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Abstract—Computation-In-Memory (CIM) using memristor
devices provides an energy-efficient hardware implementation
of arithmetic and logic operations for numerous applications,
such as neuromorphic computing and database query. However,
memristor-based CIM suffers from various non-idealities such
as conductance drift, read disturb, wire parasitics, endurance
and device degradation. These negatively impact the computation
accuracy of CIM. It is therefore essential to deal with these non-
idealities and fabrication imperfections in order to harness the
full potential of CIM. This paper discusses the non-ideality chal-
lenges and provides potential solutions. Furthermore, the paper
outlines the potential future directions for CIM architectures.

Index Terms—CIM, memristor, non-idealities, variability, ac-
curacy.

I. INTRODUCTION

Emerging memristor-based Computation-In-Memory (CIM)
has the potential to break the well-knwon Von-Neumann
challenges and offer superior performance with limited en-
ergy budget [1–4]. Memristor-based CIM architectures use
non-volatile devices such as RRAM to store the data while
exploiting their inherent capability to perform computation
on the stored data [5]. This enables CIM to circumvent the
costly data movement of Von-Neumann based systems [6].
Several recent works on CIM have demonstrated that multiply-
and-accumulate (MAC) operations, which are the fundamental
operations in AI applications such as Deep Neural Networks
(DNNs), and logic operations can be efficiently implemented
on CIM crossbar [7, 8]. In addition, memristor-based CIM ar-
chitectures have various advantages, such as zero leakage, non-
volatility and density. However, the practical implementation
of memristor-based CIM is hindered by various non-ideality
issues, such as variations, conductance drift etc [6]. Therefore,
addressing these non-idealities is essential to realize accurate
and energy-efficient memristor-based CIM.

Several software and hardware solutions have been proposed
to mitigate the impact of non-idealities on the computation
accuracy of CIM blocks [9–19]. Some of the software-based
solutions focus on finding an optimal mapping where less rele-
vant values (e.g., LSB) are mapped to the non-ideal memristor
devices [12, 16, 18], while others focus on retraining tech-
niques to partially regain the non-ideality induced accuracy
reduction [13, 17, 19]. Similarly, the hardware-based solutions
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utilize redundancy schemes to tackle the impact of non-
idealities [14, 15]. However, these state-of-the-art solutions
are inefficient and impose several hardware and software
overheads. Therefore, understanding the nature of memristor
non-idealities and providing efficient solutions at different
levels of abstraction is essential to realize reliable and efficient
CIM operations.

This paper highlights the challenge CIM faces from non-
idealities, and presents different solutions to deal with them.
First it discusses the opportunities of CIM and the non-
ideality challenges that needs to be addressed for reliable
operations. Then, the paper provides a detailed discussion of
two major solutions at mapping level and micro-architectural
level. Finally, the paper outlines future directions for reliable
and energy-efficient CIM operation to deploy AI applications
on resource constrained edge platforms, commonly known as
edge-computing.

II. CIM OPPORTUNITIES

A. CIM basics

CIM is a computing paradigm where the computation (i.e.,
execution) of an operation is performed within the memory
where the data resides. Figure 1 shows a high level micro-
architecture of memristor-based CIM crossbar, where memris-
tor such as RRAM device is used at each crossbar junction.
The communication to the crossbar is realized with the sup-
port of peripheral circuits which perform different functions
depending on the targeted CIM architecture; for example
input/output data format conversion may require Digital-to-
Analog Conversion (DAC) in row decoding part or Analog-
to-Digital Conversion (ADC), dedicated sense amplifiers in
the read path. The control block is responsible for the overall
control of the CIM core operation.

B. CIM benefits

Memristor-based CIM has many features that make it fea-
sible to realize ultra-low power and energy-efficient comput-
ing [6, 20]:

• Practically zero leakage computing [20]: The non-
volatile nature of the resistive devices enables CIM to
maintain the stored values in a leakage free manner when
it is not operating, which solves the leakage bottleneck
of SRAM-based architectures.

• Massive parallelism [6]: CIM provides high parallelism
as typically all columns in a crossbar can be accessed
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Fig. 1: CIM core architecture concept.

concurrently, leading to maximal parallelism. Moreover,
the scalability of memristor technology enables to in-
crease the number of columns per crossbar, which in turn
increases the degree of parallelism CIM can offer.

