

Delft University of Technology

Energy-Efficient SNN Implementation Using RRAM-Based Computation In-Memory (CIM)

El Arrassi, Asmae; Gebregiorgis, Anteneh; Haddadi, Anass El ; Hamdioui, Said

DOI
10.1109/VLSI-SoC54400.2022.9939654
Publication date
2022
Document Version
Final published version
Published in
Proceedings of the 2022 IFIP/IEEE 30th International Conference on Very Large Scale Integration (VLSI-
SoC)

Citation (APA)
El Arrassi, A., Gebregiorgis, A., Haddadi, A. E., & Hamdioui, S. (2022). Energy-Efficient SNN
Implementation Using RRAM-Based Computation In-Memory (CIM). In Proceedings of the 2022 IFIP/IEEE
30th International Conference on Very Large Scale Integration (VLSI-SoC) (pp. 1-6). IEEE.
https://doi.org/10.1109/VLSI-SoC54400.2022.9939654
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/VLSI-SoC54400.2022.9939654
https://doi.org/10.1109/VLSI-SoC54400.2022.9939654

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Energy-Efficient SNN Implementation Using
RRAM-Based Computation In-Memory (CIM)

Asmae El Arrassi†, Anteneh Gebregiorgis‡, Anass El Haddadi†, Said Hamdioui‡
‡Department of Quantum and Computer Engineering, Delft University of Technology, Delft, The Netherlands

Email: {A.B.Gebregiorgis, S.Hamdioui}@tudelft.nl
†ENSA, Abdelmalek Essaadi University, Al-Hoceima, Morocco

Email: asmaeelarrassi@gmail.com, e.elhaddadi@uae.ac.ma

Abstract—Spiking Neural Networks (SNNs) can drastically im-
prove the energy efficiency of neuromorphic computing through
network sparsity and event-driven execution. Thus, SNNs have
the potential to support practical cognitive tasks on resource
constrained platforms, such as edge devices. To realize this, SNN
requires energy-efficient hardware which can run applications
with a limited energy budget. However, the conventional CMOS
implementations cannot achieve this goal due to the various ar-
chitectural and technological challenges. In this work, we address
these issues by developing an energy-efficient and accurate SNN
hardware based on Computation In-Memory (CIM) architecture
using Resistive Random Access Memory (RRAM) devices. The
developed SNN architecture is based on unsupervised Spike
Time Dependent Plasticity (STDP) learning algorithm with online
learning capability. Simulation results show that the proposed
architecture is energy-efficient with a consumption of ≈20 fJ per
spike, while maintaining state-of-the-art inference accuracy of
95% when evaluated using the MNIST dataset.

Index Terms—SNN, RRAM, In-Memory Computing, STDP.

I. INTRODUCTION

The breakthrough in Artificial Intelligence (AI) has led to a
booming increase in AI-based applications and services [1]. In
this regard, Spiking Neural Networks (SNNs) are empowering
a variety of tasks, such as Brain Machine Interface (BMI).
Although SNNs are able to mimic the human brain and deliver
high accuracy for various applications, their implementation
on conventional Von-Neumann based architectures (such as
CPU, GPU, and TPU) suffer from the three well-known
architectural walls, such as the so-called memory-wall [2].
As a result, excessive time and energy are spent on moving
massive amounts of data between the memory and data
paths, which makes such architectures to be extremely energy-
inefficient [3], [4]. These challenges are therefore hindering
the widespread application of SNN on resource-constrained
platforms, such as edge computing. Therefore, there is a clear
need for energy-efficient implementation of SNN.

Computation In-Memory (CIM) using conventional CMOS
or emerging devices such as Resistive Random Access Mem-
ory (RRAM) offers great opportunities to overcome these
challenges [5], and implement energy-efficient SNN with a
radically new architecture. CIM integrates computation and
storage together (brain like) and provides an efficient im-
plementation of Vector-Matrix Multiplication (VMM), which

This work was supported in part by the EU H2020 grant “DAIS” that
has received funding from the ECSEL Joint Undertaking (JU) under grant
agreement No 101007273.

