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Synopsis 

This work proposes a controller design that integrates an Equivalent Consumption Minimization Strategy 
framework and a quasi-LPV framework. The proposed scheme allows exploiting the characteristics of both 
frameworks. Also, a proof of the input-state-stability (ISS) of the closed-loop is presented, expressed as linear-
matrix-inequality conditions. Simulation results are provided to illustrate the applicability of our approach in a 
hybrid powertrain setting as encountered in the maritime industry. 
 
Keywords: Energy management, Marine vehicles, Optimal Control. 
 

1. Introduction 

REDUCING energy consumption and emissions of the marine industry nowadays has become a priority. 
Powertrain hybridization is one of the approaches to achieve these goals (Miyazaki et al., 2016). A hybrid 
powertrain uses at least two energy sources, with at least one reversible one, su ch as a battery. During vessels 
operations, the propulsion power request needs to be split between the different energy converters (genset, engine, 
electric machine, fuel cell, etc.) and storage (battery, super-capacitor). An energy management algorithm (EMA) 
is adopted to compute this power split and to minimize a criterion such as CO2 emissions while managing the 
energy storage level (e.g., the battery state of charge (SOC)) and to consider several constraints induced by the 
powertrain architecture and component sizing (Sciberras et al., 2016). If operational and environmental details of 
a mission are known a priori, the energy management problem can be formulated as an optimal control problem. 
Dynamic Programming (DP) (Bai et al., 2020; Wang et al., 2019) and Pontryagin's Minimum Principle (PMP) are 
widespread approaches to derive an optimal solution to hybrid powertrain energy management problems, even 
though alternative approaches based on the calculus of variations have been considered (East and Cannon, 2019). 
Dynamic Programming requires discretizing both the state and the time. Extensive search in the resulting grid 
allows approximating the optimal solution. This approach allows easily integrating state constraints, but it is only 
suitable for a limited number of states due to the so-called curse of dimensionality. Pontryagin's Minimum 
Principle (PMP) allows formulating optimality conditions in continuous-time, which boils down to consideration 
of a Boundary Value Problem (BVP) that can be solved using an appropriate solver. The resulting algorithm is, in 
general, faster than Dynamic Programming. In this work, PMP is considered since it allows deriving a real-time 
suboptimal, but efficient control algorithm referred to as the Equivalent Consumption Minimization Strategy 
(ECMS) (Sampathnarayanan et al., 2014; Xie et al., 2021).  

Both the offline PMP and the real-time ECMS compute the control as a solution to the instantaneous 
minimization of the Hamiltonian associated with the optimal control problem. This Hamiltonian is defined as the 
sum of the fuel consumption and the state dynamics multiplied by a co-state. Within the ECMS framework, this 
Hamiltonian is denoted as total equivalent consumption. PMP optimality conditions provide the optimal dynamics 
of the co-state, and the initial value of the co-state can only be computed in simulation over known missions. In 
real-time, adaptive-ECMS replaces this optimal dynamic by a real-time closed-loop control approach of the energy 
storage level (typically the SOC) (Onori et al., 2011). Two main problems arise: how to design the controller and 



how to prove the closed-loop stability. Various controllers have been investigated, such as PI, fuzzy, or predictive 
controllers, but only a few of them are provided with a closed-loop stability proof (Sampathnarayanan et al., 2014). 

 
The contribution of this paper is to present a new controller that benefits from the ECMS framework and the 

underlying PMP optimal control theory. It is designed using the quasi-Linear Parameters Varying (LPV) approach, 
and it comprises a nonlinear state feedback control law coupled with a state observer. The Input-to-State Stability 
(ISS) of the closed loop is demonstrated (Sontag and Wang, 1996). This paper is organized as follows. In Section 
II, the considered hybrid vessel is introduced, and the formulation of its optimal control using PMP is given. In 
Section III, the real-time powertrain control is introduced. The system dynamics are modeled using the quasi-LPV 
control framework (Wang and Tanaka, 2004) and a Parallel Distributed Control law along with a state observer is 
designed. Simulation results are provided in Section IV. Section V concludes this paper and provides directions 
for future research. 

