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Dynamic Amplification in a Periodic
Structure Subject to a Moving Load
Passing a Transition Zone: Hyperloop

Case Study

Andrei B. Fărăgău(B), Andrei V. Metrikine, and Karel N. van Dalen

Delft University of Technology, Stevinweg 1, 2628, CN Delft, The Netherlands

A.B.Faragau@tudelft.nl

Abstract. Hyperloop is an emerging high-speed transportation system
in which air resistance is minimised by having the vehicle travel inside a
de-pressurised tube supported by columns. This design leads to a strong
periodic variation of the stiffness (among other parameters) experienced
by the vehicle. Also, along its route, the Hyperloop will encounter so-
called transition zones (e.g., junctions, bridges, etc.), where the proper-
ties (e.g., support stiffness) are different than for the rest of the structure.
In railway engineering, increased degradation is seen in the vicinity of
these transition zones, leading to increased frequency of maintenance.
This work investigates response amplification mechanisms in a Hyper-
loop system that arise due to the combination of a transition zone and
the structure having a periodic nature. The amplification mechanisms
investigated here can help prevent degradation of the Hyperloop tube
close to transition zones as well as fatigue and wear of the vehicle.

Keywords: Periodic structure · Moving load · Hyperloop · Transition
radiation · Wave interference

1 Introduction

Periodic systems under the action of moving loads have been extensively studied
by researchers in the past century. These problems do not only pose academic
challenges but are also of high practical relevance due to their application in
railway, road, and bridge engineering, among others. Despite numerous studies
on periodic systems (e.g., [1,2]), only few of them investigate the influence of a
local inhomogeneous region, a so-called transition zone, on the dynamic response.
In railway and road engineering, increased degradation is seen in the vicinity of
these transition zones [3–6], leading to increased maintenance requirements.

Hyperloop is a new emerging transportation system that is in the develop-
ment stage. Its design minimises the air resistance by having the vehicle travel
inside a de-pressurised tube (near vacuum) supported by columns. This design
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may lead to a strong periodic variation of the stiffness experienced by the vehi-
cle. Moreover, along its route, it will cross bodies of water or come across junc-
tions/switches, all of which are transition zones.

The current study investigates the potential response amplification in a
Hyperloop system that results from the combination of (i) a transition zone
and (ii) the structure having a periodic nature. In a previous study [7], three
such phenomena have been identified in a system representative of a catenary
structure (overhead wires in railway tracks). In this work, the three phenomena
identified in Ref. [7] are investigated using a model representative for a Hyper-
loop transportation system. Accounting for these phenomena in the design can
help prevent degradation of the Hyperloop tube close to transition zones as well
as fatigue and wear of the transportation pod.

2 Model Description and Solution Method

The system formulated here consists of an infinite Euler-Bernoulli beam with
mass per unit length ρ, bending stiffness EI, and material damping ratio ζ.
The beam is discretely supported by springs with stiffness ks(x) and dashpots
with damping coefficient cs(x), and a point mass ms is located at each support.
x ∈ [nd, (n + 1)d] is the generic cell where n is the cell number and d is the cell
width, and the spring-dashpot-mass element is located in the middle of the cell
at x = n̄d with n̄ = n+ 1

2 . The system is acted upon by a moving constant load of
amplitude F0 and velocity v. A zone (stiff zone) of length l has the stiffness and
damping of the supports p times larger than for the rest of the infinite domain;
the region covering the stiff zone and its close vicinity is called the transition
zone. Figure 1 visually describes the system, while its equation of motion reads

EI(1+ζ ∂
∂t )w

′′′′+ρẅ+
∞∑

n=−∞

(
ms

∂2

∂t2 +cs(x) ∂
∂t+ks(x)

)
wδ(x−n̄d) = −F0δ(x−vt),

(1)
where primes and overdots denote partial derivatives in space and time, respec-
tively. The stiffness ks(x) is a piecewise-defined function in space and it reads

ks(x) =

⎧
⎪⎨

⎪⎩

ks, x < xa,

p ks, xa ≤ x ≤ xb,

ks, x > xb.

(2)

For simplicity, the same spatial distribution is assumed for the damping.
There are multiple designs of the Hyperloop transportation system; here, a

typical Hyperloop design is considered. The steel tube has a thickness of 19 mm
and an inner diameter of 2.5 m, leading to ρ = 1331 kg/m (a 10% increase was
considered to account for additional equipment) and EI = 2.5 × 1010 Nm2. The
support stiffness is tuned using a FEM analysis of the 3D structure (excluding
the soil) such that the displacement at the location of the supports match when
a static load is applied in the middle of the span. Note that the displacement
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Fig. 1. Model schematics: infinite Euler-Bernoulli beam discretely supported by an
inhomogeneous foundation, subjected to a moving constant load.