is the kernel operation in SNN [6]. Therefore, CIM pro-
vides a huge potential for energy-efficient SNN-based edge
computing. CIM-based accelerators have been explored to
improve the energy efficiency of different applications and
kernels, such as big data and neuromorphic computing [7]–[9].
However, there have been few studies exploring RRAM-based
SNN implementation [10]–[14]. Although the works in [10]–
[13] exploit the inherent CIM potential to reduce energy
consumption, the lack of bio-plausibility makes them energy-
inefficient. The work in [14] combines analog neurons and
RRAM-based synapses to implement an SNN. However, its
simplistic hardware structure can only accommodate a single
fully connected layer, which makes it have poor classification
accuracy. Moreover, CIM-based SNN implementations with
in-situ learning support for runtime fine-tuning and adjustment
are needed for energy-efficient and accurate inference. There-
fore, there is a clear demand for energy-efficient CIM with
on-line learning support for edge applications.

In this paper, we propose an energy-efficient SNN based
on CIM architecture using RRAM devices. The developed
SNN architecture is based on unsupervised Spike Time De-
pendent Plasticity (STDP) learning algorithm with support for
light-weight online learning. The online learning enables the
proposed SNN architecture to fine-tune the synaptic weights
to learn new features and maintain its accuracy when sub-
jected to environmental changes. Simulation results show that
the proposed CIM-based SNN architecture is highly energy-
efficient with a consumption of ≈20 fJ per spike, while
maintaining state-of-the-art inference accuracy of 95%. The
main contributions of the paper are summarized as follows:

• Design and implementation of energy-efficient CIM-
based SNN using RRAM crossbar array.

• Lightweight online learning feature to fine-tune the
weights and maintain the trained accuracy.

• Validation of the architecture using software and hard-
ware simulation tools.

• Results show that the proposed CIM-based SNN achieves
an energy efficiency of ≈20 fJ per spike.

The remainder of the paper is organized as follows: Sec-
tion II presents the basic concepts. Section III presents the
proposed architecture and STDP training. Section IV presents
the architectural implementation followed by simulation re-
sults in Section V. Finally, Section VI concludes the paper.

978-1-6654-9005-4/22/$31.00 ©2022 IEEE

20
22

 IF
IP

/IE
EE

 3
0t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 V
er

y
La

rg
e

Sc
al

e
In

te
gr

at
io

n
(V

LS
I-

So
C

) |
 9

78
-1

-6
65

4-
90

05
-4

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

V
LS

I-
So

C
54

40
0.

20
22

.9
93

96
54

Authorized licensed use limited to: TU Delft Library. Downloaded on November 10,2022 at 09:06:37 UTC from IEEE Xplore. Restrictions apply.

II. PRELIMINARIES

A. SNN fundamentals

1) SNN basics: SNN mimics the human brain, which
consists of billions of neurons interconnected by trillions of
synapses [15]. A biological neuron integrates incoming spike
voltages received from other connected neurons to form the
membrane potential. When the membrane potential crosses the
firing threshold, the neuron fires an output spike. This way
information is transmitted only when the neuron membrane
potential reaches the threshold. There are different models
such as Hodgkin and Huxley model [16] and the Leaky Inte-
grate and Fire LIF) [17], [18] to implement SNNs that mimic
biological neurons by encoding information into spikes [19].
The encoding can be achieved by either rate coding [20] or
temporal coding [21].

2) SNN training technique: SNN training can be classi-
fied into two categories [22], namely, a converted SNN and
a directly trained SNN. In the first category, the network
is trained as Artificial Neural Network (ANN) with back-
propagation technique [23]–[25]. Then, the trained ANN is
parsed into an SNN, which uses the pre-trained weights
for inference activities. However, converted SNNs perform
poorly during inference making them undesirable [26]. The
second class is the directly trained SNN that uses different
learning methods such as STDP [27]–[29] to train the SNN
architecture. The main advantage of this approach is that it
is scalable and it exploits the event-driven nature of SNN for
efficient training [30].

