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Qiongxiu Li1,∗, Milan Lopuhaä-Zwakenberg2,∗, Richard Heusdens3, Mads Græsbøll Christensen1

1 Audio Analysis Lab, CREATE, Aalborg University, Denmark, qili,mgc@create.aau.dk
2University of Twente, The Netherlands, m.a.lopuhaa@utwente.nl

3 Netherlands Defence Academy and Delft University of Technology, The Netherlands, r.heusdens@tudelft.nl

Abstract—Both communication overhead and privacy are main
concerns in designing distributed computing algorithms. It is
very challenging to address them simultaneously as encryption
methods required for privacy-preservation often incur high
communication costs. In this paper, we argue that there is a
fundamental link between communication efficiency and privacy-
preservation through quantization. Based on the observation that
quantization, which can save communication bandwidth, will
introduce error into the system, we propose a novel privacy-
preserving distributed average consensus algorithm which uses
the error introduced by quantization as noise to obfuscate the
private data for protecting it from being revealed to others.
Similar to existing differential privacy based approaches, the
proposed approach is robust and has low computational complex-
ity in dealing with two widely considered adversary models: the
passive and eavesdropping adversaries. In addition, the method is
generally applicable to many distributed optimizers, like PDMM
and (generalized) ADMM. We conduct numerical simulations to
validate that the proposed approach has superior performance
compared to existing algorithms in terms of accuracy, commu-
nication bandwidth and privacy.

Index Terms—Distributed average consensus, privacy, wireless
sensor networks, communication, ADMM, PDMM

I. INTRODUCTION

With the emergence of advanced microprocessor design and
wireless communication technologies, there is a huge growth
in distributed computing systems. The distributed average
consensus problem has served as a fundamental building
block for different fields such as optimization [1], robotics,
signal processing and machine learning, where the goal is
to compute the global average over all participants’ data in
such distributed systems. Due to the fact that the involved
participants’ data often comes from personal devices such as
mobile phones and tablets [2], [3], these data carries sensitive
personal information thus imposes privacy concerns. In ad-
dition, the involved computing devices are usually limited in
communication bandwidth and computing resources. Overall,
it is crucial to design novel distributed average consensus
solutions that are both privacy-preserving and lightweight in
terms of computation and communication cost.

∗ The first two authors contributed equally to this work. This research has
been partially funded by NWO grant 628.001.026, the European Union’s Hori-
zon 2020 research and innovation programme under the Marie Skłodowska-
Curie grant agreement No. 101008233, and ERC consolidator grant 864075
“Caesar”.

Existing algorithms only address the above-mentioned chal-
lenges partially. The first type of approach [4], [5] addresses
the privacy issue by adopting the homomorphic encryption [6]
to ensure computation over an encrypted domain. However,
homomorphic encryption incurs a high cost on both commu-
nication and computational expenses [7]. The other type of
approach, referred to as the information-theoretical or noise
insertion approach, is more computationally lightweight. The
main idea is to design a lightweight encryption function by
inserting noise to mask the private data before sharing to
others. Consider a security attack where there are untrustwor-
thy participants in the system, an algorithm is very robust
in privacy if it is able to protect privacy even though there
are many untrustworthy participants. For each participant, the
extreme trustless scenario is that all other participants are not
trustworthy. It has been shown that under such an extreme
trustless scenario, the two desired performances: output ac-
curacy and guaranteed privacy, cannot be achieved simulta-
neously in the context of distributed average consensus [8],
[9]. Therefore, different algorithms have to prioritize one over
another. Based on the prioritized performance, information-
theoretical approaches can be further classified into two types.
Differentially private algorithms [9]–[11], which apply the
general concept of differential privacy [12], achieve privacy
guarantee under the extreme trustless scenario by compromis-
ing accuracy. Alternatively, other algorithms [13]–[21] achieve
output accuracy but they require the additional assumption that
the number of untrustworthy participants should not exceed a
certain threshold. The main idea is to design the noise insertion
process in particular ways such that the accuracy of average
output is not affected, e.g., all inserted noise are coordinated
to sum up to zero [13]–[18], or inserting noise into a specific
subspace that has no effects on accuracy [20], [21].

