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Synopsis

The framework of an autonomous vessel is typically composed of three distinct and independent blocks
known as the Guidance, Navigation and Control (GNC) system. This paper presents a combination of advanced
complementary techniques in the different GNC subsystems to improve upon the current common practices/state
of the art in obstacle avoidance. The novel Guidance system is based on Mixed Integer Linear Programming
(MILP). This optimisation technique allows quick, robust path planning with the possibility for a variety of
constraints. The feasibility of this method will be investigated with the goal of providing optimal path planning
in the presence of static and dynamic obstacles during autonomous sailing operations. Within the Navigation
System, a multi-modal neural network architecture is proposed for the perception branch to provide high-level
situational awareness for collision avoidance purposes. The computer vision approach allows for the vessel type,
position and orientation all to be extracted for encounters with both dynamic and static obstacles using only
imaging sensors. Two Control methods are studied in the paper, an error-based PID control strategy as well as
an MPC control scheme. These two techniques will be compared to evaluate the performance and reviewing
the suitability for use within the specific GNC scheme and the generic application environment. This paper
details the specific implementation of each system within the overall framework, presents simulation results of the
path planner and control strategy, with a performance evaluation of the navigation system using an experimental
dataset. The results obtained are analysed through qualitative discussion as well as quantitative performance
indicators and key conclusions are consequently drawn.

Keywords: GNC scheme; Mixed Linear-Integer Programming; Computer Vision; Artificial Intelligence;
Feedback Control; Model-based Design

1 Introduction
In the last twenty years the market share of maritime goods transportation has doubled, with 90% of com-

modities now being transported around the world using ships. This trend is expected to continue with growth
being forecast from $537.07 billion in 2022 to $650.21 billion in 2026 at an annual growth rate of about 5%
(Sánchez-Beaskoetxea et al., 2021). The rapid growth to now has been supported by improved network, infrastruc-
ture and vessel efficiency and as the growth of this modality continues, so does its reliance on further technological
advancements. Statistics reports from 1999-2019 show that human error was responsible for 50% of pollution,
65% of personal injuries, 80% of property damages and 90% of collisions (Corić et al., 2021). Overconfidence,
recklessness in responding to commercial pressures, fatigue and lack of adequate communication are found as the
leading causes. Autonomous navigation could theoretically improve overall safety during navigation and goods
transportation over water can be performed more efficiently and sustainably.

In order to achieve autonomous navigation, an autonomous vessel is typically composed of three distinct mod-
ules known as the Guidance, Navigation and Control (GNC) system as shown in Fig. 1. This paper investigates
the potential of using a combination of advanced techniques in the different GNC subsystems to improve upon the
current standard practices/state of the art in autonomous navigation while performing obstacle vision recognition
and avoidance.

A Guidance System of an autonomous vessel is required to conduct both global and local path planning tasks,
with some strategies allowing for both tasks to be fulfilled by a collective method. The application of a Mixed In-
teger Linear Programming (MILP) algorithm for example provides a path-planning optimizer, allowing the global
path to be updated to avoid local obstacles. This framework requires the formulation of a cost function with a set
of constraints aiming to minimize path deviation in the presence of static and dynamic obstacles. This has been
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Figure 1: Guidance Navigation and Control System Framework (Hepworth et al., 2021)

shown to be an effective method for global trajectory planning in a number of different application fields (Coleman;
Tom Schouwenaars 2001) and will be further exploited in this paper to investigate its use in the maritime domain.

Perception within a Navigation System plays a critical role in autonomous sailing, with obstacles needing to
be detected and their position and orientation determined. The localisation branch is not considered within this
research focus. Point cloud clustering is one prevalent perception approach utilised by autonomous vehicles for
object detection (Kato et al., 2015), including within the maritime field (Wang et al., 2020; Khalid et al., 2013).
However monocular imaging techniques offer advantages over point-cloud clustering, with Convolutional Neural
Networks (CNNs) gaining popularity for providing classification of object types as well as the detected object
bounds (Shao et al., 2018; Prasad et al., 2017). Although 3D bounds can be extracted with these techniques,
orientation is not directly inferred. Viewpoint estimators have come someway to resolving this challenge for
CNNs. Whilst these have shown significant promise in the automotive field (Choy et al., 2015), ideally CAD
models for all obstacles that wish to be detected should be available for training purposes. Viewpoint estimation
without CAD models using birds-eye-view (BEV) representation from a LiDAR point cloud presents an alternative
(Beltrán et al., 2018), however in a maritime setting surface-water generates noise, limiting its appeal.