B. CIM using RRAM devices

RRAM devices have gained widespread attention due to
their non-volatility, high integration density, and ability to
overcome memory bandwidth issues by executing operations
within the memory [31]. RRAM devices can be structured
in a crossbar array to build a CIM unit, where computation
and storage are integrated within the same physical location.
Figure 1 shows a crossbar structure with N wordlines (in-
put voltages) and M bitlines, in which the wordlines and
bitlines are connected through an RRAM bit-cell (1T1R) at
their intersection. The crossbar can perform Vector Matrix
Multiplication (VMM) operation by applying a voltage vector
V=Vi (where i∈{1, N}) to the crossbar matrix of conductance
values G=Gij (where i∈{1, N}, j∈{1,M}). At any instance,
each column can perform a multiplication-and-accumulation
(MAC) operation, with the output current vector I , in which
each element of the output current is obtained as shown in
Equation (1).

Ij =

N∑
i=1

Vi ·Gij (1)

All M MAC operations are performed with O(1) complexity,
which is essential to implement energy-efficient SNN.

III. PROPOSED CIM-BASED SNN ARCHITECTURE DESIGN

For energy-efficient and accurate SNN implementation we
develop an architecture with the following key features:

Fig. 1: RRAM crossbar array structure for CIM operation.

• CIM-based two layer architecture: An optimized two
layer SNN architecture is developed to improve the
energy efficiency, while maintaining high accuracy.

• Adopting LIF neuron model: LIF neuron model is
adopted for efficient implementation due to its simplicity
and biological plausibility [32].

• Light-weight on-line learning support: On-line learning
functionality to fine-tune synapses to maintain accuracy.

Next these key features will be discussed in details.

A. Two layer architecture design

The proposed two layer SNN architecture shown in Figure 2
is chosen as it minimizes the number of neurons which makes
it energy-efficient architecture. The first (input) layer takes
the input data vector and generates spike trains by using
Poisson encoding schemes [33]. It should be noted that a
pre-processing step is needed to convert the stimulus (two-
dimensional input image) pixels into a one-dimensional (1D)
vector of pixels. As shown in the figure, the 1D pixel vector
is fed to the input layer, where each pixel in the 1D vector
is mapped to the corresponding neuron which uses Poisson
encoding to generate the corresponding spike train, being
equivalent to the input pixel intensity. Finally, the spike trains
are fed to the output layer through a fully connected network.

The neurons at the output layer are based on the Leaky-
Integrate-and-Fire (LIF) model [18] and perform excitation
and inhibition tasks by increasing or decreasing the firing
probability. This is achieved by reinforcing the connected
synapses based on the STDP learning rule [34]. In the ex-
citation phase, the neurons accumulate the weighted input
spikes. The intensity of the weighted input spikes determine
the excitation level of the output neurons, resulting in an
output spike only from the neuron that are sensitive to a
particular feature. Once an output neuron generates a spike,
it sends an inhibition signal to all other neurons in the
output layer to update their membrane potential based on the
intensity of their synapses. The inhibition synapse connectivity
defines the inhibition intensity and membrane potential shift
amplitude of the inhibited neurons. Increasing the inhibition
synapse connectivity to the non-firing neurons weakens their
membrane potential which allows the firing neuron (winner) to
dominate the spike response. This approach aims at mimicing
the biological phenomenon by enabling competition between
the neurons, which makes the proposed SNN biologically
plausible architecture.

Authorized licensed use limited to: TU Delft Library. Downloaded on November 10,2022 at 09:06:37 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Two-layer SNN architecture with an input layer to
generate spike trains, and a fully-connected output layer.

B. Adopted neuron model

The LIF neuron model presented in [18] is adopted in
this work as it provides better trade-off between accurately
mimicking of biological neuron and implementation simplic-
ity [32], [35]. The LIF model captures the facts that a neuron
has a leaky membrane and performs spatial and temporal
integration of synaptic inputs to generate a spike when the
voltage reaches a certain threshold. After spiking, the neuron
goes to a refractory period [32]. The LIF model can be
expressed as shown in Equation (2) [18]:

τmem
∂v(t)

∂t
= −v(t) + vrest + I(t) (2)

where τmem is the membrane time constant of the neuron,
v(t) is the neuron membrane potential, vrest is the resting
membrane potential, and I(t) is the total current of a neuron
at time t. Figure 3 shows a LIF neuron and its dynamics.
As shown in the figure, the LIF neuron receives spike in-
puts from multiple presynaptic neurons and accumulates the
weighted spikes to increases its membrane potential. When
the membrane potential reaches the threshold voltage vth, the
neuron generates an output spike and its membrane potential
is decayed to a reset voltage vreset. Then, the neuron enters
a refractory period in which it does not accumulate any
incoming spikes. Once the refractory period has lapsed, the
neuron will be active again to receive input spikes. When an
active neuron does not receive any input spike, its membrane
potential will decay (leak) gradually.