The last challenge, i.e., communication efficiency, is often
overlooked in existing noise insertion approaches by assuming
infinite precision. However, we remark that there is often a
fundamental trade-off between communication bandwidth and
privacy level for noise insertion approaches. A higher privacy
level usually requires a larger amount of noise, resulting in
an increase in noise entropy and thus the amount of bits.
In this paper, we propose a novel approach which is able
to address communication efficiency and privacy-preservation
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simultaneously. A typical way to save communication cost is
to apply quantization schemes. We observe that quantization
will introduce additional error to the system; while the main
idea of information-theoretical approaches is to insert noise
for privacy preservation. Therefore, we propose to link them
by adopting the error introduced by quantization as noise to
protect privacy. To the best of our knowledge, this is the first
distributed average consensus approach which makes use of
quantization to ensure both information-theoretical privacy and
communication efficiency.

II. PRELIMINARIES AND PROBLEM DEFINITION

In this section, we review necessary fundamentals and
concepts to define the problem to be solved.

A. Distributed average consensus over networks

Let the undirected graph G = (N , E) model a distributed
network where N = {1, 2, ..., n} denotes node set and
E denotes edge set and m = |E|. Moreover, let Ni =
{j | {i, j} ∈ E} denote the set of neighboring nodes and di =
|Ni|. Assume each node i has local data si. For simplicity, we
assume that si is scalar-valued but the results hold for arbitrary
dimensions. The goal of distributed average consensus is to
compute the global average over the network:

save = n−1
∑
i∈N

si, (1)

in a distributed manner, i.e., each node is only allowed to
communicate with its neighboring nodes.

B. Private data definition and adversary models

We define the local data si of each node as the private
data to be protected. The adversary model is an important
concept when analyzing privacy. It specifies what kinds of
security attack the algorithm is addressing. Besides the well-
known eavesdropping adversary which attacks the system by
eavesdropping the communication channels between nodes,
another commonly considered model in distributed networks
is the passive or honest-but-courious adversary. It attacks the
system by colluding a number of nodes in the network. These
nodes are called corrupt nodes and are assumed to follow the
algorithm instructions but collect information together. With
all information collected by the corrupt nodes, the passive
adversary aims to infer the private data of the rest non-corrupt,
referred to as honest nodes. Note that the extreme trustless
scenario described in the introduction means that there are
n− 1 corrupt nodes when considering the passive adversary.

C. Main requirements

We note that there are three main requirements. 1) Output
correctness: at the end of the algorithm, each node i would
like to obtain the average result save. 2) Individual privacy:
throughout the algorithm, each node’s private data si, should
be protected from being revealed to both eavesdropping and
passive adversaries. 3) Communication cost: the algorithm
should have low communication cost.

D. Local perturbation method and privacy metrics

An important technique to ensure privacy is local pertur-
bation, in which each node i privately generates a random
number ri, and engages in the distributed average consensus
protocol with s̃i = si + ri. Since the adversaries only learns
about si through s̃i, it provides privacy even if all other n−1
nodes are corrupt. Such privacy guarantee comes at an accu-
racy cost, as the protocol will now compute s̃ave = save+rave,
with rave being the average value of the inserted noise.

Many metrics exist to measure the privacy leakage. A
commonly used one is Local Differential Privacy (LDP) [22],
which gives strong plausible deniability privacy guarantees.
However, because LDP gives a requirement on all possible
inputs, it often requires additional assumption on the private
data and can be difficult to realize in practice. Furthermore, it
comes at a large accuracy cost. In this paper we use mutual
information [23] as a more practically applicable metric to
quantify the information leakage. The mutual information
I(Si; S̃i) measures how much information regarding Si is
revealed by knowing S̃i and vice versa, where we used upper-
case letters to denote random variables and lowercase letters
to indicate the corresponding realization. Mutual information
can be seen as a relaxed version of LDP [24].

III. DISTRIBUTED OPTIMIZER AND QUANTIZATION

In this section we will briefly introduce the fundamentals
for the proposed approach.

