
home or office) and take specific actions (e.g., perform a theft) based on this. A
practical application would be an employer who wants to monitor whether an
employee is smart working from home or another location. This behavior would
be highly invasive of workers’ privacy and illegal (since it would occur without
the employee’s consent) while difficult to detect. Moreover, the malicious infer-
ence of user location could allow additional information such as habits, interests,
activities, and relationships to be obtained, posing severe privacy concerns.

4 ForY ourV oiceOnly Attack

Our attack consists of four phases: Data Acquisition, Data Processing, Model
Training, and Location Inference. In Fig. 3 we provide an overview of how the
attacker conducts the attack. Each of the four phases is discussed in detail in
the following sections.

Word Segmentation

Recording

DATA ACQUISITION

Feature Aggregation

Feature Extraction

DATA PROCESSING

[f1,m, f2,m, ..., fn,m ]

[f1,1, f2,1, ..., fn,1 ]
[f1,2, f2,2, ..., fn,2 ]

[f1, f2, ..., fm, σ1, σ2, ..., σn ]

MODEL TRAINING

LOCATION INFERENCE

Training set
(labelled)

Testing set
(unlabelled)

Fig. 3. ForY ourV oiceOnly attack phases

Data Acquisition. This phase consists of two steps: Recording and Word
Segmentation. At the end of the data acquisition phase, the attacker will own
two datasets composed of segmented voice messages.
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– Recording : In this step, the attacker performs two types of data acquisition.
The first involves acquiring WhatsApp voice messages recorded by different
people (including the victim if allowed by the attack scenario) at some loca-
tions or specific positions of interest to build a labeled dataset. The second,
for acquiring unlabeled (i.e., both the location or the position are unknown)
WhatsApp audio messages of the victim (i.e., test dataset). These two steps
do not necessarily have to be consecutive. The attacker can create the labeled
dataset even after obtaining the test dataset. The attacker can then choose
the locations of interest based on the available information type (e.g., the
victim might say she is in one location, but the attacker suspects she is in
another known specific location).

– Word Segmentation: The attacker segments the recorded voice messages to
extract audio fragments related to specific words frequently used in speech [12,
13] (e.g., “and”, “of ” and “the”). This procedure can be done either manually
or by using speech-to-text algorithms4.

Data Processing. The data processing phase is carried out on both the labeled
and the test datasets. This phase consists of two stages: Feature Extraction and
Feature Aggregation.

– Feature Extraction: The attacker extracts features that are descriptive of vocal
and environmental characteristics: spectral centroid, spectral roll-off, spectral
flatness, zero-crossing rate, and Mel-frequency cepstral coefficients [15]. At
the end of this step, the attacker has a set of time-frequency features whose
dimensionality depends on the duration of the segmented voice message.

– Feature Aggregation: Since segmented voice messages may have a variable
duration, the attacker needs to process the feature extracted in the previous
step to create a feature vector of standardized length. The attacker aggregates
the extracted features by calculating the average and the standard deviation
as suggested in [7,30]. This procedure allows maintaining information about
the magnitude and variability of the data, reducing the total number of fea-
tures per voice message. At the end of this step, each segmented voice message
has a set of 48 associated features.

Model Training. In this phase, the attacker uses only the labeled dataset to
train the classification models. The attacker may also decide to train the models
using a sub-sample of the dataset based on the owned information. For example,
the labeled dataset may contain records from many locations in the acquisition
phase, but the attacker has obtained new information about the victim and may
discard some of them.

Location Inference. In this phase, the attacker applies the model trained in
the Model Training phase and predicts the location or the specific location where
the victim recorded the message.
4 https://www.mathworks.com/help/audio/ug/audio-labeler-walkthrough.html.

https://www.mathworks.com/help/audio/ug/audio-labeler-walkthrough.html
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5 Experimental Setting

In this section, we provide details about the procedure followed during data
collection and the characteristics of the obtained dataset. We further provide a
comprehensive overview of the machine learning models we used to demonstrate
the efficacy of our proposed attack.

5.1 Data Collection

We performed our data collection at four different real locations. The layouts of
these locations are depicted in Fig. 4. In particular, we considered three indoor
locations I1 (Fig. 4a), I2 (Fig. 4b), and I3 (Fig. 4c), and one outdoor location
O1 (Fig. 4d). Since our goal is to recognize the specific location (or the specific
position) from which a voice message is sent for indoor locations, we decided to
consider the worst-case where the rooms have a similar layout and furnishings
(i.e., bedrooms). Within each of the indoor locations, we further identify five
different recording positions: south-east corner (P1), south-west corner (P2),
north-west corner (P3), north-east corner (P4), and center (P5). While for O1,
we identified a central recording position only (P5).