C. STDP learning method

STDP learning rule is adopted due to its bio-plausibility,
and training speed [36]. STDP is a phenomenon in which
the precise timing of spikes affects the sign and magnitude
of changes in synaptic strength [27]. STDP is dependent on
the spike sequences of presynaptic and postsynaptic neurons.
When a presynaptic neuron precedes the postsynaptic neuron,
the synapse connecting these neurons is potentiated (increased)
otherwise, the synapse is depressed (decreased) as shown in
Figure 4. The intensity of the potentiation and depression of
the synapses is dependent on the timing of the postsynaptic
neuron and the presynaptic neuron firing ∆t = tpost − tpre.
Therefore, the postsynaptic spike weight update is expressed
as shown in Equation (3):

∆wpost = ηpostxpre(wmax − w)µ (3)

where ηpost is the learning rate of the postsynaptic neurons,
wmax is the maximum weight, µ defines the weight update de-
pendency on the old weight, and xpre monitors the presynaptic

Fig. 3: An illustration of the dynamics of a LIF neuron
membrane potential.

neuron activity history. xpre gradually increases/decreases its
value depending on the reception of input spike. Similarly,
the presynaptic spike weight update is expressed in Equation
(4):

∆wpre = −ηprexpostw
µ (4)

where ηpre is the learning rate of presynaptic neurons, and
xpost traces postsynaptic neuron activity [27]. The synapse
weight update is expressed in Equation (5):

∆w = ∆wpre +∆wpost + w (5)

Where ∆wpre and ∆wpost are the presynaptic and postsynap-
tic spike weight update, and w is the synapse weight value.

Lateral inhibition is implemented using fixed recurrent
synapses that connect each neuron to all the other neurons.
During training, few neurons can dominate the spike firing
activity while the rest of the neurons are less active. This
firing imbalance is increased by lateral inhibition making the
less active neurons unable to reach the firing threshold. In
order to address the domination of the spike generation by
few neurons, a homeostasis (dynamic threshold) technique
is utilized to balance the firing probability of the neurons
according to changing conditions. This can be implemented
by increasing the threshold voltage (Vthreshold) whenever
a neuron receives an input spike, and gradually decreasing
the Vthreshold when it is not generating output spikes [27].
Therefore, the active neurons need relatively higher membrane
potential to reach the dynamic threshold, while the less active
neurons are encouraged to fire by having smaller thresholds.
The dynamic threshold of a neuron is expressed as follows:

vthreshold(Tstep) = Vthreshold + θ(Tstep) (6)

Where Vthreshold is the constant threshold voltage and
θ(Tstep) is a variable that shifts the dynamic threshold depend-
ing on the activity of the neuron. Moreover, the trained weights

(a) STDP learning rule (b) Biological inspiration
Fig. 4: STDP learning rule: (a) basics (b) the biological data
on which STDP was based [34].

Authorized licensed use limited to: TU Delft Library. Downloaded on November 10,2022 at 09:06:37 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Unsupervised training algorithm
Input: Networkarch, N 28× 28 pixel training samples
Output: Trained network

1: procedure TRAINING PHASE
2: Initialize network weights with uniform distribution
3: for Samplei = 1 to N do
4: ST = Poisson (Samplei); /* ST= 784 spike trains*/
5: X(pre/post) = 0; /*X(pre/post) is pre/post synaptic

trace*/
6: ∆w = 0;
7: for Tstep = 1 to 350 do
8: ∀neurons Compute membrane potential

V (Tstep);
9: V (Tstep)=

∑784
i=1(w(i)STi(Tstep) + bi);