A. Distributed optimizer

The goal of distributed optimizers is to solve decomposable
optimization problems over a network in a distributed manner.
Many distributed optimizers have been proposed such as
ADMM [25] and PDMM [26]. It has been shown that ADMM
and PDMM are closely related using monotone operator theory
and operator splitting techniques [26] (see [27] for details
on monotone operator theory). For both methods, the update
equations at iteration t = 0, 1, . . . are given by

x
(t+1)
i = arg min

xi

(
fi(xi) +

∑
j∈Ni

z
(t)
i|jBi|jxi + cdi

2 x
2
i

)
(2)

z
(t+1)
j|i = θz

(t)
j|i + (1− θ)(z(t)

i|j + 2cBi|jx
(t+1)
i ), (3)

where c denotes the penalty parameter for controlling the con-
vergence rate, x(t)

i denotes the primal (optimization) variable
of node i at iteration t, fi(xi) denotes the local objective
function of node i, assumed to be convex. For each edge
el = (i, j) ∈ E , there are two so-called auxiliary variables
zl = zi|j and zl+m = zj|i. B ∈ Rm×n is related to the graph
incidence matrix: Bi|j = 1, Bj|i = −1 if and only if (i, j) ∈ E
and i < j. The constant θ ∈ [0, 1] is used for controlling
the averaging weight of Peaceman-Rachford splitting where
θ = 0.5 corresponds to ADMM, and θ = 0 to PDMM. In the
following we will use PDMM as an example to explain the
main idea but the conclusions hold for all θ ∈ [0, 1].
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B. Adaptive differential quantization

Adaptive differential quantization was introduced in [28],
[29] to perform distributed optimization at a low communi-
cation cost without compromising the optimization accuracy.
It is motivated by the fact that for fixed point iterations the
difference of successive updates will converge to zero, thus
the entropy of the difference will decrease as the number
of iteration increases. Therefore, it first defines an adaptive
decreasing cell-width for quantization:

∆(t) = γt∆(0), (4)

where ∆(0) denotes the initialized cell-width, γ ∈ (0, 1) is
a constant for controlling the decreasing rate of cell-width.
Let l denote the word length of the quantized message. With
cell-width ∆(t), define a l-bit uniform (mid-rise) quantization
function Q(t) : R → ∆(t)(a + 1/2), where a ∈ A =
{−2l−1,−2l−1 + 1, . . . , 2l−1− 1}. Each input is mapped into
its nearest representation value among all {∆(t)(a+1/2)}a∈A.

The defined adaptive quantizer is then used to quantize a
difference variable of successive iterations defined as

∀(i, j) ∈ E : v
(t)
i|j =

{
z

(0)
i|j if t = 0

z
(t)
i|j − z

(t−1)
i|j if t ≥ 1.

(5)

Denote v̂ as the quantized v, we have

v̂
(t)
i|j = Q(t)

(
z

(t)
i|j − ẑ

(t−1)
i|j + δ

(t)
i|j

)
, (6)

where δ
(t)
i|j denotes the so-called subtractive dithering noise

which is added to the input before quantization at the trans-
mission side and later be subtracted from the quantized output
in the receiving side. More specifically, node j first transmits
v̂

(t)
i|j to node i. Node i then subtracts the dithering noise, i.e.,

v̂
(t)
i|j = v̂

(t)
i|j − δ

(t)
i|j and updates ẑ(t)

i|j locally by

ẑ
(t)
i|j =

{
v̂

(0)
i|j if t = 0

ẑ
(t−1)
i|j + v̂

(t)
i|j if t ≥ 1.

(7)

After constructing ẑ(t)
i|j , node i then uses it to replace the un-

quantized z(t)
i|j in (2) and (3) to update x(t+1)

i and {z(t+1)
j|i }j∈Ni

locally. The usage of dithering noise δ
(t)
i|j , which is made

uniformly distributed on [−∆(t)

2 , ∆(t)

2 ], is to ensure that the
quantization error

n
(t)
i|j = ẑ

(t)
i|j − z

(t)
i|j (8)

is independent of v(t+1)
i|j , and thus of z(t+1)

i|j . This has the
advantage of resulting better accuracy [30]. The subtractive
dithering noise can be implemented by sharing seeds of a
pseudo-random generator before starting the algorithm.

