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Abstract. Gordon et al. (TCC 2015) systematically studied the secu-
rity of Multi-client Verifiable Computation (MVC), in which a set of
computationally-weak clients outsource the computation of a general
function f over their private inputs to an untrusted server. They intro-
duced the universally composable (UC) security of MVC and proposed
a scheme achieving UC-security, where the protocol remains secure
after arbitrarily composed with other UC-secure instances. However, the
clients in their scheme have to undertake the heavy computation over-
head caused by fully homomorphic encryption (FHE) and further, the
plaintext size is linear to the function input size.

In this work, we propose a more efficient UC-secure multi-client
privacy-preserving verifiable computation protocol, called MVOC, that
sharply reduces amortized overheads for clients, in both semi-honest and
malicious settings. In particular, our protocol achieves stronger outsour-
cability by outsourcing more computation to the server, so that it may
be more friendly to those lightweight clients. More specifically, we revisit
the definition of garbling scheme, and propose a novel garbled circuit
protocol whose circuit randomness is non-interactively provided by mul-
tiple parties. We also realize the idea of hybrid homomorphic encryp-
tion, which makes the FHE plaintext size independent of the input size.
We present the detailed proof and analyze the theoretical complexity
of MVOC. We further implement our protocol and evaluate the perfor-
mance, and the results show that, after adopting our new techniques,
the computation and communication overheads during input phase can
be decreased by 55.15%–68.05% and 62.55%–75% respectively.
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Hybrid homomorphic encryption

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
V. Atluri et al. (Eds.): ESORICS 2022, LNCS 13555, pp. 105–125, 2022.
https://doi.org/10.1007/978-3-031-17146-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17146-8_6&domain=pdf
http://orcid.org/0000-0002-7625-7932
http://orcid.org/0000-0002-5250-5030
http://orcid.org/0000-0001-9268-702X
http://orcid.org/0000-0003-0262-7678
https://doi.org/10.1007/978-3-031-17146-8_6


106 X. Wang et al.

1 Introduction

The technique of verifiable computation (VC) [12] and multi-client verifiable
computation (MVC) [7,17] are proposed to allow computationally weak clients
to delegate the computation of a function f on private inputs to a remoted server,
achieving privacy, soundness and efficiency in the single and multi-client context.
Specifically, privacy requires the protocol not to disclose sensitive data including
input and output, soundness ensures the validity of the result provided by the
server, and efficiency guarantees that the cost of the client during outsourcing
should be much lower than that of computing the function by itself.

Gennaro et al. [12] introduced the definition of verifiable computation (VC).
Its primary goal is to achieve privacy and soundness against malicious server,
assuming that the client is honest. Their protocol achieves efficiency amortizedly.
They combined garbled circuit [20] with a fully homomorphic encryption (FHE)
scheme [14]. More precisely, after generating a garbled circuits, the client is
allowed to use FHE to encrypt the circuit along with encoded input labels. Due
to IND-CPA security of the FHE scheme, the client can reuse the same circuit
without loss of soundness and hence the computational cost for the client is
bounded in amortized sense. Choi et al. [7] later extended single-client VC to
the multiple clients to yield a MVC protocol. In such a setting, n clients intend
to compute some function f over a series of joint input {(x(ssid)

1 , ..., x
(ssid)
n )}ssid.

They adopted a new primitive proxy oblivious transfer (POT) constructed from a
non-interactive key-exchange (NIKE) scheme. This new primitive is able to keep
clients’ input private from each other and from the server. But their protocol
cannot guarantee the security in the context of either client-client corruption or
the existence of malicious clients. Gordon et al. [17] systematically studied MVC
in the universally composable (UC) model. The UC security captures selective
failure attack and adaptive soundness, and considers the participation of mali-
cious clients, which may be seen as a stronger notion than the prior definitions.
They also proposed a protocol that satisfies the “stronger” security, with a new
primitive attribute-hiding multi-sender attribute-based encryption (ah-mABE),
constructed by a two-outcome ABE scheme with local encoding, an FHE scheme
and a POT protocol. They eventually pointed out the impossibility of achieving
the security when client-server collusion exists.

There are many studies that have been proposed to achieve verifiable com-
putation since Gennaro et al.’s VC protocol [12]. A similar approach is to apply
succincct functional encryption (FE) technique, which was introduced by Gold-
wasser et al. [16]. Later, Goldwasser et al. [15] extended the former definition to
multi-input functional encryption (MIFE), which implies an efficient MVC pro-
tocol. However, neither ABE nor indistinguishable obfuscation (iO), especially
the latter, is a cost-effective building block. Moreover, iO introduces a strong
assumption, which makes the protocol less practical.

Another method to achieve private verifiable computation is to prove after
computing, rather than to prove with computing. Fiore et al. [9] proposed a pro-
tocol on verifiable delegation of computation on encrypted data, by developing
a novel homomorphic hashing technique that may significantly reduce overhead.
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The core idea is to use a VC to prove the correctness of homomorphic evalua-
tion on ciphertext, and the new technique solves the difficulty of dealing with
FHE ciphertext expansion. Later, Fiore et al. [11] and Bois et al. [2] extended
the protocol of [9]. The former supported public verifiability, and extended the
degree of delegated function from two to any constant value, using well-designed
zk-SNARKs for polynomial rings. While the latter increases the efficiency of HE
scheme by allowing flexible choices of HE parameters. However, the incurred
extra time cost on verification for client may not be applicable to computation-
restricted devices.

Gennaro et al. [13] proposed a new primitive denoted as fully homomorphic
message authenticators (HA), which allows the receiver to verify the computa-
tion result, constructed with FHE. Almost at the same time, Catalano et al. [5]
proposed a new construction of HA by much more efficient building blocks, while
sacrificing the maximum size of delegated circuit. In multi-client scenario, Fiore
et al. [10] proposed several constructions of multi-key homomorphic authentica-
tor. But the time cost of verifying a result for client is not less than executing
the computation. An idea to avoid this overhead for client could be to outsource
the verification function to the server. However, the implemented solutions either
cause extra communication complexity which break the non-interactive property,
or introduce SNARG-like proof system. None of the solutions so far is efficient
enough for practical use.

