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SUMMARY

In a world replete with observations (physical as well as virtual), many data sets are rep-
resented by time series. In its simplest form, a time series is a set of data collected se-
quentially, usually at fixed intervals of time. In a number of applications, the mean and
the variance of the time series is time-invariant and there is no seasonality in the data
(such time series is called stationary). However, in many more applications, e.g., time
series that are related to smart energy systems, the data have non-stationary character-
istics.

This thesis focuses primarily on matrices as an alternative representation of the latter
type of time series, in order to take advantage of matrix decomposition methods. The ra-
tionale is straightforward: numerically stable matrix decomposition techniques enable
us to extract underlying patterns in the data and use them to construct approximations
of the corresponding time series. In particular, we will focus on singular value decompo-
sition (SVD) as a powerful and numerically stable matrix factorization technique. There-
fore, as the first step in this thesis, the SVD and its geometrical interpretation are exten-
sively studied, in order to acquire a firm understanding of how it performs. That in turn
enables us to look at different problems in time series analysis from a fresh perspective.

For most of the applications of SVD in various fields, it is important to understand
the properties of the SVD of a matrix whose entries show some degree of random fluctu-
ations. Therefore, to determine how the noise level affects the singular value spectrum,
it is essential to study the singular value decomposition of random matrices. As we will
explain in the introductory chapter, one of the early applications of the SVD in time se-
ries analysis is in periodicity detection of the time series data. Therefore, we explore how
the geometry of a matrix (the position of the data points with respect to the origin) and
the aspect ratio of the matrix (the ratio between the number of columns and the number
of rows) can affect its SVD results.

Matrix factorisation techniques such as principal component analysis (PCA) and sin-
gular value decomposition (SVD) are both conceptually simple and effective. However,
it is well-known that they are sensitive to the presence of noise and outliers in input data.
One way to mitigate this sensitivity is to introduce regularisation. To this aim, we hark
back to the interpretation of SVD and PCA in terms of low-rank approximations, which
involve the minimisation of specific functionals. We then derive algorithms for the min-
imisation of the regularised version of such functionals.

After the above-described theoretical investigations of SVD, we considered novel ap-
plications of SVD to various problems. The first one concerned challenges related to the
integration of renewable energy sources (RES). With increasing RES-integration such as
wind and solar energy to the power grid, balancing the grid has become more challeng-
ing. This is mostly due to the inherently intermittent nature of RES, on the one hand,
and shortcomings in bulk energy storage systems, on the other. Therefore, studies on
scenario-based probabilistic energy production and demand forecasts have gained mo-
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mentum, as they are highly valuable from both a technical and an economic point of
view. A particular application of such models in the energy sector is where having the
distribution of energy consumption for the coming days is desired. Furthermore, as
extensively argued in the literature, a decisive variable in predicting energy demand is
temperature data. There are mainly three practical and popular methods for generating
temperature scenarios, namely fixed-date, shifted-date, and bootstrap approaches. Nev-
ertheless, these methods have mostly been used on an ad-hoc basis without being for-
mally compared or quantitatively evaluated. Moreover, as we discuss, the performance
of such models depends to a large extent to the quality of input data. Therefore, we
propose a generic, data-driven and computationally efficient SVD-based approach to
simulate temperature scenarios. The strength of our proposed method lies in its sim-
plicity and robustness, in terms of the training window size, with no need for subsetting
or thresholding in order to generate temperature scenarios. The empirical case studies
performed on the data from the load forecasting track of the Global Energy Forecasting
Competition 2014 (GEFCom2014-L) show that the proposed method outperforms the
top two scenario-based models with a similar set-up.

Another topic of considerable interest is to investigate what effect the transition of
energy to RES can have on the overall trend and volatility of electricity prices. This im-
pact could be complex because there are two contradicting forces at play. The marginal
cost of RES is relatively low and even negative (especially if subsidized), therefore, in-
creased penetration of wind and solar would result in a downward trend in electricity
prices. Opposing this is the associated uncertainty regarding the availability of wind and
solar energy, which causes spikes in the market. In other words, the integration of RES
provokes assertions that the stability of the power grid can (surely) be compromised due
to the inherent intermittency of such sources. Therefore, the increased price volatility
will cause additional market risks for suppliers and consumers in the market.

In the literature, numerous methods have been introduced to determine the volatil-
ity of the time series data. However, as we exemplify, the emergence of non-positive price
values in the energy transition era has introduced new challenges in the electricity mar-
ket volatility analysis. This new aspect of the market renders many traditional volatility
indices ineffective. More precisely, the standard approach to switch to logarithmic mea-
sures can be done only after shifting up all values above zero by a certain threshold. On
the other hand, price volatility has a dependence on the price level, which is even more
pronounced when the spot prices are low. Therefore, the generalizability of conventional
approaches is questioned, as the volatility measures can vary drastically, with respect to
the magnitude of the aforementioned thresholds. We tackle this problem by introducing
a new notion of volatility which is obtained by reconstructing the time series using the
SVD technique. In other words, we detect and remove the deterministic part of the price
data using the SVD and consider the stochastic part (residuals) as a notion of volatility.
Using the matrix representation of the data, we then highlight the evidence of the effect
of renewables on daily price profiles in the German day-ahead market, i.e., the emer-
gence of non-positive prices and also shifts of peak price values to hours where solar is
less available.

Overall, in this thesis, we study in-depth the SVD technique and propose novel appli-
cations of it in time series analysis. Our findings can be used as innovative components
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of future smart grid systems, which are characterized by the increasing uncertainty on
both the supply and demand parts.





SAMENVATTING

In een wereld vol fysieke en virtuele waarnemingen zijn veel datasets opgebouwd in de
vorm van tijdreeksen. Een tijdreeks, in zijn eenvoudigste vorm, is een reeks gegevens
die opeenvolgend worden verzameld, meestal met vaste tussenpozen. In sommige toe-
passingen zijn het gemiddelde en de variantie van de reeks tijdsinvariant en vertonen
de gegevens geen seizoenseffecten; een dergelijke tijdreeks wordt stationair genoemd.
Voor de meeste toepassingen, bijvoorbeeld tijdreeksen die betrekking hebben op slimme
energiesystemen, vertonen de gegevens echter niet-stationaire kenmerken.

Dit proefschrift richt zich voornamelijk op alternatieve representaties van de laatste
soort tijdreeksen in de vorm van matrices, zodat geprofiteerd kan worden van matrixont-
ledingsmethoden. De reden is eenvoudig: numeriek stabiele matrixontledingstechnie-
ken stellen ons in staat om onderliggende patronen in de gegevens te extraheren, en
hiermee benaderingen van de bijbehorende tijdreeks te construeren. In het bijzonder
zullen we ons richten op singuliere waardenontbinding (SWO); een krachtige en nume-
riek stabiele matrixfactorisatie techniek. De eerste stap in dit proefschrift is daarom het
uitgebreid bestuderen van de SWO en zijn geometrische interpretatie, om zo een goed
begrip van de prestaties te verkrijgen. Dit begrip stelt ons in staat om verschillende pro-
blemen in tijdreeksanalyses vanuit een nieuw perspectief te bekijken.

Voor de meeste toepassingen van SWO is het cruciaal om inzicht te verkrijgen in
de eigenschappen van de SWO van een matrix, waarvan de gegevens enige mate van
willekeurige fluctuaties vertonen. Om te bepalen hoe ruis het singuliere waardenspec-
trum beïnvloedt, is het essentieel om de ontleding van singuliere waarden van wille-
keurige matrices te bestuderen. Zoals we toelichten in het inleidende hoofdstuk, is pe-
riodiciteitsdetectie van tijdreeksgegevens één van de eerste toepassingen van de SWO
in tijdreeksanalyse. Om deze reden onderzoeken we hoe de geometrie van een matrix
(de positie van de datapunten ten opzichte van de oorsprong) en de aspectverhouding
van de matrix (de verhouding tussen het aantal kolommen en het aantal rijen) de SWO-
resultaten kunnen beïnvloeden.

Matrixfactorisatie technieken zoals principale-componentenanalyse (PCA) en sin-
guliere waardeontbinding (SWO) zijn zowel effectief als conceptueel eenvoudig. Het is
echter algemeen bekend dat ze gevoelig zijn voor de aanwezigheid van ruis en uitschie-
ters in invoergegevens. Het toepassen van regularisatie is een manier om deze gevoe-
ligheid te verminderen. Om dit doel te bereiken, grijpen we terug naar interpretaties
van SWO en PCA in termen van lage-rangapproximaties, die betrekking hebben op het
minimaliseren van specifieke functionalen. Vervolgens leiden we algoritmen af voor de
minimalisatie van de geregulariseerde versie van dergelijke functionalen.

Na het hierboven beschreven theoretische onderzoek van SWO hebben we nieuwe
toepassingen van SWO voor verschillende problemen bestudeerd. De eerste heeft be-
trekking op uitdagingen in verband met de integratie van hernieuwbare energiebron-
nen. Met toenemende integraties van bronnen zoals wind- en zonne-energie binnen
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het elektriciteitsnet, is het balanceren van het net een grotere uitdaging geworden. Dit
is voornamelijk te wijten aan het inherent intermitterende karakter van hernieuwbare
energiebronnen enerzijds, en tekortkomingen in bulkopslag van energie anderzijds. Om
die reden hebben studies naar op scenario’s gebaseerde probabilistische prognoses voor
energieproductie en -vraag aan momentum gewonnen, aangezien ze zeer waardevol zijn
vanuit zowel technisch als economisch oogpunt. Een specifieke toepassing van derge-
lijke modellen in de energiesector is het bepalen van de gewenste verdeling van energie-
verbruik voor de komende dagen. Zoals uitvoerig besproken in de literatuur, zijn tempe-
ratuurgegevens een beslissende variabele bij het voorspellen van de energievraag. Er zijn
drie praktische en populaire methoden voor het genereren van temperatuurscenario’s,
namelijk benaderingen met vaste datum, verschoven datum en bootstrapping. Deze
methoden worden echter meestal op ad-hocbasis gebruikt, zonder formele vergelijking
of kwantitatieve beoordeling. Bovendien zijn de prestaties van dergelijke modellen in
grote mate afhankelijk van de kwaliteit van de invoergegevens. Om die reden stellen we
simulatie van temperatuurscenario’s voor, als een generieke, datagedreven en rekenkun-
dig efficiënte op SWO gebaseerde benadering. De kracht van onze voorgestelde methode
ligt in zijn eenvoud en robuustheid, in termen van de grootte van het trainingsvenster,
zonder noodzaak tot het creëren van deelverzamelingen of drempelwaarden om tempe-
ratuurscenario’s te genereren. Uit de empirische casusstudies, uitgevoerd op de gege-
vens van de load forecasting-sessie van de Global Energy Forecasting-competitie 2014
(GEFCom2014-L), blijkt dat de voorgestelde methode beter presteert dan de twee beste
scenario-gebaseerde modellen met een vergelijkbare opzet.

Een ander belangrijk onderzoeksonderwerp is het effect dat de overgang naar her-
nieuwbare energiebronnen kan hebben op de algemene trend en volatiliteit van de elek-
triciteitsprijzen. Deze impact kan complex zijn, omdat er twee tegenstrijdige krach-
ten spelen. De marginale kosten van hernieuwbare energiebronnen zijn relatief laag of
zelfs negatief (vooral indien gesubsidieerd), daarom zou verhoogd gebruik van wind- en
zonne-energie resulteren in een neerwaartse trend in elektriciteitsprijzen. Daartegen-
over staat de onzekerheid omtrent de beschikbaarheid van wind- en zonne-energie, die
pieken in de marktprijs veroorzaakt. Met andere woorden, door de inherente fluctuaties
van hernieuwbare energiebronnen kan de integratie van dergelijke bronnen de stabili-
teit van het elektriciteitsnet in het gedrang brengen. De verhoogde prijsvolatiliteit zal
daardoor leiden tot extra marktrisico’s voor leveranciers en consumenten.

In de literatuur zijn talloze methoden geïntroduceerd om de volatiliteit van tijdreeks-
gegevens te bepalen. We illustreren echter dat de opkomst van niet-positieve prijzen
in het tijdperk van energietransitie heeft geleid tot nieuwe uitdagingen in de volatili-
teitsanalyse van de elektriciteitsmarkt. Dit nieuwe aspect van de markt zorgt ervoor dat
veel traditionele volatiliteitindices niet effectief zijn. Preciezer geformuleerd: de stan-
daardaanpak om over te schakelen naar logaritmische maten kan alleen worden uitge-
voerd nadat alle waarden boven nul met een bepaalde drempel zijn opgeschoven. Aan
de andere kant is prijsvolatiliteit afhankelijk van het prijsniveau, een effect dat zelfs meer
uitgesproken is wanneer de spotprijzen laag zijn. Daarom wordt de generaliseerbaar-
heid van conventionele benaderingen in twijfel getrokken, aangezien de volatiliteits-
maatregelen drastisch kunnen variëren met betrekking tot de hoogte van de bovenge-
noemde drempels. We pakken dit probleem aan door een nieuwe notie van volatiliteit
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te introduceren, die wordt verkregen door de tijdreeks te reconstrueren met behulp van
de SWO-techniek. Met andere woorden: we detecteren en verwijderen het determinis-
tische deel van de prijsgegevens met behulp van de SWO en beschouwen het stochasti-
sche deel (residuen) als een notie van volatiliteit. Met behulp van de matrixweergave van
de gegevens belichten we vervolgens het bewijs van het effect van hernieuwbare ener-
giebronnen op dagprijsprofielen in de Duitse day-aheadmarkt, d.w.z. de opkomst van
niet-positieve prijzen en ook verschuivingen van piekprijswaarden naar uren waarop
zonne-energie is minder beschikbaar.

Samenvattend bestuderen we in dit proefschrift op diepgaande wijze de SWO-techniek
en stellen we nieuwe toepassingen voor op het gebied van tijdreeksanalyse. Onze bevin-
dingen kunnen worden gebruikt als innovatieve componenten van toekomstige slimme
elektriciteitsnetwerken, die worden gekenmerkt door toenemende onzekerheid omtrent
zowel het vraag- als het aanbodgedeelte.





ACKNOWLEDGEMENTS

This thesis concludes a big chapter of my life. In the last couple of years, I have grown
both as a humble researcher and a person. I have learned to always keep an open mind
and embrace all the tough, challenging, rewarding and fulfilling moments that a PhD
can offer. I also have honed my hands-on mentality and drive to get things done.

I am indebted to many excellent collaborators and colleagues for their invaluable
time, feedback, and suggestions.

Foremost, I express my greatest gratitude to my promotor Prof. dr. ir. J.A. La Poutré,
and my co-promotor, Dr E.J.E.M. Pauwels for their constant help and guidance during
my PhD journey. Throughout the writing of this thesis, I have always received great feed-
back and comments from them.

Next, I would like to thank all the members of the Intelligent and Autonomous Sys-
tems (IAS) group at CWI for making it fun and exciting to come to work every day. My
special appreciation goes to Dr Brinn Hekkelman, Roland Saur and Xinyu Hu for their
friendship. I have also always benefited from extensive interactions and conversations
with Dr Tim Baarslag, Dr Hoang Luong and Dr Swasti R. Khuntia. I am also grateful to
my dear friend, Dr Wouter van Heeswijk for translating this thesis summary into Dutch.

And, last but not least, I would like to thank my family for their love and support. You
always have encouraged me to chase my dreams without fear. I am so grateful to have
you all in my life.

xiii





CONTENTS

Summary v

Samenvatting ix

Acknowledgements xiii

1 Introduction 5
1.1 Context and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Recasting time series as matrices . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Applying SVD to time series . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Period Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.2 Time series approximation. . . . . . . . . . . . . . . . . . . . . . 11
1.3.3 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.4 Pattern extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Challenges and Research Questions. . . . . . . . . . . . . . . . . . . . . 18
1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.6 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Singular Value Decomposition: A Recap 25
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1 SVD: Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.2 Singular values are eigenvalues of squared matrices . . . . . . . . . 27
2.2.3 SVD solves a minimisation problem . . . . . . . . . . . . . . . . . 28

2.3 Geometric Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.1 Incremental SVD: Computing Best Rank-1 Approximation. . . . . . 29
2.3.2 Intuitive continuity-based argument for SVD . . . . . . . . . . . . 31

2.4 Data Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5 Comparing SVD and PCA . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.1 PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5.2 SVD vs. PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6 Addendum: Addressing Computational Artefacts . . . . . . . . . . . . . . 38
2.6.1 SVD computations in Matlab . . . . . . . . . . . . . . . . . . . . 38
2.6.2 Sampling Random Orthogonal Matrices:

Gram-Schmidt orthogonalisation (QR decomposition) . . . . . . . 39
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1



2 CONTENTS

3 Properties of the SVD 41
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Singular value spectrum of random matrices . . . . . . . . . . . . . . . . 41

3.2.1 Preliminaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.2 Universality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Impact of aspect ratio on singular values . . . . . . . . . . . . . . . . . . 44
3.3.1 Problems with the SVR approach . . . . . . . . . . . . . . . . . . 44
3.3.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.3 Asymptotic ratio of singular values as function of growing aspect

ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4 Impact of the underlying periodic signal . . . . . . . . . . . . . . . . . . 49
3.5 Exploring some properties . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5.1 Impact of entries mean value . . . . . . . . . . . . . . . . . . . . 52
3.5.2 Impact of the drift on the first singular value . . . . . . . . . . . . . 54

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Regularised Matrix Factorization 61
4.1 Introduction and Motivation . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Regularisation for PCA-type factorisation . . . . . . . . . . . . . . . . . . 63

4.2.1 Regularised PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.2 Some special cases . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Regularisation for SVD-type factorisation . . . . . . . . . . . . . . . . . . 65
4.4 Computational Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.1 Gradient and Random Descent on the Unitary Domain . . . . . . . 68
4.4.2 Illustrative example: Smoothing a noisy matrix . . . . . . . . . . . 70

4.5 Earlier results, based on adhoc smoothing . . . . . . . . . . . . . . . . . 73
4.5.1 Finding peaks and valleys . . . . . . . . . . . . . . . . . . . . . . 73
4.5.2 Using SVD to highlight structure . . . . . . . . . . . . . . . . . . . 76
4.5.3 Structure-preserving smoothing . . . . . . . . . . . . . . . . . . . 78

4.6 Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.7 Background and Literature Review . . . . . . . . . . . . . . . . . . . . . 80
4.8 Conclusions and Future Research . . . . . . . . . . . . . . . . . . . . . . 81
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Hypothesis Generation using SVD 89
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2 Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3.1 Ensemble of regression trees . . . . . . . . . . . . . . . . . . . . . 92
5.3.2 Our proposed forecasting models . . . . . . . . . . . . . . . . . . 93
5.3.3 Singular value decomposition . . . . . . . . . . . . . . . . . . . . 95
5.3.4 Temperature scenario generation . . . . . . . . . . . . . . . . . . 96

5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.5 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104



CONTENTS 3

6 Volatility Quantification 107
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.2 Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2.1 Day-ahead Auction Spot Market . . . . . . . . . . . . . . . . . . . 109
6.3 Matrix decomposition using SVD . . . . . . . . . . . . . . . . . . . . . . 111
6.4 Quantifying the daily volatility . . . . . . . . . . . . . . . . . . . . . . . 112

6.4.1 Wavelet decomposition . . . . . . . . . . . . . . . . . . . . . . . 112
6.4.2 Volatility quantification . . . . . . . . . . . . . . . . . . . . . . . 115

6.5 Quantifying the hourly volatility . . . . . . . . . . . . . . . . . . . . . . 116
6.6 Extracting the underlying trends . . . . . . . . . . . . . . . . . . . . . . 120

6.6.1 The evolution of the daily profiles . . . . . . . . . . . . . . . . . . 120
6.6.2 The extreme values . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.6.3 The distribution of high and low price values . . . . . . . . . . . . 122
6.6.4 Zero and negative prices . . . . . . . . . . . . . . . . . . . . . . . 122

6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7 Conclusion 129
7.1 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.2 Concluding remarks and future work . . . . . . . . . . . . . . . . . . . . 131

A Appendix 133
A.1 Brief overview of matrix norms . . . . . . . . . . . . . . . . . . . . . . . 133
A.2 SVD solves a matrix norm optimisation problem . . . . . . . . . . . . . . 135
A.3 L2 matrix norms expressed in terms of singular values . . . . . . . . . . . 135
A.4 Gradients for Frobenius norm. . . . . . . . . . . . . . . . . . . . . . . . 136

A.4.1 Some special cases . . . . . . . . . . . . . . . . . . . . . . . . . . 136
A.5 Variance of product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
A.6 Singular values of the “fat" matrices. . . . . . . . . . . . . . . . . . . . . 137

A.6.1 Why are singular values inflated? . . . . . . . . . . . . . . . . . . 143
A.7 Perturbation of eigen-values and -vectors. . . . . . . . . . . . . . . . . . 145

A.7.1 Perturbation theory for matrices . . . . . . . . . . . . . . . . . . . 146

B Appendix 147
B.1 EPEX market and RES feed-in . . . . . . . . . . . . . . . . . . . . . . . . 147

B.1.1 Day-ahead wind energy feed-in (in GWh) . . . . . . . . . . . . . . 147
B.1.2 Day-ahead solar energy feed-in (GWh). . . . . . . . . . . . . . . . 147
B.1.3 Evolution of German day-ahead price during winter and summer . . 147
B.1.4 Day-ahead traded quantity (GWh) . . . . . . . . . . . . . . . . . . 153

Curriculum Vitæ 155

List of Publications 157



4 CONTENTS

Abdolrahman KHOSHROU

Dead yesterdays and unborn tomorrows,
why fret about it, if today be sweet.

Omar Khayyam



1
INTRODUCTION

1.1. CONTEXT AND MOTIVATION
In a world replete with observations (physical as well as virtual), many data sets come in
the shape of time series. In their simplest incarnation, time series represent an ordered
sequence of values of a variable at equally spaced time intervals. If the variable of interest
is basically stationary (e.g., the output of a stable production process), the global char-
acteristics of the time series do not change much. In such cases, one can describe the
time series processes in terms of a random variable with constant statistical moments.

However, time series that are related to human activities — such as data streams pro-
duced by smart infrastructures — often have a non-stationary structure. For instance,
whereas the electrical consumption of households will be similar throughout the week,
it will be markedly different from consumption on the weekend. Similarly, significant
gradual shifts will be noticeable over the course of a year.

This thesis focuses primarily on an alternative representation of the time series data
that offers some advantages when it comes to the analysis of these types of data. Specif-
ically, we will focus on representing time series as matrices in order to take advantage
of matrix decomposition methods. The rationale is straightforward: since matrix de-
composition provides principled methods to find low-rank approximations of a matrix,
they will also give rise to an approximation of the corresponding time series. However,
by their very nature, these methodologies are conceptually different from the standard
statistical techniques for averaging or summarizing time series.

In particular, in this thesis, we will focus on the singular value decomposition (SVD)
as a powerful, numerically stable matrix factorization technique which is then applied
to time series analysis. Therefore, the SVD is herein extensively studied to acquire a firm
understanding of how it performs. That in turn enables us to look at different applica-
tions in time series analysis from a fresh perspective.

For now, it suffices to announce the gist of SVD, but we will provide more details in
Chapter 2. Given any matrix A, SVD allows us to represent it as the product of three
matrices (also see Figure 1.1) :

A =U SV T (1.1)

5
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Figure 1.1: An overview of matrix decomposition using SVD, in matrix form corresponding to Eq. 1.1 (top) and
dyadic form corresponding to Eq. 1.2 (bottom).

where U and V have orthonormal columns, and S is essentially diagonal. Because the
diagonal matrix is located between the orthogonal matrices, Eq. (1.1) can be expanded
as the following simple sum:

A =
r∑

i=1
σiUi V T

i , (1.2)

where Ui ,Vi are the i -th columns of U and V , respectively. Chapter 2 explains the SVD
method in details.

1.2. RECASTING TIME SERIES AS MATRICES
To see how matrix decomposition can be applied to time series analysis, let us start with
the simplest conceivable example. Suppose we have a perfectly periodic signal (e.g., a
pure sine wave) which is sampled at some (large) multiple of the wavelength. Suppose
in addition that we observe q (identical) cycles, with each cycle having p sample points.
Let us register the observations during one cycle in the p-dim vector p. For reasons that
will become clear shortly, let us re-arrange the times series as a matrix, with each cycle
in a separate column (from now on we assume that vectors are columns, see Figure 1.2).
In that case, we can express the data concisely as data matrix A (denoting the column
vector 1q = (1,1, . . . ,1)T ):

A = [
p,p, . . . ,p

]︸ ︷︷ ︸
q cycles

= p1T
q (1.3)
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A = 

a1 a2 a3

a1 a2 a3 

Figure 1.2: Turning a periodic signal into a matrix. The data of each successive period are stacked next to each
other as columns of the matrix.

Now suppose that we are dealing with a time series that still has a clear and fixed period,
by which we mean that the length of each cycle is constant throughout the observed time
window (e.g., due to diurnal activities). The amplitude, however, can vary significantly
and erratically from cycle to cycle. This type of time series is often encountered in smart
infrastructures. As a case in point, consider traffic data [1]:

• These data show fixed periods of 24 hours (due to human activity);

• Excluding weekends, the shape of the observed patterns is similar, reflecting pat-
terns in human activity (e.g., schools and businesses start at a certain time every
morning);

• However, the amplitude could differ from day to day: e.g., depending on the weather
— which to a first approximation is stochastic;

Pursuing the stance taken by Eq. (1.3) we represent such a variable-amplitude as:

A = pqT (1.4)

where the q-dimensional vector q now summarizes the amplitude information.
In fact, it is customary to recast the p and q vectors as unit vectors and collect the

factored-out amplitudes in a single coefficient (customarily denoted as σ):

A = pqT =σuvT where u = p/||p||, v = q/||q|| and σ= ||p|| · ||q||. (1.5)
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Figure 1.3: A toy example of a noisy time series (blue) that has 10 cycles with length 50. The low-rank approxi-
mation (see main text for more details) is drawn in red.

For an example of such a time series, see Figure 1.3. The noisy time series (blue) has
cycles of length p =50, but the amplitude of each cycle varies erratically.

Finally, real data are frequently noisy, so a more appropriate representation of the
data matrix A would be:

A =σuvT +εZ (1.6)

where Z has the same size as A and represents independent unit-variance (Gaussian)
noise, while ε determines the noise amplitude. Notice that in general, adding a noise
matrix will inflate the rank rk(A) from rank 1 to full rank. However, as long as the noise is
small with respect to the signal, the matrix is essentially — in a sense that will be made
precise later on in Section 1.3 — still a rank-1 matrix. Therefore, we have constructed a
data matrix A that is essentially rank-1 as the superposition of a pure rank-1 matrix and a
(small amount of) random noise. In what follows we will take the complementary view:
take a given data matrix, and decompose it into a rank-1 (or more generally, low rank)
approximation and some remaining noise.

Up to this point, the examples are artificial but throughout most of this thesis, we
will take the perspective of smart energy systems applying data-driven approaches to
analyse time series data generated by this type of smart infrastructures that often contain
underlying patterns that facilitate low-rank representations.

Figure 1.4 illustrates an example of one year worth of price and load data (Top),
alongside their alternative representation (Bottom). The latter plots were obtained by
recasting each time series into a matrix of size 24×365. In Chapter 4, we will elaborate
on this and put these visual impressions on a more sound, mathematical footing.

1.3. APPLYING SVD TO TIME SERIES
In the previous section, we have indicated how we can recast a time series as a matrix.
The reason for this alternative representation is to take advantage of matrix decompo-
sition techniques to extract useful information from data. In this thesis, we will mainly
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Figure 1.4: Top: time series of hourly solar (left) and wind (right) energy feed-in. Bottom: Matrix representation
of the derivatives of the solar (left) and wind (right) data. For full description of the data and the methodology
see Chapter 4.

focus on the following:

• Period extraction

• Approximation

• Visualisation

• Pattern extraction

In what follows we will look at each of these applications in slightly more details.

1.3.1. PERIOD EXTRACTION
To handle period estimation for such aforementioned time series, the authors in [2] rea-
soned as follows: If we have a noiseless time series with periods that are identical in
shape but possibly vary in amplitude, it could be recast as the rank-1 matrix in Eq. (1.4).
Hence we could determine the period by reshaping the time series as a matrix with dif-
ferent dimensions (i.e., number of rows and columns) until we hit upon a matrix that has
rank 1. The corresponding number of rows would correspond to the sought-after period.

In practical applications, however, it is rare to come across time series that yields a
data matrix of this exact simple form. Therefore, it is more realistic to think of Eq. (1.5)
as the first term in an expansion:

A =σ1u1vT
1 +σ2u2vT

2 + . . . (1.7)
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Figure 1.5: Determining time series period based on SVR. The input time series (top panel) is reshaped in
matrices of different column-length (middle panels). For each of these matrices we compute the SVR = σ1/σ2
and plot it against the column size (p). The actual time series period produces a (dominant) peak in the SVR-
curve (bottom panel).

Worth to be noted that the smaller the amount of noise is, the closer Eq. (1.7) is to
Eq. (1.5). The factorization in Eq. (1.7) can be efficiently computed using the singular
value decomposition (SVD – for a recap of the important results, see Chapter 2). For
such an approximation to make sense, we assume that the signal (captured by the first
term) dominates the noise (captured by the subsequent terms). Mathematically, this
amounts to the assumption that σ1 Àσ2, or equivalently σ1/σ2 À 1. This latter expres-
sion is called the singular value ratio (SVR). This observation was the starting point for
the authors in [2, 3] who proposed the following simple procedure for period extraction
(also see Figure 1.5):

• For a given time series of length n, rearrange the data as successive columns in a
matrix. For each length p of the column this produces a differently shaped matrix
of size p ×q where q = bn/pc1.