2. Hybrid vessel optimal control 

Powertrain energy management can be studied using quasi-static models for energy converters. The only 
dynamics considered are then those of the energy storage (Guzzella and Sciarretta, 2005). In this paper, we 
consider the simplified series hybrid vessel depicted in Fig. 1; which is made up of a traction motor, connected to 
the propeller; a battery pack, with a DC/DC converter; and a fuel cell, with auxiliaries. In order to formalize the 
dynamics, let w  denote the power to be provided for the propulsion, y  the power provided to/from the battery, 

u  the fuel cell output power, and p  the power consumed by the fuel cell auxiliaries.  

 

 
Fig. 1: Powertrain architecture 

The mission profile ( )w t is the DC power to be provided to the traction motor as a function of time t . It may 

be computed from a speed profile and a vessel model as described in (Haseltalab et al., 2016). Alternatively, in 
this paper, we use data recorded on an existing sightseeing barge. The considered 6-days long mission profile is 
given in Fig. 2. For the considered optimal control problem, the mission is assumed to be of fixed length T  and 
known of the optimization horizon [ ]0,T . This study investigates a possible fuel cell retrofit of the barge such 

that it could be operated on hydrogen and electricity from the batteries. 
 

 
Fig. 2: Considered mission profile 
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Notation: When there is no ambiguity, the time dependence is omitted. The partial derivative with respect to 
a variable is denoted using a subscript. For instance, xH  denotes the partial derivative of H  with respect to .x  

The power split is given by: 
w y u p= + −  (1) 

Both the battery power y  and the fuel cell output power u  are limited: 

( ) [ ]min max,y t y y∈  (2) 

( ) [ ]min max,u t u u∈  (3) 

Over an optimization horizon [ ]0,T , the hydrogen consumption to be minimized is assumed to be a quadratic 

function of the fuel cell produced power u  (Tazelaar et al., 2012): 

( )
0

T

fm l u dt=   (4) 

( ) 2l u a bu cu= + +  (5) 

The fuel cell auxiliaries electric consumption is estimated using the following loss model (Tazelaar et al., 
2012): 

0 1p uγ γ= +  (6) 

Combining (1)-(3) and (6), the feasible set ( ) ( ),u w u w 
  of the fuel cell output power can be determined:  

( ) ( )
0 min

max min
1

min ,max ,
1

w y
u w u u

γ
γ

  + −
=     −  

 (7) 

( ) ( )
0 max

min
1

max ,max ,
1max

w y
u w u u

γ
γ

  + −
=     −  

 (8) 

The battery coupled to the DC/DC converter is modeled using a simple voltage generator with a resistance in 
series (Gao et al., 2021; Oncken and Chen, 2020): 

2 4

2batt

E E Ry
I

R

− −
=  (9) 

The open circuit voltage E  and the internal resistance R  are assumed to be constant. The battery SOC 
dynamics is : 

( ) ( ),x t f u w=ɺ  (10) 

With ( ) ( ) 2 4
,

2
battI t E E Ry

f u w
Q QR

− − + −
= = . 

Two additional constraints on the SOC are considered: 
( ) 00x x=  (11) 

( ) Tx T x=  (12) 

with 0x  and Tx  as the initial and final SOC, respectively. 