This work instead proposes a multi-modal neural network architecture to provide high-level situational aware-
ness for collision avoidance purposes. Inspiration is taken from existing approaches, whereby a CNN is utilised for
object detection from colour images and depth data is processed to provide 3D data. The novelty in the proposed
approach comes through the fusion of this data to provide a cropped birds-eye view input to a secondary neural
network which is trained specifically to extract the orientation of an obstacle, in this application a vessel.

The third pillar in the GNC framework is the design of a control strategy. Its main function in an autonomous
navigation context is to measure the internal state of a vessel system (i.e. position, velocity, orientation) and min-
imise the error between the measurement and the reference provided by the guidance module. Due to its relatively
simple implementation and robustness against external disturbance, 95% of closed-loop control algorithms used in
industrial automation are based on a Proportional, Integral and Derivative (PID) controller (Chanchal Dey, 2020).
However, typically its application is purely theoretically based and a final design is mainly achieved by trial and
error tuning or empirical heuristics. In this paper, an analytical controller with analog properties of proportional,
derivative and integral action will be investigated based on the frequency response relation of a closed-loop control
system. The other control strategy investigated in this paper is the Model Predictive Control, an optimization-based
control technique, used to regulate a process while fulfilling a set of constraints (Haseltalab et al., 2020).

This paper is organised as follows: in Section (2) the proposed GNC scheme is introduced, with each sub-
system of the scheme being encompassed within its own sub-section. In Section (3), the results gained from
the individual sub-systems are presented, with performance evaluations from a combination of simulated and
experimental testing. Finally, in Section(4) the paper and its findings are summarised in the conclusions and
recommendations for future work.



Figure 2: ’Tito Neri’ Model Scale Tugboat Figure 3: ’Grey Seabax’ Model Scale Offshore Vessel

2 Methodology
2.1 Guidance Strategy

The general formulation of a Mixed Integer Linear Programming problem can be formulated as (Vielma, 2015):

min Z = cT x
s.t.,

Ax≤ b

x = (x1, .., xn, i1, .., ik,w1, ..,w j)
T

xn,w j ∈ R , ik ∈ Z

(1)

Here, x denotes the vector containing the variables to be optimised and cT corresponds to a coefficient vector.
The optimisation vector is comprised of continuous real variables xn and integer variables ik and a number of slack
variables are introduced w j. The slack variables are introduced to transform hard constraints into soft constraints
that are penalised for in the cost function. This proves useful in the context of path planning as will become evi-
dent. The linear matrix inequality Ax≤ b corresponds to the constraints on the optimisation variables.

In the context of path planning, the continuous variables that are to be optimised are defined assuming an a-
priori planned path for the vessel denoted by the vector ηre f (t) and the optimisation solution ηsol(t). One may
define the state tracking error of the solution by relationship in Eq, 2. For maneuvering purposes, a vessel’s pose
is uniquely defined by its 2-dimensional position in NED-coordinates and its heading angle as in Eq. 3. For the
purpose of path deviation minimisation, the heading angle is neglected and the error state is limited to the reduced
2-dimensional error vector defined by Eq. 4.

xn(t) = ηsol(t)−ηre f (t) (2)

η(t) = (Y X ψ)T (3)

xn(t) =
(
|Ysol(t)−Yre f (t)|
|Xsol(t)−Xre f (t)|

)
(4)

This l2 norm may be transformed to a l1 norm suitable for linear optimisation by introducing the augmented
error system in Eq. 5. This error system can be transformed into a system of Linear Matrix Inequalities (LMI)
that are to be optimised. For the purpose of path deviation minimisation, these are transformed into the LMIs in
Eq. 6 as the first set of constraints used in the optimisation problem. Where wỸ (t) and wX̃ (t) represent the slack
variables that are introduced at every time step.