• For each different value of p, compute the SVD expansion in Eq. (1.7) and the cor-
responding SV R =σ1/σ2, for the corresponding matrix.

• When the dimension of the column corresponds with the actual underlying pe-
riodicity, there will be a peak in the SVR. Hence, by identifying the peaks in the
p −SV R plot, one can determine the periodicity.

1where [.] is the Greatest Integer Function.
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Figure 1.6: Illustrating alternative ways to quantify the periodicity of the signal in Figure 1.3. Left: FFT spec-
trum for time series in Figure 1.3. The highest spectrum indicates the number of cycles in the time series. As
can be seen in the aforementioned figure, it is 10. Right: Period extraction based on singular value ratio (SVR)
plotted as a function of the cycle length. The dominant SVR peak indicates the correct cycle length (50).

Comparing SVR and FFT for period extraction When introducing a new method for
period estimation it is only natural to ask oneself how it compares to standard methods
such as Fast Fourier Transform (FFT). Figure 1.6 illustrates the above methodology along
with the outcome of the FFT algorithm for the time series of Figure 1.3. It is evident that
SVR finds the correct period of the signal (p), whereas FFT finds the correct number of
cycles (q) which in turn leads to the correct p value.

Fourier transform, however, falls short when it comes to more complex time series,
especially with erratic behaviour. Figure 1.7 illustrates an example of a periodic signal
that is amenable to period extraction by SVR but not by FFT. In other words, the recon-
structed approximation need not be continuous. This produces high frequency noise
due to successive under and overshoots. The reason for that is the sign changes in the
amplitude that wreak havoc on the FFT spectrum, as can be seen in the left panel of
Figure 1.8, (it shows the FFT-spectrum for the time series in Figure 1.7). In fact, it turns
out that the FFT-power at 10 cycles (which is the correct number of cycles) is a relative
minimum rather than a maximum. However, p − SV R plot correctly shows a spike at
p = 50.

Another difference between approximations based on SVD and Fourier is the choice
of basis function used in the expansion. This will be addressed in the next section.

1.3.2. TIME SERIES APPROXIMATION

Fourier analysis decomposes a given signal into a fixed set of sine-waves with steadily in-
creasing frequencies. This works well for signals that are relatively slowly varying. How-
ever, if the signal includes jumps or swings, FFT needs to aggregate a large number of
terms in order to reach an acceptable accuracy. In contrast, the basis functions used in
the SVD approach are obtained from the data at hand, and are therefore be determined
in a data-driven fashion. The following example illustrates this observation.
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Figure 1.7: An example of a noisy more complex signal that has 10 cycles with length 50), but the amplitude of
each cycle varies erratically. The low-rank approximation (see main text for more details) is drawn in red.

Figure 1.8: Left: FFT spectrum for time series in Figure 1.7. The spectrum fails to identify the correct number
of cycles (which is 10). Right: Period extraction based on singular value ratio (SVR). There is a clear peak that
the correct cycle length (which is 50).

EXAMPLE: BURSTS WITH EXPONENTIAL DECAY

The left panel of Figure 1.9 provides an example of a noisy periodic time series with sharp
up-swings followed by exponential decays. In this example the underlying signal has a
single and constant wavelength λ with exponentially decaying bursts that are repeated
at the beginning of every wavelength:

x0(t ) = exp(−αt/λ) 0 ≤ t ≤λ

To this uncorrupted signal we add various amounts of Gaussian noise:

x(t ) = xo(t )+σw(t ) , w(t ) ∼ N (0,σ2) i .i .d

Because of the burst-like nature of the signal, Fourier analysis is not well-suited for
signal reconstruction in this case. The right panel of Figure 1.9 illustrates the power spec-
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Figure 1.9: Left: Burst-like signal with exponential decay, wavelength p = 100, amplitude = 1, Gaussian noise
std = 0.05. Right: The corresponding Fourier power spectrum. The slow decay of the power spectrum is an
early indication that approximation might be problematic

trum density (PSD) of the aforementioned time series. The slow decay of the power spec-
trum implies that FFT is not well suited to recover the underlying patterns of such time
series. That is the prime motivation in many applications to search for more data-driven
methods.

Figure 1.10 provides examples of the reconstruction of the aforementioned time se-
ries using the Fast Fourier Transform (FFT) approach with a different number of com-
ponents. It is evident that FFT, in low-order approximations, is incapable of fully recon-
structing the signal due to the burst-like shape of the signal. The left panel of Figure 1.11
illustrates the residuals of the FFT based approach with 9 components. The spikes in this
figure indicates that 9 components were not enough for the FFT to be able to fully cap-
ture the high-frequency burst-like shape of the time series. A comparison of the afore-
mentioned residuals with a normal distribution is provided on the right panel.

Figure 1.12 illustrates the first two left and right singular vectors (obtained by recast-
ing the original time series as a matrix and then applying the SVD). We will discuss the
SVD approach in more detail in Chapter 2. The rank-2 SVD-based reconstruction of the
time series along with its residuals is illustrated in Figure 1.13. The corresponding resid-
uals for this rank-2 reconstruction are presented in Figure 1.14. As can be seen on the
right panel the residuals nicely adhere to the normal distribution.

Whereas Fourier decomposes all signals into sine waves, this is not the case for SVD.
Complicated waves will give rise to complicated initial profiles. Put differently, whereas
low-order approximations based on Fourier will be smooth and clearly sinusoidal, low-
rank SVD can be arbitrarily complicated. This is already borne out in the example in
Figures 1.10 and 1.12.

1.3.3. VISUALIZATION

In the previous section, we explained how reshaping a time series as a matrix suggests an
alternative way to determine the periodicity. Furthermore, there are additional advan-
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Figure 1.10: Signal reconstruction for the time series on the left panel of Figure 1.9. Restricting the number of
Fourier components to 3, 5, 9 and 50 fails to capture the discontinuous nature of the bursts.

tages of such alternative representation. This change of viewpoint has two important
applications:

• Representing time series as images allow one to visually integrate patterns across
longer time spans, and hence improves the discriminatory power.

• Recasting such time series as matrices also suggest drawing on matrix decompo-
sition theorems to elucidate the underlying structure by constructing approxima-
tions which are more tightly linked to the structure of the time series.

The SVD factorization suggests a straightforward method to smooth time series in such a
way that the overall structure is preserved. Figure 1.15 provides another example of how
SVD can be used to elucidate the underlying patterns in the data. Chapter 4 provides a
detailed description of such a technique. For a given noisy time series, one constructs
the corresponding data matrix A and then applies SVD to construct a low-rank approx-
imation Ar which is then re-expanded as time series. This is illustrated in Figure 1.7
where a smoothed (red) based on a rank-2 approximation is constructed for the noisy
signal (blue).



1.3. APPLYING SVD TO TIME SERIES 15

0 200 400 600 800 1000

number of samples

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Residuals for FFT
reconstructed with 9 components

-4 -3 -2 -1 0 1 2 3 4

Standard Normal Quantiles

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Q
u

a
n

ti
le

s
 o

f 
In

p
u

t 
S

a
m

p
le

QQ-plot for FFT-9 residuals

Figure 1.11: Left: The residuals and its distribution compared to a normal distribution for a FFT-based recon-
struction with 9 components As expected due to the burst-like shape of the signal FFT could not fully capture
the pattern of the original time series. Right: QQ-plot of the residuals. Due to the spikes, the residuals are not
fully normally distributed.

Figure 1.12: Burst-like signal with exponential decay, wavelength = 100, amplitude = 1, Gaussian noise std =
0.05. The extracted profile (top left) clearly shows the exponentially burst profile, while the corresponding
amplitudes (top right) indicate that the profile is repeated with constant strength. The second profile (bottom
left) looks like pure noise, an impression further corroborated by the randomly distributed amplitudes (bottom
right).
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Figure 1.13: SVD-based rank-2 reconstruction of the time series. The details of the SVD is discussed in Chap-
ter 2.
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Figure 1.14: Left: Residuals for the SVD-based rank-2 reconstruction of the time series. In contrary to the FFT
where even by considering 9 components the reconstruction was not satisfactory (see Figure 1.11), here a rank-
2 reconstructed time series accurately captures the underlying pattern of the time series. Right: The residuals
are almost fully normally distributed.
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1.3.4. PATTERN EXTRACTION
Figure 1.16 provides an illustrative example of the SVD decomposition. The top left
panel shows a noisy zero-mean block signal of length n = 1000 with a pronounced period
p = 100 and q = 10 full cycles. In addition to the noise, there are three irregularly occur-
ring spikes. After recasting this time series as a 100×10 matrix A, we then apply the SVD
algorithm to obtain A =U SV T where S is a 100×10 “rectangular diagonal” matrix with
the 10 singular values on its main diagonal. The top right panel shows those ten singular
values, clearly illustrating that all except the first two are negligible, which means that the
matrix (and therefore the time series) can be accurately represented by truncating the ex-
pansion in Eq. (2.5) after the first two terms, i.e., rank-2 approximation (see Figure 1.17).
Finally, the bottom panel of Figure 1.16 displays the first three columns of U (left) and V

Figure 1.16: SVD application to pattern-extraction in noisy block signal. Top left: Original data of noisy block
signal with period 100. In addition to the noise there are three irregularly occurring spikes. Top right: The 10
singular values for SVD with period p = 100. Clearly, only the two first are significant and σ1 Àσ2 confirming
that p = 100 corresponds to a valid periodicity. Bottom: The first three columns of U (left) and V (right).

(right), respectively. As they correspond to the most significant singular values, they are
most important for the reconstruction of the signal. The U -columns cover one cycle and
can be interpreted as successive profiles needed to reconstruct a generic cycle. In that
sense, they are analogous to various trigonometric basis functions in Fourier analysis.
The V -columns, on the other hand, specify the amplitudes with which these basis func-
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tions need to be combined in order to reproduce the individual cycles observed in the
data. Not surprisingly, the main profile (U1 top left) reflects the step-like behaviour seen
during each cycle. As the amplitude of each of these steps is essentially constant, the 10
V1-entries displayed in the top-right panel show little variation. The U2 profile (middle,
left) captures the shape of the additional spikes that occur at irregular intervals. The pos-
itive values in the corresponding V2-coefficients (middle, right) clearly indicate in which
intervals these spikes occur. Finally, the erratic appearance of both U3 and V3 is a further
indication (in line with σ3 ≈ 0) that all structural information has been extracted from
the signal.

Figure 1.17: Top: Original (blue) and rank-2 approximation (red) of the block-signal. Bottom: Residuals with
respect to the approximation.

1.4. CHALLENGES AND RESEARCH QUESTIONS
So far in this chapter, we have outlined the essential theoretical concepts of the SVD that
are used throughout this thesis. We also have introduced the research domain and main
motivations of this thesis. In this section, we delve deeper into specific issues that arise
in time series analysis, and the SVD in its traditional form. We further distinguish vari-
ous problems in energy market analysis. In particular, we outline the following research
questions:
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Research Question 1 As explained in section 1.3.1 the authors in [2] introduced the
idea of using the ratio of the two largest singular values (i.e., the so-called singular value
ratio SVR) to determine the period of a time series (signal). However, they did not re-
alise that the SVR depends on the signal mean. As a consequence, thresholding the SVR
value is meaningless unless we take this effect into account. This is the topic of our first
research question:

Q1: How does the mean of a signal affect the singular value ratio SVR?

Chapter 2 provides a thorough understanding of the SVD result and its geometrical in-
terpretation. This chapter also contains a number of examples of how the position and
orientation of the same cloud of points from the origin have led to different SVD results.
After providing a background on random matrices in Chapter 3, we have delved deeper
into this question and have measured the effect of distance from the origin on the sin-
gular values, in an example.

Research Question 2 In the above setup, the number of columns corresponds to the
number of observed cycles and will therefore increase as more data are acquired. Indeed,
as each column represents the data from one period, observing more periods gives rise to
additional columns, making the matrix “fatter” and thus increasing the aspect ratio (i.e.
number of columns over the number of rows). Therefore, it is natural to ask how changes
in the aspect ratio will affect the results. Many math papers focus on square matrices,
but for applications to time series, it is important to understand the more general case
of rectangular matrices. This is addressed by the next research question:

Q2: How does the aspect ratio of a matrix affect the singular value ratio
(SVR)?

In Chapter 3, we have extended the work in earlier papers by initiating a more systematic
analysis of these effects.

Research Question 3 Matrix factorisation techniques such as principal component
analysis (PCA) and singular value decomposition (SVD) are both conceptually simple
and effective. However, it is well-known that they are sensitive to noise and outliers in
input data. One way to mitigate this sensitivity is to introduce regularisation terms. In
order to do this, in Chapter 4 we hark back to the interpretation of SVD and PCA in terms
of low-rank approximation. Adding regularisation terms to these functionals gives rise
to new but related minimisation problems.

• Q3 a: How can we develop a regularized version of the PCA problem?

This problem is addressed in Section 4.2.

• Q3 b: How can we develop a regularized version of the SVD problem?

This problem is addressed in Section 4.3.
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Research Question 4 Scenario-based probabilistic forecasting models have been ex-
tensively explored in the literature in recent years. A particular application of such mod-
els is in the energy sector, where e.g., having the distribution of the energy consump-
tion for the coming days is desired. A decisive variable in predicting the energy de-
mand (target variable) is the temperature data (an attribute or a predictor) [4]. There
are mainly three practical and popular methods for generating temperature scenarios,
namely fixed-date, shifted-date, and bootstrap approaches [5]. Nevertheless, these meth-
ods have mostly been used on an ad-hoc basis without being formally compared or
quantitatively evaluated.

Q4: In scenario-based probabilistic forecasting problems, how can we sim-
ulate realistic profiles for an independent variable?

In Chapter 5 we propose a generic, data-driven and computationally efficient SVD-based
approach to simulate different scenarios.

Research Question 5 Volatility principally refers to random fluctuations of a time
series about its mean or expected value. Generally speaking, in financial time series data
analytics, volatility is measured by the standard deviation of the logarithmic return or
a derivation of that [6]. In the literature, numerous methods have been introduced to
determine the volatility of the time series data. However, the emergence of non-positive
price values in the energy transition era has introduced new challenges in the market
volatility analysis.

Q5 a: How can we quantify the volatility of the electricity price time se-
ries data with zero or negative prices?

In the first part of Chapter 6, we will address this problem and propose a notion of
volatility that can handle negative prices. Furthermore, along with the increase in the
utilization of intermittent renewable sources, short-term electricity market studies are
becoming increasingly popular. Therefore, in the final part of this chapter we address
the following question:

Q5 b: Has the stimulation of renewable energy sources led to a notice-
able changes in the (day-ahead) electricity market?

In the final part of Chapter 6, we will analyse the evolution of the day-ahead electricity
market in Germany in 2006-2016.

1.5. THESIS OUTLINE
The rest of this thesis is structured as follows. The SVD technique is the cornerstone of
this thesis. Therefore, we first in Chapter 2 review the relevant theorems underpinning
this method. We then delve deeper into the geometrical interpretation of the SVD. This
chapter also provides a number of examples of how the position with respect to the ori-
gin and the alignment of data points affects the singular vectors and the singular values.
That in turn enables us to have an intuitive answer for Research Question 1. However,
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more in-depth discussions over the first two research questions are provided in the next
chapter.

For most applications of the SVD in various fields, it is vital to understand the proper-
ties of SVD of a matrix whose entries show some degree of random fluctuations. There-
fore, in order to determine how the noise level affects the singular value spectrum, it is
essential to study the singular value decomposition of random matrices. Having pro-
vided a background in random matrices, Chapter 3 addressed Research Question 1 and
Research Question 2 in full detail.

The SVD and PCA techniques are both conceptually simple and effective. However,
it is well-known that they are sensitive to the high level of presence of noise and outliers
in input data. In the literature, some modifications of the original algorithms of SVD
and PCA have been proposed to alleviate the effect of these disturbances. In particular,
one way to mitigate this sensitivity is to introduce regularisation terms. To this aim, in
Chapter 4 we first hark back to the interpretation of PCA and SVD in terms of low-rank
approximations. We then have offered solutions to Research Question 3a and Research
Question 3b in Section 4.2 and Section 4.3, respectively.

With the growing integration of renewable energy sources (RES) such as wind and
solar energy into the power grid, balancing the grid has become more challenging. It is
mostly due to the inherently intermittent nature of RES, on the one hand, and shortcom-
ings in bulk energy storage systems, on the other. Therefore, studies on scenario-based
probabilistic energy production and demand forecasts have gained momentum, as they
are highly valuable from both a technical and an economic point of view [7]. Chapter 5
proposes a generic framework for probabilistic load forecasting using an ensemble of
regression trees. This chapter proposes a solution to Research Question 4 by generating
various examples of a predictor (temperature in this case) using the SVD results. The
generated samples are then used in an ensemble of regression trees to obtain the distri-
bution of the target variable (load profile) in future times.

Chapter 6 is dedicated to Research Question 5, i.e., what effect the transition of en-
ergy to RES can have on the overall trend and also the volatility of the electricity prices.
In this chapter, we exemplify how the emergence of zero or even negative price values in
the day-ahead market in Germany in recent years has introduced new challenges in the
electricity market volatility analysis. More precisely, in this new market, the traditional
approaches to switch to logarithmic measures can only be done after shifting up all val-
ues above zero by a certain threshold. However, price volatility has a dependence on the
price level, which is even more pronounced when the spot prices are low. Therefore, the
aforementioned pre-processing step can affect the final outcome and its generalizability.
The first part of this chapter offers a solution to Research Question 5a by introducing a
new notion of volatility which was obtained by reconstructing the time series using the
SVD. Our observations indicate price volatility reduction, in the day-ahead market, in
the years 2006-2016. The second part of this chapter addressed Research Question 5b
and provided pieces of evidence of the effect of renewables on daily price profiles – the
emergence of non-positive prices and also shifts of peak price values to hours where so-
lar is less available. A summary of this thesis along with some future research directions
is provided in Chapter 7.
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3. Abdolrahman Khoshrou, André Dorsman, Eric J. Pauwels. The evolution of elec-
tricity price on the German day-ahead market before and after the energy switch.
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1. Abdolrahman Khoshrou, Eric J. Pauwels. Data-driven pattern identification and
outlier detection in time series. 2018. Springer, Cham - Science and Information
Conference.
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man day-ahead spot market in the period 2006 through 2016. 2018. IEEE - Power
& Energy Society General Meeting (PESGM).

3. Abdolrahman Khoshrou, André Dorsman, Eric J. Pauwels. SVD-based Visualisa-
tion and Approximation for Time Series Data in Smart Energy Systems. 2017.
IEEE - Innovative Smart Grid Technologies Conference Europe (ISGT-Europe).

4. Abdolrahman Khoshrou, Eric J Pauwels. Propagating uncertainty in tree-based
load forecasts. 2017. IEEE - Electrical and Electronics Engineering (ELECO), 2017
10th International Conference.

5. André Dorsman, Abdolrahman Khoshrou, Eric J. Pauwels. The influence of the
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many. 2016. ISINI conference in Groningen.

2Part of this work was published at Belgian-Netherlands Artificial Intelligence Conference (BNAIC) 2021.



REFERENCES 23

REFERENCES
[1] V. Verendel and S. Yeh, Measuring traffic in cities through a large-scale online plat-

form, Journal of Big Data Analytics in Transportation 1, 161 (2019).

[2] P. P. Kanjilal and S. Palit, On multiple pattern extraction using singular value decom-
position, IEEE transactions on signal processing 43, 1536 (1995).

[3] P. P. Kanjilal and S. Palit, The singular value decomposition—applied in the modelling
and prediction of quasi-periodic processes, Signal processing 35, 257 (1994).

[4] A. Khoshrou and E. J. Pauwels, Short-term scenario-based probabilistic load forecast-
ing: A data-driven approach, Applied Energy 238, 1258 (2019).

[5] T. Hong et al., Energy forecasting: Past, present, and future, Foresight: The Interna-
tional Journal of Applied Forecasting , 43 (2014).

[6] Financial chaos theory, http://quantonline.co.za/Articles/article_
volatility.htm.

[7] T. Hong and S. Fan, Probabilistic electric load forecasting: A tutorial review, Interna-
tional Journal of Forecasting 32, 914 (2016).

http://quantonline.co.za/Articles/article_volatility.htm
http://quantonline.co.za/Articles/article_volatility.htm




2
SINGULAR VALUE

DECOMPOSITION: A RECAP

2.1. INTRODUCTION
The singular value decomposition (SVD) technique is the cornerstone of this thesis. We
hence start this chapter by reviewing the relevant theorems underpinning the SVD method.

Before proceeding with that, however, let us first recall the definition of a (multiplica-
tive) group of orthogonal matrices of dimension n:

O (n) := {
U ∈ Rn×n |UU T = In =U T U

}
(2.1)

Notice that from the definition it immediately follows that

det(U ) =±1 (2.2)

since
det(UU T ) = det(U )det(U T ) = (det(U ))2 = det(In) = 1.

This observation motivates the introduction of a subgroup of special orthogonal matri-
ces of unit determinant:

SO(n) := {
U ∈ Rn×n |UU T = In =U T U and det(U ) = 1

}
(2.3)

2.2. SINGULAR VALUE DECOMPOSITION
As we exemplified earlier in Chapter 1, the FFT works in an idealized setting. Further-
more, the SVD, in a sense, generalizes the concept of FFT. In other words, SVD allows us
to transform or tailor a coordinate system, based on the data itself (data-driven). It is a
widely adaptive method and is mostly based on simple and interpretable linear algebra.
As a result of that, every time we have a matrix of data, we can compute the SVD and
address different problems based on that [2]. The following sections provide a detailed
description of the SVD and its geometrical intuitions.

Parts of this chapter have been published in [1].
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2.2.1. SVD: MAIN RESULT
We herein recall the well-known SVD technique and develop an intuition for how to ap-
ply it in the following chapters. For more details, we refer to standard textbooks such
as [3, 4].

Theorem 1 (Singular Value Decomposition). Any real-valued p×q matrix A can be fac-
torized into the product of three matrices:

Ap×q =Up×p Sp×qV T
q×q (2.4)

where U ∈ O (p) and V ∈ O (q) are orthogonal, and S is a p × q diagonal matrix where
the elements on the main “diagonal” (so-called singular values ) are non-negative (i.e.,
σi := Si i ≥ 0 for 1 ≤ i ≤ min(p, q)).
Assuming that the rank r k(A) = r ≤ min(p, q), we can sort the singular values such that

σ1 ≥σ2 ≥ . . . ≥σr > 0 =σr+1 = . . . =σmin(p,q)

and recast Eq. (2.4) as (see Figure 2.1, bottom panel, for an “economic" expansion of SVD.)

A =
r∑

i=1
σiUi V T

i where Ui ,Vi are the i -th columns of U and V , respectively. (2.5)

For the singular values sorted as above, we then introduce the short-hand notation U(1:k)

and V(1:k) to denote the matrix comprising the first k columns of U and V , respectively:

U(1:k) := [U1,U2, . . . ,Uk ] and V(1:k) := [V1,V2, . . . ,Vk ]

In this notation, Eq. (2.5) can be expressed concisely as (see Figure 2.1, top panel):

A =U(1:r ) di ag (σ1, . . . ,σr )V T
(1:r ) (2.6)

To appreciate the significance of Theorem 1, it is helpful to highlight its geometric
interpretation. Recall that any p ×q matrix A gives rise to a corresponding linear trans-
formation A : Rq −→ Rp that maps the standard basis in Rq into the columns of A:

Aek = Ak where ek = (0,0, . . . ,0,1,0, . . . ,0)T

Roughly speaking, the SVD theorem, therefore, tells us that it is always possible to select
an orthonormal basis in Rq (columns of V ) that is mapped (up to non-negative scaling
factors, i.e., the singular values) into an orthonormal basis in Rp (columns of U ). This is
immediately obvious from Eq. (2.5):

AV` =
r∑

k=1
σkUkV T

k V` =
r∑

k=1
σkUkδk` =σ`U`

where δk` is a Kronecker delta function. It is worth noting that insisting on the orthog-
onality of V (V T V = Iq ) is not restrictive. Indeed, a linear transformation is completely
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Figure 2.1: An overview of matrix decomposition using SVD, in matrix form (top) and dyadic form (bottom).

and uniquely determined by specifying its effect on any basis; hence, there is no loss of
generality by insisting on the orthonormality of this basis.

However, the non-trivial message of this theorem is that orthonormal bases (V ) can
be chosen in such a way that their image (transformation) U under A is also orthonor-
mal (up to non-negative scaling). Furthermore, in a generic case, where all the singu-
lar values are different, the SVD is unique up to an arbitrary relabeling of the basis-
vectors and a simultaneous sign-flip of the corresponding columns in U and V , i.e.,
(U`,V`) → (−U`,−V`) for any number of columns.

2.2.2. SINGULAR VALUES ARE EIGENVALUES OF SQUARED MATRICES

From A =U SV T it follows that AT =V SU T and consequently1:

A AT =U SST U T and therefore (A AT )U =U (SST ) (2.7)

This means that the columns of U are eigenvectors of the positive definite, symmetric
matrix A AT , with positive eigenvalues:

λi (A AT ) =σ2
i

1S is diagonal, hence S = ST .
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A similar observation can be made for V which turn out the be the eigenvectors of AT A
and again:

λi (AT A) =σ2
i

Because the matrices A AT and AT A are symmetric and semi-positive it follows that all
the eigenvalues are real and non-negative.

In summary, we derive the following useful relationship between the singular values
of a matrix A ∈Rp×q and the eigenvalues of the related matrices A AT and AT A:

σ2
i (A) =λi (A AT ) =λi (AT A) (2.8)

or equivalently:

σi (A) =
√
λi (A AT ) =

√
λi (AT A) for i = 1 : min(p, q) (2.9)

where i = 1 : min(p, q).
For a given matrix A we use the notation σi (A) or λi (A) to denote the i -th (in de-

scending order) singular or eigenvalue, respectively. If there is no danger of confusion,
the explicit reference to the matrix will be suppressed.

2.2.3. SVD SOLVES A MINIMISATION PROBLEM

The importance of the SVD result is the following well-known theorem (more details can
be found in [5, 6]).

Theorem 2 (Eckart-Young-Mirsky Theorem2). Let us consider a p × q matrix A with
rank r k(A) = r ≤ min(p, q). For k < r , finding the rank-k matrix Ak that is closest to A in
(Frobenius) norm gives rise to the following constrained minimisation problem:

min
Ak

||A− Ak ||2 subject to r k(Ak ) ≤ k

The solution to this problem is obtained by truncating the SVD expansion Eq. (2.5) after
the k-th largest singular value:

Ak =
k∑

i=1
σiUi V T

i =U(1:k) di ag (σ1, . . . ,σk )V T
(1:k) (2.10)

Recall that a rank-k matrix of size p × q can always be written as a product Ak =
PQT where P ∈ Rp×k and Q ∈ Rq×k are matrices of full rank k. In this factorisation,
there is no loss of generality in requiring QT Q = Ik . In fact, it is necessary to remove
indeterminacy due to arbitrary but trivial rescalings such as P 7−→ r P while Q 7−→ (1/r )Q
(with r 6= 0), and the like. We will discuss this alternative formulation of Theorem 2 as
the factorisation result in Theorem 3.

2Also referred to as the optimal low rank approximation theorem.



2.3. GEOMETRIC INTERPRETATION 29

2.3. GEOMETRIC INTERPRETATION
The following section describes important mathematical properties of SVD including
geometric interpretations of the unitary matrices U and V.

2.3.1. INCREMENTAL SVD: COMPUTING BEST RANK-1 APPROXIMATION
The general SVD result can be obtained incrementally, by constructing the best rank-1
approximation, then subtracting this approximation and repeating this procedure. This
follows directly from Eq. (2.5) which can be recast as:

A−σ1U1V T
1 =

r∑
i=2

σiUi V T
i (2.11)

which shows that the next term in the expansion can be obtained by computing the SVD
of the residual A−σ1U1V T

1 . Using this insight, it follows that we can focus on computing
the first singular value and vector. This is helpful as it turns out that the first singular
value and vectors have a straightforward interpretation which we will explain next (also
see Figure 2.2). To extract the first singular value and vectors of A we proceed as follows:

Figure 2.2: A geometric interpretation on how SVD recursively factorise a given matrix A.

• Assuming A is a p ×q matrix, the optimal rank-1 approximation A1 is of the form:

A1 =βpqT

where p and q are unit column vectors of size p and q respectively.
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• By virtue of Theorem 2, the p-dimensional vector p can be determined uniquely
(up to a sign change) by constructing the regression line L passing from the origin
towards the p-dimensional points a1,a2, . . . ,aq . Denote the orthogonal projection
of ai onto the regression line by αi p.

• To determine the corresponding q we use the fact that the rank-1 matrix A1 maps
the standard unit vectors ei to αi p (for i = 1,2, . . . , q). Hence,

A1ei =βpqT ei =βqi p

From this it follows that

∀i = 1,2, . . . , q : αi =βqi

and consequently:

β2 =
q∑

i=1
α2

i since
q∑

i=1
q2

i = 1

• From this we can now explicitly determine q:

qi = αi

β
= αi√∑q

i=1α
2
i

Take-home message From the above derivation we conclude that the regression line
(through the origin) L essentially determines the rank-1 approximation A1 =βpqT :

1. p is the unit vector along the regression line L; this fixes the coefficients αi .

2. Singular value: β=
√∑

α2
i .

3. q is the unit vector proportional to (α1,α2, . . . ,αq ).