IV. PROPOSED APPROACH

We first formulate the distributed average consensus prob-
lem as the following optimization function:

min
xi

∑
i∈N

1

2
‖xi − si‖22

s.t. ∀(i, j) ∈ E : xi = xj ,

(9)

where the optimum solution is given by ∀i ∈ N : x∗i =
save. Using PDMM and adaptive differential quantization, the
updating functions are given by

x
(t+1)
i =

si −
∑
j∈Ni

Bi|j ẑ
(t)
i|j

1 + cdi
(10)

∀j ∈ Ni : z
(t+1)
j|i = ẑ

(t)
i|j + 2cBi|jx

(t+1)
i . (11)

One thing to note here is that we slightly revise the adaptive
quantization scheme by setting a minimum cell-width ∆min.
That is, instead of using (4), we have

∆(t) = max{γt∆(0),∆min}. (12)

This is to guarantee a minimum amount of quantization noise
for privacy under the extreme trustless scenario, i.e., n − 1
corrupt nodes when dealing with the passive adversary (we
will give detailed proof in the following subsection). Details
of the proposed approach are summarized in Algorithm 1.

Algorithm 1 Proposed approach

Quantization parameters: ∆(0), ∆min, γ, l
Optimization output : x

(tmax)
i for every node i ∈ N

For each node i ∈ N :
while 0 ≤ t < tmax do

∆(t) ← (12), {v̂(t)
j|i}j∈Ni

← (6);

Transmit v̂(t)
j|i to each neighbor j ∈ Ni;

Recieve v̂(t)
i|j from all neighbors j ∈ Ni;

{ẑ(t)
i|j }j∈Ni

← (7), x(t+1)
i ← (10), {z(t+1)

j|i }j∈Ni
← (11);

end

A. Performance analysis

By inspecting Algorithm 1, we can see that the only
information needed to be transmitted along the network is the
quantized {v̂(t)

i|j }(i,j)∈E,t≥0. Based on (7) we have

ẑ
(t)
i|j =

τ=t∑
τ=0

v̂
(τ)
i|j . (13)

To quantify the individual privacy of node i, i.e., the
amount of information about its private data si is learned
by the adversaries, we must first inspect what information
is available to the adversaries. Denote Ve and Vp as the set
of information available to the eavesdropping and passive
adversary, respectively. We first consider the eavesdropping
adversary. A typical way to address this adversary is to
securely encrypt the communication channels such that the
transmitted information cannot be eavesdropped. However,
such channel encryption methods [31] are often communi-
cation and computationally expensive. Since our goal is to
develop lightweight solutions, we assume that there is no
channel encryption, i.e, the eavesdropping adversary is able to
eavesdrop all transmitted information: Ve = {v̂(t)

j|k}(j,k)∈E, t≥0.
Regarding the passive adversary, as we mentioned before that
different algorithms have to choose between accurate average
result and privacy guarantee against n − 1 corrupt nodes
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Fig. 1: Performance comparisons of existing SP, SS, DP based approaches and the proposed one when dealing with n − 1
corrupt nodes, where for the latter two we consider two different privacy levels. (a) Output correctness: mean square error
(MSE) of optimization variable as a function of iteration numbers based on PDMM (left) and ADMM (right), respectively. (b)
Individual privacy: normalized mutual information (NMI) as a function of iteration numbers. (c) Communication cost: MSE
as a function of the amount of bits used for transmitting all messages.

since they cannot be achieved simultaneously. In the proposed
approach, we prioritize the latter by considering n−1 corrupt
nodes. Denote node i as the only honest node. The set of
information available to the passive adversary is given by:

Vp = {sj , x(t)
j }j∈N\{i},t≥1 ∪ {v̂

(t)
j|k}(j,k)∈E, t≥0. (14)

We can see that Ve ⊂ Vp. By inspecting (11) and (8), we
conclude that x(t+1)

i =
(
ẑ

(t+1)
j|i − n(t+1)

j|i − ẑ(t)
i|j

)
/(2cBi|j)

and inserting into (10) yields

∀j ∈ Ni :si +
(1+cdi)n

(t+1)

j|i
2cBi|j

=
(1+cdi)(ẑ

(t+1)

j|i −ẑ(t)
i|j )

2cBi|j
+
∑
k∈Ni

Bi|kẑ
(t)
i|k. (15)

Note that based on (13), all terms in the RHS of equality can
be computed using the information in Vp. We then conclude
that regarding the private data si of the honest node i, the

adversaries observe {si+
(1+cdi)n

(t+1)

j|i
2cBi|j

}j∈Ni
at each iteration.