Ỹ (t)
−Ỹ (t)
X̃(t)
−X̃(t)

=


(Ysol(t)−Yre f (t))
−(Ysol(t)−Yre f (t))
(Xsol(t)−Xre f (t))
−(Xsol(t)−Xre f (t))

 (5)




1 0 −1 0
−1 0 −1 0
0 1 0 −1
0 −1 0 −1




Ỹ (t)
X̃(t)
wỸ (t)
wX̃ (t)

≤


0
0
0
0

 (6)

Hence, the hard constraints enforcing the path deviation are transformed into soft constraints by introducing
the slack variables. These slack variables are thus included in the optimisation vector (4). By setting the values in
the coefficient vector as stated in (1) to appropriate values, one can minimise for the value of the slack variables
and thus for path deviation. For this purpose, these coefficient values are set to positive, real values. Moreover, the
vector elements in cT corresponding to the errors themselves Ỹ (t) and X̃(t) are set to zero.

Having established the framework for path deviation minimisation, additional constraints can be introduced.
For the purpose of enforcing a maximum speed constraint, LMI in Eq. 7 is formulated for the linearised maximum
speed constraints. The maximum speeds in both positive and negative surge and sway directions are assumed to be
known in this application. Furthermore ∆t is a designed parameter that defines the time interval between solutions
of the optimisation algorithm. The value of this time interval subsequently determines the update frequency of the
algorithm and must be chosen accordingly.


1 0
−1 0
0 1
0 −1

[
Ysol(t +∆t)−Ysol(t)
Xsol(t +∆t)−Xsol(t)

]
≤


(
V max

Y+ ∗∆t
)
−
(
Yre f (t +∆t)−Yre f (t)

)
−
(
V max

Y− ∗∆t
)
+
(
Yre f (t +∆t)−Yre f (t)

)(
V max

X+ ∗∆t
)
−
(
Xre f (t +∆t)−Xre f (t)

)
−
(
V max

X− ∗∆t
)
+
(
Xre f (t +∆t)−Xre f (t)

)
 (7)

Central to the goal of this guidance system is the incorporation of an obstacle avoidance strategy which is
introduced in the form of a MILP problem. Once the positions of static and dynamic obstacles are known, the
avoidance constraints can be formulated. The space to be avoided is formulated here such that a rectangular box
is constructed around obstacles, with ik ∈ [0,1], M corresponding to a weight and Xmin

obs (t) and Y min
obs (t) denoting

the minimum coordinates of the obstacle. For safety purposes, obstacles are to be avoided by some safety margin.
This obstacle boundary can be extended to act as a safety factor as required. The constraint in Eq. 8 is added to
guarantee that at least one of the constraints is satisfied and a feasible path in any of the given directions can be
generated at all times. This results in the LMI defined in Eq. 9.

i1 + i2 + i3 + i4 ≤ 3 (8)


1 0 −M 0 0 0
−1 0 0 −M 0 0
0 1 0 0 −M 0
0 −1 0 0 0 −M
0 0 1 1 1 1




Ysol(t)
Xsol(t)

i1
i2
i3
i4

≤


Ỹ min
obs (t)−Yre f (t)
−Ỹ max

obs (t)+Yre f (t)
X̃min

obs (t)−Xre f (t)
−X̃max

obs (t)+Xre f (t)
3

 (9)

The linear programming framework also requires an equilibrium solution in the form of a Linear Matrix Equal-
ity (LME). In the use case presented here, the equilibrium solution that can be used is the current state of the vessel,
i.e. x(t = 0) = x0 = (Y0 X0)

T This results in the Linear Matrix Equality in Eq. 10 with ηY and ηX corresponding
to the current vessel position.

[
1 0
0 1

][
Ỹ0
X̃0

]
=

[
ηY −Yre f
ηX −Xre f

]
(10)

These separate matrices can now be concatenated into one single LMI and formulated as a single MILP problem
as in Eq. 11. The main objective of the MILP approach proposed is to minimise the path deviation and avoiding
obstacles within a finite time horizon. The final product yields the system of LMIs in Eq. 12, with k∆t representing
the time horizon. Using an MILP solver, a solution for the values of



[x(t), .. , x(t + k∆t)] can be calculated. These are then used to generate a new set of way points that serve as input
for the control system.

Atotal(t)x(t)≤ btotal(t) (11)


Atotal(t)

Atotal(t +∆t)
...