This observation has a number of important consequences:

1. The SVD does not solely depend on the shape of the point cloud, but also on its
position with respect to the origin. More precisely: if the position of the cloud
is large compared to its size (is far from the origin), the first singular vectors and
the corresponding singular value (and hence the rank-1 approximation) are deter-
mined by its position. However, when we shift it closer to the origin, the singular
vector switches adapting to the shape of the cloud. Figure 2.3 provides an illustra-
tive example of how moving further from the origin can drastically affect the first
singular vector.

2. The above reasoning would also suggest that movement on the line along with the
first singular vector away from the origin will not affect the 2nd singular value/vec-
tors (see Figure 2.4).

3. Figure 2.4 exemplifies why the ratio σ1/σ2 does not necessarily tell us something
about the shape (and therefore periodicity) of the point cloud (time series).
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Figure 2.3: A plain example of how the direction of the first (and higher order) singular vectors can change with
respect to the distance of the cloud of points from the origin.

Figure 2.4: Example where the position rather than the shape of the point cloud determines the ratio σ1/σ2.

2.3.2. INTUITIVE CONTINUITY-BASED ARGUMENT FOR SVD
When restricting our attention to the 2-dimensional case, it is easy to get a feel as to
why SVD holds. It also hints at why the result is less surprising than might seem at first
blush. The following is not meant as proof, but simply as an aid to intuition. Consider
Figure 2.5, we can make the following observations:

• Subfig 0: Consider an ortho-frame, i.e., orthonormal frame (red and green vector)
that is mapped under the linear transformation A to the non-orthonormal basis
on the RHS of the figure. Let us assume that the angle between the red and green
vectors is acute.

• Subfig 1: Now rotate the ortho-frame counter-clockwise over 90o to the new po-
sition. Notice that the red vector is now in the same position as the green vector
previously. This will also rotate the image of the ortho-frame to a new position.
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Figure 2.5: For more information, see main text, Section 2.3.2
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Let’s once again assume that during this rotation the angle in the RHS remains
(strictly) less than 90o (otherwise nothing remains to be proved).

• Subfig 2: We continue the rotation and use the same assumptions.

• Subfig 3: Executing a third 90o-rotation now puts the green vector of the ortho-
frame in the original position of the red vector, and the red vector in the previous
position of the green vector. This means that their images are known. The image
for the green vector is known in Subfig 0 and for the red vector in known in Subfig
2. And more importantly, assuming that the angles (between the image vectors) in
the previous moves were always less than 90o , it follows that it now must be in ex-
cess of 90o . Using the argument from continuity, we can conclude that somewhere
during the last rotation of the ortho-frame, its image subtended a right angle, ex-
actly what the SVD theorem implies.

2.4. DATA ALIGNMENT
One of the common pitfalls of the SVD is associated with misaligned data. Figures 2.7-
2.8 highlight the fact that SVD is geometric, meaning that it depends on the coordinate
system in which the data is represented. In other words, SVD is only generically invariant
to unitary transformations where only the inner products are preserved (see Figure 2.6).
This fact may be viewed as the reason for or against this method. First, the inner product
at the core of such matrix decomposition technique is essential for various insightful
geometric interpretations. Furthermore, the results of the SVD contain meaningful units
and dimensions. On the negative side, the SVD is liable to the alignment of the data.
In fact, the SVD rank of the matrix inflates drastically when “objects" in matrix data (a
certain pattern in data) translate, rotate, or scale, which severely constrains its use for
the cases where data has not been heavily pre-processed. In other words, in a given set
of coordinates, the SVD is unable to capture translations and rotations of the data.

2.5. COMPARING SVD AND PCA
Principal component analysis (PCA), also known as the Karhunen-Loève transform, is
a popular matrix decomposition technique that is used in diverse applications such as
dimensionality reduction, lossy data compression, feature extraction, and data visual-
ization [7].

There are two commonly used definitions of PCA that lead to the same algorithm.
PCA can be defined as the orthogonal projection of the data points onto a lower dimen-
sional linear space, known as the principal subspace, in such a way that the variance of
the projected data is maximized [8]. On a similar note, PCA can be defined as the lin-
ear projection that minimizes the average projection cost, defined as the mean squared
distance between the data points and their projections [9].

2.5.1. PCA
We herein consider the latter definition of PCA mentioned above, and investigate how it
relates to the SVD.
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Figure 2.6: Top: The singular value ratio stays relatively the same if the distance from the origin is the same,
regardless of the position of the cloud of points with respect to the origin (bottom).
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Figure 2.7: The evolution of σ1 and σ2 (top) and their corresponding ratio (bottom) while the cloud of points
moving on a circle around the origin. As expected, both singular vectors change depending on the alignment
and the position of the cloud with respect to the origin. The black vector is the direction of the first singular
vector and the yellow one is the direction of the second singular vector.
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Figure 2.8: A representation on how alignment of the could and its distance from the origin affects the singular
value ratio. In this figure cloud with φ=−120o has the highest σ1/σ2 ratio.

Theorem 3 (PCA-type factorisation). Assume that a p×q matrix A has rank r k(A) = r ≤
min(p, q). We now define the functional G(P,Q) as follow:

G(P,Q) = ||A−PQT ||2 (2.12)

and the corresponding constrained optimisation problem:

min
P,Q

G(P,Q) subject to r k(P ) = r k(Q) = k and QT Q = Ik (2.13)

where k < r . A solution to the above constrained minimisation problem (in P ∈Rp×k and
Q ∈Rq×k ) is given by (using the SVD notation given in Eq. (2.10)):

Q =V(1:k) and P =U(1:k) di ag (σ1, . . . ,σk ) (2.14)

hence:

PQT =
k∑

i=1
σiUi V T

i (2.15)

From Eq. (2.14) this it also follows that P T P is diagonal, but not necessarily equal to the
identity.

Note that if we drop the insistence on the diagonal form for P T P (i.e., P need no
longer be an orthogonal frame), then the solution is no longer unique. Indeed, by taking
any k ×k orthogonal matrix R with RT R = Ik = RRT , it is clear that P ′ = PR and Q ′ =QR
are also solutions. In this case: Q ′T Q ′ = RT QT QR = Ik but P ′T P ′ = RT P T PR = RT (SST )R
is in general a positive definite symmetric matrix.
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Figure 2.9: Confirmation that PCA and the SVD of the mean-subtracted data are the same (up to a sign change).

2.5.2. SVD VS. PCA
In a sense, SVD is equivalent to PCA in multivariate statistics, but in addition, is used
to generate low-dimensional representations for complex multidimensional time series.
SVD and PCA of a given matrix are related to one another through the covariance matrix.
In other words, if X =U SV T then for the covariance matrix we can write:

X T X =V SU T U SV T =V S2V T

now, if we multiply both sides by V , it yields:

(X T X )V =V S2

where V is the matrix of the eigenvectors of the matrix X T X and S2 is the diagonal matrix
of the eigenvalues.

• If the actual position of the point cloud matters, SVD is the better option; e.g., the
first singular vector is usually close to the centre of gravity;
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• When only the shape of the data cloud is of importance, then PCA is more appro-
priate.

Figure 2.9 implies the above-mentioned results. Shifting the data to the origin does not
change how the data points are positioned relative to each other. That is why the results
of PCA are unbiased with respect to the mean of the matrix.

2.6. ADDENDUM: ADDRESSING COMPUTATIONAL ARTEFACTS
In this thesis, we make extensive use of simulation and SVD-based computations. As a
consequence, accurate sampling from various matrix distributions is important. Through
comprehensive experiments, we have become aware of certain biases and artefacts that
are present in the implementations of the algorithms in Matlab and Python. Unless these
artefacts are remedied, they might introduce biases that invalidate ensuing results and
conclusions.

Figure 2.10: Left: Results (sum of the U vectors) from the original computations; Right: same results but with
random signs.

2.6.1. SVD COMPUTATIONS IN MATLAB
Some of the unexpected results might be the consequence of computational artefacts.
From the numerical evidence we have seen, it looks like the computational algorithms
have a bias towards the selection of certain singular vectors. This is illustrated in the fol-
lowing experiment: Generate a random 2×2 matrix A according to the normal and expo-
nential distribution. Since the columns of U (obtained by the SVD) form an orthonormal
basis in the plane we can easily depict the result graphically. Rather than showing both
vectors, we compute the sum as a 1-vector representation; all of these vectors are on thep

2 circle (see Figure 2.10). The results for the normal distribution are shown in red, and
for the exponential in blue. The raw output of the algorithm is shown on the left panel
of the figure. It shows clear artefacts in the distribution (especially for the exponential
results). If we randomize the U -vectors by assigning a random sign to them (i.e., ran-
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domly flipping them over) the results change dramatically and agree with expectations.
Similar results can be obtained in Python. Another manifestation of this is if we gener-
ate a random normal matrix A, and do the SVD A =U SV T then detU =+1 always while
detV =±1 with equal probabilities.

2.6.2. SAMPLING RANDOM ORTHOGONAL MATRICES:
GRAM-SCHMIDT ORTHOGONALISATION (QR DECOMPOSITION)

As pointed out earlier in Section 2.2.1, the definition of the singular vectors is deter-
mined up to a simultaneous sign change in the corresponding left- and right vector:
(U`,V`) → (−U`,−V`). This indeterminacy is exploited in various algorithms to assign
a preferred direction to singular vectors. One manifestation of this is apparent in various
QR decomposition algorithms (in MATLAB, and also in python). Specifically: applying
Gram-Schmidt orthogonolisation or using the QR decomposition in Matlab always pro-
duces frames with right-handed chirality (i.e., the determinant detQ =+1).
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3
PROPERTIES OF THE SVD

3.1. INTRODUCTION
In the previous chapters we argued that SVD can be used to estimate periodicity in time
series, as well as construct appropriate approximations for time series. The latter is
based on the assumption that a data matrix A can be decomposed as

A = A0 + Ar

where A0 is a low rank matrix that comprises all the useful signal information, whereas
the remainder term Ar collects the (relatively small) noise. For most of the applications
of SVD in various fields, it is important to understand the properties of the SVD of a
matrix whose entries show some degree of random fluctuations. Therefore, in order to
determine what the impact of noise will be on the singular value spectrum, it is useful
to study the singular value decomposition of pure noise matrices, i.e., random matri-
ces. This is the topic addressed in the following sections. Specifically, we address the
following topics:

1. The impact of the matrix aspect ratio (number of rows versus number of columns);

2. The impact of shifts of the mean of the underlying distribution as this will become
relevant in applications where a signal will in general have a non-zero mean.

3.2. SINGULAR VALUE SPECTRUM OF RANDOM MATRICES
In order to disentangle the impact of signal and noise, we first focus on the effect of
pure noise (i.e., random matrices). The spectral study of random matrices (i.e., matrices
for which the entries are independent, identically distributed (i.i.d.) random variables)
has been a very active research domain in recent years and uncovered a number of key
insights (see e.g., [2–4]).

Parts of this chapter have been published in [1].
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3.2.1. PRELIMINARIES
Let N be a random p×q matrix such that the individual entries are i.i.d, random variables
with zero mean and unit variance:

E(Ni j ) = 0 and V ar (Ni j ) = 1

As previously mentioned in Section 2.2.2, to compute the singular values of the given
matrix N , we are interested in the eigenvalues of either one of the following two sym-
metric, quadratic matrices:

Q(q) = N T N ∈Rq×q or Q(p) = N N T ∈Rp×p

Denoting by N i and Ni the i -th row or column of N , respectively, we observe that the
elements of Q(q) and Q(p) can be expressed as inner products of either rows and columns
of N ; i.e., the inner product of columns:

Q(q)
i j = Ni ·N j =


p∑

k=1
Nki Nk j i 6= j

p∑
k=1

N 2
ki i = j

(3.1)

and similarly (inner product of rows),

Q(p)
i j = N i ·N j =


q∑

k=1
Ni k N j k i 6= j

q∑
k=1

N 2
i k i = j

(3.2)

Since we are typically interested in what happens when we gather more data (i.e.,
q →∞), we will focus mostly on Q(p) as there are only p non-zero singular values, which
correspond to the p (square roots of the) eigenvalues of Q(p). From here on, we will drop
the superscripts for the Q-matrix as it will be clear from the context which one we are
using.

It then is straightforward to compute the first moments1:

E(Qi j ) =


q∑

k=1
E(Ni k )E(N j k ) = 0 i 6= j

q∑
k=1

E(N 2
i k ) = q i = j

(3.3)

and similarly:

V ar (Qi j ) =


q∑

k=1
V ar (Ni k )V ar (N j k ) = q i 6= j

q∑
k=1

V ar (N 2
i k ) =β2q i = j

(3.4)

1Here for Q =Q(p), similar results hold for Q(q).



3.2. SINGULAR VALUE SPECTRUM OF RANDOM MATRICES 43

Figure 3.1: The intuition of why the singular values of N are equal to the eigenvalues of Q.

where β2 :=V ar (N 2
i k ) is a common value since all variables are i.i.d.2

The above results can be recast in more compact matrix notation:

E(Q) = q Ip and V ar (Q) = q
(
(β2 −1)Ip +1p×p

)
(3.5)

Normalised version Notice that the above results show that the normalised matrix

Qn := 1

q
Q

has constant moments:

E(Qn) = Ip and V ar (Qn) = (β2 −1)Ip +1p×p (3.6)

3.2.2. UNIVERSALITY
From Eqs. (3.1) and (3.2), it is evident that the elements of the Q-matrices are sums of in-
dependent i.i.d. random variables. In particular, each Qi j is the sum of q independent
terms and it therefore asymptotically converges to a normal distribution (based on the
Central Limit Theorem [5]). We hence can conclude that irrespective of the initial dis-
tribution of the N -entries, the Q-entries will converge to a normal distribution, i.e., the
individual entries Qi j will “forget" the original distribution when q →∞. In other words,

2As mentioned before, the entries of N need to be zero mean and unit variance for the results to hold.
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Figure 3.2: Comparison of the distribution of the highest singular values of two random matrices: normal and
exponential distributions. According to the universality theorem, as the dimension grows, these distributions
become closer to each other (for the sake of comparisonσ1/

p
q has been considered, where q is the size of the

square matrix. The distributions are the results of 200 iterations.).

since the singular values of N are determined by the eigenvalues of Q it follows that, as
q →∞, the distribution of the singular values becomes independent of the distribution
of N -matrix (apart from the first two moments). This is called the universality property.
Figure 3.2 provides a comparison between the distribution of the first singular value of
the two random matrices, one a random normal and the other random exponential. As
can be seen in the case of the 50×50 matrix (the left panel) the difference between the
two distributions is discernible. However, as the dimensionality grows (for the 450×450
matrices of the right panel) the distributions of the first singular values for two matrices
(random normal and exponential matrices) become more similar.

In a similar way, Figure 3.3 illustrates a comparison of the singular values (averaged
over 200 trials) of 50× 50 random matrices for two different distributions of the indi-
vidual matrix entries: standard normal and exponential (shifted to become zero-mean).
These two figures combined show that as long as the mean and variance of the noise is
kept constant, its actual distribution has very little influence on the distribution of the
resulting singular values, assuming the size of the matrix is not too small.

In addition to the above result, we also know that rescaling the variance of the en-
tries in a zero-mean random matrix induces the corresponding rescaling of the singu-
lar values: σi (αA) = ασi (A). This follows immediately from the observation that αA =
U (αS)V T . In other words, the singular value ratio SV R =σ1/σ2 is not affected by a uni-
form increase in the noise variance. However, a shift in the mean of the noise does affect
the SVR, as will be explained in the following sections.

3.3. IMPACT OF ASPECT RATIO ON SINGULAR VALUES

3.3.1. PROBLEMS WITH THE SVR APPROACH

As mentioned before, Kanjilal et. al. [6] use the singular value ratio (SVR) spectrum
to find the periodicity p in the time series and consequently decompose a signal into
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Figure 3.3: Singular values (averaged over 200 trials) for 50×50 random matrices generated by drawing i.i.d.
entries from the standard normal (red) and (shifted to ensure zero mean and unit variance) exponential (blue)
distributions.

its constituent periodic components. This idea of period estimation based on the SVR
seems intuitive and straightforward. However, there are some complications that need
to be addressed as they could bias and invalidate the results. Specifically:

• The SVR depends on the average value of the signal

• The SVR depends on the aspect ratio of the data matrix

We will illustrate these problems below.

Impact of average value In the original paper [6], it was not sufficiently appreciated
how a shift in the mean value of the time series (the DC component which is the mean
amplitude of the waveform) impacts the SVR. This is important as failure to understand
this issue introduces a major bias in the test values and could therefore result in erro-
neous conclusions. The left panel of Figure 3.4 provides an example of how the mean of a
signal can affect its singular value distributions. Clearly, failing to remove the mean from
a noisy time series would inflate the first singular value (and only the first one) resulting
in an upwardly biased value for the singular value ratio (SVR). Such a blind screening
would reduce the power of an SVD method in data mining applications.

3.3.2. MOTIVATION
As mentioned before, we recast a given periodic signal in such a way that each column
represents a single period. Adding more observations amounts to adding more columns,
which in turn makes the corresponding matrix “fatter". This has an impact on its singular
values. This is obvious from the fact that the L2 norm (or Frobenius norm) of a matrix
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Figure 3.4: Left: Comparison of the singular values of a matrix (10 × 10) with zero-mean entries (red) and
shifted mean (α= 5). The dotted line indicates that (approximate) upper limit based on Eq. (3.19). Recall that
the entries of the matrix A0 are random numbers, but by shifting the global mean the SV R =σ1/σ2 increases,
erroneously suggesting that some underlying periodic structure is present. Right: By proceeding from an
square to rectangular matrix, all the singular values increase proportionately.

can be expressed in terms of the sum of its singular values, i.e., (see Appendix A.3):

||A||2F :=
p∑

i=1

q∑
j=1

A2
i j =

r∑
k=1

σ2
k

where Ai j is the entry of the matrix. If we assume the matrix to be fat (q > p) and full
rank (i.e., r := r k(A) = p), it follows that increasing the number of columns q must also
inflate the quadratic sum of singular values, without increasing the number of terms in
the sum, which is fixed by the rank. This can happen in roughly two ways:

1. Multiplicative: all the singular values are multiplied by a factor α> 1, i.e.,

σ′
i =α(q, i ) σi

2. Additive: all the singular values are shifted by a fixed amount α> 0, i.e.,

σ′
i =σi +α(q, i )

Notice that the first possibility would not significantly impact the SVR, whereas the
second one will. Numerical experiments show that the actual mechanism at work is
more akin to the second possibility: “fattening" a noise matrix shifts all the singular
values upward (see Figure 3.4). To obtain crisp results we return to the case of purely
random matrices. For a more detailed explanation of the underlying reasoning behind
Figure 3.4, see Appendix A.6. The next section provides an explanation for this observa-
tion.
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3.3.3. ASYMPTOTIC RATIO OF SINGULAR VALUES AS FUNCTION OF GROW-
ING ASPECT RATIO

The following section investigates the evolution of the distribution of the singular values
of random matrices where the ratio of the number of columns (the number of observa-
tions) to the number of rows (fixed number of dimensions of the data) increases over
time.

Theorem 4. Let A be a (full rank) random p × q matrix (where q ≥ p) such that Ai j are
i.i.d, E(Ai j ) = 0 and V ar (Ai j ) = 1. The singular value decomposition theorem ensures that
there are (essentially unique) matrices U ∈ Rp×p and V ∈ Rq×q , both with orthonormal
columns, (i.e., U T U = Ip , V T V = Iq ). We denote the SVD decomposition as:

A =U SV T where S =Rp×q

such that

S = (Σp×p , 0p×(q−p)) and Σp×p = di ag (σ1,σ2, . . . ,σp ),

and the singular values have been ordered in descending order: σ1 ≥σ2 ≥ . . . ≥σp . Then, if
q (the number of columns) tends to infinity, while keeping the number of rows p constant,
all the singular values σi will increase to infinity in such a way that the ratio of the largest
to the smallest singular value tends to 1:

lim
q→∞

σmax

σmi n
= lim

q→∞
σ1

σp
= 1

Proof. As previously mentioned in Section 2.2.2, singular values and vectors for a matrix
A are actually the eigenvalues and eigenvectors of the quadratic matrices A AT and AT A;
we, therefore, focus on the quadratic random matrices of the form

Q = A AT ∈Rp×p where A ∈Rp×q , Ai j : i .i .d ., E(Ai j ) = 0, and V ar (Ai j ) = 1

Harking back to Eq. (3.5) we had:

E(Q) = q Ip and V ar (Q) = q
(
(β2 −1)Ip +1p×p

)
where β2 :=V ar (A2

i k ) is a common value since all variables are i.i.d.
According to the CLT, we know that asymptotically (as q →∞) the entries Qi j will be

normally distributed. Therefore, we can use the above moment information to specify
the following approximation (asymptotically, as q →∞):

• Diagonal: di ag (Q) ≈ q Ip +βpq Zp , where Zp is a p ×p diagonal matrix with in-
dependent, standard normal random variables on the diagonal.

• Off-Diagonal: The off-diagonal part is approximated by the symmetric (zero-diagonal)
matrix

p
q M where

Mi j = M j i ∼
{

N (0,1) if i 6= j
0 if i = j
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Figure 3.5: Left: Illustrating the approximation of the singular values of A using (the square roots of) the eigen-
values of A AT . Right: Ratio of largest to smallest singular value.

Collecting all these we arrive at the following asymptotic approximation:

A AT ≈ q Ip +βpq Zp +p
q M = q

(
Ip + 1p

q
(βZp +M)

)
(3.7)

Notice that K := βZp +M does not depend on q . Furthermore, it is symmetric and
therefore can be diagonalized.

As a consequence, K has an orthonormal basis of eigenvectors ki (i = 1,2, . . . , p) and
corresponding eigenvalues νi such that K ki = νi ki . Collecting these eigenvectors and
eigenvalues in matrices P and N respectively, we can conclude:

K = P N P T where P is orthogonal, i.e., PP T = P T P = Ip

Plugging this decomposition in the RHS of Eq. (3.7) we see that:

A AT ≈ R(q) := q(Ip + 1p
q

K ) = q P

(
Ip + 1p

q
N

)
P T

from which we can conclude that R(q) has the same eigenvectors as Q (i.e., the columns
of P ), but the corresponding eigenvalues are given by:

λi (Rq ) = q

(
1+ νip

q

)
Notice that the eigenvalues νi are independent of q and therefore:

lim
q→∞

λi (Rq )

λ j (Rq )
= lim

q→∞
1+νi /

p
q

1+ν j /
p

q
= 1 (3.8)

Furthermore, for q sufficiently large:

σi (A) ≈
√
λi (Rq ) =

√
q +p

qνi (3.9)

as can be seen in Figure 3.6.



3.4. IMPACT OF THE UNDERLYING PERIODIC SIGNAL 49

Figure 3.6: Comparison of actual singular values (red) and approximation (in blue) specified in Eq. (3.9).

3.4. IMPACT OF THE UNDERLYING PERIODIC SIGNAL
Suppose that x = (x1, x2, . . . , xn) represents a noisy but perfectly stationary and periodic
time series with period p. We can then use the methodology explained in Section 1.2 to
recast such a time series as a matrix A with size p ×q .

As mentioned in Section 1.2 for a pure rank-1 matrix A0 = a1T
q the SVD decomposi-

tion is straightforward; all we need to do is to reduce the vectors to unit vectors:

A0 = a1T
q = a

p
q

( a

a

)(
1T

qp
q

)
=σ1uvT (a = ||a||) (3.10)

confirming that the first (and only non-zero) singular value equals σ1(A0) = a
p

q .
In general, however, the data is noisy and we model that by adding independent ad-

ditive noise with variance ε2 in below:

A = a1T
q +εN (3.11)

Here, similar to Eq. (1.6), N is a p×q matrix of independent, identically distributed (i.i.d.)
noise variables with zero mean and unit variance. Notice that the p-dim column space
in Eq. (3.11) can be interpreted as a zero-mean random cloud of q columns of matrix N ,
each of which is shifted by a. The geometric intuition expounded in Section 2.3, there-
fore, suggests that the square of the first singular value should be shifted by q||a||2. We
will now show that this intuition is indeed correct.

To investigate the behaviour of the singular values we use the fact that:

σ2(A) = λ(AT A)

= λ
(
(a1T

q +εN )T (a1T
q +εN )

)
= λ

(
a21q 1T

q +ε(N T a1T
q +1q aT N )+ε2N T N

)
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where a2 = aT a = ||a||2, σ(.) is the singular value and λ(.) indicates the eigenvalue. Since
the entries of the noise matrix N are independent, zero-mean and unit variance stochas-
tic variables, we can draw on Eqs. (3.3)–(3.5) to make the following approximation for the
q ×q matrix N T N :

E(N T N )i j =
p∑

k=1
E
(
Nki Nk j

)=


∑p
k=1E(Nki )E(Nk j ) = 0 if i 6= j∑p
k=1E(N 2

ki ) = p if i = j

The last approximation is obtained by taking the expected values and using the fact that
E(Nki Nk j ) = 1 if i = j , and zero otherwise. From this, we conclude that approximately:

N T N ≈ pIq

Similarly, because the expectation value of the cross-term vanishes, using the linearity
of the expectation operator yields:

E(N T a1T
q +1q aT N ) = E(N T )a1T

q +1q aT E(N ) = 0

whereas
V ar

(
N T a1T

q +1q aT N
)
= 2a2Iq (3.12)

As a consequence, to a good approximation, the singular values of A can be identified as
the eigenvalues of the following matrix:

σ2(A) ≈λ(a21q 1T
q +ε2pIq )

The structure of the matrix in the RHS allows us to arrive at some conclusions regarding
the singular values.

Lemma 5. The symmetric q×q matrix B = a21q 1T
q +ε2pIq has a complete set of q orthog-

onal eigenvectors and corresponding eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λq (sorted in descending
order):

eigenvalue eigenvector
λ1 = a2q +ε2p 1q

λi = ε2p (i ≥ 2) ei −e1

where ei = (0, . . . ,0,1,0, . . . ,0)T are the standard basis vectors.

Proof. The above results follow from a straightforward calculation:

B1q = a21q (1T
q 1q )+ε2pIq 1q = a2q1q +ε2p1q = (a2q +ε2p)1q =λ11q

Similarly,

B(ei −e1) = a21q 1T
q (ei −e1)+ε2pIq (ei −e1)

= 0 + ε2p(ei −e1)
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Figure 3.7: The influence of the underlying signal strength on the first singular value. The curve for k = 0
corresponds to pure noise (no underlying signal). Notice how increasing the signal strength results in the
corresponding increments in the first singular value.

From the lemma above, we can immediately conclude that to a first approximation
the following (approximate) result for the singular values of A holds.

Theorem 6. Let us consider again the p ×q matrix A in Eq. (3.11); then to a first approx-
imation, the singular values are given by

σ1(A) ≈
√

a2q +ε2p and σi (A) ≈ εpp (for i ≥ 2) (3.13)

From these results we can make the following observations:

• The difference between the first and the subsequent singular values grows pro-
portionally to

p
q , as it means that the more cycles that are present in the data, the

more pronounced the difference is. Furthermore, in many cases the noise-level
ε2 can be neglected with respect to the strength of the signal (a2), resulting in a
further approximation:

σ1(A) ≈ a
p

q (3.14)

Which indeed tallies with the geometric intuition explained in Section 2.3.

• Impact on SVR:

(SV R(A))2 =
(
σ1(A)

σ2(A)

)2

= a2q +ε2p

ε2p
= 1+ a2

ε2

q

p

So we can conclude that the SVR is influenced by the aspect ratio of the matrix
(q/p) as well as the relative size of the signal (a) versus noise (ε).
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The subsequent singular values correspond to the eigenvectors which are mapped to
zero by the rank-1 matrix and therefore are not influenced by the a2 term:

σi (A) ≈ εpp (for i ≥ 2)

In other words, these lower-ranked singular values are not influenced by the signal a
itself, just by the noise. This is illustrated in Figure 3.7 where we took a fixed noise-level
ε = 0.2 and a signal strength a which is a multiple of some basic level a0 = p

12.5 and
a = ka0 with k = 0,1,2,3. The number of full cycles in each case was equal to q = 10. We
therefore expect the first singular value for each of these signal levels to be roughly equal
to

p
q a0k ≈ 11.2k.

It is important to realize that this observation is different from the result in Sec-
tion 3.5.1 where the first singular value was affected by a shift in the mean noise level.
In this case, the mean (1/p)

∑
i ai of the periodic signal a can still be zero, but it is its L2

norm (a2 = ||a||2) that is seen to affect the first singular value.

Slightly more general result Consider the case of a general rank-1 matrix:

A = abT +εN (3.15)

In this case the same sort of computation yields:

B = a2bbT +ε2pIq

for which the largest eigenvalue corresponds to the vector b:

Bb = (a2b2 +ε2p)b

3.5. EXPLORING SOME PROPERTIES
As mentioned before, the major goal of this thesis is to investigate the applicability of
the SVD in time series analysis. To this end, the impact of the underlying patterns in
the signal on the SVD results was touched upon earlier in Section 3.4. Furthermore, as
it is illustrated in Figures 2.4-2.8, the distance and positioning from the origin can affect
the SVD results drastically. The following section provides more detailed mathematical
foundations for the observed results (with a focus on time series analysis).