Possible Limitations. In the constructions of both [7] and [17], the clients
remain using FHE to encrypt labels proportional to their input size, where FHE
is a bottleneck in efficiency, compared to other building blocks in their protocols.

Although outsourcability has been initially achieved, most of existing FHE-
based protocols still cannot avoid heavy client-side overheads. This is so because
the messages to be fully homomorphic encrypted for client is proportion to the
size of function input. How to make such complexity independent to the input
size is an interesting long-lasting problem in the research line.

Besides the cost of FHE, a POT-based MVC scheme needs O(n2) instances
of functionality during a single online phase of outsourced computation, where
n is the number of clients. The overhead caused by POT rises substantially as
the number of users increases in both communication and computation. Fur-
thermore, the first client always needs to take over most of the computation,
since it has to encrypt “twice” the actual length of input labels in an instance
of POT, which may lead to imbalance in the overall overheads. Thus, a cost-
effective and efficiency-balance protocol in multi-client context is worthy being
considered, especially when n is sufficiently large.

Contribution. We propose a new multi-client verifiable computation scheme
MVOC. The proposed scheme has lower communication complexity and is more
efficient for clients than existing works, while still satisfying strong security guar-
antees in both semi-honest and malicious model. Our contributions is summa-
rized as follows:
– We revisit the definition of garbling scheme, and design a new primitive Multi-

client Outsourced Garbled Circuit (MOGC). Its encoding function is generated
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by all clients in a distributed way. Clients, who do not generate circuits, can
learn the garbled input wires without using OT or proxy OT, so that we can
significantly reduce the communication overhead from O(n2l) to O(nl). We fur-
ther show that a secure MOGC protocol implies a UC-secure one-time MVC.

– We adopt the technique of hybrid homomorphic encryption to the MOGC to
construct a UC-secure MVC protocol against malicious server or semi-honest
client-client collusion . We further improve the outsourcability of MVC pro-
tocol by reducing the FHE overhead from O(l) to O(κ), which is independent
to the input size, where κ is the security parameter. We also show the pos-
sibility to construct a secure MVC against the corruption of malicious client
by adopting a zero-knowledge compiler.

– We implement the proposed MVOC with Yao’s Garbled Circuit and the most
efficient hybrid homomorphic encryption scheme, and make a comparison on
clients’ overhead in both computation and communication. The experimental
results show that the proposed scheme provides a significant advantage in
efficiency over other existing FHE-based works.

Table 1. Comparison of privacy-preserving verifiable computation

Schemes Security model Collusion UC Multi-client Communication Computation

Gennaro et al. [12] Semi-honest � � � – O(dlκ)

Choi et al. [7] Semi-honest � � � O(n2l) O(dlκ)

Gordon et al. [17] Malicious � � � O(n2l) O(dlκ)

MVOC malicious � � � O(nl) O(dκ) + O(l)

* We denote d as the expansion rate of complexity caused by FHE.

Technical Roadmap. Since it is impossible to achieve input privacy when the
server colludes with any client [17], we may assume the client-server collusion
does not exist. We divide our technical roadmap into two steps.
Multi-client Outsourced Garbled Circuit. The garbled circuit in a garbling scheme
is mostly generated by a single party. This feature causes the inconvenience of
providing the corresponding garbled labels for other parties. Specifically, in Yao’s
secure two-party computation protocol, after Alice generates the garbled circuit,
the second participant Bob obtains the garbled labels by oblivious transfer (OT).
Essentially, OT transfers the randomness from Alice to Bob. Bob is not allowed
to learn the garbled labels that is not related to his input, since Bob also plays
the role of circuit executor, and he may benefit from this extra information.

We notice that, if we separate the role of circuit executor from data provider,
the above concern will be tackled. Briefly, we introduce a (not necessarily trusted)
third party, the server, who dedicates to executing the computation, and the
client provides his own randomness for garbled circuit. In this case, OT may
be no longer needed, since client could generate its corresponding garbled labels
using its own randomness.
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According to the above observation, we propose a new primitive named Multi-
client Outsourced Garbled Circuit (MOGC), and construct a secure MOGC pro-
tocol from Yao’s Garbled Circuit. We also claim that a secure MOGC protocol
implies a one-time MVC protocol. The proposed MOGC protocol solves the prob-
lem of transferring randomness from circuit generator to data provider, plays the
role of OT in secure 2PC and the role of POT in MVC, where POT is the crux of
unbalance problem.

Multi-client Verifiable Outsourced Computation. Similar to the approach of con-
structingVC from the one-time VC intuitively implied from Yao’s Garbled Circuit,
we use FHE to provide circuit privacy. In order to avoid heavy overhead caused by
FHE, we adopt the philosophy of hybrid encryption: firstly using symmetric key
encryption (SKE) scheme to encipher message, and then FHE to encapsulate the
symmetric key. This KEM-DEM-like technique is able to offload the heavy FHE
overhead to the server. More concretely, after the generator generates the garbled
circuit F for a function f by MOGC in offline phase, each client Pi uses its own
encoding function share to obtain garbled input Xssid

i corresponding to its private
input xssid

i . After that, the generator executes FHE setup to acquire FHE key pair
(pkFHE, skFHE). Each client computes the hybrid ciphertext, which comprises of an
FHE and a SKE ciphertext. The server can recover the FHE ciphertext of garbled
input wire from the hybrid ciphertext sent by each client, and computes on the gar-
bled circuit as in MOGC. The correctness of FHE and MOGC ensures the result
is verifiable. As long as there is a secure channel for transmitting FHE ciphertext
of the hybrid, the protocol also achieves privacy against clients.

2 Multi-client Verifiable Computation

2.1 Syntax

We first revise the notion of non-interactive multi-client verifiable computation
(MVC). Let κ denote the security parameter. Suppose there are n clients P1, ...,
Pn intending to delegate some computation on an n-ary function f : X n → Yn

to a remote server Serv for multiple times, and to require the validity of their
answers. The length of input and output message space are polynomial in κ.