10: vthreshold(Tstep) = Vthreshold + θ(Tstep); /*
(See Equation (6)) */

11: if V (Tstep) ≥ vthreshold(Tstep) then
12: Generate output spike;
13: Decay V (Tstep) to a reset voltage;
14: θ(Tstep) Increase;
15: else
16: θ(Tstep) decay;
17: if a Spike is generated then
18: ST(Tstep) = 1;
19: X(pre/post) = 1;
20: else
21: ST(Tstep) = 0;
22: X(pre/post) -= ϵ; / ϵ= decay rate */

23: Calculate ∆wpre/post based on Eq.(3 and 4);
24: Calculate ∆w based on Equation(5);
25: Update weight w by ∆w;
26: Normalize neuron weights for a balanced learning.

are normalized to further balance the neuron responses, pre-
vent over-fitting and reduce weight saturation or vanishing
phenomena.

The details of the adopted unsupervised STDP training
algorithm with its homeostasis and weight normalization tech-
niques is presented in Algorithm 1.

IV. CIM ARCHITECTURAL IMPLEMENTATION

The CIM implementation of the proposed SNN architecture
(Figure 2) using RRAM crossbar array is shown in Figure 5.
The crossbar shown in Figure 5 uses a 1T1R bit-cell structure
to store the synaptic weights. The spikes from the presynaptic
neurons are connected to the synapses array in the crossbar
via the bitline input voltages. The input voltages generate
an output current which represents the weighted sum of the
input spikes in each column that corresponds to one LIF
neuron. The column output currents stimulate the LIF neurons
to modify their membrane voltage (excitation phase). Once
the membrane voltage of any postsynaptic neuron reaches
the threshold, an output spike and an inhibition signal are
generated. The inhibition signal is fed to the other neurons

Fig. 5: SNN mapping to RRAM crossbar array.

to suppress their potential (RESET operation), while the
output spike is used to determine the output of the network.
Thus, CIM enables the implementation of massively parallel
Vector Matrix Multiplication (VMM) operation in a compact
and efficient manner. Therefore, the RRAM crossbar-based
CIM implementation reduces the complexity of the kernel
operation (VMM) from O(n2) to O(1). Moreover, RRAM has
comparatively lower read and write latency (<10ns) than other
emerging technologies such as PCM [37]. Thus, RRAM offers
good trade-off between latency and energy-efficiency for wide
range of applications.

Different RRAM reliability issues such as conductance
drift, endurance and retention failure can affect the stored
synaptic weights and lead to inference accuracy degradation
of the CIM-based SNN architecture [38]. To cope with these
issues and enable the network to learn new features, a light-
weight online learning scheme is adopted to fine-tune the
synaptic weights in the RRAM crossbar. This helps to maintain
the baseline trained accuracy during the operational time of
the SNN. Moreover, online learning increases the long-term
network stability. The online learning is implemented using a
simplified version of the STDP learning rule [39] by adding
signals at the output of the neuron that will fine-tune the
RRAM synaptic weights. The proposed online learning has
minor impact on energy efficiency and device endurance due
to the small number of write operations on the RRAM devices.

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Simulation setup

The simulation setup used in this work is presented in
Table I. The proposed architecture is implemented and trained
in Python using bindsnet [40], pytorch and NVIDIA CUDA
libraries. The MNIST dataset [41] is used to train and evaluate
the accuracy of the SNN architecture. The MNIST image
pixels are converted into spike trains using Poisson encoding
scheme, where each spike train is 350ms in length (duration).
The network is trained offline and then implemented in hard-
ware with VHDL and spice simulation of RRAM crossbar.
The parameters of the RRAM devices used to simulate the
CIM architecture are also presented in Table I.

B. Accuracy evaluation

The training and inference accuracies of the proposed SNN
architecture are evaluated with MNIST dataset. This subsec-

Authorized licensed use limited to: TU Delft Library. Downloaded on November 10,2022 at 09:06:37 UTC from IEEE Xplore. Restrictions apply.

TABLE I: SNN simulation setup and RRAM parameters.
SNN parameter Value

Threshold voltage constant -52 mV [42]
Resting potential -65 mV [42]

Membrane reset potential -60 mV [42]
Refractory period 5 ms

Membrane time constant 100 ms
Spike trace decay time constant 20 ms

Postsynaptic learning rate 10−4

Presynaptic learning rate 10−2

Weight dependency constant 0.4
Normalization weight constant 78.4

Spike train duration 350 ms
RRAM parameters Specification

RRAM Device HfO2/T iOx [43]
Roff (HRS) 100kΩ
Ron (LRS) 3kΩ

CMOS Technology 90nm TSMC

tion discusses the training accuracy evaluation first followed
by a discussion on the inference accuracy evaluation.