3.5.1. IMPACT OF ENTRIES MEAN VALUE

In the original papers [6, 7], it was not sufficiently appreciated how a shift in the mean
value of the time series (the DC component) impacts the SVR. This is important as failure
to understand this issue introduces a major bias in the test values and could therefore
result in erroneous conclusions. To address this issue, we compare the singular values
of a zero-mean p ×q random matrix A0 and its mean-shifted version: A = A0 +α which
is shorthand for A = A0 +α1p×q = A0 +α1p 1T

q . Using the connection between singular
values and eigenvalues expounded in the previous section, we can express any singular
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Figure 3.8: Comparison of the singular values of a matrix (10× 10) with zero-mean entries (red) and shifted
mean (α = 5). The stem-plot of the singular values against their index i is also called the singular spectrum
or eigenspectrum. The dotted line indicates the (approximate) upper limit based on Eq. (3.19). Recall that the
entries of the matrix A0 are random numbers, but by shifting the global mean the SV R = σ1/σ2 increases,
erroneously suggesting that some underlying periodic structure is present.

value σ(A) as:

σ2(A) =λ(A AT ) =λ((A0 +α1p 1T
q )(AT

0 +α1q 1T
p ))

=λ
(

A0 AT
0 +α(A01q 1T

p +1p 1T
q AT

0 )+α21p 1T
q 1q 1T

p

)
=λ

(
A0 AT

0 +αq(R1T
p +1p RT )+α2q1p 1T

p

)
(3.16)

where R = (1/q)A01q is a p ×1 column matrix for which each element is the mean of the
corresponding A0 row. However, recall that the entries of A0 are independent zero-mean
stochastic variables. Hence, unless the matrix dimensions are very small, it follows that
R ≈ 0 can be neglected. We, therefore, derive the approximation:

σ2(A) ≈λ
(

A0 AT
0 +α2q1p 1T

p

)
(3.17)

Next, we make use of the standard results on Rayleigh quotients for eigenvalues which
states that the dominant eigenvalue of a symmetric, positive definite matrix M is the

solution to the maximization problem: λ1 = max
x6=0

(
xT Mx

xT x

)
= max

||u||=1
(uT Mu). Furthermore,

if a unit vector u1 realizes the above maximum, then the second largest eigenvalue is
obtained as the solution of the constrained optimization problem:

λ2 = max
||u||=1

(uT Mu) s.t . u ⊥ u1

and so on for the successive eigenvalues.
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Combining this with the approximation derived in Eq. (3.17), we get the following
approximation for the first singular value of A:

σ2
1(A) ≈ max

||u||=1
uT

(
A0 AT

0 +α2q1p 1T
p

)
u

= max
||u||=1

(
uT A0 AT

0 u+α2quT 1p 1T
p u

)
= max

||u||=1

(
uT A0 AT

0 u+α2q (
p∑

i=1
ui )2

)
(3.18)

This derivation shows that

σ2
1(A) ≤ max

||u||=1

(
uT A0 AT

0 u
)+α2pq =σ2

1(A0)+α2pq (3.19)

since from the Cauchy-Schwartz inequality it follows:(
p∑

i=1
ui

)2

≤
(

p∑
i=1

u2
i

)(
p∑

i=1
1

)
= p since ||u|| = 1

However, in general, the unit vector u that maximizes the Rayleigh quotient will not nec-
essarily also maximize (

∑
ui )2. In fact, for higher singular values, the number of orthog-

onal constraints on u increases proportionally, suggesting that on average
∑

ui ≈ 0, and
therefore σ2

i (A) ≈ σ2
i (A0). Another argument could be that higher singular vectors are

comprised of the noise in the data (low magnitude random-structured data points added
to the original signal). Therefore, adding or removing the mean value will not affect their
compounds in higher singular vectors and correspondingly the singular values.

This is indeed what is seen in numerical experiments (Figure 3.8). Notice that the first
singular value is very close to the maximal value obtained in Eq. (3.19) which is derived if
optimizing both terms in Eq. (3.18), independently and simultaneously had been done.

Clearly, failing to remove the mean from a noisy time series would inflate the first
singular value (and only the first one) 3 resulting in an upwardly biased value for the
singular value ratio (SVR). This would reduce the power of an SVD method in data mining
applications such a blind screening. In the next section, we will investigate the impact
of a genuine underlying periodic signal.

3.5.2. IMPACT OF THE DRIFT ON THE FIRST SINGULAR VALUE
Consider a signal that has a periodic component a and a drift component k. For simplic-
ity, we assume that

k = (−k : k)T where q = 2k +1.

Now, we consider a p ×q matrix of the form:

A = a1T
q +β1p kT

This represents a time series with drift (see Figure 3.9). Since each column (or row) is the

3It may lead to wrong impressions about the importance of the first singular value with respect to the others!
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Figure 3.9: Periodic signal with drift. In this case a is a sine wave, while k = 5, and β= 0.1.

linear combination of two fixed columns, it has rank two (or less), and therefore its SVD
is of the form:

A =σ1u1vT
1 +σ2u2vT

2

These two decomposition terms are very similar, but the second one is more specific in
the sense that the vectors involved are orthogonal (and unit length). The main outcome
of the figure is that pre-processing (removing the mean value) in the time series analysis
is important. Only looking at the singular values may lead to biased results. One must
investigate the evolution of the singular vectors to have a better understanding of the
underlying patterns in the time series.

DERIVATION FOR THE SIMPLEST CASE

Let us first look at the case when there is no drift β = 0 and we assume that the base
signal is zero mean, i.e.,

∑
i ai = 0. In that case

A = a1T
q

and we get
u1 = a/||a|| and v1 = 1q /

p
q and σ1 =p

q ||a||
Without loss of generality, if we then introduce a small amount of drift (i.e., β¿ 1) we
can simply use the fact that 1p is orthogonal with respect to a since aT 1p = ∑

i ai = 0
(signal must be zero mean value, otherwise it will not work). As a consequence we can
take u2 = 1p /

p
p which yields the decomposition:

A =p
q||a||u1v1 +βppu2kT

Finally, we notice that k is also orthogonal to v1 since
∑

i ki = 0, and therefore v2 = k/||k||.
Now, recall that

||k||2 = 2
k∑
`=1

`2 = 2
k(k +1)(2k +1)

6
≈ 2k3/3 ≈ q3/12.
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Figure 3.10: An example of a drifted time series in the absence of noise, and µ 6= 0. Perhaps we could say that
u2 or v2as an indication for the direction of that drift!

Plugging all this into the formula above we see that the singular values are equal to:

σ1 =p
q ||a|| and σ2 = 1

2
|β|

√
pq3

3
. (3.20)

where |.| is the absolute value operator. From Eq. (3.20) it transpires that the first singular
value is determined by the periodic patterns, whereas the second one is determined by
the drift. Of course, there are other ways to derive similar results and also provide an
argument why |β| is used:

||a1q
T +β1pkT ||2F = ||a1q

T ||2F +||β1pkT ||2F +2 < a1q
T ,β1pkT >F = (3.21)

q ||a||2 +p|β|||k||2 +2β< a1q
T ,1pkT >F

One can argue that the largest term in the above formula is associated with the first sin-
gular value, and the second term is with the second; this explains the switches of the
two terms in the numerical analysis. The third term is (close to) zero; as in our example
k = [−k : k] is symmetric and a1q

T is a rank−1 matrix.

Numerical verification Here, we also can argue that a zero mean random process with
drift will exhibit a similar singular value spectrum; therefore, SVR by itself (without con-
sidering u and v profiles) can lead to erroneous results (Figure 3.12).
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Figure 3.11: when there is a drift and in the absence of noise µ= 0. notice the changes in the u and v profiles.
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Figure 3.12: Influence of drift on 2nd singular value for the input in the figure above. Notice how the first
singular value is unaffected (the first singular value is unaffected as long as the drift is small. from some point
upward, the drift will change u1, and accordingly σ1).
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Figure 3.13: Top: An example of the frequency of the occurrence of an extra event. Bottom: The evolution of
the second singular value. As expected when the occurrence is too often, the rank of the matrix decreases.

3.6. CONCLUSION
In this chapter, we have argued that the well-known singular value decomposition (SVD)
(which is usually applied to matrix problems) can also be successfully applied to identify
periodic patterns (profiles) in time series. Furthermore, these profiles are completely
defined by the data and do not require the specification of user-defined parameters,
apart from the period (which itself can be estimated using this approach). As such, this
methodology offers a purely data-driven approach to adaptive signal approximation and
based on that, outlier detection.

Moreover, we have shown that a judicious comparison of the V -coefficients and
residuals allows one to distinguish between different ways in which data points can be
atypical or salient. From a data mining perspective, this opens up new ways of analyzing
time series in a data-driven, bottom-up fashion. However, it then becomes essential to
thoroughly understand how the spectrum of time series is influenced by various charac-
teristics of the signal and noise.
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4
REGULARISED MATRIX

FACTORIZATION

4.1. INTRODUCTION AND MOTIVATION
Singular Value Decomposition (SVD) and its close relative, Principal Component Analy-
sis (PCA), are linear matrix factorisation techniques that are widely used in applications
as varied as dimension reduction and clustering [3], matrix completion [4] (e.g., for rec-
ommender systems), dictionary learning [5] and time series analysis [6]. In a surprising
turn of events, (deep) matrix factorisation also plays a role in the implicit regularisation
that enables acceptable generalisation in deep learning [7].

Although these factorisation techniques are both conceptually simple and effective,
it is well-known that they are sensitive to noise and outliers in input data. As a conse-
quence, some modifications of the original algorithms have been proposed to alleviate
the effect of these disturbances [8, 9]. Candes et al. [10] introduce Robust PCA (RPCA)
which aims to separate signal from outliers by decomposing any given matrix into the
sum of a low-rank approximation and a sparse matrix of outliers. An extension of this
work for the inexact recovery of the data is presented in [11]. Another example of sparse
PCA using low rank approximation is proposed in [12].

Adding a regularisation term is another versatile way to tackle the problem of noisy
input. For instance, Dumitrescu et al. [13] show how a regularized version of the K-SVD
algorithm can be adapted to the Dictionary Learning (DL) problem. Although, the pres-
ence of noise in the input is not the only reason to invoke regularisation. Recent re-
search [14] shows that in many real-world data sets, not only do the observed data lie on
a (non-)linear low dimensional manifold, but this also applies to the features. Similar to
our approach, He et al. [15] consider a given matrix A where the columns are interpreted
as data points and the rows are features. The neighbourhood structure of both the data
points and the features then gives rise to distinct graphs (the so-called data and feature

Parts of this chapter have been published in [1, 2].
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graphs) and hence, to corresponding graph Laplacians (Ld and L f respectively). The re-
sulting regularised PCA is referred to as the graph-dual Laplacian PCA (gDLPCA), which
for a given data matrix A is obtained by minimising the below functional:

J (V ,Y ) = ||A−V Y ||2 +αTr(V T Ld V )+βTr(Y L f Y T ) subject to V T V = I (4.1)

where ||.|| and Tr are the L − 2 norm and the trace operators, respectively. The ability
of the graph dual regularization technique to incorporate both data and feature struc-
tures has deservedly attracted considerable attention in dimensionality reduction appli-
cations [15–17].

In their abstract form, SVD and PCA amount to two different but related types of
matrix factorisation. More precisely, given a general (data) matrix A, the aim is to ap-
proximate it as a product of simpler (i.e., lower-rank) matrices. Specifically:

• PCA-type decomposition: A ≈ PQT where the columns of Q are orthonormal, i.e.,
QT Q = I ;

• SVD-type decomposition: A ≈ PBQT where B is diagonal, while P and Q are uni-
tary matrices, i.e., P T P = I , QT Q = I .

The approximation in the above equations is measured in terms of the Frobenius (ma-
trix) norm which for an arbitrary matrix X ∈Rp×q is defined as:

||X ||2F =
p∑

i=1

q∑
j=1

x2
i j = Tr(X X T ) = Tr(X T X ) = ||X T ||2F . (4.2)

In the remainder of this chapter, we will drop the subscript F . We herein take the func-
tional Eq. (4.1) as a starting point and investigate the two factorisation approaches men-
tioned above (invoking Eq. (4.2) to recast the trace as a norm):

• PCA-type decomposition (A ≈ PQT ) by minimising the regularisation functional:

||A−PQT ||2 +λ ||DP ||2 +µ ||GQ||2 (4.3)

• SVD-type decomposition (A ≈ PBQT ) by minimising the regularisation functional:

||A−PBQT ||2 +λ ||DP ||2 +µ ||GQ||2 (4.4)

The minimisation of the functional Eq. (4.3) was discussed in [15], however, their pro-
posed solution contains an error which we correct in this chapter. In addition, we also
provide an algorithm to solve functional Eq. (4.4), which somewhat surprisingly is quite
different from the one for Eq. (4.3).

The remainder of this chapter is organised as follows: In Sections 4.2 and 4.3 we
derive algorithms for minimisation of the regularised version of PCA-type and SVD-type
factorisations, respectively. Section 4.4 discusses how the gradient descent method can
be implemented by drawing on some elementary facts from Lie-group theory. Finally,
we conclude this chapter by giving some pointers to potential extensions.
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4.2. REGULARISATION FOR PCA-TYPE FACTORISATION

4.2.1. REGULARISED PCA
The following theorem outlines an obvious generalisation to the regularised version of
the minimisation problem.

Theorem 7 (Regularised PCA). Let A be a p ×q matrix of rank r ≤ min(p, q). For k ≤ r ,
let P ∈ Rp×k and Q ∈ Rq×k full rank matrices (i.e., of rank k). Furthermore, for arbitrary
strictly positive integers d and g , we introduce regularisation matrices D ∈ Rd×p and G ∈
Rg×q , as well as weightsλ,µ≥ 0. We now define the following functional F in the variables
P and Q:

F (P,Q) := ||A−PQT ||2 +λ ||DP ||2 +µ ||GQ||2 (4.5)

and pose the corresponding constrained optimisation problem:

min
P,Q

F (P,Q) subject to QT Q = Ik . (4.6)

Introducing short-hand notation L := DT D ∈ Rp×p and M :=GT G ∈ Rq×q (both symmet-
ric and positive semi-definite), the solution of the constrained optimisation problem (4.6)
is constructed as follows:

• The k columns of the q ×k matrix Q are the eigenvectors of the q ×q matrix:

K := AT (Ip +λL)−1 A−µM

corresponding to the k largest eigenvalues;

• Furthermore: P = (Ip +λL)−1 AQ

For the sake of completeness, let us reiterate that the condition QT Q = Ik is not re-
strictive but necessary to eliminate arbitrary rescalings. In passing, we point out that the
result above corrects an error in [15] where it is incorrectly stated that P = AQ.

Proof. Since the variable P in the functional (4.5) is unconstrained, we can identify the
optimum in P (for fixed Q) by computing the gradient:

1

2
∇P F = (PQT − A)Q +λDT DP (4.7)

and solving for P :

∇P F = 0 ⇒ P QT Q︸ ︷︷ ︸
Ik

−AQ +λLP = 0 ⇒ (Ip +λL)P = AQ. (4.8)

This condition needs to hold at the solution point. By first re-writing F (P,Q) formula as
the trace of matrices and then plugging in Eq. (4.8), we have:

F (P,Q) = Tr
[
(A−PQT )(AT −QP T )

]+λTr(P T LP )+µTr(QT MQ)

= Tr
[

A AT − AQP T −PQT AT +PQT QP T ]+λTr(P T LP )+µTr(QT MQ)
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Considering the fact that the trace operator is invariant under transposition as well as
cyclic permutation, we arrive at:

F (P,Q) = Tr
[

A AT −2(Ip +λL)PP T +PP T ]+λTr(P T LP )+µTr(QT MQ)

= Tr
(

A AT −PP T −2λLPP T )+λTr(P T LP )+µTr(QT MQ)

= Tr(A AT )−Tr(PP T )−2λTr(LPP T )+λTr(P T LP )+µTr(QT MQ)

= Tr(A AT )−Tr(P T P )−λTr(P T LP )+µTr(QT MQ)

= Tr(A AT )−Tr

P T (Ip +λL)P︸ ︷︷ ︸
AQ

+µTr(QT MQ). (4.9)

Extracting P and its transpose from Eq. (4.8):

P = (Ip +λL)−1 AQ ⇒ P T =QT AT (Ip +λL)−1 as L is symmetric. (4.10)

hence:
F (P,Q) = Tr(A AT )−Tr

[
QT (

AT (Ip +λL)−1 A−µM
)

Q
]

. (4.11)

Therefore, in order to minimize F , one must maximize the right-most term in Eq. (4.11),
as Tr(A AT ) is a constant value. This is achieved by selecting for Q, eigenvectors corre-
sponding to the k largest eigenvalues of (AT (Ip +λL)−1 A −µM). Once Q is determined,
P is obtained via Eq. (4.10).

As a concluding remark, we point out that the matrix Ip +λL is always invertible.
Indeed, since L = DT D is positive semi-definite and symmetric, it has a complete set of
eigenvectors with corresponding non-negative eigenvalues, i.e., L = WΛW T , where W
is orthogonal (i.e., W T W =W W T = Ip ) andΛ≥ 0. Hence, the matrix

(Ip +λL) =W (Ip +λΛ)W T

has a complete set of strictly positive eigenvalues, and is therefore invertible.

Some illustrative numerical experiments can be found in [18].

4.2.2. SOME SPECIAL CASES

• λ= 0 and µ= 0 : In that case, Q comprises the first k eigenvectors of K = AT A

and P = AQ, which means that we end up with the standard SVD, as expected.
Some numerical experiments can be found in [19].

• D = Ip and µ= 0 : These conditions correspond to what is assumed in [13] where

a regularized K-SVD problem is addressed. In the aforementioned work, the au-
thors consider a special case, where µ = 0 and D = Ip . Since this implies that
L = DT D = Ip and µM = 0, the matrix K simplifies to:

K = 1

1+λ AT A
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The eigenvectors of K are therefore the right singular vectors of A (i.e., the eigen-
vectors of AT A). Hence Q =V(1:k), and as a result:

P = 1

1+λ AQ and AQ =U(1:k) di ag (σ1, . . . ,σk ).

In particular, for k = 1 (the rank-1 reconstruction), we obtain:

Q =V1 and P = σ1

1+λU1

which is the result that can be found in [13]. The experiments are available in [20].

4.3. REGULARISATION FOR SVD-TYPE FACTORISATION
Having discussed the PCA-type factorisation, let us next turn our attention to the SVD-
type factorisation which looks for an approximation of the form:

A ≈ PBQT subject to: QT Q = Ik , ||Pi || = 1 ∀i ∈ {1,2, . . . ,k}, and B diagonal.

Loosely speaking, since the columns of P and Q are of unit length, they only pin down
the structure of A, whereas the diagonal matrix B = di ag (β1,β2, . . . ,βk ) captures the
amplitude of the corresponding structures. Similar to SVD, discussed in Chapter 2, the
columns of Q are orthonormal, i.e., we again insist on QT Q = Ik . However, unlike before,
the columns of P are now only required to have unit length. In respect of the SVD-type
matrix factorisation technique, Theorems 8 and 9 provide alternative solutions to the
lower-rank matrix approximation problem. For notational convenience, Theorem 8 first
addresses a simplified case of functional (4.4) where µ = 0. Following that, Theorem 9
discusses a more general case of the SVD-type factorisation.

Theorem 8 (Regularised SVD). Let A be a p × q matrix of rank r ≤ min(p, q). More-
over, for k ≤ r , let P ∈ Rp×k and Q ∈ Rq×k of rank k, while B ∈ Rk×k diagonal (i.e., B =
di ag (β1,β2, . . . ,βk )). Furthermore, for an arbitrary positive integer d, we introduce a reg-
ularisation matrix D ∈Rd×p , as well as weightλ≥ 0. Finally, we introduce the short-hand
notation L := DT D ∈Rp×p (symmetric and positive-definite). We are now in a position to
define the following functional F of the variables P,Q and B:

F (P,Q,B) = ||A−PBQT ||2 +λ ||DP ||2, (4.12)

and the corresponding constrained optimisation problem:

min
P,Q,B

F (P,Q,B) subject to: QT Q = Ik , ||Pi || = 1 ∀i ∈ {1,2, . . . ,k}, and B diagonal.

(4.13)
This problem is solved by the solution specified below in Algorithm 1.

Proof. Since B is unconstrained, we can determine its optimal value by computing the
derivative with respect to B and equating it to zero:

∇B F (P,Q,B) =∇B ||A−PBQT ||2. (4.14)
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Algorithm 1: Regularised SVD method (version 1: µ= 0)

Input: A, k, λ, D
Output: P, B , Q
Initialization
while no convergence do

1. Determine the q ×k matrix Q = [Q1,Q2, . . . ,Qk ] (with orthonormal columns,
i.e., QT Q = Ik ) such that the sum of the smallest eigenvalue of each of k
symmetric matrices S(Qi ) (see Eq. (4.21)) is minimal, i.e.,:

min
Q

ψ(Q) = min
Q

k∑
i=1

λ1(Qi ) such that QT Q = Ik

where λ1(Qi ) = min(ei g (S(Qi )). To this end we use gradient descent (see
Section 4.4).

2. For each Qi as determined above, take Pi to be the eigenvector W1(Qi )
corresponding to the smallest eigenvalue λ1(Qi ). Construct the p ×k
matrix P = [P1,P2, . . . ,Pk ].

3. Finally, set B = di ag (β1, . . . ,βn) where βi = (P T AQ)i i .

end

Expanding the norm in terms of a trace (cf. Eq. (4.2)), then using the invariance of a trace
under transposition, we arrive at (recall QT Q = Ik ):

||A−PBQT ||2 = Tr
[
(A−PBQT )(AT −QBP T )

]
= Tr(A AT )−2Tr(AQBP T )+Tr(PB 2P T )

= ||A||2 −2Tr(P T AQB)+Tr(B 2P T P )

= ||A||2 −2
k∑

i=1
(P T AQ)i i βi +

k∑
i=1

(P T P )i i β
2
i

= ||A||2 −2
k∑

i=1
(P T AQ)i i βi +

k∑
i=1

β2
i (4.15)

The last simplification is obtained due to the fact that ||Pi || = 1 ⇒ (P T P )i i = 1. Therefore
the gradient of the functional F with respect to B is calculated as follow:

∂

∂βi
||A−PBQT ||2 = 2(βi − (P T AQ)i i ).

For given P and Q matrices, we then find the optimal B by insisting that the resulting
gradient vanishes, which yields:

βi = (P T AQ)i i ∀i ∈ {1,2, . . . ,k}. (4.16)
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Plugging this optimal choice back into Eq. (4.15) the functional (4.12) simplifies to

||A−PBQT ||2 = ||A||2 −
k∑

i=1
β2

i (4.17)

In order to recast Eq. (4.17) in terms of P and Q (and consequently eliminate B), we ob-
serve that for an arbitrary matrix H , we have Hi j = eT

i He j , where ei = (0,0, . . . ,1, . . . ,0)T

vectors are the standard bases (similarly for e j ). Hence, using the fact that the diagonal
of a matrix is unchanged under transposition, we conclude that:

βi =
 (P T AQ)i i = eT

i P T AQ ei = P T
i AQi

(QT AT P )i i = eT
i QT AT P ei =QT

i AT Pi

where Pi ,Qi are the i -th columns of P and Q, respectively. i.e., P = [P1,P2, . . . ,Pk ] and
Q = [Q1,Q2, . . . ,Qk ]. As a consequence:

k∑
i=1

β2
i =

k∑
i=1

P T
i AQi QT

i AT Pi . (4.18)

As a final step, we introduce the notation L = DT D to recast the regularisation term as:

||DP ||2 = Tr(P T LP ) =
k∑

i=1
eT

i P T LP ei =
k∑

i=1
P T

i L Pi . (4.19)

Plugging Eqs. (4.18) and (4.19) into Eq. (4.12), we obtain the following simplified form for
the functional F (assuming that we eliminate B using its optimal value):

F (P,Q) = ||A||2 +F1(P,Q), where F1(P,Q) =
k∑

i=1
P T

i (λL− AQi QT
i AT )Pi (4.20)

Introducing the notation S(Qi ) :=λL− AQi Qi
T AT , we derive:

F1(P,Q) =
k∑

i=1
P T

i S(Qi )Pi (4.21)

Since each S(Qi ) is a symmetric p×p matrix, it can be diagonalised with respect to an or-
thonormal basis, i.e., there is an orthogonal p ×p matrix W (such that W T W =W W T =
Ip ) and a diagonal matrix Λ = di ag (λ1, . . . ,λp ) (ordered λ1 ≤ λ2 ≤ . . . ≤ λp ), both de-
pending on Qi such that

S(Qi ) =W (Qi )Λ(Qi )W (Qi )T

i.e., the columns of W are the eigenvectors of S(Qi ), with the corresponding eigenval-
ues on the diagonal of Λ. By introducing the notation λ1(S(Qi )) to denote the smallest
eigenvalue ofΛ(Qi ), we obtain the minimal value P T

i S(Qi )Pi =λ1(Qi ), by choosing Pi to
be the (unit) eigenvector (W1(Qi )) corresponding to the smallest eigenvalue. As a conse-
quence, the solution strategy boils down to steps in Algorithm 1.

This choice of P,Q and B solves the constrained minimisation problem (4.13). Notice
that due to the fact that P and B matrices are determined after finding Q, this optimi-
sation problem can essentially be translated into a search problem in the space of Q
matrices. Some illustrative numerical experiments are available at [21].
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Below we proceed further by giving a slightly more general version of the previous
theorem where µ 6= 0, thus re-establishing the symmetry between P and Q.

Theorem 9 (Regularised SVD, symmetric version). Similar to the previous theorem, let
A be a p ×q matrix of rank r ≤ min(p, q). For k ≤ r , let P ∈Rp×k and Q ∈Rq×k of rank k,
while B ∈Rk×k diagonal (i.e., B = di ag (β1,β2, . . . ,βk )). Furthermore, for arbitrary strictly
positive integers d and g we introduce regularisation matrices D ∈Rd×p , and G ∈Rg×q , as
well as weights λ,µ ≥ 0. Finally, we introduce the short-hand notation L := DT D ∈ Rp×p

and M :=GT G ∈Rq×q symmetric and positive-definite. We are now in a position to define
the following functional F in the variables P,Q and B:

F (P,Q,B) = ||A−PBQT ||2 +λ ||DP ||2 +µ ||GQ||2 (4.22)

and the corresponding constrained optimisation problem:

min
P,Q,B

F (P,Q,B) subject to: QT Q = Ik , ||Pi || = 1, ∀i ∈ {1,2, . . . ,k} and B diagonal.

(4.23)

A solution to this problem is proposed in Algorithm 2.

Proof. Following the notations and results introduced above and in Theorem 8, let us
add:

||GQ||2 = Tr(QT MQ) =
k∑

i=1
QT

i MQi

Hence, the functional (4.22) can be recast as:

F (P,Q) = ||A||2 +F2(P,Q), where F2(P,Q) =
k∑

i=1
P T

i (λL− AQi QT
i AT )Pi +µ

k∑
i=1

QT
i MQi

(4.24)
The minimum of each term in the first summation in F2 is equal to the smallest eigen-
value λ1(S(Qi )). Finding the minimum for the constrained optimisation problem (4.23)
therefore amounts to finding the minimum of the functional:

ψ(Q) :=
k∑

i=1

(
λ1(S(Qi ))+µQT

i MQi )
)

(4.25)

subject to the constraint QT Q = Ik . Therefore, the minimisation problem again calls for
minimisation in Q space, as the optimal choice for P (corresponding eigenvectors) fol-
lows automatically. We, therefore, arrive at the following Algorithm 2. Some illustrative
numerical examples are available in [21].

4.4. COMPUTATIONAL ASPECTS

4.4.1. GRADIENT AND RANDOM DESCENT ON THE UNITARY DOMAIN
Gradient Descent From Algorithm 2 it becomes clear that the full regularisation prob-
lem can be reduced to a simpler constrained minimisation problem detailed in Eq. (4.25).
Since the ψ-functional is smooth on a compact domain, this minimum is guaranteed to
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Algorithm 2: Regularized SVD method (version 2: µ 6= 0)

Input: A, k, µ, λ, D, G
Output: P, B , Q
Initialization
L = DT D, M =GT G
while no convergence do

1. Recall that for any unit vector Qi ∈Rq we define S(Qi ) =λL− AQi Qi
T AT .

Since this is a symmetric p ×p matrix, it has a complete set of eigenvectors
and corresponding eigenvalues. Denote the smallest eigenvalue of each
S(Qi ) as λ1(S(Qi )), and the corresponding (unit) eigenvector as w1(S(Qi )).

2. For a given q ×k matrix Q = [Q1,Q2, . . . ,Qk ] (with orthonormal columns:
QT Q = Ik ) compute the functional:

ψ(Q) :=
k∑

i=1

(
λ1(S(Qi ))+µQT

i MQi )
)

and use gradient descent (on the compact torus domain, see Section 4.4)
to find the minimum.

3. For each Qi as determined above, take Pi to be the eigenvector W1(Qi )
corresponding to the smallest eigenvector λ1(S(Qi )). Construct the p ×k
matrix P = [P1,P2, . . . ,Pk ].

4. Finally, set B = di ag (β1, . . . ,βn) where βi = (P T AQ)i i .

end

exist and one can use gradient descent to locate it. However, gradient descent needs
to respect the constraint QT Q = Ik , i.e., the Q-columns need to constitute orthonor-
mal bases (or frames). This can be achieved by applying an orthogonal transformation
(“rotation") to the current Q matrix, as it will preserve orthonormality. Put differently,
applying a rotation R to an orthonormal frame Q results in a new orthonormal frame
(say Q̃). In mathematical parlance, recall that all orthogonal q ×q matrices with a deter-
minant equal to 1 (rather than −1) constitute a multiplicative group denoted as SO(q)
and formally defined as:

SO(q) = {
R ∈Rq×q | RRT = Iq = RT R, and det(R) = 1

}
It is then straightforward to check that for any R ∈ SO(q), it holds that if Q̄ = RQ, the
condition QT Q = Ik implies that Q̄T Q̄ = Ik .