Briefly speaking, a MVC protocol can be divided into three phases:

1. In setup phase, each participant is allowed to access an initial setup G.
2. In offline phase, each client is allowed to send a message to every other clients

respectively, and also needs to send a message to the server Serv.
3. During online phase, there might be multiple subsessions in which clients are

delegating some computations on the same function with different inputs. In
a subsession, each client is allowed to send a single message to Serv, and to
receive an output from Serv.

The detailed definition is given as follows.

Definition 1 (non-interactive Multi-client Verifiable Computation).
Let κ be the security parameter, n be the number of clients. A non-interactive
multi-client verifiable computation comprises the following three phases:
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Setup Phase: All participants have access to a setup G. Each party Pi obtains
(pki, ski) and the server Serv obtains (pkS, skS).
Offline Phase: After the delegated function f is chosen, each client Pi receives
from each other client Pj the corresponding encoding mapping ej,i, and sends a
garbled version of f to Serv, noted as Fi.
Online Phase: During a single subsession indexed by ssid, after input
(ssid, xssid

i ) provided by Pi is determined, the client computes (ξssidi , τ ssid
i ). The

first value will be sent to the server while the second one is kept private by Pi.
After receiving information from all clients, the server Serv computes and sends
the result (ssid, ωssid

i ) to each client Pi. Each client then decodes the encrypted
result and obtains yssid

i \ ⊥, where ⊥ indicates that the client is not convinced
by the server’s result, and will no longer continue executing the protocol unless
restarting from Setup Phase.

Remark 1. Compared with [17], our definition is different in two aspects. In
offline phase, we allow each client to send a message to others. This does not
increase communication complexity amortizedly, since offline phase would be
executed only once before multiple computation queries being carried out. After
receiving a failure result from Serv, our clients will no longer trust the server and
abandon the present protocol. Clients may re-select another trusted outsourcer
or rollback to the setup phase, in order to obtain a new trusted environment.

2.2 Security Definition

We follow the UC framework in [3]. We formally define the ideal functionality for
MVC in Table 2, which captures the correctness and privacy, but also adaptive
soundness and selective failure attack. The server and clients are either semi-
honest or malicious in our model. In any circumstances, the server is not allowed
to collude with any client; otherwise input privacy will be never guaranteed [17].

Remark 2. We note our security definition is different from [17] in the behavior
of server S. Since we do not allow client-server collusion, we claim that there is
no difference between the behavior of a corrupted and an uncorrupted server S.
This may be seen as a special case of the origin definition in [17], which does not
show contradiction. Because the indices set of corrupted clients is always empty,
no information will gained from the blackbox oracle where the simulation could
query on function f for different inputs provided by corrupted clients.

Definition 2 (Universal composability [3]). A protocol Π UC-realizes ideal
functionality F if for any PPT adversary A there exists a PPT simulator S such
that, for any PPT environment E, the ensembles EXECΠ,A,E and EXECIDEALF ,S,E
are indistinguishable.

Definition 3 (UC-security of MVC). A protocol MVC is UC-secure if MVC
UC-realizes FMVC, against malicious server and clients, without client-server
collusion.
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Table 2. Ideal functionality of multi-client verifiable computation

Multi-client Verifiable Computation

The functionality FMVC is parameterized with an n-ary function f : Xn →
Yn. The functionality FMVC interacts with n clients P1, ..., Pn, a remote
server Serv and a simulator S.
• Initialization:
Upon receiving (Init) from client Pi, send (Init,Pi) to notify the simula-
tor S. After S returns (Init,Pi), send (Init,Pi, Φ(fi)) to the server Serv,
and send (Init,Pi) to each other client Pj where j �= i. After receiving
all responces (Init,Pi) from client Pj for all j �= i and all responses
(Init, Serv,Pi) for all i ∈ [n] from server, send (Init, Serv) to notify the
simulator S.
• Outsourcing:
Upon receiving (Input, sid, xi) from client Pi, send (ssid,Pi) to notify
S. After S returns (ssid,Pi), store (ssid, xi) and send a notification
(Input, ssid,Pi) to Serv. Upon receiving (Input, ssid) from Serv, retrieve
(ssid, xi) for all i ∈ [n]. If some (ssid, xi) has not been stored yet, send
(Output, ssid,FAIL) to the server and all clients.
Compute (y1, ..., yn) ← f(x1, ..., xn). Upon receiving (ssid,Pi, φ) from the
simulator S, if φ = OK then send (Output, ssid, yi) to Pi; otherwise send
(Output, ssid,FAIL) to Pi. Later when S returns (ssid,Pi, φ), send
(Output, ssid, yi) to client Pi if φ = OK, else send (Output, ssid,FAIL)
if φ = FAIL to client Pi.

Adaptive Soundness Against Selective Failure. There are multiple sub-
sessions in our definition, which enables the functionality to capture adaptive
soundness. We allow clients to report the output to environment and thus, the
definition captures security against selective failure attacks.

Static Malicious Corruption. We assume a static corruption model, with
malicious corrupted participants. In such a model, the adversary can only corrupt
parties at the beginning of protocol execution, instead of corrupting any party
once the protocol has been executed. A malicious corrupted party may arbitrarily
deviate the original protocol.

Communication Model. We assume that all of the communication channels
among clients are controlled by the adversary, while the channels between clients
and server are secure. We can implement such channels with the ideal function-
ality FSTP [3]. All of the protocols are described assuming in FSTP-hybrid world.

Outsourcability. The oursourcability defines the improvements of client effi-
ciency brought by outsourcing tasks to servers (i.e., how much computational and
storage costs could be offloaded to servers). It is described in such to guarantee
the overheads of clients in the online phase should be less that the costs incurred
by a client-side self execution. We later will focus on discussing online efficiency
for the clients in terms of time and communication costs. For the former, as
FHE is an expensive component in MVC, we should require that the plaintext
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of FHE is independent of the input size in an outsourcable MVC protocol. As for
the latter, we may require the communication size to be constraint to at most
proportional to the input size, in particular when there exists a relatively large
client number.

3 Building Blocks

3.1 Garbling Scheme

The technique of garbled circuits was first proposed by Yao [20]. We first follow
the well-designed definition in [1] culled out by Bellare et al. The garbled circuit
is generated by a single party named garbler. We will later discuss a new case
where the randomness of garbled circuit is provided by multiple parties.