Atotal(t + k∆t)




x(t)
x(t +∆t)

...
x(t + k∆t)

≤


btotal(t)
btotal(t +∆t)

...
btotal(t + k∆t)

 (12)

2.2 Navigation system
Situational awareness is achieved through the implementation of a vision system specifically configured to gen-

erate data pertinent to the path planning technique, being capable of providing a constant update of environmental
conditions in the presence of both static and dynamic obstacles. The perception approach presented hereon is
developed to complement the capacity of the MILP based guidance system to make use of a constantly updating
environment, whilst further providing a reliable estimation of orientation for both static and dynamic obstacles
alike.

Figure 4: Multimodal Neural Network Architecture for Perception Tasks

The approach to perception proposed in this paper comes in the form of a multi-modal neural network whose
architecture is presented in Fig. 4. A single stereovision device is deployed in this system, namely the Intel©

RealSenseTM D435i which provides both colour images through the RGB feed and stereo-depth frames via a depth
feed. These two feeds act as the input to the perception system where they are subsequently processed individually
with the results then being fused. Both feeds are configured to a resolution of 848x480 and 30 frames per second. It
is worth noting that other sensors capable of providing depth data could also be used within this network structure.

The colour frames supplied by the RGB feed are utilised for obstacle detection, achieved through the application
of a Conventional Neural Network trained to detect obstacles within the experimental environment, referred to in
this work as the ’VesselNet’. The VessselNet is built upon the Faster R-CNN framework, with an Inception 101
feature extractor, with proposals limited to 50 to allow for an adequate trade-off between speed and accuracy as
is well documented in (Huang et al., 2016). The network is trained on a dataset of 1500 annotated colour frames
to be capable of detecting two classifications of vessel, specifically the model-scale tugboat and offshore service
vessel shown in Figures 2 and 3 respectively.

In parallel to the obstacle detection procedure, the depth feed is processed through to improve the usability of
the data. Firstly, the depth frame is aligned with the colour frames to ensure that each pixel of the two frames
match. Following which, a decimation filter is applied as a sub-sampling technique to smooth the data, improving
later point-cloud visualisation. Spatial and temporal filters are further applied to improve edge sharpness and



remove noise. Finally dead-pixels that remain in the depth feed after decimation are accounted for by a hole-filling
operation, by replacing these instances by the largest depth value from its surrounding neighbours.

The obstacle bounds supplied by the VesselNet are utilised to extract the region of interest from the processed
depth data creating a cropped depth matrix. A point-cloud is then generated by mapping each pixel to a point
within 3D space with the known device intrinsics. Median clustering is applied to the raw point-cloud to remove
any outliers. This is specifically achieved through the exclusion of points outside a depth radius of half the vessel
beam from the median point. This vessel beam is estimated from a look up table based upon the vessel classification
from the VesselNet. Finally, the fusion stage generates a 2D birds-eye-view plot (BEV) of the processed point-
cloud data. This BEV plot is created in the form of a 3-channel image, encoding the vertical measurement that was
lost when reducing to two dimensions as a colour-map.

The second Convolutional Neural Network, ’BearingNet’ is tasked with extracting an estimate of yaw angle
from the generated BEV plot. This network is built upon the RetinaNet framework with the ResNet50 feature
extractor, which on top of conducting traditional 2D object detection, is also endowed with the capacity to infer
object orientation. The bounding box angle (θ ) is measured anti-clockwise from the x-axis of the BEV plot and
constrained between −π and π . At this stage of research, the BearingNet is trained on a dataset of 750 BEV plot
images specific to the offshore model-scale vessel only.

The final procedure in the perception approach is to post-process the output of the BearingNet and the point-
cloud from the fusion stage. This is processing involves a simple translation from the BEV plot pixel frame to
the real-world coordinate frame and transforming the angle to align with that of the autonomous vessel. The final
outputs of the multi-modal network are the coordinates of the obstacle bounds, the bearing of the obstacle and the
vessel classification. All three attributes of particular use to a guidance system conducting collision avoidance.

2.3 Control Design
In this section, the overall Control Design methodology is presented for the GNC scheme. This paper utilises a

Model-Based design approach to exploit an analytical solution to the control problem while analyzing the dynamics
of a ship system. Two different control methods will be analyzed and compared hereon. The first method is based
on the classical control theory analyzing the main properties of a vessel’s mathematical model and its interaction
with the control law derived. Whilst the other method stems from the optimal control field, a so-called Model
Predictive Control, where a cost function and constraints allow the designer to better set the trade-off between
performances and control effort.