1) Training accuracy evaluation: To evaluate the training
progress of the network, we evaluated the accuracy of the net-
work by gradually increasing the number of training samples
by 20 epochs. Figure 6 shows the evolution of the training
accuracy as a function of training samples. As shown in the
figure, the training accuracy reaches its peak accuracy, 95%,
when trained with 44,000 samples. Afterward, the network
stabilizes with minor over-fitting.

2) Inference accuracy evaluation: To evaluate the inference
accuracy of the architecture, the input image pixels are first
converted into spike trains as shown in Figure 7. From the
figure, it can be observed that the spike trains are dependent on
the pixel intensity and they are divided into three main levels.
High-intensity image pixels are converted into high rate spike
trains (yellow). Medium-intensity pixels, e.g., pixels around
the edges of the digit, are converted into medium rate spike
trains (green, blue). Finally, low-intensity pixels are converted
into low rate spike trains (purple). The figure also shows the
reconstructed image from the inference output spikes of the
network.

These spike trains are used to evaluate the inference accu-
racy of different STDP models such as additive [44], multi-
plicative [45], power law [46], Gutig [47] and Rossum [48].
Figure 8 shows the inference accuracy of these STDP model
variants. From the figure, it can be observed that the Gutig
model achieves higher inference accuracy (95%) than the other
models. The Gutig model also demonstrated high stability

0K 5K 10K 15K 20K 25K 30K 35K 40K 45K 50K 55K 60K
#Training samples

0
10
20
30
40
50
60
70
80
90

100

Tr
ai

ni
ng

 a
cc

ur
ac

y
(%

)

Fig. 6: Training accuracy vs training samples for 20 epochs.

Fig. 7: The schematic of the spike trains activity.

and fast convergence during the training phase. Therefore,
the Gutig model is adopted as the standard STDP model
in this work. Moreover, we evaluated the difference between
supervised and unsupervised learning by training our architec-
ture using the supervised STDP learning algorithm presented
in [28]. Table II presents the differences in inference accuracy
and the training time of the adopted unsupervised STDP
learning and the supervised learning rule [28]. The table shows
that supervised learning achieved slightly better accuracy than
unsupervised learning at the cost of a higher training time.

TABLE II: Supervised vs unsupervised learning.
Learning Inference Training Time Testing Time

rule accuracy (s/sample) (s/sample)
Unsupervised 95% 14.62 0,6

Supervised 96.28% 27.72 0.75

C. Energy efficiency evaluation

To evaluate the energy consumption of the proposed CIM-
based SNN architecture, we programmed the trained weights
to the RRAM crossbar, and the spike trains are provided as
input for the VMM operation on the crossbar. The CIM im-
plementation utilizes 20, 512 × 512 RRAM crossbars. Results
show that the proposed CIM implementation performs VMM
in an energy-efficient manner with an energy consumption of
≈20fJ energy per spike.

D. State of the art comparison

There are different works in the literature implementing
SNN architectures with unsupervised training using the STDP
learning rule [49], [50]. The work in [49] proposed a locally
connected network that shows high spike activity for training

Rossum Gutig Power law Additive Multiplicative
STDP model variants

86

89

92

95

98

In
fe

re
nc

e
ac

cu
ra

cy
 (%

)

Fig. 8: Inference accuracy of different STDP model variants.