Definition 4 (Garbling Schemes [1]). A garbling scheme for a family of func-
tions F whose arbitrary element f is a mapping that can efficiently compute,
comprises five algorithms Gb = Gb.{Gb,En,De,Ev, ev}. The first algorithm is
probabilistic and the others are deterministic. Specifically,

– (F, e, d) ← Gb(1κ, f). Taking as input the security parameter κ and a object
function f , output the garbled circuit F , encoding function e and decoding
function d.

– X = Ev(e, x). Taking as input the encoding function e and input x, output
garbled input X.

– y = De(d, Y ). Taking as input the decoding function d and garbled output Y ,
obtain the final output y.

– Y = Ev(F,X). Taking as input a garbled circuit F and garbled input X,
obtain the garbled output Y .

– y = ev(f, x). Taking as input the origin function f and input x, obtain the
plaintext output y.

We require a garbling scheme satisfying several properties. The correctness
ensures that the final output decoded from the result of garbled circuit is the
exact function value, i.e. f = e ◦ F ◦ d. The obliviousness ensures that a party
acquiring (F,X), but not d, should not learn anything about f , x, or y. The
authenticity means that a party acquiring (F,X) should not be able to produce
a valid garbled output Y ′ �= F (X) such that De(d, Y ′) �=⊥. The formal definition
of authenticity is shown as follows.

Definition 5 (Authenticity of Garbling Schemes [1]). For a garbling
scheme GS = Gb.(Gb,En,De,Ev, ev), and for any PPT adversary A, consider
the following experiment: ExpAut

A [GS, κ] :
(F, e, d) ← Gb(1κ, f); X ← En(e, x); Y ′ ← A(F,X); r ← De(Y ′);
If r �=⊥ and Y ′ �= Ev(F,X), output 1, else 0.

Garbling scheme GS is authentic, if for any PPT adversary A, there is a
negligible function negl such that Pr[ExpAut

A [GS, κ]] ≤ negl(κ).
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Side-Information Function. It is unable to achieve absolute privacy for a
garbling scheme. The information we expected to reveal is captured by a side-
information function Φ, which is a deterministic mapping from a function f to a
side-information set φ = Φ(f). Specifically, in this paper, we allow the server to
obtain the circuit size, including input and output size. In other words, we regard
our protocol as a multi-client version of private function evaluation (PFE), rather
than secure function evaluation (SFE). One could extend the definition to SFE
version of MVC, by assigning Φ(f) = f .

3.2 Fully Homomorphic Encryption

After Gentry [14] gave the first construction of FHE, Canetti et al. [4] proposed
concrete implements of IND-CCA1-secure FHE. We don’t need the security to
be as strong as the one against CCA1 in our scheme. We show the syntax and
define the security of IND-CPA as follows.
Syntax. For a permitted circuit set C, a fully homomorphic encryption scheme
FHE comprises of four PPT algorithms:

– (pk, sk) ← Gen(1κ). The key generation algorithm which outputs public-
private key pair of FHE.

– c ← Enc(pk,m). The encryption algorithm which takes message m as input
and outputs ciphertext c.

– m := Dec(sk, c). The decryption algorithm which takes ciphertext c as input
and outputs plaintext message m ∈ M.

– ceval := Eval(C, {ci}). The evaluation algorithm which executes the circuit
C ∈ C on ciphertext input collection {ci}, and outputs ciphertext result ceval.

Properties. The Correctness of FHE is defined as key pair generated by Gen
allows the output of Dec which takes the ciphertext of Enc on some message m
is identical to m. The Homomorphic correctness is defined as the output of Eval
decrypts to the result of applying C on plaintext inputs {mi}. The Compactness
means that the size of homomorphic ciphertext should be independent of the
size, depth value or number of inputs to C, and less than poly(κ).

Definition 6 (IND-CPA Security of FHE). For a fully homomorphic
encryption scheme FHE = (Gen,Enc,Dec,Eval), and for any PPT adversary A,
consider the following experiment:

ExpCPA
A [FHE, κ] :

(pk, sk) ← Gen(1κ); (m0,m1, τ) ← AEnc(pk,·);

b
$←− {0, 1}; cb ← Enc(pk,mb); b̂ ← A(τ, cb);

If b̂ = b, output 1, else 0;
Note A has access to Dec(sk, ·) as an oracle. We define its advantage in the

experiment above as: AdvCPAA (FHE, κ) =
∣
∣
∣2Pr[ExpCPA

A [FHE, κ] = 1] − 1
∣
∣
∣ .

The FHE is CPA-secure, if for any PPT adversary A, there is a negligible
function negl such that: AdvCPAA (FHE, κ) ≤ negl(κ).
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4 Multi-client Outsourced Garbled Circuits

In this section, we revisit the definition of Garbling Scheme [1], and introduce a
new primitive called Multi-client Outsourced Garbled circuits (MOGC).

In conventional Yao’s garbled circuits protocol for two-party computa-
tion [20], there are two parties, Alice and Bob, intending to execute a computa-
tion of function f over their private inputs xa and xb respectively. Specifically,
Alice generates a garbled circuit F from the function f , and further sends it to
Bob, along with her garbled version of private input Xa. Then Alice and Bob
execute an OT protocol to enable Bob to learn the garbled version of his private
input Xb without: (i) revealing information about b to Alice, and (ii) allowing
Bob to know any garbled input except Xb. Bob then carries out the computation
on F and obtains the garbled result Y . After receiving Y from Bob, Alice knows
the final result y = f(xa, xb).

We extend the previous definition to multi-client scenarios. In an MOGC
protocol, the computation is carried out by a third party who does not provide
any input. Specifically, there is a generator, a server and at least one collaborator.
The generator and the collaborator(s) outsource the computation of a function f
on their input data 	x, and the generator learns the output f(	x). We require the
protocol to be non-interactive, which indicates that each party could only send a
single message to another party in an instance of the protocol. This means that
we cannot trivially use the OT technique, and the randomness of the garbled
circuits should be provided by all data providers.

We will first give the syntax of MOGC, construct a secure MOGC protocol
from a Yao’s protocol, and then shows that a MOGC protocol implies a one-time
multi-client verifiable computation.