is at the rail level which is located at the top of the tube (the vehicle is sus-
pended from the top in this design); therefore, the stiffness of the support (in
our phenomenological model) accounts not only for the stiffness of the column,
but also for the flexibility of the connection between the tube and the rail and,
most importantly, for the flexibility introduced by the ovalization of the tube.
The concrete columns supporting the tube have a spacing of d = 16 m and are
assumed to be of 1.5 m diameter and 5 m height; the point mass in the model
represents the mass of the columns that is activated by the vehicle and is cho-
sen here as 10% of the overall mass of the column ms = 2332 kg (such a small
value is chosen because most flexibility at the supports comes from the ovaliza-
tion of the tube and thus, the columns are not deformed much). When it comes
to the damping, a very small amount is assumed to be conservative, namely
ζ = 5 × 10−6 and cs = 10 kNs/m. Although the damping seems small, it orig-
inates mostly from the tube itself and not from the soil (since the columns are
not deformed much) and the metal tube is not expected to have high damping.

2.1 Solution Method for the Homogeneous System

The approach to determine the steady-state solution for the system without a
transition zone is based on the Floquet theory [8]. The procedure is explained in
detail for a string in Ref. [7] and is summarized in the following. After applying
the Fourier transform over time to Eq. (1), the analysis can be restricted to one
cell without loss of generality. The relation between the states (displacement,
slope, bending moment, and shear force) at the two boundaries of the generalized
cell reads (see [7] for a detailed derivation)

w̃n+1 = Fw̃n + w̃ML
n+1, (3)

where the 4× 4 matrix F is the Floquet matrix and w̃ML
n+1 includes the influence

of the particular solution to the equation of motion. Performing the eigenvalue
(α) and eigenvector (u) decomposition of F leads to the following expression:

w̃n = a1e
−ikF

1 ndu1 + a2e
−ikF

2 ndu2 + a3e
−ikF

3 ndu3 + a4e
−ikF

4 ndu4 + w̃ML
n+1, (4)
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where a1, a2, a3, and a4 are unknown amplitudes and kF = i ln(α)
d are the Floquet

wavenumbers. To fully determine the solution, the so-called periodicity condition
[7,9] is used, which imposes the response inside each cell to be exactly the same
as in the previous one but shifted in time by d

v . The periodicity condition leads
to four conditions (displacement, slope, moment, and shear force) with which
all four unknown amplitudes are determined. The steady-state solution in the
Fourier domain is now determined, and to obtain the time-domain solution, the
inverse Fourier transform is performed numerically.

The dispersion characteristics of the system without the transition zone are
presented in Fig. 2. There are infinitely many wavenumbers kF corresponding to
one frequency ω and the distance between subsequent wavenumbers is 2π

d . These
repeating zones are called Brillouin zones [10] (just three zones are presented in
Fig. 2, but there are infinitely many). For discrete systems, all information about
wave propagation is contained in the first Brillouin zone. Unlike discrete systems,
continuous ones allow for wave propagation at all wavenumbers. Consequently,
the response w̃(x, ω) will contain wavenumbers from all Brillouin zones and the
continuous wavenumber reads k = kF + m 2π

d with m = ±1,±2, . . . . Also, Fig. 2
shows that the periodic system exhibits multiple (actually infinitely many [10])
frequency ranges where no propagation is possible; these frequency ranges are
called stop bands, while the frequency ranges in which propagation is possible
are called pass bands. Strictly speaking, stop/pass bands only exist if the system
does not have dissipation; however, for small values of dissipation, the wave
propagation is strongly attenuated in the stop bands.

Fig. 2. The dispersion curves in three Brillouin zones (black lines) and the kinematic
invariants (blue lines) (left panel), and the frequency spectrum of the steady-state
displacement (right panel); the grey/yellow background represents a stop/pass band.

To determine the frequency and wavenumbers of the waves generated by the
moving load, we need another equation next to the dispersion equation that
expresses a relation between the frequency, wavenumber, and the load velocity,
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namely the kinematic invariant. There are infinitely many kinematic invariants
(seven of them are presented in Fig. 2). The 0th-order kinematic invariant is given
by ω = kv while the higher order kinematic invariants are given by ω = kv+m 2πv

d
with m = ±1,±2, . . . . The intersections between one of the kinematic invariants
and the dispersion curve represent waves emitted by the moving load in the
steady state, as can be seen in the right panel of Fig. 2. Moreover, it is important
to observe that the emitted waves form a discrete frequency spectrum and that
all generated waves have frequencies in the pass bands of the system.