Six degrees of freedom are involved in the motions that take place when a vessel navigates on the water and
is subjected to environmental disturbances like wind, waves, and currents. It is possible to obtain the equations
of motion by utilizing either the Newton–Euler or the Lagrange equations. A vessel hull with constant mass m
and center of gravity (xg,yg,zg) can indeed be described by the following coupled differential equations (Fossen,
2011):



m[u̇− vr+wq− xg(q2 + r2)+ yg(pq− ṙ)+ zg(pr+ q̇)] = X
m[v̇−wp+ur− yg(r2 + p2)+ zg(qr− ṗ)+ xg(qp+ ṙ)] = Y
m[ẇ−uq+ vp− zg(p2 +q2)+ xg(rp− q̇)+ yg(rq+ ṗ)] = Z

Ix ṗ+(Iz− Iy)qr− (ṙ+ pq)Ixz +(r2−q2)Iyz +(pr− q̇)Ixy +m[yg(ẇ−uq+ vp)− zg(v̇−wp+ur)] = K
Iyq̇+(Ix− Iz)rp− (ṗ+qr)Ixy +(p2− r2)Izx +(qp− ṙ)Iyz +m[zg(u̇− vr+wq)− xg(ẇ−uq+ vp)] = M
Izṙ+(Iy− Ix)pq− (q̇+ rp)Iyz +(q2− p2)Ixy +(rq− ṗ)Izx +m[xg(v̇−wp+ur)− yg(u̇− vr+wq)] = N

(13)

where X ,Y,Z,K,M,N are the external forces and moments, u,v,r, p,q,w the linear and angular body velocities,
m, I∗∗ the mass and inertia tensor of the vessel. This model is the basis and one of the most complete to describe
the time-domain dynamic evolution of a marine craft.

However, to better exploit the physical properties of the model, a vectorial representation of the equation
of motion can be adopted. This mathematical representation is advantageous for exploiting better mathematical
system properties that allow the designer to reduce the number of coefficients needed for control, rearranging the
equation to obtain semi-definite positive and skew-symmetric matrices (Fossen, 2011; Sciavicco L., 1998). The
compact vessel model can then be written as:

Mν̇ +C(ν)ν +Dν = τ. (14)

ν the vector representing the generalized velocities ν = [u,v,r,w, p,q,r]′, τ = [X ,Y,Z,K,M,N] the vector of the
generalized force acting on the craft, M, C and D are respectively the rigid-body inertia matrix, the Coriolis and
centripetal forces matrix and the Damping matrix.



An alternative to a 6DoF vector formalism 14 is to use manoeuvring theory to describe the motions of a marine
vessel in 3 DoF. Since the motion components describe the horizontal motion of a ship in surge, sway and yaw, the
state vector is chosen to be ν = [u,v,r]′ and this implies that the motion related to heave, roll and pitch are neglected,
i.e. w = p = q = 0. The last model obtained will be further investigated in this paper since the main requirement
of the control design is to allow a vessel to autonomously navigate in a prescribed path in a xy Cartesian plane.
Based on the 3DoF model described, further analysis of a ship dynamic manoeuvring will be addressed in this
section to better demonstrate how a combination of different mathematical models, with different mathematical
properties, can be used to design an appropriate control law. It is possible to summarize the different sailing
scenarios of a surface vessel like the ones in the following:
1) Unmooring. The first stage when a ship starts its departure. In this scenario surge, sway and yaw velocities are
all very small and of the same magnitude: u = v = r ≈ 0 ;
2) Low velocities Manoeuvrings. This is the stage antecedent to the actual navigation towards the destination. It
usually occurs in a harbor environment where the ship performs slow maneuvers, preparing itself to point at the
destination: u = v = r < ε

3) Sailing at cruise speed. This is the stage where the vessel is pointing at the destination, navigating at cruise
speed where surge velocity is the dominant dynamic and heading change is relatively small compared to it. u =
u0;v≈ 0;r < ε .
In order to have a complete mathematical representation of the different vessel navigation scenarios, the following
model is proposed in this paper:

Mν̇ +C(ν)ν +Dν = τ u≈ v≈ r (15){
u =
√

u2 + v2

T ψ̈ + ψ̇ = Kδ
u≫ v≫ r (16)