4.1 Syntax of MOGC

Definition 7 (Multi-client Outsourced Garbled Circuits). An MOGC for
a family of function F whose arbitrary element f is a mapping that can efficiently
compute, comprises six algorithms MOGC = MOGC.{GbC,GbG,En,De,Ev, ev}.
The first two algorithms are probabilistic and the rest are deterministic.

– ec ← GbC(1κ, f). The collaborator generates his corresponding part of encod-
ing functions.

– (F, eg, d) ← GbG(1κ, f, 	ec). The generator generates his part of encoding and
decoding function, computes the garbled circuits along with other parts of
encoding functions.

– Xc/g = En(ec/g, xc/g). The generator or the collaborator obtains the garbled
input from private input via the corresponding encoding function.

– Y = Ev(F, 	X). The server carries out the computation on garbled circuits and
obtains the encoded output.

– y = De(d, Y ). The generator recovers the final output using decoding function.
– y = ev(f, 	x). An auxiliary function that carries out the original function f .

Our definition is defined in semi-honest model, so that all participants could
gather information as much as they could without deviating from the original
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protocol. We do not allow client-server corruption, but the corruptions between
clients are permitted. We assume that there exists secure communication chan-
nels between client and server.

A secure MOGC protocol should satisfy several properties. The Correctness
ensures the final output is identical to the result of function evaluation. The
Privacy guarantees that each client’s input is kept private from other client and
the server. And the Authenticity requires that the server could not provide a
wrong result that could be decoded by the generator.

Before proceeding to an MOGC construction, we analyze how Yao’s gar-
bled circuits can achieve secure two-party computation. Alice and Bob who have
private inputs respectively want to compute a function on their inputs. Alice
generates the garbled circuit while Bob carries out the exact computation. The
privacy against Bob is guaranteed by the randomness of circuit generation, which
is provided by the generator Alice. Meanwhile, the privacy against Alice is guar-
anteed by OT protocol, which delivers the randomness from Alice to Bob. A
trivial observation is that the circuit executor should not be the circuit gener-
ator, since authenticity is protected by the randomness of encoded values, and
that is the reason why the same garbled circuit should not be used twice. For-
tunately, the circuit execution is taken over by a third party “server”, which
is independent of data providers. Hence there is no concern of such an authen-
tic crisis. Moreover, if the encoding function is separable, which means that the
randomness of the encoding function can be regarded as separately provided by
each client correspondingly, we may construct a protocol without adopting OT.
More precisely, after acquiring each client’s encoding function share, the gener-
ator computes the garbled circuit with those encoding information. We give the
definition of separability as follows.

Definition 8 (Separability of Garbling Scheme). We say that a garbling
scheme is separable if the garbling algorithm Gb can be equivalently regarded as
the following, where there are |I| input wires indexed by [|I|], with I being the
set of all input wires and two sub-algorithm ran and garb:

1. randomly select |I| randomness r1, ..., r|I|;
2. compute ei ← ran(f, ri) for i ∈ [|I|], set e = (e1, ..., e|I|);
3. compute d ← ran(f, r1);
4. compute F ← garb(f, e, d);

Theorem 1. Assuming the existence of a separable garbling scheme, there exists
a correct, private and authenticate multi-client outsourced garbled circuit proto-
col.

Proof. We prove the theorem by construction. For GbC, on input f the collab-
orator executes Step 1 and 2 in the above definition. For GbG, on input f and
all encoding function shares 	ec from collaborators, the generator executes Step
2, 3 and 4 in the above definition. The remaining algorithms are identical to the
original garbling scheme respectively.

The construction of MOGC and a garbling scheme is merely slightly different
in the generation of encoding function e. The definitions of correctness, privacy
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(including obliviousness), and authenticity are irrelevant to how e is generated.
These properties can easily be inherited from those of a garbling scheme. �

4.2 Construction of MOGC

We define a protocol for MOGC from conventional Yao’s Garbled Circuits. Yao’s
circuits include garbled gates corresponding to the circuit gates. Suppose xa, xb

be the input wires of a gate, and xc be the output wire. The generator Alice
first randomly chooses six values for each gate, wb

t where t ∈ {a, b, c} and b ∈
{0, 1}, represents 0 and 1 values of three wires respectively. Each of garbled gates
contains four ciphertexts γij = Ewi

a
(Ewj

b
(wc)g(i,j)), where i, j ∈ {0, 1} and E is

a well-designed symmetric encryption scheme.
It is intuitive that Yao’s Garbled Circuits protocol is a separable garbling

scheme. Instead of generating |I| encoded values by the same randomness r,
we use |I| different randomness r1, ..., r|I| to obtain the encoded values. A PPT
adversary cannot distinguish between two sets of the random values with merely
different randomness. Hence we achieve the separability.

Moreover, we separate the |I| input wires into n buckets. When generating
the encoded values for input wires, we use the same randomness for inputs in
the same bucket, and use variant randomnesses for inputs in different buckets.
A PPT adversary also cannot distinguish the random values from the encoding
values of Yao’s protocol.

We define our protocol as follows. For each input wire that is relevant to the
client Ci’s input, we let Ci choose two random values of this wire using his own
randomness ri and then handle the values to the generator. Then, the generator
chooses random values which are relevant to his own input and other non-input
wires, and computes the garbled circuit F using those values. After acquiring F
and all encoded inputs from clients, the server carries on the computation on F
and obtains the encoded output, and handles it to the generator. The generator
finally checks the output wire and recovers the final result. Since Yao’s protocol
is separable, our protocol is a secure MOGC according to Theorem 1.

5 Construction

We present our construction for MVC and give the proof for its UC-security.
We start the construction from designing one-time MVC protocol from MOGC.
We define the ideal functionality of one-time MVC named FOT-MVC, and show
that the proposed protocol UC-realizes the functionality. Then we construct an
MVOC scheme that UC-realizes FMVC in the FOT-MVC-hybrid world.