2.2 Solution Method for the Inhomogeneous System

The transient solution is obtained by firstly determining the response of the sys-
tem to the moving load acting inside each individual cell separately, and then
superimposing the individual solutions. To determine the response of the system
to the moving load acting inside only one cell, the forward Fourier transform is
applied over time to Eq. (1). The obtained equation of motion is then divided
in 5 domains; when, for example, the moving load is applied to the left of the
stiff zone, the 5 domains are (1) left of the loaded cell, (2) the loaded cell, (3)
right of the loaded cell and left of the stiff zone, (4) inside the stiff zone, and
(5) to the right of the stiff zone. When the moving load is applied to the stiff
zone or to the right of the stiff zone, an analogous division is made. The solu-
tions of the 5 domains are analogous to Eq. (4) where w̃ML

n+1 appears only in the
loaded domain. The 5 solutions have 16 unknown amplitudes (after applying the
boundary conditions at infinite distance from the load), which are determined
from the interface conditions between the domains (i.e., continuity in displace-
ments, slopes, bending moments, and shear forces). This procedure is repeated
until the moving load is applied inside each individual cell of interest.

To obtain the response of the system to the moving load acting on all cells,
the individual solutions are superimposed as follows:

w̃n =
Nright∑

nξ=Nleft

w̃n,nξ
, (5)

where w̃n,nξ
= [w̃1,n,nξ

, w̃2,n,nξ
, w̃3,n,nξ

, w̃4,n,nξ
, w̃5,n,nξ

] is the solution for all
the cells when the load is applied at nξ, Nleft is the first cell on which the load acts
(at t = 0) and Nright represents the last cell. Nleft needs to be chosen sufficiently
to the left of the transition zone such that the response is in the steady state
prior to reaching the transition zone. Nright can be chosen based on the maximum
time of the simulation and it does not introduce any unwanted transients in the
response. The solution is now determined at the interfaces between cells. To
determine the solution inside the cells, one needs to use the equations that lead
to the Floquet matrix (see Eq. (8) in [7]).

Next, three phenomena that lead to amplifications of the response in the
transition zone are investigated.
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3 Wave Interference Phenomenon

The increased support stiffness of the stiff zone causes an upward shift in fre-
quency of its stop bands compared to the soft zones. Consequently, a wave gen-
erated by the moving load outside the transition zone can be reflected at the
stiff region provided that the frequency of the wave is in a stop band of the stiff
region. This leads to wave interference between the reflected wave and the wave
field radiated by the approaching load, which in turn can cause an amplification
of the response in the transition zone.

Fig. 3. The dispersion curves for the soft (black solid line) and stiff (black dashed line)
regions and the kinematic invariants (blue lines) (top left panel), the displacements
frequency spectra to the left of the stiff zone (top right panel; X = xa − 5 m), and the
wavenumber spectra of the displacements (bottom left panel) evaluated at Ω = 140
rad/s (indicated by the horizontal green dashed line); the bottom right panel is a zoom
in of the top right panel; the grey background indicates the overlapping region of the
pass-band of the soft zone and the stop-band of the stiff one; p = 1.3 and v = 269 m/s.

The frequency-domain response in Fig. 3 shows that there are two harmonics
of large amplitude generated in the steady state, which are in one of the stop-
bands of the stiff zone. These waves are, as can be seen, amplified in the transient
response (at the left of the stiff zone) due to the wave interference between the
incoming and reflected waves. The reflection of one of the two harmonics (the one
at ω = 140 rad/s) can be seen in the wavenumber-domain response through the
presence of an additional peak (compared to the steady state) at wavenumber
equal in magnitude but opposite in sign (i.e., opposite direction of propagation)
to that of the forward propagating wave.
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Fig. 4. The displacement evaluated under the moving load for the wave-interference
phenomenon; the location of the stiff zone is indicated by the grey background.

To quantify the amplification, the time-domain response under the moving
load is presented in Fig. 4. The response is evaluated under the moving load
because it is governing. A considerable amplification can be observed at the left
of the stiff zone that, at its maximum, is of about 20%. The response of the equiv-
alent continuously supported system with a transition zone is also presented to
show that, in that case, there is no visible amplification. Clearly, this significant
amplification is caused by the periodicity of the system together with the tran-
sition zone; if any of these two characteristics are removed, the amplification
vanishes.

It is important to note that a larger difference in stiffness p does not cause
a significant increase in the amplification; the important factor for this phe-
nomenon is that p is such that the generated harmonics are in one of the stop
bands of the stiff zone. Also, even though the velocity is in the operational range
for Hyperloop, it is chosen specifically for this mechanism to occur (see Sect. 4.1
in Ref. [7] for the choice of velocity); for other velocities, the generated waves
are either of low amplitude or inside the pass-bands of the stiff zone, making this
mechanism not to occur. Finally, the larger the damping (especially the tube’s
internal damping), the smaller the amplification observed because the generated
waves cannot propagate sufficiently far before being attenuated.