Where 16 is the so-called Nomoto Model (Nomoto, 1967): a yaw subsystem derived from the manoeuvring
model 14 by choosing the yaw rate r as the output. This model represents the correlation between a vessel’s heading
and the propellers’ angle when a vessel is sailing at constant surge speed u0. It is a linear single input single output
(SISO) model; therefore a frequency response analytical PID can be adopted (Aström and Murray, 2004). Figure 5

Figure 5: Feedback Loop generalized block-scheme

shows a block scheme of a standard negative feedback control architecture. C is the transfer function of the
Controller, while P represents the vessel dynamic model. The open-loop transfer function is defined as L =C×P
while the closed-loop relation between the reference input r and the output y is W = L

1+L . The strategy presented
in this paper is to define C such as:

W =
L

1+L
=

Kdcω2
n

s2 +2ξ ωns+ω2
n

(17)

where:

Ts ≈
4.6ξ

ωn
(18)

Tr ≈
1.8
ωn

(19)

ξ =
−ln(Mp)√

π2 + ln2(Mp)
(20)

The control design main requirement is to achieve:



• zero steady state error between r and y, i.e. the ship is able to reach the destination coordinates given by the
Guidance strategy;

• zero overshoot Mp in following heading reference;

• Avoid the obstacles present in the environment respecting the safety distance requirements settled by the
Guidance law.

The other control strategy investigated in this paper is the Model Predictive Control (MPC). In this paper, MPC is
based on the iterative optimization of a mathematical vessel model over a finite time horizon. The current plant state
is sampled at time t and a cost-minimizing control strategy is calculated using a numerical minimization technique.
This is assessed for a fixed time horizon in the future [t, t +T ]. The prediction characteristic of MPC allows the
control algorithm to find an analytical solution adding an interesting property to the overall Control architecture:
defining a trade-off between plant output and control effort needed. The model 14 needs to be adapted and the
overall MPC problem can be written in the following way:

{
ν̇ =

(
C(ν)

M + D
M

)
ν +Bτ

y =Cν
(21)

J = min(Rs−Y )T (Rs−Y )+∆τ
T R̄∆τ

s.t. τmin ≤ τ ≤ τmax

τ̇min ≤ τ̇ ≤ τ̇max

(22)

Where Rs is the data vector that contains the system set-point, e.g. the values of the states the ship system
need to achieve, R̄ is a diagonal matrix in the form R̄ = rwINc×Nc (rw ≥ 0) where rw is used as a tuning parameter
for the desired closed-loop performance. Moreover, Y is the vector containing the predicted output variables in
the prediction horizon and ∆τ is the vector containing the future control trajectory calculated by the MPC solver
algorithm.

Y = [y(ki +1|ki),y(ki +2|ki), · · · ,y(ki +Np|ki)]
T (23)

∆τ = [∆τ(ki),∆τ(ki +1), · · · ,∆τ(ki +Nc−1)] (24)

The optimization problem 22 that will minimize the error between the actual state of the vessel and the ref-
erence given by the Guidance strategy will be solved using commercial available software. The pseudo-code 1
describes the algorithm structure.

Algorithm 1 MPC Controller

1: function SENDMPCCONTROLINPUT
2: Tito Neri Model← Define Tito Neri model parameters
3: Np← Define prediction Horizon
4: Nc← Define Control Horizon
5: J← Define Cost Function based on Tito Neri Model
6: Define control input constraints (11) (12)
7: Mainloop:
8: if i > Np then return Prediction Horizon achieved
9: if i > Nc then

10: Solve optimization problem
11: u← Calculate optimal control input
12: x← Update vessel model with the predicted states
13: y← Update and store the plant output
14: Send Control input to the ship
15: goto Mainloop.



3 Results
3.1 Guidance Strategy

The goal of the guidance strategy is to provide a reference route to an autonomous surface vessel in order to
reach the destination coordinates avoiding all the obstacles in the environment. The starting point is at location (7,4)
and destination at (22,175) in a Cartesian x,y plane. Without loss of generality, all the coordinates are expressed in
decimeters in this section, due to the size of the model scale vessel. Three obstacles are present in the environment
and the guidance strategy calculates the path between the initial and the final way-points as illustrated in Fig. 6.
The safety distance factor M to formulate constraints (9) is chosen as two times the ship length (2Lship) and it is
represented as a black area around the obstacles.