• Near zero data bandwidth requirement [21]: Integra-
tion of storage and computation in the same physical
location circumvents the bandwidth bottleneck associated
with the traditional computation centered systems, which
need significant data movement between the memory and
processing units.

• Extremely energy-efficient computing [20]: The com-
bination of non-volatility (near zero leakage), parallelism
and near zero bandwidth enables CIM to offer extremely
energy-efficient computing, in the order of fJ per opera-
tion, when compared to the existing solutions as shown
in Figure 2.

C. CIM applications

CIM has a wide application range as it overcomes the
shortcomings of conventional technologies and architectures.
Applications that can benefit from CIM can be classified into
two main classes based on their kernel operation. Some rep-
resentative applications in these classes are discussed below.

• Arithmetic operation intensive applications: Arith-
metic operations, in particular, Vector Matrix Multiplica-
tion (VMM) can be easily accelerated using memristive-
based CIM by mapping the binary VMM kernel to a CIM
crossbar array [6]. Applications involving such operations
include pattern matching with automata processor [22],
guided image filtering [23], image recognition and clas-
sification [24] and sparse coding [25].

• Logic operation intensive applications: Bulk bitwise
logic operations such as AND, OR, XOR, and data
comparison can be readily accelerated in CIM, where
either both input vectors are mapped to the crossbar or
one of them is applied as an enable signal [5]. Target
applications include database queries [26, 27], Hyper-
Dimensional Computing (HDC) [21] and associative
memories [28].

III. CIM NON-IDEALITY CHALLENGES

Emerging memristor devices play a key role in enabling
energy-efficient and highly parallel computations within the
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Fig. 2: CIM potential for energy efficient computing.

memory core itself. However, these devices suffer from several
non-idealities where some occur at the production time before
shipping and others, during the course of the product life
cycle. We classify these as time-zero and time-dependent non-
idealities, respectively.
1) Time-zero non-idealities

• Variation: Variation is the deviation of the resistance
value of the memristor after programming from the
expected resistance value, which can lead to incorrect
computations [29–31]. Variation happens mainly due to
fabrication imperfections and the stochastic nature of
underlying physics. Additionally, traditional CMOS pro-
cess, voltage and temperature (PVT) variations further
impact the computational correctness [32].

• Wire parasitics: Due to the finite parasitic resistance and
capacitance of the interconnect wires, signals suffer from
delay mismatch and voltage degradation, which can lead
to erroneous outputs [33]. For instance, in logic opera-
tions, the reference and input signals reaching the sensing
circuits (for e.g., sense amplifier) suffer from delay
mismatch caused by different critical paths. Additionally,
the wordline degrades along the path reaching farther
columns that degrades the associated current output.

• Non-zero Gmin error: In the digital domain, multiplying
any non-zero input with a zero weight must result in a
zero output. However, when such computation is mapped
to memristors as shown in Figure 3, a non-zero output
current is produced when a non-zero input voltage is
applied to a memristor with Gmin conductance which
represents digital zero. This phenomenon is known as
non-zero Gmin error which causes a functional mismatch
between the expected digital value and the actual mem-
ristive computation result [34].

2) Time-dependent non-idealities
• Endurance: Memristors suffer from limited endurance

due to the destructive nature of the programming opera-
tions [35]. For instance, in RRAMs, the material assumes
presence and absence of conductive ions by forming and
rupturing the conductive filament during a write oper-
ation; in PCRAMs, the material assumes amorphous to
crystalline forms by aligning or dis-aligning the covalent
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Fig. 3: Illustration of non-zero Gmin error.

bonds. However, continuous write operations gradually
degrade the ON/OFF resistance ratio of the devices,
eventually leading to endurance failure [36, 37].

• Device degradation: Due to stress and ageing, CMOS
periphery and memristors in CIM suffer from device
degradation [38]. These phenomena are aggravated by
high voltage of operation and temperature.

• Conductance drift: The conductance states of the mem-
ristors tend to drift with time and can eventually lead to
unwanted bit-flips [39].

• Read disturb: Read disturb is a phenomenon where
a correct value is returned when a read operation is
performed in a cell, while the data stored by the cell
is flipped by the read operation [40, 41].