Authorized licensed use limited to: TU Delft Library. Downloaded on November 10,2022 at 09:06:37 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Accuracy and energy efficiency comparison.
Network Learning Spike activity Number of Test Energy/Spike

architectures rule (spikes/iteration) neurons Accuracy
Saunders [49] unsupervised ×7 9000 95.02% N/A

Meng [50] ×19 8400 95.6% N/A
Valentian [14] Supervised N/A N/A 88% 180 pJ

Lee [51] ×19 919 69% 270 fJ
Our work Unsupervised STDP ×1 6400 95% 20 fJ

and inference. However, the augmented spike activity results in
high energy consumption due to the distributed nature of the
recurrent inhibitory connections. Similarly, the work in [50]
utilizes a highly-parallel SNN consisting of multiple indepen-
dent sub-networks. However, it has high spike activity than the
activity in [49]. Table III compares the spike activity, accuracy
and energy efficiency of our work with different State-of-The-
Art SNN architectures [14], [49]–[51]. Although the works
in [49], [50] achieve comparable (slightly better) accuracy than
our work, they have much higher spike activity and resource
utilization (more than 30%) than our proposed solution, as
shown in Table III. The works in [14] and [51] proposed
an SNN implementation on RRAM crossbar. However, both
solutions are energy-inefficient when compared to our work.

VI. CONCLUSION

In this work, we proposed an energy-efficient SNN hardware
based on Computation-in-Memory (CIM) architecture using
Resistive Random Access Memory (RRAM) devices. The
developed SNN architecture is based on unsupervised Spike
Time Dependent Plasticity (STDP) learning algorithm with
online learning capability. Simulation results illustrate that
the proposed CIM-based SNN architecture is highly energy-
efficient with a consumption of ≈20 fJ per spike while
maintaining state-of-the-art inference accuracy of 95%.

REFERENCES

[1] Y. Sun et al., “Deepid3: Face recognition with very deep neural
networks,” arXiv, 2015.

[2] D. A. Patterson, “Future of computer architecture,” in BARS, 2006.
[3] H. A. Du Nguyen et al., “Memristive devices for computing: Beyond

cmos and beyond von neumann,” in VLSI-SoC, 2017.
[4] M. Hu et al., “Memristor-based analog computation and neural network

classification with a dot product engine,” Advanced Materials, 2018.
[5] H. A. D. Nguyen et al., “A classification of memory-centric computing,”

JETC, 2020.
[6] M. Hu, H. Li et al., “Hardware realization of bsb recall function using

memristor crossbar arrays,” in DAC, 2012.
[7] X. Qiao et al., “Atomlayer: a universal reram-based cnn accelerator with

atomic layer computation,” in DAC, 2018.
[8] S. Gupta et al., “Nnpim: A processing in-memory architecture for neural

network acceleration,” Transactions on Computers, 2019.
[9] F. Chen et al., “Regan: A pipelined reram-based accelerator for gener-

ative adversarial networks,” in ASP-DAC, 2018.
[10] Y. Wang et al., “Energy efficient rram spiking neural network for real

time classification,” in GLS-VLSI, 2015.
[11] D. Ielmini, “Brain-inspired computing with resistive switching memory

(rram): Devices, synapses and neural networks,” Microelectronic, 2018.
[12] Y. Guo et al., “Unsupervised learning on resistive memory array based

spiking neural networks,” Neuroscience Frontiers, 2019.
[13] T. Tang et al., “Spiking neural network with rram: Can we use it for

real-world application?” in DATE, 2015.
[14] A. Valentian et al., “Fully integrated spiking neural network with analog

neurons and rram synapses,” in IEDM, 2019.
[15] A. Taherkhani et al., “A review of learning in biologically plausible

spiking neural networks,” Neural Networks, 2020.
[16] A. L. Hodgkin et al., “A quantitative description of membrane current

and its application to conduction and excitation in nerve,” Journal of
physiology, 1952.

[17] A. Delorme et al., “Spikenet: A simulator for modeling large networks
of integrate and fire neurons,” Neuro computing, 1999.

[18] W. Gerstner et al., Neuronal dynamics: From single neurons to networks
and models of cognition. Cambridge University Press, 2014.

[19] W. Gerstner, “A framework for spiking neuron models: The spike
response model,” in Handbook of Biological Physics, 2001.

[20] W. Gerstner et al., Spiking neuron models: Single neurons, populations,
plasticity, 2002.

[21] S. M. Bohte, “The evidence for neural information processing with
precise spike-times: A survey,” Natural Computing, 2004.

[22] J. H. Lee et al., “Training deep spiking neural networks using backprop-
agation,” Frontiers in neuroscience, 2016.

[23] R. Midya et al., “Artificial neural network (ann) to spiking neural
network (snn) converters based on diffusive memristors,” AEM, 2019.