Figure 6: Global MILP Trajectory planning

As shown in the plot, the algorithm provides a pathway whilst minimizing the deviation from the obstacle free
areas. In this test the obstacles are visible within the prediction horizon between the initial and final position,
demonstrating how the MILP algorithm approaches a case of static obstacle avoidance. This is an example of a
global trajectory planner, where the optimization is done over the entire path.
The computational time of the global path planner was measured and equal to Tcomputation ≈ 12.3 s.

3.2 Navigation system
The performance of the perception system is evaluated through feeding a validation dataset into the multi-modal

network and reviewing the resultant output, as well as subjecting some focus on individual tasks to identify sub-task
weaknesses. The validation dataset is comprised of 100 data points gathered within the indoor tank environment,
with each data point providing a colour frame and a depth frame to be inputted to the network for inference.

The sub-figures presented in Fig. 7 present an example of the visual results from the major stages throughout
the multi-modal network. Each sub-figure is referenced to in the labels within Fig. 4. An output from inference
on the VesselNet CNN can be seen in Figure 7 (a) where the inputted colour frame has been annotated with the
detected object bounds and classification. The processed depth data can be visualised in Figure 7 (b) as a colour-
mapped image, with the pixels aligned to the colour frame and the colour-map range encoding the depth range.
The fusion of the first stages creates a birds-eye-view plot such as that presented in Figure 7 (c). The resultant
obstacle bounds and angle from BearingNet CNN are then used to create a scaled occupancy map, as presented in
Figure 7 (d).

The VesselNet CNN demonstrated strong performance in detecting the vessel and distinguishing its class.
Quantitative evaluation using the recall performance indicator defined in Eq. 25 yields a result of 0.98, meaning
that the VesselNet CNN correctly detected and classified the vessels 98% of the time within the validation dataset.
As the bounding box from this network is only used to attain a ROI for ongoing tasks, the bounding box precision
is not of critical importance and is therefore not quantitatively evaluated in this work however it is observed to be
more than satisfactory to fulfil its role. Furthermore in a collision avoidance application, vigilance leans in favour
of heightened recall at the sacrifice of precision.

The extraction and processing of depth data to create the point-cloud BEV plot also proved itself to be robust.
The hardware limitation of the stereovision device does however become clear beyond approximately eight metres
with the resultant point cloud being of low resolution, producing a sparse BEV plot. The multimodal architecture
inherently leads to overall system performance being dictated by the weakest link in the chain, which in this case



Figure 7 (a): Output from VesselNet Neural Network Figure 7 (b): Colour-map Visualisation of Processed
Depth Data

Figure 7 (c): Birds-eye-view Plot of Fused Data Figure 7 (d): Planar Occupancy Map - Grid size: 1m,
coordinate origin marked by white dot.

Figure 7: Perception System Results

proved to be the BearingNet. With a recall of 0.59 at an angular resolution of π

8 , the BearingNet does not maintain
the performance level of its predecessors yet does still demonstrate promise in this proof-of-concept application.

Recall =
correct detections
all ground truths

(25)

3.3 Control Design
Results are obtained using one of the model scale vessel available at RAS, a Tugboat vessel with a scale factor

1:30 called Tito Neri. A Tito Neri has three propeller, two stern 360◦ azimuth thrusters and a tunnel bow thruster. It
is a fully actuated ship system with respect to the Cartesian plane since, based on its thrust allocation, it is possible
to provide thrust in all of the 3DoF. The ship is equipped with the hardware and sensors summarized in table[1].

The first step is to identify the Nomoto Model parameters in (14). This is achieved with experimental measure-
ment campaigns using the High Precision Positioning Feedback Camera system in the Towing tank lab facility of
the Maritime and Transport Technology Department at Delft University of Technology. The tests were performed
reaching steady surge velocity on the Tito Neri model scale ship and injecting at time t0 a deviation of 45◦ angle on



Figure 8: Tito Neri’s thrust allocation

Hardware and Sensor list
Positioning measurement sensor IR reflective passive markers

Inertial Measurement Unit Bosch BNO055
Motor Encoder Absolute rotary IR encoder

Propeller Control Board Arduino - ATmega328P
Position Control board Raspberry PI, Nvidia Jetson TX2, Intel NUC