Without loss of generality, we only consider one case in the following con-
struction: when only client P1 may obtain the output. We could simply execut-
ing the protocol in parallel to achieve output-retrieving for every client. Similar
approaches also can be seen in [7,17].
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5.1 One-Time Multi-client Verifiable Computation (OT-MVC)

There are n clients and a server participating in an OT-MVC protocol. All
clients are reached consensus on the function f to be computed. Each client Pi

provides a private input xi respectively. The goal is to enable the client P1 to
obtain the function result f(x1, ..., xn), while the server only knows the legal side-
information Φ(f). The client participants behave semi-honestly while the server
behaves maliciously, and client-server collusion is not allowed in our model. The
ideal functionality FOT-MVC is the same as FMVC except that the outsourcing
phase is only executed once. The formal definition of the ideal functionality
FOT-MVC is shown in Table 3.

Table 3. Ideal functionality of one-time multi-client verifiable computation

One-Time Multi-client Verifiable Computation

The functionality FOT-MVC is parameterized with an n-ary function f :
Xn → Yn, and interacts with n clients P1, ..., Pn, a remote server Serv
and a simulator S.
Upon receiving (Init) from client Pi, send (Init,Pi) to notify the simulator
S. After S returns (Init,Pi), send (Init,Pi, Φ(fi)) to the server Serv, and
send (Init,Pi) to each client Pj where j �= i. After receiving all responces
(Init,Pi) from client Pj for all j �= i and all responses (Init, Serv,Pi) for
all i ∈ [n] from server, send (Init, Serv) to notify the simulator S.
Upon receiving (Input, xi) from client Pi, send (Pi) to notify S. After S
returns (Pi), store (xi) and send a notification (Input,Pi) to Serv. Upon
receiving (Input) from Serv, retrieve (xi) for all i ∈ [n]. If some (xi) has
not been stored yet, send (Output,FAIL) to the server and all clients.
Compute (y1, ..., yn) ← f(x1, ..., xn). Upon receiving (Pi, φ) from the
simulator S, if φ = OK then send (Output, yi) to Pi; otherwise send
(Output,FAIL) to Pi. Later when S returns (Pi, φ), send (Output, yi)
to client Pi if φ = OK, else send (Output,FAIL) if φ = FAIL to client
Pi.

We give a construction of FOT-MVC from a secure MOGC protocol. Let f :
({0, 1}l)n → {0, 1}l be the outsourced function, P1 be the generator, P2, ...,Pn

be the collaborators, and Serv be the server. The parties work as follows:

– Collaborators P2, ...,Pn execute the algorithm GbC to generate encoding func-
tion shares e2, ..., en respectively, and send the shares to P1.

– The generator P1 executes the algorithm GbG to generate his encoded function
share e1, the garbled circuit F and the decoding function d. Then P1 sends
F to the server.

– All clients P1, ...,Pn execute the algorithm En on their own private inputs
x1, ..., xn respectively to obtain the garbled input X1, ...,Xn, and send the
garbled inputs to the server.

– The server Serv executes the algorithm Ev on encoded inputs to obtain the
encoded output Y , and sends the result to the generator P1.
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– The generator P1 executes the algorithm De on encoded output Y to recover
the final result. If Y is a valid value, it accepts and outputs the final result y;
otherwise rejects and outputs ⊥.

Theorem 2. The above protocol UC-realizes FOT-MVC against semi-honest cor-
ruption of any fixed subset of clients, or against malicious server corruption.

Proof. Let Π represent the above protocol. We intend to construct a simula-
tor S for any PPT environment E , such that for any PPT adversary A who is
allowed to corrupt the server maliciously and to corrupt a fixed subset of clients
semi-honestly, the two ensembles EXECΠ,A,E and EXECFOT-MVC,S,E are indistin-
guishable. Upon receiving an input from the environment E , the simulator S
writes the input on A’s input tape. Upon obtaining an output value from the
adversary A, the simulator S writes the output on E ’s output tape.

Case 1: Honest Server and Client. Since we assume the channel is private,
the simulator S could use the ciphertext of a random string to simulate the
communication script. Because the server and all the clients are honest, the
communication script is the only thing that the simulator S should simulate.

Case 2: Honest Server and Partially Corrupted (Semi-honest) Clients. Besides
the communication script, the simulator S needs to simulate the view of all cor-
rupted clients, which contains the encoded function share and the encoded input
for each client. The simulator S randomly chooses two strings as the encoded
input wires for a label, and sets the encoded input to the exact string correspond-
ing to the input. The adversary cannot tell the difference between the encoded
input wires in the encoding function and the newly generated random strings.

Case 3: Corrupted (Malicious) Server and Honest Clients. Besides the communi-
cation script, the simulator S needs to simulate the server Serv’s view, including
(F, {X}n). The simulator S randomly chooses the encoded input wires which
are not chosen by clients, denoted as ¯{X}n. Then S merges the two sets into
the universal encoding function. Concretely speaking, encoded wires in {X}n

and ¯{X}n are regarded as the encoded wires of 0’s and 1’s, respectively. After
randomly choosing the encoded intermediate and output values, the simulator
generates the garbled circuit F ′, and sets the decoding function to d′. If there
exists a distinguisher that could distinguish (F, {X}n) from (F ′, ¯{X}n), then we
can construct an adversary B that uses (f, f ′, {x}n, {	0}n) as input to break the
obliviousness of MOGC.

In conclusion, the two ensembles EXECΠ,A,E and EXECFOT−MVC,S,E are indis-
tinguishable in all cases. �

5.2 Construction of MVOC

We give a construction that UC-realizes FMVC from a secure MOGC scheme,
a fully homomorphic encryption scheme FHE and a symmetric-key encryption
scheme SKE. The protocol is in the (FSMT,GFHE)-hybrid world, where GFHE serves
as a self-registered PKI which allows P1 to generate FHE key pair and register
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the public key, and FSMT is the functionality of Secure Message Transmission [3].
It returns pkFHE when the server or any other party queries it. The construction is
described as follows. For simplicity, we omit the superscript ssid of the variables
in online phase.

1. Collaborators P2, ...,Pn execute the algorithm MOGC.GbC to generate encod-
ing function shares e2, ..., en respectively, and send the shares to P1.

2. The generator P1 executes the algorithm MOGC.GbG to generate his encoded
function share e1, the garbled circuit F and the decoding function d. Then
P1 sends F to the server.