Equations (1)-(12) represent the optimal control problem to be solved. Several approaches can be considered 
to solve it. With ( )tλ  the co-state, the Hamiltonian associated with the optimal control problem is formulated as: 

( ) ( ), , ,H u w l f u wλ λ= + . (13) 

The optimal control policy can now be denoted by Π : 
( ),u wλ= Π  (14) 

( )
( ) ( )

( )
,

, arg min , ,
u w u w

w H w
ν

λ ν λ
 ∈ 

Π =  (15) 

The optimal co-state dynamics is then: 
0xHλ = − =ɺ . (16) 

Let us denote [ ],
T

Y x λ= , the BVP to be solved is: 

( ), ,0
T

Y g wλ=   
ɺ  (17) 

( ) ( )( )0 , 0d x x T = , (18) 



where ( ) ( )( ) ( ) ( )( )00 , 0 , Td x x T x x x T x= − −  and the optimal state dynamics is:  

( ) ( )( ), , ,g w f w wλ λ= Π . (19) 

The BVP (17)-(18) can be solved using a dedicated solver (Kitzhofer et al., 2010) or using a simple bi-section 
search (Armenta et al., 2022). 

 
Table  1 : Parameters values 

Parameter Value 

( )min max,y y  ( )30 ,30kW kW−  

( )min max,u u  ( )0 ,15kW kW  

( ), ,E R Q  ( )105.3 ,0.985 ,2813V m AhΩ  

( ), ,a b c  ( )6 6 77.48 10 ,6.97 10 ,7.40 10− − −⋅ ⋅ ⋅  

( )0 1,γ γ  ( )56.3 10 ,0.125−⋅  

 
 
As an illustration, let us consider a powertrain whose parameters are shown in Table  1. The BVP has been 

solved for ( )0 1x = , 0.2Tx = . The initial co-state is ( )0 -18.94λ = . Fig. 3 depicts the optimal control result. The 

obtained hydrogen consumption is 27.8 kg  and the final SOC is 19.99 %.  It should be noticed that the studied 

optimal control problem does not include any SOC limits. As a result, the SOC is allowed to reach negative values, 
and its corresponding fuel consumption will be interpreted as a lower bound as it does not have physical meaning 
(Interested readers may refer to state constrained PMP studied in (Hermant, 2008) or to PMP with state penalties 
(Sanchez and Delprat, 2018)). This result emphasizes that real-time powertrain operations should not be performed 
using a constant co-state, but a SOC feedback controller. 

 

 
Fig. 3: Optimal control results for ( )0 1x = and ( ) 0.2x T =  

3. Real-time control 

During real-time operation, the future values of the mission profile   and the mission length are unknown. The 
considered energy management consists of minimizing the hydrogen consumption while regulating the SOC 
nearby a reference setpoint. This reference setpoint can be either a constant or may follow a discharge profile when 
the battery is large enough to ensure the vessel operation in pure electric mode for a period of time long enough 
(plugin operations). If additional information on the mission is available, then more elaborated strategies can be 
adopted. It should be noticed that the considered problem involves not only the state-of-charge (SOC) tracking but 
also the energy management (i.e. ensuring energy-efficient powertrain operations). In this work, these two aspects 
are tackled (i) using the quasi-LPV literature for the controller synthesis and for demonstrating the closed-loop 
stability and performances (ii) using the Hamiltonian minimization (based on optimal policy (14)) within the 
control scheme to ensure an efficient energy management. 

 



3.1. Control structure 

Due to the control saturation (2)-(3) , not all the co-state values are of interest for SOC control. Let us restrict 
the co-state to ( ) ( )min maxw wλ λ λ< < , such that ( ),g wλ λ ε< , with ε  small negative constant. As an example, 

( )min wλ  and ( )max wλ  have been computed for the parameters given in Table  1. They are depicted with a green 

and red line in Fig. 4. 

 
Fig. 4: State dynamics ( ),g wλ  

The following assumptions are considered. The mission profile w  is differentiable with ww d<
ɺ

ɺ . The SOC 

reference refx  is a piecewise linear function of time, so 0refx =ɺɺ  holds almost everywhere. Additionally, the 

assumptions from Lemma 1 of (van Keulen et al., 2014) are also considered but restricted to 
( ) ( )min maxw wλ λ λ< < : l  is a convex function in u  and f  is a strictly concave and strictly monotonically 

decreasing function in u .  
Let refe x x= −  be the tracking error. The dynamic to be controlled is: 

( ) ( ) ( )( ), refe t g t w t xλ= −ɺ ɺ  (20) 