4 Passing from Non-resonance Velocity to a Resonance
Velocity

The velocity at which one of the kinematic invariants is tangential to one of
the dispersion curves is called critical velocity. At such velocities, resonance of
the system occurs. From a physical point of view, resonance occurs because the
group velocity of the generated wave is equal to the load velocity, which makes
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that the wave cannot propagate away and leads to a build up of energy around
the moving load.

The properties of the Hyperloop system should be chosen such that these
resonance velocities are far away from operational speeds. However, even if the
operational velocity is far from resonance velocities outside transition zones, it
can be close to a resonance velocity inside it. In this section, we investigate the
situation in which the load passes from non-resonance velocity in the soft region
to a resonance velocity inside the stiff region. Note that the load velocity is kept
constant and the resonance velocity just changes due to higher support stiffness.

Fig. 5. Response under the load vs velocity in the soft and stiff regions (top panel)
and the displacements evaluated under the moving load for resonance in the stiff zone
(bottom panel); the stiff zone is marked by the grey background; p = 1.3.

The top panel in Fig. 5 presents the resonance velocities for the soft and stiff
regions. For v ≈ 288 m/s, the stiff zone resonates while the soft one does not.
The bottom panel in Fig. 5 presents the displacement under the moving load
for v = 288 m/s. The amplification in the stiff zone is clearly observed with a
drastic increase compared to the steady state. At its maximum, the amplification
of the displacement is of more than 20% while the amplification of the bending
moment (not presented here for brevity) is more than 25%. The increase in
response requires many cell lengths to develop, characteristic to resonance; for
short stiff zones, resonance might not have time to develop, but for longer ones
strong response amplification can develop. It must be mentioned that increasing
the damping diminishes the amplification, as expected for resonance.
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5 Wave Trapping Inside the Stiff Zone

The stiff zone has a finite length l, and consequently the incoming waves gen-
erated by the moving load in the soft region could get trapped inside. Wave
trapping could lead to response amplification inside the stiff zone even when the
moving load is relatively far away. The conditions for a wave to get trapped in
the stiff zone are described in detail in Ref. [7] and are summarized in the fol-
lowing. An approximate condition for wave trapping is that q half-wavelengths
of the wave inside the stiff zone is equal to or an integer fraction of l. From
this conditions, the wavenumber ktr of the wave trapped in the stiff zone can
be determined, and from the dispersion curves (Fig. 2 with the properties of the
stiff zone), the corresponding frequency ωtr can be obtained. The incoming wave
from the soft zone needs to have the same frequency ωtr and the corresponding
wavenumber ktr,2 can be determined from the dispersion curves with the proper-
ties of the soft zone. So, the incoming wave from the soft zone with wavenumber
ktr,2 and frequency ωtr will lead to a wave of wavenumber ktr and frequency ωtr

in the stiff zone that will get trapped. The load velocity that excites a wave of
wavenumber ktr,2 and frequency ωtr can be obtained from the kinematic invari-
ant expression.

Fig. 6. Snapshot of the time-domain displacements (top panel) and the displacements
time-history at the point marked by the green circle (bottom panel) for the situation
when the wave is trapped in the stiff zone; the stiff zone is indicated by the grey
background; p = 1.2 and v = 270 m/s.

The top panel in Fig. 6 presents a snapshot of the displacement field where
the trapped wave can be clearly observed even though the load is relatively
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far away. The bottom panel in Fig. 6 presents the displacement time-history at
a point inside the stiff zone. The amplitude inside the stiff zone is more than
double the one of the steady state when the load is relatively far away from the
transition zone; under the moving load, at its maximum, the amplification is
around 17%. For slightly different velocities or different lengths of the stiff zone
(except for integer fractions of half the wavelength), the amplification vanishes.

6 Conclusions

This paper investigated three phenomena that can lead to response amplifica-
tion in a continuous and periodic system with a transition zone (described by
an increase in support stiffness); the system is representative of a Hyperloop
transportation system. The phenomena are the product of a periodic system
and a local inhomogeneity, and if one of these characteristics is omitted, the
phenomena will not occur.

The wave-interference phenomenon leads to response amplification at the
edges of the stiff zone while the passing-to-critical-velocity and wave-trapping
phenomena cause amplification inside the stiff zone. While the wave-interference
and wave-trapping phenomena lead to response amplification also for short tran-
sition zones, the passing-to-critical-velocity requires a long stiff zone for the
amplification to develop. Results show that all three phenomena can lead to a
response amplification which, at its maximum, is about 20%. Also, the phenom-
ena have been observed at envisioned operational velocities of the Hyperloop
vehicles.

Although this amplification would not cause failure of the structure, over time
it can lead to increased degradation of the structure as well as discomfort for
passengers. Moreover, all three phenomena are diminished with increased damp-
ing; therefore, if the designed system does not have sufficient inherent damp-
ing, additional passive or active damping measures may be needed. Finally, the
three investigated phenomena can be considered as additional constraints for the
design parameters at transition zones such that amplifications are avoided.
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