In view of the above, it follows that we can generate the “infinitesimal variations"
needed to compute the gradient∇Qψ(Q) by applying “sufficiently small” orthogonal ma-
trices to the current value of Q. More precisely, we draw on the fact that SO(q) is actually
a Lie-group [22] and that therefore each R ∈ SO(q) can be generated by exponentiat-
ing an element from its Lie-algebra SO(q) = {

K ∈Rq×q | K T =−K
}

(the skew-symmetric
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matrices):

R = exp(tK ) ≡ Iq + tK + 1

2!
t 2K 2 + . . .+ 1

n!
t p K p + . . . (with K T =−K )

By choosing t sufficiently small, one obtains an orthogonal transformation that is close
to the identity Iq . Furthermore, it suffices to restrict the variations to orthogonal trans-
formations that result from exponentiating a basis for the space of skew-symmetric ma-
trices. Such a basis is provided by the q(q − 1)/2 skew-symmetric matrices Ki j (where
1 ≤ i < j ≤ q) for which the matrix element k,` is given by:

Ki j (k,`) =


1 if k = i , `= j
−1 if k = j , `= i

0 otherwise

Worth noting that SO(q) can equivalently be generated, using any random K matrix that
satisfies K =−K T [23]. Given the current value Q0, we construct nearby values for Q by
looping over K12,K13,K23, . . .etc and constructing the corresponding orthogonal matri-
ces R12(t ) = exp(tK12), . . . ,etc. Denoting these “infinitesimal” rotation matrices as Rα

(where α= 1, . . . , q(q −1)/2), we see that the partial derivatives with respect to these ro-
tations can be estimated as:

∂ψ(Q)

∂Rα
≈ ψ(Rα(t )Q0)−ψ(Q0)

t
(for t sufficiently small).

From these results we can select the infinitesimal rotation that results in the steepest
descent.

Random Descent It is worth mentioning that since computing ψ(Q) is computation-
ally expensive (it requires determining eigenvalues), a viable alternative to computing
the gradient is random descent: generate random rotations (by exponentiating random
skew matrices) and check whether they result in a lowerψ-value. As soon as one is found,
proceed in that direction, and repeat the process.

4.4.2. ILLUSTRATIVE EXAMPLE: SMOOTHING A NOISY MATRIX
One way to think about the regularisation based on the matrix product DP (a similar
argument holds for GQ), is that the rows of D specify filters (with applications e.g., in
image processing) that will be applied to the columns of P . Indeed, using the convention
that Ai and Ai denote the i -th column and row of A respectively, we observe that:

DP =

 D1

...
Dd

 (P1, . . . ,Pk ) =

 D1P1 . . . D1Pk
...

...
...

Dd P1 . . . Dd Pk


Since the functional minimisation attempts to keep the norm of the resulting matrix

small, this amounts to keeping the response of the filters on the P-columns sufficiently
small.
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To illustrate the above, let us start from the assumption, common in the literature
e.g., [14, 15, 24], that the p×q data matrix A has a relatively smooth underlying structure
that is corrupted by noise:

A =UV T +τZ

where the p × q matrix Z has independent standard normal entries, and τ controls the
size of the noise.

To recover the underlying “signals" U and V , we minimise the SVD-type regularisa-
tion functional (4.22) where the smoothness of the result is enforced by using regulari-
sation matrices D and G that extract the second derivative as follows:

D = F =



−1 1 0 · · · 0
1 −2 1 0 · · · 0
0 1 −2 1 0 · · · 0
0 0 1 −2 1 · · · 0

0
. . .

. . .
. . .

. . . 0
... · · · 0 1 −2 1
0 · · · 0 1 −1


A typical result for a rank-1 (k = 1) approximation is depicted in Figure 4.1, and com-

pared to the standard SVD solution. This illustrative example is available in [25].
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Figure 4.1: Reconstruction of noisy matrix based on RSVD. Top left: noise-less rank-1 matrix UV T , (image) ,
top right: noisy input image UV T +τZ (high noise level), Middle left: standard rank-1 SVD reconstruction,
middle right: RSVD reconstruction (D and G are 2nd derive matrices. weight parameters λ=µ= 1.5). Bottom:
comparison of standard SVD U (:,1) (red) versus P (blue), and V (:,1) (red) (left) versus Q (blue) (right). The
actual U and V for the noiseless input signal are drawn in green.
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4.5. EARLIER RESULTS, BASED ON ADHOC SMOOTHING
Throughout this thesis, the way we have constructed matrices out of time series means
that rows and columns play a slightly different roles. Rows capture the in-period (e.g. in-
day) variation, whereas columns represent the between-period variation. Put differently,
rows capture the “fast dynamics", and columns the slow dynamics. This shows that we
can look at the SVD as a (temporal) multi-scale decomposition. In this chapter, we will
use this insight for two applications:

• Smoothing and image enhancing

• Forecasting (using V component to predict next day)

In below, we first introduce the second derivative operator as a pre-processing step. The
use of SVD to outline the patterns in the data is presented next.

Rank-7 reconstruction In addition to appearing visually unbiased, the choice of re-
construction rank was done based on the structural similarity index (SSIM)–a popular
criterion in image quality assessments [26]. SSIM measures the deviation of a recon-
structed image (matrix) Ap from its original matrix A, by comparing their corresponding
local means, standard deviations, and cross-covariance matrices [26]. Figure 4.2 displays
the fact that the matrices reconstruction quality level off after p = 7, in terms of SSIM.
Consequently, we opted for rank-7 as an appropriate approximation in our methodolo-
gies. It is worth noting that this figure also highlights the different levels of the volatility
of the various quantities: wind (most erratic) results in the lowest similarity, while solar
feed-in (most predictable) agrees best with the approximation.

 1  3  5  7  9 11 13 15 17 19 21 23

Reconstruction Rank (r)

0

0.2

0.4

0.6

0.8

1
SSIM from the original data

Price

Load

Quantity

Solar

Wind

Figure 4.2: An overview of SSIM, for different reconstruction ranks (p = 1, . . . ,24).

4.5.1. FINDING PEAKS AND VALLEYS
As mentioned previously, the scope of this work, in the context of the electricity market,
is to explore how the inherent variability of the supply by RES can change the intra-day
volatility of the day-ahead price values. To this end, within this matrix context, we add
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(a) Intra-day 2nd derivative of price
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(b) 1st rank reconstruction of Fig. 4.3(a)
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(c) 7th rank reconstruction of Fig. 4.3(a)
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(d) Intra-day 2nd derivative of solar
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(e) 1st rank reconstruction of Fig. 4.3(d)
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(f) 7th rank reconstruction of Fig. 4.3(d)
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(g) Intra-day 2nd derivative of wind
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(h) 1st rank reconstruction of Fig. 4.3(g)
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(i) 7th rank reconstruction of Fig. 4.3(g)
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(j) Intra-day 2nd derivative of load
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(k) 1st rank reconstruction of Fig. 4.3(j)
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(l) 7th rank reconstruction of Fig. 4.3(j)
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(m) Intra-day 2nd derivative of quan-

tity
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(n) 1st rank reconstruction of

Fig. 4.3(m)
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Figure 4.3: Left: The intra-day 2nd derivative of the daily profiles in 2016, for (top to bottom) price, solar and
wind feed-in, load and traded quantity. The underlying trends are magnified using rank-1 (middle) and rank-7
(right) reconstruction.
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an initial pre-processing step- an additional transformation on the daily profiles of the
quantities of interest (viz. price, load, traded quantity, solar and wind feed-in). More pre-
cisely, any of the above daily profiles (generically denoted by f ) is regarded as a function
of two variables:

• time of the day; hour slots 1 ≤ h ≤ 24

• day of the year; 1 ≤ d ≤ 366 (2016 is a leap year!)

Therefore, for such a function f (h,d), it is feasible to obtain the corresponding intra-day
2nd derivatives with respect to the hour:

fhh ≡ ∂2 f

∂h2 ≈ f (h +1)−2 f (h)+ f (h −1)

h2 (4.26)

The resultant 2nd derivative profiles represent the daily dynamics of the original matrix
columns; as their extreme values capture the peaks (i.e. local maxima for which fhh < 0
and extreme) or valleys (i.e. local minima for which fhh > 0 and extreme). Figure 4.4 pro-
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Figure 4.4: The day-ahead wind profile on Nov. 18, and its corresponding intra-day 2nd derivatives. Every sag
in the lower profile corresponds to a swell in upper and vice versa.

vides an example where the upper panel contains the wind feed-in profile on Nov. 18,
2016, and the lower one corresponds to its intra-day 2nd derivative profile. We contend
that comparing the evolution of the intra-day 2nd derivative profiles is useful in investi-
gating the impact of the wind and solar energy feed-in on the price and also the traded
quantity in 2016.

Applying this intra-day 2nd derivative operator to all five quantities of interest, in
the matrix context, facilitates spotting some interesting features of the data. Figure 4.5
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illustrates the 2nd derivatives for both solar (left) and wind feed-in (right). In the left
panel, the gradual shift of the daybreak and the nightfall over the seasons is clearly visi-
ble. Closer inspection of this figure also reveals the dates of the switch to daylight saving
summer time (days 87 and 304). As expected, the wind values (right panel) are more er-
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Figure 4.5: Top figures provide an overview of the solar (left) and wind (right) day-ahead values. Bottom figures
contains the second derivative of the same data. Using this approach magnifies the underlying patterns in the
data and also enables us to spot anomalies and abrupt changes in the data.

ratic and less seasonally determined. However, there is a striking “eye-like” shape that
faintly mirrors the intra-day wind activities (see, e.g., [27]).

4.5.2. USING SVD TO HIGHLIGHT STRUCTURE

SVD is a conceptually simple and numerically stable matrix decomposition technique [28].
An outstanding feature of the SVD method is its ability in separating the fundamen-
tal “profiles” constituting a quasi-periodic time series and also indicating their relative
strengths [29].

The geometrical interpretation of the SVD indicates that the columns of U ∈ O (24×
24) represent daily profiles, whereas the columns of V ∈O (366×366) furnish correspond-
ing amplitudes (one for each day). Figure 4.6 shows a concrete illustration of the 24×366
price matrix: the upper left panel depicts the most dominant profile (the first column U1)
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Figure 4.6: The first two most dominant U profiles (U1 and U2). The lower two panels contain their corre-
sponding amplitudes (V1 and V2) throughout the year.

which highly resembles the overall daily profile (basically, a weighted average over the
year). The expected morning and early evening price picks are clearly discernible. Their
corresponding daily amplitudes are given by column V1, as displayed in the 3rd panel
(bottom left). Exceptional days with notable low or high (average) prices are clearly vis-
ible. A rank-1 approximation of the original time series could, therefore, be obtained by
putting p = 1 in Eq. (2.5); i.e. using only the most dominant singular value σ1, and the
average daily profile U1 in the top panel and their corresponding magnitude through-
out the year using 366 values in V1. Note that in such a rank-1 matrix, all the columns are
linearly dependent, i.e., the shape of all the daily profiles are the same and only their am-
plitudes vary from one day to another. The U2 profile (top right) is considered an account
for seasonal variations, as it defines the first correction to U1. Their corresponding am-
plitudes for this correction are specified in V2 (bottom right). Put differently, this correc-
tion implies that any day for which the corresponding V2 coefficient is positive (mostly
during the summer) will have a lower price value between 11h and 18h than would be
expected based on the (weighted) annual average U1. In a similar fashion, increasing the
reconstruction rank, by adding additional terms in the SVD expansion will improve the
approximation. Figure 4.7 presents a case where the day-ahead price data for a given day
(18 Jan. 2016) can be almost fully reconstructed using lower-rank approximation up to
rank 7.

Figure 4.8 displays V1 and its corresponding smoother version which was applied in
the calculation of Ap . Using the smoothed version of the Vk vectors in the low-rank re-
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Figure 4.8: An example of V1 and its smoother version which is used in the reconstruction step.

construction of data, is a way of accounting for outliers while magnifying the underlying
patterns as depicted in Figure 4.3. The panels on the left-hand column illustrate the orig-
inal 2nd derivative profiles for the various quantities of interest (price, solar and wind
feed-in, load and traded quantity). The two other adjacent columns display two differ-
ent lower-rank reconstructions of the same data, after smoothing their Vk columns; a
rough rank-1 approximation (middle) and a much more accurate rank-7 approximation.

4.5.3. STRUCTURE-PRESERVING SMOOTHING

In the following section, we propose a straightforward method using SVD factorization
to highlight the faint structures seen in Figure 4.5. Recall that the right singular vectors of
Vk in the SVD, determine the amplitudes of each corresponding Uk profile for each day.
Therefore, smoothing these amplitudes across the year is a way of diminishing most of
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the inter-day variations without affecting the overall structure. In the current task, the
smoothing was done based on the robust local regression (RLOESS) model, but alter-
native approaches would be equally valid. We opted for the local regression smoothing
method as it alleviates the effect of outliers by assigning a lower weight to them in the
regression and also allotting zero weight to data points outside six mean absolute devi-
ations [30]. Therefore, in line with the aforementioned smoothing mechanism, matrix
factorization can be reformulated as follow:

Ap = arg min
r ank(R)=p

(||A−R||+λ ||dV ||s ) (4.27)

where ||.||s is an outlier-resistant robust local regression model as a smoothing func-
tion as in [30].

In the recent applications of SVD, regularization has become an increasing trend.
The following section provides an overview of Regularized SVD (RSVD) as the corner-
stone of this chapter.

4.6. DATA
An exchange for the next-day power delivery contracts, where the tradings are driven by
its participants, is the day-ahead electricity market. Energy trading entities, banks and
financial service providers play a prominent role in increasing the liquidity of the whole-
sale power market [31]. These members are mainly focused on market and trade across
borders, even though not necessarily own any power assets. Therefore, grid loss com-
pensation is a great prime for TSOs to intervene in the spot market [32]. Furthermore,
regulating feed-in tariff schemes for marketing zero-carbon energy sources is extensively
practiced by the TSO in Germany. Consequently, understanding the market during this
post-transition era is of great practical value. Figure 4.9 provides an overview of vari-
ous collected sets of data for the German day-ahead market in 2016. The hourly price
and the traded quantity auction values were collected from [33]. We obtained the quar-
terly (every 15 min) day-ahead solar and wind feed-in forecast data from [34]. In the
current work, the hourly values are used instead-obtained by summing up every four
quarterly values. The European Network of Transmission System Operators (ENTSO-E)
was the platform for downloading the day-ahead load forecast data [35]. Using the afore-
mentioned data, we will explore how the intra-day dynamics of day-ahead hourly price
values can be affected by the fluctuations of other attributes.

As mentioned previously, an alternative way of visualizing quasi-periodic time series
(with diurnal patterns) is as matrices [29]. To do so, we partition the data into diurnal pe-
riods and place each daily cycle in a column to form a matrix. Figure 4.10 illustrates the
alternative representation of the data in Figure 4.9, obtained by recasting each time se-
ries into a matrix of size 24×366 (recall that 2016 is a leap year). This change of viewpoint
has two important applications: 1) Representing the time series as images allow one to
visually integrate patterns across longer time spans, hence improving the discriminatory
power. For instance, in the bottom panel of Figure 4.10, a notable correlation between
the traded quantity and the solar (eye-like horizontal shape seen in the 2nd panel from
the top) as well as the wind (vertical stripes in the 3rd panel from the top) can be spot-
ted. In the following section, we will elaborate on this and put these visual impressions
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on a more sound, mathematical footing. 2) Recasting such time series as matrices also
suggest drawing on matrix decomposition theorems to construct approximations which
are more tightly linked to the structure of the time series.
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Figure 4.9: An overview of the German day-ahead market in 2016; each data point represents one hour slot.
From top to bottom, the price, solar, wind, load, and traded quantity.

4.7. BACKGROUND AND LITERATURE REVIEW
In Europe, Germany is forerunning the others in the switch from conventional energies
to renewables, namely wind and solar. This poses new challenges as wind and solar en-
ergy are inherently intermittent and to some extent, unpredictable. Therefore, it is of
great interest to investigate what effect these changes can have on the day-ahead elec-
tricity market and the price volatility. Denny et al. [36] studied how network expansion
and increasing the interconnection between Great Britain and Ireland has facilitated the
integration of wind farms into the power system. Their simulation results point to a re-
duction in average price and its volatility in Ireland; which was considered an outcome
of the large increase in the interconnection capacities. Furthermore, the high penetra-
tion of intermittent distributed energy sources enforces the transmission grid extensions
and increases the cross-border interconnections capacities, to ensure grid stability. The
viability of this methodology and its upshots is investigated in [37], using the projection
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of the wind and solar data until 2020. Some benefits of the substantial expansion of pho-
tovoltaic (PV) installations in Germany and Italy, especially, their role in daytime peak
price drop are discussed in [38]. Continuing further with the studies on the influence of
renewable energy sources (RES) in Germany, a preliminary study was done in [39]. The
authors argued about the recent emergence of zero or negative prices on the German
day-ahead market as a piece of convincing evidence for the impact of RES. Inspired by
the work in [40], the goal of our work is to determine how the intra-day price variability
can be influenced by the variability of the wind and solar feed-in. To this end, the intra-
day dynamics of different attributes are characterized by their second derivatives as they
peak for sharp trend reversals (Section 4.5.1).

As mentioned before, in the present work, we will focus on matrices, as an alterna-
tive representation of the quasi-periodic time series data. The matrix interpretation also
grants elucidation of the underlying structures in the data, using various matrix decom-
position techniques. The concept of decomposing a signal by its constituent compo-
nents has been addressed by researchers in the past. In [41], the singular value decom-
position (SVD) technique is used to obtain the constituent periodic components of a
signal. In this work, the singular value ratio (SVR) criterion was also introduced to detect
periodicity and determine the period length. Furthermore, reconstructing the principle
patterns of a given signal was another outcome of this approach. The applicability of
SVD in generalized discriminant analysis is investigated in [42]. Detection and extrac-
tion of the periodic impulse components from the vibration signals with small signal-to-
noise ratios (SNRs), using SVD, is investigated in [43]. Although the alternative represen-
tation of the time series has been deployed in different areas before, to the best of our
knowledge, it has never been considered in the context of the energy market analysis.
The present work looks into this alternative representation and also the applicability of
the SVD in day-ahead electricity market analysis.

4.8. CONCLUSIONS AND FUTURE RESEARCH
As mentioned before, we use the proposed SVD-based method in the context of the day-
ahead electricity market to quantify the relation between the variability of the day-ahead
price values with respect to other attributes. We hence proceed as follows:

1. We compute the intra-day 2nd derivative of the daily profiles (each column of a
matrix), in order to highlight peaks and valleys (concavity/convexity is a notion of
intra-day variability as can be seen on the left side of Figure 4.3).

2. Next, we lower the rank of those resulting images and enhance their underlying
patterns, using a smoothed SVD expansion up to rank 7. Clearly, the rank-7 recon-
struction yields an acceptable approximation of the original images on the left.
The resulting data are called Cp ,Cl ,Cq ,Cs and Cw where the subscript refers to the
corresponding quantity (the rightmost column of Figure 4.3).

3. Finally, a linear regression model is used to quantify the relation between the price
volatility Cp with other attributes:

Cp =α0 +αl Cl +αq Cq +αs Cs +αw Cw (4.28)
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Figure 4.10: An alternative representation of the German day-ahead market by reformatting the time series in
Figure 4.9 into matrices of size 24×366. Each column contains the 24 hourly values of a single day. From top
to bottom, the price, solar, wind, load, and the traded quantity.

The regression analyses have been performed for three scenarios on the original (un-
treated) 2nd derivative data: 1) using all data; 2) using only day-time data, and 3) using
only night-time data. Table 4.1 contains the results of this benchmark case where the
original 2nd derivative matrices (leftmost columns in Figure 4.3) were used. Table 4.2
reflects a significant improvement of the results by using the rank-7 reconstructed ma-
trices (rightmost column in Figure 4.3).

The significance of our results in the latter case (Table 4.2) was investigated using
permutation tests where the days of the year have been shuffled, before applying the
regression models. Figure 4.11 demonstrates the histogram of the results of the afore-
mentioned randomized data along with the results of the three different scenarios in
Table 4.2. The distinct high R2 values for 24h and daytime scenarios confirm a good per-
formance of the model and show that the intra-day dynamics of the price profiles can in-
deed be modelled as a function of the concavity (intra-day dynamics) of other attributes.
We are aware of the fact that the market mechanism is quite complex and a comprehen-
sive study on the effects of the RES on the market demands takes into consideration of
all the playing factors such as energy policy, subsidies and so on. From a data analyt-
ics point of view, however, a number of findings can be listed. The intra-day dynamics
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Table 4.1: The initial regression model (before applying SVD-based technique).

TimeSlot R2 αl αq αs αw

24h 47.28 1.26 0.44 -2.98 -1.98
day time 53.07 1.34 0.44 -2.97 -1.83

night time 15.60 0.91 0.24 N/A -2.05

Table 4.2: Regression model applied on rank-7 reconstruction of data.

TimeSlot R2 αl αq αs αw

24h 81.84 1.12 0.59 -2.83 -3.60
day time 86.27 1.26 0.29 -2.36 -1.27

night time 56.40 0.85 0.09 N/A -17.59
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Figure 4.11: Permutation test to indicate the significance of R2 values in all three scenarios which can be found
in Table 4.2. Each histogram is the result of randomization tests, repeated 1000 times (no. of bins = 20), where
the days are shuffled before applying the regression models.
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(concavity) of the price is least affected by the traded quantity on the day-ahead market.
Moreover, RES have a higher impact on the price dynamics than the load. During the
day time, solar is the dominant attribute affecting the price dynamics, whereas, during
night hours, it is the wind that affects the most. In is worth noting that in the latter case,
the low R2 value urges more extensive research to understand the time price dynamics
more satisfactorily.

Singular Value Decomposition (SVD) and Principal Component Analysis (PCA) are
important matrix factorisation techniques that underpin numerous applications. How-
ever, it is well-known that disturbances in the input (noise, outliers or missing values)
have a significant effect on the outcome. For that reason, we have investigated regular-
isation in two different but related versions of the factorisation, and have detailed the
solution algorithms.

An important topic for further research would be to find ways in which the gradient
descent procedure in Algorithms 1 and 2 can be accelerated by taking advantage of the
fact that the functional is very smooth and locally approximately quadratic. It would also
be useful to derive some estimates for appropriate values for the weightsλ andµ in terms
of noise characteristics corrupting the underlying signal. Finally, although the P matrix
in Algorithm 2 has unit-length columns, we were not able to prove that these columns are
also orthogonal (P T P = Ik ) as is the case in standard SVD. In fact, numerical experiments
seem to indicate that such a constraint is not compatible with the minimisation of the
functional. This requires further theoretical elucidation.
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5
HYPOTHESIS GENERATION USING

SVD

5.1. INTRODUCTION
Scenario-based probabilistic forecasting models have been extensively explored in the
literature in recent years. A particular application of such models is in the energy sector,
where e.g., having the distribution of the energy consumption for the coming days is
desired. In this chapter, we put the applicability of the SVD into practice to tackle the
energy forecasting problem.

A decisive variable in predicting the energy demand is the temperature data [2]. In
this chapter, we propose a generic, data-driven and computationally efficient SVD-based
approach to simulate temperature scenarios. The generated temperature profiles, along
with other variables, are then fed into a regression algorithm to obtain a probabilistic
forecast of the electricity consumption profiles (see Section 5.3).

There are mainly three practical and popular methods for generating temperature
scenarios, namely fixed-date, shifted-date, and bootstrap approaches [3]. Nevertheless,
these methods have mostly been used on an ad-hoc basis without being formally com-
pared or quantitatively evaluated. As mentioned before, the predictive power of proba-
bilistic forecasting models depends a great deal on how the methodology used in gen-
erating temperature scenarios is robust and capable of simulating the temperature data
sensibly. An important distinction of the current work is the use of matrices as an alter-
native representation of the data. The singular value decomposition (SVD) technique is
then used to generate temperature scenarios, in a robust and data-driven manner.

The strength of our proposed method lies in its simplicity and robustness, in terms of
the training window size, with no need for subsetting or thresholding to generate tem-
perature scenarios. Furthermore, to systematically account for the non-linear interac-
tions between different variables, a new set of features is defined: the first and second
derivatives of the predictors. The empirical case studies performed on the data from the

Part of this chapter has been published in [1, 2].
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load forecasting track of the Global Energy Forecasting Competition 2014 (GEFCom2014-
L) shows that the proposed method outperforms the top two scenario-based models
with a similar setup.

The rest of this chapter is organized as follows. Section 5.2 provides a brief introduc-
tion to the data from the load forecasting track of the Global Energy Forecasting Compe-
tition [4]. Section 5.3 is devoted to our methodology. A short description of the Gradient
Boosting method is presented, first, followed by our proposed models for point forecast-
ing. After a brief recapitulation of the SVD, we explain how our proposed scenario-based
load forecasting models work. The proposed method in this chapter is in fact a marriage
between an SVD-based temperature scenario generator and an ensemble of trees (gra-
dient boosting algorithm). The experimental results along with a comparison with the
results of a number of benchmark models are presented in Section 5.4. We conclude this
chapter in Section 5.5.

5.2. DATA
For the sake of replicability and comparability of our work with the benchmark mod-
els, a case study is constructed based on the data from the load forecasting track of the
Global Energy Forecasting Competition 2014 (GEFCom2014-L) [4]. The participants in
that competition had been asked to develop a short-term probabilistic load forecasting
model, with a forecasting horizon of one month. The publicly available data set consists
of hourly temperature values from 25 anonymous weather stations and the aggregated
hourly load profiles; for a detailed description of data and the competition instructions
see [5].

The electricity consumption patterns are subject to a variety of factors, such as me-
teorological conditions, calendar information, season, working schedules, energy cost
and economic activities [6]. In the current work, however, consistent with the require-
ments in the GEFCom2014-L, only temperature and calendar information are taken into
consideration as the available predictors (besides historic load profiles).

Temperature is believed to be a major driving force behind electricity demand. The
non-linear effect of the temperature on electricity demand is hence at the centre of our
attention. The left panel of Figure 5.1 provides an overview of the typical electricity
consumption profiles throughout the week. This figure affirms that the consumption
patterns differ notably during the weekends from the weekdays. Interestingly enough,
on Friday afternoons, the demand profile gets closer to the weekends, whereas, during
working hours, it is akin to other working days. Furthermore, the right panel in Fig-
ure 5.1, illustrates the evolution of daily load profiles in the year 2010; this figure was
obtained by recasting the time series into a 24× 365 matrix, where every column con-
tains 24 hourly values for each daily profile [7]. As expected, in spring and fall, when the
temperature is moderate, electricity demand tends to be lower than at any other time of
the year (winter and summer times). It underscores the fact that electricity demand is
driven by climate conditions (e.g., air conditioning usage), and also the lifestyle changes
followed by that. This figure also highlights the non-linear relation between load and
temperature throughout the year.

In the literature, the temperature is arguably the most dominant predictor of the
load; however, in and of itself, it is not sufficient for two main reasons:
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Figure 5.1: Left: Comparison of typical daily consumption patterns during the week. Right: An overall repre-
sentation of the evolution of the load profiles throughout a year.

• Diurnal human activities: As it is seen in the left panel of Figure 5.1, the typical
electricity demand behaviour changes throughout the week. These diurnal human
activities are plainly not reflected in the temperature data.

• Recency and cross effects: Even for similar days (weekends or weekdays), the
trend of daily load profiles, corresponding to similar temperature data, might not
be necessarily alike; the recency and cross effects can play a vital role. For instance,
the rise of temperature in early spring might not necessarily lead to high electricity
consumption, in comparison with summer times, as people might appreciate the
rise in outside temperature after a cold winter. This, of course, can deviate across
different seasons. Figure 5.2 illustrates an overview of the trend (first derivative)
changes in daily temperature and load profiles in 2010. These figures were ob-
tained by taking the first derivatives of daily temperature and load matrices. It is
seen that e.g. in early spring and summer time, with the rise of temperature, after-
noon peak profiles start to disappear. Although, the overall relationship between
load and temperature is clear; it is, however, non-trivial how to robustly address
the non-linear effect between temperature and load profiles. Experiment results
in [2] affirm that including the 1st and 2nd derivatives of the daily profiles can in-
deed enhance the performance of the forecasting model.

5.3. METHODOLOGY

In the present work, we opt to use an ensemble of regression trees (Gradient Boosting
method) to predict day-ahead load prognoses, with a forecasting horizon of one month,
given hourly temperature profiles, historical (or estimated) load profiles, and calendar
information. After a brief recapitulation of an ensemble of regression trees, the de-
tailed explanation of our methodology for the probabilistic Short Term Load Forecasting
(STLF) problem is in turn provided below.
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Figure 5.2: An overview of the evolution of the first derivative of the temperature (Left) and load (Right) pro-
files.

5.3.1. ENSEMBLE OF REGRESSION TREES

The use of “ensemble learning” methods in various classification and regression prob-
lems has taken off over the last few years. Ensembles generally rely on “resampling”
techniques to obtain different training sets for each individual regression or classifica-
tion model. Two popular methods for creating accurate ensembles are bootstrap aggre-
gating (Bagging) and Boosting.

In the Bagging method, the training data for each individual model is drawn ran-
domly, i.e., n instances with replacement-where n are the number of observations in the
training set. In this approach, successive members (e.g., trees or neural networks) are
independent of each other; since each member of the ensemble is trained individually
using a bootstrap sample of the data set [8]. In other words, Bagging methods control
the generalization error through perturbation and averaging of sub-models.

In the present work, we opt to use an ensemble of trees which is fast to train and
provides more insight into the importance of the predictors. Worth noting that in this
approach, to ensure that every training sample is predicted at least a few times, the num-
ber of trees needs to be large enough. Since the trees are independent of each other, the
distribution function and the quantiles of each hourly forecast can be easily computed
based on the output of all the trees [9]. It becomes apparent in Section 5.4.