To design a controller for (20), first, we consider the time derivative of (20) as follows: 

( ) ( ) ( ), , ,x w refe g w g w x g w w xλ λ λ λ λ= ⋅ + ⋅ + ⋅ −ɺɺɺ ɺ ɺ ɺɺ  (21) 

Since 0xg =  and 0refx =ɺɺ , (21) can be simplified: 

( ) ( ), ,we g w g w wλ λ λ λ= ⋅ + ⋅ɺɺɺ ɺ  (22) 

Let us introduce v  as a new control with: 

 ( ) ( ) ( )min max

0

, ,
t

sat v d w wλ τ τ λ λ
 

=  
 
 , (23) 

where ( ) ( )( ), , min ,max ,sat a b c b a c= . In practice, (23) should be implemented using an anti-windup scheme. 

The following state space representation is considered: 

( ) ( )0 0 , ,

1 0 0 0
we e g w g w

v w
e e

λ λ λ       
= + ⋅ + ⋅       

        

ɺɺ ɺ
ɺ

ɺ
. (24) 

The derivative of the mission profile wɺ  is in general not available. It will be treated as a norm bounded 
disturbance.  

3.2. Controller design 

Let us introduce a more compact notation for the system (24)  : 

( ) ( ), ,DX wAX B v d

x C

w

X

λ λ = + ⋅ + ⋅


=

ɺ

 (25) 

with X
e

e 
=  
 ɺ

, 
0 0

1 0
A

 
=  
 

, 
( ),

,
0

g w
B λ λ 

=  
 

( ),
,

0
wg w

D
λ 

=  
 

 ( )0 1 ,C =  d w= ɺ .  



The quasi-LPV provides a methodology to stabilize a wide range of nonlinear systems in a systematic way. 
According to Lemma 1 of (van Keulen et al., 2014), ( ),z g wλ λ=  is upper bounded. In order to formulate the 

system dynamic as a quasi-LPV model, let us consider a non-linear sector [ ]1 2,z z z∈  with 1 2 0z z ε< ≤ <  and x  

as the measured and controlled output (Tanaka and Wang, 2001): 

( ) ( ) ( )
2

1
i hi

i

X AX h z B v t Dd AX B v t Dd

x CX
=

 = + + = + +

 =

ɺ

 (26) 

with ,
0

i
i

z
B

 
=  
 

 ( ) 2
1

2 1

z z
h z

z z

−
=

−
, ( ) ( )2 11h z h z= − . 

There exists an extensive literature on quasi-LPV control to deal with systems with the form of (26). A very 
simple control law is used but of course, many other alternatives are available (robust control, non-quadratic 
stability (Abdelkrim et al., 2019), etc.). 

In order to stabilize the system (26) let us consider a PDC control law (Tanaka and Wang, 2001). It has the 
following form: 

( )
2

1

ˆ
ii

i

v h z F X
=

= , (27) 

with iF  as the gains to be determined and X̂  an estimate of the state X  computed using a linear observer of 

the form: 

( ) ( )ˆ ˆ ˆ,

ˆˆ

A B v L xX X w x

x CX

λ = + + −

 =

ɺ

 (28) 

with L  as the observer gain. Let ˆ
oe X X= − be the observer error whose dynamics is 

( ) ( ),o o dA LC ee D wλ= − +ɺ . (29) 

Considering (26) and (29) , we obtain 

( ) ( )
2 2

1 1
iji j

i j
hh z h z G d G dX X D X D

= =

= + = +ɺɶ ɶ ɶ  (30) 

Where 
o

X
X

e

 
=  
 

ɶ , 
0

i j i j
ij

A B F B F
G

A LC

+ − 
=  − 

, and 
D

D
D

 
=  
 

. 

In the particular case ( ) 0d t = , computing the gain jF  and L  for the closed loop (30) stabilization using 

Linear Matrix Inequalities (LMI) is straightforward using classical matrix manipulations (Boyd et al., 1994; 
Tanaka and Wang, 2001). Then, our goal is to prove the ISS stability of the system (30) in the presence of a 
disturbance d .  