3. The generator P1 interacts with GFHE and acquires a new FHE key pair
(pkFHE, skFHE). Then P1 obtains X1 by executing the algorithm MOGC.En
on its own private input x1, randomly chooses a symmetric key k1 ← KSKE,
and computes m11 = SKE.Enc(k1,X1) and m12 = FHE.Enc(pkFHE, k1). P1

finally sends m1 = (m11,m12) to the server Serv.
4. For i ∈ [n]\{1}, the collaborator Pi interacts with GFHE and acquires the

current FHE public key pkFHE. Similarly, Pi obtains Xi by executing the
algorithm MOGC.En on its own private input xi, randomly chooses a sym-
metric key ki ← KSKE, and computes mi1 = SKE.Enc(ki,Xi) and mi2 =
FHE.Enc(pkFHE, ki). Pi finally sends mi = (mi1,mi2) to the server Serv.

5. After parsing mi = (mi1,mi2), Serv computes X̂i = SKE.Dec(mi1,
FHE.Enc(mi2)), for i ∈ [n]. Then Serv executes the algorithm MOGC.Ev on
{X̂i}n, obtains a circuit result Ŷ , and sends it to the generator P1.

6. The generator P1 computes Y = FHE.Dec(skFHE, Ŷ ), and recovers the final
result by executing the algorithm MOGC.De. If Y is a valid value, then P1

accepts and outputs the final result y. Otherwise, P1 rejects and outputs ⊥.

Fig. 1. Construction of MVOC

As shown in Fig. 1, Step 1 and 2 are in offline phase, and the rest are online.
Step 3 and 6 are locally executed by each client and the generator respectively
with no data transmission between participants. After Step 6 is executed without
the result being ⊥, the protocol comes back to Step 3; otherwise, it terminates.
This abortion makes the advantage that the server gained from providing incor-
rect result cannot be carried over to the next sub-session.
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Theorem 3. Suppose FHE is an IND-CPA secure public-key fully homomor-
phic encryption scheme, SKE is a semantically secure symmetric-key encryption
scheme, and MOGC is a secure multi-client outsourced garbled circuit protocol,
then the aforementioned protocol UC-realizes FMVC against semi-honest corrup-
tion of any fixed subset of clients, or against malicious server corruption.

Proof. Let Π represents the above protocol. We intend to construct a simulator
S for any PPT environment E , such that for any PPT adversary A who is allowed
to corrupt the server maliciously and to corrupt a fixed subset of clients semi-
honestly, the two ensembles EXECΠ,A,E and EXECFMVC,S,E are indistinguishable.
Upon receiving an input from the environment E , the simulator S writes the
input on A’s input tape. Upon obtaining an output value from the adversary A,
the simulator S writes the output on E ’s output tape.

Case 1: Honest Server and Client. Since we assume the channel is private,
the simulator S could use the ciphertext of a random string to simulate the
communication script. Because the server and all the clients are honest, the
communication script is the only thing that the simulator S should simulate.

Case 2: Honest Server and Partially Corrupted (Semi-honest) Clients. Besides
the communication script, the simulator S needs to simulate the view of all cor-
rupted clients, which contains an FHE public key, the encoded function share
and the message sent to the server for each client. Concretely speaking, if the
generator P1 is not corrupted, the view in the real world contains (pkFHE) and
(ei, ki,mi1,mi2) for each client Pi. It is intuitive that all the above variables
could be reproduced by the same way as in the protocol, since all the collabo-
rators only send messages to others and do not receive any message from other
parties. Specifically, the simulator S randomly chooses the encoded wires for
simulating the encoding function share, noted as e′

i. Then in each online phase,
after acquiring input xi from the environment, S interacts with GFHE to obtain
pkFHE. Next, the simulator S randomly chooses a symmetric key k′

i ← KSKE,
and uses the key to encrypt its garbled input X ′

i = e′
i(xi) corresponding to

xi and obtains the ciphertext SKE.Enc(k′
i,Xi), denoted as m′

i2. After that, S
uses pkFHE to encrypt the symmetric key k′

i and obtains the encapsulated key
FHE.Enc(pkFHE, k′

i), denoted as m′
i1. Because of the semantic security of SKE

and the IND-CPA security of FHE, a PPT adversary cannot distinguish the
views between the ideal and real worlds. On the other hand, if the generator
P1 is corrupted, the view contains (pkFHE, skFHE, d, F ) and (ei, ki,mi1,mi2) for
each client Pi. The only difference from the above case is that the generator P0

needs to simulate the circuit F along with its decoding function d. Actually he
could reproduce these values by first randomly generating the decoding function
d′ and its encoding function share e′

1, and then randomly choosing intermediate
garbled wires, and computing a circuit F ′ using the garbled wires above. These
new variables are chosen randomly, since the adversary still cannot distinguish
the views between the two worlds.

Case 3: Corrupted (Malicious) Server and Honest Clients. Besides the communi-
cation script, S needs to simulate the server Serv’s view, including (F, pkFHE, Ŷ ),
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and (mi1,mi2) for each i ∈ [n]. Upon receiving Φ(f), the simulator randomly
generates a circuit F ′ with the circuit structure information revealed by Φ(f).
During online phase, the simulator interacts with GFHE to obtain the public key
pkFHE. Then, for each i ∈ [n] , the simulator chooses two random strings s1
and s2 of length k and w respectively, where k is the length of a valid SKE
key and w is the length of a valid garbled wire. S computes SKE.Enc(s1, s2)
and FHE.Enc(pkFHE, s1), denoted as m′

i1 and m′
i2 respectively. If there exists a

distinguisher that could tell the views of the ideal and real worlds, it either dis-
tinguishes F from F ′, or distinguishes (mi1,mi2) from m′

i1 and m′
i2. If the former

happens, then we can construct an adversary B using (f, f ′, {x}n, {	0}n) as input
to break the obliviousness of MOGC. If the latter happens, we can construct an
adversary B that uses (mi1,m

′
i1) and (mi2,m

′
i2) as input to break the semantic

security of SKE and IND-CPA security of FHE, respectively.
Thus EXECΠ,A,E and EXECFMVC,S,E are indistinguishable in all cases. �

5.3 From Semi-honest Clients to Malicious Clients

We inherit the approach in [17] to upgrade an MVC protocol that is secure
against semi-honest clients to the one against malicious clients. The theorem
in [17] indicates that, if an MVC protocol which is secure against semi-honest
client corruptions satisfies perfect privacy, then there exists an MVC protocol
which is secure against malicious client corruptions, in the ZK and self-registered
PKI setup hybrid world. We will give the definition as follows.