These non-idealities lead to erroneous computations and
incorrect functionality in CIM architecture. Hence, it is neces-
sary to mitigate their impact. The solutions for such mitigation
are discussed in the next section.

IV. OVERVIEW OF POTENTIAL SOLUTIONS

Solutions for mitigating the impact of non-idealities can be
developed and deployed at various abstraction levels such as
device-level, circuit-level, architecture-level and application-
level. Typical solutions at each of these abstraction levels are
discussed below.

• Device-level solutions typically involve improving the
memristor device structure and material composition for
better characteristics to ensure well-defined distinctive
resistance states. A high resistance ratio along with low
variations corresponding to OFF and ON states are de-
sired to ensure high read sensing margins.

• Circuit-level solutions include innovative circuit designs
which can provide correct functionality in the presence of
non-idealities. Solutions explore the design space of sev-
eral bitcell configurations, dedicated referencing schemes
and sense amplifiers for logic operations and variation-
aware ADC and DAC converters. In addition, circuit solu-
tions that deploy local and global compensation schemes
can enable high robustness against conductance drift and
temperature fluctuations.

• Architecture-level solutions can mitigate the impact of
non-idealities by changing the way in which an appli-
cation is mapped to CIM hardware, changing how the

data flows through various CIM system components or
introducing error correction mechanisms.

• Application-level solutions involve adapting the underly-
ing applications so that inexact computations will suffice
instead of exact ones. Applications that require one or
more static-valued operands also are well suited for
memristor-based CIM as endurance problem is alleviated.

The reminder of this article focuses on circuit and architecture-
level solutions to mitigate effect of non-idealities.

V. CIRCUIT-LEVEL SOLUTIONS

In relation to performing fundamental logic operations,
non-idealities such as variations and wire parasitics can be
addressed at the circuit-level by deploying variation-aware
reference circuits and placing them such that they adapt
to delay mismatch along the row and column wire para-
sitics [32]. Another potential solution is based on the use
of two-transistor-two-resistor (2T2R) bitcell configuration that
can inherently improve the robustness against variations and
wire parasitics and efficiency at the expense of reduced storage
density [42]. Utilizing such bitcell configuration allows us to
suppress device degradation, conductance drift and eventual
unwanted bit-flip and the events of read disturb suffered
by memristors by reducing the voltage of operation. These
solutions are described in detail below.

A. Robust Logic Accelerator for 1T1R Bitcell Configuration

We have proposed an adaptive scheme to generate a ref-
erence signal VRL which adopts non-idealities such as varia-
tions and wire delay mismatch from which the input signal
VBL suffers, during a multi-row select read-assisted logic
operation [32]. Below are the design and implementation of
the reference generators and the arrangement to realize the
proposed robust logic accelerator.

1) Reference generator design: Reference generators are
build using a combination of memristor and CMOS devices
to address process, voltage and temperature (PVT) variations.
The idea is to arrange memristor devices in such a way
that it produces an average equivalent resistance of the two
critical resistance states (decision determining states) for the
desired operation. This ensures maximum possible sensing
margins to realize robust operations. For instance, the logic
AND reference falls in the middle of the two critical states
01/10 (i.e., one in ’OFF’ and one in ’ON’ state with an
equivalent resistance ROFF //RON ) and 11 (i.e., both in
’ON’ state with an equivalent resistance RON//RON ). Hence
the mean resistance is ROFF //RON+RON//RON

2 . In a similar
fashion, logic OR reference signal has an effective resistance
of ROFF //ROFF+ROFF //RON

2 . Figure 4(a) shows the circuit
implementations of the reference generators and graphical
distribution of input and reference signals VRO and VRA

generated for the OR and AND operations, respectively.
2) Reference arrangement: Reference Arrangement is de-

ployed to account for the wire delay mismatch due to the
position of the accessed bitcell in the crossbar array. For
instance, the input signal VBL while accessing the bitcell near
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Fig. 4: (a) Reference generator for CIM-logic OR and CIM-
logic AND operations. (b) Symmetrical reference cell arrange-
ment in each column [32].