In the Gradient Boosting method, however, the training set for each member of the
ensemble depends on the performance of the previous model(s). More precisely, in or-
der to alleviate the error in earlier models, extra weights are assigned to samples with
higher prediction error rates; those are hence more likely to take part in the training of
the next model [10, 11]. A comprehensive evaluation of both these techniques on 23 data
sets, using two popular classifiers, i.e., decision trees and neural networks is presented
in [12]. The applicability of the Gradient Boosting method in quantile regression load
forecasting applications has been put into practice in [9, 13].

The goal of every typical prediction problem is to determine an estimate or approxi-
mation F̂(x), of the true mapping function F∗(x) which assigns a y ∈R to any given set of
covariates x ∈ Rp . This process is optimized by minimizing the expected value of some
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specified loss function L(y,F(x)) over the set of the joint distribution of all {y,x} pairs. In
mathematical parlance, we have:

F∗(x) = argmin
F(x)

Ey,xL(y,F(x)) = argmin
F(x)

Ex[Ey (L(y,F(x)))|x] (5.1)

where E(.) is the expectation operator, and L(y,F(x)) is a loss function, e.g., the popular
choice of squared-error {y −F(x)}2, for regression problems. F(x) is a member of “addi-
tive” class of functions of the form:

F(x; {λk ,ak }K
1 ) =

K∑
k=1

λk h(x;ak ). (5.2)

where K is the number of members of the ensemble model, λk is the coefficient of
the additive model, the generic function h(x;a) in Eq. (5.2) is called a weak learner or base
learner-it is usually a simple parameterized function of the explanatory variables, speci-
fied by parameters a = {a1, a2, . . .}. In the present work, each h(x;ak ) is a small regression

Algorithm 3: The Gradient Boosting Algorithm, with a squared-error loss function.

Initialization: F0(x) = ȳ
for k=1 to K do

ỹi = yi −Fk−1(xi ), i ∈ [1 : N ]

(ρk ,ak ) = arg min
ρ,a

N∑
i=1

[ỹi −ρ h(xi ;a)]2

Fk (x) = Fk−1(x)+ρk h(x;ak )

tree as introduced in [14]. For a regression tree, the parameters ak are the splitting vari-
ables, split locations and means of the terminal node of the individual trees. An overview
of the Gradient Boosting algorithm, with a squared-error loss function, is presented in
Algorithm 3, where the multiplier ρk is given by the line search:

ρk = arg min Ey,xL(y,Fk−1(x)−ρgk (x))
ρ

, (5.3)

and

gk (x) = Ey

[
∂L(y,F(x))

∂F(x)

]
F(x)=Fk−1(x)

(5.4)

It is worth to be mentioned that the rationale underpinning the choice of the en-
semble of the trees is their ability to better handle the heterogeneous input data–which
comprise both continuous and discrete variables. Additionally, tree models are effective,
adaptive and modular, in that new predictors can be easily added. It is perceived that en-
semble models, unlike their other ML-based counterparts, are less prone to overfitting;
they promise to strike a good trade-off between bias and variance [15].

5.3.2. OUR PROPOSED FORECASTING MODELS
Generally speaking, a regression tree is an adaptive nearest neighbours-like algorithm.
However, it usually shows a better performance in comparison with other counterparts
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Attribute Description Model no.
mn month of year: 1,2,. . . ,12 I,II
wk day of week: 1,2,. . . ,7 I,II
hr hour of day: 1,2,. . . ,24 I,II

L(d−1) previous day (estimated) hourly load I,II
L(d−7) previous week (estimated) hourly load I,II

T(d) hourly temperature (generated profiles) I,II
L′(d−1) 1st derivative of L(d−1) II
L′′(d−1) 2nd derivative of L(d−1) II
L′(d−7) 1st derivative of L(d−7) II
L′′(d−7) 2nd derivative of L(d−7) II

T′(d) 1st derivative of T(d) II
T′′(d) 2nd derivative of T(d) II
L(d) hourly load (forecast target) I,II

Table 5.1: An overview of the attributes used in our proposed models.

nearest neighbour-based methods. It tends to find the homogeneous portions of the
sampling space locally, on contrary to other conventional methods which incline to treat
all distances equally [16, 17].

In the present work, we follow a homogeneous forecast combination framework, i.e.,
we first train a single-value load forecasting model, then, vary the input data (differ-
ent temperature scenarios) to obtain a series of forecasts, and accordingly, the quantiles
(Section 5.4). We consider two Gradient Boosting based methods to predict the day-
ahead load prognoses. In the first model, only calendar information, temperature data
along with historical load data are the input variables. We proceed further in the second
model to incorporate the daily dynamics of the temperature and load profiles. It is done
using the first and second derivatives of the daily profiles.

Power consumption is subject to a wide range of exogenous variables, including cal-
endar effects, electricity price and so on. In the literature, the previous consumption pat-
terns and calendar information have been extensively used in developing various load
forecasting models. However, accounting for the interaction between different variables,
namely the recency and cross effects can be an onerous task; it demands some domain
expertise to be done sensibly [18, 19].

A number of common deterministic (categorical) explanatory variables used in our
methodologies are as follows: month of the year mn ∈ {1,2, . . . ,12}, day of the week
wk ∈ {1,2, . . . ,7} (starting from Sunday=1), and hour of the day hr ∈ {1,2, . . . ,24}. As it
is principled in [5] the forecasting horizon herein is one month, therefore, the estimated
values for the first week of the month are being used to estimate the load profiles in the
second week of the month and so on. In all cases, the aim is to predict L(d), 24 hourly
load values for the target day d. Below we discuss the models in more detail, but for ease
of reference, Table 5.1 summarizes all the common and distinctive attributes used in the
two proposed models.
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Model I The first model provides us with a benchmark to measure the credibility of
our proposed method in incorporating the recency and cross effects in data in Model
II. Here, we introduce six different attributes to predict the hourly load values on the
target day d. The three above-mentioned common discrete (categorical) values, namely,
mn,wk and hr, along with the (estimated) load value for a given hour on the previous day
or week (L(d−1) and L(d−7), respectively). The intuition for this choice is to reflect the
diurnal and weekly patterns of human activities on electricity consumption (Figure 5.1).
The last covariate T(d) is the hourly temperature forecast for the target day d. As it is ex-
plained in Section 5.3.3, we generate a hundred independent temperature profiles, using
the singular value decomposition, to correspondingly obtain 100 independent load fore-
casts for each target day; the combination of these forecasts is then used to obtain the
load quantiles for each hour.

Model II To reflect the lagging effect of temperature on load changes, in the second
model, we add the daily dynamics of the temperature and load profiles (1st and 2nd
derivatives) [1]. For a given hour slot h the corresponding first derivative of the variable
z ∈ {L,T} can be obtained by z ′(h) = 0.5[z(h +1)− z(h −1)]; with obvious analogues for
the 2nd derivative. The reasoning for doing so is that oftentimes the actual values are
not as important as the general underlying trends captured by the first or second deriva-
tives of the covariates. In other words, load value at any moment is influenced by the
variations of the other attributes (namely, temperature profiles) prior to that moment.
Including the derivatives are, in fact, a relatively simple and generic means to account
for the recency effect in the data. In comparison with most time-varying models, where
the data is typically divided into subsets (based on thresholds), or a lagging window is
optimized, our proposed approach is more straightforward and user-friendly.

A major contribution herein is the use of the SVD to generate temperature scenarios
T(d) for the target day d; it is done to determine the distribution (99 percentiles) of the
load profile in our proposed probabilistic forecasting models. A brief recapitulation of
the singular value decomposition (SVD) technique is provided below.

5.3.3. SINGULAR VALUE DECOMPOSITION
As previously mentioned, the SVD technique is used herein to generate new temperature
profiles (matrices). To be more precise, we recast one year’s worth of hourly temperature
values as a matrix T ∈ R24×365 such that every column corresponds to 24 hourly values
of a day. Consequently, the matrix T can conveniently be represented by a low-rank
approximation. To review the SVD results see Chapter 2.

If there are only a few dominant singular values (as is the case for the temperature
matrices, in Figure 5.3), the expansion of the matrix in Eq. (2.5) can be sufficiently trun-
cated after just the first few K terms to yield AK , an adequate lower rank approximation
of A, as obtained in Eq. (2.10).

To elaborate more, Figure 5.4 illustrates the first three columns of Uk (left) and Vk

(right) for temperature matrix for the year 2009. In geometrical terms, Uk columns can
be interpreted as the fundamental daily profile and its successive increments; Vk values
represent the corresponding scaling factors for each Uk profiles for each day. In other
words, SVD decomposes the original time series into a linear combination of a num-
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Figure 5.3: The evolution of the singular values of the temperature matrices over the years; it suggests that a
reconstruction of rank-4 approximation would suffice, indicating that temperature is quite regular.

ber of (data-driven) orthonormal profiles, specified by Uk columns; each profile is then
scaled up (or down) according to their corresponding weights in Vk .

For instance, U1 in the top left panel of Figure 5.4 strikingly resembles the averaged
daily temperature profile. Moreover, its corresponding V1 profile (top right panel) out-
lines the evolution of that profile throughout the year; it is in agreement with the fact that
temperature is higher in summer time (middle part of the graph). Recall that these pro-
files are weighted based on the magnitude of their corresponding singular values which
are sorted in descending order from left to right (Figure 5.3). The most dominant “cor-
rective” incremental profile U2 and its corresponding coefficients V2 are displayed in the
middle panel of Figure 5.4. This correction hence needs to be added to the first profile
to get a better approximation, i.e., K = 2 in Eq. (2.5). Similar interpretations are valid for
the third profile (bottom panels) and so on.

It is worth noting that Vk profiles on the right-hand side of Figure 5.4 imply a distinct
impression that temperatures are less variable during the summer (middle parts of the
graph). In the following Section, SVD is used to simulate pragmatic temperature scenar-
ios, in a systematic and data-driven manner. The generated profiles are accordingly fed
to Models I and II to obtain the probability distribution (99 quantiles) of the load values
for every given hour.

5.3.4. TEMPERATURE SCENARIO GENERATION

A common approach in probabilistic load forecasting problems is to vary the input (e.g.,
temperature profiles) to obtain a series of forecasts and combine them [20]. One of
the major challenges, however, is how to create realistic temperature profiles, e.g., sim-
ply adding independent Gaussian noise to the hourly values of individual temperature
curves results in some preposterously jagged profiles.

In the literature, a number of solutions have been proposed to simulate temperature
scenarios. In [21], it is proposed to combine different weather station measurements to
generate new temperature profiles. Nonetheless, it can be argued that normal weather
scenarios cannot precisely be simulated by averaging the temperature profiles, as they
tend to underestimate the peaks. Furthermore, such approaches are not resilient toward
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Figure 5.4: SVD-based decomposition of hourly temperature data for 2009. On the left, there are the first three
Uk columns; whereas the right column displays their corresponding Vk ’s.

outliers, as even one instance, can change the whole profile as long as it takes part in gen-
erating new temperature scenarios. The performance of the forecasting model can con-
sequently be diminished as a result of that. Worth noting that shifting the temperature
data by one, two or even three days was initially used to generate temperature scenarios;
it was later abandoned for obvious reasons. Some cumbersome approaches in terms of
computational costs, such as Monte Carlo-based methods are also popular, especially
among utilities, to simulate thousands of temperature profiles - an approach which is
used in scenario analysis in LTLF problems [22]. In [23], new temperature scenarios are
generated, again, by averaging the temperature of stations 3 and 9 (GEFCom2014-L data
was used). The reason for that is mentioned to be due to the existence of a good in-
sample fit with a cubic relation between the temperature records of those two stations
and the load data. Besides pre-processing there are not a lot of solutions in the literature
on how to generate robust and pragmatic input (temperature) scenarios.

The SVD allows us to create hundreds of sensible and realistic temperature profiles
for any target day d, in a fairly fast and robust manner. Figure 5.3 affirms the fact that the
singular values σk of the temperature matrices over the years have not changed much;
similar conclusions can be drawn for the left singular vectors Uk . Furthermore, it is plain
to see in Figure 5.4 that the Vk coefficients implicate the variability of the temperature
profiles throughout the year. Since the forecasting horizon is one month, hereafter tem-
perature matrix is referred to a month worth of temperature data for the coming month
(test data in Section 5.4). We, therefore, proceed with the following steps, to create tem-
perature scenarios:
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Figure 5.5: Histogram of the v2 coefficients for June 2011 temperature data (30 values). Note that the distribu-
tion is approximately normal with zero mean and std(v2) ≈ 0.18.

1. In the first step, we estimate the corresponding standard deviation sk for a number
of right singular vectors Vk (V2, . . . , V4). Figure 5.5 illustrates the histogram for
V2, which shows that s2 ≈ 0.18. Interestingly enough, similar experiments on all
three Vk columns (k ≥ 2) yield similar results; however, their contribution to the
final rank K reconstructed profile is scaled up or down by the magnitude of their
corresponding singular values.

2. Next, for any given day d of the test month, for which a number of temperature
scenarios are desired, we take the actual temperature profile for that day T = T(d),
find the corresponding Vk coefficients (V 0

2 ,V 0
3 ,V 0

4 ); then blend them with zero-
mean Gaussian noise: V n

k = V 0
k +N (0,ε2). These perturbed Vk coefficients are

then used to generate a new (noisy) temperature scenario (reconstruct the matrix).

3. According to the scheme outlined above, for each actual daily profile T(d), a hun-
dred temperature scenarios are generated. This new data set is then fed into the
proposed prediction models. In the final step, the forecasts are duly compared to
the real load values. This approach enables us to determine the distribution of
the hourly load values (99 quantiles) and compute the corresponding pinball er-
ror values (Section 5.4). Figure 5.6 illustrates an example of one hundred generated
temperature profiles (Left), and their corresponding daily load profiles (Right).

4. For the sake of completeness, it should be noted that V1 is left unperturbed as this
is a proxy of the average temperature on a particular day, for which the uncertainty
is negligible. Similarly, there is not much to be gained from perturbing other right
singular vectors (V5 etc), as their impact on the profile is insignificant (their corre-
sponding σk are small).

In [1], a preliminary study was done to investigate how the effect of the perturbation vari-
ance in temperature profiles T(d) propagates into uncertainty on the target load profile
L(d).
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Figure 5.6: An illustrative example of 100 generated temperature scenarios for each day and their correspond-
ing daily load profiles (obtained by Model II) for January 10-15, 2011. The spotted points are the actual values
and the noise level is N (0,0.09). These 100 different load values for every hour are then used to calculate the
99 quantiles.
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5.4. EXPERIMENTAL RESULTS
Probabilistic forecasts provide more comprehensive information about future uncer-
tainties than point forecasts can do [20]. As previously mentioned, the aim of the GEFCom2014-
L was to estimate the quantiles of the hourly load values for a utility in the US, on a rolling
basis [5]- with a forecasting horizon of one month. Furthermore, it was expected from
the contestants to investigate the weather scenario generation methods for probabilistic
load forecasting.

The scenario-based probabilistic forecasting methodology proposed in [22] was used
by two top 8 teams (Jingrui Xie, top 3; Bidong Liu, top 8) in GEFCom2014-L. Therefore,
we opt to compare our results with similar works. A least absolute shrinkage and se-
lection operator (LASSO) estimation based method is proposed in [23] for probabilistic
forecasting applications. This work is reported to outperform the methodology used by
Bidong Liu [18] to win a top 8 place in GEFCom2014-L. We hence have considered the
proposed method in [23] as one of the benchmark models. The reported work uses a bi-
variate time-varying threshold autoregressive (AR) process for the hourly load YL ,t and
temperature YT ,t data (D = {L ,T }). The time series of interest are accordingly modeled
for i ∈D as follows:

Yi ,t =φi ,0(t )+ ∑
j∈D

∑
c∈Ci , j

∑
k∈Ii , j ,c

φi , j ,c,k (t )max{Y j ,t−k ,c}+εi ,t (5.5)

where φi ,0 are the time-varying intercepts and φi , j ,c,k are time-varying autoregressive
coefficients. Furthermore, Ci , j are the set of all considered thresholds for the load and
temperature data (all set manually). Ii , j ,c are the index sets of the corresponding lags and
εi ,t is the error term. The modelling process is done in three parts: 1) choice of thresholds
Ci , j ; 2) choice of lag sets Ii , j ,c ; and 3) time-varying structure of the coefficients. For
further details see [23].

Another winning team (top 3) in the GEFCom2014-L was Jingrui Xie, who developed
an integrated solution for probabilistic load forecasting [21]. Her proposed methodol-
ogy consists of three parts: 1) pre-processing, which includes data cleaning and tem-
perature station selection; 2) forecasting (which focuses on the development of point
forecasting models), forecast combination, and temperature scenario generation; and
3) post-processing, which embodies the residual simulation for probabilistic forecast-
ing purposes. Inspired by the Vanilla model in [18], their core forecasting model is as
follows:

Lt =β0 +β1Trendt +β2Tt +β3T
2

t +β4T
3

t +β5Montht +β6Weekdayt +β7Hourst+
β8Hourst Weekdayt +β9Tt Montht +β10T

2
t Montht +β11T

3
t Montht+

β12Tt Hourt +β13T
2

t Hourt +β14T
3

t Hourt (5.6)

It is in fact a multiple linear regression (MLR) model with the following main and cross
effects:

• Main effects: a chronological Trendt variable, first to third-order polynomials of
the temperature (Tt ,T 2

t ,T 3
t ), and a number of categorical variables namely, Month,

weekday, and Hour.
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Figure 5.7: Probabilistic load forecast of 11 days from March 20, 2011 to March 30, 2011; the solid line in black
is the actual value and the dash-dot lines are the forecast quantiles.

• Cross effects: similar to [18], the cross effects are incorporated using the multi-
plications of different attributes such as Hourt Weekdayt , Tt Montht , T 2

t Montht ,
T 3

t Montht , Tt Hourt , T 2
t Hourt , and T 3

t Hourt .

In the next step, the residuals obtained from Eq. (5.6) are modeled using four differ-
ent techniques, namely unobserved component models (UCM), exponential smoothing
models (ESM), three-layer feedforward neural network (NN), and autoregressive inte-
grated moving average models (ARIMA). Four different sets of point forecasts are accord-
ingly generated by adding each set of residuals to the values obtained from the previous
stage. The average of each four values is the final estimation for the load forecast for ev-
ery given hour. In the end, 10 different temperature scenarios are generated according
to [22], to obtain the 99 percentiles from the 10-point forecasts.

The regression-based models are arguably vulnerable towards outliers, especially in
scenario-based applications. Due to the recency effects, outliers e.g., in temperature
scenarios can affect the load forecasts for a longer time span. Our proposed SVD-based
model is more robust and capable of handling this issue. As mentioned before, for every
hour of the target day L(d), we obtain 100 different load values (see Figure 5.6). The re-
sults are then used to determine the distribution of the hourly load values (99 different
quantiles) for any given hour, by employing linear extrapolations [24]. An illustrative ex-
ample of the predicted quantiles for 11 days, March 20-30, 2011, is provided in Figure 5.7.

Model Evaluation: Pinball loss is a comprehensive index to evaluate the reliability,
sharpness, and calibration of the forecasts. It is an extensively used error measure for
quantile forecasts in probabilistic forecasting problems. The performance of the fore-
casting models in GEFCom2014 was evaluated by the overall mean of the pinball loss
values. Recall that the pinball loss function can be written as:

Pinball(ŷt ,q , yt , q) =
{

(1−q)(ŷt ,q − yt ) if ŷt ,q > yt

q(yt − ŷt ,q ) if ŷt ,q ≤ yt
(5.7)
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Month [23] [21] Model I Model II
1 9.88 11.87 3.43 3.23
2 9.54 10.93 3.24 2.89
3 7.79 8.44 2.69 2.56
4 4.89 4.50 2.53 2.30
5 5.96 7.27 3.33 3.50
6 5.86 6.99 4.98 4.66
7 7.66 9.05 3.63 3.42
8 10.70 11.26 8.71 8.58
9 6.28 5.49 4.46 4.05

10 5.20 3.36 2.97 2.76
11 6.38 5.90 3.50 3.59
12 8.99 9.73 3.57 3.36

Table 5.2: The left two columns are the reported results in [23], and [21]. The results of our proposed two
different models are presented in the right part. The results reported here are the average of 100 iterations (no.
of trees is 100, and MaxNumSplits=128).

where yt is the target hourly value of the load profile from [5], and ŷt ,q is the correspond-
ing forecast value at the q−th quantile (q ∈ {0.01,0.02, . . . ,0.99}); it is obtained from one
of the models specified above.

To evaluate the full predictive densities, pinball scores obtained from Eq. (5.7) are
averaged over the time horizon (99 quantiles for every hour, 24 hours of the day, n days
of the month). A better forecast yield a lower pinball score. For more details on the
pinball loss function and the evaluation methods used in GEFCom2014, see [5].

Table 5.2 contains the results of our proposed models along with two benchmark
models. It is worth noting that all the data prior to the target month have taken part in
the training of each model, i.e., the first eleven months in 2011 were used for training a
model to predict the load profiles in December 2011. Furthermore, the average of 100
different hourly load values (top panel in Figure 5.6) is used as a proxy for the actual load
value anytime needed. The reason for that is that in the later days of the month, the
earlier load profiles are needed in the form of L(d−1) or L(d−7). The results in Table 5.2
highlights the fact that including the derivatives (especially the 2nd derivatives) is indeed
helpful in enhancing the performance of the forecasting model. Diebold-Mariano test
is another well-known metric to determine whether forecasts are significantly different.
Let ei 1 and ei 2 be the residuals for Model I and II, respectively (i ∈ [1 : n]). n is the number
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Figure 5.8: Comparison of the two models I and II, using Diebold-Mariano test (h = 1 and k = 0).

of data points, and k is the lagging variable [25].

di = |ei 1|2 −|ei 2|2

d̄ = 1

n

n∑
i=1

di

γk = 1

n

n∑
i=k+1

(di − d̄)(di−k − d̄), n > k ≥ 1

DM = d̄√
[γ0 +2

h−1∑
k=1

γk ]/n

, h ≥ 1

(5.8)

Figure 5.8 contains the Diebold-Mariano test [26], [27] to determine whether the two
models are significantly different. These results were obtained by comparing the error
between the median (q = 0.5) of the forecasts from the two models and the actual values.
The results are the average of 100 iterations, calculated according to Eq. (5.8). Suppose
that the significance level of the test is α = 0.05. For a two-tailed test, therefore, the
upper and lower tails would each be 0.025. Accordingly, the upper and lower z−values
are 1.96 and −1.96, respectively [28]. The null hypothesis of no difference between the
two models (forecasts) will be rejected if the computed Diebold-Mariano statistic falls
outside the range of [-1.96, 1.96]. Consistent with the results in Table 5.2, in February,
June and September 2011, Models I and II are most significantly different. On the other
hand, in August, when both models have the highest pinball score, the Diebold-Mariano
(DM) test is low. Finally, DM tests in May and November 2011, are negative, as Model I
outperforms Model II.
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5.5. CONCLUSIONS
This chapter proposes two generic scenario-based probabilistic load forecasting models
using an ensemble of regression trees. An important distinction of the current work is in
recasting quasi-periodic time series data as matrices. The singular value decomposition
technique is then used to generate temperature scenarios, in a robust, data-driven and
timely manner. In the second model, we extend the first one by adding the first and
second derivatives of the non-deterministic attributes (temperature and historical load
data). It was done to partially account for the recency effects and interactions among
the data. The empirical case studies performed on the data from the load forecasting
track of the Global Energy Forecasting Competition 2014 (GEFCom2014-L) show how
the proposed models outperform two benchmark scenario-based models with a similar
set-up.
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6
VOLATILITY QUANTIFICATION

6.1. INTRODUCTION
Renewable Energy Sources (RES) are assuming an increasingly pre-eminent role in Ger-
man electricity production. To secure an economic and environmentally compatible
supply, Germany has substantially expanded its RES-capacity, in particular wind and
solar [4]. This creates new challenges as wind and solar energy are fundamentally in-
termittent, weather-dependent and unpredictable. It hence raises concerns about the
overall reliability of the power supply and its flexibility. It is therefore of considerable in-
terest to investigate what effect this energy transition could have on the overall trend and
volatility of electricity prices. This impact could be complex because there are a number
of contradicting forces at play. The marginal cost of RES is relatively low and even nega-
tive (especially if subsidized); therefore, increased penetration of wind and solar would
result in a downward trend in electricity prices. Moreover, a perceived advantage of mar-
ket coupling is to reduce price volatility [5]. On the contrary, the associated uncertainty
regarding the availability of wind and solar energy is expected to cause spikes in the mar-
ket. In other words, the integration of RES provokes the assertion that the stability of the
power grid can be compromised due to the inherent intermittency of such sources. Con-
sequently, the increased price volatility will cause additional market risks for suppliers
and consumers on the market.

Volatility principally refers to random fluctuations of a time series about its mean or
expected value. Generally speaking, in financial time series data analytics, volatility is
measured by the standard deviation of the logarithmic return or a derivation of that [6].
In the literature, numerous methods have been introduced to determine the volatility
of the time series data. Diverse methods, from applied models such as Garman-Klass
and Rogers-Satchell volatility estimators to the coefficient of variation based, and formal
stochastic volatility models including GARCH, Heston models and [7]. Recently, how-
ever, new concepts and notions of volatility have been explored, especially in financial
data analysis. Ruiz et. al., in [8] propose the permutation entropy, topological entropy

Parts of this chapter have been published in [1–3].
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and the modified permutation entropy as alternative measures for volatility quantifica-
tion. In the reported work, the degree of randomness or determinism of a time series is
considered as the notion of the volatility of data. Simonsen [9] studies different volatility
features (including volatility clustering, log-normal distribution, and long-range corre-
lations) of the Nordic day-ahead power spot market for the course of 12 years (1992 till
May 2004). The aforementioned work also reports the presence of cyclic behavior of the
time-dependent volatility for the quasi-periodic (with almost diurnal patterns) power
market data. Additionally, the striking differences between the range of price data in
different years are reported to be an obstacle in developing a generic approach to an-
alyzing the market from different perspectives. The volatility has namely dependence
on the price level, which is even more pronounced when spot prices are low. There-
fore, in terms of analyzing EPEX data shifting up all the values for different years by a
certain threshold in order to use the traditional financial data methodologies, does not
appear to be a viable approach, as the results may vary drastically for different thresh-
olds. A frequency domain-based method is deployed in [10] to systematically separate
out the periodic components of the prices from random variations. After removing the
deterministic part, the price volatility is determined by fitting a Wiener process to the
remaining random stochastic (residual) part.

Because of the aforementioned characteristics of the EPEX price values, in the first
step, we pre-process the raw data to eliminate the underlying patterns; and subsequently,
focus on quantifying the volatility of data on an hourly or daily bases. The nature of this
pre-processing is discussed in the following subsections.

Along with the increase in the utilization of intermittent renewable sources, short-
term electricity market studies (including day-ahead, intraday and imbalance market)
are becoming increasingly popular. We herein opt to focus on the day-ahead market as
it represents an important and growing segment where market mechanisms are clearly
visible. In particular, we focus on the following question: How can the evolution of the
price volatility of the day-ahead market over the past eleven years (i.e., 2006-2016) be
quantified? Inspired by the work in [11], we consider matrices as an alternative rep-
resentation of the electricity market data where the time series demonstrates periodic
patterns. In the next step, a popular and numerically stable matrix decomposition tech-
nique, namely the singular value decomposition (SVD), is used to disentangle the matrix
of daily price profiles (one year’s worth of hourly values) based on the most dominant
daily profiles (left singular vectors as a notion of trend) and their corresponding variabil-
ity (the right singular vectors). Accordingly new, yet easy-to-quantify, notions of hourly
and daily volatility are proposed using a lower-rank matrix reconstruction (as a mea-
sure of hourly volatility) and the right singular vectors (as a measure of daily volatility).
The second part of this chapter is dedicated to exploring the possible effect of RES on
the overall price profiles (e.g., shifts in peak price hours, emergence of zero or negative
prices).

The rest of this chapter is organized as follows. Section 6.2 focuses on the data de-
scription for the day-ahead market; it also explains the source and a brief summary of
the day-ahead market mechanism. Section 6.3 provides a brief recapitulation of SVD.
Sections 6.4 and 6.5 are dedicated to our methodologies and detailed description of the
proposed daily and hourly volatility quantities. We conclude in Chapter in Section 6.7.
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Figure 6.1: Left: Evolution of the German day-ahead spot prices from 2006 through 2016 (daily averages).
Right: The corresponding box-plots of the hourly price data (for the sake of visualization, only values between
[−300,300] are illustrated). It is evident to see that zero or negative prices started to appear in late 2008 after-
wards.

6.2. DATA
The European Power Exchange (EPEX SPOT SE) operates on the Central Western Euro-
pean (CWE) spot market. To guarantee a single integrated and transparent market, the
EPEX SPOT SE acts as a neutral intermediary market operating service provider between
the market members active in the central western European countries - viz. Switzerland,
France, Germany and Austria.

This market consists of non-final consumers and big players in the energy sector
such as utilities, wind and solar farm owners, hydroelectric power stations, aggregators,
transmission system operators (TSOs), financial service providers and also energy trad-
ing entities that are working within the energy sector on a daily basis [12]. The following
sections describe the functionality of the day-ahead market.

6.2.1. DAY-AHEAD AUCTION SPOT MARKET
An exchange for short-term (one day before the power delivery) electricity contracts is
the day-ahead market. It is a single integrated market where the participants themselves
propel the trading. An electricity buyer, typically a utility or TSO, determines the amount
of energy ( and the purchase price) it will need to fulfil its customer’s requirements for the
coming day. The seller, e.g., the owner of a wind or solar farm, also submits the quantity
which they are prepared to deliver the next day and the price level for each hour.