Definition 9. (Perfect Privacy of MVC [17]). An MVC protocol which is
secure against semi-honest client corruptions is perfectly private if for all inputs
x1, ..., xn, for an adversary A that semi-honestly corrupts some subset of the
parties with index set I where I ⊂ [n], and for every random tape rA belonging
to A, there exists a simulator S such that the two distributions ViewΠ(x1,...,xn),A
and S({xi, yi}i∈I , rA) are identical.

We then show our previous MVOC construction satisfying perfect privacy.

Claim. If MOGC, FHE and SKE in the aforementioned MVOC construction are
perfectly correct, then MOVC satisfies perfect privacy.

Proof. Since all the collaborators in our protocol do not receive any message,
their view could be easily simulated by executed the protocol honestly. Hence we
only need to simulate the view of the generator P1 in the case of 1 ∈ I, without
loss of generality. The view ViewΠ(x1,...,xn),A for P1 contains (F, e1, d) and Ŷ for
each online phase. During the protocol P1 uses randomness r to obtain e1, d, and
randomness rsid to obtain k1,m11,m12. S could use rsid to compute the current
encoded result by encrypting the encoded wire of y1 using FHE, producing a
view which is identical to Ŷ . Thus S can simulate a perfect identical view.
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6 Evaluation

6.1 Efficiency Analysis

As we discussed before, outsourcability may be seen as an efficiency improvement
for client side. We make a comparison between our scheme and Choi et al.’s [7]
in terms of efficiency performance, since [7] is a general solution in the multi-
client settings, which is theoretically more efficient than the general UC-secure
solution [17]. We analyze the cost in the offline and online phases separately.
Because the final result could only be obtained by the generator, for average
consideration, we aggregate a total complexity by executing the protocol for n
times in a single computing period, during which each client acts as the genera-
tor once and as the collaborator n − 1 times, where n is the number of clients.

• In offline phase, the clients together generate the whole garbled circuit. The
total computational complexity is O(Φ(f)). For communication, each collab-
orator sends a message of size O(l) to the generator, and the generator sends
an O(Φ(f))-size circuit to server.

• In online phase, the generator runs an FHE key generation algorithm. Then
each client executes a symmetric key encryption with size O(lκ), and executes
a fully homomorphic encryption with size O(κ). During result recovering, the
generator executes a fully homomorphic decrypting algorithm with plaintext
size O(lκ). For communication, each client sends the ciphertext generated
above.

6.2 Implementation and Evaluation

We implement our protocol, and run all the experiments on an Ubuntu Server
with Intel i7-10700 CPU (2.9 GHz) and 80 GB DDR4 2133 MHz RAM. We focus
on simulating the execution of clients. We adopt TinyGarble [19] as the implement
of garbling scheme, which is mature and uses several most recent optimization
on GC protocol. The computation benchmark we choose is the AES encryption
algorithm. For simplicity, we set the number of clients be 2. One client provides
a 128-bit key, and the other uses a 128-bit plaintext. There are 6,400 non-XOR
gates in the circuit, and the total size of the garbled circuit is 2.1 × 106 bits. We
use TFHE [6] as the FHE scheme, since it supports the encryption of boolean
values and can be optimized for fast gate bootstrapping. For symmetric encryp-
tion scheme, we deploy two schemes, a 4-round algorithm AGRASTA [8] and a
6-round DASTA [18]. The former provides small key size while the latter is effi-
cient in encrypting. Both schemes are well compatible with TFHE. We note that
one may use more efficient SKE schemes (which could be less compatible with
FHE) but relatively huge overhead may be incurred in the server side.

We set security parameter κ be 128. Specifically, the key-size of AGRASTA
and DASTA are 129 and 351 respectively. All the experiments are executed in
single-thread mode. We compare our implement with [7], and the result is shown
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in Table 4. As we claimed previously, the more number of client we set, the larger
scale of input will be, and thus the more outsourcability our protocol provides.
Our implement is the least advantageous in this situation, where there are only
two clients and the input length is only 128 for each client, which is almost as
little as the ciphertext extension rate of FHE. Under such circumstances, we
increase the communication efficiency by at least 2.67x and the time cost by
at least 2.24x, as compared to [7]. As the data size increases, the improvement
ratio of efficiency converges to a ratio proportion to the throughput rate of the
two schemes. According to our evaluation, the slowest SKE throughput is 72.98
bit/ms by AGRASTA, while TFHE offers 46.57 bit/ms. Hence, with large input
scale, our efficiency improvement comes to 4x and 3.13x respectively.

It is worth noting that the evaluation of the efficiency improvement is based
on the worst case, in which the number of non-server participants is 2. As shown
in Table 1, a larger n brings higher efficiency improvements.

Table 4. Overheads for Clients

Schemes Offline phase Input phase

Time (ms) Communication (kbits) Time (ms) Communication (kbits)

Choi et al. [7] 73.756 2099.2 1055.434* 147.456

MVOC (DASTA) 73.756 2131.968 65.22 55.232

MVOC (AGRASTA) 73.756 2131.968 480.695 41.024

* This time cost is underestimated, since it does not include the time consumed by POT, which
is not a component in our implement.

7 Conclusion

We proposed a lighter multi-client privacy-preserving verifiable outsourced com-
putation scheme. To adopt garbled circuit in multi-client scenario, we developed
a new primitive MOGC based on garbling scheme. We further showed that a
secure MOGC protocol implies a one-time multi-client verifiable computation.
To construct an efficient MVOC protocol, we used hybrid encryption technique
to avoid expensive overheads from FHE. We proved the UC security of the pro-
posed protocol. We made a theoretical analysis on efficiency and implemented
our scheme. The results demonstrate that the proposed protocol can enhance
the efficiency of input phase by 2.67-4x and 2.24-3x in communication and com-
putation cost, respectively.
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