 
Proposition. Let us consider the system dynamics (26) with the nonlinear control law (27) and observer (28), 

then, the origin 0X =ɶ  of the closed-loop dynamics (30) is ISS with a decay rate α  and input constraint v µ≤ , 

for a scalar 0µ >  and initial condition 0X , if there exist matrices 1 0P > , 2 0P > , L , iM , { }1,2,..., ,i r∈ of 

suitable size, such that 

11

1
11 12 22 12

1
0 1
1 2

0 1

0,

0,

1
0, 0,

T

T T
i

i

S

S S S S

X P M

X P M I µ

−

−

−

<

− <

   
> >   

   

 (31) 

where ( )1 1
11 1 1i jS A B PMP α− −++ ∗= + , 1

12 1i jS B M P−−= , ( ) ( ) 1
22 2 2

1S P A LC Pβ α− − − += + ∗  , with 

controller gains 1i iF M P= and observer gain L . 

Proof. Considering ( ) 0d t = , let us prove that the origin 0X =ɶ of the system is asymptotically stable with a 

decay rate α . Taking a quadratic Lyapunov function as: 

( ) 1

2

0

0
T T P

X X PX X XV
Pβ


=


= 

 
ɶ ɶ ɶ ɶ ɶ . 



Let min Pσ  and maxPσ  be the smallest and largest eigenvalue of P .  The proof of the stability condition (31) is 

trivial and is given in (Yoneyama et al., 2000). Since the system is asymptotically stable with a decay rate α , we 
have: 

( ) 2

minh h
T T T

PG P XPG PX X Xα ασ≤ − ≤+ −ɶ ɶ ɶ ɶ . (32) 

Now, let us consider ( ) 0d t ≠ . If there exist K -functions iφ , }{1,2,3,4i ∈ such that 

( ) ( ) ( )1 2
nX X XV Xφ φ≤ ≤ ∀ ∈ɶ ɶ ɶ ℝɶ  

and ( ) ( ) ( )3 4, dV X d Xφ φ≤ − +ɺ ɶ ɶ   then the system is ISS (Sontag and Wang, 1996). The first condition is 

fulfilled, since 
2 2

min max
T

P Px x Px xσ σ≤ ≤  for any quadratic Lyapunov function. To prove the second 

condition, let us consider the derivative of the Lyapunov function: 

( ) ( ) 2

min

2 2 2 2

min min min min2 2 2 (1 ,)

T T
h h

T T T T T T T
P

P P P P

X X D X X D X D X X D

X D X X X X

G

X

V x P PG d P P d d P P d

P d d Xd

ασ

ασ ασ ασ θ αδ δ σ θ

= + + + < − + +

< − + = − + = − + − −

ɺ ɶ ɶ ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ ɶ ɶ

 (33) 

where0 1θ< < , and max max2 /PDP g wδ σ ∂= = ∂ . Now considering the following inequality: 

2 2
2 2

min min
min min

0 2P P
P P

X d Xd dX
δ δδ

λ
ασ θ ασ θ

α θ ασ θ
 

− − < ⇔ < + 
 

ɶ ɶ ɶ  (34) 

Finally, substituting (34) into (33) and taking ( ) ( ) 2

3 min 1PX Xφ ασ θ− −=ɶ ɶ and ( ) 2 2
4 min/ Pd dφ ασδ θ= , 

the second condition is fulfilled. 

Remark. From the first inequality in (31), matricesiM , { }1,2 ,i ∈  can be obtained. In the second inequality, by 

fixing negative poles for the linear observer, β  can be chosen large enough such that (31) holds. The proposition 

above implies that the LMI conditions allow designing the observer and the controller separately and moreover 

the origin 0X =ɶ  of the closed-loop system (30) is ISS. 
Finally, the control design procedure is : Step 1 compute the function g  and its limits ( )min wλ and ( )max .wλ  

Step 2: Chose a nonlinear sector [ ]1 2,z z z∈ and solve the LMI (31). Step 3 : design a linear observer (28) by pole 

placement. The whole control scheme to be implemented comprises the observer (28) , the control law (27), the 
change of variable (23), and finally the Hamiltonian minimization (15). 