These “bids” are then fed into a complex algorithm to calculate the clearing price. In
the end, the financial and physical transactions are settled. The output of the algorithm
is in fact a number of time series of prices (bounded between [−500,3000]), and traded
volumes which are going to be exchanged, per area and period of the day, for the next
day [5, 13].

Day-Ahead Spot Prices (in AC/MWh) Figure 6.1 illustrates an overview of the hourly
values of the price on the day-ahead market in Germany and Austria from 2006 until
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Year 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
µ 50.79 37.98 65.76 38.85 44.48 51.12 42.59 37.78 32.76 31.63 28.98

std 49.42 30.35 28.65 19.40 13.98 13.60 18.69 16.45 12.77 12.67 12.48
Cv 97.31 79.91 43.58 49.94 31.42 26.60 43.87 43.53 38.99 40.05 43.08

Table 6.1: Annual mean, standard deviation and the coefficient of variation Cv of EPEX price data, in the years
2006-2016.

2016 (data source: [12]). Interestingly enough, it is plain to see that after triggering the
energy transition in 2011, occurrences of zero or negative price values are more frequent.
Furthermore, a cursory glance at this time series suggests an overall downward trend in
price range as well as its volatility. As mentioned before, it is reasonable to question
whether the intermittency of renewables would render the price more erratic.

Loosely speaking, volatility refers to the random fluctuations of a time series about
its expected value. There are various methods to define and quantify volatility, from ap-
plied models like Garman/Klass to coefficient of variation and formal Stochastic Volatil-
ity models such as GARCH, Heston models and the like e.g. [7, 14]. There are at least two
reasons why it is problematic to blindly transfer standard fintech methodology to the
current setting:

• While the stock market prices are only available on trading days, EPEX prices cover
the whole year, 24 hours 7 days a week. Accordingly, the underlying variability of
the data could wrongly be conceived as volatility whereas it in fact simply reflects
the diurnal patterns of human activities.

• More importantly, EPEX prices can be zero or even negative; therefore, the stan-
dard approach to switch to logarithmic measures can be done only after shifting
up all values above zero by a certain threshold. On the other hand, price volatility
has a dependence on the price level, which is even more pronounced when the
spot prices are low [9]. Therefore, the generalizability of conventional approaches
can be questioned, as the volatility measures can vary drastically, with respect to
the magnitude of the aforementioned thresholds.

Table 6.1 contains the annual mean, standard deviation and coefficient of variations of
the German day-ahead market. Interestingly enough, despite a consistent reduction in
the annual mean (µ) and the standard deviation (std), the coefficient of variation (Cv =
std
µ ×100) has increased from 2015 afterwards. Figure 6.2 provides a comparison of the

annual standard deviation of the logarithmic returns of the EPEX data, for three different
cases. As mentioned before, since the original time series contain non-positive values,
in the first step, we shift up all the hourly price values P = {p1, p2, . . . , p8760} (p8784 for
a leap year) by a positive α value (xt = pt +α). Considering the upper and lower limit
of the EPEX price values (recall that pt ∈ [−500,3000]), three different scenarios have
been defined as follow: 1) α = |mi n(P )| + 1; 2) α = |max(P )| + 1; and 3) α = 501. The
logarithmic returns are then calculated as follows:

βt = log(xt )− log(xt−1) (6.1)
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Figure 6.2: Comparison of annual standard deviation of logarithmic returns of EPEX data for differentα values.

In the final step, the standard deviation of the logarithmic return values βt is considered
as a notion of annual volatility. It is plain to see that different α values have led to con-
tradictory results. We herein define a new notion of hourly and daily volatility (using the
SVD method) which is robust in terms of non-positive values, as fully elaborated in the
following sections.

6.3. MATRIX DECOMPOSITION USING SVD
As previously mentioned, the SVD is applied extensively in matrix computations, but
can also be put to good use in the study of time series that have exogenously induced
periods. This is often the case in economics time series, where the variables of interest
show cyclic patterns.

As it is explained in the previous chapters, to obtain a matrix format of the data for
each year, we reshape the time series data into matrix Ah×d , where h = 24 is the num-
ber of hours of the day, and d = 365 (366 for a leap year) is the number of days of the
year [11]. The SVD method is then used to decompose the matrix Ah×d into a set of fun-
damental daily profiles and their corresponding weights during the observed time span
(it becomes apparent in the following section). This method is more robust, regarding
the aforementioned issues with EPEX price data, as it enables us to explore the trend
and volatility of each year individually and in a data-driven manner, with no need to add
offset values.

As an example, Figure 6.3 displays an overview of the German day-ahead electricity
prices in 2016. As a first step, we recast each year’s worth of data into a matrix Ah×d where
each column contains 24 hourly values for a given day – it can be seen as d points in
h−dimensional space, similar to Figure 1.15. We then obtain its corresponding three fac-
torization matrices using the SVD expansion. As discussed in Chapter 2, if the price pro-
files for each day were identical (or linearly dependent), i.e. all the columns were identi-
cal (or linearly dependent), the matrix would have had a rank equal to one (r ank(A) = 1).
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Figure 6.3: An overview of the evolution of the hourly day-ahead price values in 2016.

However, in practice, the rank of the matrix Ah×d exceeds one since the daily price pro-
files for subsequent days tend to differ, depending on the calendar information, supply
availability and demand.

Figure 6.4 illustrates the first two dominant Uk and Vk profiles, corresponding to the
two largest singular valuesσk (k = 1,2). It is plain to see that the most dominant U profile
(U1, top left), highly resembles an appropriately weighted average of daily profiles (aver-
aged over the year). The morning and late afternoon price peaks are clearly discernible
in this plot. The second column of U (U2 bottom left) acts as a correcting factor, which
needs to appropriately be added to the first profile to build up a more detailed represen-
tation of the data. The panels on the right display the corresponding Vk coefficients that
specify the magnitude of the corresponding Uk profile for each day of the year. In other
words, Vk profiles sensibly reflect the daily variability of their corresponding Uk profiles
throughout the year.

Figure 6.5 demonstrates the evolution of the singular values for different years. It
is plain to see that by considering only a few singular values (and their corresponding
singular vectors) we are capable of reconstructing the price data with a good approxi-
mation.

6.4. QUANTIFYING THE DAILY VOLATILITY
The wavelet decomposition technique is used herein to quantify the daily volatility of
the EPEX price data.

6.4.1. WAVELET DECOMPOSITION
In modern mathematics, wavelets are one of the most efficient and widely used tools to
analyse digital signals. As the name suggests, wavelet analysis is akin to Fourier anal-
ysis which decomposes the signal of interest as a linear combination of sine waves of
different frequencies and phases [15].

Wavelet analysis will not only tell us which frequencies are hidden in the signal,
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Figure 6.4: SVD-based rank-2 approximation: the first two most dominant Uk profiles are depicted on the left
side. The panels on the right contain their corresponding Vk coefficients. Left column: first two columns of
U-matrix representing a weighted averaged profile for each day (top) and a first order correction (again one
value for each hour over a 24 hour period). Right column: corresponding amplitudes (V columns).

Figure 6.5: An overview of the evolution of the singular value of the price data in recent years.
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Figure 6.6: Schematic representation of the Haar wavelet decomposition.

but can also pinpoint their location in the data stream. From this, it becomes clear
that wavelets hand us a useful tool to probe the data for the occurrence and location
of high-frequency fluctuations [16]. The Haar wavelet is arguably the simplest wavelet
and lends itself to a straightforward interpretation. It basically takes any discrete sig-
nal x = (x1, x2, x3, . . .) and creates an approximation a and detail d signal by running the
following simple recipe:

1. Take the first two elements x1 and x2 and compute the approximation and detail
coefficients:

a = x1 +x2

2
and d = x1 −x2

2
.

Notice that this implies x1 = a +d and x2 = a −d , or more explicitly: the approxi-
mation coefficient equals the mean of the two values, and the detail coefficient is
the amount of deviation between the actual value and the approximation.

2. Store the results in the approximation and detail vector, respectively:

a(1) = a d(1) = d .

Both vectors have a length equal to half the length of the original input x.

3. Move on to the next pair (x3, x4) and continue until all x-elements have been pro-
cessed. This way we get the level-one approximation (a1) and detail (d1) coeffi-
cient (each vector of half the length of the original x-sequence).

4. To compute the level-two approximation and detail coefficients we repeat the whole
procedure but use a1 as input (instead of x).

5. This can be continued until we have reached a pre-defined level.
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Figure 6.7: Evolution of the annual standard deviation of the Haar wavelet detail coefficients of the absolute
values of v1, v2 profiles magnified by their corresponding singular values, down to three level (starting from
the top left).

Figure 6.6 exemplifies the decomposition for a (short) discrete signal x = (x1, x2, x3, x4).
In the first analysis step, the original values (the dots) are paired, and each pair is re-
placed by its mean or approximation (ai , the dash-dotted lines) and the symmetric de-
viation di with respect to the corresponding mean. As a consequence, the original signal
x can equally well be represented by the approximation vector a = (a1, a2) and the vec-
tor of detail coefficients d = (d1,d2). The next analysis step (not depicted here) would
repeat the procedure, this time starting with the approximation a as input. As a concrete
example, imagine that the time series is given by x = (1 5 11 1. . .), then

• Level 1: x = (1 5︸︷︷︸
3±2

11 1︸ ︷︷ ︸
6±(−5)

. . .) −→ a1 = (3 6. . .) and d1 = (2 −5. . .)

• Level 2: a1 = (3 6︸ ︷︷ ︸
4.5±(−1.5)

. . .) −→ a2 = (4.5 . . .) and d2 = (−1.5 . . .)

6.4.2. VOLATILITY QUANTIFICATION
It is important to realize that the level-one detail coefficients capture the highest fre-
quency oscillations. Subsequent detail coefficients correlate with oscillations of succes-
sively lower frequencies. As mentioned before, in the present work, the right singular



116 6. VOLATILITY QUANTIFICATION

3900 3950 4000 4050
15

20

25

30

35

40

Original

Approximated

Figure 6.8: Detail of rank-2 approximation (red) superimposed on original data (blue).

vectors Vk are considered to be an indicator of the volatility of the fundamental daily
price profiles (Uk ) throughout a year. As it was mentioned earlier, Figure 6.5 confirms
that there are only a few dominant singular values; we hence opt to consider only the
first two right singular vectors (Vk ). Figure 6.7 contains the standard deviation of the
values of the Haar wavelet detail coefficients, down to three-level wavelength decom-
position. The downward trend underscores a reduction in the volatility of the German
day-ahead market in recent years. Worth noting that V1 and V2 coefficients have been
magnified using their corresponding singular values σ1 and σ2. The results here corrob-
orate with [2], where the hourly volatility of the German day-ahead market during the
same period is studied.

6.5. QUANTIFYING THE HOURLY VOLATILITY
A thorough understanding of volatility is crucial for many applications in financial eco-
nomic studies such as derivative pricing, corporate risk management, market efficiency,
and many others. As previously mentioned in Section 6.2.1, some characteristics of the
EPEX price data have made it impractical to apply the conventional econometric ap-
proaches in the time series volatility quantification. Therefore, we propose an alterna-
tive approach to hourly price volatility quantification using the residuals of the matrix
reconstruction.

To get some idea of what a rank-2 approximation looks like, Figure 6.8 shows a de-
tail of the approximation (in red) superimposed on the actual data (blue). Figure 6.9
contains a more general case of the reconstruction of price data in 2016, along with the
absolute value of the corresponding residuals. In the current section, we focus on the
residuals of the price after compensating for daily patterns using a rank-2 approxima-
tion; it is done to quantify the hourly volatility of the data over the years. As previously
mentioned, Figure 6.5 illustrates that the singular values of the price data throughout
different years follow the same pattern. Therefore, according to the results in Figure 6.5
the choice to focus on rank-2 approximation is relatively arbitrary and unimportant.

As can be seen in the top panel of Figure 6.10, the absolute value of the residuals
adheres remarkably well to an exponential distribution (with a mean 2.97). It is almost
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Figure 6.9: Left: Original and rank-2 approximation of the price data for 2016. Right: Absolute values of the
residuals after rank-2 approximation. Residuals are a means to measure volatility.

only the top 1% that is substantially higher in value than expected. Moreover, the lower
panel of Figure 6.10 highlights the fact that the higher rank approximations yield similar
results. Only as expected, by increasing the reconstruction rank, the absolute value of
the residuals decreases. Figure 6.11 confirms that this trend is consistent throughout the
period of observation (2006-2016). Based on this observation, we propose the following
approach to quantify the evolution in (annual) volatility in the years 2006 through 2016:

1. The influence of daily and seasonal variations is removed by fitting a rank-2 ap-
proximation and extracting the residual of the actual data with respect to this ap-
proximation. As volatility is influenced by both positive and negative fluctuations,
we hence focus on the absolute values of the residuals. Worth noting that, the bot-
tom panel in Figure 6.10 indicates that higher-rank reconstructions yield similar
results.

2. For every year, we fit the lowest 99% of the absolute value of the residual with an
exponential and compute the corresponding parameter (i.e. mean of the expo-
nential). This value corresponds to the size of the residuals. Note that here the
absolute value of the residuals is considered, which is the reason for preferring the
exponential distribution over the normal distribution in our methodology.

3. Typically, the top 1% of the observed distribution is much larger than expected
(based on the bulk of the distribution). We characterize these values by computing
the median value of this top 1% segment separately.

The results are shown in Figures 6.12 and 6.13. The former figure shows a robust es-
timate for the mean of exponential distribution for each year. The estimate is based on
the lowest 99% of the absolute values of the residual and is therefore robust with respect
to the top 1% of extremely large values. The 99% vs. 1% is dictated by the exponen-
tial prob-plot in Figures 6.10 and 6.11 which show a clear divergence at the 99% mark.
To quantify this decreasing trend, we have computed the regression line, which yields a
statistically significant downward slope equal to -0.58 (with 95% confidence interval: -
0.89:-0.26). The quality of this regression can be further improved by fitting a power law,
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Figure 6.10: Top: The residuals of the rank-2 approximation of the day-ahead market prices for the year 2016:
almost 99% of residuals adhere to an exponential distribution. Bottom: Higher rank approximations yield
similar results.
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Figure 6.12: Evolution of the price volatility on the German day-ahead market in the period 2006 through
2016 . The individual data points record the estimated exponential parameter (mean) based on all but the 1%
highest values of the residuals. The regression line has a slope equal to -0.58 which is highly significant (95%
confidence interval: -0.89 : -0:26). See the main text for more details.

but at this point, a linear regression serves the purpose to illustrate the significant down-
ward trend. The evolution of the top 1% is shown in Figure 6.13 where these data are
represented by their median value. This figure indicates that whereas extreme residuals
were not uncommon prior to 2010, these values fell significantly and have been roughly
constant during the years 2012-2016. The message from both figures combined is that
volatility has decreased significantly over the years 2006 to 2016.

Volatility tends to be higher in winter By scrutinizing Figure 6.9 it becomes evident
that the volatility tends to be lower in summer (middle part of the graph) than in winter
(extremal parts of the graph). To demonstrate that this is indeed the case, we use a mea-
sure based on the angular momentum. More precisely, if the (absolute) residual for hour
slot h is given by R(h) and the distance between the hour slot h and the central hour slot
hm = n/2 = 4392 equals |h −hm | the observed angular momentum is defined a:

Lobs =
n∑

h=1
R(h)(h −hm)2 (6.2)

where n is equal to the total number of hour slots. If we re-scale the values of the hour
slot in such a way that hm = 0 and −1 ≤ h ≤ 1 (divided by 1000, for ease of comparison),
we obtain Lobs = 10.676. A high value for Lobs refutes the assumption that the residuals
are uniformly distributed throughout the year and favours an interpretation in which
residuals (and hence volatility) are higher in the winter season. We judge the significance
of this result using a permutation test. The rationale is straightforward: if the residuals
are uniformly distributed over the hour slots, then a random permutation of the values
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Figure 6.13: Evolution of top 1% residuals over the years 2006-2016. Each data point represents the median
value of the top one percent residuals (in absolute value). As such, these values characterize the extreme de-
viations in day-ahead prices. The plot clearly shows that these extreme values decreased significantly before
2010, and then stayed approximately constant.

should not result in a significantly different value for Lobs . The results of the permutation
test for 2016 are depicted in Figure 6.14. Our experiments show that similar results for
all the other years can be produced.

6.6. EXTRACTING THE UNDERLYING TRENDS

This section is dedicated to a more descriptive study of the evolution of the overall trend
of the day-ahead market.

6.6.1. THE EVOLUTION OF THE DAILY PROFILES

As mentioned before, the left singular vectors (Uk profiles) represent the most dominant
daily profile (U1) and its additive corrective profiles (U2,U3, . . .). Figure 6.15 displays the
evolution of the most dominant daily price profiles (U1 magnified byσ1) over the years. A
continuous downward trend during the decade in the average value of the daily profile is
noticeable. More importantly, the change in the overall shape of the daily profile is even
more telling. Before 2011, the morning peak price values tended to be higher than the
afternoon peak values. Whereas this trend has become reversed in recent years. Another
intriguing feature of the data is the shift of the time slot (during the day) which more
points to the effect of the low-cost subsidized RES on the daily price profile. Before 2011,
the electricity price is most expensive at around 12h00. Evidently, the availability of solar
after 2011 has pushed the prices lower and has led to morning peak prices at around
9h00. In a similar way, the afternoon peak price time slot has a shift of an hour from
around 19h00 to 20h00. Furthermore, it is plain to see that the ranges of the daily profiles
(difference between the maximum and minimum values) show a reduction, in recent
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Figure 6.14: Price data for 2016: Results of the permutation test. The histogram of the L-values for 1000 random
permutations of the actual data. Obviously, the actually observed value (indicated in red) is significantly larger
than the values we would expect for data sets without structure (with a p-value < 10−3). This confirms our
observation that volatility shows a seasonal pattern.

years. This also can be an indication of less volatility in years. In other words, the change
in timing and amplitude of daytime and evening time peak values after 2011 are striking.
Before 2011, the midday peak price (around 12h00), was considerably higher than the
early evening spike around 20h00. However after 2011, the first spike is not just lower
than the second one, but also shows a clear shift to earlier hours. This makes sense in
light of the higher contribution of renewables, and in particular solar; it is reasonable to
assume that the typically high supply of solar power around midday is the reason for the
drop in prices during these hours. The right panel of Figure 6.15 displays an alternative
representation of the same data in the left panel; it confirms the previous findings by
showing a downward trend in average daily prices from left to right. The diminishing
contrast in each column indicates a smoother price profile with a lower daily spread over
the years. Looking closely, the shift of the midday and afternoon peak hours is notable.

6.6.2. THE EXTREME VALUES

In the next step, the extreme values of the hourly prices during the years have been
probed. More specifically, collecting all the hour slot values for each year in the pe-
riod 2006 through 2016 yields a price distribution for each year. Extreme prices (both
high and low) are characterized as prices outside the extreme 5% percentiles. So we get
a representative value for high (low) prices by focusing on the values of the 95% (5% re-
spectively) percentile for the distribution of each year’s worth of hourly price values. The
results are shown in Figure 6.16 where we have plotted both values (high and low) for
each year. There is a pronounced continuous downward trend for the high prices, with
2008 being an obvious outlier. The lowest prices show a slight decrease over the years, as
there is obviously less room for manoeuvre. The overall spread of the prices is steadily
decreasing and less volatile, indicative of a more mature market.
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6.6.3. THE DISTRIBUTION OF HIGH AND LOW PRICE VALUES

We herein explore the evolution in the distribution of occurrences of extreme prices over
the course of the day. Recall that high (low) prices are defined as values outside the
95th (5th) percentile of price distribution for that year. Figure 6.17 (left panel) shows
how the occurrence of low prices is distributed over the day (for the years 2006 through
2016). Whereas in the earlier years of the decade, there is a clear concentration of low
price occurrences in the early morning (4h00-5h00), later years show a more uniform
daily distribution. A similar distribution for the occurrence of high prices is shown in the
right panel of Figure 6.17. It indicates a distinct shift (occurring around 2011) in the time
slot of high prices. More precisely, the daytime peak is shifted from noon to the earlier
hour of 9h00, while the evening is postponed, shifting from 19h00 to 20h00. In other
words, before 2011, the daytime peak values were higher than the afternoon ones and
occurred around noon. After 2011, high prices occur predominantly at the beginning
and end of the peak period. Each column represents 440 values, which is 5% of the total
number of observations during one year. Also apparent is the fact that starting in 2011,
the afternoon spikes in the price profile exceed the daytime ones.

6.6.4. ZERO AND NEGATIVE PRICES

Of special interest are zero or negative prices as they reflect the effect of subsidized RES.
In Germany, a significant amount of electricity is still produced by conventional sources.
In 2015, e.g., lignite, nuclear energy and hard coal were responsible for producing 24,
14.2 and 18.3 % of gross electricity production, respectively [17]. The synchronization
speed of these plants is slow and they can not be shut or ramped down very quickly. As a
result, on some days when there is an excess of electricity production by subsidized re-
newable energy sources, prices may become negative and consumers can actually make
a profit by consuming electricity. Figure 6.18 provides an overview of the frequency along
with the magnitude of non-positive prices, in recent years. More specifically, the width
(on the x-axis) of the interval assigned to each year is proportional to the number of oc-
currences of negative (or zero) prices in that year. The y-axis depicts the corresponding
magnitude of these negative prices. Starting in 2012, the number of occurrences (length
of the interval) seems to increase steadily. This trend is strikingly consistent with the
growing contribution of wind and solar energy in Appendix B.1. From this graph it tran-
spires that there is a reduction in the magnitude of the negative prices in recent years,
although their number is mildly increasing.

The distribution of the growing number of instances of zero as well as negative prices
in recent years, from a different perspective, is illustrated in Figure 6.19. The left panel
highlights the frequency of occurrence of non-positive price values during different hours
of the day, for each year. Although, before 2012, the majority of non-positive prices are
happening in the early hours of the day, a cluster of non-positive price values appeared
during the midday (11h00-18h00). Considering the fact that the electricity demand dur-
ing these hours has not changed much (working hours), the most probable explanation
for this change can be the oversupply of solar farms. As is seen in Appendix B.1.2, these
are the hours with the highest solar energy availability; on average, at 13h00, solar pro-
duction can become as high as 5 gigawatt-hour (GWh), which is almost 5 times more
than solar feed-in at 10h00. This number can be even more during the summer. Ap-
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pendix B.1.3 highlights the fact that wind and solar energy combined are responsible for
almost 10 GWh feed-in at around 13h00, throughout the year. Another conspicuous ob-
servation in the left panel of Figure 6.19, is the increased frequency of the occurrences
of non-positive prices in the early hours of the day in the last two years. Interestingly
enough, Appendix B.1.1 presents how the wind feed-in have notably increased in 2015
afterwards. The right panel of Figure 6.19, confirms the fact the non-positive price val-
ues are most frequent during the weekends when the consumption is low. However, we
witness more instances of zero or negative prices during the week, from 2011 afterwards.

6.7. CONCLUSIONS
In this chapter, we have traced the impact of the integration of renewable energy sources
(RES) in Germany on the day-ahead electricity market, in terms of volatility, in the years
2006-2016. Regarding volatility quantification, there are a number of peculiarities that
make conducting the empirical methods onerous. EPEX price data have the following
characteristics: 1) It covers the whole year, 24 hours 7 days of a week; 2) It can have non-
positive values; 3) It depends on the calendar information (working and non-working
days), and 4) It shows daily upward and downward trends following the demand and
also the supply availability. Therefore, there is a lot of underlying variability in data that
simply reflects the diurnal patterns of human activities, and not reflecting the volatility.
Furthermore, regarding the second point (non-positive values), the traditional approach
in financial time series analysis to switch to logarithmic measures are impractical, with-
out shifting up all the values by a certain threshold. On the other hand, price volatility
has a dependence on the price level, which is even more pronounced when the spot
prices are low. Therefore, with respect to the magnitude of the aforementioned thresh-
old, results can vary drastically. We hence have explored an alternative approach by rep-
resenting the market data as matrices rather than time series. A novel and generic notion
of volatility were accordingly defined using a well-known and numerically stable matrix
decomposition technique, namely the singular value decomposition (SVD), combined
with Haar wavelet transforms.

Our observations indicate a price volatility reduction and also prominent changes in
the day-ahead price profiles, in recent years. There is an overall downward trend in the
average electricity price. This undoubtedly has a number of causes, but the increasing
penetration of subsidized solar and wind power account for at least part of it. Moreover,
the traditional 12h00 peak before the Energiwende (Energy switch) is flattened out and
shifted to earlier hours in the morning at 9h00. In a similar manner, the afternoon peak
price hours have shifted one hour, from 19h00 to 20h00. Indeed, it is possible to clearly
trace the impact of solar on the change of the daily price profile over the year (this effect
is most pronounced in summer). Furthermore, the effect of the growth in wind power
is most transparent in the shift in the distribution of low and negative prices during the
day.
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Figure 6.15: Top: Averaged daily profiles of the day-head prices. Bottom: An alternative representation, for the
sake of better visualization.
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Figure 6.16: The evolution of extreme prices shows a consistent downward trend in the data.
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Figure 6.17: An overview of the distribution of low prices over the day (top), vs. high prices (bottom), through-
out different years.
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Figure 6.18: An overview of the occurrences of zero or negative prices.
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Figure 6.19: Top: The abundance of zero as well as negative prices during the period of absence of sunlight
provokes the higher impact of wind than solar in this matter. Conversely, there are no negative prices in the
evening hours 19h - 23h, as consumption is high, and solar input has vanished. Bottom: The percentage of the
distribution of the zero or negative prices on the days of week.
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7
CONCLUSION

In a world replete with observations (physical as well as virtual), many data sets are
represented by time series. In its simplest form, a time series is a set of data collected
sequentially, usually at fixed intervals of time. In a number of applications, the mean
and the variance of the time series is time-invariant and there is no seasonality in the
data (such time series is called stationary). However, in many more applications, e.g.,
time series that are related to smart energy systems, the observed data often have non-
stationary characteristics. For instance, whereas the electrical consumption of house-
holds is similar throughout the week, it shows a markedly different consumption pattern
in the weekend.

An important research thread of the work in this thesis is the introduction of an alter-
native representation (as matrices) for such a time series. This offers some advantages
when it comes to the analysis of these types of data. The rationale is straightforward: we
then can use matrix factorization techniques to address different problems in a robust,
numerically-stable manner. In particular, in this thesis, we have focused on the singular
value decomposition (SVD) as a powerful, numerically stable matrix factorization tech-
nique which is then applied to time series analysis. That in turn has enabled us to look
at different applications in time series analysis from a fresh perspective.

7.1. MAIN CONTRIBUTIONS
As announced in Chapter 1, one of the earliest applications of SVD in time series analy-
sis is to detect periodicity and the number of components in the time series. To be more
precise, in the literature, the ratio of the first to the second singular values has been in-
troduced as a reliable measure to detect the periodicity in a time series. However, what
has not been much appreciated is that the mean level of the data as well as the number
of observed cycles (which determines the dimensions of the data matrix) affects the dis-
tributions of the singular values. Especially the latter case is more relevant to us, as the
matrix size is not fixed and the number of columns can increase in time by adding new
data. In this chapter, we also have provided an example of a complex time series where
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the Fast Fourier Transform (FFT) fails to correctly determine its periodicity. We also have
provided an introduction to different applications of the SVD in time series analysis.

We harked back to the SVD approach and the relevant theorems in Chapter 2. Fur-
thermore, we have extensively studied the SVD and its geometrical interpretation to ac-
quire a firm understanding of how it performs. We also have provided a number of ex-
amples of how the position with respect to the origin and the alignment of data points
affects the singular vectors and accordingly the singular values. We also have explained
how the results of the SVD and PCA are related to one another. This chapter also provides
an intuitive answer to Research Question 1. However, an in-depth discussion of the first
two research questions is provided in the next chapter. In this thesis, we make extensive
use of simulation and SVD-based computations. As a consequence, accurate sampling
from various matrix distributions is important. Through comprehensive experiments,
we have become aware of certain biases and artefacts. We have concluded this chapter
by pointing out the presence of such artefacts in the implementations of the algorithms
in Matlab and Python.

For most applications of the SVD in various fields, it is important to understand the
properties of SVD of a matrix whose entries show some degree of random fluctuations.
Therefore, in order to determine how the noise level affects the singular value spectrum,
it is essential to study the singular value decomposition of random matrices. Having
provided a background in random matrices, Chapter 3 addressed Research Question 1
and Research Question 2 in full detail. In this chapter, we have proved some more prop-
erties of the SVD. In particular, we have provided estimates on how the drift in a simple
periodic time series can affect its singular values.

The SVD and PCA techniques are both conceptually simple and effective. However,
it is well-known that they are sensitive to the presence of noise and outliers in input
data. In the literature, some modifications of the original algorithms of SVD and PCA
have been proposed to alleviate the effect of these disturbances. In particular, one way
to mitigate this sensitivity is to introduce regularisation terms. To this end, in Chapter 4
we first hark back to interpreting PCA in terms of low-rank approximations. We then
added regularisation terms to its functionals and devised a solution algorithm for the
new constrained optimization problem. This offers a solution to Research Question 3a.

We next turned our attention to the SVD factorisation and Research Question 3b. Al-
gorithm 1 proposes a solution to a simpler case where only one regularisation term was
added. In Algorithm 2 we offer a solution for the more general case. We then have shown
how to tackle the computational aspects of the random and gradient descent techniques.
To this end, we used ideas from Lie-group and -algebra to come up with a convenient
parametrisation of the search problem. We have concluded this chapter by providing
some examples of how regularisation can enable us to enhance the underlying patterns
in the data.