Denote (1+cdi)
2c = ci, and m

(t+1)
i|j = n

(t+1)
j|i /Bi|j . Then the

individual privacy of node i at iteration t+ 1 is given by

I(Si; {Si + ciM
(t+1)
i|j }j∈Ni). (16)

As the number of iterations increases, the above mutual
information will first increase and finally converge when the
quantization cell-width reaches its minimum ∆min. Note that
the above individual privacy has a similar form as the local
perturbation or relaxed DP approaches using mutual informa-
tion as a metric, which is given by I(Si; S̃i) = I(Si;Si +Ri).
Overall, we conclude that the proposed quantization based
algorithm is able to guarantee individual privacy under both
eavesdropping adversary and passive adversary with n − 1

corrupt nodes with a lightweight communication cost. By
increasing the minimum cell-width ∆min, the privacy level
is higher, but the average result will be less accurate. We will
validate this by numerical results in the coming section.

V. NUMERICAL RESULTS

In this section, we demonstrate numerical results to validate
the superior performance of the proposed approach by com-
paring to three existing approaches including subspace pertur-
bation (SP) [20], [21], secret sharing (SS) [16], [17], (relaxed)
differential privacy (DP) [9]–[11] based approaches. The per-
formance is compared in terms of the three requirements
specified in Section II-C. As for the metrics, we use the mean
square error (MSE) of the optimization variable to quantify
the output correctness, normalized mutual information (NMI)
for individual privacy, and the amount of bits transmitted over
the network l(2m)t for calculating the communication cost.

We simulated a graph with n = 10 nodes. All private data
are independent and uniformly distributed over [−0.5, 0.5]
and we ran 104 Monte Carlo simulations. For the proposed
approaches, we set l = 2 for the quantization, i.e., each
transmitted message costs only two bits. Since no quantization
is considered in the existing approaches, in the implementation
we use the default MATLAB double precision floating-point
format, i.e., l = 64. The penalty parameter is set as c = 1.
We consider n − 1 corrupt nodes case. For simplicity, we
assume that the only honest node has one neighboring node,
i.e., di = 1 such that (16) reduces to I(Si;Si + M

(t+1)
i|j )

as ci = 1. In order to demonstrate the connection of the
proposed approach and relaxed DP approaches as they all
provide privacy guarantee against n − 1 corrupt nodes, in
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the experiments we aim to compare their privacy levels while
achieving the same output accuracy. Therefore, we assume
that the noise inserted in DP approach is uniformly distributed
among interval [−p2 ,

p
2 ], and set p = ∆min.

The results are shown in Fig. 1. As shown in plot (a) the
proposed approach is generally applicable to both PDMM
(left) and ADMM (right). Due to limited space, in plot (b)
and (c) we only show results for PDMM. By inspecting (a)
and (b) we can see that when considering n−1 corrupt nodes,
the existing SP and SS based approaches are able to achieve
accurate average but individual privacy is not protected at
all. As expected, the proposed approach ends up with similar
accuracy and privacy level as DP based approaches by setting
p = ∆min. In both algorithms, if we increase the amount of
noise, i.e., p in the DP approaches and ∆min in the proposed
approach, the privacy level is higher but the average result
becomes less accurate. Hence, the proposed approach achieves
similar output correctness and individual privacy compared
to DP based approaches. Finally, from plot (c) we can see
that, as expected, the proposed approach significantly reduces
the amount of communication cost compared to all existing
approaches. This is because each transmitted message only
requires l = 2 bits for the proposed quantization based
approach, which is much lightweight compared to the l = 64
bits for existing approaches.

VI. CONCLUSION

In this paper, we proposed a novel distributed average
consensus approach that is both communication efficient and
privacy-preserving by using an adaptive differential quantiza-
tion technique. With the help of quantization, the communica-
tion cost can be reduced while the private data can be masked
by quantization noise and thus being protected. Numerical
results demonstrate that the proposed approach has superior
performance compared to three types of existing approaches.
In particular, considering the maximum number of corrupt
nodes, the proposed approach is able to achieve similar output
correctness and individual privacy performance as DP based
approaches, but the communication cost is much lower.
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