4. Simulation results 

In this section, a simulation of the hybrid powertrain, shown in Fig. 1, is carried out using the quasi-LPV 
ECMS to obtain the control signal. Considering the bounds 7 8], 3.2021[ 4.696 10 10z − −∈ − × − × , the two controller 

gains are computed choosing a decay rate 71 10α −= ×  and the initial condition 0 [0 0.425]TX = ; whereas the 

observer gain is obtained by poles placement with poles 10−  and 11− . When solving the LMI conditions of 
proposition 1, the value of µ  allows reaching different closed loop dynamics.  Larger (resp. lower) µ  values lead 

to larger (resp. lower) control gains 1,2F  and  larger (resp. smaller) amplitude of the control signal λɺ  in response 

to the exogenous signal w . The reference SOC signal ( )refx t  varies from 100%  down to a specified value with 

a rate limitation of  /0.75% h− .  

From the PMP optimality conditions (16), λɺ  should be kept as close to 0 as possible. In practice, a 
compromise has to be found between the SOC error and the hydrogen consumption. Several simulations have 
been conducted over the mission profile depicted in Fig. 2 for 15  linearly spaced values of µ  and the final value 

of the reference signal is adjusted such that the actual final SOC is ( ) 20 0.1%x T = ± . The quality of the SOC 

regulation is assessed through the RMS value of the SOC deviation xJδ : 

 ( ) ( )( )2

0

1 T

x refJ x t x t dt
Tδ = −  (35) 



Obtained results are depicted in the Fig. 5 . As we focus on the H2 consumption minimization, the chosen 
value 100µ =  is depicted with a vertical dashed line in the Fig. 5 .  

 
Fig. 5: Hydrogen consumption and ( )RMS λɺ   as a function of  µ . 

For the particular case 100µ = , by solving the LMI conditions of proposition 1, the following gains are 

obtained: 

[ ]
5

2

1

4 3
1

5 10

121.8  3.81 , 203.12 1.21 ,

5.09
110 21 , .

10 10

1.45 1

11 3

0

0.45 .389 10

F F

L P

− −

−

− −

   = =   

 
=

×
=  ×

× ×


×

 

In order to assess the effectiveness of our approach it is compared against the adaptive-ECMS strategy from 
(Onori et al., 2011), where the costate is computed as: 

 

( ) ( )( 1) 0.5 ( ) ( 1) p refc xk k xkλ λ λ+ − + −+ =  (36) 

 
We chose 100pc =  and a costate update period of 50s. Fig. 6 depicts the comparison of the control input ( )u t

and the battery power profile ( )y t ; it is shown how in the adaptive-ECMS strategy the control signal presents a 

bang-bang behaviour, whereas in the quasi-LPV ECMS the control signal is smoother; the corresponding 
evolution of the SOC is presented in Fig. 7.  The obtained hydrogen consumption is 33.6 kg  for our approach and

41.68 kg for the adaptive one. 

 
 

 
Fig. 6: Real time control law (simulation result). 



 

Fig. 7: SOC profiles comparison (simulation result). 

 

5. Conclusions  

A controller that benefits from the ECMS and quasi-LPV framework has been proposed. The controller 
synthesis is reduced to a set of LMI conditions to be solved. The closed loop ISS has been demonstrated. 
Preliminary results have been presented to illustrate the effectiveness of our approach. Two design parameters µ  

(related to a constraint on the costate derivative) and α  (decay rate) allows tuning the closed loop dynamics. µ  

control the tradeoff between fuel consumption and state of charge regulation. Future work will be devoted to more 
in dept analysis of the control performances both in terms of fuel consumption and SOC reference tracking.  
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