With the increasing integration of renewable energy sources (RES) such as wind and
solar energy into the power grid, balancing the grid has become more challenging. It is
mostly due to the inherently intermittent nature of RES, on the one hand, and shortcom-
ings in bulk energy storage systems, on the other. Therefore, studies on scenario-based
probabilistic energy production and demand forecasts have gained momentum, as they
are highly valuable from both a technical and an economic point of view. A particular
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application of such models in the energy sector is where having the distribution of the
energy consumption for the coming days is desired. The performance of such models
evidently depends to a large extent on how different input (temperature) scenarios are
being generated. There are mainly three practical and popular methods for generating
temperature scenarios, namely fixed-date, shifted-date, and bootstrap approaches. Nev-
ertheless, these methods have mostly been used on an ad-hoc basis without being for-
mally compared or quantitatively evaluated. Chapter 5 provides a data-driven solution
for Research Question 4. In this chapter, we proposed a generic framework for proba-
bilistic load forecasting using an ensemble of regression trees. A major distinction of the
current work was in using matrices as an alternative representation for quasi-periodic
time series data. The SVD technique was then used to generate temperature scenarios
in a robust and timely manner. The strength of our proposed method lies in its simplic-
ity and robustness, in terms of the training window size, with no need for subsetting or
thresholding to generate temperature scenarios. The empirical case studies performed
on the data from the load forecasting track of the Global Energy Forecasting Competi-
tion 2014 (GEFCom2014-L) show that the proposed method outperforms the top two
scenario-based models with a similar set-up.

In Chapter 6, we investigated Research Question 5, i.e., what effect the transition of
energy to RES can have on the overall trend and also the volatility of the electricity prices.
As it was exemplified in this chapter, the emergence of non-positive price values in the
energy transition era has introduced new challenges in the electricity market volatility
analysis. More precisely, traditional approaches to switch to logarithmic measures can
only be done after shifting up all values above zero by a certain threshold. However, price
volatility has a dependence on the price level, which is even more pronounced when the
spot prices are low. Therefore, the aforementioned pre-processing step can affect the fi-
nal outcome. In other words, the generalizability of conventional approaches can be
questioned, as the volatility measures can vary drastically, with respect to the magni-
tude of the thresholds mentioned above. The first part of this chapter offers a solution
to Research Question 5a by introducing a new notion of volatility which was obtained
by reconstructing the time series using the SVD. Our observations indicate price volatil-
ity reduction, in the day-ahead market, in the years 2006-2016. The second part of this
chapter addressed Research Question 5b; it provided shreds of evidence of the effect of
renewables on daily price profiles – the emergence of non-positive prices and shifts of
peak price values to hours where solar is less available.

7.2. CONCLUDING REMARKS AND FUTURE WORK
In this thesis, we have argued that the well-known singular value decomposition (SVD)
(which is usually applied to matrix problems) can also successfully be applied to identify
the periodic patterns in time series. Furthermore, these profiles are completely defined
by the data and do not require the specification of user-defined parameters, apart from
the period (which itself can be estimated using this approach). As such, this methodol-
ogy offers a purely data-driven approach to adaptive signal approximation. Our findings
can be used as innovative components of future smart grid systems, which are charac-
terized by the increasing uncertainty on both the supply and demand parts.

An important topic for further research would be to find ways in which the gradient
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descent procedure used in Algorithms 1 and 2 of Chapter 4 can be accelerated by tak-
ing advantage of the fact that the functional is very smooth and locally approximately
quadratic. It would also be useful to derive some estimates for appropriate values for the
weights λ and µ in terms of noise characteristics corrupting the underlying signal. Fi-
nally, although the P matrix in Algorithm 2 has unit-length columns, unlike the standard
SVD, we were unable to confirm the orthogonality of the P vectors, i.e., P T P 6= Ik . In fact,
numerical experiments seem to indicate that such a constraint is not compatible with
the minimisation of the functional. This requires further theoretical elucidation.
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APPENDIX

A.1. BRIEF OVERVIEW OF MATRIX NORMS
Matrix norms come in two flavours (more details are discussed below):

• Vector interpretation: entry-based norm The matrix is seen as a vector (general-
isation of n-tuples), and the norms are based on the values of the matrix entries.

• Operator interpretation: operator or induced Norm A matrix can also be inter-
preted as representing a linear transformation, and the norm is associated with
the effect of the linear transformation on vectors.

VECTOR INTERPRETATION (ENTRY-WISE NORMS)
In this case we simply interpret a p×q matrix as an pq-tuple and use the corresponding
vector norm. For instance, for A ∈Rp×q :

• L2 norm (squared for notational convenience):

||A||22 =
p∑

i=1

q∑
j=1

|ai j |2 = Tr (AT A) = Tr (A AT )

This norm is also called the Frobenius norm (which is the same as the sum of
squares of the singular values.).

• L1 norm:

||A||1 =
p∑

i=1

q∑
j=1

|ai j | = 1T
p |A|1q

where 1n is a column matrix of length n for which all entries are equal to 1.

• L∞ norm:
||A||∞ = max

i , j
|ai j |
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• Small entries in a vector contribute more to the 1−norm of the vector than to the
2−norm. That is in contrast to the contribution of large entries in a vector to the
1-norm and 2-norm.

OPERATOR INTERPRETATION (INDUCED NORM)
In this case the matrix norm is induced by the norm(s) for vectors. More specifically,
the matrix norm is determined by the maximal (amplification) effect the linear transfor-
mation can have on any vector. Because of linearity we can restrict our attention to the
effect on vectors of unit norm. Assuming that we are working in a finite dimensional
vectorspace (V ) equipped with a norm || · ||V , the induced operator norm (which will be
denoted as || · ||(V ) ) becomes:

||A||(V ) := max

{ ||Ax||V
||x||V

: x ∈V0

}
= max{||Ax||V : x ∈V , ||x||V = 1}

This equation has a straightforward geometrical interpretation. The linear transforma-
tion characterized by A transforms the unit sphere into an ellipsoid. The induced norm
is equal to (half) the length of the maximal principal axis of this ellipsoid.

• L2 norm (spectral norm): is in fact the largest singular value of the matrix. The
2-norm is the square root of the sum of squared distances to the origin along the
direction that maximizes this quantity.

• L1 norm:

||A||1 = max
j

(
q∑

i=1
|ai j |) wher e j = 1. . . p

• In general, if one splits a matrix A into its column vectors: Ap×q = [A1, A2, . . . Ap ]
the the one-norm of A in the maximum of the one-norms of the column vectors
Ai of A.
||A||1 = max{||Ai ||1 : Ai is a column vector of A }

• Similarly, in general if one splits a matrix A into its row vectors:

Ap×q =


A1

A2
...

Aq


then the ∞−norm of A is the maximum of the one-norms of the row vectors A j of
A.
||A||∞ = max{||A j ||1 : A j is a row vector of A }

• L2 norm: is in fact the largest singular value of the matrix. The 2-norm is the square
root of the sum of squared distances to the origin along the direction that maxi-
mizes this quantity.
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A.2. SVD SOLVES A MATRIX NORM OPTIMISATION PROBLEM
There are some essential connections between matrix norms and SVD. In this context
we will explore two:

1. The L2 matrix norms can be expressed in terms of the singular values;

2. Using L2 matrix norms as an objective function, SVD provides the solution to a
non-convex optimization problem.

We will look at both in turn.

A.3. L2 MATRIX NORMS EXPRESSED IN TERMS OF SINGULAR VAL-
UES

Suppose A is an n×p matrix which has r non-zero singular values, arranged in decreas-
ing order:

σ1 ≥σ2 ≥ . . . ≥σr > 0

Theorem 10. Both L2 norms (Frobenius and spectral) can be expressed in terms of the
singular values. More specifically:

1. Frobenius norm (entry-wise): ||A||2F =∑
i σ

2
i .

2. Spectral norm (induced): ||A||22 =σ2
1.

Proof. The proofs amount to straightforward calculations:

1. Frobenius:

||A||22 = Tr (AT A) = Tr (V ST U T U SV T ) = Tr (V ST SV T ) = Tr (ST S) =∑
i
σ2

i

2. Spectral:

max |Av |
where |v | = 1 is a unitary matrix. Previously we saw that v1 maximize this argu-
ment and the result of that is σ2

1.

SVD SOLVES THE LOW-RANK APPROXIMATION PROBLEM

The connection between SVD and matrix norms is given by the fact that the SVD provides
the solution to the question: for a given matrix A, find the best approximation for a pre-
specified rank. The notion of matrix norm enters when we need to specify what we mean
by "best". Reformulating the problem in a more precise manner, we arrive at:

Lemma 11. Matrices A and B are identical if and only if for all vectors v, Av = Bv.
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Related results For any matrix A, the sequence of singular values is unique and if the
singular values are distinct, the the sequence of singular vectors is also unique. How-
ever, when some set of singular values are equal, the corresponding singular vectors span
same subspace. Ant set of orthonormal vectors spanning this subspace can be used as
the singular vectors.

Lemma 12. Let Ap be defined as above, then the extension of the earlier expression of the
norm in terms of the singular values are given by:

• ||A− Ap ||22 =
∑r

k=p+1σ
2
k

• ||A− Ap ||22 =σ2
p+1

A.4. GRADIENTS FOR FROBENIUS NORM

Suppose that A ∈ Rp×k , X ∈ Rk×q and B ∈ Rp×q and define the real-valued function
(based on the Frobenius norm):

f (X ) = ‖AX +B‖2
F

Then we have the following gradient:

∇X f = 2AT (AX +B) (A.1)

Similarly,
g (X ) = ‖X A+B‖2

F =⇒ ∇X g = 2(X A+B)AT (A.2)

Applying eqs. (A.1) and (A.2) to the J1 functional we get:

1

2
∇U J1 =−(A−UV T )V +λU

and
1

2
∇V J1 = (V U T − AT )U

A.4.1. SOME SPECIAL CASES

• For f (x) = aT xxT a = (aT x)2, then

∇x f = 2(aT x)a = 2(xT a)a

• For For f (x) = xT Qx where Q symmetric,

∇ f = 2Qx

A.5. VARIANCE OF PRODUCT
• If X and Y are independent then:

V ar (X Y ) =V ar (X )V ar (Y )−V ar (X )(E(Y ))2 −V ar (Y )(E(X ))2. (A.3)

If both E(X ) = E(Y ) = 0, then

V ar (X Y ) =V ar (X )V ar (Y ) (A.4)
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A.6. SINGULAR VALUES OF THE “FAT" MATRICES
• A square matrix represents a mapping from a space into itself (or another space

of the same dimension). Under such a mapping the unit sphere is mapped to an
ellipsoid.

• A fat matrix represents a linear mapping from a higher dimensional space into a
lower one. This means that the kernel is non-trivial. It also means that the unit
sphere is mapped into a solid ellipsoid (i.e. including the interior). See fig right

What we observe from these experiments is that when we increase the aspect ratio (make
the matrix fatter), increasingly more unit vectors are mapped to the interior (making the
outline of the ellipsoid more difficult to spot.

In addition, the image becomes less correlated (correlation coefficient of data points
decreases. This means that the singular values become more alike: a perfectly spherical
image would result from the identity matrix which has identical singular values. So it
seems to me that the explanation for the observed behaviour of the singular values must
run along the following lines:

• Increasing the aspect ratio (making the matrix fatter) results in an increase of the
Frobenius norm (after all, we are summing over more matrix entries). Hence this
implies that the sum of singular values has to increase. This can be done by in-
creasing the incline of the line of singular values, or by shifting this line upwards
parallel to itself (the latter is what we observe).

• The above experiments suggest that increasing the aspect ratio results in an image
of the unit-sphere that is increasingly more circular which would suggest that the
ratio between the smallest and largest singular value decreases — this rules out
that the inclination of the singular values line increases, but does correspond to a
uniform increase in all the singular values.

• Basically Figure A.1 confirm that for a set of unit vectors ei on n−dimensional

space i.e.,
n∑

j=1
e2

i j = 1, if we increase the dimension n →∞ then the ei →N (0,σ).

Theorem 13. If ui (i = 1, . . . , N ) are unit vectors in n-dimensional space Rn , sampled
uniformly on the unit sphere Sn−1 ⊂Rn .
Then (denoting vectors as columns):

1

N

N∑
i=1

ui uT
i −→ 1

n
In as N −→∞. (A.5)

Another way of formulating this would be:

Let u1,u2 ∼Uni f (Sn−1) uniform and independent on the unit-sphere in Rn , then

E(uT
1 u2) = 0 while E(u1uT

1 ) = E(u2uT
2 ) = 1

n
In
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Figure A.1: Image of 1000 random points on the unit sphere under a random transformation (unit normal).
Top left: Random 2×2 matrix. Top right; 2×3. Bottom right: 2×15.
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Figure A.2: Distribution of correlation coefficient of the images of 1000 uniformly distributed unit vectors after
random transformation of n-dimensional space into 2-dim space (n = 2,3,5,10,20,50). Clearly, higher dimen-
sional space tend to project down to less correlated data. This confirms the progression seen in Fig. A.1.
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Outline of proof

• If we would take ui = ei to be the standard unit vectors (in which case N = n)
the asymptotic result turns into an equality. This follows immediately from the
observation that ei eT

i is a matrix with a single non-zero entry (equal to 1) on the

i th diagonal position.

• Each term in the LHS sum in the LHS always has trace equal to 1 (exactly), inde-
pendent of N . This follows from the fact that for any rank-1 matrix:

Tr (abT ) =∑
i

(abT )i i =
∑

i
ai bi = at b and hence: Tr (ui uT

i ) = uT
i ui = 1.

As a consequence:

Tr

(
1

N

N∑
i=1

ui uT
i

)
= 1

N

N∑
i=1

Tr (ui uT
i ) = 1. (A.6)

• Notice that the diagonal elements for every matrix ui uT
i are just the square entries

of ui :

di ag (ui uT
i ) = (u2

i 1,u2
i 2, . . . ,u2

i n)

Since the distribution of the unit vectors is uniform over the sphere, the induced
distribution of the (squared) entries will be independent of the position along the
diagonal (if this weren’t the case, then there would be a preferred direction space,
which contradicts the uniformity). Hence, the sum (from 1 to N for each diagonal
element, converges to the same value. This in combination with the fact that the
trace needs to be one, shows that at least on the diagonal, Eq. (A.7) holds.

• The off-diagonal elements of each rank-1 matrix (uuT )k` = uk u` also have some
structure.

Hence this means that the k` element of the LHS (where k 6= `) is a (growing)
sample mean and therefore converges to the mean of the corresponding mean
of the stochastic variable UkU` (where we use the capital notation to indicate
the stochastic component variables that result from a drawing a unit vector u =
(U1,U2, . . . ,Un) uniformly on the unit-sphere:

(
1

N

N∑
i=1

ui uT
i

)
k`

−→ E(UkU`) as N −→∞. (A.7)

Notice that if the components were independent, then this would clinch the proof
because EUi = 0 (symmetry), assuming independence, E(UkU`) = E(Uk )E(U`) =
0. However, independence does not hold since

∑n
k=1 U 2

k = 1. So there is a weak
dependence that becomes weaker as the dimension of the ambient space grows.
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• Still, we can expect E(UkU`) = 0 because if that weren’t the case, then there would
a non-zero covariance between different components:

Cov(Uk ,U`) = E(UkU`)−E(Uk )E(U`) = E(UkU`) 6= 0

but that seems to contradict the uniformity on the unit-sphere.

• Further to the above item: the dependence between the components is strongest
in the low dimensional spaces and gets weaker in high dim.

The strongest dependence is for unit vectors in 2-dim space. Sampling from the
unit-circle in 2-dim amounts to

u = (u1,u2) = (cos(θ),sin(θ)) where θ ∼U (−π,π).

Hence,

E(u1u2) = E(cos(θ)sin(θ)) = 1

2
E(sin(2θ) = 0 since 2θ ∼U (−2π,2π)

• I think all of the above are sufficient to construct a valid proof. At least it explains
why the result is true.

Let U = (U1,U2, . . . ,Un) where each Ui ∈ Sn−1 ⊂Rn lies on the unit sphere. We want
to prove that E(UiU j ) = 0 if i 6= j .

Proof: We can construct U as follow:

U = X

‖X ‖ when X ∼N (0, In) (A.8)

E(UiU j ) = E(
Xi

‖X ‖
X j

‖X ‖ ) = E(
Xi X j

‖X ‖2 ) (A.9)

For the 2-dimensional case we have:

X = (X1, X2) X1, X2 independent random variables in N (0,σ)

Let us assume the following: {
P = X1X2

R2 = X 2
1 +X 2

2 =Q

Therefore we have 
Q −2P = (X1 −X2)2 ≥ 0

Q ≥ 2P

Q +2P = (X1 +X2)2 ≥ 0 →Q ≥−2P
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From the above formulas we can derive at the following:{
p = X1X2

q = X 2
1 +X 2

2

or {
q +2p = (X1 +X2)2

q −2p = (X1 −X2)2

ϕ(p, q) = 1
2πe−(X 2

1+X 2
2 )/2| ∂(X1,X2)

∂(p,q) | since X1 = X1(p, q), X2 = X2(p, q) therefore,{
X1 +X2 =

√
q +2p

X1 −X2 =
√

q −2p

By summing up and subtracting the two equations, we derive:{
2X1 =

√
q +2p +√

q −2p

2X2 =
√

q +2p −√
q −2p

hence

|∂(X1, X2)

∂(p, q)
| = 1

2
(

1√
q2 −4p2

)

or

ϕ(p, q) = 1

4π

e−q/2√
q2 −4p2

therefore we conclude:

E(
X1X2

R2 ) = E(
P

Q
) (A.10)

therefore we have:*

∫ ∫
p

q
ϕ(p, q) dp dq =

∞∫
0

q
2∫

−q
2

(
p

q

e−q√
q2 −4p2

)) dp dq =
∞∫

0

e−q

q
(

q
2∫

−q
2

p√
q2 −4p2

dp)dq = 0

since the inner integral is the integral of an odd function over a symmetric interval.
We hence can conclude that for i 6= j :

E(UiU j ) = E(
Xi X j

‖X ‖2 ) = 0

• Some random musing: this result is somewhat counter-intuitive. For each ui uT
i is

essentially an orthogonal projection on the corresponding unit vector. So you as-
sume that because of the uniform distribution, all these contributions cancel out
and therefore the result would be the zero mapping rather than the unit mapping.
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To explain the change of correlation in the figures above, we need to investigate the cor-
relation of the images of random unit vectors under random linear transformation, This
means that we are interested in images of the form:

f = Au where A is (m ×n) matrix with m ≤ n (fat)

Combining N of these results in a matrix we get:

F = AU where U = (u1, . . . ,uN ) is n ×N and F = (f1, . . . , fN ) is m ×N

To compute the correlation (covariance) of the image vectors in F we have to compute:

Cov(F ) = 1

N

N∑
i=1

fi fT
i = 1

N
A

(
N∑

i=1
ui uT

i

)
AT −→ 1

n
A AT .

Every entry of the correlation matrix is in fact the inner product of the corresponding two
columns of the matrix X . More importantly, because the correlation matrix is symmetric
and semi-positive (it contains the inner products) that guarantees that there are real,
non-negative eigen values.

Using the SVD decomposition to rewrite Am×n = Um×mSm×nV T
n×n we get further-

more:

Cov(F ) = 1

n
US S T U T = 1

n
U diag(σ2

1, . . . ,σ2
m)U T

The matrix product in the RHS only depends on m, so increasing the number of columns
N does indeed reduce the covariance. By increasing N , the covariance matrix is not
decreasing but becoming constant on the RHS! But we need to covariance matrix to go
to the unit matrix.

So basically we need to show that

1

n
di ag (σ2

1, . . . ,σ2
m) −→ In as n −→∞.

This indeed would imply that the singular values tend to the same values.

A.6.1. WHY ARE SINGULAR VALUES INFLATED?
Notice that if A = (m × n) (where m < n ) and we make the SVD decomposition A =
US V T then the last n −m columns of V constitute an orthonormal basis for the null-
space Z := ker A.

• Notice that:

(A AT )i j =
n∑

k=1
Ai k A j k (inner product of i th and j th row of A)

Similarly:

(AT A)i j =
m∑

k=1
Aki Ak j (inner product of i th and j th column of A)
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As a consequence:

(A AT )i i =
n∑

k=1
A2

i k ∼χ2
n (sum of independent squared standard normals)

(A.11)
while

(AT A)i i =
m∑

k=1
A2

ki ∼χ2
m (sum of independent squared standard normals)

(A.12)

• Introducing additional notation: Let U i ,Ui be the i-th row, column respectively
of U , Moreover, we denote ei = (0, . . . ,0,1,0, . . . ,0)T we can use the SVD decompo-
sition A =US V T to conclude:

(A AT )i i = eT
i A AT ei

= eT
i U di ag (σ2

1,σ2
2, . . . ,σ2

m)U T ei

= U i di ag (σ2
1,σ2

2, . . . ,σ2
m)(U i )T

= σ2
1u2

i 1 +σ2
2u2

i 2 + . . .+σ2
mu2

i m = (A.13)
m∑

k=1
σ2

k u2
i k ∼ χ2

n (cf. eq. A.11) . (A.14)

Since we know that the columns of U are orthonormal, it follows that also the rows
are orthonormal (ref??): UU T = Im =⇒ U T U = Im (and vice-versa). This implies
that

m∑
k=1

u2
i k = 1,

hence we can interpret eq. (A.14) as a weighted mean of the squared singular val-
ues that needs (on average) be equal to n (the expected value of χ2

n). Hence we see
that if we increase n, then the values of σk need to increase as well. Furthermore,
since the rows and columns of U are random, this increase cannot be shouldered
by a small number of the singular values, but needs to happen across the board.

• We can make a similar argument:

(AT A)i i =
m∑

k=1
A2

ki ∼ χ2
m

But also:
(AT A)i i = eT

i AT Aei =σ2
1v2

i 1 + . . .+σ2
m v2

i m

But notice that the factors in weighted sum do not add up to 1 (since m < n ).
Notice that increasing n means that fewer components of v enter in the sum, and
therefore the singular values need to increase in order to keep the average fixed on
m.
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Figure A.3: The scaling factor seems to depend on the order of singular value. Left: difference between average
sing values of random (standard normal) matrix for square (50×50) and fat (50×500) matrix.

A.7. PERTURBATION OF EIGEN-VALUES AND -VECTORS
A small change in the elements of a matrix can have a profound effect on a function
of that matrix. Let Q be a symmetric n × n matrix with eigenvalue spectrum λ(Q) =
{λ1,λ2, . . . ,λn}. The corresponding eigenvectors ui form an orthonormal basis for Rn :

Qui =λi ui and uT
i u j = δi j .

Now consider how a small perturbation of Q + εdQ will affect the eigen-values and -
vectors:

λi (ε) = λi +εuT
i dQ ui +o(ε2) (A.15)

ui (ε) = ui +ε
∑
j 6=i

uT
j dQ ui

λi −λ j
+o(ε2) (A.16)

Note that these formulas hold as long as the unperturbed and perturbed systems in-
volve symmetric matrices, to guarantee the existence of N linearly independent eigen-
vectors.

Let Q be a symmetric matrix which therefore has a orthonormal basis of eigenvectors
ui with corresponding eigenvalues λi :

Qui =λi ui .

Differentiating yields:

(dQ)ui +Qdui = (dλi )ui +λi dui .

or again:
(Q −λi )dui = (dλi −dQ)ui .

Left-multiplying by uT
k and using the fact that Q is symmetric and therefore uT

k Q =λk uT
k

we obtain:
uT

k (λk −λi )dui = uT
k (dλi −dQ)ui .

We now consider the following two cases:



146 APPENDIX

• k = i : in this case the LHS vanishes, and we get from the RHS:

dλi = uT
i (dQ)ui = (dQ)i i .

• k 6= i : it then follows that:

uT
k dui =

uT
k (dQ)ui

λi −λk
.

Since the ui constitute a basis we can expand:

dui =
∑
j 6=i

εi j u j since (without loss of generality) εi i = 0.

Plugging this in the equation above we get:

dui =
∑
k 6=i

uT
k (dQ)ui

λi −λk
uk

A.7.1. PERTURBATION THEORY FOR MATRICES

Consider a symmetric matrix Q =UΛU T ; differentiation yields:

dQ = dUΛU T +UdΛU T +UΛdU T

Next we use the fact that every orthogonal matrix can be written as the exponential
of a skew-symmetric:

U = eK (where K T =−K ) and hence: dU =UdK

Substituting this in the above yields:

U T dQU =U T dUΛ+dΛ+Λ(dU T )U

U T dQU = dΛ− (ΛdK −dKΛ)

Writing the above equation for diagonal and off-diagonal elements yields the correct
perturbation for the eigen-values and -vectors.
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B.1. EPEX MARKET AND RES FEED-IN
The following section contains some evidences of the impact of the day-ahead estimated
wind and solar feed-in on the price changes (Section 6.6), in the recent years.

B.1.1. DAY-AHEAD WIND ENERGY FEED-IN (IN GWH)
Fig. B.1 provides an overview of the evolution of the wind feed-in (day-ahead forecasts)
over the years. The left panel in Fig. B.1 indicates a smooth annual growth. In a similar
way, the right panel highlights the fact that the production is relatively constant around
the clock. The change in the annual average of the daily profiles from 2014 afterwards
is noticeable. Peak production of the wind profile is eventually moving from early after-
noon to late night or early morning. This can become an issue for the stability of the grid,
as there might not be enough demand during those particular hours.

B.1.2. DAY-AHEAD SOLAR ENERGY FEED-IN (GWH)
The developments in energy storage technologies and also the falling costs of harvesting
solar power have made it increasingly attractive for the private households [? ]. Fig. B.2
shows the day-time (non-zero values) solar energy feed-in forecast from 2010 to 2016.
After the rapid rise in 2010 through 2013, solar feed-in has leveled off in the last two
years. The panel on the right in Fig. B.2 illustrates the annual averaged solar feed-in for
each time slot for years 2010-2016. Peak of solar feed-in is around 13h00; that coincides
with the high demand during the day.

B.1.3. EVOLUTION OF GERMAN DAY-AHEAD PRICE DURING WINTER AND

SUMMER
To illustrate the impact of solar energy on the price, we scrutinize the data separately for
the summer (June through August) and winter (December through February) periods.
In winters, days are shorter and the sun, if it emerges at all, traces out a lower path in the
sky; therefore, a significantly smaller amount of solar energy is produced (Fig. B.3). Wind
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Figure B.1: Top: The consistent growth in wind energy feed-in over the years. Bottom: Annual average of the
daily profiles.
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Figure B.2: Left: Smooth growth in annual solar energy feed-in (only non-zero day-time values have been
considered). Right: Annual daily average of the solar feed-in.
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Figure B.3: Low production of solar and also shorter occurring hours in winters (left), vs. high amount and
longer period of solar production during summer (right).

energy, on the other hand, is fairly constant throughout the day, but there are marked
difference between the seasons (Fig. B.4). Fig. B.5 contrasts the evolution of the daily
average of the price profile during winter (December through February) and summer
(June through August) season. During the observed period we see that for winter time
the peak at 19h00 is reduced both in size and sharpness, most likely due to the increase
in the wind energy. During the summer period, the morning peak at 12h00 disappears
completely over the years, in all likelihood again due to the increasing supply of wind
and especially solar energy. In other words, the increasing supply of wind and solar en-
ergy is not only reducing the electricity price, but it is also changing the daily profile
substantially.

Comparing the solar energy feed-in in winters and summers in Fig. B.3 and also
considering the evolution of the price profiles in Fig. B.5 allow us to conclude that so-
lar energy, especially in summer, effectively flattens the daytime price profile. Fig. B.5
highlights the evolution of the daily average of the price profiles during winter (Decem-
ber through February) and summer (June through August) season. Every value is the
average of the prices for that specific hour, with the average ranging over the speci-
fied period. The left panel shows that during winter period the maximum values occur
from 18h00 to 20h00, with peak at 19h00. Also, there is a steep increase in the morning
(around 7h00). On the other hand, during summer (right panel), the price increase in
the morning (5h00-9h00) is considerably flatter. Also the price-spike observed during
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Figure B.4: Almost smooth and steady harvest of constant wind breathe in winters (left), vs. low production of
wind in summer (right).
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Figure B.5: The evolution of the seasonal daily average of the price profile during winter time (left) and summer
time (right).
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Figure B.6: Left: Boxplots for the hourly values of traded volumes on the day-ahead market. Right: Daily
evolution of the traded volume for each hour slot.

winter evenings (around 19h00) is completely absent in summers. Both observations
underscore the impact of solar on the price.

B.1.4. DAY-AHEAD TRADED QUANTITY (GWH)
Fig. B.6 displays the evolution of the traded quantity values on the German day-ahead
market, in the recent years. Two interesting features are readily apparent. In the left
panel the occurrence of a considerable number of outliers (represented as individual
points near the upper part of the boxplots) point to unusually high volumes being traded.
This highly resembles the wind feed-in profiles in Fig. B.1.1. The panel on the right de-
picts the annual averages of a typical daily profile. Again, the steady increase in the
traded volume is evident. However, whereas in the first half of the decade, the traded
volume is essentially constant over the course of the day, the latter part of the decade
shows an increasingly more prominent bump that mirrors the average supply of solar
energy, and could therefore be an indicator of surpluses generated by the renewable en-
ergy sources (in particular solar). In 2016, however, we witness a minor reduction in the
traded volume, as it may be a direct outcome of warm winter combined with less solar
feed-in in that year.
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