The data collection process involved 15 participants (5 males and 10 females
aged 20 to 59 years). In the institution where the experiments were carried out,
an IRB approval was not mandatory for this context. All voluntary participants
were informed of the actual use of their data and their informed consent was
obtained before the recording process. We ensured that the participants held
their phones at a distance of about 15 cm from their face at chin level, as shown
in Fig. 2. While recording, only the participant was present, and the room doors
and windows were closed. To create a more realistic dataset, we asked the par-
ticipants to use their own smartphone devices5. During the collection phase,
the participants recorded 30 different voice messages using WhatsApp in all the
locations and at each position (see Fig. 2). This results in a total of 150 record-
ings per indoor location and 30 recordings for the outdoor location. We collected
a total of 7200 WhatsApp voice messages, corresponding to 480 recordings per
participant.

All the recorded WhatsApp voice messages have a one-second duration (i.e.,
the minimum duration of a WhatsApp voice message) and contain a single word
(i.e., and, of, or the). Specifically, for each position the participants recorded 30
voice messages: 10 pronouncing the word and, 10 pronouncing the word of, and
10 pronouncing the word the. We selected these words based on the OEC, and
COCA ranks for most commonly used words during an English conversation [12,
13]. We divided the 30 recordings at a single position into three sequences of 9–
12-9. The participant starts the data collection from position P1, recording 9

5 Devices in the data collection: Apple iPhone 7, Apple iPhone X, Apple iPhone
11 pro, Motorola Moto E6, Motorola Moto G3, OnePlus 3, OnePlus 5T, OnePlus
6, OnePlus 6T, OnePLus 6T, OnePlus 8T, OnePlus NORD, Samsung Galaxy A9,
Samsung Galaxy A30, and Samsung Galaxy Z Fold 2.
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(a) Indoor location I1 - bedroom. (b) Indoor location I2 - bedroom

(c) Indoor location I3 - bedroom (d) Outdoor location O1 - Terrace

Fig. 4. Location layout and recording positions with orientation considered in the data
collection
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voice messages at this position (i.e., 3 voice messages per word). Once concluded
with this step, the participant moves to P2 in the same location and records 9
voice messages again. After all the five positions are covered in sequence, the
participant starts the procedure again from P1, recording 12 voice messages
(i.e., 4 voice messages per word). Finally, the participant concludes the data
collection with a final set of 9 voice messages per position before moving to the
next location. For the O1 location, the participant recorded 30 voice messages
from the same position (i.e., P5).

5.2 Feature Extraction

To characterize the location of audio messages, we extracted frame-level fea-
tures that traditionally were involved in speech recognition and EASR tasks. In
particular, for one second of recording (i.e., the minimum duration of a voice
message on WhatsApp), we extract 24 features:

– Zero Crossing Rate (ZCR): A temporal feature that indicates the rate at
which the signal changes sign [17]. ZCR can also indicate the amount of noise
in a signal. A higher ZCR value typically means more noise. ZCR formulation
is defined (1)

ZCR =
1

2WL

WL∑

n=1

|sgn[xi(n)] − sgn[xi(n − 1)]| . (1)

where n is the n-th audio sample and W L is the length of the considered
time window.

– Spectral Roll-off (SR): A spectral feature that measures the bandwidth that
contains a certain percentage of the spectral energy [3]. This feature can
differentiate harmonic sounds from noisy sounds that usually lie above the
roll-off frequency. Further, SR can be used for voiced and unvoiced speech
detection [3], and EASR [9]. SR formulation is reported in (2)

SR = i such that

i∑

k=b1

|s(k)| = θ

b2∑

k=b1

s(k) . (2)

where s(k) is the power of the k-th frequency bin, θ is the specified frequency
threshold, while b1 and b2 are the band edges. In this work, we considered a
frequency threshold of 85%.

– Spectral Flatness (SF): Also known as Wiener entropy, it is a spectral feature
that is used for quantifying how tonal a sound is compared to how noisy it is.
SF was applied for singing voice detection [18] and EASR [20] Mathematically
this value is calculated as the ratio between the geometric and arithmetic
means of a power spectrum. Formally SR can be derived as reported in (3)

SF =
(
∏b2

k=b1
s(k))

1
b2−b1

1
b2−b1

∑b2
k=b1

s(k)
. (3)
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where s(k) is the power of the k-th frequency bin, while while b1 and b2 are
the band edges.