[24] B. Rueckauer et al., “Conversion of analog to spiking neural networks
using sparse temporal coding,” in ISCAS, 2018.

[25] P. U. Diehl et al., “Conversion of artificial recurrent neural networks
to spiking neural networks for low-power neuromorphic hardware,” in
ICRC, 2016.

[26] E. Ledinauskas et al., “Training deep spiking neural networks,” arXiv,
2020.

[27] P. U. Diehl et al., “Unsupervised learning of digit recognition using
spike-timing-dependent plasticity,” Frontiers in computational neuro-
science, 2015.

[28] Y. Hao et al., “A biologically plausible supervised learning method
for spiking neural networks using the symmetric stdp rule,” Neural
Networks, 2020.

[29] H. Fang et al., “Brain inspired sequences production by spiking neural
networks with reward-modulated stdp,” Frontiers in Computational
Neuroscience, 2021.

[30] P. A. Merolla et al., “A million spiking-neuron integrated circuit with a
scalable communication network and interface,” Science, 2014.

[31] S. Yu et al., “Rram for compute-in-memory: From inference to training,”
TCAS-I, 2021.

[32] M. Zare et al., “An area and energy efficient lif neuron model with spike
frequency adaptation mechanism,” Neurocomputing, 2021.

[33] D. Banerjee et al., “Efficient optimized spike encoding of multivariate
time-series,” in Neuro-Inspired Computational Elements, 2022.

[34] M. M. Asl, “Propagation delays determine the effects of synaptic
plasticity on the structure and dynamics of neuronal networks,” 2018.

[35] L. Wang et al., “Memristive lif spiking neuron model and its application
in morse code,” Frontiers in Neuroscience, 2022.

[36] C. Lee et al., “Training deep spiking convolutional neural networks
with stdp-based unsupervised pre-training followed by supervised fine-
tuning,” Neuroscience Frontiers, 2018.

[37] S. Yu et al., “Emerging memory technologies: Recent trends and
prospects,” Solid-State Circuits Magazine, 2016.

[38] M. Zhao et al., “Crossbar-level retention characterization in analog rram
array-based computation-in-memory system,” TED, 2021.

[39] Z. Zhou et al., “The characteristics of binary spike-time-dependent
plasticity in hfo 2-based rram and applications for pattern recognition,”
Nanoscale Research Letters, 2017.

[40] H. Hazan et al., “Bindsnet: A machine learning-oriented spiking neural
networks library in python,” Frontiers in neuroinformatics, 2018.

[41] Y. LeCun, “The mnist database of handwritten digits,”
http://yann.lecun.com/exdb/mnist/, 1998.

[42] J. Platkiewicz et al., “A threshold equation for action potential initiation,”
computational biology, 2010.

[43] A. Hardtdegen et al., “Improved switching stability and the effect of an
internal series resistor in hfo 2/tio x bilayer reram cells,” TED, 2018.

[44] S. Song et al., “Competitive hebbian learning through spike-timing-
dependent synaptic plasticity,” Nature neuroscience, 2000.

[45] G. G. Turrigiano et al., “Activity-dependent scaling of quantal amplitude
in neocortical neurons,” Nature, 1998.

[46] A. Morrison et al., “Spike-timing-dependent plasticity in balanced
random networks,” Neural computation, 2007.

[47] R. Gütig et al., “Learning input correlations through nonlinear tempo-
rally asymmetric hebbian plasticity,” Journal of Neuroscience, 2003.

[48] V. Rossum et al., “Stable hebbian learning from spike timing-dependent
plasticity,” Journal of neuroscience, 2000.

[49] D. J. Saunders et al., “Locally connected spiking neural networks for
unsupervised feature learning,” Neural Networks, 2019.

[50] M. Meng et al., “High-parallelism inception-like spiking neural networks
for unsupervised feature learning,” Neurocomputing, 2021.

[51] D. Lee et al., “Various threshold switching devices for integrate and fire
neuron applications,” Advanced Electronic Materials, 2019.

Authorized licensed use limited to: TU Delft Library. Downloaded on November 10,2022 at 09:06:37 UTC from IEEE Xplore. Restrictions apply.