the SA incurs by far less delay as compared with accessing
the bitcell far along from the SA in the column. The idea
is to place the reference generators in such as way that
the reference signal VRL capture similar parasitic delays as
those experienced by the worst-case (top and bottom row)
bitcell accesses. Hence, the reference cells (for e.g., AND
operation) as described earlier, are split into two sub-cells,
each with a resistance equivalent to the sum of the critical
resistance states. These sub-cells are placed as the top RefAT

and the bottom RefAB cells in each column, as shown in
Figure 4(b). This arrangement serves three purposes: (1) The
parallel combination of the two reference sub-cells effectively
ensures an average resistance of the two critical resistance
states related to AND logic operation. (2) The placement
at the top and bottom ensures row-wise tracking as the
reference signal encounters an average delay of the worst-case
bitcell access delays. (3) Placed in each column, these cells
ensure column-wise tracking since they suffer with similar WL
voltage degradation as experienced by the accessed bitcells.
Similarly, logic OR reference circuit is split into two sub-cells.

These schemes have been validated by performing extensive
SPICE simulations in TSMC 28 nm technology involving 3σ
variation analysis for the global PVT (worst-case corner)
cases while taking into account memristor, sense amplifier and
reference signal variations. Additionally, silicon-verified wire
parasitics have been incorporated in a 128x512 memristor-
based CIM array. Results show that with negligible area
overhead, this architecture for binary neural networks (BNN)
achieves up to 17.8 TOPS/W on the MNIST dataset and 130×
performance improvement for the text encryption compared to
the software implementation on Intel Haswell processor.

B. Referencing-in-Array for 2T2R Bitcell Configuration

We have presented a voltage-based differential referencing-
in-array scheme that improves the accuracy of logic opera-
tions [42]. The scheme makes use of a 2T2R cell configuration
to create a complementary bitcell structure that inherently acts
also as a reference during the operation execution; this results
in a high sensing margin.

Cell structure is based on 2T2R bitcell configuration as
shown in Figure 5. Data-bit ’1’ is represented by dark blue
(LRS) and the complementary data-bit as light blue (HRS),

… …

BL NBLCSL
WLNORWLNAND

… … … …
ION 2ION 2ION ION 3ION ~

NOR-logic

In IBL INBL O
00 ION 2ION 1
01 2ION ION 0
10 2ION ION 0
11 3ION ~ 0

I B
L

I N
BL

01 0

Signal Value
WLNOR VDD
WLNAND 0
WL VDD

WL
0
0

0
1

1
1

Dummy BitcellsSelected Bitcells

Fig. 5: Working of NOR logic operation using complementary
2T2R bitcell configuration [42].

and the pass transistors connect these memristors to bitline
(BL) and negative bitline (NBL). The bitcell has a wordline
(WL) and a common select line (CSL), connecting the top
electrode of one memristor to the bottom electrode of the other.

Logic operations Figure 5(b) illustrates NOR logic oper-
ation performed using a dummy row of 2T2R bitcells. The
idea is to bias the BL(NBL) side with an ON current while
performing NOR(NAND) operation. The dummy cells require
two modifications: (1) they need to have both memristor
devices of the cell in the LRS; (2) to get two independent
WLs, namely WLNOR and WLNAND, connected to the BL
and NBL-sided pass transistors, respectively. The one-time
configuration of dummy cells requires individual memristor
device programming to LRS by selecting the dedicated WLs
one at a time. To perform a NOR function, two rows storing
operands are activated along with WLNOR in the dummy row.

For simplicity, ON currents are assumed to be ION , and
OFF currents to be zero. In case both operands are in the
OFF state (00); the BL/NBL discharge currents are ION /2ION ,
resulting in ’1’ as NOR result. In case the two operands are
in different states (01/10); the BL/NBL discharge currents are
2ION /ION , implying a value ’0’. In case both operands are in
the ON state (11); the BL/NBL discharge currents are 3ION /0,
leading to a value ’0’. In a similar manner, the distribution of
BL/NBL currents for NAND can be derived for each of the
above cases.

Results show that this scheme accurately and reliably per-
forms (N)OR/(N)AND operation whiling offering 11.4X better
energy-efficiency compared to state-of-the-art solutions.