– Spectral Centroid (SC): Geometrically the centroid represents the arithmetic
mean of the positions of the points composing a figure. The spectral centroid
is a spectral feature that performs a similar function with respect to a spec-
trogram. SC is commonly used in music genre classification [1] and it is an
indicator of brightness (i.e., upper mid and high frequency content) Mathe-
matically, this value is the weighted mean of the constituent frequencies of a
signal, as reported in (4)

SC =

∑
k=b1

b2f(k)s(k)
∑

n=b1

b2s(k)
. (4)

where f(k) is the frequency of the k-th bin, s(k) is the power of the k-th bin,
while b1 and b2 are the band edges.

– Mel-Frequency Cepstral Coefficients (MFCCs): MFCCs take into account the
non-linear behavior of the human auditory system with respect to different
frequencies. This is done by converting the spectrum to the mel-scale using
a mel filter bank. MFCCs describe the shape of the spectral envelope giving
details regarding the timber. MFCCs have been used in the literature for
several purposes, such as voice recognition [11] and audio event detection [19].
Furthermore, Gergen et al. suggested that MFCCs could be a good descriptor
for discerning between anechoic and reverberant signals. In our work, we
extracted 20 Mel-frequency cepstral coefficients.

5.3 Machine Learning Models

To identify the location and the specific position in a location of a voice mes-
sage, we tested four multi-class classifiers: Linear Discriminant Analysis (LDA),
Logistic Regression (LR), Ridge Classifier (RC), and Support Vector Machine
(SVM). Based on the attack scenario, we applied different strategies to split the
data into training, validation, and testing sets:

– Complete Profiling: To evaluate the performance of our approach, we apply
(for each participant) a nested-cross fold validation. In the outer loop, we use
a stratified 5-fold cross-validation on the 480 voice messages recorded by the
participant, resulting in 384 recordings in training and 96 in testing per fold.
We apply a stratified 3-fold cross-validation in the inner loop on the 384
training recordings, obtaining 256 recordings in training and 128 recordings
in validation per fold.

– Location Profiling: For this experiment, we consider the entire dataset
comprising of 7200 audio recordings, and we apply a nested cross-fold vali-
dation. For the outer loop, we apply a user-independent leave-one-out cross-
validation, obtaining a testing set containing the recordings of a single par-
ticipant (i.e., 480). Similarly, in the inner loop, we apply a user-independent
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leave-one-out cross-validation on the other 14 participants, obtaining a train-
ing set of 13 participants (i.e., 6240 recordings) and a validation set of one
participant (i.e., 480 recordings) for each iteration.

– User Profiling: In this scenario, we consider the dataset of each participant
individually, as for the Complete Profiling scenario. Also here, we apply a
nested-cross fold validation. Still, different to the Complete Profiling scenario,
we use a group-k-fold to split the dataset into subsets based on the recording
location. We use a group 5-fold cross-validation in the outer loop and a group
4-fold cross-validation for the inner loop. In this way, we split data recorded
within the same room into subsets corresponding to each of the 5 recording
positions (i.e., P1, P2, P3, P4, and P5). Using this configuration, both the
validation and the test sets consist of one subset each, while the training
set contains the remaining positions. The recordings from location O1 are
excluded from this scenario since they all come from the same position (i.e.,
P5).

We explored different hyper-parameters by using grid search on all the con-
sidered classifiers. In particular, for LDA we vary the solver over [svd, lsqr, eigen].
For LR we vary the solver in [newton-cg, lbfgs, liblinear ] and the C value in the
range [10−3, 10−2, . . ., 101]. For RC we vary α from 0.1 to 0.9 with a step size of
0.1, and from 1 to 10 with a step size of 1. Finally, for SVM we tune the values
parameter C in the range [10−1, 100, . . . , 103], and γ in the range [10−4, 10−3,
. . . , 100].

6 Experimental Results

In this section, we report and discuss the results achieved by our approach in the
three attack scenarios based on the attack goal: location in Sect. 6.1 or position
in Sect. 6.2. Finally, in Sect. 6.3 we prove the applicability of ForY ourV oiceOnly
to complex voice messages.

6.1 Location Inference

In Table 1 we show the performance of the classifiers in identifying the location
according to the attack scenario, considering the worst case for each scenario
(i.e., 4 locations for the Complete Profiling and Location Profiling scenarios,
and 3 locations for the User Profiling scenario).