Table 1: Tiro Neri’s Hardware ad Sensor

the stern propellers. The experiments were repeated 10 times and the separate results were compared and averaged
in order to reduce the amount of uncertainties during the test phase.
Figure 9 show the evolution over time of the heading rotational velocity r measured by the camera system and
the simulated output of the mathematical Nomoto model response were extracted using nonlinear least-squares fit
method.
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Figure 9: Estimated Nomoto Model

The parameters where then calculated from the plots: K = 3.55, T = 1.67 leading to the formulation of the Nomoto
model

P =
ψ

δ
(s) =

3.55
s(1+1.67s)

(26)

Based on the transfer function obtained and recalling 17, the control law C is calculated as

C =
Kc

s+a
(27)



that fulfill all the control requirements (19),(18),(20) with Kc = 1.34 and a = 2.57. Figure 13 shows the dynamic
evolution of the controlled Tito Neri vessel following the reference path provided by the Guidance algorithm. The
ship is able to follow the reference commands with stable dynamics avoiding all the obstacles in the environment,
however some path deviation is present in the overall navigation, mainly along the curvature. Actually, the small
transitory deviations are to be expected since the control law was designed taking into account only the heading
dynamics, neglecting the physical correlations between sway and yaw motion. The MPC design formulation (22),
a full model-based control strategy, allows the controller, on the other hand, to better compensate for the Multi
Input Multi Output dynamics since it takes into account a full 3DoF ship model (21). As a result, taking into
account the correlated dynamic between lateral and angular motion, Fig. 11 shows how the control algorithm
allows the ship to follow the reference route with zero path deviation. Nevertheless, it is interesting to analyze how
the control effort requested by the MPC controller is quite intensive on the actuator side. Fig. 12 shows how the
force requested by the control law continuously change with a frequency of about 0.2 Hz, resulting in an heavy
demand to the actuator. This is mainly due to compensate for sway drift during navigation resulting,however,
in aggressive actuator dynamics leading to potential mechanical failure. The control key performance indicators
(KPI) of the two strategies analyzed in this paper are summarized in Table 2.

Figure 10: xy Cartesian Plot using PID controller

Figure 11: xy Cartesian Plot using MPC controller
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Figure 12: MPC - Control Forces requested
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Figure 13: PID - Control Forces requested



KPI MPC PID
Steady-State position error 0 0

Heading Overshoot 0% 0%
Max Path Deviation 0.02 m 0.23 m
Obstacles avoided

Table 2: KPIs Control Strategies

4 Conclusions and further research
A complete GNC framework has been presented in this paper, enhancing the importance of how these three

modules are dependent upon one another to achieve autonomous navigation for a surface vessel.
In this work the sub-systems have only been evaluated independently however the authors intend to evaluate

the complete GNC framework under experimental collision avoidance scenarios in future work. The MILP guid-
ance algorithm as presented serves as a proof on concept for a global trajectory planning algorithm. It generates
an alternative, minimally deviated, evasive path for the vessel whilst respecting kinematic constraints. Due to
the computational load of the algorithm, application to real-time path planning may require greater algorithmic
efficiency. It is however case dependant whether the computational burden is tolerable or not.

The perception approach investigated in this work demonstrates the promise of a multi-modal network archi-
tecture in achieving situational awareness for obstacle avoidance activities. The Faster R-CNN based VesselNet
proves itself to be a suitable candidate for detecting vessels and distinguishing their classification from colour im-
age frames. Depth-data from a stereovision sensor can provide sufficient point-cloud resolution to detect vessel
orientation, albeit within the range capacity of the device’s hardware. Although the overall performance of the
BearingNet limited the performance of the overall network, this sub-optimal performance could be improved in
future work through additional training data and fine tuning of the network model. Even with a limited overall
system performance, the slow-moving nature of vessels and the capacity for multiple frames to be processed each
second could still permit application to autonomous vessels.

Finally, two model-based control design approach were presented in this paper. Both of them are suitable can-
didate to provide autonomous navigation in combination with the Guidance and the Navigation system presented.
However while MPC resulted as a more accurate path follower controller, an analytical control strategy based on
the second-order frequency response correlations is to be preferred for implementation purpose due to its robust-
ness, faster computational time and less demanding effort on the actuator side. Further research would need to
better investigate how to decrease the computational time of more advanced and, theoretically, better performing
control strategy as Non-linear Model Predictive Control and back-stepping to allow the overall control system to
work in combination with guidance and navigation method that are computationally resource consuming.
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