VI. ARCHITECTURE-LEVEL SOLUTION

CIM-based neural network hardware typically employs bit-
slicing scheme to map weights into a memristor crossbar,
as the bit-capacity of memristor devices is less than the bit-
width demanded by neural network applications [43, 44]. This
involves division of neural network weights and inputs into
smaller chunks called slices which are mapped to conduc-
tances and voltages, respectively. Column currents resulting
from the interaction of time-multiplexed voltage inputs with
sliced conductances are converted to digital, then shifted
and added to get the final output. The CIM architectures
using conventional bit-slicing scheme suffer from non-zero
minimum conductance (Gmin) error, which degrades the classi-
fication accuracy of the bit-slicing CIM-based neural network
hardware despite having high numeric precision.
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Fig. 6: Overview of bit-slicing schemes [45].

A bit-slicing scheme consists of two fundamental compo-
nents: 1) bit-slicing logic which determines how the slices are
created, and 2) arithmetic which determines how the partial
outputs from sliced columns are combined. The balanced
bit-slicing (BBS) logic in state-of-the-art bit-slicing schemes
provides low sensing margin resulting in significant impact
of non-zero Gmin errors, while unsigned binary arithmetic
in these schemes leads to high accumulative non-zero Gmin
error on combining the partial outputs. We have proposed an
unbalanced bit-slicing (UBS) scheme in [45] which changes
the way in which neural network weights are mapped to bit-
slicing CIM crossbar to mitigate the impact of non-zero Gmin
error. The proposed UBS scheme provides high sensing margin
for important bits (MSBs) by using a memristor with n-bit
maximum capacity as an m-bit memory-cell (slice) where
m<n. This provides sufficient sensing margin to the MSB
column output and make them immune to non-zero Gmin error
as shown in Figure 7. This suffices for good accuracy due
to the robustness of neural networks to minor computational
fluctuations i.e. errors in less important bits (LSBs). Moreover,
use of 2’s complement arithmetic in [45] leads to reduction in
accumulative non-zero Gmin error after combining the partial
outputs due to weighted subtraction as shown in Eq. 1a
and Eq. 1b obtained for Figure 8 using 8-bit weights with
maximum 2 bits/memristor as an example. The conductance
subscripts indicate binary slice value. The digital outputs of

Fig. 7: Impact of sensing margin on bit-slicing schemes [45].

(a) (b)
Fig. 8: Partial output accumulation in (a) BBS, (b) UBS [45].

the columns are denoted by Di, while the accumulated digital
outputs are indicated by Df . Di=Ti+Ei, where Ti is the ideal
output value and Ei the error due to non-zero Gmin. Similarly,
Df=Tf +Ef , where Tf is the ideal accumulated output value
and Ef the accumulated error due to non-zero Gmin. .

Ef = 64·E1 + 16·E2 + 4·E3 + E4 (1a)
Ef = (−128)·E1 + 64·E2 + 16·E3 + 4·E4 + E5 (1b)

If we assume each column has all memristors of Gmin value,
then all of them have the maximum non-zero Gmin error Emax.
In this scenario, BBS leads to Ef = 85×Emax and UBS leads
to Ef = −43×Emax. Thus, UBS halves the non-zero Gmin
error. The sign does not matter as each digital state has a
finite window as shown in Figure 7 and only the magnitude
matters as it decides if output exceeds the window boundaries.

Owing to the cumulative effect of high MSB sensing
margin and 2’s complement arithmetic on non-zero Gmin
error, unbalanced bit-slicing scheme achieves up to 8.8× and
1.8× classification accuracy compared to state-of-the-art CIM
architectures for single-bit memristors and two-bit memristors
respectively, at reasonable energy overheads arising due to
extra columns.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

Emerging AI and big-data applications demand energy-
efficient, compact and reliable hardware. In recent years,
specialized hardware (like Tensor processor units) have been
developed to cope up with these demands and deliver better
performance than GPUs. However, these specialized hardware
accelerators are costly to be deployed in resource-constrained
edge platforms as they are not energy-efficient. Clearly, the
demand of energy-efficiency cannot be full-filled by the ex-
isting hardware. Memristor-base CIM architectures have the
potential to close this gap as memristive devices have several
advantageous features such as non-volatility, scalability, high
density, CMOS compatibility, etc. Despite these advantages,
CIM architectures face several non-ideality challenges. There-
fore, addressing the non-ideality challenges is essential to
unlock the full potential of CIM and deploy AI application
on resource-constrained edge platforms.
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