Table 1. Average accuracy of ForY ourV oiceOnly attack for location inference in
different attack scenarios

Scenario LDA LR RC SVM

Complete 0.85 (0.06) 0.85 (0.06) 0.83 (0.06) 0.87 (0.05)

Location 0.41 (0.11) 0.39 (0.10) 0.43 (0.09) 0.35 (0.00)

User 0.80 (0.09) 0.33 (0.04) 0.32 (0.03) 0.33 (0.03)
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The scenario where the classifiers perform best is the Complete Profiling
scenario, where the attacker has the full information available. The results show
that in this scenario, all classifiers have accuracy higher than 83%. In particular,
the SVM manages to reach an accuracy of 87%. On the contrary, in the Location
Profiling scenario, there is a consistent drop in performance. In this case, the
best classifier is the RC, which reaches an accuracy of 43% (i.e., 18% above the
chance level). Lower performance can be attributed to multiple factors:

– Device: the participants used different phones during data collection. The
absence of the model in the training set may reduce the accuracy of new test
data.

– Training Size: The number of users in training is not enough to ensure suffi-
cient variability in the training features.

– Voice Uniqueness: The distinctiveness of the victim’s vocal characteristics
cannot be completely replaced, and their lack of training is reflected in per-
formance in testing.

The importance of the victim’s voice for the attacker is supported by the
results obtained for the User Profiling scenario, where the attacker has voice
messages from the victim but does not know the specific recording location. In
this case, LDA achieves an accuracy of 80% (i.e., only 7% less than in the Com-
plete Profiling scenario), outperforming the others classifiers. In Fig. 5 we show
the confusion matrices of the best model per scenario in the location classifi-
cation. It is interesting to note that the locations I1 and I2 are confused with
each other in all three attack scenarios. This is due to the similar layout of the
two locations (see Fig. 4). The background noise is instead discriminant for the
identification of the external location (i.e., O1). O1 is generally classified better,
reaching an accuracy up to 98% in the Complete Profiling scenario.

(a) Complete Profiling sce-
nario.

(b) Location Profiling sce-
nario

(c) User Profiling scenario

Fig. 5. ForY ourV oiceOnly confusion matrices for the best models

Further, we analyzed the influence of the number of locations of interest (i.e.,
the number of classes to be predicted) on the accuracy of the classification. In
the Complete Profiling scenario, we obtain an average accuracy of 99% when
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we classify an audio message between the outdoor location O1 and one of the
indoor locations (i.e., I1, I2, and I3). While when we classify messages between
two indoor rooms, we achieve an accuracy ranging from 89% to 95% on this task.
Also, in Location Profiling scenario, we obtain a higher accuracy if we reduce
the location of interest considering O1 and an indoor location. In this case,
ForY ourV oiceOnly correctly predicts the location with an average accuracy of
80%. While for the prediction of internal location pairs, the accuracy remains
rather low, ranging from 57% between I1 and I2 to 66% between I1 and I3.
Finally, considering the User Profiling scenario, reducing the locations of interest
to two leads to an average accuracy of 87% in predicting the correct recording
location.

Finally, we evaluated ForY ourV oiceOnly by training the models on a single
word, splitting the dataset into three subsets of 2400 audio recordings, each
containing the words “and”, “of ” and “the”. Figure 6 depicts the variation of
the accuracy of our attack in the Complete Profiling scenario between all the
locations I1, I2, I3, and O1 using different classifiers and different words. Results
show no significant differences between models trained on the specific word and
those trained on all words (i.e., combined).

Fig. 6. Performance of machine learning models in classifying the four locations in
Complete Profiling scenario when trained specifically with one word and all the words
(i.e., combined)

6.2 Position Inference

In Table 2 we show the performance of the classifiers in identifying the spe-
cific position according to the attack scenario, considering the worst case (i.e.,
16 positions - five for each indoor location and one for the outdoor location).
Unlike Location Inference, here we consider only two attack scenarios (i.e., Com-
plete Profiling and Location Profiling), since the User Profiling scenario assumes
that the attacker has no information about the specific position in training. As
in Location Inference, even for the position inference, the scenario where the
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classifiers perform best is the Complete Profiling, and SVM resulted in the best
classifier scenario with an accuracy of 61%. Contrarily, in Location Profiling sce-
nario models performance is slightly above chance (i.e., 0.0625). The increase
in the number of classes to be predicted and the factors already highlighted in
Sect. 6.1 (i.e., device, training size, and voice uniqueness) further amplify the
performance drop.

Table 2. Average accuracy of ForY ourV oiceOnly attack for position inference in
different attack scenarios

Scenario LDA LR RC SVM

Complete 0.57 (0.09) 0.55 (0.09) 0.49 (0.08) 0.61 (0.09)

Location 0.13 (0.04) 0.13 (0.04) 0.13 (0.04) 0.07 (0.00)

In Fig. 7 we show the confusion matrix of the best model in the Complete
Profiling scenario (i.e., SVM). As expected, the model manages to accurately
predict O1 (i.e., 98%), demonstrating that this is a trivial task for our attack in
this scenario. Regarding the internal locations, Fig. 7 shows a concentration of
classification errors in the positions belonging to the true location. In particular,
the classification of I3 positions shows less accuracy than I1 and I2. We believe
that this can be traced back to the layout of the room. I3 has more than twice the

Fig. 7. Confusion matrix for specific position inference for I1, I2, I3 and O1 locations
in Complete Profiling scenario
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surface area of I1 and I2, and the spaces between the recording points and the
walls or furniture are much wider. This could lead to a reduction in reverberation
and therefore make the recordings more similar. In addition, the best performing
position in I3 is P1, which is the recording position with the least open field
compared to the other four positions. I1 and I2 generally present better results,
but again we can see how room size affects the prediction of the specific location.
I2 measures about 2 square meters less than I1 and has a 7% higher average
accuracy.

6.3 Extracted Words from Voice Messages

In our experiment, we carried out a data collection on WhatsApp audio messages
recording single words pronounced by the participants. However, in a real sce-
nario, voice messages can be of any length. To assess that our approach applied
to a real-world context, we carried out a preliminary evaluation on 345 audio
samples of words extracted from complex voice messages in the Complete Pro-
filing scenario. Also, we reduced the number of rooms in our pool size to 3
(i.e., two indoor bedrooms and one outdoor location-terrace). We noted that
ForY ourV oiceOnly reached an average accuracy of 99% in predicting between
the outdoor location and any one of the indoor locations. Further, when trying
to classify between all the three locations, our attack resulted in an accuracy
of 94%. These results demonstrate that ForY ourV oiceOnly can be applied in
real-world contexts by extracting single words from a complex voice message.

7 Conclusion

In this paper, we proposed ForY ourV oiceOnly, a new attack on voice messages
to infer the recording location. ForY ourV oiceOnly leverages attributes such as
reverberation and ambient noises, which inadvertently get recorded along with
audio messages. We showed the effectiveness of our attack in three realistic attack
scenarios: (i) the attacker has previous recordings of the victim in all the selected
locations (ii) the attacker has no previous recording of the victim’s voice messages
(iii) the attacker has previous voice messages of the victim knowing the location
they were recorded but does not know the specific position. We demonstrated
our attack considering 7,200 voice messages from 15 different users and four
environments (i.e., three bedrooms and a terrace). We showed how the possession
of audio messages from the victim in known locations dramatically increases the
performance of our attack. ForY ourV oiceOnly can infer the user’s location
among a pool of four known environments with up to 85% accuracy. Moreover,
our approach reaches an average accuracy of 93% in discerning between two
rooms of similar size and furniture (i.e., two bedrooms) and an accuracy of up
to 99% in classifying indoor and outdoor environments.

The results obtained indicate a threat to user privacy. For this purpose, some
countermeasures that can be adopted are:
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– Adding noise to obscure the leaked information in the audio messages. The
noise may also be applied selectively to higher and lower frequencies outside
the hearing range so as to not impact the quality of the voice message. This
method may prove to act as a countermeasure as we noted variations in the
audio signals in the ultrasonic and infrasonic ranges at different locations and
positions.

– Shielding the microphone during recording to minimize the environmental
noise and to reduce the recorded reverberation.

– Filtering the recorded audio to select only the primary sound source and
reducing the information leakage.

– Poisoning the dataset during the training phase (e.g., mislabeling the loca-
tions).

– Change the furniture/arrangement of the room.

We believe that the proposed work can be a starting point for developing
environment recognition from voice messages that can overcome the limitations
of ForY ourV oiceOnly. First, the collection of new datasets would allow for
more consolidated results and the application of more powerful feature extraction
and prediction techniques (e.g., deep learning). The collection of new datasets
would also be beneficial for assessing the effect of noisier environments. We
made several restrictions during recording, such as having no other member in
the rooms during recording, the recordings were done in a relatively quiet and
less crowded location. Hence, we expect the behavior to be affected when the
noise increases. This can be detrimental or instrumental depending on whether
valuable information is obscured or the noise indicates that particular location.
Further, it would be helpful to have a more diverse dataset regarding languages,
gender, age, nationality, Finally, a new data collection that includes multiple
phone holding positions would overcome a limitation of the proposed work.
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